Cisco Unified IP Phone 7940G
Retour à l'accueil, cliquez ici
Télécharger le pdf : http://www.cisco.com/en/US/docs/voice_ip_comm/cuipph/7961g_7961g-ge_7941g_7941g-ge/4_2/french/user/guide/61fra42.pdf
Siège social
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
États-Unis
http://www.cisco.com
Tél. : +1 408 526-4000
+1 800 553-NETS (6387)
Fax : +1 408 526-4100
Téléphones IP Cisco Unified
7961G/7961G-GE et 7941G/7941G-GE
pour Cisco Unified CallManager 4.2
INCLUANT LA LICENCE ET LA GARANTIE
Manuel de téléphoneCopyright © 2006, Cisco Systems, Inc. Tous droits réservés. Cisco, Cisco IOS,
Cisco Systems et le logo Cisco Systems sont des marques déposées de Cisco
Systems, Inc. ou de ses filiales aux États-Unis et dans certains autres pays.
Tous les autres noms ou marques mentionnés dans ce document ou sur le site
Web sont la propriété de leurs détenteurs respectifs. L’utilisation du terme
« partenaire » n’implique nullement une relation de partenariat entre Cisco et
toute autre entreprise. (0601R)
OL-9616-01
Livret de référence
Téléphones IP Cisco
Unified 7961G/
7961G-GE et 7941G/
7941G-GE pour Cisco
Unified CallManager 4.2
Définitions des touches dynamiques
Icônes de l’écran du téléphone
Icônes de boutons
Tâches téléphoniques courantes
Définitions des touches
dynamiques
AGrpIntr Répondre à un appel en sonnerie dans un
groupe associé
Annuler Annuler une opération ou quitter un écran
sans appliquer les modifications effectuées
autres Afficher d’autres touches dynamiques
Bis Rappeler le dernier numéro composé
Compos. Composer un numéro de téléphone
Conf. Créer une conférence téléphonique
ConG Se déconnecter des groupes de recherche
pour empêcher les appels de cette
provenance de sonner sur votre téléphone
Détails Ouvrir l’enregistrement Détails d’un appel
à plusieurs interlocuteurs dans les journaux d’appels en absence et d’appels reçus
EditNum Modifier un numéro dans un journal
d’appels
Effacer Supprimer des enregistrements ou des
paramètres
Effacer Réinitialiser les valeurs par défaut des
paramètres
Enreg. Sauvegarder les paramètres choisis
Fermer Fermer la fenêtre active
FinApp. Déconnecter l’appel en cours
GrpIntr Répondre à un appel en sonnerie dans un
autre groupe
InsConf Participer à un appel sur une ligne partagée et établir une conférence téléphonique
Insert Participer à un appel sur une ligne
partagée
Intrcpt Répondre à un appel dans son groupe
Joindre Joindre plusieurs appels en cours sur une
même ligne pour établir une conférence
téléphonique
ListConf Afficher la liste des participants à la
conférence
Tâches téléphoniques
courantes
Afficher l’aide en ligne
sur le téléphone
Appuyez sur .
Passer un appel Décrochez le téléphone avant ou
après avoir composé un numéro.
Rappeler un numéro Appuyez sur Bis ou sur la touche
de navigation avec le téléphone
raccroché pour visualiser le journal
d’appels passés.
Utiliser le combiné au
cours d’un appel
Décrochez le combiné.
Utiliser le haut-parleur
ou le casque au cours
d’un appel
Appuyez sur ou sur , puis
raccrochez le combiné.
Utiliser le mode Secret
du téléphone
Appuyez sur .
Utiliser les journaux
d’appels
Appuyez sur pour
choisir un journal d’appels. Pour
composer un numéro, mettez en
surbrillance une entrée de liste et
décrochez le téléphone.
Modifier un numéro Appuyez sur EditNum, sur << ou
sur >>.
Mettre en attente/
reprendre un appel
Appuyez sur Attente ou sur
Reprend.
Transférer un appel
vers un nouveau
numéro
Appuyez sur Trnsfer et entrez un
numéro cible, puis appuyez une
nouvelle fois sur Trnsfer.
Démarrer une confé-
rence téléphonique
standard
Appuyez sur autres > Conf.,
composez le numéro du
participant, puis appuyez de
nouveau sur Conf.MàJ Actualiser le contenu
ModeVid. Choisir un mode d’affichage vidéo
MulConf Héberger une conférence téléphonique
Meet-Me
NumAbr Composer un numéro à l’aide d’un code
de numérotation abrégée
NvAppel Passer un nouvel appel
Parquer Stocker un appel à l’aide de la fonction de
parcage d’appels
Précédent Revenir à la rubrique d’aide précédente
QRT Soumettre à l’administrateur système des
problèmes relatifs aux appels
Quitter Revenir à l’écran précédent
Rappel Recevoir une notification lorsqu’un poste
occupé se libère
Recher. Effectuer une recherche dans une liste de
répertoires
RenvTt Configurer/Annuler le renvoi d’appels
Répond. Répondre à un appel
Reprend Reprendre un appel en attente
Rvoi Im Transférer un appel vers votre système de
messagerie vocale
Sélect. Sélectionner une option de menu ou un
appel
SupDerA Abandonner le dernier interlocuteur à
avoir rejoint une conférence téléphonique
Suppr. Supprimer les caractères situés à droite du
curseur lors de l’utilisation de la touche
EditNum
Suppr. Exclure un participant de la conférence
TrnsDir Transférer deux appels l’un vers l’autre
Trnsfer Transférer un appel
<< Supprimer les caractères entrés
>> Passer d’un caractère entré à un autre
Icônes de l’écran du téléphone
État de la ligne et de l’appel
Renvoi d’appels activé
Appel en attente
Appel connecté
Téléphone décroché
Téléphone raccroché
Appel entrant
Ligne partagée en cours d’utilisation
Appels sécurisés
Appel authentifié
Appel sécurisé
Périphérique sélectionné
Combiné en cours d’utilisation
Casque en cours d’utilisation
Haut-parleur en cours d’utilisation
Appels critiques
Appel prioritaire
Appel d’importance moyenne
Appel très important
Appel de la plus haute importance
Icônes de boutons
Autres fonctions
Touche de numérotation abrégée
configurée
Message en attente
Mode vidéo activé
Option sélectionnée
Fonction activée
Messages
Services
Aide
Répertoires
Paramètres
Volume
Haut-parleur
Secret
Casqueiii
Table des matières
Mise en route 1
Utilisation du présent manuel 1
Recherche d’informations supplémentaires 2
Informations supplémentaires sur la personnalisation de votre téléphone sur le Web 2
Consignes de sécurité et informations relatives aux performances 3
Fonctions d’accessibilité 5
Raccordement du téléphone 6
Présentation du téléphone 9
Présentation des boutons et du matériel 9
Présentation des fonctions de l’écran du téléphone 13
Nettoyage de l’écran du téléphone 14
Présentation des menus et des boutons de fonctions 14
Présentation du système d’aide du téléphone 15
Présentation de la distinction lignes/appels 15
Présentation des icônes de ligne et d’appel 16
Présentation de la disponibilité des fonctions 16
Gestion de base des appels 17
Établissement d’un appel : options de base 17
Établissement d’un appel : options supplémentaires 18
Réponse à un appel 20
Fin d’un appel 21
Utilisation des fonctions d’attente et de reprise 21
Utilisation du mode Secret 22
Passage d’un appel à l’autre 22
Affichage de plusieurs appels 23iv OL-9616-01
Transfert d’appels 23
Renvoi de tous les appels vers un autre numéro 25
Établissement de conférences téléphoniques 26
Présentation des types de conférences téléphoniques 26
Débuter et rejoindre une conférence téléphonique standard 27
Débuter ou rejoindre une conférence téléphonique Meet-Me 29
Gestion avancée des appels 30
Numérotation abrégée 30
Interception d’un appel redirigé vers votre téléphone 31
Utilisation d’une ligne partagée 32
Présentation des lignes partagées 32
Connexion à l’appel d’une ligne partagée 33
Procédure pour empêcher d’autres personnes d’afficher un appel
sur une ligne partagée ou de s’y connecter 34
Stockage et récupération des appels parqués 35
Établissement et réception d’appels sécurisés 36
Suivi des appels suspects 36
Attribution de priorité aux appels critiques 37
Utilisation de la fonction de substitution de poste de Cisco 38
Déconnexion de groupes de recherche 38
Utilisation du combiné, du casque et du haut-parleur 39
Acquisition d’un casque 40
Utilisation de la fonction de réponse automatique 40
Utilisation des paramètres du téléphone 41
Personnalisation des sonneries et des indicateurs de message 41
Personnalisation de l’écran du téléphone 42v
Utilisation des journaux d’appels et des répertoires 43
Utilisation des journaux d’appels 43
Utilisation du répertoire d’entreprise sur le téléphone 45
Accès aux messages vocaux 46
Accès à vos pages Web Options utilisateur 47
Connexion aux pages Web Options utilisateur 47
Abonnement aux services téléphoniques 48
Présentation des options de configuration supplémentaires 49
Dépannage du téléphone 51
Informations générales de dépannage 51
Affichage des données d’administration du téléphone 52
Utilisation de l’outil de génération de rapports qualité (QRT) 52
Conditions générales de la garantie matérielle limitée à un an de Cisco 53
Index 55vi OL-9616-011
Mise en route
Utilisation du présent manuel
Ce manuel propose une présentation générale des fonctions disponibles sur votre téléphone.
Parcourez-le dans son intégralité pour prendre connaissance de toutes les possibilités de votre
téléphone. Vous pouvez également consulter le tableau ci-après, qui permet d’atteindre d’un seul
clic les sections les plus utilisées.
Pour... Procédez comme suit :
Apprendre à utiliser le téléphone
par vous-même
Si vous avez besoin d’aide, appuyez sur le bouton du
téléphone.
Prendre connaissance des consignes
de sécurité
Reportez-vous à la section « Consignes de sécurité et
informations relatives aux performances », page 3.
Raccorder le téléphone Reportez-vous à la section« Raccordement du téléphone »,
page 6.
Utiliser le téléphone une fois installé Reportez-vous à la section « Présentation du téléphone »,
page 9 en premier.
Connaître la signification des
boutons et des voyants
Reportez-vous à la section « Présentation des boutons et du
matériel », page 9.
En savoir plus sur l’écran Reportez-vous à la section « Présentation des fonctions de
l’écran du téléphone », page 13.
Passer des appels Reportez-vous à la section« Établissement d’un appel :
options de base », page 17.
Mettre des appels en attente Reportez-vous à la section« Utilisation des fonctions
d’attente et de reprise », page 21.
Mettre des appels en mode Secret Reportez-vous à la section « Utilisation du mode Secret »,
page 22.
Transférer des appels Reportez-vous à la section « Transfert d’appels », page 23.
Établir des conférences
téléphoniques
Reportez-vous à la section « Établissement de conférences
téléphoniques », page 26.
Configurer la fonction de
numérotation abrégée
Reportez-vous à la section « Numérotation abrégée », page 30.2 OL-9616-01
Recherche d’informations supplémentaires
Pour obtenir la documentation la plus récente sur les téléphones IP Cisco Unified, reportez-vous au site
Web à l’adresse suivante :
http://www.cisco.com/univercd/cc/td/doc/product/voice/c_ipphon/index.htm
Vous pouvez accéder au site Web de Cisco à l’adresse suivante :
http://www.cisco.com/
Les sites Web internationaux de Cisco sont accessibles à l’adresse suivante :
http://www.cisco.com/public/countries_languages.shtml
Informations supplémentaires sur la personnalisation de votre
téléphone sur le Web
Votre téléphone IP Cisco Unified est un périphérique réseau qui peut partager des informations avec
les autres périphériques du même type de votre entreprise, notamment votre ordinateur. Pour
établir/personnaliser des services téléphoniques et contrôler les fonctions/paramètres du téléphone
depuis votre ordinateur, vous pouvez utiliser les pages Web Options utilisateur de Cisco Unified
CallManager. Ces fonctions font l’objet d’une présentation générale dans ce manuel. Pour obtenir
des instructions complètes, reportez-vous au manuel de personnalisation de votre téléphone IP
Cisco Unified sur le Web à l’adresse suivante :
http://www.cisco.com/univercd/cc/td/doc/product/voice/c_ipphon/index.htm
Partager un numéro de téléphone Reportez-vous à la section « Utilisation d’une ligne partagée »,
page 32.
Utiliser la fonction haut-parleur du
téléphone
Reportez-vous à la section « Utilisation du combiné, du casque
et du haut-parleur », page 39.
Modifier le volume de la sonnerie
ou de la tonalité
Reportez-vous à la section « Utilisation des paramètres du
téléphone », page 41.
Consulter vos appels en absence Reportez-vous à la section « Utilisation des journaux d’appels
et des répertoires », page 43.
Écouter vos messages vocaux Reportez-vous à la section « Accès aux messages vocaux »,
page 46.
Consulter les définitions des
touches dynamiques et des icônes
Reportez-vous au livret de référence au début du présent
manuel.
Pour... Procédez comme suit :3
Consignes de sécurité et informations relatives aux
performances
Avant d’installer ou d’utiliser votre téléphone IP Cisco Unified, lisez les consignes de sécurité suivantes.
Attention CONSIGNES DE SÉCURITÉ IMPORTANTES
Ce symbole d’avertissement signale un danger. Vous vous trouvez dans une situation
pouvant occasionner des lésions corporelles. Avant de travailler sur un équipement,
soyez conscient des risques liés aux circuits électriques et familiarisez-vous avec les
procédures couramment utilisées pour éviter les accidents. Utilisez le numéro indiqué à
la fin de chaque avertissement pour en rechercher la traduction dans votre version
localisée des consignes de sécurité fournies avec ce périphérique. Déclaration 1071.
INSTRUCTIONS À GARDER À L’ESPRIT
Attention Lisez les instructions d’installation avant de raccorder l’appareil à sa source
d’alimentation.
Attention La mise au rebut de ce produit doit se faire en conformité avec les lois et réglementations
en vigueur dans votre pays.
Attention Ne travaillez pas sur le système et ne touchez pas aux câbles pendant un orage.
Attention Pour prévenir tout risque d’électrocution, ne branchez pas de circuits de sécurité à
tension très basse (Safety extra-low voltage, SELV) sur les circuits de tension destinés
au réseau téléphonique (telephone network voltage, TNV). Les ports LAN (réseau local)
contiennent des circuits SELV et, les ports WAN (réseau étendu), des circuits TNV.
Certains ports LAN et WAN utilisent des connecteurs RJ-45. Soyez prudent lorsque vous
connectez des câbles.
Avertissement Les circuits d’alimentation directe acheminent le courant via le câble de communication. Utilisez le câble Cisco fourni ou un câble de communication AWG 24 minimum.4 OL-9616-01
Utilisation d’une alimentation externe
Les avertissements suivants s’appliquent lorsque vous utilisez une alimentation externe avec le
téléphone IP Cisco Unified.
Attention Ce produit présuppose l’installation d’une protection contre les courts-circuits liés à
une surtension. Veillez à utiliser un fusible ou un disjoncteur inférieur à 120 VCA/15 A
aux États-Unis (240 VCA/10 A dans le reste du monde) sur les conducteurs de phase
(tout conducteur de courant).
Attention Ce dispositif est conçu pour fonctionner avec des systèmes d’alimentation TN.
Attention L’ensemble de raccordement fiche-prise doit être accessible à tout moment car il sert
de dispositif principal de déconnexion.
Attention L’alimentation doit être placée en intérieur.
Avertissement Utilisez uniquement l’alimentation spécifiée par Cisco avec ce produit.
Panne de courant
Votre accessibilité à des services d’urgence par téléphone dépend de l’alimentation de l’appareil.
Lors d’une panne de courant, la numérotation des services d’entretien et d’appel d’urgence ne
fonctionnera pas. Dans ce cas, vous devrez peut-être réinitialiser ou reconfigurer l’équipement avant
d’utiliser la numérotation des services d’entretien et d’appel d’urgence.5
Utilisation de périphériques externes
Les informations suivantes s’appliquent lorsque vous utilisez des périphériques externes avec le
téléphone IP Cisco Unified :
Cisco recommande d’utiliser des périphériques externes de bonne qualité (haut-parleurs, microphones
et casques), qui soient blindés contre les interférences produites par les signaux de fréquences radio
(FR) et audio (FA).
En fonction de leur qualité et de la proximité d’autres périphériques (téléphone portable, radio
bidirectionnelle, etc.), des parasites sonores peuvent toujours se produire. Dans ce cas, Cisco vous
recommande d’effectuer une ou plusieurs des opérations suivantes :
• Éloignez le périphérique externe de la source des signaux de fréquences radio ou audio.
• Éloignez les câbles du périphérique externe de la source des signaux de fréquences radio ou audio.
• Utilisez des câbles blindés pour le périphérique externe ou des câbles dotés d’un blindage supérieur
et d’un meilleur connecteur.
• Raccourcissez le câble du périphérique externe.
• Utilisez des structures en ferrite ou d’autres dispositifs de ce type pour les câbles du périphérique
externe.
Cisco ne peut pas garantir les performances du système car elle ne dispose d’aucun moyen de contrôle
sur la qualité des périphériques externes, des câbles et des connecteurs utilisés. Le système fonctionne
de manière adéquate lorsque les périphériques appropriés sont connectés à l’aide de câbles et de
connecteurs de bonne qualité.
Avertissement Dans les pays de l’Union européenne, utilisez uniquement des haut-parleurs, des
microphones et des casques externes conformes à la Directive 89/336/CE sur la
compatibilité électromagnétique (CEM).
Fonctions d’accessibilité
La liste des fonctions d’accessibilité est disponible sur demande.6 OL-9616-01
Raccordement du téléphone
Votre administrateur système va probablement raccorder votre nouveau téléphone IP Cisco Unified au
réseau de téléphonie IP de votre entreprise. Si ce n’est pas le cas, reportez-vous à l’illustration et au
tableau ci-dessous pour raccorder le téléphone.
1 Port de l’adaptateur CC (48 V) 5 Port d’accès (10/100(/10001
) PC)
2 Alimentation CA vers CC 6 Port du combiné
3 Cordon d’alimentation CA 7 Port du casque
4 Port réseau (10/100(/10001
) SW)
1. Uniquement disponible sur les téléphones version gigabit Ethernet.
8 Bouton du socle
AUX
DC48V
10/100 SW 10/100 PC
+
113656
2
8
3
4
5
6
7
17
Réglage du socle
Pour modifier l’angle de positionnement de votre téléphone sur votre bureau, maintenez le bouton du
socle enfoncé pendant que vous réglez le socle.
Réglage du support du combiné
Lorsque vous raccordez votre téléphone, vous pouvez régler le support du combiné pour éviter que ce
dernier tombe de son support. Pour connaître la procédure, reportez-vous au tableau ci-dessous.
Enregistrement à l’aide de l’outil TAPS
Une fois votre téléphone raccordé au réseau, votre administrateur système peut vous demander
d’enregistrer automatiquement votre téléphone à l’aide de l’outil TAPS (Tool for Auto-Registered
Phones Support - Outil d’assistance des téléphones enregistrés automatiquement). Cet outil peut être
utilisé pour un nouveau téléphone ou un téléphone de remplacement.
Pour enregistrer un téléphone à l’aide de l’outil TAPS, décrochez le combiné, entrez le numéro de poste
TAPS fourni par votre administrateur système et suivez les instructions vocales. Vous pouvez avoir à
entrer le numéro entier de poste et donc à préciser l’indicatif régional. Lorsque votre téléphone affiche
un message de confirmation, raccrochez. Le processus de redémarrage du téléphone est lancé.
1
Posez le combiné de côté et tirez la plaquette plastique carrée du support du combiné.
2
Faites pivoter la plaquette de 180 degrés.
3 Replacez la plaquette sur le support du combiné en la faisant coulisser. Une extension ressort en
haut de la plaquette qui a pivoté. Replacez le combiné sur son support.
1 2 3
1205218 OL-9616-01
Informations sur le casque
Pour utiliser un casque, branchez-le sur son port situé à l’arrière du téléphone.
Bien que Cisco Systems réalise des essais internes sur des casques de fournisseurs tiers utilisés avec les
téléphones IP Cisco Unified, Cisco ne certifie, ni ne promeut de produits de fournisseurs de casques ou
de combinés. En raison des contraintes environnementales et matérielles liées aux différents sites de
déploiement des téléphones IP Cisco Unified, il n’existe pas de solution optimale unique pour tous les
environnements. Cisco recommande à ses clients de tester les casques qui fonctionnent le mieux dans
leur environnement avant de les déployer à grande échelle sur leur réseau.
Dans certains cas, les pièces mécaniques ou les composants électroniques de différents casques peuvent
provoquer un écho sur le poste des interlocuteurs des utilisateurs de téléphones IP Cisco Unified.
Cisco Systems recommande d’utiliser des périphériques externes (casques, etc.) de bonne qualité,
protégés des interférences produites par les signaux de fréquences radio et audio. En fonction de leur
qualité et de la proximité d’autres périphériques (téléphone cellulaire, radio bidirectionnelle, etc.), des
parasites sonores peuvent toujours se produire. Pour plus d’informations, reportez-vous à la section
« Utilisation de périphériques externes », page 5.
Pour déterminer si un casque donné convient au téléphone IP Cisco Unified, vérifiez avant tout qu’il
ne provoque pas de ronflement sonore. Ce ronflement peut être audible soit uniquement par votre
interlocuteur, soit par votre interlocuteur et vous (utilisateur du téléphone IP Cisco Unified). Certains
ronflements ou bourdonnements potentiels peuvent être dus à de nombreuses causes extérieures,
notamment l’éclairage électrique, la proximité de moteurs électriques et de grands écrans de PC. Dans
certains cas, il est possible de réduire ou d’éliminer le ronflement à l’aide d’un groupe amplificateur de
puissance local. Pour plus d’informations, reportez-vous à la section « Utilisation d’une alimentation
externe », page 4.
Qualité audio à l’appréciation de l’utilisateur
Au-delà des performances physiques, mécaniques et techniques, la qualité audio d’un casque doit
sembler bonne à votre interlocuteur et vous (utilisateur). Le son est un facteur subjectif et Cisco ne
peut pas garantir les performances d’un casque ou d’un combiné quelconque, mais certains des casques
et combinés disponibles sur les sites indiqués ci-dessous semblent fonctionner correctement sur les
téléphones IP Cisco Unified.
Néanmoins, il appartient en dernier ressort au client de tester cet équipement dans son propre
environnement pour déterminer si ses performances sont acceptables.
Pour plus d’informations sur les casques, reportez-vous aux pages Web suivantes :
http://www.vxicorp.com/cisco
http://www.plantronics.com/cisco9
Présentation du téléphone
Les téléphones IP Cisco Unified 7961G/7961G-GE (version gigabit Ethernet) et 7941G/7941G-GE
(version gigabit Ethernet) sont des téléphones haut de gamme qui permettent une communication
orale via le réseau de données utilisé par votre ordinateur. Ainsi, vous pouvez passer et recevoir des
appels téléphoniques, mettre des appels en attente, utiliser une numérotation abrégée, transférer des
appels, établir des conférences téléphoniques, etc. Les téléphones IP Cisco Unified 7961G-GE
et 7941G-GE version gigabit Ethernet sont équipés des toutes dernières technologies et évolutions en
matière de téléphonie VoIP Gigabit Ethernet. Les téléphones IP Cisco Unified 7961G et 7961G-GE
comptent six touches programmables pour les lignes téléphoniques, les fonctions, les numéros abrégés
et les services. En revanche, les téléphones IP Cisco Unified 7941G et 7941G-GE disposent de deux
touches de ce type (reportez-vous à la section « Présentation des boutons et du matériel », page 9 pour
en savoir plus).
Outre ses capacités de gestion de base des appels, votre téléphone peut prendre en charge certaines
fonctions de productivité destinées à améliorer le périphérique. Selon sa configuration, il permet :
• l’accès aux données du réseau, aux applications XML et aux services Web.
• la personnalisation en ligne des fonctions et des services téléphoniques depuis vos pages Web
Options utilisateur.
• un système d’aide en ligne complet qui affiche des informations à l’écran du téléphone.
Présentation des boutons et du matériel
La Figure 1 et la Figure 2 permettent d’identifier les boutons et le matériel de votre téléphone.10 OL-9616-01
Figure 1 Téléphones IP Cisco Unified 7961G et 7961G-GE
Figure 2 Téléphones IP Cisco Unified 7941G et 7941G-GE
1
16
3
4
5
7
9
6
8
15 14 13 12 11 10 137503
1
2
137504
4
5
6
7
9
15 14 13 12 11 10
16
1 3
8
1
211
Élément Description
Pour plus d’informations,
reportez-vous à la section...
1
Touches
programmables
Selon la configuration du téléphone,
les touches programmables permettent
l’accès aux :
• Lignes téléphoniques (boutons de ligne).
• Numéros abrégés (touches de
numérotation abrégée).
• Services Web (par exemple, bouton du
carnet d’adresses personnel).
• Fonctions du téléphone (par exemple,
bouton de confidentialité).
Les boutons s’allument et leur couleur indique
l’état de l’appel.
Vert fixe : appel actif
Vert clignotant : appel en attente
Orange fixe : fonction de
confidentialité en cours d’utilisation
Orange clignotant : appel entrant
Rouge fixe : ligne en cours
d’utilisation à distance
Rouge clignotant : ligne non
disponible de parcage d’appel dirigé
• Présentation des fonctions
de l’écran du téléphone,
page 13
• Gestion de base des
appels, page 17
• Numérotation abrégée,
page 30
• Utilisation d’une ligne
partagée, page 32
• Stockage et récupération
des appels parqués,
page 35
2 Écran du
téléphone
Affiche les fonctions téléphoniques. Présentation des fonctions de
l’écran du téléphone, page 13
3
Bouton du socle Permet de régler l’angle du socle du téléphone. Réglage du socle, page 7
4
Bouton Messages Compose le numéro de votre service de
messagerie vocale automatiquement
(variable selon les services).
Utilisation des journaux
d’appels, page 43.
5
Bouton
Répertoires
Active/Désactive le menu de répertoires et
permet d’accéder aux journaux
d’appels/répertoires.
Utilisation des journaux
d’appels, page 43
6
Bouton d’aide Active le menu d’aide. Présentation du système d’aide
du téléphone, page 1512 OL-9616-01
7
Bouton
Paramètres
Active/Désactive le menu de paramètres.
Il permet de contrôler le contraste de
l’écran et les sonneries.
Utilisation des paramètres du
téléphone, page 41
8
Bouton Services Active/Désactive le menu de services. Accès à vos pages Web
Options utilisateur, page 47
9
Bouton Volume Contrôle le volume du combiné, du casque et
du haut-parleur (décroché) et le volume de la
sonnerie (raccroché).
Utilisation du combiné, du
casque et du haut-parleur,
page 39
10 Bouton
Haut-parleur
Active/Désactive le mode haut-parleur.
Lorsque le mode haut-parleur est activé, le
bouton est allumé.
Utilisation du combiné, du
casque et du haut-parleur,
page 39
11 Bouton Secret Active/Désactive le mode Secret. En mode
Secret, le bouton est allumé.
Utilisation du mode Secret,
page 22
12 Bouton Casque Active/Désactive le mode casque. Lorsque le
mode casque est activé, le bouton est allumé.
Utilisation du combiné, du
casque et du haut-parleur,
page 39
13 Bouton de
navigation
Permet de faire défiler les menus et de mettre
les options en surbrillance. Lorsque le
téléphone est raccroché, le bouton permet
d’afficher les numéros de téléphone du
journal d’appels passés.
Utilisation des journaux
d’appels, page 43
14 Clavier Permet de composer les numéros de
téléphone, de saisir des lettres et de
sélectionner des options de menu.
Gestion de base des appels,
page 17
15 Touches
dynamiques
Activent chacune une option de touche
dynamique (affichée à l’écran du téléphone).
Présentation des fonctions de
l’écran du téléphone, page 13
16 Bande lumineuse
du combiné
Indique un appel entrant ou un nouveau
message vocal.
Accès aux messages vocaux,
page 46
Élément Description
Pour plus d’informations,
reportez-vous à la section...13
Présentation des fonctions de l’écran du téléphone
Lorsque des appels sont actifs et que plusieurs menus de fonctions sont ouverts, l’écran principal du
téléphone se présente de la façon suivante :
1 Ligne téléphonique
principale
Affiche le numéro de téléphone (numéro de poste) pour votre ligne
téléphonique principale. Lorsque plusieurs onglets de fonctions sont
ouverts, le numéro de téléphone, l’heure et la date s’affichent en alternance
à cet endroit.
2 Icônes de touches
programmables
Les touches programmables peuvent servir de boutons de lignes
téléphoniques, de touches de numérotation abrégée, de boutons de services
téléphoniques ou de boutons de fonctions téléphoniques. Les icônes et les
étiquettes indiquent le mode de configuration de ces boutons. Pour obtenir
des informations sur une icône, reportez-vous à la section Icônes de l’écran
du téléphone dans le livret de référence au début du présent manuel.
3 Étiquettes des
touches dynamiques
Affichent chacune une fonction de touche dynamique. Pour activer une
touche dynamique, appuyez sur le bouton correspondant.
4
Ligne d’état Affiche les icônes du mode audio, les informations d’état et les invites.
5 Zone d’activité des
appels
Affiche les appels en cours par ligne, y compris l’ID de l’appelant, la durée
et l’état de l’appel pour la ligne mise en surbrillance (en mode d’affichage
standard). Reportez-vous aux sections « Présentation des icônes de ligne et
d’appel », page 16 et « Affichage de plusieurs appels », page 23.
6 Onglet de téléphone Indique l’activité des appels.
7 Onglets de
fonctions
Indiquent chacun un menu de fonctions ouvert. Reportez-vous à la section
« Présentation des menus et des boutons de fonctions », page 14.
7 1
6
5
4
2
3
137522
7796114 OL-9616-01
Nettoyage de l’écran du téléphone
Essuyez doucement l’écran du téléphone avec un chiffon doux et sec. N’appliquez pas de produits,
qu’ils soient liquides ou en poudre, sur votre téléphone. Si vous n’utilisez pas de chiffon doux et
sec, vous risquez d’endommager les composants de votre téléphone et donc d’entraîner des
dysfonctionnements.
Présentation des menus et des boutons de fonctions
Appuyez sur un bouton de fonction pour ouvrir ou fermer un menu de fonctions.
Pour... Procédez comme suit :
Ouvrir ou fermer un menu
de fonctions
Appuyez sur un bouton de fonction :
Messages
Services
Répertoires
Paramètres
Aide
Faire défiler une liste ou un
menu
Appuyez sur le bouton de navigation.
Remonter d’un niveau dans
un menu de fonctions
Appuyez sur Quitter. Si vous appuyez sur Quitter alors que vous êtes
dans le niveau supérieur d’un menu, ce dernier se ferme.
Basculer d’un menu de
fonctions actif à un autre
Appuyez sur un onglet de fonction. Chaque menu de fonctions a un
onglet. Celui-ci est visible lorsque le menu de fonctions est ouvert.15
Présentation du système d’aide du téléphone
Votre téléphone IP Cisco Unified comprend un système d’aide en ligne complet. Les rubriques d’aide
apparaissent à l’écran du téléphone. Reportez-vous au tableau suivant pour plus de détails.
Présentation de la distinction lignes/appels
Pour éviter toute confusion entre les lignes et les appels, reportez-vous aux descriptions suivantes.
Lignes : chaque ligne est associée à un numéro de téléphone (ou de poste) que les autres peuvent
utiliser pour vous appeler. Selon la configuration, les téléphones IP Cisco Unified 7961G/7961G-GE
et 7941G/7941G-GE peuvent respectivement prendre en charge six et deux lignes maximum.
Pour connaître le nombre de lignes dont vous disposez, observez le côté droit de l’écran du téléphone.
Vous disposez d’autant de lignes que de numéros d’annuaire et d’icônes de lignes téléphoniques ( ).
Appels : chaque ligne peut prendre en charge plusieurs appels. Par défaut, le téléphone prend en charge
quatre appels connectés par ligne mais l’administrateur système peut adapter ce nombre à vos besoins.
Un seul appel peut être actif à un moment donné. Les autres appels sont automatiquement mis en
attente.
Pour... Procédez comme suit :
Afficher le menu
principal
Appuyez sur le bouton du téléphone et attendez quelques secondes
que le menu s’affiche.
Les rubriques du menu principal abordent les thèmes suivants.
• À propos de votre téléphone IP Cisco Unified : détails
• Procédures relatives aux tâches téléphoniques courantes
• Fonctions d’appel : descriptions et procédures
• Aide : conseils sur l’utilisation et l’accès
Obtenir des informations sur un bouton ou
une touche dynamique
Appuyez sur , puis rapidement sur un bouton ou une touche dynamique.
Obtenir des informations sur une option de
menu
Appuyez sur , ou pour afficher un menu de
fonctions.
Mettez une option du menu en surbrillance, puis appuyez deux fois
sur rapidement.
Apprendre à se servir
de l’aide
Appuyez sur . Choisissez Aide dans le menu principal.16 OL-9616-01
Présentation des icônes de ligne et d’appel
Votre téléphone affiche des icônes pour vous aider à déterminer l’état de la ligne et de l’appel.
Présentation de la disponibilité des fonctions
Selon la configuration de votre système téléphonique, certaines fonctions décrites dans ce manuel sont
susceptibles de ne pas être disponibles dans votre cas ou de fonctionner différemment. Si vous avez des
questions quant au fonctionnement ou à la disponibilité des fonctions, contactez un membre de
l’équipe d’assistance ou votre administrateur système.
Icône État de l’appel Description
Combiné raccroché Aucune activité d’appel sur cette ligne.
Combiné décroché Un numéro est en cours de composition ou un appel sortant est en
sonnerie. Pour connaître les différentes options de composition de
numéros, reportez-vous à la section « Établissement d’un appel :
options de base », page 17.
Appel connecté La communication avec votre interlocuteur est actuellement établie.
Appel en sonnerie Un appel entrant est en sonnerie sur l’une de vos lignes.
Reportez-vous à la section « Réponse à un appel », page 20
pour en savoir plus.
Appel en attente Vous avez mis cet appel en attente.
Utilisé à distance Un autre téléphone qui partage votre ligne a un appel connecté.
Reportez-vous à la section « Utilisation d’une ligne partagée »,
page 32 pour en savoir plus.
Appel authentifié Reportez-vous à la section « Établissement et réception d’appels
sécurisés », page 36.
Appel chiffré Reportez-vous à la section « Établissement et réception d’appels
sécurisés », page 36.17
Gestion de base des appels
Les tâches de gestion de base des appels s’appuient sur un ensemble de fonctions et de services.
La disponibilité des fonctions peut varier. Pour plus d’informations, contactez votre
administrateur système.
Établissement d’un appel : options de base
Le tableau ci-dessous présente des moyens simples de passer un appel à l’aide du téléphone IP Cisco
Unified.
Pour... Procédez comme suit :
Pour plus d’informations,
reportez-vous à la section...
Passer un appel en utilisant
le combiné
Décrochez le combiné et composez un
numéro.
Présentation du téléphone,
page 9
Passer un appel en utilisant
le haut-parleur
Appuyez sur , puis composez un
numéro.
Utilisation du combiné, du
casque et du haut-parleur,
page 39
Passer un appel en utilisant
le casque
Appuyez sur , puis composez un
numéro. Si le bouton est allumé,
vous pouvez également appuyer sur
NvAppel et composer un numéro.
Utilisation du combiné, du
casque et du haut-parleur,
page 39
Rappeler un numéro Appuyez sur Bis pour composer le
dernier numéro ou sur la touche de
navigation pour visualiser les appels
passés (dans ce dernier cas, le
téléphone doit être inactif).
Utilisation des journaux
d’appels, page 43
Passer un appel lorsqu’un
autre appel est actif (en
utilisant la même ligne)
1. Appuyez sur Attente.
2. Appuyez sur NvAppel.
3. Entrez un numéro.
Utilisation des fonctions
d’attente et de reprise,
page 21
Composer un numéro à partir
d’un journal d’appels
1. Sélectionnez > Appels en
absence, Appels reçus ou Appels
composés.
2. Sélectionnez ou recherchez une
entrée de liste, puis décrochez le
téléphone.
Utilisation des journaux
d’appels, page 4318 OL-9616-01
Conseils
• Vous pouvez composer un numéro avec le combiné raccroché et sans tonalité (prénumérotation).
Pour la prénumérotation, entrez un numéro, puis décrochez le téléphone en soulevant le combiné
ou en appuyant sur Compos., ou .
• En cas de prénumérotation, le téléphone tente d’anticiper le numéro en cours de composition.
Pour ce faire, il utilise le journal d’appels passés pour afficher les numéros correspondants (s’ils
sont disponibles). Cette opération s’appelle la numérotation automatique. Pour la lancer,
sélectionnez le numéro affiché ou recherchez une entrée de liste, puis décrochez le téléphone.
• Si vous commettez une erreur pendant la numérotation, appuyez sur << pour effacer des chiffres.
Établissement d’un appel : options supplémentaires
Vous pouvez passer des appels en utilisant des fonctions et des services spéciaux éventuellement
disponibles sur le téléphone. Pour plus d’informations sur ces options supplémentaires, contactez votre
administrateur système.
Pour... Procédez comme suit :
Pour plus d’informations,
reportez-vous à la section...
Passer un appel lorsqu’un
autre est actif (sur une ligne
différente)
1. Appuyez sur pour ouvrir la
nouvelle ligne. L’appel de la
première ligne sera mis en attente
automatiquement.
2. Entrez un numéro.
Utilisation des fonctions
d’attente et de reprise,
page 21
Composer un numéro abrégé Procédez comme suit :
• Appuyez sur (touche de
numérotation abrégée)
• Utilisez la fonction NumAbr.
• Utilisez la fonction Numéro
abrégé.
Numérotation abrégée,
page 30
Composer un numéro à partir
d’un répertoire d’entreprise
disponible sur le téléphone
1. Sélectionnez > Répertoire
d’entreprise (le nom exact de ce
service peut varier).
2. Saisissez un nom et appuyez sur
Recher.
3. Mettez en surbrillance une entrée
de liste et décrochez le téléphone.
Utilisation des journaux
d’appels, page 4319
Composer un numéro de
répertoire d’entreprise à l’aide
de Cisco WebDialer
1. Ouvrez un navigateur Web et
accédez au répertoire de votre
entreprise compatible WebDialer.
2. Cliquez sur le numéro à composer.
Personnalisation de
votre téléphone IP Cisco
Unified sur le Web :
http://www.cisco.com/
univercd/cc/td/doc/product/
voice/c_ipphon/index.htm
Utiliser la fonction de rappel
Cisco pour recevoir une
notification lorsqu’un poste
occupé ou en sonnerie se
libère
1. Appuyez sur Rappel lorsque vous
entendez la tonalité occupé ou la
sonnerie.
2. Raccrochez. Le téléphone vous
avertit lorsque la ligne se libère.
3. Passez de nouveau l’appel.
Votre administrateur
système
Passer un appel prioritaire Entrez le numéro d’accès MLPP,
puis le numéro de téléphone.
Attribution de priorité aux
appels critiques, page 37
Composer un numéro à partir
d’un carnet d’adresses
personnel
1. Choisissez >
Service Carnet d’adresses
personnel (le nom exact de
cette fonction peut varier).
2. Mettez en surbrillance une entrée
de liste et décrochez le téléphone.
Vous pouvez également appuyer
sur l’entrée de liste de l’écran
tactile.
Connexion aux pages Web
Options utilisateur, page 47
Passer un appel à l’aide d’un
code de facturation ou de
suivi
1. Composez un numéro.
2. Après la tonalité, entrez un code
d’affaire client ou un code
d’autorisation forcée.
Votre administrateur
système
Passer un appel en utilisant
votre profil de substitution
de poste Cisco
Connectez-vous au service de
substitution de poste sur un téléphone.
Utilisation de la fonction
de substitution de poste
de Cisco, page 38
Pour... Procédez comme suit :
Pour plus d’informations,
reportez-vous à la section...20 OL-9616-01
Réponse à un appel
Vous pouvez répondre à un appel en décrochant le combiné ou utiliser d’autres options éventuellement
disponibles sur le téléphone.
Pour... Procédez comme suit :
Pour plus d’informations,
reportez-vous à la section...
Répondre en utilisant un
casque
Si le bouton est éteint, appuyez
dessus.
Si le bouton est déjà allumé,
appuyez sur Répond. ou sur
(bouton de ligne clignotant).
Utilisation du combiné, du
casque et du haut-parleur,
page 39
Répondre en utilisant le
haut-parleur
Appuyez sur , Répond. ou
sur (clignotement).
Utilisation du combiné, du
casque et du haut-parleur,
page 39
Répondre à un nouvel appel
à partir d’un appel connecté
Appuyez sur Répond. ou, si l’appel
est en sonnerie sur une autre ligne,
appuyez sur (clignotement).
Utilisation des fonctions
d’attente et de reprise,
page 21
Répondre à l’aide de la
fonction d’appel en attente
Appuyez sur Répond. Utilisation des fonctions
d’attente et de reprise,
page 21
Envoyer un appel vers le
système de messagerie vocale
Appuyez sur Rvoi Im. Accès aux messages vocaux,
page 46
Connecter automatiquement
des appels
Utilisez la fonction de réponse
automatique.
Utilisation de la fonction
de réponse automatique,
page 40
Récupérer un appel parqué
sur un autre téléphone
Utilisez la fonction de parcage d’appel
ou la fonction de parcage d’appel
dirigé.
Stockage et récupération
des appels parqués, page 35
Utiliser le téléphone pour
répondre à un appel en
sonnerie sur un autre poste
Utilisez la fonction d’interception
d’appels.
Interception d’un appel
redirigé vers votre
téléphone, page 31
Répondre à un appel
prioritaire
Mettez fin à l’appel en cours en raccrochant, puis appuyez sur Répond.
Attribution de priorité aux
appels critiques, page 3721
Fin d’un appel
Pour mettre fin à un appel, raccrochez. Reportez-vous au tableau suivant pour plus de détails.
Utilisation des fonctions d’attente et de reprise
Un seul appel peut être actif à un moment donné. Tous les autres appels seront mis en attente.
Conseils
• Généralement, l’activation de la fonction de mise en attente génère de la musique ou un bip.
• Un appel en attente est indiqué par l’icône .
Pour... Procédez comme suit :
Raccrocher lorsque vous utilisez le combiné Replacez le combiné sur son support ou appuyez sur
FinApp.
Raccrocher lorsque vous utilisez le casque Appuyez sur . Pour que le mode casque reste activé,
appuyez sur FinApp.
Raccrocher lorsque vous utilisez le
haut-parleur
Appuyez sur ou sur FinApp.
Mettre fin à un appel sans mettre fin à un
autre appel de la même ligne
Appuyez sur FinApp. Si nécessaire, récupérez d’abord
l’appel mis en attente.
Pour... Procédez comme suit :
Mettre un appel en attente 1. Assurez-vous de la mise en surbrillance de l’appel à mettre en
attente.
2. Appuyez sur Attente.
Reprendre sur la ligne active
un appel mis en attente
1. Vérifiez que l’appel approprié est en surbrillance.
2. Appuyez sur Reprend.
Reprendre sur une autre
ligne un appel mis en attente
Appuyez sur pour ouvrir la ligne appropriée.
Si un seul appel est en attente sur cette ligne, sa reprise est automatique. Si plusieurs appels sont en attente, recherchez l’appel concerné
dans la liste, puis appuyez sur Reprend.22 OL-9616-01
Utilisation du mode Secret
En mode Secret, vous pouvez entendre vos interlocuteurs, mais ces derniers ne peuvent pas vous
entendre. Il est possible d’utiliser le mode Secret conjointement au combiné, au haut-parleur ou au
casque.
Passage d’un appel à l’autre
Vous pouvez passer d’un appel à l’autre, sur une ou plusieurs lignes. Si l’appel sur lequel vous voulez
basculer n’est pas automatiquement mis en surbrillance, utilisez le bouton de navigation pour
l’atteindre.
Pour... Procédez comme suit :
Passer en mode Secret Appuyez sur .
Sortir du mode Secret Appuyez sur .
Pour... Procédez comme suit :
Passer d’un appel à l’autre
sur une même ligne
1. Vérifiez que l’appel sur lequel vous voulez passer est en surbrillance.
2. Appuyez sur Reprend.
Tout appel actif est mis en attente et l’appel sélectionné est repris.
Passer d’un appel à l’autre
sur différentes lignes
Appuyez sur le bouton de la ligne sur laquelle vous souhaitez passer.
Si un seul appel est en attente sur cette ligne, sa reprise est automatique.
Si plusieurs appels sont en attente, mettez en surbrillance l’appel
concerné, puis appuyez sur Reprend.
Répondre à un appel en
sonnerie à partir d’un
appel déjà connecté
Appuyez sur Répond. ou, si l’appel est en sonnerie sur une autre ligne,
appuyez sur . Tout appel actif est mis en attente et l’appel sélectionné
est repris.23
Affichage de plusieurs appels
Une meilleure compréhension de l’affichage de plusieurs appels sur le téléphone peut vous aider à
organiser vos efforts de gestion des appels.
En mode d’affichage standard, le téléphone affiche les appels de la façon suivante pour la ligne mise
en surbrillance :
• Les appels ayant le niveau de priorité le plus important et la durée la plus longue s’affichent en
haut de la liste.
• Les appels d’un même type sont regroupés. Par exemple, tous les appels avec lesquels vous êtes
entré en interaction sont regroupés vers le haut de la liste, tandis que les appels en attente sont
regroupés en bas.
Vous pouvez utiliser les méthodes suivantes pour afficher plusieurs appels sur plusieurs lignes.
Transfert d’appels
Le transfert permet de rediriger un appel connecté. La cible est le numéro vers lequel vous souhaitez
transférer l’appel.
Pour... Procédez comme suit :
Afficher les appels
d’une autre ligne
1. Appuyez sur .
2. Appuyez immédiatement sur le bouton de ligne .
Avoir un aperçu de
l’activité de la ligne
(un appel par ligne)
Appuyez sur pour faire apparaître la ligne mise en surbrillance.
Le téléphone bascule sur le mode de présentation des appels et affiche un
seul appel par ligne. L’appel affiché est l’appel actif ou l’appel en attente le
plus ancien.
Pour revenir à l’affichage standard, appuyez sur , puis, immédiatement
après, sur le bouton de la ligne.
Pour... Procédez comme suit :
Transférer un appel sans
prévenir le destinataire du
transfert
1. Au cours d’un appel actif, appuyez sur Trnsfer.
2. Entrez le numéro cible.
3. Appuyez de nouveau sur Trnsfer pour effectuer le transfert ou sur
FinApp. pour l’annuler.
Remarque Si le téléphone prend en charge le transfert en mode combiné
raccroché, vous pouvez également effectuer le transfert en
raccrochant.24 OL-9616-01
Conseils
• Si le transfert en mode combiné raccroché est activé sur le téléphone, vous pouvez soit raccrocher
pour mettre fin à l’appel, soit appuyer sur Trnsfer, puis raccrocher.
• Si le transfert en mode combiné raccroché n’est pas activé sur le téléphone, le fait de raccrocher
sans appuyer sur Trnsfer remet l’appel en attente.
• Vous ne pouvez pas utiliser la touche Trnsfer pour rediriger un appel en attente. Appuyez sur
Reprend pour le reprendre avant de le transférer.
Consulter un destinataire
avant de lui transférer un
appel
1. Au cours d’un appel actif, appuyez sur Trnsfer.
2. Entrez le numéro cible.
3. Patientez quelques instants pour laisser le temps au destinataire du
transfert de répondre.
4. Appuyez de nouveau sur Trnsfer pour effectuer le transfert ou sur
FinApp. pour l’annuler.
Remarque Si le téléphone prend en charge le transfert en mode combiné
raccroché, vous pouvez également effectuer le transfert en
raccrochant.
Connecter deux appels en
cours sans rester en ligne
(transfert direct)
1. Faites défiler les appels pour mettre en surbrillance celui de votre
choix sur la ligne.
2. Appuyez sur Sélect.
3. Renouvelez cette procédure pour le second appel.
4. Lorsque l’un des appels sélectionnés est mis en surbrillance,
appuyez sur TrnsDir. (Pour afficher TrnsDir, vous pouvez avoir
à appuyer sur la touche autres.)
Les deux appels se connectent l’un à l’autre et vous ne participez
plus à l’appel.
Remarque Pour rester en ligne avec ces appelants, utilisez l’option
Joindre à la place.
Rediriger un appel vers le
système de messagerie
vocale
Appuyez sur Rvoi Im. L’appel est automatiquement transféré vers la
messagerie vocale, qui diffuse une annonce d’accueil. Cette fonction est
disponible lorsqu’un appel est actif, en sonnerie ou en attente.
Pour... Procédez comme suit :25
Renvoi de tous les appels vers un autre numéro
Le renvoi de tous vos appels permet de rediriger tous les appels entrants du téléphone vers un autre
numéro.
Remarque Si la fonction de renvoi des appels s’applique à toute ligne secondaire, aucune confirmation de votre téléphone n’indique la conduite de l’opération. À la place, vous devez
confirmer vos paramètres dans les pages Options utilisateur. Reportez-vous à la section
« Connexion aux pages Web Options utilisateur », page 47.
Conseils
• Vous devez entrer le numéro cible de renvoi d’appel exactement comme si vous le composiez sur
le téléphone. Par exemple, entrez un code d’accès ou l’indicatif régional (le cas échéant).
• Vous pouvez renvoyer vos appels vers un téléphone analogique traditionnel ou vers un autre
téléphone IP, même si votre administrateur système peut limiter la fonction de renvoi des appels
aux numéros utilisés dans votre entreprise.
• Vous devez configurer cette fonction pour chacune des lignes. Si un appel arrive sur une ligne sur
laquelle le renvoi d’appels n’est pas activé, la sonnerie de cet appel est normale.
Pour... Procédez comme suit :
Configurer le renvoi d’appels
sur la ligne principale
Appuyez sur RenvTt, puis entrez un numéro de téléphone cible.
Annuler un renvoi d’appels
sur la ligne principale
Appuyez sur RenvTt.
Vérifier que le renvoi d’appels
est activé sur la ligne
principale
Recherchez :
• L’icône de renvoi d’appel au-dessus du numéro de téléphone
principal ( ).
• Le numéro cible de renvoi d’appel dans la ligne d’état.
Configurer ou annuler le
renvoi d’appels à distance ou
pour une ligne différente de la
ligne principale
1. Connectez-vous aux pages Web Options utilisateur et
sélectionnez un périphérique.
2. Choisissez Renv. tous les appels...
3. Choisissez la ligne principale ou toute ligne secondaire.
4. Choisissez de réacheminer les appels vers la messagerie vocale ou
vers un autre numéro.26 OL-9616-01
Établissement de conférences téléphoniques
Votre téléphone IP Cisco Unified vous permet de réunir trois personnes ou plus dans une même
conversation téléphonique en établissant une conférence.
Présentation des types de conférences téléphoniques
Il existe deux types de conférences téléphoniques : standard et Meet-Me.
Conférences téléphoniques standard
Vous pouvez créer des conférences téléphoniques standard de différentes manières selon vos besoins et
les touches dynamiques du téléphone.
• Conf. : cette touche dynamique permet d’appeler chaque participant et d’établir ainsi une
conférence standard. La conférence téléphonique standard est une fonction par défaut disponible
sur la plupart des téléphones.
• Joindre : cette touche dynamique permet de joindre plusieurs appels déjà en cours sur une ligne et
d’établir ainsi une conférence standard.
• InsConf : cette touche dynamique permet de vous connecter à un appel existant sur une ligne
partagée et de transformer l’appel en conférence téléphonique standard. Cette fonction n’est
disponible que sur les téléphones utilisant des lignes partagées.
Pour obtenir des instructions supplémentaires, reportez-vous à la section « Débuter et rejoindre une
conférence téléphonique standard », page 27.
Conférences téléphoniques Meet-Me
Vous pouvez créer une conférence Meet-Me en appelant le numéro de conférence à l’heure prévue.
Pour obtenir des instructions supplémentaires, reportez-vous à la section « Débuter ou rejoindre une
conférence téléphonique Meet-Me », page 29.27
Débuter et rejoindre une conférence téléphonique standard
Une conférence téléphonique standard permet à trois personnes au moins de participer à un appel unique.
Pour... Procédez comme suit :
• Créer une conférence
téléphonique en appelant
les participants
• Ajouter de nouveaux
participants à une
conférence téléphonique
existante
1. À partir d’un appel connecté, appuyez sur Conf.
(Pour afficher cette option, vous pouvez avoir à
appuyer sur la touche dynamique autres.)
2. Entrez le numéro de téléphone du participant.
3. Patientez pendant la connexion de l’appel.
4. Appuyez de nouveau sur Conf. pour ajouter ce participant
à l’appel.
5. Répétez cette procédure pour ajouter d’autres participants.
Créer une conférence en
joignant au moins deux appels
existants
1. Assurez-vous d’avoir deux appels minimum sur une même ligne.
2. Mettez en surbrillance un appel à ajouter à la conférence.
3. Appuyez sur Sélect.
L’appel sélectionné affiche cette icône .
4. Répétez cette opération pour chacun des appels à ajouter.
5. À partir de l’un des appels sélectionnés, appuyez sur Joindre.
(Pour afficher cette option, vous pouvez avoir à appuyer d’abord
sur la touche dynamique autres.)
Remarque L’appel actif est sélectionné automatiquement.
Participer à une conférence Répondez au téléphone lorsqu’il sonne.
Créer une conférence
téléphonique en insérant un
appel sur une ligne partagée
Mettez en surbrillance un appel sur une ligne partagée et appuyez sur
InsConf. (Vous pouvez avoir à appuyer d’abord sur la touche
dynamique autres.)
Reportez-vous à la section « Utilisation d’une ligne partagée »,
page 32.
Afficher la liste des
participants à une conférence
1. Mettez en surbrillance une conférence active.
2. Appuyez sur ListConf.
Les participants sont répertoriés dans l’ordre dans lequel ils
rejoignent la conférence, les derniers à la rejoindre apparaissant en
tête de liste.28 OL-9616-01
Conseils
• Il n’est possible d’ajouter à une conférence que les appels présents sur une même ligne. S’ils sont
sur des lignes différentes, transférez-les sur une seule ligne avant d’appuyer sur Conf. ou sur
Joindre.
• Selon la configuration du téléphone, vous risquez de mettre fin à une conférence si vous la quittez
alors que vous en êtes l’initiateur. Pour éviter ce problème, transférez la conférence avant de
raccrocher.
Mettre à jour la liste des
participants à une conférence
Lorsque vous affichez la liste des participants à la conférence,
appuyez sur MàJ.
Afficher l’initiateur de la
conférence
Lorsque la liste des participants à la conférence est affichée,
recherchez la personne répertoriée au bas de la liste, avec un
astérisque (*) à côté de son nom.
Abandonner le dernier
interlocuteur à avoir
rejoint la conférence
Appuyez sur SupDerA.
Vous ne pouvez exclure des participants que si vous êtes l’initiateur
de la conférence téléphonique.
Exclure un participant
de la conférence
1. Mettez en surbrillance le nom du participant.
2. Appuyez sur Suppr.
Vous ne pouvez exclure des participants que si vous êtes l’initiateur
de la conférence.
Quitter une conférence
standard
Raccrochez ou appuyez sur FinApp.
Pour... Procédez comme suit :29
Débuter ou rejoindre une conférence téléphonique Meet-Me
La conférence téléphonique Meet-Me permet de démarrer une conférence ou de composer son numéro
pour s’y connecter.
Pour... Procédez comme suit :
Démarrer une conférence
Meet-Me
1. Demandez un numéro de conférence Meet-Me à votre
administrateur système.
2. Distribuez le numéro aux participants.
3. Lorsque vous êtes prêt à démarrer la réunion, décrochez le
téléphone pour obtenir la tonalité et appuyez sur MulConf.
4. Composez le numéro de la conférence Meet-Me.
Les participants peuvent rejoindre la conférence en
composant son numéro.
Remarque Les participants entendent une tonalité occupé s’ils
appellent le numéro de la conférence avant la connexion
de l’organisateur. Dans ce cas, ils doivent rappeler.
Rejoindre une conférence
Meet-Me
Composez le numéro de la conférence Meet-Me (que vous a
communiqué l’organisateur de la conférence).
Remarque Vous entendez une tonalité occupé si vous appelez le
numéro de la conférence avant la connexion de
l’organisateur. Dans ce cas, rappelez ultérieurement.
Mettre fin à une conférence
Meet-Me
Tous les participants doivent raccrocher.
La conférence ne se termine pas automatiquement lorsque
l’organisateur se déconnecte.30 OL-9616-01
Gestion avancée des appels
Les tâches de gestion avancée des appels comprennent des fonctions spéciales que l’administrateur
système peut configurer sur le téléphone, en fonction de vos besoins en la matière et de votre
environnement de travail.
Numérotation abrégée
La numérotation abrégée permet d’entrer un code, d’appuyer sur un bouton ou de sélectionner un
élément de l’écran du téléphone pour passer un appel. Selon la configuration du téléphone, plusieurs
fonctions de numérotation abrégée peuvent être disponibles :
• Touches de numérotation abrégée
• Numérotation abrégée
• Numéros abrégés
Remarque • Pour configurer des touches de numérotation abrégée et la numérotation abrégée,
vous devez accéder aux pages Web Options utilisateur. Reportez-vous à la section
« Connexion aux pages Web Options utilisateur », page 47.
• Votre administrateur système peut également configurer des fonctions de numérotation abrégée pour vous.
Pour... Procédez comme suit :
Utiliser des touches de numérotation abrégée
1. Configurez des touches de numérotation abrégée depuis les pages Web
Options utilisateur.
2. Pour passer un appel, appuyez sur (touche de numérotation abrégée).
Utiliser NumAbr 1. Configurez des codes de numérotation abrégée depuis les pages Web Options
utilisateur.
2. Pour passer un appel, entrez le code de numérotation abrégée et appuyez sur
NumAbr.
Utiliser Numéro
abrégé
1. Abonnez-vous au service de numérotation abrégée et configurez des codes de
numérotation abrégée depuis les pages Web Options utilisateur. Reportezvous à la section « Abonnement aux services téléphoniques », page 48.
2. Pour passer un appel, choisissez > Service de numérotation abrégée
sur le téléphone (le nom exact de cette fonction peut varier), puis mettez en
surbrillance une entrée de liste et décrochez le téléphone. Vous pouvez
également appuyer sur l’entrée de la liste de l’écran du téléphone.31
Interception d’un appel redirigé vers votre téléphone
Grâce à cette fonction, vous pouvez répondre à un appel en sonnerie sur le téléphone d’un collègue en
le redirigeant vers votre appareil. Vous pouvez utiliser la fonction d’interception d’appels si vous
partagez la gestion des appels avec des collègues.
Pour... Procédez comme suit :
Répondre à un appel
en sonnerie sur un
autre poste de votre
groupe de prise d’appel
1. Procédez comme suit :
• Appuyez sur la touche dynamique Intrcpt si elle est disponible.
• Dans le cas contraire, décrochez le téléphone pour l’afficher et
appuyez sur Intrcpt.
• Si le téléphone prend en charge la fonction d’interception
automatique, vous êtes connecté à l’appel.
2. Lorsque le téléphone sonne, appuyez sur Répond. pour vous connecter
à l’appel.
Répondre à un appel
en sonnerie sur un
poste hors de votre
groupe
1. Procédez comme suit :
• Appuyez sur la touche dynamique GrpIntr si elle est disponible.
• Dans le cas contraire, décrochez le téléphone pour l’afficher et
appuyez sur GrpIntr.
2. Entrez le code d’interception du groupe.
Si le téléphone prend en charge la fonction d’interception automatique,
vous êtes connecté à l’appel.
3. Lorsque le téléphone sonne, appuyez sur Répond. pour vous connecter
à l’appel.
Répondre à un appel
en sonnerie sur un
autre poste de votre
groupe ou sur celui
d’un groupe associé
1. Procédez comme suit :
• Appuyez sur la touche dynamique AGrpIntr si elle est disponible.
• Dans le cas contraire, décrochez le téléphone pour l’afficher et
appuyez sur AGrpIntr.
• Si le téléphone prend en charge la fonction d’interception
automatique, vous êtes connecté à l’appel.
2. Lorsque le téléphone sonne, appuyez sur Répond. pour vous connecter
à l’appel.32 OL-9616-01
Conseils
• Selon la configuration du téléphone, vous pouvez recevoir un signal sonore et/ou visuel à propos
d’un appel vers votre groupe de prise d’appel.
• Le fait d’appuyer sur Intrcpt et sur GrpIntr vous connecte à l’appel qui sonne depuis plus
longtemps.
• Le fait d’appuyer sur AGrpIntr vous connecte à l’appel du groupe de prise d’appel de niveau de
priorité supérieur.
• Si vous avez plusieurs lignes et si vous voulez prendre l’appel sur une ligne secondaire, appuyez
sur le bouton de la ligne souhaitée, puis sur une touche dynamique d’interception d’appel.
Utilisation d’une ligne partagée
Votre administrateur système peut vous demander d’utiliser une ligne partagée si vous :
• Avez plusieurs téléphones et souhaitez n’avoir qu’un seul numéro de téléphone.
• Partagez des tâches de gestion d’appels avec des collègues.
• Gérez des appels pour le compte d’un manager.
Présentation des lignes partagées
Utilisation à distance
L’icône Utilisé à distance apparaît lorsqu’un autre téléphone de votre ligne partagée a un appel
connecté. Vous pouvez passer et recevoir des appels normalement sur la ligne partagée, même si l’icône
Utilisé à distance s’affiche.
Partage des informations relatives aux appels et insertion
Les autres téléphones qui partagent une ligne affichent chacun des informations sur les appels passés
et reçus de la ligne partagée. Ces informations peuvent inclure l’ID de l’appelant et la durée de l’appel.
(Pour obtenir des informations sur les cas d’exception, reportez-vous à la section Confidentialité.)
Lorsque des informations d’appels s’affichent ainsi, vos collègues et vous qui partagez une ligne pouvez
vous connecter aux appels en utilisant la fonction Insert ou InsConf. Reportez-vous à la section
« Connexion à l’appel d’une ligne partagée », page 33.
Confidentialité
Pour empêcher les collègues qui partagent votre ligne de voir les informations sur vos appels, activez
la fonction de confidentialité. Ainsi, ils ne peuvent pas se connecter à vos appels. Reportez-vous à la
section « Procédure pour empêcher d’autres personnes d’afficher un appel sur une ligne partagée ou
de s’y connecter », page 34.
Remarque Le nombre maximum d’appels pris en charge sur une ligne partagée varie selon les
téléphones.33
Connexion à l’appel d’une ligne partagée
Selon la configuration de votre téléphone, vous pouvez vous connecter à l’appel d’une ligne partagée
à l’aide de la fonction Insert ou InsConf.
Conseils
• Si vous partagez la ligne avec un téléphone dont la fonction de confidentialité est activée, les
informations d’appels et les touches dynamiques d’insertion n’apparaissent pas sur les autres
téléphones qui partagent la ligne.
• Lorsque vous vous connectez à un appel à l’aide de la touche Insert, vous pouvez en être
déconnecté s’il est mis en attente, transféré ou transformé en conférence téléphonique.
Pour... Procédez comme suit :
Vérifier si la ligne partagée
est en cours d’utilisation
Recherchez l’icône Utilisé à distance ( en regard d’un bouton de ligne
rouge ).
Afficher les détails sur les
appels en cours de la ligne
partagée
Appuyez sur le bouton de ligne rouge correspondant à la ligne
utilisée à distance. Tout appel non confidentiel s’affiche dans la zone
d’activité des appels de l’écran du téléphone.
Vous connecter à un appel
sur une ligne partagée à
l’aide de la touche
dynamique Insert
1. Mettez en surbrillance un appel utilisé à distance.
2. Appuyez sur Insert. (Vous pouvez avoir à appuyer d’abord sur la
touche dynamique autres.)
Les autres interlocuteurs entendent un bip leur annonçant votre
présence.
Vous connecter à un appel
sur une ligne partagée à
l’aide de la touche
dynamique InsConf
À la différence de la fonction Insert, InsConf transforme l’appel en
conférence téléphonique standard et permet ainsi d’y ajouter de
nouveaux participants. Reportez-vous à la section « Établissement de
conférences téléphoniques », page 26.
Vous connecter à un appel
par insertion et ajouter des
participants à une
conférence
Insérez l’appel en utilisant l’option InsConf, si elle est disponible.
Contrairement à la fonction Insert, InsConf transforme l’appel en
conférence téléphonique standard et permet ainsi d’y ajouter de
nouveaux participants. Reportez-vous à la section « Établissement de
conférences téléphoniques », page 26.
Vous déconnecter d’un
appel par insertion
Raccrochez.
Si vous raccrochez après avoir utilisé la fonction Insert, les autres
interlocuteurs entendent une tonalité de déconnexion et l’appel initial
continue.
Si vous raccrochez après avoir utilisé la fonction InsConf, l’appel reste
en mode conférence (à condition qu’il reste au moins trois participants
sur la ligne).34 OL-9616-01
Procédure pour empêcher d’autres personnes d’afficher un appel sur
une ligne partagée ou de s’y connecter
Si vous partagez une ligne téléphonique, vous pouvez utiliser la fonction de confidentialité pour
empêcher les personnes qui partagent votre ligne d’afficher vos appels ou de s’y connecter.
Conseils
• Si vous partagez la ligne avec un téléphone dont la fonction de confidentialité est activée,
vous pouvez passer et recevoir des appels normalement sur la ligne partagée.
• La fonction de confidentialité s’applique à toutes les lignes partagées du téléphone. Par consé-
quent, si vous avez plusieurs lignes partagées et si la fonction de confidentialité est activée, vos
collègues ne pourront pas afficher les appels sur vos lignes partagées, ni s’y connecter.
• Lorsque vous mettez un appel en attente, le nom et le numéro de l’appelant (ID) s’affichent sur la
ligne partagée même si la fonction de confidentialité est activée. Toutefois, votre administrateur
système peut empêcher l’affichage de l’ID d’un appelant en attente si la fonction de confidentialité
est activée. Dans ce cas, vous ne pouvez récupérer l’appel que depuis le téléphone utilisé pour le
mettre en attente.
Pour... Procédez comme suit :
Empêcher d’autres personnes
d’afficher ou de joindre les appels
sur une ligne partagée
1. Appuyez sur Confidentiel .
2. Pour vérifier que la fonction de confidentialité est activée,
recherchez l’icône de confidentialité activée située à côté
d’un bouton de ligne orange .
Autoriser les autres personnes à
afficher des appels ou à s’y
connecter sur une ligne partagée
1. Appuyez sur Confidentiel .
2. Pour vérifier que la fonction de confidentialité est
désactivée, recherchez l’icône de confidentialité désactivée
située à côté d’un bouton de ligne non allumé .35
Stockage et récupération des appels parqués
Si vous souhaitez stocker un appel, vous pouvez le parquer pour qu’une autre personne et vous puissiez
le récupérer sur un autre téléphone du système Cisco Unified CallManager (par exemple, le téléphone
du bureau d’un collègue ou celui d’une salle de conférence). Vous pouvez parquer un appel en utilisant
les méthodes suivantes.
• Pour stocker l’appel, appuyez sur la touche dynamique Parquer. Le téléphone affiche le numéro de
parcage où le système a stocké l’appel. Vous devez enregistrer ce numéro et utiliser le même pour
récupérer l’appel.
• Pour diriger l’appel vers un numéro spécifique de parcage abrégé ou non, utilisez la touche
dynamique Trnsfer. La récupération de l’appel implique la composition du préfixe de récupération
d’appels parqués suivi du numéro de parcage (abrégé ou non).
• À l’aide du bouton de parcage d’appel dirigé, vous pouvez composer le numéro abrégé de parcage
et déterminer s’il est disponible ou non.
Conseils
• Vous disposez d’un délai limité pour récupérer un appel parqué avant qu’il recommence à sonner
sur le poste initial. Pour en savoir plus, contactez votre administrateur système.
• Votre administrateur système peut affecter des boutons de parcage d’appel dirigé à des boutons de
ligne disponibles sur le téléphone ou le module d’extension pour téléphones IP Cisco Unified 7914.
• Vous pouvez composer des numéros de parcage d’appel dirigé si vous n’avez pas de boutons
de parcage d’appel dirigé sur le téléphone. Toutefois, vous ne pourrez pas voir l’état du numéro
de parcage d’appel dirigé.
Pour... Procédez comme suit :
Stocker un appel actif
à l’aide de la fonction
de parcage d’appels
1. Au cours d’un appel, appuyez sur Parquer. (Vous pouvez avoir à
appuyer d’abord sur la touche dynamique autres.)
2. Notez le numéro de parcage affiché à l’écran du téléphone.
3. Raccrochez.
Récupérer un appel
parqué
Entrez le numéro de parcage sur tout téléphone IP Cisco Unified du réseau
pour vous connecter à l’appel.
Diriger et stocker un
appel actif vers un
numéro de parcage
d’appel dirigé
1. Au cours d’un appel, appuyez sur Trnsfer.
2. Pour composer le numéro abrégé de parcage, appuyez sur le bouton de
parcage d’appel dirigé si vous disposez de l’icône de parcage non
occupé . Un bouton clignotant de parcage d’appel dirigé et
l’icône de parcage occupé indiquent que le numéro de parcage
d’appel dirigé n’est pas disponible.
3. Appuyez de nouveau sur Trnsfer pour valider le stockage de l’appel.
Récupérer un appel
parqué depuis un
numéro de parcage
d’appel dirigé
Depuis tout téléphone du réseau, entrez le préfixe de récupération d’appels
parqués et composez le numéro de parcage d’appel dirigé. Pour vous
connecter à l’appel, vous pouvez également appuyer sur le bouton de
parcage d’appel dirigé si vous disposez de l’icône de parcage occupé .36 OL-9616-01
Établissement et réception d’appels sécurisés
En fonction de la configuration du système téléphonique choisie par votre administrateur système,
votre téléphone peut prendre en charge la fonction d’établissement et de réception d’appels sécurisés.
Il peut prendre en charge les types d’appels suivants.
• Appel authentifié : l’identité de tous les téléphones participant à l’appel a été vérifiée.
• Appel chiffré : le téléphone reçoit et transmet (sur le réseau IP Cisco Unified) des données audio
chiffrées (votre conversation). Les appels chiffrés sont également authentifiés.
• Appel non sécurisé : au moins l’un des téléphones en cours d’appel ou la connexion ne prend pas en
charge ces fonctions de sécurité. Il peut également être impossible de vérifier l’identité des téléphones.
Remarque Des interactions, des restrictions et des limites affectent les fonctions de sécurité du
téléphone. Pour en savoir plus, contactez votre administrateur système.
Suivi des appels suspects
Si vous faites l’objet d’appels suspects ou malveillants, votre administrateur système peut ajouter la
fonction d’identification des appels malveillants (MAL) sur le téléphone. Cette fonction permet de
déterminer si un appel actif est suspect. Dans l’affirmative, le lancement d’une série de messages
automatisés de suivi et de notification se produit.
Pour... Procédez comme suit :
Contrôler le niveau de sécurité d’un
appel
Vérifiez si l’une des icônes de sécurité suivantes apparaît
en haut à droite de la zone d’activité des appels (en regard
de l’indicateur de durée d’appel) :
Appel authentifié
Appel chiffré
Aucune icône de sécurité n’apparaît si l’appel n’est pas
sécurisé.
Déterminer s’il est possible de passer des
appels sécurisés dans votre entreprise
Contactez votre administrateur système.
Pour... Procédez comme suit :
Informer votre administrateur
système d’un appel suspect ou
malveillant
Appuyez sur MAL.
Le téléphone émet une tonalité et affiche le message MAL réussie.37
Attribution de priorité aux appels critiques
Dans certains environnements spécialisés, tels que des bureaux de l’armée ou de l’État, vous pouvez
avoir à passer et à recevoir des appels urgents ou critiques. Si vous avez besoin de ce traitement
spécialisé des appels, votre administrateur système peut ajouter une fonction de préséance et
préemption à plusieurs niveaux (MLPP) sur le téléphone.
Gardez ces termes à l’esprit :
• La préséance indique la priorité associée à un appel.
• La préemption est le processus qui permet de mettre fin à un appel de priorité inférieure et
d’accepter parallèlement un appel de priorité supérieure.
Conseils
• Lorsque vous passez ou recevez un appel compatible MLPP, vous entendez une sonnerie et une
tonalité d’attente spéciales, différentes des sonneries et tonalités standard.
• Si vous entrez un numéro d’accès MLPP incorrect, un message vocal vous en avertit.
Si vous... Procédez comme suit :
Souhaitez pouvoir choisir le niveau de
priorité (préséance) d’un appel sortant
Contactez votre administrateur système pour obtenir la liste des
numéros de priorité correspondant aux appels.
Souhaitez passer un appel prioritaire
(qui a la préséance)
Entrez le numéro d’accès MLPP (fourni par votre administrateur
système), puis le numéro de téléphone.
Entendez une sonnerie différente (plus
rapide que d’habitude) ou une tonalité
d’attente spéciale
Vous recevez un appel prioritaire (qui a la préséance). Une icône
MLPP s’affiche à l’écran du téléphone pour indiquer le niveau de
priorité de l’appel.
Souhaitez afficher le niveau de priorité
d’un appel
Recherchez une icône MLPP à l’écran du téléphone :
Appel prioritaire
Appel d’importance moyenne (immédiat)
Appel très important (rapide)
Appel de la plus haute importance (suppression rapide)
ou appel prioritaire
Les appels les plus importants s’affichent en haut de la liste des
appels. Si aucune icône MLPP n’apparaît, l’appel est un appel
normal (routine).
Souhaitez accepter un appel plus
important
Répondez normalement à l’appel. Le cas échéant, mettez d’abord
fin à l’appel actif.
Entendez une tonalité continue qui
interrompt votre appel
En d’autres termes, un appel reçu par votre interlocuteur ou vous
est prioritaire sur l’appel en cours. Raccrochez immédiatement
pour permettre à l’appel plus important de sonner sur votre
téléphone.38 OL-9616-01
Utilisation de la fonction de substitution de poste de Cisco
La fonction de substitution de poste de Cisco (EM) permet de configurer temporairement un téléphone
IP Cisco Unified comme étant le vôtre. Dès que vous vous connectez, le téléphone adopte votre profil
d’utilisateur, y compris vos lignes, vos fonctions, vos services actifs et vos paramètres Web.
L’administrateur système doit configurer la fonction EM à votre place.
Conseils
• Lors de la substitution de poste, vous êtes automatiquement déconnecté au bout d’un certain
temps. Ce délai est défini par l’administrateur système.
• Les modifications apportées au profil de substitution de poste (dans les pages Web Options
utilisateur) prennent effet lors de la prochaine connexion au service de substitution de poste sur
un téléphone.
• Les paramètres contrôlés uniquement sur le téléphone ne sont pas gérés dans le profil de
substitution de poste.
Déconnexion de groupes de recherche
Si votre entreprise reçoit un grand nombre d’appels entrants, vous pouvez être membre d’un groupe
de recherche. Un groupe de recherche inclut une série de numéros d’annuaire partageant la charge des
appels entrants. Lorsque le premier numéro d’annuaire du groupe de recherche est occupé, le système
recherche le numéro d’annuaire suivant disponible dans le groupe et dirige les appels vers ce téléphone.
Lorsque vous vous éloignez du téléphone, vous pouvez vous déconnecter des groupes de recherche et
empêcher ainsi les appels de cette provenance de sonner.
Conseil
La déconnexion des groupes de recherche n’empêche pas les appels d’autres groupes de sonner sur
votre téléphone.
Pour... Procédez comme suit :
Vous connecter
au service EM
1. Sélectionnez > Service de substitution de poste (le nom de cette fonction
peut varier).
2. Entrez votre ID utilisateur et votre PIN (fournis par votre administrateur système).
3. Si le programme le demande, sélectionnez un profil de périphérique.
Vous déconnecter
du service EM
1. Sélectionnez > Service de substitution de poste (le nom de cette fonction
peut varier).
2. Lorsque vous êtes invité à vous déconnecter, appuyez sur Oui.
Pour... Procédez comme suit :
Vous déconnecter des groupes de recherche pour bloquer
temporairement les appels des groupes de recherche
Appuyez sur ConG. L’écran du téléphone
affiche Déconnecté du grpe rech.
Vous connecter pour recevoir des appels des groupes de
recherche
Appuyez sur ConG.39
Utilisation du combiné, du casque et du haut-parleur
Vous pouvez utiliser votre téléphone avec un combiné, un casque ou un haut-parleur.
Pour... Procédez comme suit :
Utiliser le combiné Soulevez-le pour le décrocher. Remettez-le en place pour le
raccrocher.
Utiliser un casque Appuyez sur pour activer/désactiver le mode casque. Si vous
utilisez la fonction de réponse automatique, reportez-vous à la
section « Utilisation de la fonction de réponse automatique »,
page 40 pour obtenir des informations sur les cas d’exception.
Vous pouvez utiliser le casque avec tous les contrôles de votre
téléphone, notamment et .
Utiliser le haut-parleur Appuyez sur pour activer/désactiver le mode haut-parleur.
La plupart des opérations de composition de numéro ou de prise
d’appel déclenchent automatiquement le mode haut-parleur, à
condition que le combiné soit sur son support et que la touche
soit éteinte.
Basculer vers le mode casque ou
haut-parleur au cours d’un
appel (en mode combiné)
Appuyez sur ou sur , puis raccrochez le combiné.
Basculer vers le mode combiné
au cours d’un appel (en mode
haut-parleur ou casque)
Soulevez le combiné (n’appuyez sur aucun bouton).
Régler le volume d’un appel Appuyez sur au cours de l’appel ou après obtention
de la tonalité.
Cette opération règle le volume du combiné, du casque ou du
haut-parleur, selon le dispositif utilisé.
Appuyez sur Enreg. pour conserver le niveau du volume lors des
prochains appels.40 OL-9616-01
Acquisition d’un casque
Votre téléphone peut prendre en charge quatre ou six prises casque. Pour plus d’informations sur
l’achat d’un casque, reportez-vous à la section « Informations sur le casque », page 8.
Utilisation de la fonction de réponse automatique
Lorsque la fonction de réponse automatique est activée, votre téléphone répond automatiquement
aux appels entrants après quelques sonneries. Votre administrateur système configure la fonction de
réponse automatique de sorte qu’elle fonctionne avec votre haut-parleur ou avec votre casque. Vous
pouvez utiliser la fonction de réponse automatique si vous recevez un grand nombre d’appels entrants.
Si vous... Procédez comme suit :
Utilisez la fonction de
réponse automatique
avec un casque
Même si vous n’êtes pas en ligne, restez en mode casque (en d’autres termes,
le bouton doit rester allumé).
Pour que le mode casque reste activé, procédez comme suit :
• Appuyez sur FinApp. pour raccrocher.
• Appuyez sur NvAppel ou sur Compos. pour passer d’autres appels.
Si votre téléphone est configuré pour utiliser la fonction de réponse
automatique en mode casque, la réponse aux appels est automatique à
condition que le bouton soit allumé. Dans le cas contraire, les appels
sonnent normalement et vous devez y répondre manuellement.
Utilisez la fonction de
réponse automatique
avec le haut-parleur
Laissez le combiné raccroché et gardez le mode casque inactif
(bouton éteint).
Dans le cas contraire, les appels sonnent normalement et vous devez y
répondre manuellement.41
Utilisation des paramètres du téléphone
Vous pouvez personnaliser votre téléphone IP Cisco Unified en réglant la sonnerie, l’image
d’arrière-plan et d’autres paramètres.
Personnalisation des sonneries et des indicateurs de message
Vous pouvez personnaliser la manière dont votre téléphone signale la présence d’un appel entrant et
d’un nouveau message vocal. Vous pouvez également régler le volume de la sonnerie du téléphone.
Pour... Procédez comme suit :
Changer la sonnerie 1. Sélectionnez > Préférences utilisateur > Sonneries.
2. Choisissez une ligne téléphonique ou la sonnerie par défaut.
3. Sélectionnez une sonnerie pour en entendre un échantillon.
4. Appuyez sur Sélect. et sur Enreg. pour définir la sonnerie, ou appuyez
sur Annuler.
(Appuyez sur Défaut pour appliquer le paramètre de sonnerie par défaut
à une ligne téléphonique sélectionnée.)
Modifier la séquence
de la sonnerie (clignotement seulement, une
sonnerie, bip seulement, etc.)
1. Connectez-vous à vos pages Web Options utilisateur. (Reportez-vous à
la section « Connexion aux pages Web Options utilisateur », page 47.)
2. Choisissez Modification des paramètres de sonnerie de votre téléphone.
Remarque Avant de pouvoir changer les paramètres de sonnerie dans les pages
Web Options utilisateur, votre administrateur système peut avoir à
activer cette option de modification de la configuration du téléphone.
Régler le volume de la
sonnerie du téléphone
Appuyez sur lorsque le combiné est raccroché et que les
touches du casque et du haut-parleur sont désactivées. Le nouveau volume
de la sonnerie est automatiquement enregistré.
Modifier la façon dont
le témoin lumineux de
votre combiné signale
les messages vocaux
1. Connectez-vous à vos pages Web Options utilisateur. (Reportez-vous à
la section « Connexion aux pages Web Options utilisateur », page 47.)
2. Choisissez Modification du comportement de votre Indicateur de
messages en attente...
Remarque Généralement, la politique du système par défaut pour le témoin de
la messagerie vocale sur votre combiné indique à votre téléphone de
toujours indiquer un nouveau message vocal en l’éclairant.42 OL-9616-01
Personnalisation de l’écran du téléphone
Vous pouvez régler certains paramètres de l’écran du téléphone selon vos besoins.
Pour... Procédez comme suit :
Modifier le niveau
de contraste de
l’écran du téléphone
1. Sélectionnez > Préférences utilisateur > Contraste.
2. Pour procéder aux réglages, appuyez sur Plus, Moins ou sur la touche
.
3. Appuyez sur Enreg. ou sur Annuler.
Remarque Si vous enregistrez par erreur un niveau de contraste très faible ou très
élevé et si vous ne voyez plus l’affichage de l’écran du téléphone :
Appuyez sur , puis sur 1, 3 sur le clavier.
Appuyez ensuite sur pour modifier le contraste jusqu’à
ce que l’affichage de l’écran du téléphone soit lisible, puis appuyez sur
Enreg.
Modifier l’image
d’arrière-plan
1. Sélectionnez > Préférences utilisateur > Images arrière-plan.
2. Faites défiler les images disponibles et appuyez sur Sélect. pour en choisir une.
3. Appuyez sur Aperçu pour afficher une vue plus grande de l’image
d’arrière-plan.
4. Appuyez sur Quitter pour retourner au menu de sélection.
5. Appuyez sur Enreg. pour accepter l’image ou sur Annuler.
Remarque Si la sélection d’images ne s’affiche pas, cette option n’a pas été activée
sur votre système.
Modifier la langue 1. Connectez-vous à vos pages Web Options utilisateur. (Reportez-vous à la
section « Connexion aux pages Web Options utilisateur », page 47.)
2. Sélectionnez Modifier la langue...
Changer le libellé 1. Connectez-vous à vos pages Web Options utilisateur. (Reportez-vous à la
section « Connexion aux pages Web Options utilisateur », page 47.)
2. Sélectionnez l’option de modification du libellé de ligne.
Remarque L’administrateur système doit activer l’accès à cette fonction à votre
place.43
Utilisation des journaux d’appels et des répertoires
Cette section explique comment utiliser les journaux d’appels et les répertoires. Pour accéder aux deux
fonctions, utilisez le bouton Répertoires .
Utilisation des journaux d’appels
Le téléphone gère des enregistrements des appels en absence, passés et reçus.
Pour... Procédez comme suit :
Afficher les
journaux d’appels
Sélectionnez > Appels en absence, Appels composés ou Appels reçus.
Chaque journal contient 100 enregistrements maximum. Pour afficher une
entrée de liste tronquée, mettez-la en surbrillance et appuyez sur EditNum.
Effacer les journaux
d’appels
Appuyez sur , puis sur Effacer. Cette procédure permet d’effacer les
enregistrements d’appel de tous les journaux.
Composer un
numéro à partir d’un
journal d’appels
(sans connexion à
un autre appel)
1. Sélectionnez > Appels en absence, Appels composés ou Appels
reçus.
2. Mettez en surbrillance un enregistrement d’appel à partir du journal.
Remarque Si la touche dynamique Détails s’affiche, l’appel est l’entrée principale
d’un appel à plusieurs interlocuteurs. Reportez-vous à la section
Conseils ci-dessous.
3. Si vous devez modifier le numéro affiché, appuyez sur EditNum, puis sur
<< ou >>. Pour supprimer le numéro, appuyez sur EditNum, puis sur
Suppr. (Vous pouvez avoir à appuyer sur la touche dynamique autres pour
afficher Suppr.)
4. Décrochez pour passer l’appel.44 OL-9616-01
Conseils
Pour afficher l’enregistrement complet d’un appel à plusieurs interlocuteurs, appuyez sur Détails.
L’enregistrement Détails affiche deux entrées pour chaque appel à plusieurs interlocuteurs en absence
ou reçu. Les entrées apparaissent dans l’ordre chronologique inverse :
• La première entrée enregistrée est le nom/numéro du dernier appel à plusieurs interlocuteurs
terminé, reçu sur votre téléphone.
• La seconde entrée enregistrée est le nom/numéro du premier appel à plusieurs interlocuteurs
terminé, reçu sur votre téléphone.
Composer un
numéro à partir d’un
journal d’appels
(lors d’une
connexion à un
autre appel)
1. Sélectionnez > Appels en absence, Appels composés ou
Appels reçus.
2. Mettez en surbrillance un enregistrement d’appel à partir du journal.
Remarque Si la touche dynamique Détails s’affiche, l’appel est l’entrée principale
d’un appel à plusieurs interlocuteurs. Reportez-vous à la section
Conseils ci-dessous.
3. Si vous devez modifier le numéro affiché, appuyez sur EditNum, puis sur
<< ou >>. Pour supprimer le numéro, appuyez sur EditNum, puis sur
Suppr. (Vous pouvez avoir à appuyer sur la touche dynamique autres pour
afficher Suppr.)
4. Appuyez sur Compos.
5. Choisissez une option de menu pour traiter l’appel initial.
• Attente : met le premier appel en attente et compose le second.
• Transfert : transfère le premier interlocuteur vers le second et vous
déconnecte de l’appel. (Sélectionnez de nouveau cette option après
avoir composé le numéro pour que l’opération soit effectuée.)
• Conférence : établit une conférence téléphonique entre tous les
interlocuteurs, vous y compris. (Appuyez sur Conf. après avoir
composé le numéro pour que l’opération soit effectuée.)
• FinApp. : déconnecte le premier appel et compose le second.
Pour... Procédez comme suit :45
Utilisation du répertoire d’entreprise sur le téléphone
Selon sa configuration, le téléphone peut donner accès à un répertoire d’entreprise et donc aux
numéros de collègues. Le répertoire d’entreprise est configuré et géré par votre administrateur système.
Conseil
Utilisez les numéros du clavier pour entrer des caractères à l’écran du téléphone. Utilisez le bouton de
navigation du téléphone pour vous déplacer parmi les champs de saisie.
Pour... Procédez comme suit :
Composer un numéro
à partir d’un répertoire d’entreprise
(sans connexion à un
autre appel)
1. Sélectionnez > Répertoire d’entreprise (le nom exact de ce service
peut varier).
2. Entrez un nom complet ou partiel, puis appuyez sur Recher.
3. Pour composer un numéro, sélectionnez ou recherchez une entrée de liste,
puis décrochez le téléphone.
Composer un numéro
à partir d’un répertoire d’entreprise
(lors d’une connexion
à un autre appel)
1. Sélectionnez > Répertoire d’entreprise (le nom exact de ce service
peut varier).
2. Entrez un nom complet ou partiel, puis appuyez sur Recher.
3. Recherchez une entrée de liste et appuyez sur Compos.
4. Choisissez une option de menu pour traiter l’appel initial.
• Attente : met le premier appel en attente et compose le second.
• Transfert : transfère le premier interlocuteur vers le second et vous
déconnecte de l’appel. (Sélectionnez de nouveau cette option après
avoir composé le numéro pour que l’opération soit effectuée.)
• Conférence : établit une conférence téléphonique entre tous les
interlocuteurs, vous y compris. (Appuyez sur Conf. après avoir
composé le numéro pour que l’opération soit effectuée.)
• FinApp. : déconnecte le premier appel et compose le second.46 OL-9616-01
Accès aux messages vocaux
Pour accéder aux messages vocaux, utilisez le bouton .
Remarque Votre entreprise détermine le service de messagerie vocale utilisé par votre système
téléphonique. Pour obtenir des informations précises et détaillées, reportez-vous à la
documentation livrée avec votre service de messagerie vocale.
Pour... Procédez comme suit :
Configurer et personnaliser votre service de
messagerie vocale
Appuyez sur et suivez les instructions vocales.
Si un menu apparaît à l’écran, sélectionnez l’option appropriée.
Vérifier si vous avez un
nouveau message vocal
Recherchez :
• Un témoin lumineux rouge fixe sur votre combiné. (Cet indicateur peut
varier. Reportez-vous à la section « Personnalisation des sonneries et
des indicateurs de message », page 41.)
• L’icône clignotante de message en attente et un message affiché à
l’écran.
Écouter vos messages
vocaux ou accéder au
menu des messages
vocaux
Appuyez sur .
Selon votre service de messagerie vocale, cette opération permet de
composer automatiquement le numéro du service de messagerie ou
d’afficher un menu.
Transférer un appel
vers votre système de
messagerie vocale
Appuyez sur Rvoi Im.
Cette fonction transfère automatiquement un appel, notamment un
appel en sonnerie ou en attente, vers votre système de messagerie vocale.
Les appelants entendent le message d’accueil de votre messagerie vocale
et peuvent laisser un message.47
Accès à vos pages Web Options utilisateur
Comme le téléphone IP Cisco Unified est un périphérique réseau, il peut partager des données avec
d’autres périphériques réseau de votre entreprise, notamment votre ordinateur et vos services Web
accessibles via un navigateur.
Vous pouvez mettre en place des services téléphoniques et contrôler les paramètres et les fonctions
depuis l’ordinateur en utilisant les pages Web Options utilisateur de Cisco Unified CallManager.
Lorsque vous avez configuré les fonctions et services des pages Web, vous pouvez y accéder depuis
le téléphone.
Par exemple, vous pouvez configurer des touches de numérotation abrégée depuis les pages Web,
puis y accéder depuis votre téléphone.
Cette section explique comment accéder aux pages Web Options utilisateur et comment
s’abonner aux services téléphoniques. Pour plus d’informations sur les fonctions
configurables et sur les services téléphoniques avec abonnement, reportez-vous au manuel
Personnalisation de votre téléphone IP Cisco Unified sur le Web à l’adresse suivante :
http://www.cisco.com/univercd/cc/td/doc/product/voice/c_ipphon/index.htm
Connexion aux pages Web Options utilisateur
Procédure
Étape 1 Demandez à votre administrateur système de vous fournir une URL de page
Options utilisateur, un ID utilisateur et un mot de passe par défaut.
Étape 2 Ouvrez un navigateur Web sur l’ordinateur et entrez l’URL (fournie par votre administrateur
système), puis connectez-vous.
Étape 3 Dans le menu général, sélectionnez le type de périphérique (modèle de téléphone) dans la liste
déroulante « Sélectionner un périphérique ».
Une fois la sélection effectuée, un menu contextuel apparaît et propose les options appropriées
à ce type de périphérique.
Étape 4 Sélectionnez une option pour afficher la page de configuration, puis effectuez les sélections ou
modifications appropriées.
Étape 5 Cliquez sur MàJ pour appliquer et enregistrer vos modifications.
Étape 6 Cliquez sur Retour au menu pour revenir au menu contextuel, ou sur Déconnecter pour
quitter les pages Utilisateur.48 OL-9616-01
Abonnement aux services téléphoniques
Pour accéder à ces services, vous devez commencer par vous y abonner en vous connectant aux
pages Web Options utilisateur depuis l’ordinateur. (Pour obtenir de l’aide sur la connexion,
reportez-vous à la section « Connexion aux pages Web Options utilisateur », page 47.)
Les services téléphoniques peuvent comprendre :
• Des services d’informations accessibles via le Web, notamment les cours de la bourse, les
programmes de cinéma et la météo.
• Des données réseau, notamment les calendriers et les répertoires d’entreprise dans lesquels vous
pouvez effectuer des recherches.
• Des fonctions téléphoniques, telles que Mes numéros abrégés et un carnet d’adresses personnel.
Pour plus d’informations, reportez-vous au tableau ci-après.
Pour...
Après vous être connecté et avoir sélectionné le type de périphérique,
procédez comme suit :
Vous abonner à un
service
Dans le menu principal, sélectionnez Configurer vos Services téléphoniques
IP Cisco Unified. Sélectionnez un service dans la liste déroulante « Services
disponibles », puis cliquez sur Continuer. Saisissez les renseignements
supplémentaires sur demande (par exemple, un code postal ou un code PIN),
puis cliquez sur S’abonner.
Modifier ou supprimer un abonnement
Dans le menu principal, sélectionnez Configurer vos Services téléphoniques
IP Cisco Unified. Cliquez sur un service du volet « Vos abonnements ».
Cliquez sur MàJ après avoir effectué vos modifications ou sur Se désabonner.
Associer un service
à une touche
programmable
Après vous être abonné à un service, sélectionnez Ajouter/mettre à jour vos
boutons URL de service dans le menu principal. Pour chaque touche
disponible, sélectionnez un service dans la liste déroulante, puis saisissez une
description. Une fois vos modifications effectuées, cliquez sur MàJ. Votre
administrateur système détermine le nombre de touches programmables
pouvant être associées à des services. Il peut également affecter des touches
de service au téléphone.
Accéder à un service
sur le téléphone
Appuyez sur le bouton du téléphone. À la place, vous pouvez appuyer
sur une touche programmable associée à un service (le cas échéant).
Apprendre à utiliser
les services
téléphoniques
Reportez-vous au manuel Personnalisation de votre téléphone IP Cisco
Unified sur le Web à l’adresse suivante :
http://www.cisco.com/univercd/cc/td/doc/product/voice/c_ipphon/index.htm49
Présentation des options de configuration
supplémentaires
Votre administrateur système peut configurer le téléphone de manière à ce qu’il utilise, le cas échéant,
des modèles de boutons et de touches dynamiques spécifiques, associés à des fonctions et à des services
particuliers. Le tableau ci-dessous fournit une présentation de certaines options de configuration que
vous pouvez demander à l’administrateur de votre système téléphonique en fonction de vos besoins en
matière d’appels ou de votre environnement de travail.
Remarque Vous trouverez les manuels des téléphones et autres documents auxquels il est
fait référence dans ce tableau sur le Web :
http://www.cisco.com/univercd/cc/td/doc/product/voice/c_ipphon/index.htm
Si vous... Procédez comme suit : Pour plus d’informations...
Devez gérer plusieurs
appels sur la ligne
téléphonique
Demandez à votre administrateur système
de configurer la ligne pour qu’elle prenne
en charge plusieurs appels.
Contactez votre administrateur
système ou l’équipe d’assistance
téléphonique.
Avez besoin de
plusieurs lignes
téléphoniques
Demandez à votre administrateur système
de vous configurer un ou plusieurs
numéros d’annuaire supplémentaires.
Contactez votre administrateur
système ou l’équipe d’assistance
téléphonique.
Avez besoin de plus
de touches de numé-
rotation abrégée
Vérifiez d’abord que vous utilisez déjà la
totalité des touches de numérotation
abrégée disponibles.
Si vous avez besoin de touches de
numérotation abrégée supplémentaires,
utilisez la fonction de numérotation
abrégée ou abonnez-vous au service de
numérotation abrégée.
Vous pouvez également ajouter à votre
téléphone le module d’extension 7914
pour téléphone IP Cisco Unified.
Reportez-vous aux références
suivantes :
• « Numérotation abrégée »,
page 30
• « Abonnement aux services
téléphoniques », page 48
• Cisco IP Phone Expansion
Module 7914 Phone Guide
Travaillez en collaboration avec un assistant administratif (ou
en tant qu’assistant
administratif)
Pensez à utiliser :
• Le service Cisco IP Manager
Assistant.
• Une ligne partagée.
Reportez-vous aux références
suivantes :
• « Utilisation d’une ligne
partagée », page 32
• Guide de l’utilisateur de
Cisco IP Manager Assistant50 OL-9616-01
Souhaitez utiliser un
même numéro de
poste pour plusieurs
téléphones
Demandez une ligne partagée. Cette
opération permet par exemple d’utiliser
un numéro de poste unique pour les
téléphones du bureau et du laboratoire.
Reportez-vous à la section
« Utilisation d’une ligne
partagée », page 32.
Partagez vos téléphones ou votre bureau
avec des collègues
Pensez à utiliser :
• La fonction de parcage d’appels pour
enregistrer et récupérer des appels
sans utiliser la fonction de transfert.
• La fonction d’interception d’appels
pour répondre à des appels en
sonnerie sur un autre téléphone.
• Une ligne partagée pour afficher ou
joindre les appels de vos collègues.
• La fonction de substitution de poste
de Cisco pour affecter vos numéro de
téléphone et profil utilisateur à un
téléphone IP Cisco Unified partagé.
Demandez des détails sur ces
fonctions à votre administrateur
système et reportez-vous aux
sections suivantes :
• « Gestion avancée des
appels », page 30
• « Utilisation d’une ligne
partagée », page 32
• « Utilisation de la fonction
de substitution de poste de
Cisco », page 38
Répondez à de nombreux appels ou gérez
des appels pour le
compte d’une autre
personne
Demandez à votre administrateur système
de configurer la fonction de réponse
automatique sur le téléphone.
Reportez-vous à la section
« Utilisation de la fonction de
réponse automatique », page 40.
Devez passer des
appels vidéo
Pensez à utiliser Cisco VT Advantage
pour passer des appels vidéo avec le
téléphone IP Cisco Unified, un ordinateur
et une caméra vidéo externe.
Si vous avez besoin d’aide,
contactez votre administrateur
système et reportez-vous aux
documents Cisco VT Advantage
Quick Start Guide et Cisco VT
Advantage User Guide.
Souhaitez affecter
temporairement vos
numéro de téléphone
et paramètres à un
téléphone IP Cisco
Unified partagé
Demandez des détails sur le service de
substitution de poste de Cisco à votre
administrateur système.
Reportez-vous à la section
« Utilisation de la fonction de
substitution de poste de Cisco »,
page 38.
Si vous... Procédez comme suit : Pour plus d’informations...51
Dépannage du téléphone
Cette section fournit des informations de dépannage sur le téléphone IP Cisco Unified.
Informations générales de dépannage
Cette section vous aide à résoudre les problèmes du téléphone. Pour en savoir plus, contactez votre
administrateur système.
Signe Explication
Vous n’entendez pas la
tonalité ou vous ne pouvez
pas passer un appel
Un ou plusieurs des éléments suivants peuvent être en cause :
• Vous devez vous connecter au service de substitution de poste.
• Vous devez entrer un code d’affaire client ou un code
d’autorisation forcée après avoir composé un numéro.
• Le téléphone est soumis à des restrictions horaires pendant
lesquelles certaines fonctions ne sont pas disponibles.
Le bouton de paramètres
ne répond pas
Votre administrateur système peut avoir désactivé sur le
téléphone.
La touche dynamique à
utiliser n’apparaît pas
Un ou plusieurs des éléments suivants peuvent être en cause :
• Vous devez appuyer sur autres pour afficher des touches
dynamiques supplémentaires.
• Vous devez changer l’état de la ligne (par exemple, décrochez
ou établissez une communication).
• Le téléphone n’est pas configuré pour prendre en charge la
fonction associée à cette touche dynamique.
L’action Joindre échoue L’action Joindre nécessite plusieurs appels sélectionnés. Assurez-vous
de sélectionner au moins un appel en plus de l’appel actif automatiquement. L’action Joindre requiert également que les appels sélectionnés se trouvent sur la même ligne. Si nécessaire, transférez les appels
vers une ligne avant de les joindre.
L’utilisation de la touche
dynamique Insert aboutit à
un échec sous forme de
tonalité d’occupation rapide
Vous ne pouvez pas vous connecter à un appel chiffré si le téléphone
utilisé n’est pas configuré pour le chiffrement. Si la tentative de
connexion échoue pour cette raison, le téléphone émet une tonalité
d’occupation rapide.52 OL-9616-01
Affichage des données d’administration du téléphone
Votre administrateur système peut vous demander d’accéder aux données d’administration du
téléphone à des fins de dépannage.
Utilisation de l’outil de génération de rapports qualité (QRT)
L’administrateur système peut configurer temporairement le téléphone avec l’outil de génération de
rapports qualité pour régler les problèmes de performances. Vous pouvez appuyer sur QRT pour
envoyer des informations à votre administrateur système. Selon sa configuration, QRT permet de :
• signaler immédiatement un problème audio sur un appel en cours.
• sélectionner un problème général dans une liste et choisir des codes motifs.
Vous êtes déconnecté d’un
appel joint à l’aide de la
touche dynamique Insert
Lorsque vous vous connectez à un appel à l’aide de la touche Insert,
vous pouvez en être déconnecté s’il est mis en attente, transféré ou
transformé en conférence téléphonique.
Le rappel Cisco échoue L’interlocuteur a peut-être activé le renvoi d’appels.
Si vous devez... Procédez comme suit :
Accéder aux données de
configuration du réseau
Sélectionnez > Config. réseau, puis l’élément de configuration
réseau à afficher.
Accéder aux données d’état Sélectionnez > État, puis l’élément d’état à afficher.
Accéder aux caractéristiques
du téléphone
Sélectionnez > Caractéristiques.
Accéder aux informations
de qualité d’appel et de
qualité vocale du téléphone
Choisissez > État > Statistiques d’appel.
Signe Explication53
Conditions générales de la garantie matérielle
limitée à un an de Cisco
Des conditions spéciales s’appliquent à votre garantie matérielle et plusieurs services sont à votre
disposition au cours de la période couverte par cette garantie. Vous trouverez votre déclaration de
garantie formelle, comprenant la garantie applicable aux logiciels Cisco, sur le CD de documentation
de Cisco et sur Cisco.com. Procédez comme suit pour télécharger le pack d’informations Cisco et le
document de garantie (depuis le CD ou depuis le site Cisco.com).
1. Lancez votre navigateur et saisissez l’URL suivante :
http://www.cisco.com/univercd/cc/td/doc/es_inpck/cetrans.htm
La page des garanties et des accords de licence s’affiche.
2. Pour consulter le pack d’informations Cisco, procédez comme suit :
a. Cliquez sur le champ Information Packet Number et vérifiez que la référence 78-5235-02F0
est mise en surbrillance.
b. Sélectionnez la langue souhaitée pour la lecture du document.
c. Cliquez sur Go.
d. La page de garantie limitée et de licence pour les logiciels Cisco correspondant au pack
d’informations s’affiche.
e. Reportez-vous à ce document en ligne ou cliquez sur l’icône PDF pour le télécharger et
l’imprimer au format PDF (Portable Document Format) d’Adobe.
Remarque Vous devez avoir installé Adobe Acrobat Reader pour afficher et imprimer les
fichiers PDF. Vous pouvez télécharger le logiciel Reader sur le site Web d’Adobe :
http://www.adobe.com.54 OL-9616-01
3. Pour lire la version traduite et localisée des informations de garantie relatives à votre produit,
procédez comme suit.
a. Entrez la référence suivante dans le champ Warranty Document Number :
78-10747-01C0
b. Sélectionnez la langue souhaitée pour l’affichage du document.
c. Cliquez sur Go.
La page de garantie de Cisco s’affiche.
d. Reportez-vous à ce document en ligne ou cliquez sur l’icône PDF pour le télécharger et
l’imprimer au format PDF (Portable Document Format) d’Adobe.
Vous pouvez également vous reporter au site Web de service et d’assistance de Cisco pour obtenir
de l’aide :
http://www.cisco.com/public/Support_root.shtml.
Durée de la garantie matérielle
Un (1) an
Politique de remplacement, de réparation ou de remboursement du matériel
Cisco ou son centre de réparation feront leur possible (dans des limites commerciales raisonnables)
pour expédier une pièce de rechange sous dix (10) jours ouvrables après réception d’une demande
d’autorisation de renvoi de matériel. Les délais de livraison réels peuvent varier selon la situation
géographique du client.
Cisco se réserve le droit de rembourser le montant de l’achat comme recours exclusif sous garantie.
Obtention d’un numéro d’autorisation de renvoi de matériel
Contactez l’entreprise auprès de laquelle vous avez acheté le produit. Si vous avez acheté le produit
directement auprès de Cisco, contactez votre représentant commercial et de service après-vente Cisco.
Fournissez les renseignements ci-dessous et conservez-les.
Produit acheté auprès de
Numéro de téléphone de l’entreprise
Référence du produit
Numéro de série du produit
Numéro du contrat de maintenance55
Index
A
Accessibilité, fonctions 5
Aide en ligne, utilisation 15
Aide, utilisation 15
Appel en attente 20
Appels
affich. 13
affichage 22
attente et reprise 21
attribution de priorité 37
avec plusieurs interlocuteurs 26
différences avec une ligne 15
établissement 17
fin 21
fonctions de conférence 26
gestion 22
icônes 16
multiples, affichage 23
nombre maximum par ligne 15
parcage 35
rapports sur les problèmes 52
réacheminement d’appels en sonnerie 20, 31
renvoi 25
réponse 20
sécurisés 36
stockage et récupération 35
transfert 23
utilisation du mode Secret 22
Appels composés, enregistrements 43
Appels en absence, enregistrements 43
Appels reçus, enregistrements 43
Appels suspects, suivi 36
Attente
et passage d’un appel à l’autre 22
et transfert 23
utilisation 21
Attribution de priorité aux appels 37
Authentifiés, appels 36
B
Bouton d’aide, description 11
Bouton de navigation, description 12
Bouton Messages, description 11
Bouton Paramètres, description 12
Bouton Répertoires, description 11
Bouton Secret, description 12
Bouton Services, description 12
Bouton Volume, description 12
Boutons de fonctions
aide 11
Messages 11
Paramètres 12
Répertoires 11
Services 12
Boutons de ligne, identification 1156 OL-9616-01
C
Carnet d’adresses personnel
abonnement 48
numérotation 19
Casque
bouton, identification 12
mode 39
raccrochage 21
réponse à des appels 20
Chiffrés, appels 36
Clavier
description 12
Combiné
bande lumineuse 12
fixation sur son support 7
utilisation 39
Composition, options 17
Conférences Meet-Me 26, 29
Conférences téléphoniques
Meet-Me 26, 29
standard 26, 27
Confidentialité
et lignes partagées 32
utilisation 34
Consignes, sécurité 3
D
Déconnexion de groupes de recherche 38
Dépannage 51
Données d’état, recherche 51
Données de configuration du réseau,
recherche 51
E
Écran du téléphone
fonction 13
modification de la langue 42
nettoyage 14
réglage du contraste 42
Établissement d’appels, options 17
F
Fin d’un appel, options 21
Fonctions, disponibilité 16, 49
G
Gestion de plusieurs appels 22
Groupe de recherche 38
H
Haut-parleur
bouton, identification 12
mode 39
raccrochage 21
réponse à des appels 20
I
Icône Utilisé à distance pour les lignes
partagées 32
Icônes
pour les états d’appel 16
Identification des appels malveillants (MAL),
utilisation 3657
Indicateur de messages vocaux 46
InsConf, voir Insert
Insert
et confidentialité 34
et lignes partagées 32
utilisation 33
Installation du téléphone IP Cisco Unified 6
Interception d’appels 31
Interception d’appels de groupe 31
J
Journaux d’appels
affichage et composition d’un numéro 43
effacement 43
L
Ligne état 13
Ligne téléphonique
affich. 13
boutons 11
description 15
Lignes
affich. 13
description 15
Lignes partagées
avec insertion 33
avec la fonction de confidentialité 34
description 32
et icône Utilisé à distance 32
M
Menus d’options, utilisation 16
Menus, utilisation 16
Messages
écoute 46
indicateur 41, 46
MLPP, utilisation 37
Mode Secret, utilisation 22
N
Numéro abrégé 30
boutons, identification 11
étiquettes 13
utilisation 18
Numéro de poste 13
Numérotation automatique 18
Numérotation avec le combiné raccroché 18
O
Outil d’assistance des téléphones enregistrés
automatiquement (TAPS, Tool for
Auto-Registered Phones Support) 7
P
Pages Web Options utilisateur
accès 47
et aux services téléphoniques 48
Parcage d’appel dirigé 35
Parcage d’appels 35
Passage d’un appel à l’autre 22
Performances du casque, généralités 8
Prénumérotation 18
Problèmes audio 5258 OL-9616-01
Q
QRT, utilisation 52
R
Raccrochage, options 21
Rappel 17
Renvoi d’appels 25
Renvoi d’appels, options 25
Répertoire
numérotation à partir d’une page Web 19
utilisation sur un téléphone 18, 43
Répertoire d’entreprise
numérotation à partir d’une page Web 19
utilisation sur un téléphone 18
Réponse à des appels, options 20
Réponse automatique 40
Reprise, utilisation 21
S
Sécurisés, appels 36
Sécurité, consignes 3
Service de messagerie vocale 46
Service de numérotation abrégée
abonnement 48
numérotation 19
Services, abonnement 48
Socle
bouton, identification 11
réglage 7
Sonnerie
indicateur 12
personnalisation 41
Substitution de poste
connexion 38
déconnexion 38
T
TAPS, utilisation 7
Téléphone IP Cisco Unified
aide en ligne 15
configuration des fonctions 16, 49
description 9
enregistrement 7
fixation du support du combiné 7
illustration 10
raccordement 6
réglage de la hauteur 7
services Web 47
Texte saisi sur le téléphone 16
Touches dynamiques
description 12
étiquettes 13
Touches programmables
description 11
étiquettes 13
Traitement des appels
avancé 30
de base 17
Transfert, options 23
W
WebDialer 19
Z
Zone d’activité des appels 13Siège social
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
États-Unis
www.cisco.com
Tél. : +1 408 526-4000
+1 800 553-NETS (6387)
Fax : +1 408 526-4100
Siège social en Europe
Cisco Systems International BV
Haarlerbergpark
Haarlerbergweg 13-19
1101 CH Amsterdam
Pays-Bas
www-europe.cisco.com
Tél. : +31 0 20 357 1000
Fax : +31 0 20 357 1100
Siège social aux États-Unis
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
États-Unis
www.cisco.com
Tél. : +1 408 526-7660
Fax : +1 408 527-0883
Siège social en Asie-Pacifique
Cisco Systems, Inc.
168 Robinson Road
#28-01 Capital Tower
Singapour 068912
www.cisco.com
Tél. : +65 6317 7777
Fax : +65 6317 7799
Cisco Systems possède plus de 200 bureaux dans les pays ci-dessous. Les adresses, numéros
de téléphone et numéros de fax sont indiqués sur le site Web de Cisco à l’adresse suivante :
www.cisco.com/go/offices
Afrique du Sud • Allemagne • Arabie Saoudite • Argentine • Australie • Autriche • Belgique • Brésil • Bulgarie • Canada • Chili • Chypre • Colombie
Corée • Costa Rica • Croatie • Danemark • Dubai, État des Émirats Arabes Unis • Écosse • Espagne • États-Unis • Finlande • France • Grèce
Hongrie • Inde • Indonésie • Irlande • Israël • Italie • Japon • Luxembourg • Malaisie • Mexique • Norvège • Nouvelle-Zélande • Pays-Bas • Pérou
Philippines • Pologne • Portugal • Puerto Rico • RAS de Hong Kong • République populaire de Chine • République Tchèque • Roumanie • Royaume-Uni
Russie • Singapour • Slovaquie • Slovénie • Suède • Suisse • Taïwan • Thaïlande • Turquie • Ukraine • Venezuela • Viêtnam • Zimbabwe
CCSP, CCVP, le logo Cisco Square Bridge, Follow Me Browsing et StackWise sont des marques de Cisco Systems, Inc. Changing the Way We Work, Live, Play, and Learn et
iQuick Study sont des marques de service de Cisco Systems, Inc. Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, le logo Cisco
Certified Internetwork Expert, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, le logo Cisco Systems, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, le logo iQ, iQ Net Readiness Scorecard, LightStream, Linksys,
MeetingPlace, MGX, le logo Networkers, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast,
SMARTnet, The Fastest Way to Increase Your Internet Quotient et TransPath sont des marques déposées de Cisco Systems, Inc. et/ou de ses filiales aux États-Unis et dans certains
autres pays.
Toutes les autres marques mentionnées dans ce document ou sur le site Web sont la propriété de leurs détenteurs respectifs. L’utilisation du terme « partenaire » n’implique
nullement une relation de partenariat entre Cisco et toute autre entreprise. (0601R)
© 2006 Cisco Systems, Inc. Tous droits réservés.
OL-9616-01
Le logo Java est une marque ou une marque déposée de Sun Microsystems, Inc. aux États-Unis ou dans d’autres pays.
Copyright © 2011, Meraki, Inc.
Meraki Cloud Controller
Product Manual
December 2011
® Meraki Cloud Controller Product Manual | 2
www.meraki.com
660 Alabama St.
San Francisco, California 94110
Phone: +1 415 632 5800
Fax: +1 415 632 5899
Copyright: © 2011 Meraki, Inc. All rights reserved.
Trademarks: Meraki® is a registered trademark of Meraki, Inc.
® Meraki Cloud Controller Product Manual | 3
Table of Contents
1 Introduction............................................................................................................. 10
1.1 Primary MCC Functions..................................................................................................................... 10
1.2 MCC Versions.................................................................................................................................... 10
1.3 MCC Layout....................................................................................................................................... 11
1.4 How to Use This Document............................................................................................................... 11
2 System Overview .................................................................................................... 13
2.1 Data Flow........................................................................................................................................... 14
2.2 Centralized Management and Monitoring.......................................................................................... 14
2.3 Security.............................................................................................................................................. 14
2.4 Network Optimization......................................................................................................................... 14
2.5 Availability.......................................................................................................................................... 14
2.6 Mesh Networking............................................................................................................................... 15
2.7 Over-the-Air Upgrades....................................................................................................................... 15
3 Getting Started........................................................................................................ 16
4 Configuring SSIDs .................................................................................................. 17
5 Assigning IP Addresses to Wireless Clients........................................................ 18
5.1 NAT Mode.......................................................................................................................................... 18
5.2 Bridge Mode (Enterprise Only).......................................................................................................... 18
5.3 VPNs.................................................................................................................................................. 19
6 Configuring the LAN............................................................................................... 20
6.1 Firewall Settings ................................................................................................................................ 20
6.2 Assigning IP Addresses to Meraki APs ............................................................................................. 20
6.2.1 Configuring a Static IP Address Directly on a Meraki AP............................................................... 20
6.2.2 Configuring a Static IP Address for a Meraki AP via DHCP Reservations ..................................... 21
7 Wireless Encryption and Authentication.............................................................. 22
7.1 Association Requirements................................................................................................................. 22
7.1.1 Open............................................................................................................................................... 23
7.1.2 MAC-Based Access Control (Enterprise Only)............................................................................... 23
7.1.3 Pre-Shared Keys (WEP, WPA/WPA2-Personal)............................................................................ 23
7.1.4 WPA2-Enterprise with 802.1x Authentication (Enterprise Only)..................................................... 24
7.2 Network Sign-On Methods................................................................................................................. 24Meraki Cloud Controller Product Manual | 4
7.2.1 Direct Access.................................................................................................................................. 25
7.2.2 Click-Through Splash Page............................................................................................................ 25
7.2.3 Sign-On Splash Page ..................................................................................................................... 25
7.2.4 Billing .............................................................................................................................................. 26
7.2.5 Hosting Your Own Splash Page..................................................................................................... 26
7.3 Configuring an Authentication Server................................................................................................ 26
7.3.1 Meraki-Hosted Authentication Server............................................................................................. 26
7.3.2 Externally Hosted RADIUS Server ................................................................................................. 27
7.3.3 Externally Hosted Active Directory Server...................................................................................... 29
7.3.4 Externally Hosted LDAP Server...................................................................................................... 31
8 Monitoring................................................................................................................ 33
8.1 Overview Page .................................................................................................................................. 33
8.2 All-Network Overview Page............................................................................................................... 34
8.3 Maps Page (Enterprise Only) ............................................................................................................ 34
8.4 Access Points Page........................................................................................................................... 35
8.5 Access Point Details Page................................................................................................................. 36
8.5.1 AP Tagging..................................................................................................................................... 37
8.6 Clients Page ...................................................................................................................................... 39
8.6.1 Clients Overview Page Features .................................................................................................... 39
8.6.2 Traffic Analysis (Enterprise Only)................................................................................................... 40
8.6.3 Client Details Page ......................................................................................................................... 41
8.6.4 Client Location Services ................................................................................................................. 43
8.7 Event Log Page (Enterprise Only)..................................................................................................... 44
8.8 Rogue APs Page (Enterprise Only)................................................................................................... 45
8.9 WIPS Page (Enterprise Only)............................................................................................................ 45
8.10 Summary Report Page (Enterprise Only)......................................................................................... 45
8.11 PCI Reports Page (Enterprise Only)................................................................................................. 45
8.12 Live Updates (Enterprise Only)......................................................................................................... 46
8.13 Search Tool....................................................................................................................................... 46
8.14 Email Alerts....................................................................................................................................... 46
8.15 Export XML Data .............................................................................................................................. 46
8.16 Logins Page...................................................................................................................................... 47
8.17 Account Activity Page....................................................................................................................... 47
9 VLAN Tagging (Enterprise Only)........................................................................... 48
9.1 Per-SSID VLAN Tagging................................................................................................................... 49Meraki Cloud Controller Product Manual | 5
9.2 Per-User VLAN Tagging.................................................................................................................... 49
9.3 Per-Device Type VLAN Tagging........................................................................................................ 50
9.4 Management Traffic........................................................................................................................... 50
9.5 Configuring the LAN to Support VLAN Tagging ................................................................................ 50
9.6 Other Considerations......................................................................................................................... 50
10 User Access Control Features .............................................................................. 51
10.1 Network Access Control.................................................................................................................... 51
10.2 MAC Whitelist ................................................................................................................................... 52
10.3 MAC Blacklist.................................................................................................................................... 52
10.4 Bandwidth Shaping........................................................................................................................... 53
10.5 Adult Content Filtering ...................................................................................................................... 53
10.6 Firewall Rules for Wireless Users..................................................................................................... 54
10.6.1 LAN Isolation ................................................................................................................................ 54
10.6.2 Custom Firewall Rules (Enterprise Only)...................................................................................... 54
10.7 Captive Portal Strength..................................................................................................................... 55
10.8 Enable/Disable Simultaneous Logins ............................................................................................... 55
10.9 Walled Garden (Enterprise Only)...................................................................................................... 55
11 Identity Policy Manager (Enterprise Only) ........................................................... 57
11.1 How IPM Works................................................................................................................................ 57
11.2 How to Configure IPM....................................................................................................................... 58
11.2.1 Define a Group Policy on the RADIUS Server.............................................................................. 58
11.2.2 Define a Group Policy on the MCC............................................................................................... 58
11.2.3 Test the IPM Configuration........................................................................................................... 60
12 Traffic Shaper (Enterprise Only) ........................................................................... 61
12.1 Configuring Shaping Policies............................................................................................................ 61
12.1.1 Creating Shaping Rules................................................................................................................ 61
12.1.2 Example Shaping Policy............................................................................................................... 62
13 Guest Management (Enterprise Only) .................................................................. 63
14 Rogue AP Detection (Enterprise Only)................................................................. 64
15 Wireless Intrusion Prevention System (Enterprise Only)................................... 66
16 Wireless Features................................................................................................... 67
16.1 AutoRF.............................................................................................................................................. 67
16.2 Channel Selection............................................................................................................................. 67Meraki Cloud Controller Product Manual | 6
16.3 Channel Spreading (Enterprise Only)............................................................................................... 68
When automatic channel selection is configured, an administrator can configure “channel spreading”,
which allows Meraki APs to operate on different channels. Channel spreading selects channels that
minimize RF utilization and interference in the network, thereby maximizing overall network performance
and client capacity (i.e., the number of wireless clients that can connect to the network). ......................... 68
16.4 Network Scans (Enterprise Only)...................................................................................................... 68
16.5 Spectrum Analysis (Enterprise Only)................................................................................................ 68
16.6 Transmit Power Control (Enterprise Only)........................................................................................ 69
16.7 Radio Settings Page (Enterprise Only)............................................................................................. 69
16.7.1 Radio Controls.............................................................................................................................. 69
16.7.2 Channel Planning Report.............................................................................................................. 69
16.8 SSID Availability Page...................................................................................................................... 69
16.8.1 SSID Visibility (Enterprise Only)................................................................................................... 69
16.8.2 SSID Broadcast Controls By AP (Enterprise Only)....................................................................... 70
16.8.3 Timed SSID Broadcasting (Enterprise Only)................................................................................ 71
16.9 Band Selection and Band Steering (Enterprise Only)....................................................................... 71
16.10 Disabling Legacy 802.11b Bitrates (Enterprise Only)....................................................................... 71
16.11 Software Upgrades........................................................................................................................... 72
16.11.1 Preferred Maintenance Window (Enterprise Only)..................................................................... 72
16.12 Mesh Networking.............................................................................................................................. 72
16.13 Wired Clients..................................................................................................................................... 73
16.14 Wireless Bridging.............................................................................................................................. 73
16.15 Quality of Service.............................................................................................................................. 73
16.16 Power Save....................................................................................................................................... 74
16.17 Run Dark........................................................................................................................................... 74
16.18 Accessing the AP’s Local Web Page................................................................................................ 74
17 Branding.................................................................................................................. 75
17.1 Splash Page ..................................................................................................................................... 75
17.1.1 Meraki-Hosted Splash Page......................................................................................................... 75
17.1.2 Externally Hosted Splash Page.................................................................................................... 75
17.1.3 Splash Page Frequency ............................................................................................................... 75
18 Billing....................................................................................................................... 77
19 Administering Multiple Networks.......................................................................... 78
19.1 Organizations.................................................................................................................................... 78Meraki Cloud Controller Product Manual | 7
An “organization” consists of a collection of networks and a collection of administrative accounts. Every
administrator has an account in the MCC that is part of an organization. An organization is covered by a
single license. (For more information on licensing, see Chapter Licensing21, “Licensing”)....................... 78
19.2 Administrators................................................................................................................................... 78
19.2.1 Organization Administrators ......................................................................................................... 78
19.2.2 Network Administrators................................................................................................................. 79
19.3 Moving APs between Networks or Organizations............................................................................. 79
20 Teleworker VPN ...................................................................................................... 80
20.1 Typical Use Cases............................................................................................................................ 80
20.2 How It Works..................................................................................................................................... 80
20.3 The Virtual Concentrator................................................................................................................... 80
20.4 Creating the Virtual Concentrator Network....................................................................................... 81
20.5 Installing the Virtual Concentrator..................................................................................................... 81
20.6 Monitoring the Virtual Concentrator.................................................................................................. 82
20.6.1 Overview....................................................................................................................................... 82
20.6.2 Concentrator Status...................................................................................................................... 82
20.6.3 Clients........................................................................................................................................... 82
20.6.4 Event Log...................................................................................................................................... 82
20.6.5 Summary Report........................................................................................................................... 82
20.7 Configuring the Virtual Concentrator ................................................................................................ 83
20.7.1 Concentrator Settings................................................................................................................... 83
20.7.2 Alerts and Administrators.............................................................................................................. 83
20.8 Configuring Remote APs .................................................................................................................. 83
20.9 Create Remote Site Network and Add APs...................................................................................... 84
20.9.1 Configure SSIDs to Tunnel........................................................................................................... 84
20.9.2 Configure Split Tunnel.................................................................................................................. 84
20.9.3 Tunneling wired client traffic ......................................................................................................... 84
20.10 Configuration Best Practices ............................................................................................................ 85
20.10.1 Concentrator Location(s)............................................................................................................ 85
20.10.2 Firewall Settings ......................................................................................................................... 86
21 Licensing................................................................................................................. 87
21.1 Adding Licenses ............................................................................................................................... 87
21.2 Cloud Controller Upgrades ............................................................................................................... 88
21.3 Renewing Licenses........................................................................................................................... 88
21.4 Expired Licenses or Exceeding the Licensed AP Limit..................................................................... 88
22 Troubleshooting ..................................................................................................... 89Meraki Cloud Controller Product Manual | 8
23 References .............................................................................................................. 90
24 Appendix A: Example Office Configuration......................................................... 91
24.1 Objectives......................................................................................................................................... 91
24.2 Implementation Alternatives ............................................................................................................. 92
24.3 Assumptions ..................................................................................................................................... 92
24.4 Configuration for Guests................................................................................................................... 93
24.4.1 Configuration Settings .................................................................................................................. 93
24.4.2 Configure a Splash Page.............................................................................................................. 93
24.4.3 Create a Guest Ambassador........................................................................................................ 94
24.5 Configuration for Employees ............................................................................................................ 95
24.5.1 Dashboard Configuration.............................................................................................................. 95
24.5.2 Configure Meraki APs as RADIUS Clients in NPS....................................................................... 96
24.5.3 Testing RADIUS Authentication.................................................................................................... 97
24.6 Configuration for Contractors............................................................................................................ 98
24.6.1 Configuration for Users................................................................................................................. 98
24.6.2 Configuration of NPS Policies..................................................................................................... 100
24.6.3 Configuration of Group Policy in the Meraki Cloud Controller.................................................... 103
24.6.4 Testing the Group Policy Application.......................................................................................... 104
24.7 Traffic Shaping Configuration ......................................................................................................... 105
24.8 Summary......................................................................................................................................... 106
25 Appendix B: Example Teleworker VPN Configuration...................................... 107
25.1 Objectives....................................................................................................................................... 107
25.2 Virtual Concentrator Installation...................................................................................................... 108
25.2.1 Virtual Concentrator Network...................................................................................................... 108
25.2.2 Virtual Concentrator Configuration Settings ............................................................................... 109
25.2.3 Installing the Virtual Concentrator in VMware............................................................................. 110
25.3 Remote Site Network Configuration ............................................................................................... 111
25.3.1 Remote Site Network.................................................................................................................. 111
25.4 AP Pre-Configuration...................................................................................................................... 113
26 Appendix B: Miscellaneous Configuration Settings ......................................... 115
26.1 FreeRADIUS Configuration............................................................................................................. 115
26.1.1 Configuration for APs (clients.conf file)....................................................................................... 115
26.1.2 Configuration for Users (Users file) ............................................................................................ 115
26.1.3 Configuration for WPA2-Enterprise with 802.1x Authentication (eap.conf file)........................... 116
26.2 Switch Configuration for VLAN Tagging ......................................................................................... 116Meraki Cloud Controller Product Manual | 9
27 Appendix C: RADIUS Attributes.......................................................................... 117
27.1 Authentication Attributes................................................................................................................. 117
27.1.1 Attributes Supported in Access-Request Messages................................................................... 117
27.1.2 Attributes Supported in Access-Accept Messages..................................................................... 117
27.1.3 Attributes Supported in Access-Reject Messages...................................................................... 118
27.2 Accounting Attributes...................................................................................................................... 119
28 Appendix D: Meraki-Hosted Splash Page Variables ......................................... 120Meraki Cloud Controller Product Manual | 10
1 Introduction
The Meraki Cloud Controller (MCC) provides centralized management,
optimization, and monitoring of a Meraki wireless LAN system. The MCC is not
an appliance that an administrator must purchase and install in a data center to
manage wireless access points (APs). Rather, the MCC is a cloud-based service
that is constantly monitoring, optimizing, and reporting on the behavior of the
network.
1.1 Primary MCC Functions
An administrator uses the MCC to configure and monitor Meraki wireless
networks. The MCC provides the following primary functions:
• Centralized configuration:
o Configuration of multiple geographically distributed networks.
o Secure access to configuration settings via a web browser.
• Network optimization:
o Performance optimization through RF management.
o Diagnostic tools to enable proper AP placement.
• Centralized monitoring:
o Usage statistics, login history, and alerts.
o Remote troubleshooting and issue diagnosis.
1.2 MCC Versions
There are two versions of the MCC:
• Meraki Enterprise Cloud Controller: The Meraki Enterprise Cloud
Controller enables companies and organizations to setup secure
wireless LANs. Examples include offices, warehouses, retail stores,
educational campuses, and healthcare institutions.
• Meraki Pro Cloud Controller: The Meraki Pro Cloud Controller is for
basic wireless deployments that require Internet-only access. Examples
include fee-based wireless hotspots, coffee shops, and other amenity
networks.
This manual addresses all features supported by the Meraki Enterprise Cloud
Controller and the Meraki Pro Cloud Controller. Some features in the Meraki
Enterprise Cloud Controller are not available in the Meraki Pro Cloud Controller;
these features are designated as “Enterprise Only”.Meraki Cloud Controller Product Manual | 11
1.3 MCC Layout
Figure 1 is a screenshot of the main page of the Meraki Enterprise Cloud
Controller’s administrator interface.
Figure 1 – Meraki Enterprise Cloud Controller Administrator Interface
The 3 tabs in the left navigation panel are as follows:
• Monitor: View information about APs, client devices, and users.
• Configure: Configure the various features of the MCC, such as SSIDs,
authentication, and branding.
• Help: Get access to technical support and the Meraki knowledge base.
1.4 How to Use This Document
The chapters in this manual begin with more basic topics and progress to more
advanced topics. The chapters are roughly grouped as follows:
Chapters 1-2
Overview
These chapters provide an introduction to the Meraki
wireless solution.
Chapters 3-8
Basic Topics
These chapters enable an administrator to get a simple
wireless network up and running. Wireless and
networking fundamentals are reviewed.Meraki Cloud Controller Product Manual | 12
Chapters 9-17
Advanced Topics
These chapters describe sophisticated features that
enable administrators to manage and monitor their Meraki
wireless networks more effectively.
Chapters 18-20
Administrative Topics
These chapters discuss some of features and functions
pertaining to Meraki network administrators.
Chapters 21-25 References and AppendicesMeraki Cloud Controller Product Manual | 13
2 System Overview
This chapter explains how the MCC operates and fits into the overall Meraki
system.
In the Meraki architecture, there is only one type of hardware: access points
(APs). There is no need for specialized hardware controllers or management
appliances. Meraki APs tunnel back to the MCC via a secure Internet connection.
All control, configuration, optimization, and mobility control functions are
centralized in Meraki’s network operations centers (NOCs), which are distributed
geographically around the world. These NOCs provide physical security to the
MCC, as well as high availability through power backups and redundant servers
in hot standby mode. The geographical distribution of the NOCs also improves
the performance of Meraki wireless networks by minimizing the distance that
networks need to travel to contact the MCC.
An administrator can use the MCC to make configuration changes and obtain
reporting information on his networks. For example, the administrator may wish
to change the bandwidth available to guests accessing the network. Once that
change is made through the MCC, all APs automatically receive the new
configuration.
Figure 2 depicts the primary components of a Meraki wireless system.
!"#$%
!#&'(#"")(
!"#$%&''
()*
)+ )+ )+ )+
,'"$-.
/-.$#-$.
Figure 2 – Meraki Wireless System ArchitectureMeraki Cloud Controller Product Manual | 14
2.1 Data Flow
The MCC is “out of band,” which means that client traffic never flows through the
MCC. This architecture is important both for performance as well as security
reasons. It is not possible for an unauthorized person having access to the MCC
to see user data, and the MCC is not a bottleneck for data traffic flows. Thus, the
system operates securely and efficiently.
2.2 Centralized Management and Monitoring
MCC management and monitoring activities are performed remotely through the
Meraki Dashboard, the web-based interface to the MCC. Dashboard can be
accessed using any JavaScript-capable Internet web browser, including Firefox,
Internet Explorer, and Chrome. Unlike other solutions, there is no need to install
and maintain separate management servers or appliances. The administrator
can troubleshoot multiple wireless networks remotely from a single interface.
Through the Meraki Dashboard, administrators have access to standard
troubleshooting tools, such as ping and throughput tests. In addition,
administrators can monitor bandwidth and usage data, either through the Meraki
Dashboard or with existing monitoring infrastructure using Meraki’s XML-based
API. An administrator can build custom monitoring and reporting applications
based on historical statistics without installing additional software or hardware on
site.
2.3 Security
Control traffic flows between the APs and the MCC via a persistent secure
tunnel. All sensitive data, such as configuration details, user names, and
passwords, are encrypted. In addition, traffic between APs in a Meraki network is
encrypted using a per-network Advanced Encryption Standard (AES) key. The
MCC distributes the secret network key over SSL when each AP downloads its
configuration. The in-network encryption is performed with the assistance of
hardware accelerators, and does not cause performance degradation or
increased latency on a per-hop basis. Furthermore, security keys (such as WEP
or WPA2 encryption keys) cannot be retrieved off an access point even if an
attacker has physical possession of the device.
2.4 Network Optimization
The MCC provides round-the-clock optimization of the Meraki wireless network.
Meraki’s Auto RF optimization capability monitors channel utilization and
interference, ensuring the network is operating at peak performance. The MCC
can minimize channel utilization in any given part of the network by assigning
channels to the individual radios and by adjusting the radio transmit powers.
Mesh routes are also constantly updated to ensure maximum client throughput.
2.5 Availability
Multiple geographically distributed Meraki data centers are used to ensure that
networks continue to function even in the event of a catastrophic failure. In case
the MCC is ever unreachable (e.g., because the Internet route to the MCC has Meraki Cloud Controller Product Manual | 15
gone down temporarily), Meraki networks that do not use the MCC for
authentication or splash page hosting continue to operate, providing wireless
connectivity to users using the last configuration it obtained from the MCC.
Configuration changes and firmware upgrades resume when the MCC is
reachable again.
2.6 Mesh Networking
All Meraki APs support mesh networking. A Meraki AP automatically configures
as either a mesh gateway or a mesh repeater. A mesh gateway is an AP that
connects directly to a wired network, such as an enterprise LAN or T1 modem. A
mesh repeater does not require a wired connection. Instead, it identifies the
nearest mesh gateway in its network and spreads wireless connectivity from that
mesh gateway over a wider coverage area. A collection of mesh repeaters and
mesh gateways form a wireless mesh network. The data flowing from a client
may go through several mesh repeaters before reaching a mesh gateway, at
which point the data enters the wired network.
2.7 Over-the-Air Upgrades
New features require no client- or server-side upgrades, but instead are added to
the MCC several times per year with minimal downtime. Meraki also manages
firmware upgrades centrally, freeing the administrator from having to worry about
keeping the APs up-to-date. Firmware upgrades take place over the air in a
secure, fault-tolerant fashion. Network administrators receive an email alert
several weeks in advance of a firmware upgrade and a notice will be posted in
Dashboard notifying them of the exact time that the upgrade will occur. If
necessary the upgrade can be delayed or rescheduled by contacting Meraki
Support.Meraki Cloud Controller Product Manual | 16
3 Getting Started
This chapter describes how to configure a Meraki wireless network for the first
time.
There are 3 simple steps to creating and configuring a Meraki wireless network:
Step 1: Create an account.
To manage Meraki wireless networks through the MCC, an administrator needs
to create an account at http://dashboard.meraki.com. The administrator’s email
address will be used as the login ID.
Step 2: Run the Quick Start application.
After logging into an account, the administrator can use the Quick Start
application to create the first wireless network. The steps include naming the
network, adding APs, and configuring the APs with access policies.
If creating multiple, similar networks for different sites (eg. a chain of retail
stores), an administrator has the option to copy configuration settings from an
existing Dashboard network to save time. In this case, all SSID and networkwide settings (eg. administrators, alerts, etc) will be copied to the new network.
Note: An administrator can create a “live demo” network at this step, which
provides a fully configurable wireless network without any physical APs. With a
simulated network, an administrator can manage a network consisting of virtual
APs and sample usage data to experience the MCC with minimal investment.
Step 3: Test the network.
The administrator can now test the basic settings in the wireless network. The
administrator can then iteratively test and configure additional wireless settings.Meraki Cloud Controller Product Manual | 17
4 Configuring SSIDs
An SSID is a logical wireless network, sometimes referred to as a virtual access
point (VAP). In practice, the SSID is the name of a wireless network that a client
“discovers” when it probes for available wireless networks in the environment.
Multiple SSIDs allow an administrator to use a single physical Meraki network to
support multiple applications with different configuration requirements. For
example, one SSID can allow visitor access to only the Internet without any
encryption, and another SSID can require employees to utilize encryption for
access to company servers.
The MCC supports multiple SSIDs. The Enterprise Cloud Controller supports up
to 16 SSIDs in networks that contain all 802.11n APs, and up to 4 SSIDs in
networks that contain 802.11b/g APs. The Pro Cloud Controller supports up to 2
SSIDs. Each SSID is configurable with its own settings for authentication,
encryption, bandwidth limits, etc.
SSID settings are located under the Configure tab in the MCC. Figure 3 is a
screenshot of the SSID Overview page:
Figure 3 – SSID Overview Page
The following elements can be configured on a per-SSID basis and are described
in subsequent chapters:
• Client IP addressing
• LAN configuration (e.g., VLAN tagging)
• Wireless encryption and authentication (e.g., WPA2-Personal, WPA2-
Enterprise with 802.1x authentication)
• User access control (e.g., per-user and group policies)
• Traffic shaping (eg. application-specific usage policies)
• Wireless features (e.g., band steering)
• Branding (e.g., splash page / captive portal)Meraki Cloud Controller Product Manual | 18
5 Assigning IP Addresses to Wireless Clients
The administrator can assign IP addresses to wireless clients via one of the
following two addressing modes. The addressing mode is configured on a perSSID basis under the Configure tab on the Access Control page.
5.1 NAT Mode
In NAT mode, the Meraki APs run as DHCP servers to assign IP addresses to
wireless clients out of a private 10.x.x.x IP address pool behind a NAT.
NAT mode should be enabled when any of the following is true:
• Wireless clients associated to the SSID require Internet-only access.
• There is no DHCP server on the LAN that can assign IP addresses to
the wireless clients.
• There is a DHCP server on the LAN, but it does not have enough IP
addresses to assign to wireless clients.
• There are multiple DHCP servers in the network assigning IP addresses
from different subnets. This is common when there are heterogeneous
backhaul connections (e.g., some APs in the network obtain Internet
connectivity from a T1, while other APs in the same network obtain
Internet connectivity from a business-class DSL).
The implications of enabling NAT mode are as follows:
• Devices outside of the wireless network cannot initiate a connection to a
wireless client.
• Wireless clients cannot use Layer 2 discovery protocols to find other
devices on either the wired or wireless network.
• Legacy VPN clients (i.e., those that do not support NAT Traversal) may
not be able to establish IPSec tunnels over the wireless network. (One
workaround is to upgrade the VPN client or configure the VPN client to
establish an IPSec tunnel over TCP, e.g. SSL.)
• VLAN tagging wireless traffic is not supported in NAT mode.
5.2 Bridge Mode (Enterprise Only)
In bridge mode, the Meraki APs act as bridges, allowing wireless clients to obtain
their IP addresses from an upstream DHCP server.
Bridge mode should be enabled when any of the following is true:
• Wired and wireless clients in the network need to reach each other
(e.g., a wireless laptop needs to discover the IP address of a network Meraki Cloud Controller Product Manual | 19
printer, or wired desktop needs to connect to a wireless surveillance
camera).
• Layer 2 multicast and broadcast packets (e.g., ARP, Bonjour) need to
propagate in a limited manner to both wired and wireless clients for
device discovery, networking, etc.
• The wireless network needs to support legacy VPN clients (i.e., those
that do not support NAT Traversal).
• Wired and wireless clients need to have IP addresses in the same
subnet for monitoring and/or access control reasons (e.g., a web
gateway in the network allows/denies Internet access based on the
client’s IP address).
• Wireless traffic needs to be VLAN-tagged between the Meraki AP and
the upstream wired infrastructure.
The implications of enabling bridge mode are as follows:
• An administrator cannot enable adult content filtering on the SSID.
Because the adult content filtering feature is DNS-based, bridge mode
disables adult content filtering by using the DNS server(s) advertised by
the network’s DHCP server.
• Multiple DHCP servers are allowed, but they must assign IP addresses
to wireless clients from the same subnet. This enables these IP
addresses to be routed by the LAN to which the Meraki APs are
connected.
5.3 VPNs
Meraki supports most VPN solutions by default. Any IPSec implementation that
has support for NAT Traversal (NAT-T) will work on a Meraki network. Certain
IPSec-based VPN solutions do not work well behind a NAT. If difficulties occur
when using VPNs, an administrator should consider switching VPN clients to use
SSL instead of IPSec, or enabling bridge mode as the wireless client IP
addressing mode. Note that most wireless networking solutions that use NAT
share the same problems with IPSec VPNs.Meraki Cloud Controller Product Manual | 20
6 Configuring the LAN
The following section describes how to configure your LAN to support a Meraki
system. While a Meraki wireless network imposes minimal requirements on the
wired LAN infrastructure, some small changes may be required.
6.1 Firewall Settings
If a firewall is in place, it must allow outgoing connections on particular ports to
particular IP addresses. The most current list of outbound ports and IP
addresses can be found here:
http://tinyurl.com/y79une3
6.2 Assigning IP Addresses to Meraki APs
All Meraki gateway APs (APs with Ethernet connections to the LAN) must be
assigned routable IP addresses. These IP addresses can be configured directly
on each AP (see instructions below), or assigned to the APs via an upstream
DHCP server.
In general, static IP address assignment is recommended for Meraki APs, even
when the APs obtain their IP addresses via DHCP. (The DHCP server should be
configured to assign a static IP address for each MAC address belonging to a
Meraki AP.) Other features of the wireless network, such as 802.1x
authentication, may rely on the property that the APs have static IP addresses.
6.2.1 Configuring a Static IP Address Directly on a Meraki AP
A static IP address can be configured directly on a given AP through the
following steps:
1. Using a client machine (e.g., a laptop), connect to the AP either
wirelessly (by associating to any SSID broadcasted by the AP) or over a
wired connection (by plugging one end of an Ethernet cable into the
client machine, and the other end of the Ethernet cable into the AP’s
Ethernet jack; it may be necessary to unplug the AP from its existing
Ethernet connection in order to connect the client machine).
2. Using a web browser on the client machine, access the AP’s built-in
web server by browsing to http://my.meraki.com.
3. Click on the “Static IP Configuration” tab. You will be prompted to login.
The default username is “admin” and the default password is the AP’s
serial number, with hyphens included.
4. Configure the static IP address, net mask, gateway IP address, and
DNS servers that this AP will use on its wired connection to the Internet.
5. If necessary, reconnect the AP to its Ethernet connection to the LAN.Meraki Cloud Controller Product Manual | 21
6.2.2 Configuring a Static IP Address for a Meraki AP via DHCP Reservations
Instead of associating to each Meraki AP and configuring a static IP address on
each AP, an administrator can configure static IP addresses to assign to Meraki
APs on the upstream DHCP server. Through “DHCP reservations”, IP addresses
are “reserved” for the MAC addresses of the Meraki APs. Please consult the
documentation for the DHCP server to configure DHCP reservations.Meraki Cloud Controller Product Manual | 22
7 Wireless Encryption and Authentication
The MCC supports a wide variety of encryption and authentication methods—
from simple, open access to WPA2-Enterprise with 802.1x authentication. This
chapter explains the different encryption and authentication modes available in
the MCC.
Encryption and authentication are configured in the MCC under the Configure tab
on the Access Control page. Generally speaking, the encryption method is
configured under “Association requirements”, while the authentication method is
configured under “Network sign-on method”. To associate to a wireless network,
a client must have the correct encryption keys (association requirements). Once
associated the wireless client may need to enter information (network sign-on
method) before accessing resources on the wireless network.
The combinations of encryption and authentication methods that are supported
are as follows:
Network sign-on method
Association
requirements
Direct
access
Clickthrough
splash page
Sign-on
splash page
Billing (paid
access)
Open (no
encryption)
ü ü ü ü
MAC-based
access control
(no encryption)
ü ü
WEP (shared
network key) ü ü ü
WPA2-PSK
(shared
network key)
ü ü ü
WPA2-
Enterprise with
802.1x
authentication
ü ü
7.1 Association Requirements
In the “Association requirements” of the Access Control page, an administrator
configures the parameters that need to be satisfied at wireless association time
in order for a device to connect successfully to a wireless network.Meraki Cloud Controller Product Manual | 23
7.1.1 Open
Open mode allows any device to connect to the wireless network. The major
advantage of open mode is its simplicity: Any client can connect easily and
without complex configuration. Open mode is recommended when there are
guests who need to get onto the network, or more generally, when ease of
connectivity is paramount and access control is not required.
In most environments, the administrator should ensure that wireless clients
associated on an open network cannot access LAN resources, such as file
shares. Administrators can control access using VLAN tagging, the LAN isolation
feature, or custom firewall rules (see Section 10.6.2, “Custom Firewall Rules
(Enterprise Only)”).
7.1.2 MAC-Based Access Control (Enterprise Only)
MAC-based access control admits or denies wireless association based on the
connecting device’s MAC address. When a wireless device attempts to
associate, the Meraki AP queries a customer-premise RADIUS server with an
Access-Request message. The RADIUS server can admit or deny the device
based on the MAC address, responding to the Meraki AP with either an AccessAccept message or an Access-Reject message, respectively.
This authentication method requires no client-side configuration. However, it
suffers from a poor user experience. Wireless clients that are denied wireless
association simply cannot connect to the SSID, and they do not receive any
explicit notification about why they cannot connect.
If this authentication method is selected, at least 1 RADIUS server must be
configured on the Access Control page in the “RADIUS for MAC-based access
control” section. This section includes a test tool that simulates the wireless
device connecting to every Meraki AP in the network. (See Section 7.3,
“Configuring an Authentication Server”, for more information.)
7.1.3 Pre-Shared Keys (WEP, WPA/WPA2-Personal)
A pre-shared key (PSK) allows anyone who has the key to use the wireless
network.
Wired Equivalent Privacy (WEP) is the original 802.11 pre-shared key
mechanism, utilizing RC4 encryption. WEP is vulnerable to being hacked; the
encryption key can be derived by an eavesdropper who sees enough traffic. Only
use WEP if it is not possible to utilize more advanced security—for instance,
when there are legacy client devices in the network that do not support
WPA/WPA2.
WPA- and WPA2-Personal (Wi-Fi Protected Access) use stronger encryption
than WEP. (WPA-Personal uses TKIP with RC4 encryption, while WPA2-
Personal uses AES encryption.) WPA2-Personal is preferred.
Though it requires some client-side configuration, a PSK is relatively easy to
configure. It can be a good choice when there is a small number of users or
when clients do not support more sophisticated authentication mechanisms, such
as WPA2-Enterprise. A deployment based on a PSK does not scale well, Meraki Cloud Controller Product Manual | 24
however. With a large number of users, it becomes more difficult to change the
PSK, an operation that should be performed periodically to ensure that the PSK
has not been shared with unwanted users.
7.1.4 WPA2-Enterprise with 802.1x Authentication (Enterprise Only)
802.1x is an IEEE standard framework for encrypting and authenticating a user
who is trying to associate to a wired or wireless network. WPA-Enterprise uses
TKIP with RC4 encryption, while WPA2-Enterprise adds AES encryption.
802.1x can be transparent to wireless users. For example, Windows machines
can be configured for single sign-on, such that the same credentials that a user
enters to log into his machine are passed automatically to the authentication
server for wireless authentication. The user is never prompted to re-enter his
credentials.
802.1x utilizes the Extensible Authentication Protocol (EAP) to establish a secure
tunnel between participants involved in an authentication exchange. The MCC
supports multiple EAP types, depending on whether the network is using a
Meraki-hosted authentication server or a customer-hosted authentication server.
(See Section 7.3, “Configuring an Authentication Server”, for more information.)
The following table shows the EAP types supported by the MCC:
EAP Mode Customer RADIUS Meraki RADIUS
PEAPv0/EAP-MSCHAPv2 ü ü
EAP-TTLS/MSCHAPv2 ü ü
EAP-TLS ü
PEAPv1/EAP-GTC ü
WPA2-Enterprise with 802.1x authentication is typically used with a customerpremise RADIUS server. The RADIUS server must be configured to allow
authentication requests from the IP addresses of the Meraki APs. This
configuration is necessary to successfully complete the EAP exchange and is
one more reason to configure static IP addresses on the Meraki APs.
Note: 802.1x is typically only performed once a user’s credentials have been
entered into the machine. If you would like to be able to authenticate a machine
before the user signs in (also known as “machine authentication”), please see the
Meraki Knowledge Base online.
7.2 Network Sign-On Methods
The network sign-on method is the mechanism by which a wireless client gains
access to network resources. It occurs after a wireless client has associated to
an SSID.Meraki Cloud Controller Product Manual | 25
7.2.1 Direct Access
With direct access, a wireless client is granted network access as soon as he
associates to the SSID. No splash page is presented to the wireless client.
7.2.2 Click-Through Splash Page
When configured, a click-through splash page displays a fully customizable
HTML page to the wireless client the first time the client makes an HTTP request.
An administrator may use this splash page to display an acceptable use policy or
network announcements. The client is only granted network access after clicking
the “Continue” button on the splash page.
The click-through splash page is hosted by the MCC. As such, the network must
have connectivity to the MCC in order to display the splash page. If the MCC is
unreachable for some reason, the administrator can configure whether new
wireless users should be admitted to the wireless network without seeing the
splash page. This setting is under the Configure tab on the Access Control page
in the “Disconnection behavior” section.
While the click-through splash page requires no client-side configuration, it
should only be enabled on an SSID whose clients are all capable of displaying
the splash page. When there are clients that are not browser-capable (e.g.,
wireless barcode scanners), the splash page should be disabled on the SSID. An
administrator can configure whether new wireless clients are able to obtain
network access when the click-through splash page cannot be displayed (i.e.,
when the MCC becomes temporarily unavailable).
See Chapter 17, “Branding”, for additional information on customizing the clickthrough splash page, including the ability to configure the splash page interval.
7.2.3 Sign-On Splash Page
A sign-on splash page provides the functionality of the click-through splash page,
but adds the ability to prompt the wireless client for a username and password.
The client is only granted network access after he enters a username and
password that are validated against a backend authentication server (either a
Meraki-hosted authentication server or a customer-hosted RADIUS, Active
Directory or LDAP server). (See Section 7.3, “Configuring an Authentication
Server”, for more information.)
The sign-on splash page may be hosted by the MCC or on an external web
server (see Section 17.1, “Splash Page”). An administrator can configure
whether new wireless clients are able to obtain network access when the sign-on
splash page cannot be displayed or when the username/password credentials
cannot be validated (i.e., the authentication server is unreachable). This setting
is under the Configure tab on the Access Control page in the “Disconnection
behavior” section.
Sign-on splash page is an authentication option that requires no client-side
configuration. In addition, it is secured by SSL (HTTPS), so that usernames and
passwords are sent to the MCC confidentially. However, when enabled, it
requires clients to remember usernames and passwords, which they will need to Meraki Cloud Controller Product Manual | 26
enter periodically. As with the click-through splash page, clients that are
incapable of displaying the splash page need to be considered.
See Section 17.1, “Branding”, for additional information on customizing the
splash pages or using an externally.
7.2.4 Billing
When configuring an SSID as a wireless hotspot, an administrator can utilize
Meraki’s integrated billing features to grant network access only to paying users.
For additional information on integrated billing, see Chapter 18, “Billing”.
7.2.5 Hosting Your Own Splash Page
Meraki also supports the ability for you to host splash pages on your own web
server. This capability is referred to as “EXCAP” for externally hosted captive
portals. For additional information, please search for EXCAP in the Meraki
Knowledge Base.
7.3 Configuring an Authentication Server
There are 5 different applications of authentication servers that are supported by
the MCC:
1. Meraki-hosted authentication server
2. Externally hosted RADIUS server for MAC-based access control and/or
WPA2-Enterprise with 802.1x authentication
3. Externally hosted RADIUS server for sign-on splash page authentication
4. Externally hosted Active Directory server for sign-on splash page
authentication
5. Externally hosted LDAP server for sign-on splash page authentication
The authentication server type is configured on a per-SSID basis under the
Configure tab on the Access Control page. For instance, an administrator could
use the Meraki-hosted authentication server to manage guest user accounts for
the guest SSID, while using a customer-hosted RADIUS or Active Directory
server to authenticate employees for the employee SSID.
7.3.1 Meraki-Hosted Authentication Server
The Meraki-hosted authentication server is configured through the MCC. For
each user account, an administrator can configure the user’s name, the e-mail
address and password that the user will use to log in, and optionally, an
expiration time (to create a user account that self-expires after some period of
time).
The option to select a Meraki-hosted authentication server appears when any of
the following is configured:
• Sign-on splash pageMeraki Cloud Controller Product Manual | 27
• WPA2-Enterprise with 802.1x authentication
On the Access Control page, an administrator can create, edit, and remove user
accounts. An expiration time can also be configured on a user account, so that
the account becomes invalid after a certain amount of time elapses. (This
feature is useful for guest accounts.) Finally, the Access Control page provides
an option for “self-registration”, which allows users to create their own accounts.
However, administrators still need to manually add those accounts to the list of
users allowed on the network before the account has access.
User accounts configured in the Meraki-hosted authentication server are global
to the networks in the organization. So, a password change to a user account in
one network applies to other networks in which the user account may be used.
(For more information, see Section 19.1, “Organizations”.)
Meraki APs must be able to reach the MCC in order to use the Meraki-hosted
authentication server. If the MCC becomes temporarily unavailable, existing
wireless clients (already authenticated) remain connected, but new wireless
clients are unable to authenticate to access the wireless network. An
administrator can configure whether new wireless clients are able to obtain
network access when the MCC is unavailable under the Configure tab on the
Access Control page in the “Disconnection behavior” section.
7.3.2 Externally Hosted RADIUS Server
Many organizations have an existing user authentication or directory server that
they would like to use to control access to the wireless LAN. Common server
types include LDAP and Active Directory. Any type of authentication server with
a RADIUS interface can be integrated with a Meraki wireless network. The MCC
allows an administrator to configure multiple RADIUS servers for failover.
When an externally hosted RADIUS server is used with either MAC-based
access control or WPA2-Enterprise with 802.1x authentication, the Meraki APs
must be able to reach the RADIUS server. The MCC offers a test tool that
enables an administrator to verify connectivity of all of the Meraki APs to the
RADIUS server, and to check a particular set of user credentials against the
RADIUS server. The test tool appears under the Configure tab on the Access
Control page.
When an externally hosted RADIUS server is used with sign-on splash page, an
administrator can configure the Meraki wireless network to use an externally
hosted RADIUS server for user authentication. The MCC acts as an
intermediary in this configuration to provide (1) a consistent end user experience
(e.g., the wireless user is not presented with the splash page again if he reassociates to another AP) and (2) RADIUS accounting features (see “Appendix
C: RADIUS ”).
If the sign-on splash page is hosted by the MCC, the conversation is a
straightforward RADIUS exchange between the MCC and the external RADIUS
server.Meraki Cloud Controller Product Manual | 28
If the sign-on splash page is itself externally hosted, the conversation involves
exchanges between the splash page server, the MCC, and the RADIUS server.
Specifically:
1. The wireless client associates with the Meraki wireless network.
2. The user makes an initial request for a URL in his web browser.
3. The Meraki AP redirects the user to a URL on the splash page server.
(The administrator configures this URL in the MCC, under the Configure
tab on the Splash Page page.) When the Meraki AP redirects the user
to the splash page server, it includes the following HTTP parameters in
the HTTP redirect:
• continue_url: The URL that the user originally requested.
This parameter may be interpreted by the splash page server
to decide where the user should be redirected if he
authenticates successfully.
• login_url: The URL at the MCC to which the splash page
server should send an HTTP POST with collected user
credentials (see Step 4). This parameter is escaped to include
the continue_url embedded within it, and should not be
interpreted by the splash page server.
• ap_mac: MAC address of the Meraki AP to which the user is
associated.
• ap_name: Name (if configured) of the Meraki AP to which the
user is associated.
• ap_tags: Tags (if configured) applied to the Meraki AP to
which the user is associated.
• mauth: An opaque string used by the MCC for authentication
and security.
4. The external splash page server presents the user with a web form that
captures the user’s credentials and causes the user to send an HTTP
POST to the MCC, using the URL specified in login_url (see Step 3).
In this HTTP POST, the server includes the following parameters:
• username: The username that the wireless user provided to
the splash page server.
• password: The password that the wireless user provided to
the splash page server.
• success_url (optional): The URL to which the wireless user is
redirected if he passes authentication. The splash page server
can use this parameter to override the continue_url that the
user originally requested.Meraki Cloud Controller Product Manual | 29
5. The MCC receives the HTTP POST from the splash page server, and in
turn, sends a RADIUS Access-Request to the external RADIUS server
with the username and password.
6. The RADIUS server processes the RADIUS Access-Request from the
MCC, and responds to the MCC with a RADIUS Access-Accept or
Access-Reject. The RADIUS server may optionally send RADIUS
attributes to the MCC to enforce over the wireless user. (For a list of
supported RADIUS attributes, see Section 27.1, “Authentication
Attributes”.)
7. The MCC processes the response from the RADIUS server and
redirects the wireless user accordingly.
a. If the MCC receives an Access-Accept message from the
RADIUS server, the user has successfully authenticated. The
MCC redirects the user to the original URL he requested
(continue_url), or the URL specified by the splash page
server in the (optional) success_url (see Step 4).
b. If the MCC receives an Access-Reject message from the
RADIUS server, the user has failed authentication and is
redirected back to the splash page server’s URL (in Step 3).
Because the MCC needs to contact an external RADIUS server, the MCC must
be able to reach the RADIUS server. This requirement may necessitate firewall
changes that allow inbound connections to the RADIUS server. If the RADIUS
server becomes temporarily unavailable, existing wireless clients (already
authenticated) remain connected, but new wireless clients are unable to
authenticate to access the network.
7.3.3 Externally Hosted Active Directory Server
Meraki wireless networks can also integrate natively with Active Directory without
requiring RADIUS when sign-on splash page is used. If your network does not
require the additional configuration options provided by RADIUS integration,
there are certain advantages if the APs can communicate directly with Active
Directory without a RADIUS server acting as an intermediary. Native AD
integration eliminates the need to configure Microsoft NPS (or any other RADIUS
server). Also, when using RADIUS integration with multi-domain forests, for
example a school that has one domain for faculty and another for students that is
using sign-on splash authentication, users must remember to include their
domain with their username, which can easily be forgotten. Or alternatively, a
complex hierarchy of RADIUS proxy servers or custom scripts might be required
to make the log in process easier for the user.
In order to configure native Active Directory integration, sign-on splash must be
configured and Use My Active Directory Server selected from the
Authentication Server drop-down menu under Configure->Access control. (See
Figure 4)Meraki Cloud Controller Product Manual | 30
Figure 4 - Configuring Sign-on Splash with Native Active Directory
Once Active Directory server option has been selected, the internal IP addresses
of any domain controllers that will be used for authentication should be entered,
along with the credentials of an Active Directory administrator that has read rights
to all domain controllers that will used. (See Figure 5)
It is highly recommended that a separate account is created for the purpose of
providing Active Directory authentication. Users should take the following steps to
secure the account:
1. Create a Global Security Group in your domain (or forest)
2. Create a user account and add it to the new group.
3. Update the user account so that the new Security group is the
user’s primary group.
4. Remove the Domain Users group from the account.
This will isolate the account from acting like a normal domain user.Meraki Cloud Controller Product Manual | 31
Figure 5 - Dashboard Active Directory Server Configuration
In addition, the Global Catalog (port 3269) must be enabled for each domain
controller.
7.3.4 Externally Hosted LDAP Server
Similarly to Active Directory, Meraki wireless networks can natively integrate with
LDAP authentication servers when using sign-on splash page. The manner with
which this authentication is configured is very similar to that described for Active
Directory in Section 7.3.3. In order to configure native LDAP integration, sign-on
splash must be configured and Use My LDAP Server selected from the
Authentication Server drop-down menu under Configure->Access control. (See
Figure 6)
Figure 6 - Configuring Sign-on Splash with Native LDAP Authentication
Once the LDAP server option has been selected, the internal IP addresses of
any LDAP servers that will be used for authentication should be entered, along
with the appropriate port number and the credentials of an LDAP administrator
with administrative rights to all domains that will be used. The common name Meraki Cloud Controller Product Manual | 32
(cn) and domain components (dn) should be entered in the format shown in
Figure 7.
Figure 7 - Dashboard Native LDAP Authentication Server ConfigurationMeraki Cloud Controller Product Manual | 33
8 Monitoring
This chapter describes the extensive monitoring features under the Monitor tab in
the MCC.
8.1 Overview Page
The Overview page shows a summary of network usage and network status. An
administrator can see how many users have associated to the network in the last
day/week, how much data those users transferred in that timeframe, and how
bandwidth usage has fluctuated over the last week (a network usage graph).
The aerial map shows the latest information about the APs in the network. The
options in the upper-right corner enable an administrator to view the APs on top
of a graphical map, a satellite image, or a hybrid view. In the upper-left corner,
the arrow controls enable the administrator to pan. Panning can also be achieved
by clicking-and-dragging the map. Below the arrow controls, a scale control
enables the administrator to adjust the zoom level. The zoom level can also be
controlled with the magnifying glass next to the arrow controls, or by doubleclicking on a particular region to zoom into.
On the map, the colored dots represent APs. The status of the AP is indicated
by its color:
• Green: The AP is not reporting any problems.
• Yellow: The AP is up, but experienced a problem recently. In some
cases, the administrator may be able to clear this alert on the Access
Points page.
• Red: The AP is currently down.
• Gray: The AP has been down for more than 7 days.
An administrator can click on an AP to get its name, its mesh mode (mesh
gateway or mesh repeater), the number of users that have associated to it in the
last 24 hours (also indicated by the number inside the AP), and the amount of
data that it has transferred in the last 24 hours. Gray lines between APs
represent mesh links. Mousing over a mesh repeater highlights a line that shows
the path that the AP is taking through the mesh network to reach a mesh
gateway (and the LAN).
The “Options” box in the upper right part of the map lets users select what the
numbers in the APs represent (e.g., number of clients connected or mesh hops
to gateway), as well as preferences about how to display mesh links.
The “Current clients” link under the network name in the upper left corner, when
clicked, will open up a table showing a summary of the distribution of current
clients at that moment across the various SSIDs and channels in the network.
Clicking on the link directly above the network name in the upper left corner or
selecting the All-network Overview option under the Network drop-down selector Meraki Cloud Controller Product Manual | 34
at the top of the screen will take the administrator to the All Network Overview
page.
8.2 All-Network Overview Page
The all-network overview page shows a summary of all of the networks in a
particular organization. The usage graph at the top summarizes cumulative
usage across all networks, and the map shows network locations with markers
that are color-coded to the networks listed in the network list to the left of the
usage graph. If the user mouses over a network in the list, the network marker
on the map will be highlighted along with the usage for that particular network in
the usage graph. Clicking on a particular network marker on the map or network
name in the list will allow the user to “drill down” to the Overview page for that
particular network. Figure 8 is an example of an all-network Overview page.
Figure 8 – All-Network Overview Page
Configuring Sign-on Splash with Native Active Directory
8.3 Maps Page (Enterprise Only)
The Maps page enables an administrator to upload custom maps and floorplans
for better network visualization. For instance, an administrator could upload
multiple images to visualize AP placement on multiple floors of an office building,
or different branch offices in the organization. Figure 9 is an example of an AP
placement on a floorplan.Meraki Cloud Controller Product Manual | 35
Figure 9 – Maps Page
An administrator can add a map or floorplan image (GIF, PNG, JPG, or PDF
format up to 10 MB per image) under the Configure tab on the Maps &
Floorplans page. This is also where an administrator would modify or delete an
existing image. After uploading the image, the administrator can return to the
Maps page to place APs on the image. The “Place APs” button in the upper-right
corner produces a checklist of APs that the administrator can add to the image.
The administrator then places the APs by dragging-and-dropping the AP icons
onto the image.
8.4 Access Points Page
The Access Points page identifies the APs on the network and shows their
status, activity, and usage. The top-level page provides a list of APs in the
network. The Access Points page has the following features:
• Can be sorted by clicking on a column header.
• Columns can be added, removed, or reordered in the list by clicking on
“Display Options”.
• Search by AP name, serial number or MAC address
Figure 10 is a screenshot that shows a top-level Access Points page.
Figure 10 – Access Points PageMeraki Cloud Controller Product Manual | 36
8.5 Access Point Details Page
To get additional information about an individual AP, an administrator can click
on the AP in the list to bring up a page that contains the following:
• Identifying information (e.g., MAC address, serial number, status)
• Performance data (e.g., connectivity, throughput, latency, mesh
neighbors), with zoom and pan features across various time ranges
• Live tools for remote troubleshooting
There are a variety of real-time tools that can be used for
troubleshooting and debugging wireless issues remotely.
Administrators can see a list of current clients associated to a particular
AP and ping associated clients as well as the AP itself, run a throughput
test, ping a particular MAC address and run an interference scan of the
local RF environment (Caution: live interference scan will disconnect
currently associated clients). Interference scan will also be discussed
as part of the spectrum analysis capabilities in Section 16.5).
• Link to the event log for this specific AP (see Section 8.7, “Event Log
Page (Enterprise Only)”)
• Lists of strong and weak mesh neighbors (adjacent APs in the mesh) in
the Neighbors tables
Figure 11 shows a screenshot of the AP details page.
Figure 11 – AP Details Page
Throughput statistics for mesh gateways are throughput numbers to meraki.com.
Gateway speeds are often limited by the Internet uplink speed. Administrators
should use these statistics to troubleshoot problems either within the LAN or with
the Internet service provider.Meraki Cloud Controller Product Manual | 37
Throughput statistics for mesh repeaters are throughput numbers within the
mesh network, not through the Internet uplink. As such, it is possible to see 6
Mbps throughput within the mesh network, but 1.5 Mbps throughput through the
DSL uplink. Administrators should use these statistics to troubleshoot problems
within the wireless network, such as poor mesh connections or channel
interference.
8.5.1 AP Tagging
A convenient way to make it easier to find, sort and filter APs in a large network
with hundreds or thousands of APs is using AP tagging. Alphanumeric tags can
be assigned to access points to create groups of APs by location (e.g.
Building_1, Floor_4, West_Campus, etc.) or by other criteria. The Access Points
page (See Section 8.4) is searchable by tag to make filtering for specific groups
of APs fast and easy. Figure 12 shows a screenshot of an AP with the tag
“Lobby” applied.
Figure 12 - Access Point with Tag Applied
Tags can be added to APs either individually or in groups. Figure 13 - Editing AP
Configuration to Add Tag
Figure 14 and Figure 14 show how to add a tag to an individual AP by editing its
configuration. Meraki Cloud Controller Product Manual | 38
Figure 13 - Editing AP Configuration to Add Tag
Figure 14 - Adding a Tag to an Individual AP
Figure 15 illustrates how to add a tag to a group of APs from the Access Points
page.Meraki Cloud Controller Product Manual | 39
Figure 15 - Adding Tags to Many APs
8.6 Clients Page
The Clients page shows how the network is being used and by which client
devices. Figure 16 is a screenshot of the Clients page:
Figure 16 – Clients Page
8.6.1 Clients Overview Page Features
The Clients page has the following features:
• Displays clients that have associated on any SSID advertised by the
wireless network, or only those clients that have associated on a given
SSID. This can be selected using the SSID drop down menu at the top
of the screen.Meraki Cloud Controller Product Manual | 40
• Search for clients by MAC, OS, device type or NetBIOS/Bonjour name.
• Zoom control, which enables the administrator to see only those clients
that have associated within the specified time span.
• The administrator can also click on the “blocked list” to view only those
clients on the MAC blacklist (see Section 10.3, “MAC Blacklist”).
• Like the Access Points page, the Clients page has a list that can be
customized (adding, removing, and reordering columns) and resorted
(by clicking on a column header).
• The “Description” column shows the device name, if it can be
determined (i.e., through NetBIOS); otherwise, it simply displays the
device’s MAC address.
• The “Operating system” column shows the operating system of the
device, which is determined through OS fingerprinting (the unique
pattern by which a particular operating system requests an IP address
via DHCP).
• An administrator can mouse over a row in the device list to see a new
line appear in the usage graph, which depicts the fraction of total
bandwidth that the highlighted device used.
8.6.2 Traffic Analysis (Enterprise Only)
Meraki Enterprise networks offer powerful application visibility and control tools.
Packet inspection engines running custom parsers in each AP provide this
information by fingerprinting and identifying applications and application groups.
Traffic Shaper (to be discussed in Section 12) then provides the ability to create
custom per-user shaping policies based on this application-level visibility. Since
Meraki’s parsers are designed to run at line rate, there is no performance
decrease when enabling Traffic Analysis or Traffic Shaping
Next to the usage graph at the top of the screen is a pie chart that can display a
breakdown of the traffic currently displayed on the page by application, HTTP
content type, port number or custom criteria. The gray arrows flip from one chart
to the next. Custom pie charts can be configured on the Network-wide Settings
page under the Configure tab.
Clicking on either the pie chart itself or the “More” link underneath the pie chart
will open up the Traffic Analysis Details page, showing a detailed list of the
specific applications and content types that make up the data shown in the pie
chart. The applications have been assigned to groups to make classifying
applications and creating shaping policies simpler. An up to date list of which
applications are included in each group can be found here:
http://bit.ly/cUFXnv
The percent of total usage is shown by application as well as by application
group. Figure 17 shows a screen shot of the Clients page with the Traffic
Analysis details page expanded.Meraki Cloud Controller Product Manual | 41
Figure 17 - Traffic Analysis Details Page
Clicking on a particular application or content type within the Traffic Analysis
Details page will take you to the Rule Details page, where you will find detailed
information about that particular application or content type rule, including which
users are contributing to usage of this type and details such as which application
group that item belongs to, port number, description of the application or rule and
links to additional information. Figure 18 shows the Rule Details page for Netflix,
a video streaming site.
Figure 18 - Rule Details Page
8.6.3 Client Details Page
An administrator can click on a particular device in the device list to obtain
additional information about the wireless client. Figure 19 is a screenshot of the
Client details page for a specific device.Meraki Cloud Controller Product Manual | 42
Figure 19 – Information about a Specific Client
This page provides detailed information about the client device and user as well
as their network usage. Features include:
• Client configuration details
At the top of the page administrators can see detailed information about
this particular client, including MAC address and IP address, device
type and manufacturer, operating system, Bonjour/DHCP/NetBIOS
hostname, wireless card capabilities, most recent SSID, AP and time on
the network as well as Active Directory username for most recent user.
• Client location
The approximate location of the wireless client is indicated on a Google
map or a custom floor plan. More details about Client Location Services
can be found in section 8.5.4.
• Traffic analysis
Pie charts similar to those on the Client Overview page show details
about this particular client’s usage of the network.
• Dynamic access control
On this page, an administrator can create a dynamic access control
policy to either block a wireless device or bypass the wireless device
from seeing a splash page. (To configure these settings, an
administrator clicks the “Edit” button to change the “Network access”
field to either “normal”, “blocked”, or “whitelisted”.) Optionally, the
administrator can configure a message that appears on the block page
for a blacklisted user. The user can also be manually assigned a group
policy which can be configured per SSID.
• Event logMeraki Cloud Controller Product Manual | 43
This page also provides a link to the event log for this specific client
(see Section 8.7, “Event Log Page (Enterprise Only)”).
• Live tools
Similar to the live tools on the AP details page, an administrator can
locate a client, ping a client or even see a real-time packet counter
showing the user’s activity from this page.
8.6.4 Client Location Services
In the upper-right corner of the Client details page is a map where the
approximate location of the client is indicated with a blue dot. Figure 20 below is
a screenshot of the client location map.
Figure 20 - Client Location Map on Client Details Page
Client location is determined using advanced triangulation techniques that
employ calibrated weighted averages and AP selection algorithms to ensure
accuracy. Data from up to the last 24 hours will be used to calculate client
location. In order to view a client’s location on a custom floor plan, all of the AP’s
that “see” the client that were used to calculate location must be located on the
same floor plan. Otherwise, the client’s location can still be viewed on a Google
map. To update the client location data from the access point the client is
currently associated to, click the “Locate Client’ button under the Live Tools
section of this page.
To ensure location accuracy, at least three access points are required. In
addition, the access points should not be deployed such that all of the access
points are in a linear pattern (see Figure 21 below). In this situation, client
location will always appear that they are in line with the access points. Meraki Cloud Controller Product Manual | 44
Figure 21 - Poor AP Deployment for Accurate Location
For best accuracy, the access points should be deployed in a non-linear pattern,
or scatter pattern (see Figure 22 below).
Figure 22 - Good AP Deployment for Accurate Location
8.7 Event Log Page (Enterprise Only)
The Event Log page provides detailed logging about various client activities,
including the following:
• Associations/disassociations
• Authentication attempts and outcomes
• DHCP activity
• Initial traffic
An administrator can use these logs to troubleshoot a client that may be
experiencing issues on the wireless network. Figure 23 is a screenshot of an
Event Log page.Meraki Cloud Controller Product Manual | 45
Figure 23 – Event Log Page
The Event Log page allows an administrator to adjust the time interval over which
the event log reports. In addition, the Event Log page supports the search tool.
(See Section 8.13, “Search Tool”.) The administrator can view the event log for a
given AP or a given client. Both filters can be applied through the search tool, or
by accessing the event log links through the Access Points page and Clients
page, respectively.
8.8 Rogue APs Page (Enterprise Only)
The Rogue APs page lists nearby APs that are detected by the Meraki APs
during periodic scans. (See Chapter 14, “Rogue AP Detection (Enterprise
Only)”.)
8.9 WIPS Page (Enterprise Only)
The Wireless Intrusion Prevention System (WIPS) page classifies and maps
intrusions including AP Spoofs, Rogue SSIDs, Interfering SSIDs, Malicious
Broadcasts, and Packet Floods. The Rogue Containment feature can be used to
contain Rogue SSIDs by sending deauthentication frames to Rogue AP clients.
(See Chapter 15, “Wireless Intrusion Preventions SystemRogue AP Detection
(Enterprise Only)”.)
8.10 Summary Report Page (Enterprise Only)
An administrator can obtain network analytics from the Summary Report page
under the Monitor tab. This report provides information about the usage and
uptime of the Meraki wireless network, and can be e-mailed on a configurable
schedule for constant visibility. Administrators can also add their organization’s
logo to the report.
8.11 PCI Reports Page (Enterprise Only)
An administrator can check network settings against PCI DSS v2.0 WLAN
requirements using the PCI Report page under the Monitor tab. The results will
indicate a pass/fail for each WLAN PCI requirement, with details on why. In the
case of a failure, guidance is provided on what network settings need to be
changed to get into compliance. The report can be printed and filed away or
given to a security auditor.Meraki Cloud Controller Product Manual | 46
8.12 Live Updates (Enterprise Only)
The Maps, Access Points, and Clients pages under the Monitor tab support live
updates, which provide real-time information about network status and client
usage. An administrator can click on the “Live updates” link on a page on which
the feature is offered. When live updates are enabled, the MCC will fetch up-todate information for that page from the wireless network approximately every 30
seconds, for as long as the administrator stays on the page. (The live updates
are disabled as soon as the administrator browses to a different page.) Live
updates are an effective way to troubleshoot and closely monitor AP status (e.g.,
when an AP loses network connectivity) and client usage (e.g., to see which
clients are currently associated to the wireless network and how much bandwidth
they are using).
8.13 Search Tool
The Maps, Access Points, Clients, Event Log, and Rogue APs pages under the
Monitor tab all have search capabilities, which enable an administrator to find or
filter a list of APs or wireless devices with tremendous flexibility and ease. Any
string can be entered; the MCC will attempt to match on that string across all
available fields. For example, an administrator can search/filter by device
description, Ethernet address, or IP address. In addition, searches can be
bookmarked for future use.
The search tool also supports a number of keywords, which can be used to
search/filter by specific characteristics. For example, an administrator can
search/filter on a combination of strings, usage data, or mesh hop count. All of
the available keyword options are enumerated in the “Help” link next to the
search tool.
The search tool operates instantaneously over the data in the AP or device list. It
is an effective way to manage and monitor a large number of APs and/or a large
number of wireless clients.
8.14 Email Alerts
Administrators can subscribe to receive email alerts from the MCC about various
notable network events. Events that can trigger alerts include AP or network
outages, detection of new rogue APs or configuration changes being saved in
Dashboard by administrators. The time sensitivity of these alerts are
configurable from five minutes to one hour, which can help to reduce false
positives.
Alerts are configured under the Configure tab on the Network-Wide Settings
page.
8.15 Export XML Data
List data on the Access Points and Clients pages can be exported in XML format
for further processing and analysis outside of the MCC. An administrator can Meraki Cloud Controller Product Manual | 47
click on the “Download as XML” link to retrieve the data. Most spreadsheet
programs, such as Microsoft Excel, can open an XML file.
8.16 Logins Page
While the Clients page shows a list of devices, the Logins page shows a list of
users. A user can login with multiple devices.
The Logins page shows users who have logged in with one of the following
authentication methods:
• Sign-on splash pages with a Meraki-hosted authentication server
• Billing logins
Like the Clients page, the Logins page allows an administrator to filter users by
the SSID on which they associated, display different columns of information, sort
by different columns, and adjust the zoom level by timeframe.
8.17 Account Activity Page
The Account Activity page provides transaction information for networks that use
Meraki’s integrated billing. Payments received from an end user appear as a
credit, while payments made from Meraki to the network administrator appear as
a debit. Transactions also show the timestamp, the user’s login name, the MAC
address of the device from which the user made a payment, and the price plan
the user purchased. Administrators may view the transaction history for any
given month. (For more information, see Chapter 18, “Billing”.)Meraki Cloud Controller Product Manual | 48
9 VLAN Tagging (Enterprise Only)
Virtual Local Area Networks (VLANs) allow a single physical Ethernet network to
appear to be multiple logical networks. There are a couple of reasons to use
VLANs, including:
• Enhance network security by preventing wireless devices from
accessing LAN resources.
• Increase performance by limiting broadcast domains.
Note that VLAN tagging typically requires a non-trivial amount of LAN
configuration on the upstream switches, routers, and firewalls. If the primary
motivation for VLAN tagging is the first use case, an administrator should
consider using Meraki’s LAN isolation or Custom Firewall rules features (see
Section 10.6, “Firewall Rules for Wireless Users”).
A typical VLAN configuration might break up a physical LAN by department (e.g.,
Engineering, HR, Marketing) or by user class (Employee, Guest). Figure 24
shows an example configuration.
Figure 24 – Example Network with VLANs
VLANs can be port-based (assigning a physical port on a device to a VLAN) or
tag-based (tagging particular kinds of traffic with a VLAN tag, as defined by
802.1q). Meraki APs use tag-based VLANs (i.e., VLAN tagging) to identify
wireless traffic to an upstream switch/router. When the switch/router sees VLANtagged traffic from a Meraki AP, it can apply different policies to that traffic,
including access control (e.g., send traffic straight to the firewall for Internet-only
access) or QoS (e.g., prioritize traffic on the VOIP SSID). Conversely, when the
AP receives VLAN-tagged traffic from the upstream switch/router, it forwards that
traffic to the correct client and/or SSID. The AP drops all packets with VLAN IDs
that are not associated to any of its wireless users or SSIDs.Meraki Cloud Controller Product Manual | 49
VLAN tagging can be configured either per SSID, per user, or per device type. In
either case, the SSID must be configured in bridge mode (see Section 5.2,
“Bridge Mode (Enterprise Only)”).
9.1 Per-SSID VLAN Tagging
When VLAN tagging is configured per SSID, all data traffic from wireless users
associated to that SSID is tagged with the configured VLAN ID. Multiple SSIDs
also can be configured to use the same VLAN tag. For instance, a single VLAN
ID could be used to identify all wireless traffic traversing the network, regardless
of the SSID.
VLAN tagging is configured for an SSID under the Configure tab on the Access
Control page.
9.2 Per-User VLAN Tagging
When VLAN tagging is configured per user, multiple users can be associated to
the same SSID, but their traffic is tagged with different VLAN IDs. This
configuration is achieved by authenticating wireless devices or users against a
customer-premise RADIUS server, which can return RADIUS attributes that
convey the VLAN ID that should be assigned to a particular user’s traffic.
In order to perform per-user VLAN tagging, a RADIUS server must be used with
one of the following settings:
• MAC-based access control (no encryption)
• WPA2-Enterprise with 802.1x authentication
A per-user VLAN tag can be applied in 3 different ways:
1. The RADIUS server returns a Tunnel-Private-Group-ID attribute in the
Access-Accept message, which specifies the VLAN ID that should be
applied to the wireless user. This VLAN ID could override whatever
may be configured in the MCC (which could be no VLAN tagging, or a
per-SSID VLAN tag). To have this VLAN ID take effect, “RADIUS
override” must be set to “RADIUS response can override VLAN tag”
under the Configure tab on the Access Control page in the “VLAN
setup” section.
2. The RADIUS server returns a group policy attribute (e.g., Filter-ID) in
the Access-Accept message. The group policy attribute specifies a
group policy that should be applied to the wireless user, overriding the
policy configured on the SSID itself. If the group policy includes a VLAN
ID, the group policy’s VLAN ID will be applied to the user. (See Chapter
11, “Identity Policy Manager (Enterprise Only)”.)
3. On the Client Details page, a client can be manually assigned a group
policy. If the group policy includes a VLAN ID< the group policy’s VLAN
ID will be applied to the user.Meraki Cloud Controller Product Manual | 50
9.3 Per-Device Type VLAN Tagging
Group policies can automatically be assigned to different device types such as
Android, iPad, iPhone, iPod, Mac OS X, Windows, etc. If the group policy
includes a VLAN ID, then group policy’s VLAN ID will be applied to the user and
override other VLAN settings for that SSID or user.
9.4 Management Traffic
Management traffic is always untagged between the Meraki AP and the
upstream switch/router. (VLAN tagging applies only to data traffic to/from
wireless clients.) The wired network must be configured to allow untagged traffic
from the APs to the Internet (so that the APs can communicate with the MCC)
and to other network appliances that the APs would contact for user or network
management (e.g., Active Directory or RADIUS servers for user authentication).
9.5 Configuring the LAN to Support VLAN Tagging
Because a Meraki AP can be sending/receiving tagged data traffic as well as
untagged management traffic, all Meraki APs must be connected to a trunk port
on the upstream switch/router that is configured to handle any of the VLANs used
by the wireless network. See Section 26.2, “Switch Configuration for VLAN
Tagging”.
9.6 Other Considerations
• For greater security, no SSID should be untagged (i.e., on the “native
VLAN”).
• The amount of broadcast traffic on the trunk port to which the Meraki AP
is attached should be limited. Limiting broadcast traffic improves
wireless performance.
• Currently, VLAN tagging is not supported in a deployment in which
Meraki APs are used to form a wireless bridge between two wired
LANs.Meraki Cloud Controller Product Manual | 51
10 User Access Control Features
This chapter describes the access control options available in the MCC. Most of
these options appear under the Configure tab on the Access Control page.
Meraki’s Identity Policy Manager (IPM) is covered separately in Chapter 11,
“Identity Policy Manager (Enterprise Only)”.
10.1 Network Access Control
Network access control (NAC) scans clients connecting to an SSID to check to
see if they are running anti-virus software to ensure that the network is protected
from infected machines. To enable this feature, either click-through splash page
or sign-on splash page must be enabled on the SSID (See Chapter 7, Network
Sign-On Methods). Meraki NAC is enabled on a per-SSID basis.
The scan is done by a Java applet in the browser. If supported anti-virus
software is detected as running on the client machine, the client will be allowed
onto the network. If not, the client will be quarantined behind to a walled garden
where they can be remediated by downloading anti-virus software.
Clients running Windows XP, 7 or Vista will be scanned for supported anti-virus
software. Non-Windows clients are not scanned. An updated list of detected
anti-virus software can be found here:
http://bit.ly/eXCWuQ
If a device fails the scan, they will be quarantined by the AP’s policy firewall and
sent either to a standard splash page that allow them to download Microsoft
Security Essentials, or to a remediation page. The remediation page is a custom
URL that the administrator can set to allow non-compliant clients to download
other anti-virus software. This could be an internal website or a public website
from an anti-virus software vendor. If selecting a custom URL, the IP of the host
must be added to the walled garden as well (See section 10.9 “Walled Garden
(Enterprise Only)”).
To enable NAC on an SSID, select “Check clients for antivirus software” under
Access Control. Then select either “Show default NAC failure page” or “Show
custom URL”. Figure 25 shows an example of an SSID that is using NAC and
where non-compliant clients are sent to McAfee’s download page for
remediation.
Figure 25 - Network Access Control SettingsMeraki Cloud Controller Product Manual | 52
Once NAC has been enabled on an SSID, NAC activity can be monitored from
the NAC page under the Monitor tab. Figure 26 shows the NAC logs on the NAC
page. From this page, both successful and unsuccessful attempts to access an
SSID with NAC enabled can be viewed and searched.
Figure 26 - NAC Monitoring Page
10.2 MAC Whitelist
If a splash page is enabled on an SSID, the administrator can identify devices by
MAC address that will bypass the splash page and immediately gain network
access. This is useful to enable devices that cannot display a splash page to still
be able to associate to an SSID that has a splash page enabled.
Devices on the whitelist will:
• Never be shown a splash page.
• Be able to access the network without logging in (if sign-on splash page
is configured) or paying (if billing is configured).
• Not be subject to the bandwidth limits set on the network.
Although this whitelist is configured under the Configure tab on the Access
Control page for a specific SSID, it applies to all SSIDs in then network.
Alternatively, an administrator can dynamically add wireless clients to the
whitelist from the Monitor tab on the Clients page. An administrator can select a
client device and change the Access Status from “normal” to “whitelisted.”
Using this whitelist is not recommended for access control, but rather, as a
temporary workaround. Managing a list of MAC addresses does not scale well
from a management perspective. Moreover, MAC addresses can be spoofed,
which may enable unwanted users from accessing the wireless network. The
recommended approach is to migrate client devices that are unable to display
splash pages to a separate SSID that does not have the splash page enabled.
10.3 MAC Blacklist
An administrator can block specific wireless devices from network access by
MAC address. A device is added to the blacklist from the Monitor tab on the Meraki Cloud Controller Product Manual | 53
Clients page, by changing the Access Status from “normal” to “blocked.” An
administrator can optionally enter a message, which is displayed to the wireless
client on the page that he receives when he tries to access the network. This
message could be used to communicate remediation steps to the blocked client.
As with the splash page bypass list, the MAC blacklist is not recommended for
access control. A list of MAC addresses quickly becomes unmanageable with a
large number of client devices. Moreover, MAC addresses can be spoofed to
circumvent this blacklist. Blocking users and devices should occur by employing
a combination of wireless encryption and authentication methods. (See Chapter
7, “Wireless Encryption and Authentication”.)
10.4 Bandwidth Shaping
Bandwidth shaping ensures that users do not consume more bandwidth than
they should. The MCC includes an integrated bandwidth shaping module that
enforces upload and download limits. This setting could be used, for instance, to
assign more bandwidth for VOIP handsets on one SSID and less bandwidth for
data-only users on another SSID. The bandwidth limits are enforced by the
Meraki APs so that they are applied consistently to a wireless client, even if that
client roams from one AP to another.
The MCC supports separate upload and download limits. Asymmetric upload and
download limits are useful, for example, when a user only needs to periodically
download large images (e.g., CAD drawings) but not upload them. Specific
application requirements and available bandwidth should be considered to
determine the optimum bandwidth settings.
Bandwidth limits can be applied per SSID or per user. To configure per SSID
bandwidth limits, go to the Access Control page under the Configure tab.
To provide a better user experience when using bandwidth shaping, an
administrator can enable SpeedBurst using the checkbox in the Bandwidth Limits
section on the Access Control page. SpeedBurst allows each client to exceed
their assigned limit in a “burst” for a short period of time, making their experience
feel snappier while still preventing any one user from using more than their fair
share of bandwidth over the longer term. A user is allowed up to four times their
allotted bandwidth limit for a period of up to five seconds.
The MCC supports per-user bandwidth limits when a customer-hosted RADIUS
server is used. See Section 7.3.2, "Externally Hosted RADIUS Server”, for
details.
Finally, if billing is enabled, it is possible to configure bandwidth limits that apply
to each billing tier. See Chapter 18, “Billing” for details.
10.5 Adult Content Filtering
Adult content filtering prevents a wireless client from accessing sites that contain
pornographic, sexual, or otherwise adult material. The filtering is performed at the
DNS level via OpenDNS. Users may be redirected to a safe OpenDNS landing
page.Meraki Cloud Controller Product Manual | 54
This feature provides basic adult content filtering for applications in which
advanced filtering techniques are not required (e.g., filtering for guests in the
office lobby). If more advanced filtering is required, a separate content filtering
solution is recommended.
This feature is configured on a per-SSID basis under the Configure tab on the
Access Control page. It is only available when NAT mode is selected for client IP
addressing.
10.6 Firewall Rules for Wireless Users
The administrator can define firewall rules that restrict which network resources
users can access. There are 3 options:
1. Allow wireless clients to access my LAN (LAN isolation disabled)
2. Prevent wireless clients from accessing my LAN (LAN isolation enabled)
3. Custom firewall rules
10.6.1 LAN Isolation
LAN isolation is designed to allow clients to access the Internet but not be able to
access LAN resources. Guest access networks are a common use case. LAN
isolation is quick to enable and does not require that the network support VLANs.
LAN isolation blocks access to the following IP ranges:
• 10/8
• 172.16/12
• 192.168/16
10.6.2 Custom Firewall Rules (Enterprise Only)
Custom firewall rules provide an administrator with more granular access control
beyond LAN isolation. An administrator can define a set of firewall rules that is
evaluated for every request sent by a wireless user associated to that SSID.
Firewall rules are evaluated from top to bottom. The first rule that matches is
applied, and subsequent rules are not evaluated. If no rules match, the default
rule (allow all traffic) is applied.
As an example, Figure 27 depicts a sample set of custom firewall rules.
Figure 27 – Example Custom Firewall RulesMeraki Cloud Controller Product Manual | 55
Different kinds of requests will match different rules, as the table below shows.
For a web request to CNN, rules 1-4 do not match, so rule #5 (the default rule)
applies, and the request is allowed. In contrast, for a BitTorrent request over
TCP port 6881, rule #1 does not match, but rule #2 matches. The request is
denied, and no subsequent rules are evaluated.
Rule # Attempted Action
Example #1:
Web request to
www.cnn.com.
Example #2:
Print to
192.168.1.37.
Example #3:
Send BitTorrent
traffic.
Example #4:
Access file
server on LAN.
1 (no match) (no match) (no match) (no match)
2 (no match) (no match) MATCH (deny) (no match)
3 (no match) MATCH (allow) (no match)
4 (no match) MATCH (deny)
5 MATCH (allow)
Firewall rules can be applied for a given SSID or as part of a group policy (see
Chapter 11, “Identity Policy Manager (Enterprise Only)”).
10.7 Captive Portal Strength
The administrator can configure this feature to block all traffic (including non-web
traffic) from wireless users until they have clicked through the splash page. The
administrator can configure this setting for each SSID.
This feature is configured under the Configure tab on the Access Control page
when either the click-through splash page or the splash page with
username/password login is configured.
10.8 Enable/Disable Simultaneous Logins
This feature prevents wireless users from using the same sign-on splash page
credentials on multiple computers simultaneously. This setting only applies to
sign-on splash page with either the Meraki-hosted authentication server or
customer-hosted authentication server. This setting does not have any effect on
802.1x users, who are not prevented from logging in simultaneously from multiple
computers.
This feature is configured under the Configure tab on the Access Control page
when the splash page with username/password login is configured.
10.9 Walled Garden (Enterprise Only)
A walled garden defines a set of IP addresses that a wireless user can access
before he has authenticated. For instance, the walled garden might include the
“company info” pages from a company’s website. In designing these companion
web pages, ensure that users can easily get back to the login page.Meraki Cloud Controller Product Manual | 56
A walled garden is configured under the Configure tab on the Access Control
page when either the click-through splash page or the splash page with
username/password login is configured.Meraki Cloud Controller Product Manual | 57
11 Identity Policy Manager (Enterprise Only)
The Meraki Identity Policy Manager (IPM) enables administrators to apply
different security settings for different groups of users.
IPM can be used to implement a variety of policies over a single SSID. For
example, a university wants to have three tiers of access for students, staff, and
guests. All users should have access to the Internet, students should have
access to network printers, and staff should have access to internal applications
and servers. This university’s policy could be implemented with 3 distinct SSIDs
in which each SSID is mapped to its own unique VLAN tag (see Section 9.2,
“Per-User VLAN Tagging”). However, not all networks have VLAN tagging
enabled, and VLAN administration can be complex. IPM enables the university
to implement sophisticated policies over a single SSID.
Note that IPM is also useful for implementing Payment Card Industry (PCI)
compliance. For additional information on PCI, please see the Meraki PCI white
paper.
IPM is compatible with the following access control modes:
• MAC-based access control
• WPA2-Enterprise with 802.1x authentication
11.1 How IPM Works
The following outlines how the system behaves when IPM has been configured.
1. A user associates with a network.
2. The Meraki AP sends a RADIUS Access-Request message to the
RADIUS server. The Access-Request message contains RADIUS
attributes that help the RADIUS server to identify the wireless user.
3. The RADIUS server determines which group it should assign to the
user. This determination could be based on any combination of criteria
to which the RADIUS server is privy (e.g., the user’s MAC address,
username, domain, AP, SSID, time of day, etc.).
4. If the RADIUS server admits the user, it returns a RADIUS AccessAccept message to the Meraki AP. The Access-Accept message
contains RADIUS attributes that indicate the group policy to which the
user belongs.
5. The Meraki AP receives the Access-Accept message from the RADIUS
server, and applies the appropriate group policy to that user.
These policies are “identity-based” because they are based upon the user’s
identity, as determined by the RADIUS server. The mapping of a user to a group
policy is performed by the RADIUS server; the configuration of a group policy, by
the Meraki Cloud Controller; and the application of a group policy, by a Meraki
AP.Meraki Cloud Controller Product Manual | 58
Group policies are at the core of IPM and are discussed below. (Per-user VLAN
tagging is a subset of IPM and is described in Section 9.2, “Per-User VLAN
Tagging”).
11.2 How to Configure IPM
A “group policy” is a named policy that contains a group of settings that can be
applied to a particular user. When the Meraki AP receives the Access-Accept
message from the RADIUS server (step #5 above), the RADIUS server may
include a RADIUS attribute that identifies this group policy by name. If the group
policy identified in the RADIUS attribute matches a group policy configured in the
MCC, the Meraki AP will apply the settings in that group policy to the user.
There are 3 key steps to configuring a group policy:
1. Create a group policy on the RADIUS server.
2. Define a corresponding group policy on the MCC.
3. Test the group policy configuration.
The following sections describe each step in more detail. See “Appendix A:
Example Office Configuration” for example configurations of group policies.
11.2.1 Define a Group Policy on the RADIUS Server
How an administrator defines a group policy on the RADIUS server depends on
the RADIUS implementation.
For example, in Windows Server, the administrator creates a policy in the
Network Policy Server (NPS) that defines the following:
1. Conditions (i.e., what needs to match). Examples of conditions include
the user’s domain, user group, SSID to which the user connected, and
MAC address of the AP to which the user connected.
2. Settings (i.e., what should be applied if the conditions match). Here, the
administrator specifies what RADIUS attribute (and attribute value, i.e.,
the group policy name) the RADIUS server returns to the Meraki AP.
When a user matches an NPS policy’s conditions, the RADIUS server sends the
group policy name as a RADIUS attribute to the Meraki AP.
11.2.2 Define a Group Policy on the MCC
Group policies are configured in the MCC under the Configure tab on the Group
Policies page. (Figure 28 shows a sample screenshot.) Group policies are
configured on a per-SSID basis. In this way, two different SSIDs could have
group policies with the same name, but different settings.Meraki Cloud Controller Product Manual | 59
Figure 28 – Group Policies Page
For a given SSID, an administrator can configure the following:
1. RADIUS attribute identifying the group policy. (Figure 29 defines the
RADIUS attributes that can be used to identify a group policy.)
2. One or more group policies that can be applied to users connecting to
this SSID. For a given group policy, an administrator can configure the
following:
a. Bandwidth limits
b. VLAN tagging
c. Splash page bypass
d. Firewall rules
In each case, the administrator can choose to (1) use the default setting
configured on the SSID (under the Configure tab on the Access Control
page for the given SSID), or (2) override the default setting configured
on the SSID with a setting configured in the group policy.
Since there is no universally accepted RADIUS attribute to pass group
policy information, Meraki supports a variety of different attributes, as
shown in the following table.
Figure 29 – RADIUS Attributes for Group Policy
Attribute Name Vendor ID
Filter-Id (Defined in RFC 2865, Type 11.)
Reply-Message (Defined in RFC 2865, Type 18.)
Airespace-ACL-Name Vendor number=14179
Vendor-assigned attribute number=6
Aruba-User-Role Vendor number=14823
Vendor-assigned attribute number=1Meraki Cloud Controller Product Manual | 60
Note that group policies can only be configured on an SSID that uses a local
(customer-premise) RADIUS server for authentication at association time.
11.2.3 Test the IPM Configuration
Since policies and permission rules can be complex and sometimes result in
counter-intuitive behavior, it is important to test out a configuration thoroughly
before deploying it in a live environment.
An administrator can utilize the following tools to confirm that IPM is configured
and operating correctly:
• Event log: The event log shows RADIUS attributes that were received
and/or applied for a particular user. (See Section 8.7, “Event Log Page
(Enterprise Only)”.)
• Authentication test tools: The RADIUS test tools under the Configure
tab on the Access Control page simulate a user authentication, and they
show the RADIUS attributes that were received and/or applied for a
particular test user. (See Section 7.3.2, “Externally Hosted RADIUS
Server”.)Meraki Cloud Controller Product Manual | 61
12 Traffic Shaper (Enterprise Only)
Section 8.6.2 introduced the granular, application-specific network usage data
that is at an administrator’s disposal through Traffic Analysis. In addition to
providing this level of visibility into how the wireless network is being used,
administrators can create shaping policies to apply per user controls on a per
application basis. This allows the throttling of recreational applications such as
peer-to-peer filesharing programs and the prioritization of enterprise applications
such as Salesforce.com, ensuring that business-critical application performance
is not compromised.
12.1 Configuring Shaping Policies
Shaping policies can be created on the Traffic Shaping page under the Configure
tab. Shaping policies are created and applied per SSID by selecting the
appropriate SSID from the drop-down selector at the top of the page. Shaping
policies can also be turned on and off using the “Shape traffic” drop down
selector underneath the SSID selector.
12.1.1 Creating Shaping Rules
Traffic shaping policies consist of a series of rules that are evaluated in the order
in which they appear in the policy, similar to custom firewall rules. There are two
main components to each rule: rule definitions and rule actions.
• Rule Definition
Rules can be defined in two ways. An administrator can select from
various pre-defined application categories such as Video & Music, Peerto-Peer or Email. More information about which applications are
included in each category can be found in Section 8.6.2. The second
method of defining rules is to use custom rule definitions.
Administrators can create rules by specifying HTTP hostnames (eg.
salesforce.com), port number (eg. 80), IP ranges (eg. 192.168.0.0/16),
or IP range and port combinations (eg. 192.168.0.0/16:80).
• Rule Actions
Traffic matching specified rule sets can be shaped and/or prioritized.
o Bandwidth limits can be specified to either 1. Ignore any limits
specified for a particular SSID on the Access Control page
(allow unlimited bandwidth usage), 2. Obey the specified SSID
limits or 3. Apply more restrictive limits that than the SSID
limits. To specify asymmetric limits on uploads and
downloads, click on the Details link next to the bandwidth slider
control.
o Quality of Service (QoS) prioritization can be applied to traffic
at Layers 2 and 3. Layer 2 prioritization is accomplished by Meraki Cloud Controller Product Manual | 62
specifying a value for the PCP tag in the 802.1q header on
outgoing traffic from the access point. This feature is only
available for SSIDs where VLAN tagging is enabled. To
prioritize traffic at Layer 3, a value is selected for the DSCP tag
in the IP header on all incoming and outgoing IP packets. This
also affects the WMM priority of the traffic. To fully benefit
from this feature, upstream wired switches and routers must be
configured for QoS prioritization as well.
12.1.2 Example Shaping Policy
Figure 30 shows a typical shaping policy that might be found in an office setting.
Figure 30 - Example Shaping PolicyMeraki Cloud Controller Product Manual | 63
13 Guest Management (Enterprise Only)
Many organizations want to be able to quickly and easily get guests online, and
at the same time, control who is on the network.
The MCC allows administrators to create “guest ambassadors”, who can create
guest user accounts but cannot otherwise modify the system. For example, a
network administrator can create a guest ambassador account for a receptionist.
In turn, the receptionist can create user accounts for guests who need temporary
access to the wireless network.
Guest ambassador accounts are configured under the Configure tab on the
Network-Wide Settings page. A guest ambassador who logs into the MCC can
access the “Guest Management Portal”, which only allows the creation of user
accounts on SSIDs that are configured with a sign-on splash page using Merakihosted authentication server. The guest ambassador can add, edit, and remove
user accounts, and can specify expiration times for user accounts (e.g., to expire
in 1 day).
Figure 31 shows a screenshot of the Guest Management Portal used by guest
ambassadors.
Figure 31 – Guest Management PortalMeraki Cloud Controller Product Manual | 64
14 Rogue AP Detection (Enterprise Only)
Meraki APs can detect nearby APs that may pose a security threat to either
wireless users or to the organization’s network. Meraki identifies 2 types of
rogue APs:
1. APs that are broadcasting the same SSID as the administrator’s
configured SSID can trick clients into connecting to the wrong AP.
These clients could then potentially divulge personal or confidential
information to the wrong host.
2. APs could be connected to the organization’s wired network without any
of the necessary encryption or authentication settings, thereby opening
a security hole into the organization’s wired network. (These APs may
not necessarily be introduced into the network maliciously. For
instance, an employee might bring a consumer-grade AP into work for
his own convenience. He plugs the AP into the LAN near his desk and
intentionally does not configure any encryption or authentication settings
so that he can connect to his AP without having to log in.)
Figure 32 is a screenshot of a Rogue APs page.
Figure 32 – Rogue APs Page
Like the Access Points and Clients pages, the Rogue APs page has a list that
can be customized (adding, removing, and reordering columns) and resorted (by
clicking on a column header).
The Rogue AP page supports the following features:
• Rogue APs that are spoofing an SSID (the first type of rogue APs
described above) can be found by sorting on the “SSID” column.
• Rogue APs that are connected to the wired network (the second type of
rogue APs described above) can be found by sorting on the “Wired
MAC” column.Meraki Cloud Controller Product Manual | 65
• The location of a rogue AP can be triangulated with the information in
the “Seen by” column, which lists the Meraki APs that are detecting a
given rogue AP and the signal strength between a Meraki AP and the
rogue AP.
• A nearby AP that does not pose a security threat (e.g., an AP deployed
in a neighboring office) can be marked as “known” by selecting the AP,
then selecting the action (from the “Actions” drop-down menu) “Mark as
known”. Known APs are colored green in the “Status” column; unknown
APs are colored red.
Scans for rogue APs occur periodically according to the “Network Scans”
configuration on the Network-Wide Settings page under the Configure tab (see
Section 16.4, “Network Scans (Enterprise Only)”). An administrator can force an
immediate scan by clicking the “Scan now” button at the top of the Rogue APs
page. Note that a forced scan disassociates all clients that may be connected to
Meraki APs at the time the scan is initiated.Meraki Cloud Controller Product Manual | 66
15 Wireless Intrusion Prevention System (Enterprise Only)
Meraki’s Wireless Intrusion Prevention System (WIPS) can detect, classify,
locate, and remediate a variety of intrusions on the WLAN. Intrusions are
classified as:
1. AP Spoofs: AP's that are broadcasting your SSID and copying the MAC
address of one of your AP's. A very high priority threat.
2. Rogue SSIDs which are broadcast from:
a. A rouge AP that is broadcasting your SSID, perhaps in
attempts to lure your clients to associate.
b. An AP that is detected to be plugged into the wired LAN.
Someone who may have malicious or innocent intent has
plugged an unauthorized access point into the wired LAN.
c. Ad-hoc networks. A client associated to your WLAN is
operating in ad-hoc mode. This could allow unauthorized
clients access to your WLAN through the ad-hoc network.
3. Interfering SSIDs: Other AP’s detected in the area.
4. Malicious broadcasts: DOS attacks attempting to bring down your APs.
5. Packet floods: Client floods or AP floods that try to bring down your
APs.
The location of the intrusions will be triangulated and placed on a map provided
you have also placed the location of your APs on the map. For accurate results, it
is recommended that you have at least three AP’s which are not placed in a
straight line. The intrusions can then be physically located and removed.
Rogue SSIDs can also be wirelessly using Rogue Containment. The Meraki
AP’s will send periodic deauthentication messages to the clients trying to
associate to the Rogue SSIDs.
Figure 32 is a screenshot of a WIPS page.
Figure 33 – WIPS PageMeraki Cloud Controller Product Manual | 67
16 Wireless Features
This chapter describes the various wireless features that can be configured in the
MCC.
16.1 AutoRF
The MCC features AutoRF, Meraki’s integrated RF intelligence. AutoRF
constantly scans the local RF environment and performs system-wide network
optimizations of AP channel selection and transmit power (Enterprise only),
resulting in maximized network performance and reliability. The various
components of Meraki’s RF analysis and control features will be described in the
following sections.
16.2 Channel Selection
Channel selection involves the assignment of RF channels to the radios on the
Meraki APs. Optimizing channel assignments reduces channel interference and
channel utilization, thereby improving overall network performance and
increasing the network’s client capacity.
Channel selection is configured under the Configure tab on the Radio Settings
page in Enterprise networks (more detail on the Radio Settings page can be
found in Section 16.6) and on the Network-Wide Settings page in Pro networks.
Two options are available:
1. Manual: In this case, the administrator can manually configure the
channels used by the Meraki APs on the 2.4 GHz and 5 GHz bands.
These channel assignments apply across the entire network.
2. Automatic: In this case, the administrator allows the MCC to
automatically assign the optimal channels to the radios. The MCC
determines the optimal channel configuration for a network by
periodically measuring the global network performance and issuing new
channel assignments to APs.
Changing channel assignments can cause noticeable network downtime. The
administrator can configure the MCC to automatically reassign channels in the
wireless network during periods of inactivity (when the channel reassignment
would cause the least amount of disruption). Or, the administrator can perform
the MCC-calculated channel assignments on demand.
The list of available channels that can be assigned to radios is populated based
on which country the APs are deployed in. As such, the “Country” setting needs
to be configured correctly in order for channel management to comply with
region-specific wireless regulations. The Country selector can be found above
the Channel Selection controls.Meraki Cloud Controller Product Manual | 68
16.3 Channel Spreading (Enterprise Only)
When automatic channel selection is configured, an administrator can configure
“channel spreading”, which allows Meraki APs to operate on different channels.
Channel spreading selects channels that minimize RF utilization and interference
in the network, thereby maximizing overall network performance and client
capacity (i.e., the number of wireless clients that can connect to the network).
Channel spreading is ideal for environments in which a high number of clients
could saturate a single channel. For instance, in an auditorium with hundreds of
wireless clients and numerous APs broadcasting in the same space, channel
spreading should be enabled.
Channel spreading is configured under the Configure tab on the Radio Settings
page.
16.4 Network Scans (Enterprise Only)
Meraki APs perform networks scans to collect information about the RF
environment (e.g., channel utilization, channel interference, etc.), and to detect
rogue APs. There are 2 types of network scans:
• Opportunistic scans are performed when an individual AP has no
clients associated to it.
• Mandatory scans are performed at a specific time of day (on specific
days of the week) by all APs in the network. Note that a mandatory
scan disconnects any clients that may be associated to Meraki APs at
the time a scan begins.
Whether a network performs only opportunistic scans or performs both
opportunistic and mandatory scans is configured under the Configure tab on the
Network-Wide Settings page. The schedule for mandatory scans is also
configured in this section.
16.5 Spectrum Analysis (Enterprise Only)
Meraki 802.11n APs feature built-in spectrum analysis capabilities. The APs scan
for both 802.11 (other APs) and non-802.11 sources of RF interference (eg.
Bluetooth headsets, cordless phones and microwaves). This data is then fed into
the Meraki AutoRF planning algorithms to determine optimal channel plan (if
auto-channel selection is enabled) and transmit power settings. No separate
sensor APs need to be deployed as the APs can both serve clients and perform
network scans.
A real-time interference scan can be run from the Live Tools section of the
Access Point Details page (see Section 8.4), giving an administrator both
instantaneous and historical data about interference sources in the area of a
particular AP.Meraki Cloud Controller Product Manual | 69
16.6 Transmit Power Control (Enterprise Only)
Administrators have the option of having all APs in the network set at 100%
transmit power or allowing the Cloud Controller to determine the best power
settings for optimal performance. In cases where APs are deployed with high
density and significant overlap in coverage, the Cloud Controller may determine
that interference could be minimized by a reduction in transmit power. In this
situation, if an AP were to go down resulting in a gap in coverage, the adjacent
AP power levels would then be automatically increased to compensate.
Administrators can select full transmit power or automated transmit power
selection on the Radio Settings Page (See Section 16.7). Channel spreading
must be enabled in order to enable automatic power adjustments.
16.7 Radio Settings Page (Enterprise Only)
AP radio controls and channel plan data can be found on the Radio Settings
Page under the Configure tab. There are two main sections of this page:
Controls and Channel Planning reporting.
16.7.1 Radio Controls
Controls found in this section include the Country selector (see Section 16.2),
Manual versus Automatic Channel Selection (see Section 16.2), Channel
Spreading (see Section 16.3) and Full versus Automatic Radio Power Selection
(see Section 16.6).
16.7.2 Channel Planning Report
This report shows administrators a summary of the current channel plan in the
network as well as all APs, both Meraki and non-Meraki or “rogue”, that were
detected on each channel during the last network scan performed. This table
gives administrators insight into the current channel plan. Clicking on the Details
links next to each channel that has APs assigned to it will bring you to the
Channel Interference table that shows more detail about current transmit power
and interference sources seen by each AP on that channel, both current and
historically.
16.8 SSID Availability Page
The SSID Availability page is where an administrator can manage the visibility
and availability of SSIDs based on time and location.
16.8.1 SSID Visibility (Enterprise Only)
Administrators can “hide” an SSID by disabling advertisement of the SSID in:
• The Beacon frame that the AP periodically broadcasts.
• The Probe response frame that the AP sends in response to a Probe
request frame from a wireless client.
Only wireless clients that are manually configured with the hidden SSID’s
settings can connect to the hidden SSID. Other clients that are not configured to
connect to the hidden SSID cannot discover it as an available wireless network.Meraki Cloud Controller Product Manual | 70
This feature can be used to discourage wireless users from connecting to a
particular SSID. For instance, at a school, the “VOIP” SSID could be hidden so
that students would be less likely to connect to it. However, phones could be
configured to connect to the SSID.
It is important to note that this ability to hide an SSID is not a security feature.
Basic wireless snooping or eavesdropping techniques can be used to uncover a
hidden SSID. A hidden SSID should still be used in conjunction with the
appropriate wireless security methods, such as wireless encryption and
authentication (see Section 7, “Wireless Encryption and Authentication”).
The option to hide an SSID appears under the Configure tab on the Access
Control page.
16.8.2 SSID Broadcast Controls By AP (Enterprise Only)
By using AP tagging (See Section 8.5.1), an administrator can choose to
broadcast an SSID from certain APs only.
As an example, a guest SSID is only to be broadcast in the lobby of an office
building. APs located in the lobby area have been tagged with the tag “Lobby”.
To choose to broadcast the guest SSID only from the tagged APs, use the AP
selection drop-down menu under SSID availability section, choosing “This SSID
is enabled on some APs…”. See Figure 34 for selector location on SSID
Availability page.
Figure 34 - Selecting to Broadcast SSID on certain Tagged APs
See Figure 35 for an illustration of an SSID configured to only broadcast from
APs tagged “Lobby”.Meraki Cloud Controller Product Manual | 71
Figure 35 - SSID Enabled on Tagged APs Only
16.8.3 Timed SSID Broadcasting (Enterprise Only)
For certain deployment types such as a retail store offering free public wireless
access, an administrator may only want to offer network access during certain
business hours. With timed SSID broadcasting, the hours in which an SSID are
broadcast can be configured in Dashboard rather than requiring an administrator
to manually disable an SSID at the end of the day. This feature actually disables
the SSID in contrast to hiding an SSID (See 16.8, “Hidden SSID”).
The option to set broadcast hours for an SSID appears under the Configure tab
on the Access Control page.
16.9 Band Selection and Band Steering (Enterprise Only)
Band selection enables an administrator to configure an SSID to broadcast on
both 2.4 and 5 GHz bands, on both bands with band steering enabled, or on the
5 GHz band only.
Band steering steers 5 GHz-capable clients from the 2.4 GHz band, which is
typically heavily utilized by wireless devices, to the 5 GHz band, which is much
less utilized. Band steering increases the total bandwidth and capacity available
to clients, while improving client performance at 5 GHz.
Band selection and band steering are configured under the Configure tab on the
Access Control page.
For networks containing the Meraki MR11 (a single-radio AP), a separate band
selection setting appears under the Configure tab on the Network-Wide Settings
page. This setting allows an administrator to configure whether the MR11 APs
broadcast on the 2.4 GHz band or on the 5 GHz band.
16.10Disabling Legacy 802.11b Bitrates (Enterprise Only)
An administrator can improve the performance of clients on the 2.4 GHz band by
disabling legacy 802.11b bitrates (1, 2, and 5.5 Mbps). If these legacy bitrates
are disabled, 802.11b clients will be unable to associate to the SSID at those
bitrates.
This feature is configured under the Configure tab on the Access Control page.Meraki Cloud Controller Product Manual | 72
16.11Software Upgrades
Meraki strives to minimize the administrative cost of its systems. One of the ways
Meraki realizes this goal is by centrally managing the software upgrade process.
Meraki releases MCC and AP firmware upgrades periodically to licensed
organizations, in a manner that is minimally disruptive to administrators and
wireless users.
For a Meraki network to upgrade to the latest firmware, the network simply needs
to be connected to the Internet to reach the MCC. If an upgrade is available, it is
scheduled and deployed. An AP’s local web page (see the section below on
accessing the AP’s local web page) shows whether an upgrade is in progress.
An upgrade takes about 30 minutes over a fast Internet connection. When the
upgrade completes, the node reboots itself.
16.11.1 Preferred Maintenance Window (Enterprise Only)
Enterprise Customers can configure a weekly preferred maintenance window
during which firmware upgrades should occur. This maintenance window is
configured on the Network-Wide Settings page under the Configure tab.
16.12Mesh Networking
In a wireless mesh deployment, multiple APs (with or without connections to
wired Ethernet) communicate over wireless interfaces to form a single network.
Each AP develops a list of neighboring devices and exchanges information with
the rest of the network to form routes through the network. When a Meraki AP is
connected to a wired Ethernet connection and obtains an IP address (either
through static IP configuration or DHCP), the AP takes the identity of a “mesh
gateway”. If an AP is not connected to a wired Ethernet connection or does not
obtain an IP address over that connection, the AP operates as a “mesh
repeater”, which relays wireless traffic through the mesh network, either to a
gateway or through other repeaters.
Meraki devices in a mesh network configuration communicate using a proprietary
routing protocol designed by Meraki. The protocol is designed specifically for
wireless mesh networking, and accounts for several unique characteristics of
wireless networks including variable link quality caused by noise or multi-path
interference, as well as the performance impact of routing traffic through multiple
hops. The protocol is also designed to provide ease of deployment and rapid
convergence while maintaining low channel overhead.
Occasionally, a mesh repeater in the network will become unavailable, due to
disconnection or changes in the environment. Each AP in the Meraki mesh
network constantly updates its routing tables with the optimal path to the network
gateways. If the best path changes due to node failure or route metric, traffic will
flow via the best known path.
In the event of a mesh gateway failure or the emergence of a new mesh gateway
with a better routing metric, all new traffic flows will be routed to the new mesh
gateway. Because certain mesh gateways may be located on different IP
subnets from each other, each TCP flow is mapped to a particular mesh gateway Meraki Cloud Controller Product Manual | 73
to avoid breaking established connections. The route through the network to the
specified mesh gateway may change over time, to adapt to network conditions.
Refer to the Meraki Network Design Guide for more information about designing
a Meraki mesh network.
16.13Wired Clients
Administrators can plug computers, switches, and other devices into the Ethernet
jack of a Meraki AP. The administrator can decide how to treat device that are
plugged into a wired port on the AP. Options include:
• Disable wired clients
• Wired clients are treated as part of a specified SSID
The treatment of wired clients is configured under the Configure tab on the
Network-Wide Settings page.
If wired traffic is allowed, the AP will route all packets received on its wired port
as if they came from the specified SSID. Wired clients would be subject to any
network sign-on methods configured on that SSID (e.g., sign-on splash page).
However, wireless settings (e.g., link encryption or 802.1x authentication) or
networking settings (e.g., VLAN tagging) would not be applied.
16.14Wireless Bridging
Two Meraki APs can be used to create a wireless bridge between two LANs. For
details about this configuration, reference the Meraki Point-to-Point Whitepaper.
16.15Quality of Service
The MCC supports the Wireless Multimedia Extensions (WMM) standard for
traffic prioritization. WMM is a Wi-Fi Alliance standard based on the IEEE
802.11e specification, with a focus on the EDCA component to help ensure that
devices such as wireless VOIP phones operate well when connected to a Meraki
wireless network. WMM provides four different traffic classes: voice, video, best
effort, and background. Devices that support WMM and request a higher level of
service, such as Wi-Fi handsets, will receive higher priority on the Meraki
wireless network.
QoS keeps latency, jitter, and loss for selected traffic types within acceptable
boundaries. When providing QoS for downstream traffic (AP to client), upstream
traffic (client to AP) is treated as best-effort. The application of QoS features
might not be noticeable on lightly loaded networks. If latency, jitter, and loss are
noticeable when the media is lightly loaded, it indicates a system fault, a network
design problem, or a mismatch between the latency, jitter, and loss requirements
of the application and the network over which the application is being run. QoS
features start to be applied to application performance as the load on the network
increases.Meraki Cloud Controller Product Manual | 74
16.16Power Save
Meraki also supports WMM Power Save mode, which helps wireless devices
avoid excessive battery drain. WMM Power Save improves on the standard
802.11 Power Save Polling mode by allowing devices to “sleep” differently when
they receive critical vs. non-critical packets. Devices that support WMM Power
Save should experience extended battery life when using a Meraki network.
16.17Run Dark
Run dark disables the LED lights on all APs. This feature is useful in situations
where the lights may be annoying or distracting. For example, it can be enabled
to prevent outdoor APs from drawing attention at night.
This feature is configured under the Configure tab on the Network-Wide Settings
page.
16.18Accessing the AP’s Local Web Page
In general, Meraki networks are configured using the MCC, rather than on the
individual APs. However, there are a small number of tasks for which information
on the AP’s local web page is useful.
The steps to access an AP’s local web page are as follows:
1. Associate with the AP either wirelessly or as a wired client (using an
Ethernet cable attached to the AP’s Ethernet port).
2. Go to http://my.meraki.com.
The AP’s local web page can be used for a variety of configuration, monitoring,
and troubleshooting activities, including the following:
• View the AP’s status (e.g., setup, connectivity, firmware upgrade, etc.).
• View channel utilization and the AP’s signal strength to the client.
• Run client-to-AP speed tests.
• View statistics about the AP’s mesh neighbors.
• Configure a static IP address on the AP. (See Section 6.2.1,
“Configuring a Static IP Address Directly on a Meraki AP”.)Meraki Cloud Controller Product Manual | 75
17 Branding
This chapter describes the MCC’s capabilities related to branding.
17.1 Splash Page
A splash page can provide a unified branding experience to wireless users in
addition to prompting for username/password credentials. For example, the
splash page can display a corporate logo and color scheme. The splash page
can also show the terms of service, which might include an acceptable use
agreement or a privacy statement.
Administrators can set up a separate splash page for each SSID. Splash pages
can be hosted by Meraki or by an external host.
17.1.1 Meraki-Hosted Splash Page
Meraki-hosted splash pages (both click-through splash pages and sign-on splash
pages) are configured under the Configure tab on the Splash Page page. These
built-in splash page capabilities enable administrators to eliminate the need to set
up a local web server. Administrators can choose to customize one of Meraki’s
pre-defined splash page templates or create a fully custom page.
Splash page variables can be added to splash pages to display dynamic
information to the user (e.g., the error returned from a customer-hosted RADIUS
server when authentication fails). For a list of splash page variables, see
“Appendix D: Meraki-Hosted Splash Page Variables”.
17.1.2 Externally Hosted Splash Page
Both click-through splash pages and sign-on splash pages can be externally
hosted. Externally hosted sign-on splash pages are covered in Section 7.3.2,
“Externally Hosted RADIUS Server”.
When an SSID is configured with a click-through splash page, an administrator
can redirect a wireless user to a URL. This feature enables the administrator to
host the splash page, rather than having it hosted by Meraki. To use this feature,
the IP address of the URL’s web server must be inside the walled garden (see
Section 10.9, “Walled Garden (Enterprise Only)”). The redirect URL for a clickthrough splash page is configured under the Configure tab on the Splash Page
page.
For additional information on hosting your own splash page, search the Meraki
knowledge base for “EXCAP” or externally hosted captive portal.
17.1.3 Splash Page Frequency
Regardless of whether the splash page is Meraki-hosted or externally hosted, the
frequency with which a wireless client is presented with a splash page can be
configured, since the frequency is enforced on the Meraki AP. This splash page
frequency is configured under the Configure tab on the Splash Page page.Meraki Cloud Controller Product Manual | 76Meraki Cloud Controller Product Manual | 77
18 Billing
Meraki provides an integrated billing module that administrators can use to
quickly and easily charge for network access.
Billing is enabled as a network sign-on method (see Section 7.2, “Network SignOn Methods”). It is configured under the Configure tab on the Access Control
page.
Meraki processes end user credit card transactions, so that administrators do not
have to configure or maintain a credit card payment gateway. At the end of each
month, if the generated revenue exceeds $20 USD, Meraki sends a payout to the
network operator, less a 20% processing fee. Payouts are sent via PayPal (all
currencies). The administrator can view payment and payout history on the
Account Activity page under the Monitor tab.
The administrator can configure the currency for a billed network. Note, however,
that once a transaction has occurred on the network, it is not possible to change
the currency of the billed network.
An administrator can create up to five billing plans (tiers of service). The
administrator can specify the fees charged over a particular amount of time with
a specific performance limit. For example:
• $5 per month for .5 Mbps of bandwidth
• $10 per month for 1 Mbps of bandwidth
In addition, the administrator can check the “Free access” option, which provides
free access for a limited amount of time (and possibly subject to a bandwidth
limit). This limited free access can serve as a trial period for wireless users
before they purchase a paid plan.
Note that it is not possible to customize the splash page when billing is enabled.Meraki Cloud Controller Product Manual | 78
19 Administering Multiple Networks
This chapter describes the relationships between an administrator’s account and
the “organization” of networks the administrator can monitor and configure.
19.1 Organizations
An “organization” consists of a collection of networks and a collection of
administrative accounts. Every administrator has an account in the MCC that is
part of an organization. An organization is covered by a single license. (For
more information on licensing, see Chapter Licensing21, “Licensing”)
Organizations can only be created. To delete an organization, please contact
Meraki Support.
19.2 Administrators
An administrator can belong to multiple organizations, but his credentials
(username and password) may be different for each organization.
There are two types of administrators: organization administrators and network
administrators.
19.2.1 Organization Administrators
An organization administrator has visibility into all networks in the organization.
There are two types of organization administrators, full, or read/write, and readonly. Organization administrative accounts are managed under the Organization
tab on the Configure page.
A full organization administrator can perform the following operations within a
given organization to which he belongs:
• Create, edit, and delete organization full or ready-only organization
administrator accounts or any network administrator account for the
organization.
o When an administrator resets the password on an administrative
account, a new password is emailed to the administrator. An
administrator can reset his own password by clicking the “my
profile” link at the top of any page in the MCC.
• Create, edit, and delete networks
• Add licenses for new access points
The administrator that creates the first network in a new organization will
automatically be designated an organization administrator. Meraki Cloud Controller Product Manual | 79
19.2.2 Network Administrators
A network administrator has visibility into all networks in the organization for
which he has been designated a network administrator. There are two types of
network administrators, full, or read/write, and read-only. Administrative
accounts are managed under the Configure tab on the Network-Wide Settings
page.
A network administrator can perform the following operations within a given
organization to which he belongs:
• Create, edit, and delete administrator accounts for the organization.
o When an administrator resets the password on an administrative
account, a new password is emailed to the administrator. An
administrator can reset his own password by clicking the “my
profile” link at the top of any page in the MCC.
• Create, edit, and delete networks for which he has been granted
administrative privileges.
o By definition, an administrator has administrative privileges over
any network that he creates himself. However, another
administrator who did not create the network must first be granted
administrative access to the network (by another administrator with
administrative access to the network) before he can access it.
19.3 Moving APs between Networks or Organizations
An administrator can move APs between networks in a given organization. This
operation is performed under the Monitor tab on the Access Points page. After
selecting the AP to move, the administrator selects the action (from the “Actions”
drop-down menu) to “Change network”, which presents a drop-down menu with
the names of the other networks in the organization. The administrator can then
select the network to which to move the selected AP.
An administrator can also move APs between organizations. This is
accomplished through the following steps:
1. The administrator records the serial number of the AP to move.
2. The administrator removes the AP from its current network. To do this,
the administrator goes to the Access Points page under the Monitor tab,
selects the AP to remove, and selects the action (from the “Actions”
drop-down menu) to “Remove from network”.
3. The administrator logs out of the current organization, then logs into the
target organization. After selecting the target network, the administrator
adds the AP to the network under the Configure tab on the Add Access
Points page. (He will need the serial number he recorded for this step.)Meraki Cloud Controller Product Manual | 80
20 Teleworker VPN
Meraki Teleworker VPN enables administrators to extend the corporate LAN to
employees at remote sites with Meraki AP’s without requiring client devices to
have client VPN software installed and running. The experience of wireless
clients connected to remote AP’s will be the same as though they were located at
headquarters, with full corporate network access.
20.1 Typical Use Cases
Teleworker VPN can be used to connect small branch offices (<5 people),
teleworker or executive home offices, temporary site offices (eg. construction
site) and traveling employees on the road back to the corporate LAN and provide
access to corporate resources back at headquarters.
20.2 How It Works
A Meraki AP at a remote site establishes a layer 2 connection using an IPSecencrypted, UDP tunnel back to the corporate LAN. Tunnels are established on a
per SSID basis, and terminate at headquarters on a Meraki virtual concentrator
appliance.
Since most corporate LAN’s are located behind a firewall and NAT, the Meraki
Cloud Controller can negotiate a connection between the remote AP and the
virtual concentrator across a NAT, or a manual port-forwarding method can be
used to establish a connection.
Both wireless and wired client traffic at the remote site can be tunneled. Wired
clients connected directly to a Meraki AP can have their traffic tunneled. For
example, a ShoreTel IP phone can be plugged into the second Ethernet port on
an MR12 AP and connect via the VPN tunnel to the corporate PBX.
Teleworker VPN is compatible with any Meraki Enterprise MR-series AP.
20.3 The Virtual Concentrator
Meraki VPN tunnels terminate on a virtual concentrator rather than on a typical
hardware VPN concentrator appliance. The concentrator image can be
downloaded from Dashboard and installed in VMware (vSphere Hypervisor
(ESXi), Workstation and Player are supported) on any enterprise-grade server.
The virtual concentrator can then be managed using Dashboard like any other
Meraki networking hardware. Full monitoring and logging capabilities (eg.
connected clients, traffic analysis, etc) can be utilized in the concentrator
network. Just like a Meraki AP, the concentrator firmware is automatically
updated by the Cloud Controller.Meraki Cloud Controller Product Manual | 81
20.4 Creating the Virtual Concentrator Network
A virtual concentrator is located in a separate concentrator network, separate
from the networks containing the access points that will be connected via VPN.
A concentrator network is created in the same manner as an AP network, using
the network drop-down selector at the top of the Dashboard.
Figure 36 - Creating a Virtual Concentrator Network
20.5 Installing the Virtual Concentrator
Once the concentrator network has been created, the concentrator virtual
machine image can be downloaded from Dashboard from the Status page under
the Monitor tab in the concentrator network.
Figure 37 - Downloading the Virtual Concentrator Image
Once the image has been downloaded, it can be run in VMware on an existing
server in the LAN. Minimum hardware requirements for the server are:
-1 GHz processor
-1 GB available hard drive space
-500 MB dedicated RAMMeraki Cloud Controller Product Manual | 82
20.6 Monitoring the Virtual Concentrator
Once the virtual concentrator is running, it can be monitored in Dashboard
similarly to Meraki APs. The following is a short description of each page under
the Monitor tab and what features can be found there:
20.6.1 Overview
The overview page shows high-level summary information about the
concentrator network including geographic location of the concentrator on a
Google map, overall bandwidth usage of VPN clients and recent and currently
connected client counts. For more information about the features on this page,
see Section 8.1, “Overview”.
20.6.2 Concentrator Status
The concentrator status page is very similar to the AP status page. Configuration
settings can be edited here including device name, tags and address (this
address is what determines where the concentrator location is displayed in the
Google map on the Overview page). The concentrator virtual machine image
can be downloaded from this page. Various live troubleshooting tests such as
list active clients, ping and throughput tests are located on this page, as are
various diagnostic graphs showing connectivity and latency. For more
information about the features on this page, see Section 8.4, “Access Points
Page”.
20.6.3 Clients
The clients page shows a list of all recent VPN clients and network usage,
including application-level traffic analysis. See Section 8.6, “Clients Page”, for
more details.
20.6.4 Event Log
The Event Log page provides detailed logging about various client activities,
including the following:
• Associations/disassociations
• Authentication attempts and outcomes
• DHCP activity
• Initial traffic
For more details about this page, see Section 8.7, “Event Log Page”.
20.6.5 Summary Report
An administrator can obtain network analytics from the Summary Report page
under the Monitor tab. This report provides information about the VPN usage
and uptime of the Meraki VPN concentrators, and can be e-mailed on a Meraki Cloud Controller Product Manual | 83
configurable schedule for constant visibility. Administrators can also add their
organization’s logo to the report.
20.7 Configuring the Virtual Concentrator
Minimal configuration is required for the virtual concentrator. The configuration
settings that are required can be managed under the Configure tab.
20.7.1 Concentrator Settings
There are three configuration settings that can be found on this page:
concentrator name, tunneling settings and traffic analysis.
Concentrator name – The device name can be set or changed from this page.
Tunneling – In order for a remote AP to successfully connect to the virtual
concentrator, it will likely have to traverse a NAT. There are two methods for
doing this NAT traversal: automatic and manual.
Automatic – NAT traversal is auto-negotiated by the Cloud Controller.
The method works for most NATs and requires an active Internet
connection to function properly. In order for automatic NAT traversal to
work, outbound UDP port 9350 should be opened to allow the virtual
concentrator to communicate with the Cloud Controller during initial
negotiation of NAT traversal connection. After connection is established
between remote AP and the virtual concentrator, the Cloud Controller is
no longer involved in VPN communication.
Manual – With certain types of NATs, automatic NAT traversal will not
work. In this case, a connection can be manually established via port
forwarding by specifying the IP address of the NAT and an open port on
the NAT. The specified NAT port should be configured to forward to the
concentrator’s IP address at port 9350. The concentrator’s IP address
can be found on the Concentrator status page (see 20.6.2,
“Concentrator Status”).
Traffic Analysis – This feature may be enabled and disabled on this page, and
custom pie charts created. See Section 8.6.2, “Traffic Analysis” for more details.
20.7.2 Alerts and Administrators
On this page, the network time zone may be set, email alerts configured for
concentrator outages, administrators designated and firmware update time
windows specified. See related manual sections for AP network for more details.
20.8 Configuring Remote APs
No pre-provisioning of remote APs is required. Once a remote site network is
created in Dashboard and APs are added to the network, the APs will
automatically download their configurations once they are connected to the
Internet.Meraki Cloud Controller Product Manual | 84
20.9 Create Remote Site Network and Add APs
It is recommended that a separate network be created in Dashboard for each
remote site location for purposes of manageability and usage tracking. Remote
site networks should be created and access points added to the networks using
the Quick Start guide. Get started by selecting “Create a New Network” from the
network selector in Dashboard.
Figure 38 - Creating a Remote Site Network
If creating multiple, similar remote networks such as retail store locations,
identical networks can be quickly created by selecting “Copy settings from an
existing network” during the quick start process. It is highly recommended that in
this scenario, a single remote network is completely configured and then other
networks are created by cloning this configuration.
Figure 39 - Network Cloning During Quick Start Process
20.9.1 Configure SSIDs to Tunnel
VPN tunnels are configured on a per SSID basis. A typical configuration for a
small branch office might be a tunneled SSID for corporate use that is copied
from the headquarters network, with 802.1x authentication, bridge mode and
custom firewall rules, and a second personal SSID with WPA2-PSK for personal
and family use that is not tunneled. To select an SSID to be tunneled, select the
concentrator to be used with the VPN drop-down selector on the Access Control
page under the Configure tab in the remote site network.
20.9.2 Configure Split Tunnel
To avoid all traffic from being tunneled to the concentrator in the main office,
select tunnel type: “Split tunnel”. Then select the IP ranges and ports that you
wish to tunnel back to the concentrator. All other traffic will use the local LAN or
WAN connection. This can dramatically reduce the traffic load on the corporate
network.
20.9.3 Tunneling wired client traffic
Wired traffic can be tunneled as well if an MR12 is used as a remote AP by
connecting clients such as an IP phone or desktop computer to the Eth1 port.
Wired client traffic will be tunneled if the port has been associated to an SSID Meraki Cloud Controller Product Manual | 85
that is tunneled. This setting can be found on the Network-wide Settings page
under the Configure tab in the remote network.
Figure 40 - Configuring MR12 port to Tunnel Wired Traffic
20.10Configuration Best Practices
There are a variety of best practices that will result in the smoothest possible
deployment and operation of remote sites with Teleworker VPN that shall be
discussed in the following sections.
20.10.1 Concentrator Location(s)
Depending on the VLAN and firewall configuration of an administrator’s network
as well as how the VPN will be used, the optimal concentrator location and
number of concentrators may vary.
Multiple VLAN Deployments
The concentrator does not currently support VLAN tagging. Clients will be
assigned to the VLAN that the concentrator is located in. Depending on the
desired VPN usage and the network configuration, this will dictate where the
VPN concentrator is located and whether multiple concentrators are required.
Example:
At Acme Corporation, two VLANs exist: VLAN 30, for end user data traffic
(including wireless users) and VLAN 20, for traffic from their PBX phone system
(the PBX at HQ sits in this VLAN). The administrator would like to deploy remote
APs and IP phones to all of the company’s traveling salespersons.
In this scenario there are two concentrator deployment options:
Option 1 – Single concentrator
In this scenario, a single concentrator can be deployed in either VLAN 20 or 30,
and static routes or firewall exceptions created in the LAN to allow the IP phones
to communicate with the PBX or to allow wireless clients to access corporate
resources in VLAN 30.
Option 2 – Two concentrators
In this scenario, a concentrator is placed in both VLAN 20 and 30. Data traffic on
the corporate SSID is tunneled to the VLAN 30 concentrator, and voice traffic
from the IP phones is tunneled to the VLAN 20 concentrator using a second
tunneled SSID associated to the Ethernet port on the AP that the phone is
connected to.Meraki Cloud Controller Product Manual | 86
20.10.2 Firewall Settings
Depending on the administrator’s corporate firewall policies, the IP addresses of
the concentrator might need to be whitelisted for outbound UDP traffic, and the
cloud controller IP addresses for inbound UDP traffic. In addition, if using
automatic NAT traversal, certain IP addresses in the Cloud Controller might need
to be whitelisted to allow the Cloud Controller to negotiate the connection
between the concentrator and the remote APs. A list of the required Cloud
Controller IP addresses can be found here:
http://bit.ly/iaQ8K0Meraki Cloud Controller Product Manual | 87
21 Licensing
This chapter explains licensing for Meraki networks.
An organization must have a current license for the MCC to work properly. Each
organization is licensed for a maximum number of APs, for either the Enterprise
or the Pro Cloud Controller, for a certain amount of time (typically 1 year or 3
years). For example, the organization may be licensed for 250 APs through
January 30, 2011, for the Enterprise Cloud Controller.
Administrators can manage the organization’s licenses on the License Info page
under the Configure tab. The page displays the following:
• Status: OK or problem
• Cloud Controller: Enterprise or Pro
• Expiration date
• Device limit
• Current device count
• License history (list of licenses that have been applied to the network)
When a new organization is created, the organization is granted a 30-day grace
period. Before the grace period expires, the administrator must enter a valid
license key, whose format is a 12-character string (e.g., “Z2A7-32TE-A8Y4”).
Networks using the Pro Cloud Controller do not require a license key.
21.1 Adding Licenses
An administrator can increase the licensed AP limit on the License Info page by
clicking the “Increase device limit” button. The new license key must be at least
as long as the existing license applied to the organization. The MCC will
automatically extend the renewal date of the organization’s license in order to
enforce co-termination.
Example: An organization contains one Enterprise network with ten APs, each of
which was purchased at the same time with a one-year license. Four months
into the license term six more APs are added, each with one-year licenses. The
network now has twenty-four AP-months ((12-8=4 months)*6 APs) of “extra
credit”. These 24 AP-months are distributed over the 16 AP network, adding an
additional 1.5 months onto the original one-year term of the network. So all the
licenses for all 16 APs will expire in 9.5 months. Figure 41 illustrates how this
pro-ration calculation works.Meraki Cloud Controller Product Manual | 88
Figure 41 - License Proration Calculation
21.2 Cloud Controller Upgrades
An administrator can upgrade from Pro Cloud Controller to Enterprise Cloud
Controller by contacting Meraki Sales.
21.3 Renewing Licenses
The administrator can renew the license within 30 days of the renewal date. To
renew, simply click on the “Renew license” button on the License Info page and
enter a license key.
21.4 Expired Licenses or Exceeding the Licensed AP Limit
If an organization’s license is expired or the number of APs in the organization
exceeds the licensed limit, the administrator has 30 days to return the
organization to a valid licensed state. During this grace period, the system will
remind the administrator to add additional licenses. After 30 days, administrators
will not be able to access the MCC (except to add additional licenses), and client
access to the Meraki wireless network will no longer be possible.Meraki Cloud Controller Product Manual | 89
22 Troubleshooting
For troubleshooting tips, please refer to the Meraki Knowledge Base, which can
be accessed from the Help tab.Meraki Cloud Controller Product Manual | 90
23 References
Meraki provides resources that administrators can reference when implementing
and managing a Meraki wireless network, including the following:
• Meraki Network Design Guide
• Meraki Hosted Architecture White Paper
• Wireless Guest Access at the Workplace White Paper
• Wireless User Authentication White Paper
• Wireless Network Security White Paper
These resources are available at the following locations:
http://www.meraki.com/library/collateral/
http://www.meraki.com/library/product/
In addition, numerous tools are available to administrators to help configure and
monitor wireless networks, including:
• Wi-Fi Stumbler
• Wi-Fi Mapper
• Client Insight
• Simulated networks
• Coverage calculator
These tools can be found here:
http://www.meraki.com/toolsMeraki Cloud Controller Product Manual | 91
24 Appendix A: Example Office Configuration
This chapter describes a typical office network configuration for a Meraki wireless
network.
24.1 Objectives
In this example, the network administrator would like to have a single physical
Meraki network provide wireless access to employees, guests and on-site
contractors, each with their own unique access requirements.
Employees – These users need access to all LAN resources, as well as the
Internet. They are authenticated against the company’s existing Active Directory
database using RADIUS via 802.1x. No bandwidth limitations are applied, and
they are not required to view a splash page before gaining network access.
Guests – These users are allowed Internet-only access; all other LAN resources
are blocked. To avoid letting guests consume too much bandwidth, limits of 500
kbps up and down are applied. Guests see a branded splash page when they
first associate to the wireless network where they must enter a temporary
username and password provided by the receptionist. Guest accounts are valid
for two hours.
Contractors – These users have access to a specific printer on the LAN as well
as the Internet. Like employees, contractors authenticate against the company’s
Active Directory server. No bandwidth limitations or access time limits are
applied. Contractors also do not see a splash page.
Guests and contractors share an SSID, while guests have their own SSID.
In addition, employees are allowed to use the wireless network for recreational
purposes, while at the same time certain employee groups need to use video
conferencing as well as access business-critical enterprise web applications
reliably and without performance degradation from bandwidth starvation. To
manage these constraints, the administrator will create traffic shaping rules to
control employee and contractor usage of recreational applications and to
prioritize bandwidth for certain business-critical enterprise applications.
The requirements for the access policies of each user group are summarized in
the table below:Meraki Cloud Controller Product Manual | 92
User Group Required
Access
Access
Control
Band
width
Limit
Traffic
Shaping Time
Limit
Sign-on
Splash
Page
Employees Full LAN WPA2-
Enterpris
e with
802.1x
None Yes None No
Guests Internet
only
Open,
NAC
500
kbps
No Two
hours
Yes
Contractors Internet +
printer
WPA2-
Enterpris
e with
802.1x
None Yes None No
24.2 Implementation Alternatives
Broadly speaking, there are at least two ways to achieve the desired
configuration above: VLANs and firewall policies.
The first approach uses VLANs to enforce different permissions. One advantage
of VLANs is that many administrators are comfortable with VLANs. Some
disadvantages are that VLANs can be fairly hard to configure and may not scale
well across large or geographically distributed networks (e.g., multiple branch
sites). VLANs can be set per SSID or per user/machine using RADIUS
attributes.
The second approach uses Meraki’s Identity Policy Manger (IPM). With IPM,
Meraki access points enforce IP-level firewall rules on a per-user basis to
achieve the desired security policies. No VLANs are required and configurations
are highly flexible.
For the rest of this chapter we focus on the IPM approach.
24.3 Assumptions
In this particular example, it is assumed that the administrator will be configuring
Microsoft NPS with Active Directory for WPA2-Enterprise with 802.1x
authentication and to apply group policies to authenticated users in conjunction
with Meraki’s Identity Policy Manager. Network Policy Server (NPS) is the
RADIUS implementation that runs on Windows Server 2008; earlier versions of
Windows called this services IAS. This example uses NPS.
For more information on NPS configuration, please refer to the following
Microsoft documentation:
http://technet.microsoft.com/en-us/network/bb629414.aspx.Meraki Cloud Controller Product Manual | 93
In addition, we will assume that the network is comprised of MR14 dual-radio
802.11n APs, that the network will be configured for best performance, and that
all of the APs are gateways (i.e., each AP is connected to the LAN).
24.4 Configuration for Guests
This section describes how to configure the guest SSID in Dashboard.
24.4.1 Configuration Settings
On the Overview page under the Configuration tab, enable one SSID for guest
access and another SSID for employees and contractors. In this example, the
guest access SSID is named Meraki-Guest and the employee/contractor SSID is
named Meraki-Corp.
Figure 42 shows the creation of the two SSIDs.
Figure 42 - Creation of Employee and Guest SSIDs
On the Access Control page under the Configure tab, select the Meraki-Guest
SSID. Configure the following settings:
Association requirements: Open (no encryption)
Network sign-on method: Sign-on splash page
Bandwidth limit: 500 kbps
Client IP assignment: NAT Mode: use Meraki DHCP
Content filtering: Block adult content
Network Access Control: Enabled
Firewall: Prevent wireless clients from accessing my LAN
SSID Visibility: Show this SSID
Band selection: Dual band operation with band steering
24.4.2 Configure a Splash Page
The splash page can be customized on the Splash Page menu under the
Configure tab. In this example a custom theme has been uploaded called
“ACME Terms and Conditions”.Meraki Cloud Controller Product Manual | 94
Figure 43 shows the completed splash page configuration settings.
Figure 43 - Splash Page Configuration Settings
24.4.3 Create a Guest Ambassador
In order for the receptionist to be able to access Dashboard to create timeexpiring user accounts for guests, a guest ambassador account needs to be
created. On the Network-wide settings page under the Configure tab, add the
receptionist as a user in the “Guest Ambassadors”.
Figure 44 shows the creation of guest ambassadors using the Guest
Ambassador widget.
Figure 44 – Creating a Guest AmbassadorMeraki Cloud Controller Product Manual | 95
The receptionist now has the ability to create expiring guest accounts and only
has access to the Guest Management Portal.
When a guest visiting the office requires access, the receptionist logs into the
guest management portal and creates guest accounts as necessary.
Figure 45 shows the Guest Management Portal configured to create accounts
that are valid for two hours.
Figure 45 - Guest Management Portal
24.5 Configuration for Employees
The Meraki Corp SSID will now be configured for employee access. Since
802.1x with RADIUS authentication will be used with RADIUS against an on-site
Active Directory server, some configuration of NPS will be required as well.
24.5.1 Dashboard Configuration
On the Access Control page under the Configure tab, select the Meraki-Corp
SSID, which will be used for both employee and contractor access.
Configure the following settings:
Association requirements: WPA2-Enterprise with 802.1x
Network sign-on method: Direct access
Authentication Server: Use my RADIUS server
RADIUS for 802.1x: Enter IP, port and secret for on-site RADIUS
server
Bandwidth limit: Unlimited
Client IP assignment: Bridge Mode (clients will receive IP
addresses from the LAN DHCP server)Meraki Cloud Controller Product Manual | 96
Content filtering: Block adult content
Firewall: Allow wireless clients to access my LAN
SSID Visibility: Show this SSID
Band selection: Dual band operation with Band Steering
A summary of the configuration settings for both Meraki-Guest and Meraki-Corp
can be seen on the Overview page under the Configure tab.
Figure 46 shows the Configuration Overview page with summary of settings for
both SSIDs.
Figure 46 - Summary of Configuration Settings for Both SSIDs
24.5.2 Configure Meraki APs as RADIUS Clients in NPS
In order to complete the 802.1x configuration for employee access, the Meraki
APs need to be configured as RADIUS clients in Microsoft NPS.
Each RADIUS client needs to specify the IP address of the Meraki AP and the
shared secret in use between the Meraki APs and the RADIUS server. This
requirement makes it important to ensure that the APs always get the same IP
address, either through assigning fixed IPs through DHCP or assigning them a
static IP address (see section 6.2.1).
Note that many other RADIUS servers (e.g., Free RADIUS) do not require each
AP to be entered.
Figure 47 is a screenshot of the RADIUS client configuration in NPS.Meraki Cloud Controller Product Manual | 97
Figure 47 - RADIUS Client Configuration in NPS
24.5.3 Testing RADIUS Authentication
Once Dashboard and NPS have been configured for RADIUS authentication, the
configuration should be tested using the Dashboard built-in 802.1x test tool under
Configuration tab by entering a set of user credentials that will be verified against
all APs in the network.
Figure 48 shows the results of a successful 802.1x test, verifying that the
configuration is correct.
Figure 48 - 802.1x Test ResultsMeraki Cloud Controller Product Manual | 98
24.6 Configuration for Contractors
Contractor access is controlled via application of a group policy that specifies
custom firewall policies when a user in this group associates to the Meraki-Corp
SSID. The following sections show how to create a Contractors user group in
NPS, create an NPS access control policy, configure the group policy in
Dashboard, create the custom firewall rules, and test the policy.
24.6.1 Configuration for Users
User accounts for wired and wireless users are configured in Active Directory
(AD). Users can be added to Windows groups or user groups so that NPS
policies can subsequently be defined for a group of users.
Figure 49 shows creation of the Contractors group within Active Directory.
Figure 49 - Active Directory Group Creation
The appropriate users then need to be added to the defined group. Figure 50
shows the addition of a user account to the “Contractors” group.Meraki Cloud Controller Product Manual | 99
Figure 50 - Adding a User to an Active Directory Group
Figure 51 is a screenshot of a user account configured within AD that has been
added to the “Contractors” user group.Meraki Cloud Controller Product Manual | 100
Figure 51 - User Account Group Membership
24.6.2 Configuration of NPS Policies
NPS policies are applied to users when they authenticate against an AD server.
A policy specifies (1) conditions, which must match in order for the policy to be
applied, and (2) settings, which are applied by the policy.
There are two types of NPS policies that are most relevant to a wireless network:
• Connection Request Policies apply before a user authenticates. The
conditions specified for a connection request policy are limited to those
that can be determined prior to authentication (e.g., the MAC address of
the Meraki AP performing the authentication).
• Network Policies apply after a user authenticates and is “authorized”
for network access. Any information about the user that becomes
available after authentication can be used to set conditions for a
network policy (e.g., the user group to which the user belongs).
In this example, a connection request policy for wireless users has been created
that simply specifies which type of authentication protocol will be applied. Here,
Protected Extensible Authentication Protocol (PEAP) is used for all wireless
users requesting network access.Meraki Cloud Controller Product Manual | 101
Figure 52 shows the NPS connection request policy for wireless users on this
network.
Figure 52- Wireless Connection Request NPS Policy
After the connection request policy has been applied and the user has been
authenticated, then the network policy is applied. In this example, the network
policy to be applied is that a RADIUS Filter-ID attribute value of “Contractors” is
returned to the RADIUS client (i.e., the Meraki AP) whenever a member of the
“Contractors” group authenticates to the network.
Figure 53 depicts a network policy with a condition that matches any members of
user group “Contractors”. Meraki Cloud Controller Product Manual | 102
Figure 53 - Network Policy Condition to Match User Group
Figure 54 shows the setting (i.e., the action) of the network policy that causes a
Filter-ID RADIUS attribute with the value “Contractors” to be sent to the RADIUS
client.
Figure 54 - Network Policy Setting to Send RADIUS AttributeMeraki Cloud Controller Product Manual | 103
Figure 55 shows a summary of the “Contractor” network policy, listing that
access should be granted to the user, the Filter-ID RADIUS attribute should be
returned and encryption should be used.
Figure 55 - NPS Network Policy Summary
24.6.3 Configuration of Group Policy in the Meraki Cloud Controller
Once NPS has been configured to return the specified RADIUS attribute for
users from a particular group then the Meraki AP can match this RADIUS
attribute against an IPM group policy that has been configured in the MCC.
In this particular example, a group policy has been configured called
“Contractors” that will be applied to any user whose RADIUS access-accept
contains the value “Contractors” in the Filter-ID attribute. The policy allows
unlimited bandwidth usage, tags traffic with an SSID’s default VLAN tag (if
configured) and applies custom firewall rules. These rules allow TCP traffic to a
printer at 172.16.30.231, block both TCP and UDP traffic to the rest of the LAN
(172.16/16) and allow Internet access. This custom firewall policy will override
the SSID firewall settings for users from this group.
Figure 56 shows the configuration of the Contractors group policy in the MCC. Meraki Cloud Controller Product Manual | 104
Figure 56 - MCC Configuration of IPM Group Policy
24.6.4 Testing the Group Policy Application
Once the MCC group policy has been configured, the final step is to test to make
sure that the policy is being applied correctly to users from the specified group at
authentication. The MCC contains two built-in test tools for this purpose; the
802.1x test tool on the Configure->Access Control page and the Event log.
The 802.1x test tool will simulate a user from this group attempting to
authenticate to each of the APs in the network. If 802.1x and the group policy
have been configured correctly and the correct credentials are entered, the test
will show successful authentication against each AP in the network as well as
any RADIUS attributes that are being returned.
Figure 57 shows the results of a successful 802.1x test. The user’s credentials
were passed by all six APs and a Filter-ID attribute of “Contractors” is being
returned.Meraki Cloud Controller Product Manual | 105
Figure 57 - Successful Result from MCC 802.1x Test Tool
Finally, when a user from this group authenticates to the wireless network the
event log will show any group policies that have been applied.
Figure 58 shows the event log after a user from the Contractor group has
successfully authenticated to the wireless network, in this case to the AP named
“southwest-corner”. The log shows the user has been assigned to the group
“Contractor” and the appropriate policy applied.
Figure 58 - Event Log for Contractor Group User
24.7 Traffic Shaping Configuration
The administrator will create two shaping rules. The first rule will enforce a
bandwidth limit of 1 Mbps per user for streaming video applications (eg.
YouTube), streaming audio applications (eg. Pandora) and peer-to-peer
filesharing applications (eg. BitTorrent), which tend to be the most bandwidthintensive applications used recreationally by employees in this office. The
second rule.will prioritize all traffic to salesforce.com and VoIP and
videoconferencing at Layer 3 by setting the highest possible DSCP bit value of 7,
as well as allow unlimited bandwidth to these applications. Figure 59 shows how
these rules would be configured.Meraki Cloud Controller Product Manual | 106
Figure 59 - Example Traffic Shaping Policy
24.8 Summary
This section shows how a relatively sophisticated corporate environment would
configure a multi-user, authenticated LAN. Environments with fewer
requirements may find they have no need for firewall rules or VLANs, while those
with more complex requirements may find themselves combining VLAN and
multiple firewall rules to achieve the desired configuration.Meraki Cloud Controller Product Manual | 107
25 Appendix B: Example Teleworker VPN Configuration
This chapter describes a typical VPN configuration for a remote site using the
Meraki Teleworker VPN.
25.1 Objectives
In this example, the network administrator at Acme Enterprise would like to
configure a home office with a secure LAN connection for a company executive.
The network will need to support two user groups at the remote site, an
employee (the executive) and family members.
Employee – The executive needs full access to all LAN resources, as well as the
Internet. The user should be authenticated against the company’s existing Active
Directory database using RADIUS via 802.1x, just as though she were trying to
access the wireless LAN at the office. No bandwidth limitations will be applied,
and she is not required to view a splash page before gaining network access.
She will also be provided an IP phone that will require a connection to the PBX at
headquarters. A shaping policy assuring VoIP traffic of unlimited bandwidth is to
be used.
Family Members – These users are allowed Internet and local access for printing
to a local printer; no tunneled LAN access is to be provided. To avoid letting
guests consume too much bandwidth, limits of 1 Mbps up and down are applied
along with a shaping policy limiting streaming audio and video to 500 kbps. A
pre-shared key will be used for authentication and adult content filtering will be
applied.
The requirements for the access policies of each user group are summarized in
the table below:
User Group Required
Access
Access
Control Bandwidth
Limit
Adult
Content
Filtering
Traffic
Shaping
Employees Full LAN WPA2-
Enterprise
with
802.1x
None None Unlimited
bandwidth
for VoIP
Guests Internet
and local
WPA2-
PSK
1 Mbps Enabled Limit P2P,
streaming
video and
audio to
500 kbpsMeraki Cloud Controller Product Manual | 108
25.2 Virtual Concentrator Installation
Before secure LAN access can be provided to remote sites, the virtual
concentrator must be created and deployed in the LAN.
25.2.1 Virtual Concentrator Network
The virtual concentrator resides in a separate network in Dashboard from the
APs at headquarters or the APs at the remote site that will be connecting to it. A
virtual concentrator network is created in the same manner as a network for APs,
by selecting “Create a new VPN concentrator” from the network selector dropdown menu at the top of the screen in Dashboard. See Figure 60, “Creating the
VPN Concentrator Network”.
Figure 60 - Creating the VPN Concentrator Network
The administrator will then be prompted to name the VPN concentrator network.
In this example, the network will be named “HQ Concentrator”. See Figure 61,
“Naming the VPN Concentrator Network”.
Figure 61 - Naming the VPN Concentrator Network
After the network is created, it will appear in the network selector drop-down
menu along with the other AP networks in the organization (see Figure 62).Meraki Cloud Controller Product Manual | 109
Figure 62 – New VPN Concentrator Network
25.2.2 Virtual Concentrator Configuration Settings
For most deployments, minimal configuration of the concentrator is required in
Dashboard. In order for the concentrator to establish a connection with the
remote AP, a NAT must likely be traversed at headquarters. The concentrator
will be configured for automatic NAT traversal, in which case the Meraki Cloud
Controller will negotiate the connection automatically. This setting is found on
the Concentrator settings page under the Configure tab.
Figure 63 - Concentrator Settings
To alert the administrator in case the concentrator were to go offline for any
reason or in case another administrator were to make a configuration change,
alerts for both of these scenarios will be enabled on the Alerts and administration
page under the Configure tab.
Figure 64 - Configuring Alerts for the ConcentratorMeraki Cloud Controller Product Manual | 110
25.2.3 Installing the Virtual Concentrator in VMware
The concentrator virtual machine image can be downloaded directly from the
Concentrator status page under the Monitor tab.
Figure 65 - Downloading the Concentrator Image
Once the image is downloaded it can be run in either VMware Player or
Workstation on an existing server in the LAN at headquarters that is connected to
the Internet. In this example, the concentrator is installed and running in VMware
Player.Meraki Cloud Controller Product Manual | 111
Figure 66 - Virtual Concentrator Running in VMware
Note that clients connected to remote APs that are connected to the concentrator
will be assigned to the VLAN in which the concentrator resides, as they are
connected to a Layer 2 extension of the LAN through the VPN tunnel.
25.3 Remote Site Network Configuration
After the concentrator is configured, installed and running, a network for the
remote site will now be created.
25.3.1 Remote Site Network
A new network for the executive’s home office will be created called “VP Home”.
During the network creation process, the configuration settings of the corporate
network “Acme Enterprise” will be copied to the new network.Meraki Cloud Controller Product Manual | 112
Figure 67 - Creating Remote Network in Dashboard
Copying these settings will copy the configuration of the corporate SSID,
“Corporate”, to the VP Home network including RADIUS configuration settings for
802.1x authentication. This SSID will be selected to have traffic tunneled to the
concentrator. This setting is found on the Access Control page under the
Configure tab for the Corporate SSID.
Figure 68 - Selecting Concentrator to Tunnel SSID Traffic
This SSID is now completely configured for remote LAN access via the VPN
connection.
A second SSID will be configured for family access. The following settings will
be configured:
Association requirements: WPA2-PSK
Network sign-on method: Direct access
Bandwidth limit: 1 Mbps
Client IP assignment: Bridge Mode (clients will receive IP
addresses from the DSL modem/router from local ISP)
Content filtering: Block adult content
Firewall: Allow wireless clients to access my LAN (to print)
Traffic Shaping: Streaming Music and Video limited to 500 kbpsMeraki Cloud Controller Product Manual | 113
VPN: Not tunneled
A third SSID will also be configured for VoIP access so that an IP phone can be
connected at the remote site and connect to the corporate PBX. The following
settings will be configured:
Association requirements: WPA2-PSK
Network sign-on method: Direct access
Bandwidth limit: Unlimited
Client IP assignment: Bridge Mode (clients will receive IP
addresses from the LAN DHCP server)
Firewall: Allow wireless clients to access my LAN
VPN: Tunneled to concentrator
The IP phone will be connected to the 2nd Ethernet port on the MR12 AP that will
be deployed to the executive’s home. To associate the wired port to the VoIP
SSID, the setting “Clients wired directly to Meraki APs” should be set to “Behave
like they are connected to “VoIP”.
Figure 69 - Associating Wired Port on AP to SSID
The following is an overview of the configuration of the various SSIDs in the VP
Home network:
Figure 70 - Overview of SSID Configurations at Remote Site
In this example, the PBX server is located in a different VLAN than the
concentrator, so a static routes or firewall exception must be created in the LAN
to allow the IP phone to communicate with the PBX server.
25.4 AP Pre-Configuration
No pre-provisioning or configuration of the APs is required. An AP can be sent
home with the executive with instructions to plug it into their DSL connection. Meraki Cloud Controller Product Manual | 114
The AP will then download its configuration from the Meraki Enterprise Cloud
Controller automatically.Meraki Cloud Controller Product Manual | 115
26 Appendix B: Miscellaneous Configuration Settings
This section describes how to configure various 3rd party networking products
that were not covered in Appendix A, such as FreeRADIUS servers and Cisco
switches.
26.1 FreeRADIUS Configuration
FreeRADIUS is an open-source alternative to Microsoft NPS/IAS. The following
configuration examples come from a FreeRADIUS server running version 2.1.8.
For more information on FreeRADIUS configuration, please refer to the
FreeRADIUS Wiki:
http://wiki.freeradius.org
26.1.1 Configuration for APs (clients.conf file)
APs are configured as RADIUS clients in the FreeRADIUS clients.conf file. (In
the context of wireless, a RADIUS “client” is not the wireless device itself, but
rather, the AP that contacts the RADIUS server on the wireless device’s behalf.)
An entry in clients.conf can define a single IP address or an IP address range.
The following is an example IP address entry. (Note that the IP address entry
has its own RADIUS shared secret, which overrides the global RADIUS shared
secret that is configured in the “client localhost {}” configuration block.)
client 172.16.2.0/24 {
secret = randomkey
}
26.1.2 Configuration for Users (Users file)
Users and devices are configured in the FreeRADIUS Users file. (The Users file
defines users locally on the FreeRADIUS server. Alternatively, the FreeRADIUS
server can be configured to query an external authentication database. This
latter configuration is outside the scope of this section.)
Example 1: The following is an example user entry for Steve, which causes the
FreeRADIUS server to send back a Filter-Id RADIUS attribute with the value
“Guest”. If the Meraki wireless network is configured to evaluate the Filter-Id
attribute to match a group policy, and if a group policy called “Guest” exists, the
Meraki AP applies this policy to the user.
Steve Cleartext-Password := "test"
Filter-Id = "Guest",
(For more information on group policies configured as part of IPM, see Section
11.2, “How to Configure IPM”.)
Example 2: The following is an example user entry for Bob, which applies a
VLAN ID of 5 to Bob’s traffic:Meraki Cloud Controller Product Manual | 116
Bob Cleartext-Password := "test"
Tunnel-Type = VLAN,
Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-Id = 5
(For more information on per-user VLAN tagging, see Section 9.2, “Per-User
VLAN Tagging”.)
Example 3: The following is an example device entry for MAC-based access
control (MAC address 00:1b:77:18:44:00), which applies a VLAN ID of 30 to this
device’s traffic:
001b77184400 Cleartext-Password := "001b77184400"
Tunnel-Type = VLAN,
Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-ID = 30
(For more information on MAC-based access control, see Section 7.1.2, “MACBased Access Control (Enterprise Only)”. For more information on per-user
VLAN tagging, see Section 9.2, “Per-User VLAN Tagging”.)
26.1.3 Configuration for WPA2-Enterprise with 802.1x Authentication (eap.conf file)
When using a FreeRADIUS server for WPA2-Enterprise with 802.1x
authentication, the RADIUS client (in this case, the Meraki AP) must receive the
RADIUS attributes in the EAP tunnel that is established.
The following configuration in the eap.conf file allows a PEAP tunnel to receive
these RADIUS attributes. These lines should appear in the existing “peap {}”
configuration block in eap.conf.
# the PEAP module also has these configuration
# items, which are the same as for TTLS.
copy_request_to_tunnel = yes
use_tunneled_reply = yes
26.2 Switch Configuration for VLAN Tagging
The following configuration from a Cisco switch can be used on a port that is
connected to a Meraki AP. The configuration puts the port in trunk mode, which
enables the port to handle VLAN tagged and untagged packets.
interface FastEthernet0/3
duplex full
speed 100
switchport trunk encapsulation dot1q
switchport trunk native vlan 10
switchport mode trunkMeraki Cloud Controller Product Manual | 117
27 Appendix C: RADIUS Attributes
The following sections describe the RADIUS attributes that the MCC supports for
both splash page sign-on with RADIUS and 802.1x with RADIUS. In the below
tables, “X” means attribute is supported.
27.1 Authentication Attributes
For further details, see the RADIUS RFC (RFC 2865) and the Meraki Knowledge
Base at http://meraki.com/support/knowledge_base.
27.1.1 Attributes Supported in Access-Request Messages
Attribute Splash
page with
RADIUS
802.1x
with
RADIUS
Notes
User-Name X X
User-Password X X
NAS-IP-Address X X
NAS-Identifier X X
NAS-Port X X Set to 0
NAS-Port-Id X
NAS-Port-Type X X Set to “WirelessIEEE-802-11”
Calling-Station-Id X X
Framed-IPAddress
X
Framed-MTU X
Connect-Info X
Acct-Session-Id X X
Service-Type X Set to 1
Meraki-DeviceName
X Meraki VSA
containing the AP
name as a string.
Vendor ID=29671
Vendor Type=1
27.1.2 Attributes Supported in Access-Accept Messages
Attribute Splash
Page with
802.1x with NotesMeraki Cloud Controller Product Manual | 118
RADIUS RADIUS
Maximum-DataRate-Upstream
X In bit/s
Maximum-DataRate-Downstream
X In bit/s
Session-Timeout X X In seconds
Idle-Timeout X X In seconds
Tunnel-PrivateGroup-ID
X
Tunnel-Type X
Tunnel-MediumType
X
Reply-Message X X Useful for error
reporting
Filter-Id X Used for
assigning group
policies
Reply-Message X X Used for
assigning group
policies
Airespace-ACLName
X Used for
assigning group
policies
Aruba-User-Role X Used for
assigning group
policies
27.1.3 Attributes Supported in Access-Reject Messages
Attribute Splash
Page with
RADIUS
802.1x with
RADIUS
Notes
Reply-Message X Can be displayed
to userMeraki Cloud Controller Product Manual | 119
27.2 Accounting Attributes
For further details, see the RADIUS accounting RFC (RFC 2866).
Attribute Supported in
Accounting-Start
Supported in
Accounting-Stop
Acct-Status-Type X X
Acct-Input-Octets X
Acct-Output-Octets X
Acct-Session-Id X X
Acct-Session-Time X
Acct-Input-Packets X
Acct-Output-Packets X
Acct-Terminate-Cause X
Acct-Input-Gigawords X
Acct-Output-Gigawords X
Event-Timestamp X X
User-Name X X
Framed-IP-Address X X
NAS-Port-Id X X
NAS-Port-Type X X
NAS-Identifier X X
Calling-Station-Id X X
Called-Station-Id X X
Meraki-Device-Name X X
NAS-IP-Address X X
NAS-Port X XMeraki Cloud Controller Product Manual | 120
28 Appendix D: Meraki-Hosted Splash Page Variables
Meraki defines a set of variables to represent custom values in the HTML and
CSS of the click-through splash page, the splash page with username/password
login, or the blocked access page. Each of these pages is editable within a
splash page theme under the Configure tab on the Splash Page page.
The following pages are used by the MCC:
• continue.html: Displayed for the click-through splash page.
• auth.html: Displayed for the splash page with username/password
login.
• blocked.html: Displayed when a user or device has been blocked.
When a user is served a splash page, each of these custom strings will be
replaced with its underlying value in a simple substitution. The variables can be
used anywhere in the HTML or CSS. They should only be used in places where
the underlying value will make sense.
For example, the variable $MERAKI:CONTENT2_LINK_COLOR$ will return a
value representing a color in the form "#rrggbb" and thus is appropriate for use in
style sheets or HTML style attributes where a color is required.
The following custom variables are defined:
$MERAKI:AD_TAG_300x250$
• Returns: HTML (including Javascript)
• Value: An ad tag that inserts a 300 x 250 ad frame.
• Arguments: None
$MERAKI:AUTH_ALREADY_HAVE_ACCOUNT_SIGN_IN_HERE_FORM$
• Returns: HTML
• Value: The login form, with fields for the user's email address and
password. Used for networks with user-based authentication enabled.
• Arguments: None
$MERAKI:AUTH_ALREADY_HAVE_ACCOUNT_SIGN_IN_HERE_TEXT$
• Returns: Text string
• Value: “If you already have an account on this network, sign in here” in
the local language of the network.
• Arguments: None
$MERAKI:AUTH_AND_CONTINUE_URL$
• Returns: URL
• Value: The URL that the user should follow to get authorized on the
network. The user will be redirected to the URL that he was trying to Meraki Cloud Controller Product Manual | 121
fetch when he was served the splash page. Used to create the
"Continue to the Internet" link. Used for open access (free) networks.
• Arguments: None
$MERAKI:AUTH_CREATE_ACCOUNT_FORM$
• Returns: HTML
• Value: The form that allows the user to create an account.
• Arguments: None
$MERAKI:AUTH_CREATE_ACCOUNT_TEXT$
• Returns: Text string
• Value: “If you don’t have an account, create one here” in the local
language of the network.
• Arguments: None
$MERAKI:AUTH_ON_PAGE_LOAD$
• Returns: JavaScript
• Value: Authorizes the user on the network as soon as the splash page
is loaded. Used when advertising is enabled to allow user to click
straight through to an ad without having to click on the “Continue to the
Internet” button.
• Arguments: None
$MERAKI:AUTH_URL(http://example.com/)$
• Returns: URL
• Value: Similar to AUTH_AND_CONTINUE_URL, but redirects to a URL
that the administrator specifies, rather than the URL the user was
originally trying to load. This can be used to display a post-splash
"Welcome" or "Thank you" message.
• Arguments: URL
$MERAKI:BODY_BACKGROUND_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: The background color of the splash page.
• Arguments: None
$MERAKI:BODY_LINK_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: The color for links as specified in the
tag on the splash
page.
• Arguments: None
$MERAKI:BODY_TEXT_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: The color for the body as specified in the tag on the
splash page.
• Arguments: None
$MERAKI:CLASSIC_TOP_HALF_RIGHT_PADDING$
• Returns: “0” or “215px”Meraki Cloud Controller Product Manual | 122
• Value:
o 0 = there is no custom image on the splash screen
o 215px = there is a custom image on the splash screen
• Arguments: None
$MERAKI:CONTENT1_BACKGROUND_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: Background color to the row of colors with the same name as
“CONTENT1”.
• Arguments: None
$MERAKI:CONTENT1_LINK_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: The color for links for the row of colors with the same name as
“CONTENT1”.
• Arguments: None
$MERAKI:CONTENT1_TEXT_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: Text color for the row of colors with the same name as
“CONTENT1”.
• Arguments: None
$MERAKI:CONTENT2_BACKGROUND_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: Background color for the row of colors with the same name as
“CONTENT2”.
• Arguments: None
$MERAKI:CONTENT2_LINK_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: Link color for the row of colors with the same name as
“CONTENT2”.
• Arguments: None
$MERAKI:CONTENT2_TEXT_COLOR$
• Returns: Color value in the form "#ffffff"
• Value: Text color for the row of colors with the same name as
“CONTENT2”.
• Arguments: None
$MERAKI:NETWORK_ADMIN_BLOCK_MESSAGE$
• Returns: HTML
• Value: Contains the message the administrator entered on the Clients
page of the MCC to be displayed for blocked users.
• Arguments: None
$MERAKI:NETWORK_ADMIN_BLOCKED_YOU$
• Returns: TextMeraki Cloud Controller Product Manual | 123
• Value: “This network administrator has prevented you from using the
network” in the local language of the network.
• Arguments: None
$MERAKI:NETWORK_LOGO_IMG_TAG $
• Returns: HTML tag
• Value: References the network’s logo.
• Arguments: None
$MERAKI:NETWORK_MESSAGE$
• Returns: Text String
• Value: The custom message entered on the Splash Page page in the
MCC. Does not include HTML tags in the text.
• Arguments: None
$MERAKI:NETWORK_NAME$
• Returns: Text String
• Value: The name of the network.
• Arguments: None
$MERAKI:NETWORK_SPLASH_IMAGE_IMG_SRC$
• Returns: URL
• Value: Link to the custom image on the splash page.
• Arguments: None
$MERAKI:NETWORK_SPLASH_IMAGE_VISIBILITY$
• Returns: “block” or “none
• Represents: Presence of a custom image on the splash page.
o “block” = Image present
o “none” = Image not present
• Arguments: None
$MERAKI:ROUND_CORNERS(div_name,rounding_preferences)$
• Returns: JavaScript
• Value: Rounds the corners of the specified division ("div")
• Arguments: name of the div, a comma, followed by a list of space
separated values indicating what corner is to be rounded. Valid
rounding_preferences are: Top, Bottom, Left, Right, or any of tl, bl, br,
or tr, corresponding to top-left, bottom-left, etc.
• Example: $MERAKI:ROUND_CORNERS(DIVISION_NAME, top
bottom)$
$MERAKI:TOOLBAR_PRIVACY_POLICY_LINK$
• Returns: Text String
• Value: “The use of this network is subject to Meraki’s privacy policy” The
words “Privacy policy” are a link to Meraki’s privacy policy statement. If
the toolbar is disabled this returns an empty string
• Arguments: None
$MERAKI:USER_ALERTS$Meraki Cloud Controller Product Manual | 124
• Returns: HTML
• Value: A div containing alert messages resulting from the submission of
a form (e.g., "login incorrect").
• Arguments: None
IPsec Manual Keying Between Routers
Configuration Example
Document ID: 14140
Introduction
Prerequisites
Requirements
Components Used
Conventions
Configure
Network Diagram
Configurations
Verify
Troubleshoot
Troubleshooting Commands
Transform Sets Do Not Match
ACLs Do Not Match
One Side has crypto map and the Other Does Not
The Crypto Engine Accelerator Card is Enabled
Related Information
Introduction
This sample configuration allows you to encrypt traffic between the 12.12.12.x and the 14.14.14.x networks
with the help of IPsec manual keying. For test purposes, an access control list (ACL) and extended ping from
host 12.12.12.12 to 14.14.14.14 were used.
Manual keying is usually only necessary when a Cisco device is configured to encrypt traffic to another
vendor's device which does not support Internet Key Exchange (IKE). If IKE is configurable on both devices,
it is preferable to use automatic keying. Cisco device security parameter indexes (SPIs) are in decimal
however some vendors do SPIs in hexadecimal. If this is the case, then sometimes conversion is needed.
Prerequisites
Requirements
There are no specific prerequisites for this document.
Components Used
The information in this document is based on these software and hardware versions:
• Cisco 3640 and 1605 routers
• Cisco IOS® Software Release 12.3.3.a
Note: On all platforms that contain hardware encryption adapters, manual encryption is not supported when
the hardware encryption adapter is enabled.
The information presented in this document was created from devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, make surethat you understand the potential impact of any command before you use it.
Conventions
Refer to Cisco Technical Tips Conventions for more information on document conventions.
Configure
In this section, you are presented with the information to configure the features described in this document.
Note: Use the Command Lookup Tool (registered customers only) to find more information on the commands
used in this document.
Network Diagram
This document uses this network setup:
Configurations
This document uses these configurations:
• Light Configuration
• House Configuration
Light Configuration
light#show running−config
Building configuration...
Current configuration : 1177 bytes
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password−encryption
!
hostname light!
boot−start−marker
boot−end−marker
!
enable password cisco
!
no aaa new−model
ip subnet−zero
!
no crypto isakmp enable
!
!−−− IPsec configuration
crypto ipsec transform−set encrypt−des esp−des esp−sha−hmac
!
!
crypto map testcase 8 ipsec−manual
set peer 11.11.11.12
set session−key inbound esp 1001 cipher 1234abcd1234abcd authenticator 20
set session−key outbound esp 1000 cipher abcd1234abcd1234 authenticator 20
set transform−set encrypt−des
!−−− Traffic to encrypt
match address 100
!
!
interface Ethernet2/0
ip address 12.12.12.12 255.255.255.0
half−duplex
!
interface Ethernet2/1
ip address 11.11.11.11 255.255.255.0
half−duplex
!−−− Apply crypto map.
crypto map testcase
!
ip http server
no ip http secure−server
ip classless
ip route 0.0.0.0 0.0.0.0 11.11.11.12
!
!
!−−− Traffic to encrypt
access−list 100 permit ip host 12.12.12.12 host 14.14.14.14
!
!
!
!
line con 0
line aux 0
line vty 0 4
login
!
!
!
House Configuration
house#show running−configCurrent configuration : 1194 bytes
!
version 12.3
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname house
!
!
logging buffered 50000 debugging
enable password cisco
!
no aaa new−model
ip subnet−zero
ip domain name cisco.com
!
ip cef
!
!
no crypto isakmp enable
!
!
!−−− IPsec configuration
crypto ipsec transform−set encrypt−des esp−des esp−sha−hmac
!
crypto map testcase 8 ipsec−manual
set peer 11.11.11.11
set session−key inbound esp 1000 cipher abcd1234abcd1234 authenticator 20
set session−key outbound esp 1001 cipher 1234abcd1234abcd authenticator 20
set transform−set encrypt−des
!−−− Traffic to encrypt
match address 100
!
!
interface Ethernet0
ip address 11.11.11.12 255.255.255.0
!−−− Apply crypto map.
crypto map testcase
!
interface Ethernet1
ip address 14.14.14.14 255.255.255.0
!
ip classless
ip route 0.0.0.0 0.0.0.0 11.11.11.11
no ip http server
no ip http secure−server
!
!
!−−− Traffic to encrypt
access−list 100 permit ip host 14.14.14.14 host 12.12.12.12
!
!
line con 0
exec−timeout 0 0
transport preferred none
transport output noneline vty 0 4
exec−timeout 0 0
password cisco
login
transport preferred none
transport input none
transport output none
!
!
end
Verify
This section provides information you can use to confirm your configuration functions properly.
The Output Interpreter Tool (registered customers only) (OIT) supports certain show commands. Use the OIT
to view an analysis of show command output.
• show crypto ipsec saShows the phase two security associations.
Troubleshoot
This section provides information you can use to troubleshoot your configuration.
Troubleshooting Commands
The Output Interpreter Tool (registered customers only) (OIT) supports certain show commands. Use the OIT
to view an analysis of show command output.
Note: Refer to Important Information on Debug Commands before you use debug commands.
• debug crypto ipsecDisplays the IPsec negotiations of phase two.
• debug crypto engineDisplays the traffic that is encrypted.
Transform Sets Do Not Match
Light has ah−sha−hmac and House has esp−des.
*Mar 2 01:16:09.849: IPSEC(sa_request): ,
(key eng. msg.) OUTBOUND local= 11.11.11.11, remote= 11.11.11.12,
local_proxy= 12.12.12.12/255.255.255.255/0/0 (type=1),
remote_proxy= 14.14.14.14/255.255.255.255/0/0 (type=1),
protocol= AH, transform= ah−sha−hmac ,
lifedur= 3600s and 4608000kb,
spi= 0xACD76816(2899798038), conn_id= 0, keysize= 0, flags= 0x400A
*Mar 2 01:16:09.849: IPSEC(manual_key_stuffing):
keys missing for addr 11.11.11.12/prot 51/spi 0.....
ACLs Do Not Match
On side_A (the "light" router) there is an inside host−to−inside−host and on side_B (the "house" router) there
is an interface−to−interface. ACLs must always be symmetric (these are not).
hostname house
match address 101
access−list 101 permit ip host 11.11.11.12 host 11.11.11.11!
hostname light
match address 100
access−list 100 permit ip host 12.12.12.12 host 14.14.14.14
This output is taken from the side_A initiating ping:
nothing
light#show crypto engine connections active
ID Interface IP−Address State Algorithm Encrypt Decrypt
2000 Ethernet2/1 11.11.11.11 set DES_56_CBC 5 0
2001 Ethernet2/1 11.11.11.11 set DES_56_CBC 0 0
This output is taken from the side_B when side_A is initiating ping:
house#
1d00h: IPSEC(epa_des_crypt): decrypted packet failed SA identity check
1d00h: IPSEC(epa_des_crypt): decrypted packet failed SA identity check
1d00h: IPSEC(epa_des_crypt): decrypted packet failed SA identity check
1d00h: IPSEC(epa_des_crypt): decrypted packet failed SA identity check
1d00h: IPSEC(epa_des_crypt): decrypted packet failed SA identity check
house#show crypto engine connections active
ID Interface IP−Address State Algorithm Encrypt Decrypt
2000 Ethernet0 11.11.11.12 set DES_56_CBC 0 0
2001 Ethernet0 11.11.11.12 set DES_56_CBC 0 5
This output is taken from the side_B initiating ping:
side_ B
%CRYPTO−4−RECVD_PKT_NOT_IPSEC: Rec'd packet not an IPSEC packet.
(ip) vrf/dest_addr= /12.12.12.12, src_addr= 14.14.14.14, prot= 1
One Side has crypto map and the Other Does Not
%CRYPTO−4−RECVD_PKT_NOT_IPSEC: Rec'd packet not an IPSEC packet.
(ip) vrf/dest_addr= /14.14.14.14, src_addr= 12.12.12.12, prot= 1
This output is taken from the side_B that has a crypto map:
house#show crypto engine connections active
ID Interface IP−Address State Algorithm Encrypt Decrypt
2000 Ethernet0 11.11.11.12 set DES_56_CBC 5 0
2001 Ethernet0 11.11.11.12 set DES_56_CBC 0 0
The Crypto Engine Accelerator Card is Enabled
1d05h: %HW_VPN−1−HPRXERR: Hardware VPN0/13: Packet
Encryption/Decryption error, status=4098.....
Related Information
• IPsec Negotiation/IKE Protocols
• Technical Support & Documentation − Cisco SystemsContacts & Feedback | Help | Site Map
© 2012 − 2013 Cisco Systems, Inc. All rights reserved. Terms & Conditions | Privacy Statement | Cookie Policy | Trademarks of
Cisco Systems, Inc.
Updated: Oct 29, 2006 Document ID: 14140
Description de la gamme Cisco ASA Description de la gamme Cisco ASA 5500
Les serveurs de sécurité adaptatifs de la gamme Cisco® ASA
5500 s’appuient sur une plate-forme modulaire capable de
fournir des services de sécurité et de VPN de prochaine
génération à tous les environnements, depuis les petits bureaux,
les bureaux à domicile et les PME/PMI jusqu’aux grandes
entreprises. La gamme Cisco ASA 5500 met à la disposition de
l’entreprise une gamme complète de services personnalisés au
travers de ses diverses éditions spécifiquement conçues pour le
pare-feu, la prévention des intrusions, la protection des contenus
et les VPN.
Ces éditions offrent une protection de haute qualité en
fournissant les services adaptés à chaque site. Chaque édition
associe un ensemble spécialisé de services Cisco ASA qui
répondent très exactement aux besoins des environnements
spécifiques du réseau de l’entreprise. En satisfaisant aux besoins
de sécurité de chaque domaine du réseau, c’est la sécurité de
l’ensemble du réseau qui se trouve renforcée.
La gamme Cisco ASA 5500 permet la normalisation sur une
unique plate-forme afin de réduire les frais opérationnels
associés à la sécurité. L’environnement commun de configuration
simplifie la gestion et réduit les coûts de formation du personnel
tandis que la plate-forme matérielle commune de la gamme
permet de réaliser des économies sur les pièces de rechange.
Chaque édition répond aux besoins spécifiques d’un
environnement du réseau de l’entreprise :
• Firewall Edition : grâce à cette édition pare-feu, l’entreprise
peut déployer ses applications et ses réseaux vitaux de
manière fiable et sécurisée. La conception modulaire unique
du Cisco ASA 5500 garantit une remarquable protection de
l’investissement et des frais d’exploitation réduits.
• IPS Edition : dotée d’un ensemble de services de pare-feu, de
sécurité applicative et de prévention des intrusions, cette
édition protège les serveurs et l’infrastructure essentiels de
l’entreprise contre les vers, les pirates et les autres
menaces.
• Content Security Edition : avec son ensemble complet de
services de sécurité, cette édition protège les utilisateurs
des petits sites et des sites distants. Les services de parefeu et de VPN de qualité entreprise assurent une
connectivité sécurisée vers le réseau du siège social. A la
pointe de la technologie actuelle, les services de protection
des contenus de Trend Micro mettent le système client à
l’abri des sites Web malveillants et des autres menaces à
base de contenus comme les virus, les logiciels espions et le
phishing.
• SSL/IPsec VPN Edition : cette édition protège l’accès des
utilisateurs distants vers les systèmes et les équipements du
réseau interne et supporte la mise en grappe des VPN pour
les déploiements de grande taille en entreprise. Les
technologies d’accès VPN à distance protégées par les
normes SSL (Secure Sockets Layer) et IPSec (IP Security)
sont renforcées par des technologies de réduction des
menaces, comme Cisco Secure Desktop, et des services de
pare-feu et de prévention des intrusions qui garantissent
que le trafic VPN ne fera pas courir de risques au réseau de
l’entreprise.
Cinq raisons d’acheter les serveurs de sécurité
adaptatifs de la gamme Cisco ASA 5500 adaptatifs de la gamme Cisco ASA 5500
1. .. Technologie de pare 1. Technologie de pare Technologie de pare----feu sécurisé et de protection feu sécurisé et de protection
des VPN contre les menaces des VPN contre les menaces
Développée autour de la même technologie éprouvée qui a fait
le succès du serveur de sécurité Cisco PIX et de la gamme des
concentrateurs Cisco VPN 3000, la gamme Cisco ASA 5500 est
la première solution à proposer des services VPN SSL et IPSec
protégés par la première technologie de pare-feu du marché.
2. .. Services de protection des contenus à la pointe de 2. Services de protection des contenus à la pointe de
l’industrie l’industrie
Réunit la maîtrise de Trend Micro en matière de protection
contre les menaces et de contrôle des contenus à la périphérie
Internet et les solutions éprouvées de Cisco pour fournir des
services anti-X complets – protection contre les virus, les
logiciels espions, le courrier indésirable et le phishing, ainsi que
le blocage de fichiers, le blocage et le filtrage des URL et le
filtrage des contenus.
3. .. Services 3. Services Services évolués de prévention des intrusions évolués de prévention des intrusions évolués de prévention des intrusions
Les services proactifs de prévention des intrusions offrent toutes
les fonctionnalités qui permettent de bloquer un large éventail de
menaces – vers, attaques sur la couche applicative ou au niveau
du système d'exploitation, rootkits, logiciels espions, partages de
fichiers en « peer-to-peer » et messagerie instantanée.
4. .. Services multifonctions de gestion et de surveillance 4. Services multifonctions de gestion et de surveillance Services multifonctions de gestion et de surveillance
Sur une même plate-forme, la gamme Cisco ASA 5500 fournit
des services de gestion et de surveillance utilisables de manière
intuitive grâce au gestionnaire Cisco ASDM (Adaptive Security
Device Manager) ainsi que des services de gestion de catégorie
entreprise avec Cisco Security Management Suite.
5. .. Réduction des frais de déploiement et d’exploitati 5. Réduction des frais de déploiement et d’exploitati Réduction des frais de déploiement et d’exploitationononon
Développée autour d’un concept et d’une interface analogues à
ceux des solutions de sécurité existantes de Cisco, la gamme
Cisco ASA 5500 permet de réduire considérablement le coût
d’acquisition que ce soit dans le cadre d’un premier déploiement
d’une solution de sécurité ou d’une gestion au jour le jour.
Serveurs de sécurité adaptatifs de la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUEACRONYMES ACRONYMES
SSC : Security Services Card, SSM SSC SSM :::: Security Services Module, AIP----SSM :::: Advanced Inspection and Prevention Security Services Module, CSC----SSM :::: Content Security and Control Security
Services Module, 4GE----SSM :::: Module de services de sécurité à 4 ports Ethernet Gigabit
Modèles et licences de la gamme Cisco ASA Modèles et licences de la gamme Cisco ASA 5500
Cisco ASA 5505 Base /
Security Plus
Cisco ASA 5510 Base /
Security Plus
Cisco ASA 5520 Cisco ASA 5520 Cisco ASA 5550 Cisco ASA 5550 Cisco ASA 5540 Cisco ASA 5540
Utilisateur type
Petit bureau / bureau à
domicile ROBO / MSSP /
Télétravailleur d’entreprise
PME / Petite société Petite société
Entreprise de taille
moyenne
Grande entreprise
Résumé des performances Résumé des performances
Débit maximal du pare-feu (Mbits/s) 150 300 450 650 1200
Débit maximal des VPN 3DES ou AES (Mbits/s) 100 170 225 325 425
Nombre maximal connexions VPN à distance et de site à
site
10 / 25 250 750 5000 5000
Nombre maximal de connexions VPN SSL 1 25 250 750 2500 5000
Nombre maximal de connexions 10 000 / 25 000 50 000 / 130 000 280 000 400 000 650 000
Nombre maximal de connexions / seconde 3000 6000 9000 20 000 28 000
Paquets par seconde (64 octets) 85 000 190 000 320 000 500 000 600 000
Récapitulatif technique Récapitulatif technique
Mémoire (Mo) 256 256 512 1024 4096
Mémoire Flash système (Mo) 64 64 64 64 64
Ports intégrés
Commutateur 10/100 8
ports avec 2 ports à
alimentation en ligne (PoE)
5-10/100 4-10/100/1000,1-10/100 4-10/100/1000,1-10/100 8-10/100/1000,1-10/100
Nombre maximal d’interfaces virtuelles (VLAN)
3 (ligne réseau désactivée)
/ 20 (ligne réseau activée)
50 /100 150 200 250
Emplacement d’extension SSC ou SSM Emplacement d’extension SSC ou SSM Oui (SSC) Oui (SSC) Oui (SSC) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Oui (SSM) Nononon
Capacités SSC/SSM
Modules SSC/SSM supportés Ultérieurement, SSC
CSC-SSM, AIP-SSM,4GESSM
CSC-SSM, AIP-SSM,4GESSM
CSC-SSM, AIP-SSM, 4GESSM
Non
Prévention des intrusions Non disponible Oui avec AIP-SSM Oui avec AIP-SSM Oui avec AIP-SSM Non
Débit des services simultanés de limitation des risques
(pare-feu et services IPS) (Mbits/s)
Non disponible
150 (avec AIP-SSM-10)
300 (avec AIP-SSM-20)
225 (avec AIP-SSM-10)
375 (avec AIP-SSM-20)
450 avec AIP-SSM-20 Non disponible
Protection des contenus (antivirus, anti-logiciel espion,
blocage de fichiers, anti-courrier indésirable, anti-phishing,
et filtrage des URL)
Non disponible Oui avec CSC-SSM Oui avec CSC-SSM Oui avec CSC-SSM Non disponible
Nombre maximal d’utilisateurs antivirus, anti-logiciel espion,
blocage de fichiers (CSC-SSM seulement)
Non disponible
500 (avec CSC-SSM-10)
1000 (avec CSC-SSM-20)
500 (avec CSC-SSM-10)
1000 (avec CSC-SSM-20)
500 (avec CSC-SSM-10)
1000 (avec CSC-SSM-20)
Non disponible
Fonctionnalités de la licence CSC SSM Plus Non disponible
Anti-spam, anti-phishing,
filtrage des URL
Anti-spam, anti-phishing,
filtrage des URL
Anti-spam, anti-phishing,
filtrage des URL
Non disponible
Caractéristiques Caractéristiques
Protection de la couche applicative Oui Oui Oui Oui Oui
Pare-feu de couche 2 transparent Oui Oui Oui Oui Oui
Contextes de sécurité (intégrés / maximum) 2 0/0 0/0 / 2/5 2/20 2/50 2/50
Inspection GTP/GPRS 2 Non disponible Non disponible Oui Oui Oui
Haute disponibilité 3
Non disponible / A/V à
inspection d’état
Non disponible / A/A et
A/V
A/A et A/V A/A et A/V A/A et A/V
équilibrage de charge et mise en grappe des VPN Non disponible Non disponible / Oui Oui Oui Oui
1 A partir de la version v7.1 du logiciel Cisco ASA, la fonctionnalité VPN SSL (WebVPN) nécessite une licence. Les systèmes autorisent par défaut 2 utilisateurs VPN SSL pour évaluation et gestion à distance
2 Fonctionnalités sous licence
3 A/V= Actif/Veille ; A/A = Actif/Actif
Copyright © 2007, Cisco Systems, Inc. Tous droits réservés. Cisco, Cisco IOS, Cisco Systems et le logo Cisco Systèmes sont des marques déposées de Cisco Systems, Inc. ou de ses filiales aux Etats-Unis et dans
certains autres pays. C45-345380-04 6/07
Serveurs de sécurité adaptatifs de la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
© 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 1/24
Description des Serveurs de Sécurité Adaptatifs de
la gamme
Cisco ASA 5500
Les Serveurs de Sécurité Adaptatifs Cisco® ASA 5500 combinent les meilleurs services de
VPN et de sécurité, et l’architecture évolutive AIM (Adaptive Identification and Mitigation),
pour constituer une solution de sécurité spécifique. Conçue comme l’élément principal de la
solution Self-Defending Network de Cisco (le réseau qui se défend tout seul), la gamme
Cisco ASA 5500 permet de mettre en place une défense proactive face aux menaces et de
bloquer les attaques avant qu’elles ne se diffusent à travers le réseau, de contrôler l’activité
du réseau et le trafic applicatif et d’offrir une connectivité VPN flexible. Le résultat est une
gamme de puissants serveurs de sécurité réseau multifonctions capables d’assurer en
profondeur la protection élargie des réseaux des PME/PMI et des grandes entreprises tout
en réduisant l’ensemble des frais de déploiement et d’exploitation et en simplifiant les tâches
généralement associées à un tel niveau de sécurité.
Réunissant sur une même plate-forme une combinaison puissante de nombreuses
technologies éprouvées, la gamme Cisco ASA 5500 vous donne les moyens opérationnels et
économiques de déployer des services de sécurité complets vers un plus grand nombre de
sites. La gamme complète des services disponibles avec la famille Cisco ASA 5500 permet
de répondre aux besoins spécifiques de chaque site grâce à des éditions produits conçues
pour les PME comme pour les grandes entreprises. Ces différentes éditions offrent une
protection de qualité supérieure en apportant à chaque installation les services dont elle a
besoin. Chaque édition de la gamme Cisco ASA 5500 regroupe un ensemble spécialisé de
services – firewall, VPN SSL et IPSec, protection contre les intrusions, services Anti-X, etc. –
qui répondent exactement aux besoins des différents environnements du réseau d’entreprise.
Et lorsque les besoins de sécurité de chaque site sont correctement assurés, c’est l’ensemble
de la sécurité du réseau qui en bénéficie.
Figure 1. Les serveurs de sécurité adaptatifs de la gamme Cisco ASA 5500
Fiche Technique © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 2/24
La gamme Cisco ASA 5500 aide les entreprises à protéger plus efficacement leurs réseaux
tout en garantissant une exceptionnelle protection de leurs investissements grâce
notamment, aux éléments clés suivants :
• Des fonctionnalités éprouvées de sécurité et de connectivité VPN. Le système de
prévention des intrusions (IPS) et de firewall multifonctions, ainsi que les technologies
anti-X et VPN IPSec ou SSL (IP Security/Secure Sockets Layer) garantissent la
robustesse de la sécurité des applications, le contrôle d’accès par utilisateur et par
application, la protection contre les vers, les virus et les logiciels malveillants, le filtrage
des contenus ainsi qu’une connectivité à distance par site ou par utilisateur.
• L’architecture évolutive des services AIM (Adaptive Identification and Mitigation).
Exploitant un cadre modulaire de traitement et de politique de services, l’architecture
AIM de Cisco ASA 5500 autorise l’application, par flux de trafic, de services spécifiques
de sécurité ou de réseau qui permettent des contrôles de politiques d’une très grande
précision ainsi que la protection anti-X tout en accélérant le traitement du trafic. Les
avantages en termes de performances et d’économies offerts par l’architecture AIM de
la gamme Cisco ASA 5500, ainsi que l’évolutivité logicielle et matérielle garantie par les
modules SSM (Security Service Module), permettent de faire évoluer les services
existants et d’en déployer de nouveaux, sans remplacer la plate-forme et sans réduire
les performances.
Fondement architectural de la gamme Cisco ASA 5500, AIM permet l’application de
politiques de sécurité hautement personnalisables ainsi qu’une évolutivité de service
sans précédent qui renforce la protection des entreprises contre l’environnement
toujours plus dangereux qui les menace.
• La réduction des frais de déploiement et d’exploitation. La solution multifonctions
Cisco ASA 5500 permet la normalisation de la plate-forme, de la configuration et de la
gestion, contribuant à réduire les frais de déploiement et d’exploitation récurrents.
PRÉSENTATION DE LA GAMME CISCO ASA 5500
La gamme Cisco ASA 5500 inclut les boîtiers de sécurité adaptatifs Cisco ASA 5505, 5510,
5520 et 5540. Il s’agit de quatre serveurs de sécurité ultra-performants issus de l’expertise
de Cisco Systems® en matière de développement de solutions de sécurité et VPN
reconnues et leaders sur leur marché. Cette gamme utilise les dernières technologies des
serveurs de sécurité Cisco PIX® 500, des capteurs Cisco IPS 4200 et des concentrateurs
Cisco VPN 3000. . Conçue comme l’élément principal de la solution Self-Defending Network
de Cisco (réseau qui se défend tout seul), la gamme Cisco ASA 5500 permet de mettre en © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 3/24
place une défense proactive face aux menaces et de bloquer les attaques avant qu’elles ne
se diffusent à travers le réseau, de contrôler l’activité du réseau et le trafic applicatif et d’offrir
une connectivité VPN flexible. Le résultat est une gamme de puissants serveurs de sécurité
réseau multifonctions capables d’assurer en profondeur la protection élargie des réseaux
des PME/PMI et des grandes entreprises tout en réduisant l’ensemble des frais de
déploiement et d’exploitation et en simplifiant les tâches généralement associées à un tel
niveau de sécurité.
L’architecture extensible de services AIM de Cisco et la conception multiprocesseurs flexible
de la gamme Cisco ASA 5500 offrent aux Serveurs de Sécurité Adaptatifs des performances
sans précédent pour de multiples services de sécurité simultanés, tout en offrant une
protection exceptionnelle des investissements. Les serveurs de sécurité adaptatifs de la
gamme Cisco ASA 5500 associent plusieurs processeurs ultra-performants qui travaillent de
concert pour fournir des services de firewall évolués. L’entreprise peut également installer
les modules de services de sécurité de Cisco ASA 5500 : le module AIP-SSM (Advanced
Inspection and Prevention Security Services Module) pour les services de prévention des
intrusions ou le module CSC-SSM (Content Security and Control Security Services Module)
pour les services anti-X évolués. Grâce à cette conception flexible, la gamme Cisco ASA
5500 est la seule capable de s’adapter pour protéger les réseaux face à des menaces
évoluant sans cesse. Elle offre également une protection des investissements exceptionnelle
grâce à du matériel programmable rendant la plate-forme évolutive à long terme. Ces
fonctionnalités de sécurité et VPN ultra-performantes et éprouvées, se combinent à la
connectivité Gigabit Ethernet intégrée et à une architecture sans disque dur local et à
mémoire flash. Ainsi, la gamme Cisco ASA 5500 représente le choix idéal pour les
entreprises qui recherchent la meilleure solution de sécurité haute performance, flexible,
fiable et protégeant les investissements.
.Chaque serveur de la gamme Cisco ASA 5500 accepte, sur le système de base, le nombre
maximal d’utilisateurs de VPN IPSec. L’achat et l’octroi de licences des services VPN SSL se
font séparément. En faisant converger les services VPN IPSec et SSL VPN avec les
technologies complètes de défense contre les menaces, la gamme Cisco ASA 5500 fournit
un accès réseau personnalisable adapté aux besoins de différents environnements de
déploiement. Et cela en proposant un VPN totalement sécurisé avec une sécurité complète
au niveau du réseau et du point d’extrémité.
SERVEUR DE SÉCURITÉ ADAPTATIF CISCO ASA 5505
Le Cisco ASA 5505 est un Serveur de Sécurité Adaptatif complet de prochaine génération
destiné aux petites entreprises, aux agences d’entreprise et aux environnements de
télétravail. De conception modulaire et utilisable dès l’installation (« plug and pay »),il offre des
services haute performance de firewall, de VPN SSL et IPSec ainsi que des services de © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 4/24
réseau multifonctions. Son gestionnaire Web intégré, Cisco Adaptive Security Device
Manager, permet de déployer rapidement et de gérer en toute simplicité le Cisco ASA 5505,
contribuant ainsi à réduire les frais d’exploitation de l’entreprise. Le Cisco ASA 5505 est doté
d’un commutateur Fast Ethernet à 8 ports qui peuvent être groupés dynamiquement afin de
créer jusqu’à trois VLAN distincts pour l’utilisation domestique, les besoins professionnels et
le trafic Internet – une répartition qui améliore la segmentation du trafic et la sécurité du
réseau. Le Cisco ASA 5505 dispose également de deux ports à alimentation en ligne PoE
(Power over Ethernet) pour simplifier le déploiement de téléphones IP Cisco avec leurs
fonctionnalités VoIP automatiques sécurisées, et celui de points d’accès extérieurs sans fil
pour apporter la mobilité au réseau. Particulièrement évolutif, comme les autres modèles de
la gamme, le Cisco ASA 5505 protège les investissements grâce à sa conception modulaire
et dispose d’un emplacement d’extension et de plusieurs ports USB en prévision de futurs
services.
A mesure que les besoins de l’entreprise augmenteront, vous pourrez installer une licence
Security Plus complémentaire qui permettra au Serveur de Sécurité Adaptatif Cisco ASA
5505 d’évoluer pour supporter des capacités plus importantes de connexion et un plus grand
nombre d’utilisateurs VPN IPSec, le support d’une zone démilitarisée (DMZ) et l’intégration
aux environnements de réseau commuté avec le support des lignes réseaux VLAN. Plus
encore, cette licence de mise à niveau maximise la continuité de l’entreprise en offrant un
support pour les connexions redondantes vers les fournisseurs d’accès Internet et des
services de haute disponibilité à inspection d’état Actif/Veille. Grâce à cette combinaison de
services de sécurité et VPN à la pointe de l’industrie, de fonctionnalités réseaux évoluées, de
gestion à distance et d’extensibilité, le Cisco ASA 5505 constitue la solution idéale de
sécurité haut de gamme pour les petites entreprises, les agences et les télétravailleurs.
Le Tableau 1 décrit les caractéristiques du Cisco ASA 5505.
Tableau 1 : Fonctionnalités et capacités du Serveur de Sécurité Adaptatif Cisco ASA 5505
Fonction Description
Débit du firewall Jusqu’à 150 Mbits/s
Débit du VPN Jusqu’à 100 Mbits/s
Connexions 10 000 ; 25 000*
Homologues VPN IPSec 10 ; 25 *
Niveaux de licence des
homologues VPN SSL**
10, ou 25
Interfaces Commutateur Fast Ethernet 8 ports avec
groupage dynamique des ports (dont 2
ports PoE) © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 5/24
Interfaces virtuelles (VLAN) 3 (sans support de l’aggrégation de
VLAN)/20 (avec support de l’aggrégation
de VLAN) *
Haute disponibilité Non prise en charge ; mode actif/veille à
inspection d’état et support ISP
redondant *
* Mise à niveau disponible avec la licence Security Plus de Cisco ASA 5505
** Fonction fournie sous licence distincte ; licence pour 2 homologues incluse dans le système de base
SERVEUR DE SÉCURITÉ ADAPTATIF CISCO ASA 5510
Le Serveur de Sécurité Adaptatif Cisco ASA 5510 propose des services évolués de réseau
et de sécurité aux PME et aux filiales et agences des grandes entreprises, sous la forme
d’une solution économique et facile à déployer. L’application Web Adaptive Security Device
Manager de Cisco, intégrée à la solution, permet de gérer et de surveiller facilement ces
services. Les coûts de déploiement et d’exploitation liés à un tel niveau de sécurité sont ainsi
réduits. Le serveur de sécurité adaptatif Cisco ASA 5510 fournit des services ultraperformants de firewall et VPN, trois interfaces 10/100 Fast Ethernet intégrées, des services
optionnels de lutte contre les vers et de prévention des intrusions via le module AIP-SSM ou
des services complets de protection contre les programmes nuisibles via le module CSCSSM.
La combinaison exceptionnelle de ces services sur une plate-forme unique fait de Cisco ASA
5510 un choix idéal pour les entreprises cherchant une solution de sécurité économique et
extensible avec DMZ. Pour répondre à la multiplication des besoins des entreprises, le
serveur Cisco ASA 5510 peut évoluer vers une densité d’interfaces supérieure et s’intégrer
dans des environnements de réseau commuté via la prise en charge VLAN, grâce à
l’installation d’une licence de mise à niveau Security Plus. Cette licence de mise à niveau
optimise également la continuité des activités grâce aux services de haute disponibilité de
type actif/veille.
Le tableau 2 dresse la liste des fonctionnalités du Cisco ASA 5510.
Tableau 2 : Fonctionnalités et capacité de la plate-forme Cisco ASA 5510
Fonction Description
Débit du firewall Jusqu’à 300 Mbits/s
Débit de protection simultanée
contre les menaces
(firewall + services IPS)
Jusqu’à 150 Mbits/s avec l’AIP-SSM-10
Débit du VPN Jusqu’à 170 Mbits/s © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 6/24
Connexions 50 000 ; 130 000*
Homologues VPN IPSec 250
Niveaux de licence des
homologues VPN SSL**
10, 25, 50, 100 ou 250
Contextes de sécurité Jusqu’à 5 ***
Interfaces 3 ports Fast Ethernet + 1 port de
gestion ; 5 ports Fast Ethernet*
Interfaces virtuelles (VLAN) 0 ; 25 *
Haute disponibilité Non prise en charge ; mode actif/veille*
* Mise à niveau disponible avec la licence Security Plus de Cisco ASA 5510
** Fonction fournie sous licence distincte ; licence pour deux homologues incluse dans le système de
base
*** Fonction fournie sous licence distincte ; deux niveaux inclus avec la licence Cisco ASA 5010 Security
Plus
SERVEUR DE SÉCURITÉ ADAPTATIF CISCO ASA 5520
Le Serveur de Sécurité Adaptatif Cisco ASA 5520 fournit des services de sécurité à haute
disponibilité de type actif/actif et une connectivité Gigabit Ethernet pour les réseaux des
PME, dans une solution modulaire ultra-performante. Les quatre interfaces Gigabit Ethernet et
la prise en charge de 100 VLAN permettent aux entreprises de déployer facilement le Cisco
ASA 5520 dans plusieurs zones au sein de leur réseau.
Ce serveur évolue avec l’entreprise, au rythme de ses besoins de sécurité réseau, et offre
une solide protection des investissements.
Les entreprises peuvent étendre leur capacité VPN IPSec et SSL pour gérer un plus grand
nombre de travailleurs nomades, de sites distants et de partenaires commerciaux. Les
fonctionnalités intégrées d’équilibrage de charge et de mise en grappe des VPN offertes par
le Cisco ASA 5520 permettent d’augmenter la capacité des VPN. Il est également possible
de mettre à niveau la capacité VPN SSL de chaque plate-forme via l’installation des licences
de mise à niveau, au fur et à mesure de l’évolution des besoins de l’entreprise. Pour étendre
les fonctions évoluées de sécurité de la couche applicative et de défenses anti-X offertes par
ce serveur, il convient de déployer les fonctionnalités ultra-performantes de lutte contre les
vers et de prévention des intrusions du module AIP-SSM ou la protection complète contre les
programmes nuisibles du module CSC-SSM. Grâce aux fonctionnalités optionnelles de
contexte de sécurité du Cisco ASA 5520, les entreprises peuvent déployer jusqu’à 10
firewall virtuels dans un serveur afin d’activer le contrôle compartimenté des règles de
sécurité au niveau de leurs services. Cette virtualisation permet de renforcer la sécurité et de
réduire les frais d’administration et d’assistance technique, en regroupant les multiples
solutions de sécurité dans un seul serveur. © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 7/24
Le tableau 3 dresse la liste des fonctionnalités du Cisco ASA 5520.
Tableau 3 : Fonctionnalités et capacité de la plate-forme Cisco ASA 5520
Fonction Description
Débit du firewall Jusqu’à 450 Mbits/s
Débit de protection simultanée
contre les menaces
(firewall + services IPS)
Jusqu’à 225 Mbits/s avec l’AIP-SSM-10
Jusqu’à 375 Mbits/s avec l’AIP-SSM-20
Débit du VPN Jusqu’à 225 Mbits/s
Connexions 280 000
Homologues VPN IPSec 750
Niveaux de licence des homologues
VPN SSL*
10, 25, 50, 100, 250, 500 ou 750
Contextes de sécurité Jusqu’à 20 *
Interfaces 4 ports Gigabit Ethernet et 1 port Fast
Ethernet
Interfaces virtuelles (VLAN) 100
Évolutivité Équilibrage de charge et mise en grappe
des VPN
Haute disponibilité Actif/actif, actif/veille
*Fonction fournie sous licence distincte ; licences pour 2 homologues incluse dans le système de base
SERVEUR DE SÉCURITÉ ADAPTATIF CISCO ASA 5540
Le serveur de sécurité adaptatif Cisco ASA 5540 fournit des services de sécurité haute
performance et haute densité, avec une haute disponibilité de type actif/actif et une
connectivité Gigabit Ethernet. Il est destiné aux réseaux des grandes et moyennes
entreprises et des fournisseurs d’accès, dans une solution modulaire et fiable. Grâce à quatre
interfaces Gigabit Ethernet et à la prise en charge de 200 VLAN, le Cisco ASA 5540 permet
aux entreprises de segmenter leur réseau en plusieurs zones, pour une plus grande sécurité.
Ce serveur évolue avec l’entreprise, au rythme de ses besoins de sécurité, offrant une
protection des investissements et une évolutivité des services exceptionnelles. Pour étendre
les fonctions évoluées de sécurité au niveau de la couche applicative et du réseau, et de
défenses anti-X offertes par le serveur, il convient de déployer le module AIP-SSM pour les
fonctions ultra-performantes de prévention des intrusions et de lutte contre les vers.
Les entreprises peuvent dimensionner leur capacité VPN IPSec et SSL de différentes façons
pour gérer un plus grand nombre de travailleurs nomades, de sites distants et de partenaires
commerciaux. Les fonctionnalités intégrées d’équilibrage de charge et de mise en grappe
des VPN offertes par le Cisco ASA 5540 permettent d’augmenter la résistance et la capacité
des VPN. Il prend en charge jusqu’à 10 serveurs par grappe, pour un maximum de 50 000 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 8/24
homologues VPN IPSec par grappe. Les entreprises peuvent aller jusqu’à 2 500 homologues
VPN SSL sur chaque Cisco ASA 5540, en installant une licence de mise à niveau VPN SSL. La
plate-forme de base peut prendre en charge 5 000 homologues VPN IPSec. Grâce aux
fonctionnalités optionnelles de contexte de sécurité du Cisco ASA 5540, les entreprises
peuvent déployer jusqu’à 50 firewall virtuels dans un serveur afin d’activer le contrôle
compartimenté des règles de sécurité par service ou par client et générer une réduction des
coûts de gestion et d’assistance technique.
Le tableau 4 dresse la liste des fonctionnalités du Cisco ASA 5540.
Tableau 4 : Fonctionnalités et capacité de la plate-forme Cisco ASA 5540
Fonction Description
Débit du firewall Jusqu’à 650 Mbits/s
Débit de protection simultanée
contre les menaces
(firewall + services IPS)
Jusqu’à 450 Mbits/s avec l’AIP-SSM-20
Débit du VPN Jusqu’à 325 Mbits/s
Connexions 400 000
Homologues VPN IPSec 5 000
Niveaux de licence des
homologues VPN SSL*
10, 25, 50, 100, 250, 500, 750, 1000 et
2500
Contextes de sécurité Jusqu’à 50*
Interfaces 4 ports Gigabit Ethernet et 1 port Fast
Ethernet
Interfaces virtuelles (VLAN) 200
Évolutivité Équilibrage des charges et mise en grappe
des VPN
Haute disponibilité Actif/actif, actif/veille
*Fonction fournie sous licence distincte ; licence pour 2 homologues incluse dans le système de base
SERVEUR DE SÉCURITÉ ADAPTATIF CISCO ASA 5550
De format compact (1 RU), le Serveur de Sécurité Adaptatif Cisco ASA 5550 fournit de
manière fiable des services de sécurité de classe Gigabit avec haute disponibilité actif/actif
et une connectivité fibre et Ethernet Gigabit pour les réseaux des grandes entreprises et des
fournisseurs de services. Grâce à ses huit interfaces Ethernet Gigabit, ses quatre interfaces
fibres SFP (Small Form-Factor Pluggable) et sa capacité à supporter jusqu’à 200 VLAN, il
donne à l’entreprise les moyens de segmenter son réseau en un grand nombre de zones
haute performance pour plus de sécurité. © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 9/24
A mesure que les besoins de sécurité de l’entreprise augmentent, le Serveur de Sécurité
Adaptatif Cisco ASA 5550 évolue avec eux pour garantir une exceptionnelle protection de
l’investissement et des niveaux de services toujours adaptés. L’entreprise peut augmenter sa
capacité VPN IPSec et SSL pour servir un nombre croissant de travailleurs mobiles, de sites
distants et de partenaires : une licence de mise à niveau permet de supporter jusqu’à 5000
homologues VPN SSL sur chaque Cisco ASA 5550, tandis que la plate-forme de base
accepte jusqu’à 5000 homologues VPN IPSec. Les fonctionnalités intégrées d’équilibrage de
charge et de mise en grappes des VPN contribuent encore à augmenter la capacité et la
robustesse VPN du Cisco ASA 5550 : jusqu’à 10 serveurs peuvent être mis en grappe pour
une capacité maximale de 50 000 homologues VPN SSL et 50 000 homologues VPN IPSec
par grappe. Grâce aux fonctionnalités de sécurité contextuelles en option du Serveur de
Sécurité Adaptatif Cisco ASA 5550, l’entreprise peut déployer jusqu’à 50 firewall virtuels sur
un même appareil afin de permettre le contrôle compartimenté des politiques de sécurité par
service ou par client, ce qui réduit considérablement les frais de gestion et d’assistance.
Note : Le système dispose de douze ports Ethernet Gigabit au total, dont huit peuvent être
utilisés en même temps. Pour donner encore plus de souplesse à la connectivité de data
centre, de réseau campus ou de périphérie de l’entreprise, le serveur de sécurité adaptatif
Cisco ASA 5550 accepte les connectivités cuivre et fibre.
Le Tableau 5 donne la liste des caractéristiques du Cisco ASA 5550
Tableau 5 : Fonctionnalités et capacité de la plate-forme Cisco ASA 5550
Fonction Description
Débit du firewall Jusqu’à 1,2 Gbits/s
Débit du VPN Jusqu’à 425 Mbits/s
Connexions 650 000
Homologues VPN IPSec 5 000
Niveaux de licence des
homologues VPN SSL*
10, 25, 50, 100, 250, 500, 750, 1000, 2500
et 5000
Contextes de sécurité Jusqu’à 50*
Interfaces 8 ports Gigabit Ethernet, 4 ports fibres SFP
et 1 port Fast Ethernet
Interfaces virtuelles (VLAN) 200
Évolutivité Équilibrage de charge et mise en grappe
des VPN
Haute disponibilité Actif/actif, actif/veille
*Fonction fournie sous licence distincte ; licence pour 2 homologues incluse dans le système de base © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 10/24
CARACTÉRISTIQUES DES PRODUITS
Le tableau 6 permet de comparer les Serveurs de Sécurité Adaptatifs Cisco ASA 5510, 5520
et 5540.
Tableau 6 : Caractéristiques des Serveurs de Sécurité Adaptatifs de la gamme Cisco ASA
5500
Cisco ASA
5505
Cisco ASA
5510
Cisco ASA
5520
Cisco ASA
5540
Cisco ASA
5550
Utilisateurs/nœ
uds
10, 50 ou illimité Illimité Illimité Illimité Illimité
Débit du
firewall
Débit de
protection
simultanée
contre les
menaces
(firewall +
services IPS)
Jusqu’à 150
Mbits/s
Non disponible
Jusqu’à 300
Mbits/s
Jusqu’à 150
Mbits/s avec
l’AIP-SSM-10
Jusqu’à 375
Mbits/s avec
l’AIP-SSM-20
Jusqu’à 450 M
Jusqu’à 225
Mbits/s avec
l’AIP-SSM-
10bits/s
Jusqu’à 650
Jusqu’à 450
Mbits/s avec
l’AIP-SSM-
20Mbits/s
Jusqu’à 1,2
Gbits/s
Non
disponible
Débit du VPN
3DES/AES
Jusqu’à 100
Mbits/s
Jusqu’à 170
Mbits/s
Jusqu’à 225
Mbits/s
Jusqu’à 325
Mbits/s
Jusqu’à 425
Mbits/s
Homologues
VPN IPSec
10 ; 25 * 250 750 5000 5000
Homologues
VPN SSL*
(inclus/maximu
m)
2/25 2 /250 2/750 2/2 500 2/5000
Connexions
Nouvelles
sessions/secon
de
10 000 ; 25 000 *
3 000
50 000 ;
130 000*
6 000
280 000
9 000
400 000
20 000
650000
28 000
Ports réseau
intégrés
Commutateur
Fast Ethernet 8
ports (dont deux
ports PoE)
3 ports Fast
Ethernet + ;
1 port de
gestion ;
5 ports Fast
Ethernet*
4 ports Gigabit
Ethernet ; 1 port
Fast Ethernet
4 ports Gigabit
Ethernet ;
1 port Fast
Ethernet
8 ports
Gigabit
Ethernet, 4
ports fibres
SFP ;
1 port Fast
Ethernet
Interfaces
virtuelles
(VLAN)
3 (sans support
de ligne
réseau)/20 (avec
support de lignes
réseaux) *
50/100* 100 200 250 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 11/24
Contextes de
sécurité
(inclus/max.)
0/0 0/0 (base) ; 2/5
(Security Plus)
2/20 2/50 2/50
Haute
disponibilité
Non prise en
charge ; mode
actif/veille à
inspection d’état
et support ISP
redondant *
Non prise en
charge ; mode
actif/veille*
Actif/actif et
actif/veille
Actif/actif et
actif/veille
Actif/actif et
actif/veille
Emplacement
d’extension
SSM
1, SSC 1, SSM 1, SSM 1, SSM 0
Emplacement
accessible
mémoire flash
0 1 1 1 1
Ports USB 2.0
Ports série
3 (1 à l’avant, 2 à
l’arrière)
1 RJ-45 console
2
2 RJ-45,
console et
auxiliaire
2
2 RJ-45, console
et auxiliaire
2
2 RJ-45, console
et auxiliaire
2
2 RJ-45,
console et
auxiliaire
Ports série 1 RJ-45 console 2 RJ-45,
console et
auxiliaire
2 RJ-45, console
et auxiliaire
2 RJ-45, console
et auxiliaire
2 RJ-45,
console et
auxiliaire
Montage sur
rack
Oui, avec kit de
montage sur rack
(disponible
ultérieurement)
Oui Oui Oui Oui
Montage au
mur
Oui, avec kit de
montage au mur
(disponible
ultérieurement)
Non Non Non Non
Spécifications techniques
Mémoire 256 Mo 256 Mo 512 Mo 1024 Mo 4096 Mo
Mémoire flash
système
minimum
64 Mo 64 Mo 64 Mo 64 Mo 64 Mo
Bus système Architecture
multi-bus
Architecture
multi-bus
Architecture
multi-bus
Architecture
multi-bus
Architecture
multi-bus
Conditions de fonctionnement
En fonctionnement
Température 0 à 40ºC 0 à 40ºC
Humidité
relative
5 à 95 % sans
condensation
5 à 95 % sans condensation
Altitude 0 à 3000 m 0 à 3000 m
Tolérance aux
chocs
1/2 sinusoïdale à
1,14 m/s
1/2 sinusoïdale à 1,14 m/s
Vibrations Aléatoire, 0,41
Grms2 (3 à 500
Hz)
Aléatoire, 0,41 Grms2 (3 à 500 Hz) © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 12/24
Bruit
acoustique
0 dBa maximum 60 dBa maximum
En mode stockage
Température -25 à 70ºC -25 à 70ºC
Humidité
relative
5 à 95 % sans
condensation
5 à 95 % sans condensation
Altitude 0 à 4570 m 0 à 4570 m
Tolérance aux
chocs
30 G 30 G
Vibrations Aléatoire, 0,41
Grms2 (3 à 500
Hz)
Aléatoire, 0,41 Grms2 (3 à 500 Hz)
Alimentation électrique
Entrée (par alimentation électrique)
Plage de
tension
100 à 240 V c.a. 100 à 240 V c.a.
Tension
normale
100 à 240 V c.a. 100 à 240 V c.a.
Courant 1,8 A 3 A
Fréquence 50 à 60 Hz,
monophasé
47 à 63 Hz, monophasé
Sortie
Régime
permanent
20 W 150 W
Pic maximal 96 W 190 W
Dissipation
thermique
maximale
72 BTU/h 648 BTU/h
Données physiques
Facteur de
forme
Ordinateur de
bureau
Montage en rack 1 U de 19 pouces
Dimensions (H
x L x P)
4,45 x 20,04x
17,45 cm
4,45 x 44,5 x 33,5 cm
Poids (avec
l’alimentation)
1,8 kg 9,07 kg
Conformité à la réglementation et aux normes
Sécurité UL 60950, CSA
C22.2 No. 60950,
EN 60950, IEC
60950,
AS/NZS3260
UL 1950, CSA C22.2 No. 950, EN 60950 IEC 60950, AS/NZS3260,
TS001
Compatibilité
électromagnéti
que
Marquage CE,
FCC Part 15
Classe B,
AS/NZS 3548
Classe B, VCCI
Classe B,
Marquage CE, FCC Part 15 Classe A, AS/NZS 3548 Classe A, VCCI
Classe A, © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 13/24
(EMC) EN55022 Classe
B, CISPR22
Classe B,
EN61000-3-2,
EN61000-3-3
EN55022 Classe A, CISPR22 Classe A, EN61000-3-2, EN61000-3-3
Certifications
industrielles
En cours : ICSA
Firewall, ICSA
IPSec, Common
Criteria EAL4,
FIPS 140-2 Level
2
Common Criteria EAL4+ US DoD Application-Level Firewall for
Medium- Robustness Environnements, FIPS 140-2 Level 2, NEBS Level
3, ICSA Firewall, ICSA IPSec, ICSA Gateway Anti-Virus (couplé à CSC
SSM-10 ou CSC SSM-20). En cours: Common Criteria EAL4 for VPN,
Common Criteria EAL2 for IPS on AIP SSM.
*Disponible par l’intermédiaire d’une licence de mise à niveau
MODULES DE SERVICES DE SÉCURITÉ
La gamme Cisco ASA 5500 permet aux réseaux de franchir un nouveau palier en matière de
sécurité intégrée, grâce à son architecture matérielle multi-processeurs et des services AIM
exceptionnels. Cette architecture permet aux entreprises d’adapter et d’élargir le profil de
services de sécurité haute performance de la gamme Cisco ASA 5500. Les clients peuvent
ajouter des services de sécurité haute performance supplémentaires à l’aide des modules de
services de sécurité associés à des coprocesseurs de sécurité dédiés. Ils peuvent
également personnaliser les règles propres aux flux à l’aide d’une infrastructure extrêmement
souple de définitions des règles. Cette architecture adaptable permet aux entreprises de
déployer de nouveaux services de sécurité dès qu’elles en ont besoin. Par exemple, elles
peuvent ajouter la vaste gamme de services évolués de lutte contre les vers et de prévention
des intrusions fournis par le module AIP-SSM ou les services complets anti-X et de
protection contre les programmes nuisibles offerts par le module CSC-SSM. D’autre part,
cette architecture permet à Cisco de lancer de nouveaux services répondant à de nouvelles
menaces, offrant aux entreprises une excellente protection des investissements pour la
gamme Cisco ASA 5500.
Module adaptatif de prévention et d’inspection
Le module Cisco ASA 5500 AIP-SSM est une solution réseau en ligne conçue pour identifier
avec précision, classifier et bloquer le trafic malveillant, avant qu’il n’entraîne des
répercussions sur votre activité. Utilisant le logiciel IPS pour Cisco ASA 5500, le module AIPSSM combine les services de prévention en ligne et des technologies innovantes. Cela
permet une confiance totale vis-à-vis de la protection offerte par la solution IPS déployée,
sans crainte de suppression du trafic légitime. Le module AIP-SSM propose également une
protection complète du réseau grâce à sa capacité exceptionnelle à collaborer avec d’autres
ressources de sécurité, offrant une approche proactive de la protection du réseau. Il utilise
des technologies précises de prévention en ligne, qui permettent de prendre des mesures
préventives vis-à-vis d’un panel plus vaste de menaces, sans risque de suppression du trafic
légitime. Ces technologies exceptionnelles offrent une analyse intelligente, automatisée et
contextuelle des données, permettant de s’assurer que les entreprises exploitent au © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 14/24
maximum leurs solutions de prévention des intrusions. Le module AIP-SSM utilise également
une identification des menaces liées aux attaques multivecteurs pour protéger le réseau
contre les violations de règles, l’exploitation des vulnérabilités et les activités anormales,
grâce à une inspection minutieuse du trafic sur les couches 2 à 7.
Le tableau 7 détaille les deux modèles AIP-SSM proposés, ainsi que leurs caractéristiques
physiques et leurs performances respectives.
Tableau 7 : Caractéristiques du module AIP-SSM pour la gamme Cisco ASA 5500
Cisco ASA 5500 AIP-SSM-10 Cisco ASA 5500 AIP-SSM-
20
Débit de protection
simultanée
contre les
menaces
(firewall + services
IPS)
150 Mbits/s avec le Cisco ASA
5510
225 Mbits/s avec le Cisco ASA
5520
300 Mbits/s avec le Cisco
ASA 5510
375 Mbits/s avec le Cisco
ASA 5520
450 Mbits/s avec le Cisco
ASA 5540
Spécifications techniques
Mémoire 1 Go 2 Go
Mémoire flash 256 Mo 256 Mo
Conditions de fonctionnement
En fonctionnement
Température 0 à 40ºC
Humidité relative 5 à 95 % sans condensation
En mode stockage
Température -25 à 70ºC
Consommation
électrique
90 W maximum
Données physiques
Dimensions (H x L x
P)
4,32 x 17,27 x 27,.94 cm
Poids (avec
l’alimentation)
1,36 kg © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 15/24
Conformité à la réglementation et aux normes
Sécurité UL 1950, CSA C22.2 No. 950, EN 60950 IEC 60950,
AS/NZS3260, TS001
Compatibilité
électromagnétique
(EMC)
Marquage CE, FCC Part 15 Classe A, AS/NZS 3548 Classe A,
VCCI Classe A, EN55022 Classe A, CISPR22 Classe A, EN61000-
3-2, EN61000-3-3
Module de contrôle et de sécurité du contenu
Le module CSC-SSM de la gamme Cisco ASA 5500 offre le meilleur service du marché en
matière de contrôle du contenu et de protection contre les menaces Internet à la périphérie
du réseau. Cette solution facile à administrer comporte des fonctions complètes d’antivirus,
d’antilogiciels espions, de blocage de fichiers, d’antispam, d’antiphishing, de blocage et
filtrage d’URL et de filtrage du contenu.
Le module CSC-SSM ajoute des fonctionnalités de sécurité performantes à la gamme Cisco
ASA 5500, offrant aux clients une protection supplémentaire et le contrôle du contenu de
leurs communications d’entreprise. Ce module procure une souplesse et un choix
supplémentaire vis-à-vis du fonctionnement et du déploiement des serveurs de la gamme
Cisco ASA 5500. Les options de licence permettent aux entreprises de personnaliser les
fonctionnalités conformément aux besoins de chaque groupe d’utilisateurs, grâce à des
fonctions incluant des services de contenu évolués et un nombre d’utilisateurs accru. Le
module CSC-SSM est livré avec un ensemble de fonctions par défaut offrant des services
d’antivirus, d’antilogiciels espions et de blocage des fichiers. Une licence «Plus» est
disponible pour chaque module CSC-SSM ,à un coût additionnel. Cette licence permet de
bénéficier de fonctionnalités d’antispam, d’antiphishing, de blocage et de filtrage d’URL et de
contrôle du contenu. Pour augmenter la capacité utilisateur du module CSC-SSM, les
entreprises peuvent acheter et installer des licences utilisateurs supplémentaires. Le tableau
ci-dessous contient la liste détaillée de ces options, que vous retrouverez également dans la
fiche technique du module CSC-SSM.
Tableau 8 : Caractéristiques du module CSC-SSM pour la gamme Cisco ASA 5500
Cisco ASA 5500 CSC-SSM-
10
Cisco ASA 5500 CSC-SSM-
20
Plates-formes
prises en charge
• Serveur de Sécurité
Adaptatif
Cisco ASA 5510
• Serveur de Sécurité
Adaptatif Cisco ASA 5510 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 16/24
• Serveur de Sécurité
Adaptatif
Cisco ASA 5520
• Serveur de Sécurité
Adaptatif Cisco ASA 5520
• Serveur de Sécurité
Adaptatif Cisco ASA 5540
Fonctionnalités standard et optionnelles
Licence utilisateur
standard
50 utilisateurs 500 utilisateurs
Fonctionnalités
standard
Antivirus, antilogiciels espions, blocage des fichiers
Mises à niveau
facultatives du
nombre
d’utilisateurs
(nombre total)
• 100 utilisateurs
• 250 utilisateurs
• 500 utilisateurs
• 750 utilisateurs
• 1 000 utilisateurs
Fonctionnalités en
option
Licence Plus : permet d’ajouter l’antispam, l’antiphishing, le
blocage et le
filtrage d’URL et le contrôle du contenu
Spécifications techniques
Mémoire 1 Go 2 Go
Mémoire flash
système
256 Mo 256 Mo
Mémoire cache 256 Ko 512 Ko
Conditions de fonctionnement
En fonctionnement
Température 0 à 40ºC
Humidité relative 10 à 90 %, sans condensation
En mode stockage
Température -25 à 70ºC
Consommation
électrique
90 W maximum
Données physiques
Dimensions (H x L x
P)
4,32 x 17,27 x 27,.94 cm
Poids (avec
l’alimentation)
1,36 kg
Conformité à la réglementation et aux normes
Sécurité UL 1950, CSA C22.2 No. 950, EN 60950 IEC 60950,
AS/NZS3260, TS001 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 17/24
Compatibilité
électromagnétique
(EMC)
Marquage CE, FCC Part 15 Classe A, AS/NZS 3548 Classe A,
VCCI Classe A,
EN55022 Classe A, CISPR22 Classe A, EN61000-3-2, EN61000-
3-3
Module Gigabit Ethernet 4 ports Cisco ASA
Le module de services de sécurité Gigabit Ethernet 4 ports de Cisco ASA permet aux
responsables de sécurité de mieux segmenter le trafic réseau et de créer des zones de
sécurité séparées, chacune étant associée à son propre ensemble de règles de sécurité
personnalisées. Ces séparations peuvent aller d’Internet aux sites/services internes
d’entreprise, en passant par les zones démilitarisées (DMZ). Ce module ultra-performant
prend en charge les options de connexion cuivre et optique via la sélection des quatre ports
RJ-45 cuivre 10/100/1000 standard ou des quatre ports compacts enfichables (SFP, Small
Form-Factor Pluggable) pour le SFP optique Gigabit Ethernet. Il offre une grande flexibilité
pour la connectivité des centres de données, des campus ou à la périphérie de l’entreprise. Il
est possible de configurer un mélange de types de port cuivre ou optique (jusqu’à 4 ports).
Ce module étend le profil d’E/S de la gamme Cisco ASA 5500 à un total de cinq ports Fast
Ethernet et quatre ports Gigabit Ethernet sur le Cisco ASA 5510, huit ports Gigabit Ethernet
et un port Fast Ethernet sur les serveurs Cisco ASA 5520 et 5540 (Tableau 9).
Tableau 9 : Caractéristiques du module SSM Ethernet Gigabit 4 ports de la gamme Cisco
ASA 5500
Cisco ASA 5500 SSM-4GE
Spécifications techniques
Ports LAN intégrés Quatre 10/100/1000BASE-T (RJ-45)
Ports SFP intégrés Quatre (SFP optique Gigabit Ethernet 1000BASE-SX ou
émetteur-récepteur LX/LH pris en charge)
Conditions de fonctionnement
En fonctionnement
Température 0 à 40ºC
Humidité relative 5 à 95 % sans condensation
En mode stockage
Température -25 à 70ºC
Consommation
électrique
25 W maximum © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 18/24
Données physiques
Dimensions (H x L x
P)
3,81 x 17,27 x 27,.94 cm
Poids (avec
l’alimentation)
0,91 kg
Conformité à la réglementation et aux normes
Sécurité UL 1950, CSA C22.2 No. 950, EN 60950 IEC 60950,
AS/NZS3260, TS001
Compatibilité
électromagnétique
(EMC)
Marquage CE, FCC Part 15 Classe A, AS/NZS 3548 Classe A,
VCCI Classe A,
EN55022 Classe A, CISPR22 Classe A, EN61000-3-2, EN61000-
3-3
© 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 19/24
INFORMATIONS DE COMMANDE
Pour passer une commande, rendez-vous sur le site Cisco
(http://www.cisco.com/web/FR/acheter/acheter_home.html). Le tableau 8 fournit des
informations nécessaires à l’achat de produits de la gamme Cisco ASA 5500.
Tableau 10 : Informations de commande
Nom du produit
Packs Cisco ASA 5500 Firewall Edition
Référence produit
Pack Cisco ASA 5505 10 utilisateurs avec commutateur
Fast Ethernet 8 ports, 10 homologues VPN IPsec, 2
homologues VPN SSL, licence 3DES/AES (Triple Data
Encryption Standard/Advanced Encryption Standard)
ASA5505-BUN-K9
Pack Cisco ASA 5505 50 utilisateurs avec commutateur
Fast Ethernet 8 ports, 10 homologues VPN IPsec, 2
homologues VPN SSL, licence 3DES/AES
ASA5505-50-BUN-K9
Pack Cisco ASA 5505 nombre illimité d’utilisateurs avec
commutateur Fast Ethernet 8 ports, 10 homologues VPN
IPsec, 2 homologues VPN SSL, licence 3DES/AES
ASA5505-UL-BUN-K9
Pack Cisco ASA 5505 nombre illimité d’utilisateurs avec
Security Plus, commutateur Fast Ethernet 8 ports, 25
homologues VPN IPsec, 2 homologues VPN SSL, zone
démilitarisée (DMZ), haute disponibilité actif/veille à
inspection d’état, licence 3DES/AES
ASA5505-SEC-BUN-K9
Cisco ASA 5510 Firewall Edition, avec 3 interfaces Fast
Ethernet, 250 homologues VPN IPSec, 2 homologues VPN
SSL, licence 3DES/AES
ASA5510-BUN-K9
Cisco ASA 5510 Security Plus Firewall Edition, avec 5
interfaces Fast Ethernet, 250 homologues VPN IPSec,
2 homologues VPN SSL, haute disponibilité actif/veille,
licence 3DES/AES
ASA5510-SEC-BUN-K9
Cisco ASA 5520 Firewall Edition, avec 4 interfaces Gigabit
Ethernet et 1 interface Fast Ethernet, 750 homologues
VPN IPSec et 2 homologues VPN
SSL, , haute disponibilité actif/veille et actif/actif, licence
3DES/AES
ASA5520-BUN-K9
Cisco ASA 5540 Firewall Edition, avec 4 interfaces Gigabit
Ethernet et 1 interface Fast Ethernet, 5 000 homologues
VPN IPSec et 2 homologues
ASA5540-BUN-K9 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 20/24
VPN SSL, licence 3DES/AES
Cisco ASA 5550 Firewall Edition, avec 8 interfaces Gigabit
Ethernet et 1 interface Fast Ethernet, 4 interfaces SFP
Gigabit, 5 000 homologues VPN IPSec et 2 homologues
VPN SSL, licence 3DES/AES
ASA5550-BUN-K9
Packs Cisco ASA 5500 IPS Edition
Cisco ASA 5510 IPS Edition, avec le module AIP-SSM-10,
les services de firewall,
250 homologues VPN IPSec, 2 homologues VPN SSL, 3
interfaces Fast Ethernet
ASA5510-AIP10-K9
Cisco ASA 5520 IPS Edition, avec le module AIP-SSM-10,
les services de firewall,
250 homologues VPN IPSec, 2 homologues VPN SSL, 4
interfaces Gigabit Ethernet et 1 interface Fast Ethernet
ASA5520-AIP10-K9
Cisco ASA 5520 IPS Edition, avec le module AIP-SSM-20,
les services de firewall,
750 homologues VPN IPSec, 2 homologues VPN SSL, 4
interfaces Gigabit Ethernet et 1 interface Fast Ethernet
ASA5520-AIP20-K9
Cisco ASA 5540 IPS Edition, avec le module AIP-SSM-20,
les services de firewall,
5 000 homologues VPN IPSec, 2 homologues VPN SSL, 4
interfaces Gigabit Ethernet et 1 interface Fast Ethernet
ASA5540-AIP20-K9
Packs Cisco ASA 5500 Anti-X Edition
Cisco ASA 5510 Anti-X Edition, avec le module CSC-SSM-
10, un antivirus/antilogiciels
espions pour 50 utilisateurs avec abonnement d’un an, des
services de firewall,
250 homologues VPN IPSec, 2 homologues VPN SSL, 3
interfaces Fast Ethernet
ASA5510-CSC10-K9
Cisco ASA 5510 Anti-X Edition, avec le module CSC-SSM-
20, un antivirus/antilogiciels
espions pour 500 utilisateurs avec abonnement d’un an,
des services de firewall,
250 homologues VPN IPSec, 2 homologues VPN SSL, 3
interfaces Fast Ethernet
ASA5510-CSC20-K9
Cisco ASA 5520 Anti-X Edition, avec le module CSC-SSM-
10, un antivirus/antilogiciels
espions pour 50 utilisateurs avec abonnement d’un an, des
services de firewall,
ASA5520-CSC10-K9 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 21/24
750 homologues VPN IPSec, 2 homologues VPN SSL, 4
interfaces Gigabit Ethernet et 1 interface Fast Ethernet
Cisco ASA 5520 Anti-X Edition, avec le module CSC-SSM-
20, un antivirus/antilogiciels
espions pour 500 utilisateurs avec abonnement d’un an,
des services de firewall,
750 homologues VPN IPSec, 2 homologues VPN SSL, 4
interfaces Gigabit Ethernet et 1 interface Fast Ethernet
ASA5520-CSC20-K9
Packs Cisco ASA 5500 VPN Edition
Cisco ASA 5505 SSL/IPsec VPN Edition, avec 10
homologues VPN Ipsec, 10 homologues VPN SSL, 50
utilisateurs de services de firewall, commutateur Fast
Ethernet 8 ports
ASA5505-SSL10-K9
Cisco ASA 5505 SSL/IPsec VPN Edition, avec 25
homologues VPN Ipsec, 25 homologues VPN SSL, 50
utilisateurs de services de firewall, commutateur Fast
Ethernet 8 ports, licence Security Plus
ASA5505-SSL25-K9
Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues
VPN IPsec et 50 homologues VPN SSL, services de
firewall, 3 interfaces Fast Ethernet
ASA5510-SSL50-K9
Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues
VPN IPsec, 100 homologues VPN SSL, services de firewall,
3 interfaces Fast Ethernet
ASA5510-SSL100-K9
Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues
VPN IPsec et 250 homologues VPN SSL, services de
firewall, 3 interfaces Fast Ethernet
ASA5510-SSL250-K9
Cisco ASA 5520 SSL/IPsec VPN Edition, 750 homologues
VPN IPsec et 500 homologues VPN SSL, services de
firewall, 4 interfaces Ethernet Gigabit, 1 interface Fast
Ethernet
ASA5520-SSL500-K9
Cisco ASA 5540 SSL/IPsec VPN Edition, 5000 homologues
VPN IPsec et 1000 homologues VPN SSL, services de
firewall, 4 interfaces Ethernet Gigabit, 1 interface Fast
Ethernet
ASA5540-SSL1000-K9
Cisco ASA 5540 SSL/IPsec VPN Edition, 5000 homologues
VPN IPsec et 2500 homologues VPN SSL, services de
firewall, 4 interfaces Ethernet Gigabit, 1 interface Fast
Ethernet
ASA5540-SSL2500-K9
Cisco ASA 5550 SSL/IPsec VPN Edition, 5000 homologues ASA5550-SSL2500-K9 © 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 22/24
VPN IPsec et 2500 homologues VPN SSL, services de
firewall, 8 interfaces Ethernet Gigabit, 1 interface Fast
Ethernet
Cisco ASA 5550 SSL/IPsec VPN Edition, 5000 homologues
VPN IPsec et 5000 homologues VPN SSL, services de
firewall, 8 interfaces Ethernet Gigabit, 1 interface Fast
Ethernet
ASA5550-SSL5000-K9
Modules de services de sécurité
Cisco ASA Advanced Inspection and Prevention Security
Services Module 10
ASA-SSM-AIP-10-K9=
Cisco ASA Advanced Inspection and Prevention Security
Services Module 20
ASA-SSM-AIP-20-K9=
Cisco ASA Content Security and Control Security Services
Module 10 pour 50 utilisateurs
Antivirus/antilogiciels espions, abonnement d’un an
ASA-SSM-CSC-10-K9=
Cisco ASA Content Security and Control Security Services
Module 20 pour 500 utilisateurs
Antivirus/antilogiciels espions, abonnement d’un an
ASA-SSM-CSC-20-K9=
Cisco ASA 4-Port Gigabit Ethernet Security Services
Module
SSM-4GE=
Logiciels de la gamme Cisco ASA 5500
Mise à niveau unique du logiciel Cisco ASA pour les clients
non pris en charge
ASA-SW-UPGRADE=
Accessoires de la gamme Cisco ASA 5500
Mémoire compact flash pour la gamme Cisco ASA 5500,
256 Mo
ASA5500-CF-256MB=
Mémoire compact flash pour la gamme Cisco ASA 5500,
512 Mo
ASA5500-CF-512MB=
Bloc d’alimentation 180 W c.a. pour la gamme Cisco ASA ASA-180W-PWR-AC=
Connecteur SFP Gigabit Ethernet optique, émetteurrécepteur 1000BASE-SX à courte longueur d’onde
GLC-SX-MM=
Connecteur SFP Gigabit Ethernet optique, émetteurrécepteur 1000BASE-LX/LH longue distance/à grande
longueur d’onde
GLC-LH-SM=
© 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 23/24
POUR TÉLÉCHARGER LE LOGICIEL
Pour télécharger le logiciel Cisco ASA, visitez le Centre de téléchargement Cisco.
MAINTENANCE ET ASSISTANCE
Cisco propose une large gamme de programmes de services pour accélérer la réussite de
ses clients. Ces programmes de services innovants sont proposés grâce à une combinaison
unique de personnes, de processus, d’outils et de partenaires pour augmenter la satisfaction
de nos clients. Cisco Services vous aide à protéger votre investissement en matière de
réseaux, à optimiser leur exploitation et à les préparer aux nouvelles applications afin d’en
étendre l’intelligence et d’accroître le succès de votre activité. Pour plus d’informations sur
Cisco Services, consultez les services d’assistance technique de Cisco ou Cisco Advanced
Services. Pour les services propres aux fonctionnalités de prévention des intrusions (IPS)
offertes via le module AIP-SSM, visitez le site Cisco Services for IPS.
POUR PLUS D’INFORMATIONS
Pour plus d’informations, consultez les sites suivants :
• Serveur de Sécurité Adaptatif Cisco ASA 5500 : http://www.cisco.com/go/asa
• Cisco Adaptive Security Device Manager : http://www.cisco.com/go/asdm© 2007 Cisco Systems, Inc. Tous droits réservés.Les mentions légales, la charte sur la vie privée et les marques de Cisco
Systems, Inc. sont fournies sur cisco.com
Page 24/24
Siège social
Cisco Systems, Inc.
170 West Tasman
Drive
San Jose, CA 95134
1706
Etats-Unis
www.cisco.com
Tél. : 408 526-4000
800 553-NETS (6387)
Fax : 408 526-4100
Siège Europe
Cisco Systems
International BV
Haarlerbergpark
Haarlerbergweg 13-19
1101 CH Amsterdam
Pays-Bas
wwweurope.cisco.com
Tél. : 31 0 20 357 1000
Fax : 31 0 20 357 1100
Siège Etats-Unis
Cisco Systems, Inc.
170 West Tasman
Drive
San Jose, CA 95134
1706
Etats-Unis
www.cisco.com
Tél. : 408 526-7660
Fax : 408 527-0883
Siège Asie Pacifi que
Cisco Systems, Inc.
168 Robinson Road
#28-01 Capital
Tower
Singapour 068912
www.cisco.com
Tél. : +65 6317 7777
Fax : +65 6317 7799
Cisco has more than 200 offi ces in the following countries and regions. Addresses, phone numbers, and fax numbers are listed
on the Cisco Website at www.cisco.com/go/offices
Copyright©2007 Cisco Systems, Inc. Tous droits réservés. CCSP, CCVP, le logo Cisco Square Bridge, Follow Me Browsing et
StackWise sont des marques de Cisco Systems, Inc. ; Changing the Way We Work, Live, Play, and Learn, et iQuick Study sont des
marques de service de Cisco Systems, Inc. ; et Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco,
le logo Cisco Certifi ed Internetwork Expert, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, le logo Cisco Systems,
Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet
Quotient, IOS, IP/TV, iQ Expertise, le logo iQ, iQ Net Readiness Scorecard, LightStream, Linksys, MeetingPlace, MGX, le logo Networkers,
Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast,
SMARTnet, The Fastest Way to Increase Your Internet Quotient et TransPath sont des marques déposées de Cisco Systems, Inc. et/ou
de ses fi liales aux États-Unis et dans d’autres pays.
Toutes les autres marques mentionnées dans ce document ou sur le site Web appartiennent à leurs propriétaires respectifs. L’emploi du
mot partenaire n’implique pas nécessairement une relation de partenariat entre Cisco et une autre société. (0601R)
Manuel de migration de Cisco PIX 500
vers la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
Réunissant sur une même plate- Réunissant sur une même plate---forme une combinaison puissante de nombreuses forme une combinaison puissante de nombreuses
technologies éprouvées, la gamme Cisco ASA 5500 (Adaptive Security Appliance)
donne à l’entreprise les moyens opérationnels et économiques de déployer des
services de sécurité complets vers un plus grand nom services de sécurité complets vers un plus grand nombre de sites. plets vers un plus grand nombre de sites. bre de sites. Faites migrer dès Faites migrer dès
maintenant vos serveurs de sécurité Cisco PIX® vers la gamme Cisco ASA 5500 pour
bénéficier, sur une même plate- bénéficier, sur une même plate---forme, de services de sécurité et de VPN convergen forme, de services de sécurité et de VPN convergents s
et multifonctions. et multifonctions.
Principaux avantages économiques Principaux avantages économiques avantages économiques
Options souples de déploiement Options souples de déploiement
Editions produits personnalisées qui s’adaptent exactement aux besoins spécifiques de
l’entreprise
• Firewall Edition - Firewall
• IPS Edition - système de prévention d'intrusions
• Anti-X Edition - protection antivirus, anti logiciels espions, etc.
• SSL/IPsec VPN Edition - VPN sécurisés
Frais d’exploitations réduits Frais d’exploitations réduits
Gestion et surveillance unifiée des équipements pour diminuer les frais généraux
d’installation et de maintenance. Plate-forme unique qui réduit la complexité et simplifie
les opérations de déploiement et d’assistance technique courantes.
Frais d’investissements réduits Frais d’investissements réduits
La convergence et les crédits de reprise d’ancien matériel TMP (Technology Migration
Plan) renforcés font dès maintenant baisser le coût total de migration.
Avantage du leasing Avantage du leasing
Avec Cisco Finance, bénéficiez de nos promotions en leasing pour réduire encore plus
vos coûts et obtenir dès maintenant votre nouvelle solution.
Principaux avantages technologiques et nouveautés d Principaux avantages technologiques et nouveautés de la gamme ASA 5500 e la gamme ASA 5500
Technologie reconnue de firewall et VPN protégé contre les menaces tre les menaces
Développée autour de la même technologie éprouvée qui a fait le succès du serveur de
sécurité Cisco PIX et de la gamme des concentrateurs Cisco VPN 3000, la gamme
Cisco ASA 5500 est la première solution à proposer des services VPN SSL (Secure
Sockets Layer) et IPSec (IP Security) protégés par la première technologie de firewall
du marché. Avec le VPN SSL, l’ASA 5500 est une passerelle SSL performante qui
permet l’accès distant sécurisé au réseau au travers d’un navigateur web banalisé pour
les utilisateurs nomades.
Service évolué de prévention des intrusions Service évolué de prévention des intrusions
Les services proactifs de prévention des intrusions offrent toutes les fonctionnalités qui
permettent de bloquer un large éventail de menaces – vers, attaques sur la couche
applicative ou au niveau du système d'exploitation, rootkits, logiciels espions,
messagerie instantanée, P2P, et bien plus encore. En combinant plusieurs méthodes
d’analyse détaillée du trafic, l’IPS de l’ASA 5500 protège le réseau des violations de
politique de sécurité, de l’exploitation des vulnérabilités des systèmes et du trafic
anormal. L’IPS collabore avec d’autres systèmes Cisco de gestion de la sécurité pour
assurer une mise à jour constante de la posture de sécurité du réseau et une réactivité
totale aux nouvelles attaques ou vulnérabilités.
Services Anti- Services Anti---X à la pointe de l’industrie X à la pointe de l’industrie X à la pointe de l’industrie
La gamme Cisco ASA 5500 offre des services complets anti-X à la pointe de la
technologie – protection contre les virus, les logiciels espions, le courrier indésirable et
le phishing ainsi que le blocage de fichiers, le blocage et le filtrage des URL et le filtrage
de contenu – en associant le savoir-faire de Trend Micro en matière de protection
informatique à une solution Cisco de sécurité réseau éprouvée. Ces services anti-X
embarqués dans le module d’extension hardware CSC SSM et le renouvellement des
abonnements Trend Micro pour la gamme ASA sont commercialisés par Cisco au
travers de ses partenaires agréés.
Migration transparente pour l’utilisateur Migration transparente pour l’utilisateur
Les utilisateurs actuels des serveurs de sécurité Cisco PIX n’auront aucune difficulté à
s’adapter aux solutions Cisco ASA 5500. Les fichiers de configuration des Cisco PIX
sont transposables sur les serveurs ASA 5500. Le logiciel d’administration graphique
Cisco Adaptive Security Device Manager (ASDM) livré avec la gamme ASA est un
logiciel puissant et facile à utiliser Il accélère la création de politiques de sécurité, et
réduit la charge de travail et les erreurs humaines, grâce à des assistants graphiques,
des outils de débogage et de surveillance. ASDM permet de gérer aussi bien des
serveurs Cisco PIX que des serveurs ASA 5500, facilitant la migration vers la dernière
génération de matériel et ses nouvelles fonctions. Manuel de migration de Cisco PIX 500
vers la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
Chemins de migration Chemins de migration
Firewall IPS Anti-X VPN
Modèle de serveur de
sécurité Cisco PIX sécurité Cisco PIX
Référence de la gamme
Cisco ASA Cisco ASA 5500
Description du Cisco ASA Description du Cisco ASA 5500
ASA5505-K8 Cisco ASA 5505 Firewall Edition 10 utilisateurs, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et 2 SSL, DES
ASA5505-BUN-K9 Cisco ASA 5505 Firewall Edition 10 utilisateurs, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et 2 SSL,
3DES/AES
ASA5505-50-BUN-K9 Cisco ASA 5505 Firewall Edition 50 utilisateurs, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et 2 SSL,
3DES/AES
Cisco PIX 501 pour
10 utilisateurs 10 utilisateurs
ASA5505-SSL10-K9 Cisco ASA 5505 SSL/IPsec VPN Edition, 10 homologues VPN IPsec et 10 SSL, services de firewall, commutateur Fast Ethernet
8 ports
ASA5505-50-BUN-K9 Cisco ASA 5505 Firewall Edition 50 utilisateurs, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et 2 SSL,
3DES/AES
ASA5505-UL-BUN-K9 Cisco ASA 5505 Firewall Edition nombre d’utilisateurs illimité, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et
2 SSL, 3DES/AES
Cisco PIX 501 pour
50 utilisateurs 50 utilisateurs
ASA5505-SSL10-K9 Cisco ASA 5505 SSL/IPsec VPN Edition, 10 homologues VPN IPsec et 10 SSL, services de firewall, commutateur Fast Ethernet
8 ports
ASA5505-UL-BUN-K9 Cisco ASA 5505 Firewall Edition nombre d’utilisateurs illimité, commutateur Fast Ethernet 8 ports, 10 homologues VPN IPsec et
2 SSL, 3DES/AES
ASA5505-SEC-BUN-K9 Cisco ASA 5505 Firewall Edition nombre d’utilisateurs illimité Security Plus, commutateur Fast Ethernet 8 ports, 25 homologues
VPN IPsec et 2 SSL,DMZ, haute disponibilité Actif / Veille à inspection d’état, 3DES/AES
Cisco PIX 501 pour un
nombre d’utilisateurs
illimité illimité
ASA5505-SSL10-K9 Cisco ASA 5505 SSL/IPsec VPN Edition, 10 homologues VPN IPsec et 10 SSL, services de firewall, commutateur Fast Ethernet
8 ports
ASA5505-SEC-BUN-K9 Cisco ASA 5505 Firewall Edition nombre d’utilisateurs illimité Security Plus, commutateur Fast Ethernet 8 ports, 25 homologues
VPN IPsec et 2 SSL,DMZ, haute disponibilité Actif / Veille à inspection d’état, 3DES/AES
ASA5505-SSL25-K9 Cisco ASA 5505 SSL/IPsec VPN Edition, 25 homologues VPN IPsec et 25 SSL, services de firewall, commutateur Fast Ethernet
8 ports, licence Security Plus
ASA5510-K8 Cisco ASA 5510 Firewall Edition, 3 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, DES
ASA5510-BUN-K9 Cisco ASA 5510 Firewall Edition, 3 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, 3DES/AES
ASA5510-AIP10-K9 Cisco ASA 5510 IPS Edition, module AIP SSM 10, services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast
Ethernet
ASA5510-CSC10-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-CSC20-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-SSL50-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 50 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-SSL100-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 100 SSL, services de firewall, 3 ports Fast Ethernet
Cisco PIX 506E Cisco PIX 506E
ASA5510-SSL250-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 250 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-K8 Cisco ASA 5510 Firewall Edition, 3 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, DES
ASA5510-BUN-K9 Cisco ASA 5510 Firewall Edition, 3 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, 3DES/AES
ASA5510-SEC-BUN-K9 Cisco ASA 5510 Firewall Edition Security Plus, 5 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, haute disponibilité
Actif / Veille, 3DES/AES
ASA5510-AIP10-K9 Cisco ASA 5510 IPS Edition, module AIP SSM 10, services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast
Ethernet
Cisco PIX 515E
R/DMZ
ASA5510-CSC10-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement, Manuel de migration de Cisco PIX 500
vers la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-CSC20-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-SSL50-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 50 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-SSL100-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 100 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-SSL250-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 250 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-SEC-BUN-K9 Cisco ASA 5510 Firewall Edition Security Plus, 5 ports Fast Ethernet, 250 homologues VPN IPsec et 2 SSL, haute disponibilité
Actif / Veille, 3DES/AES
ASA5510-AIP10-K9 Cisco ASA 5510 IPS Edition, module AIP SSM 10, services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast
Ethernet
ASA5510-CSC10-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-CSC20-K9 Cisco ASA 5510 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 250 homologues VPN IPsec et 2 SSL, 3 ports Fast Ethernet
ASA5510-SSL50-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 50 SSL, services de firewall, 3 ports Fast Ethernet
ASA5510-SSL100-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 100 SSL, services de firewall, 3 ports Fast Ethernet
Cisco PIX 515E
UR/FO/FO AA UR/FO/FO AA
ASA5510-SSL250-K9 Cisco ASA 5510 SSL/IPsec VPN Edition, 250 homologues VPN IPsec et 250 SSL, services de firewall, 3 ports Fast Ethernet
ASA5520-K8 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, DES
ASA5520-BUN-K9 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, 3DES/AES
ASA5520-AIP10-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 10, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-AIP20-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 20, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-CSC10-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
ASA5520-CSC20-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
Cisco PIX 520 (Fin de
vie – ve ––– juin 2006) juin 2006) juin 2006)
ASA5520-SSL500-K9 Cisco ASA 5520 SSL/IPsec VPN Edition, 750 homologues VPN IPsec et 500 SSL, services de firewall, 4 ports Ethernet Gigabit,
1 interface Fast Ethernet
ASA5520-K8 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, DES
ASA5520-BUN-K9 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, 3DES/AES
ASA5520-AIP10-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 10, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-AIP20-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 20, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-CSC10-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
ASA5520-CSC20-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
Cisco PIX 525R Cisco PIX 525R
ASA5520-SSL500-K9 Cisco ASA 5520 SSL/IPsec VPN Edition, 750 homologues VPN IPsec et 500 SSL, services de firewall, 4 ports Ethernet Gigabit,
1 interface Fast Ethernet
ASA5520-K8 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, DES
Cisco PIX 525
UR/FO/FO AA UR/FO/FO AA
ASA5520-BUN-K9 Cisco ASA 5520 Firewall Edition, 4 ports Ethernet Gigabit + 1 interface Fast Ethernet, 750 homologues VPN IPsec et 2 SSL,
haute disponibilité Actif / Actif et Actif / Veille, 3DES/AES Manuel de migration de Cisco PIX 500
vers la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
ASA5520-AIP10-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 10, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-AIP20-K9 Cisco ASA 5520 IPS Edition, module AIP SSM 20, services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5520-CSC10-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 10, 50 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
ASA5520-CSC20-K9 Cisco ASA 5520 Anti X Edition, module CSC SSM 20, 500 utilisateurs antivirus / anti logiciels espions avec un an d’abonnement,
services de firewall, 750 homologues VPN IPsec et 2 SSL, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet
ASA5520-SSL500-K9 Cisco ASA 5520 SSL/IPsec VPN Edition, 750 homologues VPN IPsec et 500 SSL, services de firewall, 4 ports Ethernet Gigabit,
1 interface Fast Ethernet
ASA5540-K8 Cisco ASA 5540 Firewall Edition, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet, 5000 homologues VPN IPsec et 2 SSL, DES
ASA5540-BUN-K9 Cisco ASA 5540 Firewall Edition, 4 ports Ethernet Gigabit, 1 interface Fast Ethernet, 5000 homologues VPN IPsec et 2 SSL,
3DES/AES
ASA5540-AIP20-K9 Cisco ASA 5540 IPS Edition, module AIP SSM 20, services de firewall, 5000 homologues VPN IPsec et 2 SSL, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5540-SSL1000-K9 Cisco ASA 5540 SSL/IPsec VPN Edition, 5000 homologues VPN IPsec et 1000 SSL, services de firewall, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5540-SSL2500-K9 Cisco ASA 5540 SSL/IPsec VPN Edition, 5000 homologues VPN IPsec et 2500 SSL, services de firewall, 4 ports Ethernet
Gigabit, 1 interface Fast Ethernet
ASA5550-K8 Cisco ASA 5550 Firewall Edition, 8 ports Ethernet Gigabit, 1 interface Fast Ethernet, 4 ports SFP Gigabit, 5000 homologues VPN
IPsec et 2 SSL, DES
ASA5550-BUN-K9 Cisco ASA 5550 Firewall Edition, 8 ports Ethernet Gigabit, 1 interface Fast Ethernet, 4 ports SFP Gigabit, 5000 homologues VPN
IPsec et 2 SSL, 3DES/AES
ASA5550-SSL2500-K9 Cisco ASA 5550 SSL/IPsec VPN Edition, 5000 homologues VPN IPsec et 2500 SSL, services de firewall, 8 ports Ethernet
Gigabit, 1 interface Fast Ethernet
Cisco PIX 535 Cisco PIX 535
ASA5550-SSL5000-K9 Cisco ASA 5550 SSL/IPsec VPN Edition, 5000 homologues VPN IPsec et 5000 SSL, services de firewall, 8 ports Ethernet
Gigabit, 1 interface Fast Ethernet
Caractéristiques techniques Caractéristiques techniques
Cisco ASA 5505 Cisco ASA 5505 Cisco ASA 5510 Cisco ASA 5510 Cisco ASA 5520 Cisco ASA 5520 Cisco ASA 5540 Cisco ASA 5540 Cisco ASA 5550 Cisco ASA 5550
Utilisateurs et nœuds Utilisateurs et nœuds 10, 50 ou illimité Illimité Illimité Illimité Illimité
Débit du firewall Débit du firewall Jusqu’à 150 Mbits/s Jusqu’à 300 Mbits/s Jusqu’à 450 Mbits/s Jusqu’à 650 Mbits/s Jusqu’à 1,2 Gbits/s
Débit des services
simultanés de
limitation des risques
(firewall et services
IPS)
Non disponible Jusqu’à 150 Mbits/s avec le
module AIP SSM (Advanced
Inspection and Prevention
Security Services Module) 10
(référence AIP SSM 10) pour
la gamme Cisco ASA 5500 –
Jusqu’à 300 Mbits/s avec le
module AIP SSM 20
(référence AIP SSM 20) pour
la gamme Cisco ASA 5500
Jusqu’à 225 Mbits/s avec le
module AIP SSM 10 – Jusqu’à
375 225 Mbits/s avec le
module AIP SSM 20
Jusqu‘à 450 Mbits/s, avec le
module AIP-SSM20
Non disponible
Débit des VPN 3DES
ou AES ou
Jusqu’à 100 Mbits/s Jusqu’à 170 Mbits/s Jusqu’à 225 Mbits/s Jusqu’à 325 Mbits/s Jusqu’à 360 Mbits/s
Homologues VPN
IPSecec
10 ; 25* 250 750 5000 5000
Homologues VPN 2/25 2/250 2/750 2/2500 2/5000 Homologues VPN Manuel de migration de Cisco PIX 500
vers la gamme Cisco ASA 5500
PRESENTATION SYNOPTIQUE
SSL *
(inclus/maximum) (inclus/maximum)
Sessions simultanées 10 000 ; 25 000* 50 000 ; 130 Sessions simultanées 000* 280 000 400 000 650 000
Nouvelles sessions
par seconde par seconde
3 000 6 000 9 000 20 000 28 000
Port s réseaux Port s réseaux
intégrés intégrés
Commutateur Fast Ethernet 8
ports (dont 2 ports PoE)
5 ports Fast Ethernet 4 ports Ethernet Gigabit + 1
port Fast Ethernet
4 ports Ethernet Gigabit + 1
port Fast Ethernet
8 ports Ethernet Gigabit, fibre
SFP et 1 port Fast Ethernet
Interfaces virtuelles Interfaces virtuelles
(VLAN)
3 (ligne réseau désactivée) /
20* (ligne réseau activée)
50/100 * 150 200 250
Contextes de sécurité
(intégrés / maximum) (intégrés / maximum)
0/0 0/0 (Base) ; 2/5 (Security
Plus)
2/20 2/50 2/50
Haute disponibilité Haute disponibilité Non supportée / Actif/Veille*
à inspection d’état
Non supportée / Actif/Actif et
Actif/Veille*
Actif/Actif et Actif/Veille Actif/Actif et Actif/Veille Actif/Actif et Actif/Veille
Emplacement
d'extension d'extension
1, SSC 1, SSM 1, SSM 1, SSM 0
* Exige une licence de mise à niveau.
Copyright © 2007, Cisco Systems, Inc. Tous droits réservés. Cisco, Cisco IOS, Cisco Systems et le logo Cisco Systèmes sont des marques déposées de Cisco Systems, Inc. ou de ses
filiales aux Etats-Unis et dans certains autres pays. C45 364598 01 01/07
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
Cisco Security Appliance Command Line
Configuration Guide
For the Cisco ASA 5500 Series and Cisco PIX 500 Series
Software Version 7.2
Customer Order Number: N/A, Online only
Text Part Number: OL-10088-02THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.
THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.
The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.
NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.
IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
CCDE, CCSI, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Nurse Connect, Cisco Stackpower, Cisco StadiumVision,
Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are
service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the
Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without
Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study,
IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar,
PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath,
WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.
All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (0903R)
Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the
document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.
Cisco Security Appliance Command Line Configuration Guide
Copyright © 2008 Cisco Systems, Inc. All rights reserved.iii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
C O N T E N T S
About This Guide xxxv
Document Objectives xxxv
Audience xxxv
Related Documentation xxxvi
Document Organization xxxvi
Document Conventions xxxix
Obtaining Documentation and Submitting a Service Request xxxix
1-xl
P A R T 1 Getting Started and General Information
C H A P T E R 1 Introduction to the Security Appliance 1-1
Firewall Functional Overview 1-1
Security Policy Overview 1-2
Permitting or Denying Traffic with Access Lists 1-2
Applying NAT 1-2
Using AAA for Through Traffic 1-2
Applying HTTP, HTTPS, or FTP Filtering 1-3
Applying Application Inspection 1-3
Sending Traffic to the Advanced Inspection and Prevention Security Services Module 1-3
Sending Traffic to the Content Security and Control Security Services Module 1-3
Applying QoS Policies 1-3
Applying Connection Limits and TCP Normalization 1-3
Firewall Mode Overview 1-3
Stateful Inspection Overview 1-4
VPN Functional Overview 1-5
Intrusion Prevention Services Functional Overview 1-5
Security Context Overview 1-6
C H A P T E R 2 Getting Started 2-1
Getting Started with Your Platform Model 2-1
Factory Default Configurations 2-1
Restoring the Factory Default Configuration 2-2Contents
iv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
ASA 5505 Default Configuration 2-2
ASA 5510 and Higher Default Configuration 2-3
PIX 515/515E Default Configuration 2-4
Accessing the Command-Line Interface 2-4
Setting Transparent or Routed Firewall Mode 2-5
Working with the Configuration 2-6
Saving Configuration Changes 2-6
Saving Configuration Changes in Single Context Mode 2-7
Saving Configuration Changes in Multiple Context Mode 2-7
Copying the Startup Configuration to the Running Configuration 2-8
Viewing the Configuration 2-8
Clearing and Removing Configuration Settings 2-9
Creating Text Configuration Files Offline 2-9
C H A P T E R 3 Enabling Multiple Context Mode 3-1
Security Context Overview 3-1
Common Uses for Security Contexts 3-1
Unsupported Features 3-2
Context Configuration Files 3-2
Context Configurations 3-2
System Configuration 3-2
Admin Context Configuration 3-2
How the Security Appliance Classifies Packets 3-3
Valid Classifier Criteria 3-3
Invalid Classifier Criteria 3-4
Classification Examples 3-5
Cascading Security Contexts 3-8
Management Access to Security Contexts 3-9
System Administrator Access 3-9
Context Administrator Access 3-10
Enabling or Disabling Multiple Context Mode 3-10
Backing Up the Single Mode Configuration 3-10
Enabling Multiple Context Mode 3-10
Restoring Single Context Mode 3-11
C H A P T E R 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security
Appliance 4-1
Interface Overview 4-1
Understanding ASA 5505 Ports and Interfaces 4-2Contents
v
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Maximum Active VLAN Interfaces for Your License 4-2
Default Interface Configuration 4-4
VLAN MAC Addresses 4-4
Power Over Ethernet 4-4
Monitoring Traffic Using SPAN 4-4
Security Level Overview 4-5
Configuring VLAN Interfaces 4-5
Configuring Switch Ports as Access Ports 4-9
Configuring a Switch Port as a Trunk Port 4-11
Allowing Communication Between VLAN Interfaces on the Same Security Level 4-13
C H A P T E R 5 Configuring Ethernet Settings and Subinterfaces 5-1
Configuring and Enabling RJ-45 Interfaces 5-1
Configuring and Enabling Fiber Interfaces 5-3
Configuring and Enabling VLAN Subinterfaces and 802.1Q Trunking 5-3
C H A P T E R 6 Adding and Managing Security Contexts 6-1
Configuring Resource Management 6-1
Classes and Class Members Overview 6-1
Resource Limits 6-2
Default Class 6-3
Class Members 6-4
Configuring a Class 6-4
Configuring a Security Context 6-7
Automatically Assigning MAC Addresses to Context Interfaces 6-11
Changing Between Contexts and the System Execution Space 6-11
Managing Security Contexts 6-12
Removing a Security Context 6-12
Changing the Admin Context 6-13
Changing the Security Context URL 6-13
Reloading a Security Context 6-14
Reloading by Clearing the Configuration 6-14
Reloading by Removing and Re-adding the Context 6-15
Monitoring Security Contexts 6-15
Viewing Context Information 6-15
Viewing Resource Allocation 6-16
Viewing Resource Usage 6-19
Monitoring SYN Attacks in Contexts 6-20Contents
vi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
C H A P T E R 7 Configuring Interface Parameters 7-1
Security Level Overview 7-1
Configuring the Interface 7-2
Allowing Communication Between Interfaces on the Same Security Level 7-6
C H A P T E R 8 Configuring Basic Settings 8-1
Changing the Login Password 8-1
Changing the Enable Password 8-1
Setting the Hostname 8-2
Setting the Domain Name 8-2
Setting the Date and Time 8-2
Setting the Time Zone and Daylight Saving Time Date Range 8-3
Setting the Date and Time Using an NTP Server 8-4
Setting the Date and Time Manually 8-5
Setting the Management IP Address for a Transparent Firewall 8-5
C H A P T E R 9 Configuring IP Routing 9-1
How Routing Behaves Within the ASA Security Appliance 9-1
Egress Interface Selection Process 9-1
Next Hop Selection Process 9-2
Configuring Static and Default Routes 9-2
Configuring a Static Route 9-3
Configuring a Default Route 9-4
Configuring Static Route Tracking 9-5
Defining Route Maps 9-7
Configuring OSPF 9-8
OSPF Overview 9-9
Enabling OSPF 9-10
Redistributing Routes Into OSPF 9-10
Configuring OSPF Interface Parameters 9-11
Configuring OSPF Area Parameters 9-13
Configuring OSPF NSSA 9-14
Configuring Route Summarization Between OSPF Areas 9-15
Configuring Route Summarization When Redistributing Routes into OSPF 9-16
Defining Static OSPF Neighbors 9-16
Generating a Default Route 9-17
Configuring Route Calculation Timers 9-17
Logging Neighbors Going Up or Down 9-18Contents
vii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Displaying OSPF Update Packet Pacing 9-19
Monitoring OSPF 9-19
Restarting the OSPF Process 9-20
Configuring RIP 9-20
Enabling and Configuring RIP 9-20
Redistributing Routes into the RIP Routing Process 9-22
Configuring RIP Send/Receive Version on an Interface 9-22
Enabling RIP Authentication 9-23
Monitoring RIP 9-23
The Routing Table 9-24
Displaying the Routing Table 9-24
How the Routing Table is Populated 9-24
Backup Routes 9-26
How Forwarding Decisions are Made 9-26
Dynamic Routing and Failover 9-26
C H A P T E R 10 Configuring DHCP, DDNS, and WCCP Services 10-1
Configuring a DHCP Server 10-1
Enabling the DHCP Server 10-2
Configuring DHCP Options 10-3
Using Cisco IP Phones with a DHCP Server 10-4
Configuring DHCP Relay Services 10-5
Configuring Dynamic DNS 10-6
Example 1: Client Updates Both A and PTR RRs for Static IP Addresses 10-7
Example 2: Client Updates Both A and PTR RRs; DHCP Server Honors Client Update Request; FQDN
Provided Through Configuration 10-7
Example 3: Client Includes FQDN Option Instructing Server Not to Update Either RR; Server Overrides
Client and Updates Both RRs. 10-8
Example 4: Client Asks Server To Perform Both Updates; Server Configured to Update PTR RR Only;
Honors Client Request and Updates Both A and PTR RR 10-8
Example 5: Client Updates A RR; Server Updates PTR RR 10-9
Configuring Web Cache Services Using WCCP 10-9
WCCP Feature Support 10-9
WCCP Interaction With Other Features 10-10
Enabling WCCP Redirection 10-10
C H A P T E R 11 Configuring Multicast Routing 11-13
Multicast Routing Overview 11-13
Enabling Multicast Routing 11-14Contents
viii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring IGMP Features 11-14
Disabling IGMP on an Interface 11-15
Configuring Group Membership 11-15
Configuring a Statically Joined Group 11-15
Controlling Access to Multicast Groups 11-15
Limiting the Number of IGMP States on an Interface 11-16
Modifying the Query Interval and Query Timeout 11-16
Changing the Query Response Time 11-17
Changing the IGMP Version 11-17
Configuring Stub Multicast Routing 11-17
Configuring a Static Multicast Route 11-17
Configuring PIM Features 11-18
Disabling PIM on an Interface 11-18
Configuring a Static Rendezvous Point Address 11-19
Configuring the Designated Router Priority 11-19
Filtering PIM Register Messages 11-19
Configuring PIM Message Intervals 11-20
Configuring a Multicast Boundary 11-20
Filtering PIM Neighbors 11-20
Supporting Mixed Bidirectional/Sparse-Mode PIM Networks 11-21
For More Information about Multicast Routing 11-22
C H A P T E R 12 Configuring IPv6 12-1
IPv6-enabled Commands 12-1
Configuring IPv6 12-2
Configuring IPv6 on an Interface 12-3
Configuring a Dual IP Stack on an Interface 12-4
Enforcing the Use of Modified EUI-64 Interface IDs in IPv6 Addresses 12-4
Configuring IPv6 Duplicate Address Detection 12-4
Configuring IPv6 Default and Static Routes 12-5
Configuring IPv6 Access Lists 12-6
Configuring IPv6 Neighbor Discovery 12-7
Configuring Neighbor Solicitation Messages 12-7
Configuring Router Advertisement Messages 12-9
Multicast Listener Discovery Support 12-11
Configuring a Static IPv6 Neighbor 12-11
Verifying the IPv6 Configuration 12-11
The show ipv6 interface Command 12-12
The show ipv6 route Command 12-12Contents
ix
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
The show ipv6 mld traffic Command 12-13
C H A P T E R 13 Configuring AAA Servers and the Local Database 13-1
AAA Overview 13-1
About Authentication 13-1
About Authorization 13-2
About Accounting 13-2
AAA Server and Local Database Support 13-2
Summary of Support 13-3
RADIUS Server Support 13-3
Authentication Methods 13-4
Attribute Support 13-4
RADIUS Authorization Functions 13-4
TACACS+ Server Support 13-4
SDI Server Support 13-4
SDI Version Support 13-5
Two-step Authentication Process 13-5
SDI Primary and Replica Servers 13-5
NT Server Support 13-5
Kerberos Server Support 13-5
LDAP Server Support 13-6
Authentication with LDAP 13-6
Authorization with LDAP for VPN 13-7
LDAP Attribute Mapping 13-8
SSO Support for WebVPN with HTTP Forms 13-9
Local Database Support 13-9
User Profiles 13-10
Fallback Support 13-10
Configuring the Local Database 13-10
Identifying AAA Server Groups and Servers 13-12
Using Certificates and User Login Credentials 13-15
Using User Login Credentials 13-15
Using certificates 13-16
Supporting a Zone Labs Integrity Server 13-16
Overview of Integrity Server and Security Appliance Interaction 13-17
Configuring Integrity Server Support 13-17
C H A P T E R 14 Configuring Failover 14-1
Understanding Failover 14-1Contents
x
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Failover System Requirements 14-2
Hardware Requirements 14-2
Software Requirements 14-2
License Requirements 14-2
The Failover and Stateful Failover Links 14-3
Failover Link 14-3
Stateful Failover Link 14-5
Active/Active and Active/Standby Failover 14-6
Active/Standby Failover 14-6
Active/Active Failover 14-10
Determining Which Type of Failover to Use 14-15
Regular and Stateful Failover 14-15
Regular Failover 14-16
Stateful Failover 14-16
Failover Health Monitoring 14-16
Unit Health Monitoring 14-17
Interface Monitoring 14-17
Failover Feature/Platform Matrix 14-18
Failover Times by Platform 14-18
Configuring Failover 14-19
Failover Configuration Limitations 14-19
Configuring Active/Standby Failover 14-19
Prerequisites 14-20
Configuring Cable-Based Active/Standby Failover (PIX Security Appliance Only) 14-20
Configuring LAN-Based Active/Standby Failover 14-21
Configuring Optional Active/Standby Failover Settings 14-25
Configuring Active/Active Failover 14-27
Prerequisites 14-27
Configuring Cable-Based Active/Active Failover (PIX security appliance) 14-27
Configuring LAN-Based Active/Active Failover 14-29
Configuring Optional Active/Active Failover Settings 14-33
Configuring Unit Health Monitoring 14-39
Configuring Failover Communication Authentication/Encryption 14-39
Verifying the Failover Configuration 14-40
Using the show failover Command 14-40
Viewing Monitored Interfaces 14-48
Displaying the Failover Commands in the Running Configuration 14-48
Testing the Failover Functionality 14-49
Controlling and Monitoring Failover 14-49
Forcing Failover 14-49Contents
xi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Disabling Failover 14-50
Restoring a Failed Unit or Failover Group 14-50
Monitoring Failover 14-50
Failover System Messages 14-51
Debug Messages 14-51
SNMP 14-51
P A R T 2 Configuring the Firewall
C H A P T E R 15 Firewall Mode Overview 15-1
Routed Mode Overview 15-1
IP Routing Support 15-1
Network Address Translation 15-2
How Data Moves Through the Security Appliance in Routed Firewall Mode 15-3
An Inside User Visits a Web Server 15-3
An Outside User Visits a Web Server on the DMZ 15-4
An Inside User Visits a Web Server on the DMZ 15-6
An Outside User Attempts to Access an Inside Host 15-7
A DMZ User Attempts to Access an Inside Host 15-8
Transparent Mode Overview 15-8
Transparent Firewall Network 15-9
Allowing Layer 3 Traffic 15-9
Allowed MAC Addresses 15-9
Passing Traffic Not Allowed in Routed Mode 15-9
MAC Address Lookups 15-10
Using the Transparent Firewall in Your Network 15-10
Transparent Firewall Guidelines 15-10
Unsupported Features in Transparent Mode 15-11
How Data Moves Through the Transparent Firewall 15-13
An Inside User Visits a Web Server 15-14
An Outside User Visits a Web Server on the Inside Network 15-15
An Outside User Attempts to Access an Inside Host 15-16
C H A P T E R 16 Identifying Traffic with Access Lists 16-1
Access List Overview 16-1
Access List Types 16-2
Access Control Entry Order 16-2
Access Control Implicit Deny 16-3
IP Addresses Used for Access Lists When You Use NAT 16-3Contents
xii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Adding an Extended Access List 16-5
Extended Access List Overview 16-5
Allowing Broadcast and Multicast Traffic through the Transparent Firewall 16-6
Adding an Extended ACE 16-6
Adding an EtherType Access List 16-8
EtherType Access List Overview 16-8
Supported EtherTypes 16-8
Implicit Permit of IP and ARPs Only 16-9
Implicit and Explicit Deny ACE at the End of an Access List 16-9
IPv6 Unsupported 16-9
Using Extended and EtherType Access Lists on the Same Interface 16-9
Allowing MPLS 16-9
Adding an EtherType ACE 16-10
Adding a Standard Access List 16-11
Adding a Webtype Access List 16-11
Simplifying Access Lists with Object Grouping 16-11
How Object Grouping Works 16-12
Adding Object Groups 16-12
Adding a Protocol Object Group 16-13
Adding a Network Object Group 16-13
Adding a Service Object Group 16-14
Adding an ICMP Type Object Group 16-15
Nesting Object Groups 16-15
Using Object Groups with an Access List 16-16
Displaying Object Groups 16-17
Removing Object Groups 16-17
Adding Remarks to Access Lists 16-18
Scheduling Extended Access List Activation 16-18
Adding a Time Range 16-18
Applying the Time Range to an ACE 16-19
Logging Access List Activity 16-20
Access List Logging Overview 16-20
Configuring Logging for an Access Control Entry 16-21
Managing Deny Flows 16-22
C H A P T E R 17 Applying NAT 17-1
NAT Overview 17-1
Introduction to NAT 17-2
NAT Control 17-3Contents
xiii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
NAT Types 17-5
Dynamic NAT 17-5
PAT 17-7
Static NAT 17-7
Static PAT 17-8
Bypassing NAT When NAT Control is Enabled 17-9
Policy NAT 17-9
NAT and Same Security Level Interfaces 17-13
Order of NAT Commands Used to Match Real Addresses 17-14
Mapped Address Guidelines 17-14
DNS and NAT 17-14
Configuring NAT Control 17-16
Using Dynamic NAT and PAT 17-17
Dynamic NAT and PAT Implementation 17-17
Configuring Dynamic NAT or PAT 17-23
Using Static NAT 17-26
Using Static PAT 17-27
Bypassing NAT 17-29
Configuring Identity NAT 17-30
Configuring Static Identity NAT 17-30
Configuring NAT Exemption 17-32
NAT Examples 17-33
Overlapping Networks 17-34
Redirecting Ports 17-35
C H A P T E R 18 Permitting or Denying Network Access 18-1
Inbound and Outbound Access List Overview 18-1
Applying an Access List to an Interface 18-2
C H A P T E R 19 Applying AAA for Network Access 19-1
AAA Performance 19-1
Configuring Authentication for Network Access 19-1
Authentication Overview 19-2
One-Time Authentication 19-2
Applications Required to Receive an Authentication Challenge 19-2
Security Appliance Authentication Prompts 19-2
Static PAT and HTTP 19-3
Enabling Network Access Authentication 19-3Contents
xiv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Enabling Secure Authentication of Web Clients 19-5
Authenticating Directly with the Security Appliance 19-6
Enabling Direct Authentication Using HTTP and HTTPS 19-6
Enabling Direct Authentication Using Telnet 19-6
Configuring Authorization for Network Access 19-6
Configuring TACACS+ Authorization 19-7
Configuring RADIUS Authorization 19-8
Configuring a RADIUS Server to Send Downloadable Access Control Lists 19-9
Configuring a RADIUS Server to Download Per-User Access Control List Names 19-12
Configuring Accounting for Network Access 19-13
Using MAC Addresses to Exempt Traffic from Authentication and Authorization 19-14
C H A P T E R 20 Applying Filtering Services 20-1
Filtering Overview 20-1
Filtering ActiveX Objects 20-2
ActiveX Filtering Overview 20-2
Enabling ActiveX Filtering 20-2
Filtering Java Applets 20-3
Filtering URLs and FTP Requests with an External Server 20-4
URL Filtering Overview 20-4
Identifying the Filtering Server 20-4
Buffering the Content Server Response 20-6
Caching Server Addresses 20-6
Filtering HTTP URLs 20-7
Configuring HTTP Filtering 20-7
Enabling Filtering of Long HTTP URLs 20-7
Truncating Long HTTP URLs 20-7
Exempting Traffic from Filtering 20-8
Filtering HTTPS URLs 20-8
Filtering FTP Requests 20-9
Viewing Filtering Statistics and Configuration 20-9
Viewing Filtering Server Statistics 20-10
Viewing Buffer Configuration and Statistics 20-11
Viewing Caching Statistics 20-11
Viewing Filtering Performance Statistics 20-11
Viewing Filtering Configuration 20-12Contents
xv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
C H A P T E R 21 Using Modular Policy Framework 21-1
Modular Policy Framework Overview 21-1
Modular Policy Framework Features 21-1
Modular Policy Framework Configuration Overview 21-2
Default Global Policy 21-3
Identifying Traffic (Layer 3/4 Class Map) 21-4
Default Class Maps 21-4
Creating a Layer 3/4 Class Map for Through Traffic 21-5
Creating a Layer 3/4 Class Map for Management Traffic 21-7
Configuring Special Actions for Application Inspections (Inspection Policy Map) 21-7
Inspection Policy Map Overview 21-8
Defining Actions in an Inspection Policy Map 21-8
Identifying Traffic in an Inspection Class Map 21-11
Creating a Regular Expression 21-12
Creating a Regular Expression Class Map 21-14
Defining Actions (Layer 3/4 Policy Map) 21-15
Layer 3/4 Policy Map Overview 21-15
Policy Map Guidelines 21-16
Supported Feature Types 21-16
Hierarchical Policy Maps 21-16
Feature Directionality 21-17
Feature Matching Guidelines within a Policy Map 21-17
Feature Matching Guidelines for multiple Policy Maps 21-18
Order in Which Multiple Feature Actions are Applied 21-18
Default Layer 3/4 Policy Map 21-18
Adding a Layer 3/4 Policy Map 21-19
Applying Actions to an Interface (Service Policy) 21-21
Modular Policy Framework Examples 21-21
Applying Inspection and QoS Policing to HTTP Traffic 21-22
Applying Inspection to HTTP Traffic Globally 21-22
Applying Inspection and Connection Limits to HTTP Traffic to Specific Servers 21-23
Applying Inspection to HTTP Traffic with NAT 21-24
C H A P T E R 22 Managing AIP SSM and CSC SSM 22-1
Managing the AIP SSM 22-1
About the AIP SSM 22-1
Getting Started with the AIP SSM 22-2
Diverting Traffic to the AIP SSM 22-2
Sessioning to the AIP SSM and Running Setup 22-4Contents
xvi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Managing the CSC SSM 22-5
About the CSC SSM 22-5
Getting Started with the CSC SSM 22-7
Determining What Traffic to Scan 22-9
Limiting Connections Through the CSC SSM 22-11
Diverting Traffic to the CSC SSM 22-11
Checking SSM Status 22-13
Transferring an Image onto an SSM 22-14
C H A P T E R 23 Preventing Network Attacks 23-1
Configuring TCP Normalization 23-1
TCP Normalization Overview 23-1
Enabling the TCP Normalizer 23-2
Configuring Connection Limits and Timeouts 23-6
Connection Limit Overview 23-7
TCP Intercept Overview 23-7
Disabling TCP Intercept for Management Packets for Clientless SSL Compatibility 23-7
Dead Connection Detection (DCD) Overview 23-7
TCP Sequence Randomization Overview 23-8
Enabling Connection Limits and Timeouts 23-8
Preventing IP Spoofing 23-10
Configuring the Fragment Size 23-11
Blocking Unwanted Connections 23-11
Configuring IP Audit for Basic IPS Support 23-12
C H A P T E R 24 Configuring QoS 24-1
QoS Overview 24-1
Supported QoS Features 24-2
What is a Token Bucket? 24-2
Policing Overview 24-3
Priority Queueing Overview 24-3
Traffic Shaping Overview 24-4
How QoS Features Interact 24-4
DSCP and DiffServ Preservation 24-5
Creating the Standard Priority Queue for an Interface 24-5
Determining the Queue and TX Ring Limits 24-6
Configuring the Priority Queue 24-7
Identifying Traffic for QoS Using Class Maps 24-8Contents
xvii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Creating a QoS Class Map 24-8
QoS Class Map Examples 24-8
Creating a Policy for Standard Priority Queueing and/or Policing 24-9
Creating a Policy for Traffic Shaping and Hierarchical Priority Queueing 24-11
Viewing QoS Statistics 24-13
Viewing QoS Police Statistics 24-13
Viewing QoS Standard Priority Statistics 24-14
Viewing QoS Shaping Statistics 24-14
Viewing QoS Standard Priority Queue Statistics 24-15
C H A P T E R 25 Configuring Application Layer Protocol Inspection 25-1
Inspection Engine Overview 25-2
When to Use Application Protocol Inspection 25-2
Inspection Limitations 25-2
Default Inspection Policy 25-3
Configuring Application Inspection 25-5
CTIQBE Inspection 25-9
CTIQBE Inspection Overview 25-9
Limitations and Restrictions 25-10
Verifying and Monitoring CTIQBE Inspection 25-10
DCERPC Inspection 25-11
DCERPC Overview 25-11
Configuring a DCERPC Inspection Policy Map for Additional Inspection Control 25-12
DNS Inspection 25-13
How DNS Application Inspection Works 25-13
How DNS Rewrite Works 25-14
Configuring DNS Rewrite 25-15
Using the Static Command for DNS Rewrite 25-15
Using the Alias Command for DNS Rewrite 25-16
Configuring DNS Rewrite with Two NAT Zones 25-16
DNS Rewrite with Three NAT Zones 25-17
Configuring DNS Rewrite with Three NAT Zones 25-19
Verifying and Monitoring DNS Inspection 25-20
Configuring a DNS Inspection Policy Map for Additional Inspection Control 25-20
ESMTP Inspection 25-23
Configuring an ESMTP Inspection Policy Map for Additional Inspection Control 25-24
FTP Inspection 25-26
FTP Inspection Overview 25-27Contents
xviii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Using the strict Option 25-27
Configuring an FTP Inspection Policy Map for Additional Inspection Control 25-28
Verifying and Monitoring FTP Inspection 25-31
GTP Inspection 25-32
GTP Inspection Overview 25-32
Configuring a GTP Inspection Policy Map for Additional Inspection Control 25-33
Verifying and Monitoring GTP Inspection 25-37
H.323 Inspection 25-38
H.323 Inspection Overview 25-38
How H.323 Works 25-38
Limitations and Restrictions 25-39
Configuring an H.323 Inspection Policy Map for Additional Inspection Control 25-40
Configuring H.323 and H.225 Timeout Values 25-42
Verifying and Monitoring H.323 Inspection 25-43
Monitoring H.225 Sessions 25-43
Monitoring H.245 Sessions 25-43
Monitoring H.323 RAS Sessions 25-44
HTTP Inspection 25-44
HTTP Inspection Overview 25-44
Configuring an HTTP Inspection Policy Map for Additional Inspection Control 25-45
Instant Messaging Inspection 25-49
IM Inspection Overview 25-49
Configuring an Instant Messaging Inspection Policy Map for Additional Inspection Control 25-49
ICMP Inspection 25-52
ICMP Error Inspection 25-52
ILS Inspection 25-53
IPSec Pass Through Inspection 25-54
IPSec Pass Through Inspection Overview 25-54
Configuring an IPSec Pass Through Inspection Policy Map for Additional Inspection Control 25-54
MGCP Inspection 25-56
MGCP Inspection Overview 25-56
Configuring an MGCP Inspection Policy Map for Additional Inspection Control 25-58
Configuring MGCP Timeout Values 25-59
Verifying and Monitoring MGCP Inspection 25-59
NetBIOS Inspection 25-60
Configuring a NetBIOS Inspection Policy Map for Additional Inspection Control 25-60
PPTP Inspection 25-62
RADIUS Accounting Inspection 25-62Contents
xix
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring a RADIUS Inspection Policy Map for Additional Inspection Control 25-63
RSH Inspection 25-63
RTSP Inspection 25-63
RTSP Inspection Overview 25-63
Using RealPlayer 25-64
Restrictions and Limitations 25-64
SIP Inspection 25-65
SIP Inspection Overview 25-65
SIP Instant Messaging 25-65
Configuring a SIP Inspection Policy Map for Additional Inspection Control 25-66
Configuring SIP Timeout Values 25-70
Verifying and Monitoring SIP Inspection 25-70
Skinny (SCCP) Inspection 25-71
SCCP Inspection Overview 25-71
Supporting Cisco IP Phones 25-71
Restrictions and Limitations 25-72
Verifying and Monitoring SCCP Inspection 25-72
Configuring a Skinny (SCCP) Inspection Policy Map for Additional Inspection Control 25-73
SMTP and Extended SMTP Inspection 25-74
SNMP Inspection 25-76
SQL*Net Inspection 25-76
Sun RPC Inspection 25-77
Sun RPC Inspection Overview 25-77
Managing Sun RPC Services 25-77
Verifying and Monitoring Sun RPC Inspection 25-78
TFTP Inspection 25-79
XDMCP Inspection 25-80
C H A P T E R 26 Configuring ARP Inspection and Bridging Parameters 26-1
Configuring ARP Inspection 26-1
ARP Inspection Overview 26-1
Adding a Static ARP Entry 26-2
Enabling ARP Inspection 26-2
Customizing the MAC Address Table 26-3
MAC Address Table Overview 26-3
Adding a Static MAC Address 26-3
Setting the MAC Address Timeout 26-4
Disabling MAC Address Learning 26-4Contents
xx
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Viewing the MAC Address Table 26-4
P A R T 3 Configuring VPN
C H A P T E R 27 Configuring IPsec and ISAKMP 27-1
Tunneling Overview 27-1
IPsec Overview 27-2
Configuring ISAKMP 27-2
ISAKMP Overview 27-2
Configuring ISAKMP Policies 27-5
Enabling ISAKMP on the Outside Interface 27-6
Disabling ISAKMP in Aggressive Mode 27-6
Determining an ID Method for ISAKMP Peers 27-6
Enabling IPsec over NAT-T 27-7
Using NAT-T 27-7
Enabling IPsec over TCP 27-8
Waiting for Active Sessions to Terminate Before Rebooting 27-9
Alerting Peers Before Disconnecting 27-9
Configuring Certificate Group Matching 27-9
Creating a Certificate Group Matching Rule and Policy 27-10
Using the Tunnel-group-map default-group Command 27-11
Configuring IPsec 27-11
Understanding IPsec Tunnels 27-11
Understanding Transform Sets 27-12
Defining Crypto Maps 27-12
Applying Crypto Maps to Interfaces 27-20
Using Interface Access Lists 27-20
Changing IPsec SA Lifetimes 27-22
Creating a Basic IPsec Configuration 27-22
Using Dynamic Crypto Maps 27-24
Providing Site-to-Site Redundancy 27-26
Viewing an IPsec Configuration 27-26
Clearing Security Associations 27-27
Clearing Crypto Map Configurations 27-27
Supporting the Nokia VPN Client 27-28
C H A P T E R 28 Configuring L2TP over IPSec 28-1
L2TP Overview 28-1Contents
xxi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
IPSec Transport and Tunnel Modes 28-2
Configuring L2TP over IPSec Connections 28-2
Tunnel Group Switching 28-5
Viewing L2TP over IPSec Connection Information 28-5
Using L2TP Debug Commands 28-7
Enabling IPSec Debug 28-7
Getting Additional Information 28-8
C H A P T E R 29 Setting General IPSec VPN Parameters 29-1
Configuring VPNs in Single, Routed Mode 29-1
Configuring IPSec to Bypass ACLs 29-1
Permitting Intra-Interface Traffic 29-2
NAT Considerations for Intra-Interface Traffic 29-3
Setting Maximum Active IPSec VPN Sessions 29-3
Using Client Update to Ensure Acceptable Client Revision Levels 29-3
Understanding Load Balancing 29-5
Implementing Load Balancing 29-6
Prerequisites 29-6
Eligible Platforms 29-7
Eligible Clients 29-7
VPN Load-Balancing Cluster Configurations 29-7
Some Typical Mixed Cluster Scenarios 29-8
Scenario 1: Mixed Cluster with No WebVPN Connections 29-8
Scenario 2: Mixed Cluster Handling WebVPN Connections 29-8
Configuring Load Balancing 29-9
Configuring the Public and Private Interfaces for Load Balancing 29-9
Configuring the Load Balancing Cluster Attributes 29-10
Configuring VPN Session Limits 29-11
C H A P T E R 30 Configuring Tunnel Groups, Group Policies, and Users 30-1
Overview of Tunnel Groups, Group Policies, and Users 30-1
Tunnel Groups 30-2
General Tunnel-Group Connection Parameters 30-2
IPSec Tunnel-Group Connection Parameters 30-3
WebVPN Tunnel-Group Connection Parameters 30-4
Configuring Tunnel Groups 30-5
Maximum Tunnel Groups 30-5
Default IPSec Remote Access Tunnel Group Configuration 30-5Contents
xxii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring IPSec Tunnel-Group General Attributes 30-6
Configuring IPSec Remote-Access Tunnel Groups 30-6
Specifying a Name and Type for the IPSec Remote Access Tunnel Group 30-6
Configuring IPSec Remote-Access Tunnel Group General Attributes 30-7
Configuring IPSec Remote-Access Tunnel Group IPSec Attributes 30-10
Configuring IPSec Remote-Access Tunnel Group PPP Attributes 30-12
Configuring LAN-to-LAN Tunnel Groups 30-13
Default LAN-to-LAN Tunnel Group Configuration 30-13
Specifying a Name and Type for a LAN-to-LAN Tunnel Group 30-14
Configuring LAN-to-LAN Tunnel Group General Attributes 30-14
Configuring LAN-to-LAN IPSec Attributes 30-15
Configuring WebVPN Tunnel Groups 30-17
Specifying a Name and Type for a WebVPN Tunnel Group 30-17
Configuring WebVPN Tunnel-Group General Attributes 30-17
Configuring WebVPN Tunnel-Group WebVPN Attributes 30-20
Customizing Login Windows for WebVPN Users 30-23
Configuring Microsoft Active Directory Settings for Password Management 30-24
Using Active Directory to Force the User to Change Password at Next Logon 30-25
Using Active Directory to Specify Maximum Password Age 30-27
Using Active Directory to Override an Account Disabled AAA Indicator 30-28
Using Active Directory to Enforce Minimum Password Length 30-29
Using Active Directory to Enforce Password Complexity 30-30
Group Policies 30-31
Default Group Policy 30-32
Configuring Group Policies 30-34
Configuring an External Group Policy 30-34
Configuring an Internal Group Policy 30-35
Configuring Group Policy Attributes 30-35
Configuring WINS and DNS Servers 30-35
Configuring VPN-Specific Attributes 30-36
Configuring Security Attributes 30-39
Configuring the Banner Message 30-41
Configuring IPSec-UDP Attributes 30-41
Configuring Split-Tunneling Attributes 30-42
Configuring Domain Attributes for Tunneling 30-43
Configuring Attributes for VPN Hardware Clients 30-45
Configuring Backup Server Attributes 30-48
Configuring Microsoft Internet Explorer Client Parameters 30-49
Configuring Network Admission Control Parameters 30-51
Configuring Address Pools 30-54Contents
xxiii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring Firewall Policies 30-55
Configuring Client Access Rules 30-58
Configuring Group-Policy WebVPN Attributes 30-59
Configuring User Attributes 30-70
Viewing the Username Configuration 30-71
Configuring Attributes for Specific Users 30-71
Setting a User Password and Privilege Level 30-71
Configuring User Attributes 30-72
Configuring VPN User Attributes 30-72
Configuring WebVPN for Specific Users 30-76
C H A P T E R 31 Configuring IP Addresses for VPNs 31-1
Configuring an IP Address Assignment Method 31-1
Configuring Local IP Address Pools 31-2
Configuring AAA Addressing 31-2
Configuring DHCP Addressing 31-3
C H A P T E R 32 Configuring Remote Access IPSec VPNs 32-1
Summary of the Configuration 32-1
Configuring Interfaces 32-2
Configuring ISAKMP Policy and Enabling ISAKMP on the Outside Interface 32-3
Configuring an Address Pool 32-4
Adding a User 32-4
Creating a Transform Set 32-4
Defining a Tunnel Group 32-5
Creating a Dynamic Crypto Map 32-6
Creating a Crypto Map Entry to Use the Dynamic Crypto Map 32-7
C H A P T E R 33 Configuring Network Admission Control 33-1
Uses, Requirements, and Limitations 33-1
Configuring Basic Settings 33-1
Specifying the Access Control Server Group 33-2
Enabling NAC 33-2
Configuring the Default ACL for NAC 33-3
Configuring Exemptions from NAC 33-4
Changing Advanced Settings 33-5
Changing Clientless Authentication Settings 33-5
Enabling and Disabling Clientless Authentication 33-5Contents
xxiv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Changing the Login Credentials Used for Clientless Authentication 33-6
Configuring NAC Session Attributes 33-7
Setting the Query-for-Posture-Changes Timer 33-8
Setting the Revalidation Timer 33-9
C H A P T E R 34 Configuring Easy VPN Services on the ASA 5505 34-1
Specifying the Client/Server Role of the Cisco ASA 5505 34-1
Specifying the Primary and Secondary Servers 34-2
Specifying the Mode 34-3
NEM with Multiple Interfaces 34-3
Configuring Automatic Xauth Authentication 34-4
Configuring IPSec Over TCP 34-4
Comparing Tunneling Options 34-5
Specifying the Tunnel Group or Trustpoint 34-6
Specifying the Tunnel Group 34-6
Specifying the Trustpoint 34-7
Configuring Split Tunneling 34-7
Configuring Device Pass-Through 34-8
Configuring Remote Management 34-8
Guidelines for Configuring the Easy VPN Server 34-9
Group Policy and User Attributes Pushed to the Client 34-9
Authentication Options 34-11
C H A P T E R 35 Configuring the PPPoE Client 35-1
PPPoE Client Overview 35-1
Configuring the PPPoE Client Username and Password 35-2
Enabling PPPoE 35-3
Using PPPoE with a Fixed IP Address 35-3
Monitoring and Debugging the PPPoE Client 35-4
Clearing the Configuration 35-5
Using Related Commands 35-5
C H A P T E R 36 Configuring LAN-to-LAN IPsec VPNs 36-1
Summary of the Configuration 36-1
Configuring Interfaces 36-2
Configuring ISAKMP Policy and Enabling ISAKMP on the Outside Interface 36-2
Creating a Transform Set 36-4Contents
xxv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring an ACL 36-4
Defining a Tunnel Group 36-5
Creating a Crypto Map and Applying It To an Interface 36-6
Applying Crypto Maps to Interfaces 36-7
C H A P T E R 37 Configuring WebVPN 37-1
Getting Started with WebVPN 37-1
Observing WebVPN Security Precautions 37-2
Understanding Features Not Supported for WebVPN 37-2
Using SSL to Access the Central Site 37-3
Using HTTPS for WebVPN Sessions 37-3
Configuring WebVPN and ASDM on the Same Interface 37-3
Setting WebVPN HTTP/HTTPS Proxy 37-4
Configuring SSL/TLS Encryption Protocols 37-4
Authenticating with Digital Certificates 37-5
Enabling Cookies on Browsers for WebVPN 37-5
Managing Passwords 37-5
Using Single Sign-on with WebVPN 37-6
Configuring SSO with HTTP Basic or NTLM Authentication 37-6
Configuring SSO Authentication Using SiteMinder 37-7
Configuring SSO with the HTTP Form Protocol 37-9
Authenticating with Digital Certificates 37-15
Creating and Applying WebVPN Policies 37-15
Creating Port Forwarding, URL, and Access Lists in Global Configuration Mode 37-16
Assigning Lists to Group Policies and Users in Group-Policy or User Mode 37-16
Enabling Features for Group Policies and Users 37-16
Assigning Users to Group Policies 37-16
Using the Security Appliance Authentication Server 37-16
Using a RADIUS Server 37-16
Configuring WebVPN Tunnel Group Attributes 37-17
Configuring WebVPN Group Policy and User Attributes 37-17
Configuring Application Access 37-18
Downloading the Port-Forwarding Applet Automatically 37-18
Closing Application Access to Prevent hosts File Errors 37-18
Recovering from hosts File Errors When Using Application Access 37-18
Understanding the hosts File 37-19
Stopping Application Access Improperly 37-19
Reconfiguring a hosts File 37-20
Configuring File Access 37-22Contents
xxvi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Configuring Access to Citrix MetaFrame Services 37-24
Using WebVPN with PDAs 37-25
Using E-Mail over WebVPN 37-26
Configuring E-mail Proxies 37-26
E-mail Proxy Certificate Authentication 37-27
Configuring MAPI 37-27
Configuring Web E-mail: MS Outlook Web Access 37-27
Optimizing WebVPN Performance 37-28
Configuring Caching 37-28
Configuring Content Transformation 37-28
Configuring a Certificate for Signing Rewritten Java Content 37-29
Disabling Content Rewrite 37-29
Using Proxy Bypass 37-29
Configuring Application Profile Customization Framework 37-30
APCF Syntax 37-30
APCF Example 37-32
WebVPN End User Setup 37-32
Defining the End User Interface 37-32
Viewing the WebVPN Home Page 37-33
Viewing the WebVPN Application Access Panel 37-33
Viewing the Floating Toolbar 37-34
Customizing WebVPN Pages 37-35
Using Cascading Style Sheet Parameters 37-35
Customizing the WebVPN Login Page 37-36
Customizing the WebVPN Logout Page 37-37
Customizing the WebVPN Home Page 37-38
Customizing the Application Access Window 37-40
Customizing the Prompt Dialogs 37-41
Applying Customizations to Tunnel Groups, Groups and Users 37-42
Requiring Usernames and Passwords 37-43
Communicating Security Tips 37-44
Configuring Remote Systems to Use WebVPN Features 37-44
Capturing WebVPN Data 37-50
Creating a Capture File 37-51
Using a Browser to Display Capture Data 37-51
C H A P T E R 38 Configuring SSL VPN Client 38-1
Installing SVC 38-1
Platform Requirements 38-1Contents
xxvii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Installing the SVC Software 38-2
Enabling SVC 38-3
Enabling Permanent SVC Installation 38-4
Enabling Rekey 38-5
Enabling and Adjusting Dead Peer Detection 38-5
Enabling Keepalive 38-6
Using SVC Compression 38-6
Viewing SVC Sessions 38-7
Logging Off SVC Sessions 38-8
Updating SVCs 38-8
C H A P T E R 39 Configuring Certificates 39-1
Public Key Cryptography 39-1
About Public Key Cryptography 39-1
Certificate Scalability 39-2
About Key Pairs 39-2
About Trustpoints 39-3
About Revocation Checking 39-3
About CRLs 39-3
About OCSP 39-4
Supported CA Servers 39-5
Certificate Configuration 39-5
Preparing for Certificates 39-5
Configuring Key Pairs 39-6
Generating Key Pairs 39-6
Removing Key Pairs 39-7
Configuring Trustpoints 39-7
Obtaining Certificates 39-9
Obtaining Certificates with SCEP 39-9
Obtaining Certificates Manually 39-11
Configuring CRLs for a Trustpoint 39-13
Exporting and Importing Trustpoints 39-14
Exporting a Trustpoint Configuration 39-15
Importing a Trustpoint Configuration 39-15
Configuring CA Certificate Map Rules 39-15
P A R T 4 System AdministrationContents
xxviii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
C H A P T E R 40 Managing System Access 40-1
Allowing Telnet Access 40-1
Allowing SSH Access 40-2
Configuring SSH Access 40-2
Using an SSH Client 40-3
Allowing HTTPS Access for ASDM 40-3
Configuring ASDM and WebVPN on the Same Interface 40-4
Configuring AAA for System Administrators 40-5
Configuring Authentication for CLI Access 40-5
Configuring Authentication To Access Privileged EXEC Mode 40-6
Configuring Authentication for the Enable Command 40-6
Authenticating Users Using the Login Command 40-6
Configuring Command Authorization 40-7
Command Authorization Overview 40-7
Configuring Local Command Authorization 40-8
Configuring TACACS+ Command Authorization 40-11
Configuring Command Accounting 40-14
Viewing the Current Logged-In User 40-14
Recovering from a Lockout 40-15
Configuring a Login Banner 40-16
C H A P T E R 41 Managing Software, Licenses, and Configurations 41-1
Managing Licenses 41-1
Obtaining an Activation Key 41-1
Entering a New Activation Key 41-2
Viewing Files in Flash Memory 41-2
Retrieving Files from Flash Memory 41-3
Downloading Software or Configuration Files to Flash Memory 41-3
Downloading a File to a Specific Location 41-4
Downloading a File to the Startup or Running Configuration 41-4
Configuring the Application Image and ASDM Image to Boot 41-5
Configuring the File to Boot as the Startup Configuration 41-6
Performing Zero Downtime Upgrades for Failover Pairs 41-6
Upgrading an Active/Standby Failover Configuration 41-7
Upgrading and Active/Active Failover Configuration 41-8
Backing Up Configuration Files 41-8
Backing up the Single Mode Configuration or Multiple Mode System Configuration 41-9
Backing Up a Context Configuration in Flash Memory 41-9Contents
xxix
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Backing Up a Context Configuration within a Context 41-9
Copying the Configuration from the Terminal Display 41-10
Configuring Auto Update Support 41-10
Configuring Communication with an Auto Update Server 41-10
Configuring Client Updates as an Auto Update Server 41-12
Viewing Auto Update Status 41-13
C H A P T E R 42 Monitoring the Security Appliance 42-1
Using SNMP 42-1
SNMP Overview 42-1
Enabling SNMP 42-3
Configuring and Managing Logs 42-5
Logging Overview 42-5
Logging in Multiple Context Mode 42-5
Enabling and Disabling Logging 42-6
Enabling Logging to All Configured Output Destinations 42-6
Disabling Logging to All Configured Output Destinations 42-6
Viewing the Log Configuration 42-6
Configuring Log Output Destinations 42-7
Sending System Log Messages to a Syslog Server 42-7
Sending System Log Messages to the Console Port 42-8
Sending System Log Messages to an E-mail Address 42-9
Sending System Log Messages to ASDM 42-10
Sending System Log Messages to a Telnet or SSH Session 42-11
Sending System Log Messages to the Log Buffer 42-12
Filtering System Log Messages 42-14
Message Filtering Overview 42-15
Filtering System Log Messages by Class 42-15
Filtering System Log Messages with Custom Message Lists 42-17
Customizing the Log Configuration 42-18
Customizing the Log Configuration 42-18
Configuring the Logging Queue 42-19
Including the Date and Time in System Log Messages 42-19
Including the Device ID in System Log Messages 42-19
Generating System Log Messages in EMBLEM Format 42-20
Disabling a System Log Message 42-20
Changing the Severity Level of a System Log Message 42-21
Changing the Amount of Internal Flash Memory Available for Logs 42-22
Understanding System Log Messages 42-23Contents
xxx
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
System Log Message Format 42-23
Severity Levels 42-23
C H A P T E R 43 Troubleshooting the Security Appliance 43-1
Testing Your Configuration 43-1
Enabling ICMP Debug Messages and System Messages 43-1
Pinging Security Appliance Interfaces 43-2
Pinging Through the Security Appliance 43-4
Disabling the Test Configuration 43-5
Traceroute 43-6
Packet Tracer 43-6
Reloading the Security Appliance 43-6
Performing Password Recovery 43-7
Performing Password Recovery for the ASA 5500 Series Adaptive Security Appliance 43-7
Password Recovery for the PIX 500 Series Security Appliance 43-8
Disabling Password Recovery 43-9
Resetting the Password on the SSM Hardware Module 43-10
Other Troubleshooting Tools 43-10
Viewing Debug Messages 43-11
Capturing Packets 43-11
Viewing the Crash Dump 43-11
Common Problems 43-11
P A R T 2 Reference
Supported Platforms and Feature Licenses A-1
Security Services Module Support A-9
VPN Specifications A-10
Cisco VPN Client Support A-11
Cisco Secure Desktop Support A-11
Site-to-Site VPN Compatibility A-11
Cryptographic Standards A-12
Example 1: Multiple Mode Firewall With Outside Access B-1
Example 1: System Configuration B-2
Example 1: Admin Context Configuration B-4
Example 1: Customer A Context Configuration B-4
Example 1: Customer B Context Configuration B-4
Example 1: Customer C Context Configuration B-5
Example 2: Single Mode Firewall Using Same Security Level B-6Contents
xxxi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Example 3: Shared Resources for Multiple Contexts B-8
Example 3: System Configuration B-9
Example 3: Admin Context Configuration B-9
Example 3: Department 1 Context Configuration B-10
Example 3: Department 2 Context Configuration B-11
Example 4: Multiple Mode, Transparent Firewall with Outside Access B-12
Example 4: System Configuration B-13
Example 4: Admin Context Configuration B-14
Example 4: Customer A Context Configuration B-15
Example 4: Customer B Context Configuration B-15
Example 4: Customer C Context Configuration B-16
Example 5: WebVPN Configuration B-16
Example 6: IPv6 Configuration B-18
Example 7: Cable-Based Active/Standby Failover (Routed Mode) B-20
Example 8: LAN-Based Active/Standby Failover (Routed Mode) B-21
Example 8: Primary Unit Configuration B-21
Example 8: Secondary Unit Configuration B-22
Example 9: LAN-Based Active/Active Failover (Routed Mode) B-22
Example 9: Primary Unit Configuration B-23
Example 9: Primary System Configuration B-23
Example 9: Primary admin Context Configuration B-24
Example 9: Primary ctx1 Context Configuration B-25
Example 9: Secondary Unit Configuration B-25
Example 10: Cable-Based Active/Standby Failover (Transparent Mode) B-26
Example 11: LAN-Based Active/Standby Failover (Transparent Mode) B-27
Example 11: Primary Unit Configuration B-27
Example 11: Secondary Unit Configuration B-28
Example 12: LAN-Based Active/Active Failover (Transparent Mode) B-28
Example 12: Primary Unit Configuration B-29
Example 12: Primary System Configuration B-29
Example 12: Primary admin Context Configuration B-30
Example 12: Primary ctx1 Context Configuration B-31
Example 12: Secondary Unit Configuration B-31
Example 13: Dual ISP Support Using Static Route Tracking B-31
Example 14: ASA 5505 Base License B-33
Example 15: ASA 5505 Security Plus License with Failover and Dual-ISP Backup B-35
Example 15: Primary Unit Configuration B-35
Example 15: Secondary Unit Configuration B-37Contents
xxxii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Example 16: Network Traffic Diversion B-37
Inspecting All Traffic with the AIP SSM B-43
Inspecting Specific Traffic with the AIP SSM B-44
Verifying the Recording of Alert Events B-45
Troubleshooting the Configuration B-47
Firewall Mode and Security Context Mode C-1
Command Modes and Prompts C-2
Syntax Formatting C-3
Abbreviating Commands C-3
Command-Line Editing C-3
Command Completion C-4
Command Help C-4
Filtering show Command Output C-4
Command Output Paging C-5
Adding Comments C-6
Text Configuration Files C-6
How Commands Correspond with Lines in the Text File C-6
Command-Specific Configuration Mode Commands C-6
Automatic Text Entries C-7
Line Order C-7
Commands Not Included in the Text Configuration C-7
Passwords C-7
Multiple Security Context Files C-7
IPv4 Addresses and Subnet Masks D-1
Classes D-1
Private Networks D-2
Subnet Masks D-2
Determining the Subnet Mask D-3
Determining the Address to Use with the Subnet Mask D-3
IPv6 Addresses D-5
IPv6 Address Format D-5
IPv6 Address Types D-6
Unicast Addresses D-6
Multicast Address D-8
Anycast Address D-9
Required Addresses D-10
IPv6 Address Prefixes D-10
Protocols and Applications D-11Contents
xxxiii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
TCP and UDP Ports D-11
Local Ports and Protocols D-14
ICMP Types D-15
Selecting LDAP, RADIUS, or Local Authentication and Authorization E-1
Understanding Policy Enforcement of Permissions and Attributes E-2
Configuring an External LDAP Server E-2
Reviewing the LDAP Directory Structure and Configuration Procedure E-3
Organizing the Security Appliance LDAP Schema E-3
Searching the Hierarchy E-4
Binding the Security Appliance to the LDAP Server E-5
Defining the Security Appliance LDAP Schema E-5
Cisco -AV-Pair Attribute Syntax E-14
Example Security Appliance Authorization Schema E-15
Loading the Schema in the LDAP Server E-18
Defining User Permissions E-18
Example User File E-18
Reviewing Examples of Active Directory Configurations E-19
Example 1: Configuring LDAP Authorization with Microsoft Active Directory (ASA/PIX) E-19
Example 2: Configuring LDAP Authentication with Microsoft Active Directory E-20
Example 3: LDAP Authentication and LDAP Authorization with Microsoft Active Directory E-22
Configuring an External RADIUS Server E-24
Reviewing the RADIUS Configuration Procedure E-24
Security Appliance RADIUS Authorization Attributes E-25
Security Appliance TACACS+ Attributes E-32
GL O S S A R Y
I N D E XContents
xxxiv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02xxxv
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
This preface introduce the Cisco Security Appliance Command Line Configuration Guide, and includes
the following sections:
• Document Objectives, page xxxv
• Audience, page xxxv
• Related Documentation, page xxxvi
• Document Organization, page xxxvi
• Document Conventions, page xxxix
• , page xxxix
Document Objectives
The purpose of this guide is to help you configure the security appliance using the command-line
interface. This guide does not cover every feature, but describes only the most common configuration
scenarios.
You can also configure and monitor the security appliance by using ASDM, a web-based GUI
application. ASDM includes configuration wizards to guide you through some common configuration
scenarios, and online Help for less common scenarios. For more information, see:
http://www.cisco.com/univercd/cc/td/doc/product/netsec/secmgmt/asdm/index.htm
This guide applies to the Cisco PIX 500 series security appliances (PIX 515E, PIX 525, and PIX 535)
and the Cisco ASA 5500 series security appliances (ASA 5505, ASA 5510, ASA 5520, ASA 5540, and
ASA 5550). Throughout this guide, the term “security appliance” applies generically to all supported
models, unless specified otherwise. The PIX 501, PIX 506E, and PIX 520 security appliances are not
supported.
Audience
This guide is for network managers who perform any of the following tasks:
• Manage network security
• Install and configure firewalls/security appliances
• Configure VPNs
• Configure intrusion detection softwarexxxvi
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
Related Documentation
For more information, refer to the following documentation:
• Cisco PIX Security Appliance Release Notes
• Cisco ASDM Release Notes
• Cisco PIX 515E Quick Start Guide
• Guide for Cisco PIX 6.2 and 6.3 Users Upgrading to Cisco PIX Software Version 7.0
• Migrating to ASA for VPN 3000 Series Concentrator Administrators
• Cisco Security Appliance Command Reference
• Cisco ASA 5500 Series Adaptive Security Appliance Getting Started Guide
• Cisco ASA 5500 Series Release Notes
• Cisco Security Appliance Logging Configuration and System Log Messages
• Cisco Secure Desktop Configuration Guide for Cisco ASA 5500 Series Administrators
Document Organization
This guide includes the chapters and appendixes described in Table 1.
Table 1 Document Organization
Chapter/Appendix Definition
Part 1: Getting Started and General Information
Chapter 1, “Introduction to the
Security Appliance”
Provides a high-level overview of the security appliance.
Chapter 2, “Getting Started” Describes how to access the command-line interface, configure the firewall mode, and
work with the configuration.
Chapter 3, “Enabling Multiple
Context Mode”
Describes how to use security contexts and enable multiple context mode.
Chapter 4, “Configuring Switch
Ports and VLAN Interfaces for
the Cisco ASA 5505 Adaptive
Security Appliance”
Describes how to configure switch ports and VLAN interfaces for the ASA 5505 adaptive
security appliance.
Chapter 5, “Configuring
Ethernet Settings and
Subinterfaces”
Describes how to configure Ethernet settings for physical interfaces and add subinterfaces.
Chapter 6, “Adding and
Managing Security Contexts”
Describes how to configure multiple security contexts on the security appliance.
Chapter 7, “Configuring
Interface Parameters”
Describes how to configure each interface and subinterface for a name, security, level, and
IP address.
Chapter 8, “Configuring Basic
Settings”
Describes how to configure basic settings that are typically required for a functioning
configuration.
Chapter 9, “Configuring IP
Routing”
Describes how to configure IP routing.xxxvii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
Chapter 10, “Configuring
DHCP, DDNS, and WCCP
Services”
Describes how to configure the DHCP server and DHCP relay.
Chapter 11, “Configuring
Multicast Routing”
Describes how to configure multicast routing.
Chapter 12, “Configuring IPv6” Describes how to enable and configure IPv6.
Chapter 13, “Configuring AAA
Servers and the Local Database”
Describes how to configure AAA servers and the local database.
Chapter 14, “Configuring
Failover”
Describes the failover feature, which lets you configure two security appliances so that one
will take over operation if the other one fails.
Part 2: Configuring the Firewall
Chapter 15, “Firewall Mode
Overview”
Describes in detail the two operation modes of the security appliance, routed and
transparent mode, and how data is handled differently with each mode.
Chapter 16, “Identifying Traffic
with Access Lists”
Describes how to identify traffic with access lists.
Chapter 17, “Applying NAT” Describes how address translation is performed.
Chapter 18, “Permitting or
Denying Network Access”
Describes how to control network access through the security appliance using access lists.
Chapter 19, “Applying AAA for
Network Access”
Describes how to enable AAA for network access.
Chapter 20, “Applying Filtering
Services”
Describes ways to filter web traffic to reduce security risks or prevent inappropriate use.
Chapter 21, “Using Modular
Policy Framework”
Describes how to use the Modular Policy Framework to create security policies for TCP,
general connection settings, inspection, and QoS.
Chapter 22, “Managing AIP
SSM and CSC SSM”
Describes how to configure the security appliance to send traffic to an AIP SSM or a CSC
SSM, how to check the status of an SSM, and how to update the software image on an
intelligent SSM.
Chapter 23, “Preventing
Network Attacks”
Describes how to configure protection features to intercept and respond to network attacks.
Chapter 24, “Configuring QoS” Describes how to configure the network to provide better service to selected network
traffic over various technologies, including Frame Relay, Asynchronous Transfer Mode
(ATM), Ethernet and 802.1 networks, SONET, and IP routed networks.
Chapter 25, “Configuring
Application Layer Protocol
Inspection”
Describes how to use and configure application inspection.
Chapter 26, “Configuring
ARP Inspection and Bridging
Parameters”
Describes how to enable ARP inspection and how to customize bridging operations.
Part 3: Configuring VPN
Chapter 27, “Configuring IPsec
and ISAKMP”
Describes how to configure ISAKMP and IPSec tunneling to build and manage VPN
“tunnels,” or secure connections between remote users and a private corporate network.
Table 1 Document Organization (continued)
Chapter/Appendix Definitionxxxviii
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
Chapter 28, “Configuring L2TP
over IPSec”
Describes how to configure IPSec over L2TP on the security appliance.
Chapter 29, “Setting General
IPSec VPN Parameters”
Describes miscellaneous VPN configuration procedures.
Chapter 30, “Configuring
Tunnel Groups, Group Policies,
and Users”
Describes how to configure VPN tunnel groups, group policies, and users.
Chapter 31, “Configuring IP
Addresses for VPNs”
Describes how to configure IP addresses in your private network addressing scheme, which
let the client function as a tunnel endpoint.
Chapter 32, “Configuring
Remote Access IPSec VPNs”
Describes how to configure a remote access VPN connection.
Chapter 33, “Configuring
Network Admission Control”
Describes how to configure Network Admission Control (NAC).
Chapter 34, “Configuring Easy
VPN Services on the ASA 5505”
Describes how to configure Easy VPN on the ASA 5505 adaptive security appliance.
Chapter 35, “Configuring the
PPPoE Client”
Describes how to configure the PPPoE client provided with the security appliance.
Chapter 36, “Configuring
LAN-to-LAN IPsec VPNs”
Describes how to build a LAN-to-LAN VPN connection.
Chapter 37, “Configuring
WebVPN”
Describes how to establish a secure, remote-access VPN tunnel to a security appliance
using a web browser.
Chapter 38, “Configuring SSL
VPN Client”
Describes how to install and configure the SSL VPN Client.
Chapter 39, “Configuring
Certificates”
Describes how to configure a digital certificates, which contains information that identifies
a user or device. Such information can include a name, serial number, company,
department, or IP address. A digital certificate also contains a copy of the public key for
the user or device.
Part 4: System Administration
Chapter 40, “Managing System
Access”
Describes how to access the security appliance for system management through Telnet,
SSH, and HTTPS.
Chapter 41, “Managing
Software, Licenses, and
Configurations”
Describes how to enter license keys and download software and configurations files.
Chapter 42, “Monitoring the
Security Appliance”
Describes how to monitor the security appliance.
Chapter 43, “Troubleshooting
the Security Appliance”
Describes how to troubleshoot the security appliance.
Part 4: Reference
Appendix A, “Feature Licenses
and Specifications”
Describes the feature licenses and specifications.
Appendix B, “Sample
Configurations”
Describes a number of common ways to implement the security appliance.
Table 1 Document Organization (continued)
Chapter/Appendix Definitionxxxix
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
Document Conventions
Command descriptions use these conventions:
• Braces ({ }) indicate a required choice.
• Square brackets ([ ]) indicate optional elements.
• Vertical bars ( | ) separate alternative, mutually exclusive elements.
• Boldface indicates commands and keywords that are entered literally as shown.
• Italics indicate arguments for which you supply values.
Examples use these conventions:
• Examples depict screen displays and the command line in screen font.
• Information you need to enter in examples is shown in boldface screen font.
• Variables for which you must supply a value are shown in italic screen font.
Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the
manual.
Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed
and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free
service and Cisco currently supports RSS Version 2.0.
Appendix C, “Using the
Command-Line Interface”
Describes how to use the CLI to configure the the security appliance.
Appendix D, “Addresses,
Protocols, and Ports”
Provides a quick reference for IP addresses, protocols, and applications.
Appendix E, “Configuring an
External Server for
Authorization and
Authentication”
Provides information about configuring LDAP and RADIUS authorization servers.
“Glossary” Provides a handy reference for commonly-used terms and acronyms.
“Index” Provides an index for the guide.
Table 1 Document Organization (continued)
Chapter/Appendix Definitionxl
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
About This Guide
P A R T 1
Getting Started and General InformationC H A P T E R
1-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
1
Introduction to the Security Appliance
The security appliance combines advanced stateful firewall and VPN concentrator functionality in one
device, and for some models, an integrated intrusion prevention module called the AIP SSM or an
integrated content security and control module called the CSC SSM. The security appliance includes
many advanced features, such as multiple security contexts (similar to virtualized firewalls), transparent
(Layer 2) firewall or routed (Layer 3) firewall operation, advanced inspection engines, IPSec and
WebVPN support, and many more features. See Appendix A, “Feature Licenses and Specifications,” for
a list of supported platforms and features. For a list of new features, see the Cisco ASA 5500 Series
Release Notes or the Cisco PIX Security Appliance Release Notes.
Note The Cisco PIX 501 and PIX 506E security appliances are not supported.
This chapter includes the following sections:
• Firewall Functional Overview, page 1-1
• VPN Functional Overview, page 1-5
• Intrusion Prevention Services Functional Overview, page 1-5
• Security Context Overview, page 1-6
Firewall Functional Overview
Firewalls protect inside networks from unauthorized access by users on an outside network. A firewall
can also protect inside networks from each other, for example, by keeping a human resources network
separate from a user network. If you have network resources that need to be available to an outside user,
such as a web or FTP server, you can place these resources on a separate network behind the firewall,
called a demilitarized zone (DMZ). The firewall allows limited access to the DMZ, but because the DMZ
only includes the public servers, an attack there only affects the servers and does not affect the other
inside networks. You can also control when inside users access outside networks (for example, access to
the Internet), by allowing only certain addresses out, by requiring authentication or authorization, or by
coordinating with an external URL filtering server.
When discussing networks connected to a firewall, the outside network is in front of the firewall, the
inside network is protected and behind the firewall, and a DMZ, while behind the firewall, allows limited
access to outside users. Because the security appliance lets you configure many interfaces with varied
security policies, including many inside interfaces, many DMZs, and even many outside interfaces if
desired, these terms are used in a general sense only.1-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 1 Introduction to the Security Appliance
Firewall Functional Overview
This section includes the following topics:
• Security Policy Overview, page 1-2
• Firewall Mode Overview, page 1-3
• Stateful Inspection Overview, page 1-4
Security Policy Overview
A security policy determines which traffic is allowed to pass through the firewall to access another
network. By default, the security appliance allows traffic to flow freely from an inside network (higher
security level) to an outside network (lower security level). You can apply actions to traffic to customize
the security policy. This section includes the following topics:
• Permitting or Denying Traffic with Access Lists, page 1-2
• Applying NAT, page 1-2
• Using AAA for Through Traffic, page 1-2
• Applying HTTP, HTTPS, or FTP Filtering, page 1-3
• Applying Application Inspection, page 1-3
• Sending Traffic to the Advanced Inspection and Prevention Security Services Module, page 1-3
• Sending Traffic to the Content Security and Control Security Services Module, page 1-3
• Applying QoS Policies, page 1-3
• Applying Connection Limits and TCP Normalization, page 1-3
Permitting or Denying Traffic with Access Lists
You can apply an access list to limit traffic from inside to outside, or allow traffic from outside to inside.
For transparent firewall mode, you can also apply an EtherType access list to allow non-IP traffic.
Applying NAT
Some of the benefits of NAT include the following:
• You can use private addresses on your inside networks. Private addresses are not routable on the
Internet.
• NAT hides the local addresses from other networks, so attackers cannot learn the real address of a
host.
• NAT can resolve IP routing problems by supporting overlapping IP addresses.
Using AAA for Through Traffic
You can require authentication and/or authorization for certain types of traffic, for example, for HTTP.
The security appliance also sends accounting information to a RADIUS or TACACS+ server.1-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 1 Introduction to the Security Appliance
Firewall Functional Overview
Applying HTTP, HTTPS, or FTP Filtering
Although you can use access lists to prevent outbound access to specific websites or FTP servers,
configuring and managing web usage this way is not practical because of the size and dynamic nature of
the Internet. We recommend that you use the security appliance in conjunction with a separate server
running one of the following Internet filtering products:
• Websense Enterprise
• Secure Computing SmartFilter
Applying Application Inspection
Inspection engines are required for services that embed IP addressing information in the user data packet
or that open secondary channels on dynamically assigned ports. These protocols require the security
appliance to do a deep packet inspection.
Sending Traffic to the Advanced Inspection and Prevention Security Services Module
If your model supports the AIP SSM for intrusion prevention, then you can send traffic to the AIP SSM
for inspection.
Sending Traffic to the Content Security and Control Security Services Module
If your model supports it, the CSC SSM provides protection against viruses, spyware, spam, and other
unwanted traffic. It accomplishes this by scanning the FTP, HTTP, POP3, and SMTP traffic that you
configure the adaptive security appliance to send to it.
Applying QoS Policies
Some network traffic, such as voice and streaming video, cannot tolerate long latency times. QoS is a
network feature that lets you give priority to these types of traffic. QoS refers to the capability of a
network to provide better service to selected network traffic.
Applying Connection Limits and TCP Normalization
You can limit TCP and UDP connections and embryonic connections. Limiting the number of
connections and embryonic connections protects you from a DoS attack. The security appliance uses the
embryonic limit to trigger TCP Intercept, which protects inside systems from a DoS attack perpetrated
by flooding an interface with TCP SYN packets. An embryonic connection is a connection request that
has not finished the necessary handshake between source and destination.
TCP normalization is a feature consisting of advanced TCP connection settings designed to drop packets
that do not appear normal.
Firewall Mode Overview
The security appliance runs in two different firewall modes:
• Routed
• Transparent 1-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 1 Introduction to the Security Appliance
Firewall Functional Overview
In routed mode, the security appliance is considered to be a router hop in the network.
In transparent mode, the security appliance acts like a “bump in the wire,” or a “stealth firewall,” and is
not considered a router hop. The security appliance connects to the same network on its inside and
outside interfaces.
You might use a transparent firewall to simplify your network configuration. Transparent mode is also
useful if you want the firewall to be invisible to attackers. You can also use a transparent firewall for
traffic that would otherwise be blocked in routed mode. For example, a transparent firewall can allow
multicast streams using an EtherType access list.
Stateful Inspection Overview
All traffic that goes through the security appliance is inspected using the Adaptive Security Algorithm
and either allowed through or dropped. A simple packet filter can check for the correct source address,
destination address, and ports, but it does not check that the packet sequence or flags are correct. A filter
also checks every packet against the filter, which can be a slow process.
A stateful firewall like the security appliance, however, takes into consideration the state of a packet:
• Is this a new connection?
If it is a new connection, the security appliance has to check the packet against access lists and
perform other tasks to determine if the packet is allowed or denied. To perform this check, the first
packet of the session goes through the “session management path,” and depending on the type of
traffic, it might also pass through the “control plane path.”
The session management path is responsible for the following tasks:
– Performing the access list checks
– Performing route lookups
– Allocating NAT translations (xlates)
– Establishing sessions in the “fast path”
Note The session management path and the fast path make up the “accelerated security path.”
Some packets that require Layer 7 inspection (the packet payload must be inspected or altered) are
passed on to the control plane path. Layer 7 inspection engines are required for protocols that have
two or more channels: a data channel, which uses well-known port numbers, and a control channel,
which uses different port numbers for each session. These protocols include FTP, H.323, and SNMP.
• Is this an established connection?
If the connection is already established, the security appliance does not need to re-check packets;
most matching packets can go through the fast path in both directions. The fast path is responsible
for the following tasks:
– IP checksum verification
– Session lookup
– TCP sequence number check
– NAT translations based on existing sessions
– Layer 3 and Layer 4 header adjustments1-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 1 Introduction to the Security Appliance
VPN Functional Overview
For UDP or other connectionless protocols, the security appliance creates connection state
information so that it can also use the fast path.
Data packets for protocols that require Layer 7 inspection can also go through the fast path.
Some established session packets must continue to go through the session management path or the
control plane path. Packets that go through the session management path include HTTP packets that
require inspection or content filtering. Packets that go through the control plane path include the
control packets for protocols that require Layer 7 inspection.
VPN Functional Overview
A VPN is a secure connection across a TCP/IP network (such as the Internet) that appears as a private
connection. This secure connection is called a tunnel. The security appliance uses tunneling protocols to
negotiate security parameters, create and manage tunnels, encapsulate packets, transmit or receive them
through the tunnel, and unencapsulate them. The security appliance functions as a bidirectional tunnel
endpoint: it can receive plain packets, encapsulate them, and send them to the other end of the tunnel
where they are unencapsulated and sent to their final destination. It can also receive encapsulated
packets, unencapsulate them, and send them to their final destination. The security appliance invokes
various standard protocols to accomplish these functions.
The security appliance performs the following functions:
• Establishes tunnels
• Negotiates tunnel parameters
• Authenticates users
• Assigns user addresses
• Encrypts and decrypts data
• Manages security keys
• Manages data transfer across the tunnel
• Manages data transfer inbound and outbound as a tunnel endpoint or router
The security appliance invokes various standard protocols to accomplish these functions.
Intrusion Prevention Services Functional Overview
The Cisco ASA 5500 series adaptive security appliance supports the AIP SSM, an intrusion prevention
services module that monitors and performs real-time analysis of network traffic by looking for
anomalies and misuse based on an extensive, embedded signature library. When the system detects
unauthorized activity, it can terminate the specific connection, permanently block the attacking host, log
the incident, and send an alert to the device manager. Other legitimate connections continue to operate
independently without interruption. For more information, see Configuring the Cisco Intrusion
Prevention System Sensor Using the Command Line Interface.1-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 1 Introduction to the Security Appliance
Security Context Overview
Security Context Overview
You can partition a single security appliance into multiple virtual devices, known as security contexts.
Each context is an independent device, with its own security policy, interfaces, and administrators.
Multiple contexts are similar to having multiple standalone devices. Many features are supported in
multiple context mode, including routing tables, firewall features, IPS, and management. Some features
are not supported, including VPN and dynamic routing protocols.
In multiple context mode, the security appliance includes a configuration for each context that identifies
the security policy, interfaces, and almost all the options you can configure on a standalone device. The
system administrator adds and manages contexts by configuring them in the system configuration,
which, like a single mode configuration, is the startup configuration. The system configuration identifies
basic settings for the security appliance. The system configuration does not include any network
interfaces or network settings for itself; rather, when the system needs to access network resources (such
as downloading the contexts from the server), it uses one of the contexts that is designated as the admin
context.
The admin context is just like any other context, except that when a user logs into the admin context,
then that user has system administrator rights and can access the system and all other contexts.
Note You can run all your contexts in routed mode or transparent mode; you cannot run some contexts in one
mode and others in another.
Multiple context mode supports static routing only.C H A P T E R
2-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
2
Getting Started
This chapter describes how to access the command-line interface, configure the firewall mode, and work
with the configuration. This chapter includes the following sections:
• Getting Started with Your Platform Model, page 2-1
• Factory Default Configurations, page 2-1
• Accessing the Command-Line Interface, page 2-4
• Setting Transparent or Routed Firewall Mode, page 2-5
• Working with the Configuration, page 2-6
Getting Started with Your Platform Model
This guide applies to multiple security appliance platforms and models: the PIX 500 series security
appliances and the ASA 5500 series adaptive security appliances. There are some hardware differences
between the PIX and the ASA security appliance. Moreover, the ASA 5505 includes a built-in switch,
and requires some special configuration. For these hardware-based differences, the platforms or models
supported are noted directly in each section.
Some models do not support all features covered in this guide. For example, the ASA 5505 adaptive
security appliance does not support security contexts. This guide might not list each supported model
when discussing a feature. To determine the features that are supported for your model before you start
your configuration, see the “Supported Platforms and Feature Licenses” section on page A-1 for a
detailed list of the features supported for each model.
Factory Default Configurations
The factory default configuration is the configuration applied by Cisco to new security appliances. The
factory default configuration is supported on all models except for the PIX 525 and PIX 535 security
appliances.
For the PIX 515/515E and the ASA 5510 and higher security appliances, the factory default
configuration configures an interface for management so you can connect to it using ASDM, with which
you can then complete your configuration.
For the ASA 5505 adaptive security appliance, the factory default configuration configures interfaces
and NAT so that the security appliance is ready to use in your network immediately.2-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Factory Default Configurations
The factory default configuration is available only for routed firewall mode and single context mode. See
Chapter 3, “Enabling Multiple Context Mode,” for more information about multiple context mode. See
the “Setting Transparent or Routed Firewall Mode” section on page 2-5 for more information about
routed and transparent firewall mode.
This section includes the following topics:
• Restoring the Factory Default Configuration, page 2-2
• ASA 5505 Default Configuration, page 2-2
• ASA 5510 and Higher Default Configuration, page 2-3
• PIX 515/515E Default Configuration, page 2-4
Restoring the Factory Default Configuration
To restore the factory default configuration, enter the following command:
hostname(config)# configure factory-default [ip_address [mask]]
If you specify the ip_address, then you set the inside or management interface IP address, depending on
your model, instead of using the default IP address of 192.168.1.1. The http command uses the subnet
you specify. Similarly, the dhcpd address command range consists of addresses within the subnet that
you specify.
After you restore the factory default configuration, save it to internal Flash memory using the write
memory command. The write memory command saves the running configuration to the default location
for the startup configuration, even if you previously configured the boot config command to set a
different location; when the configuration was cleared, this path was also cleared.
Note This command also clears the boot system command, if present, along with the rest of the configuration.
The boot system command lets you boot from a specific image, including an image on the external Flash
memory card. The next time you reload the security appliance after restoring the factory configuration,
it boots from the first image in internal Flash memory; if you do not have an image in internal Flash
memory, the security appliance does not boot.
To configure additional settings that are useful for a full configuration, see the setup command.
ASA 5505 Default Configuration
The default factory configuration for the ASA 5505 adaptive security appliance configures the
following:
• An inside VLAN 1 interface that includes the Ethernet 0/1 through 0/7 switch ports. If you did not
set the IP address in the configure factory-default command, then the VLAN 1 IP address and mask
are 192.168.1.1 and 255.255.255.0.
• An outside VLAN 2 interface that includes the Ethernet 0/0 switch port. VLAN 2 derives its IP
address using DHCP.
• The default route is also derived from DHCP.
• All inside IP addresses are translated when accessing the outside using interface PAT.
• By default, inside users can access the outside with an access list, and outside users are prevented
from accessing the inside.2-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Factory Default Configurations
• The DHCP server is enabled on the security appliance, so a PC connecting to the VLAN 1 interface
receives an address between 192.168.1.2 and 192.168.1.254.
• The HTTP server is enabled for ASDM and is accessible to users on the 192.168.1.0 network.
The configuration consists of the following commands:
interface Ethernet 0/0
switchport access vlan 2
no shutdown
interface Ethernet 0/1
switchport access vlan 1
no shutdown
interface Ethernet 0/2
switchport access vlan 1
no shutdown
interface Ethernet 0/3
switchport access vlan 1
no shutdown
interface Ethernet 0/4
switchport access vlan 1
no shutdown
interface Ethernet 0/5
switchport access vlan 1
no shutdown
interface Ethernet 0/6
switchport access vlan 1
no shutdown
interface Ethernet 0/7
switchport access vlan 1
no shutdown
interface vlan2
nameif outside
no shutdown
ip address dhcp setroute
interface vlan1
nameif inside
ip address 192.168.1.1 255.255.255.0
security-level 100
no shutdown
global (outside) 1 interface
nat (inside) 1 0 0
http server enable
http 192.168.1.0 255.255.255.0 inside
dhcpd address 192.168.1.2-192.168.1.254 inside
dhcpd auto_config outside
dhcpd enable inside
logging asdm informational
ASA 5510 and Higher Default Configuration
The default factory configuration for the ASA 5510 and higher adaptive security appliance configures
the following:
• The management interface, Management 0/0. If you did not set the IP address in the configure
factory-default command, then the IP address and mask are 192.168.1.1 and 255.255.255.0.
• The DHCP server is enabled on the security appliance, so a PC connecting to the interface receives
an address between 192.168.1.2 and 192.168.1.254.
• The HTTP server is enabled for ASDM and is accessible to users on the 192.168.1.0 network.2-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Accessing the Command-Line Interface
The configuration consists of the following commands:
interface management 0/0
ip address 192.168.1.1 255.255.255.0
nameif management
security-level 100
no shutdown
asdm logging informational 100
asdm history enable
http server enable
http 192.168.1.0 255.255.255.0 management
dhcpd address 192.168.1.2-192.168.1.254 management
dhcpd lease 3600
dhcpd ping_timeout 750
dhcpd enable management
PIX 515/515E Default Configuration
The default factory configuration for the PIX 515/515E security appliance configures the following:
• The inside Ethernet1 interface. If you did not set the IP address in the configure factory-default
command, then the IP address and mask are 192.168.1.1 and 255.255.255.0.
• The DHCP server is enabled on the security appliance, so a PC connecting to the interface receives
an address between 192.168.1.2 and 192.168.1.254.
• The HTTP server is enabled for ASDM and is accessible to users on the 192.168.1.0 network.
The configuration consists of the following commands:
interface ethernet 1
ip address 192.168.1.1 255.255.255.0
nameif management
security-level 100
no shutdown
asdm logging informational 100
asdm history enable
http server enable
http 192.168.1.0 255.255.255.0 management
dhcpd address 192.168.1.2-192.168.1.254 management
dhcpd lease 3600
dhcpd ping_timeout 750
dhcpd enable management
Accessing the Command-Line Interface
For initial configuration, access the command-line interface directly from the console port. Later, you
can configure remote access using Telnet or SSH according to Chapter 40, “Managing System Access.”
If your system is already in multiple context mode, then accessing the console port places you in the
system execution space. See Chapter 3, “Enabling Multiple Context Mode,” for more information about
multiple context mode.
Note If you want to use ASDM to configure the security appliance instead of the command-line interface, you
can connect to the default management address of 192.168.1.1 (if your security appliance includes a
factory default configuration. See the “Factory Default Configurations” section on page 2-1.). On the 2-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Setting Transparent or Routed Firewall Mode
ASA 5510 and higher adaptive security appliances, the interface to which you connect with ASDM is
Management 0/0. For the ASA 5505 adaptive security appliance, the switch port to which you connect
with ASDM is any port, except for Ethernet 0/0. For the PIX 515/515E security appliance, the interface
to which you connect with ASDM is Ethernet 1. If you do not have a factory default configuration, follow
the steps in this section to access the command-line interface. You can then configure the minimum
parameters to access ASDM by entering the setup command.
To access the command-line interface, perform the following steps:
Step 1 Connect a PC to the console port using the provided console cable, and connect to the console using a
terminal emulator set for 9600 baud, 8 data bits, no parity, 1 stop bit, no flow control.
See the hardware guide that came with your security appliance for more information about the console
cable.
Step 2 Press the Enter key to see the following prompt:
hostname>
This prompt indicates that you are in user EXEC mode.
Step 3 To access privileged EXEC mode, enter the following command:
hostname> enable
The following prompt appears:
Password:
Step 4 Enter the enable password at the prompt.
By default, the password is blank, and you can press the Enter key to continue. See the “Changing the
Enable Password” section on page 8-1 to change the enable password.
The prompt changes to:
hostname#
To exit privileged mode, enter the disable, exit, or quit command.
Step 5 To access global configuration mode, enter the following command:
hostname# configure terminal
The prompt changes to the following:
hostname(config)#
To exit global configuration mode, enter the exit, quit, or end command.
Setting Transparent or Routed Firewall Mode
You can set the security appliance to run in routed firewall mode (the default) or transparent firewall
mode.
For multiple context mode, you can use only one firewall mode for all contexts. You must set the mode
in the system execution space.2-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Working with the Configuration
When you change modes, the security appliance clears the configuration because many commands are
not supported for both modes. If you already have a populated configuration, be sure to back up your
configuration before changing the mode; you can use this backup for reference when creating your new
configuration. See the “Backing Up Configuration Files” section on page 41-8. For multiple context
mode, the system configuration is erased. This action removes any contexts from running. If you then
re-add a context that has an existing configuration that was created for the wrong mode, the context
configuration will not work correctly. Be sure to recreate your context configurations for the correct
mode before you re-add them, or add new contexts with new paths for the new configurations.
If you download a text configuration to the security appliance that changes the mode with the
firewall transparent command, be sure to put the command at the top of the configuration; the security
appliance changes the mode as soon as it reads the command and then continues reading the
configuration you downloaded. If the command is later in the configuration, the security appliance clears
all the preceding lines in the configuration. See the “Downloading Software or Configuration Files to
Flash Memory” section on page 41-3 for information about downloading text files.
• To set the mode to transparent, enter the following command in the system execution space:
hostname(config)# firewall transparent
This command also appears in each context configuration for informational purposes only; you
cannot enter this command in a context.
• To set the mode to routed, enter the following command in the system execution space:
hostname(config)# no firewall transparent
Working with the Configuration
This section describes how to work with the configuration. The security appliance loads the
configuration from a text file, called the startup configuration. This file resides by default as a hidden
file in internal Flash memory. You can, however, specify a different path for the startup configuration.
(For more information, see Chapter 41, “Managing Software, Licenses, and Configurations.”)
When you enter a command, the change is made only to the running configuration in memory. You must
manually save the running configuration to the startup configuration for your changes to remain after a
reboot.
The information in this section applies to both single and multiple security contexts, except where noted.
Additional information about contexts is in Chapter 3, “Enabling Multiple Context Mode.”
This section includes the following topics:
• Saving Configuration Changes, page 2-6
• Copying the Startup Configuration to the Running Configuration, page 2-8
• Viewing the Configuration, page 2-8
• Clearing and Removing Configuration Settings, page 2-9
• Creating Text Configuration Files Offline, page 2-9
Saving Configuration Changes
This section describes how to save your configuration, and includes the following topics:
• Saving Configuration Changes in Single Context Mode, page 2-72-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Working with the Configuration
• Saving Configuration Changes in Multiple Context Mode, page 2-7
Saving Configuration Changes in Single Context Mode
To save the running configuration to the startup configuration, enter the following command:
hostname# write memory
Note The copy running-config startup-config command is equivalent to the write memory command.
Saving Configuration Changes in Multiple Context Mode
You can save each context (and system) configuration separately, or you can save all context
configurations at the same time. This section includes the following topics:
• Saving Each Context and System Separately, page 2-7
• Saving All Context Configurations at the Same Time, page 2-7
Saving Each Context and System Separately
To save the system or context configuration, enter the following command within the system or context:
hostname# write memory
Note The copy running-config startup-config command is equivalent to the write memory command.
For multiple context mode, context startup configurations can reside on external servers. In this case, the
security appliance saves the configuration back to the server you identified in the context URL, except
for an HTTP or HTTPS URL, which do not let you save the configuration to the server.
Saving All Context Configurations at the Same Time
To save all context configurations at the same time, as well as the system configuration, enter the
following command in the system execution space:
hostname# write memory all [/noconfirm]
If you do not enter the /noconfirm keyword, you see the following prompt:
Are you sure [Y/N]:
After you enter Y, the security appliance saves the system configuration and each context. Context
startup configurations can reside on external servers. In this case, the security appliance saves the
configuration back to the server you identified in the context URL, except for an HTTP or HTTPS URL,
which do not let you save the configuration to the server.
After the security appliance saves each context, the following message appears:
‘Saving context ‘b’ ... ( 1/3 contexts saved ) ’
Sometimes, a context is not saved because of an error. See the following information for errors:
• For contexts that are not saved because of low memory, the following message appears:
The context 'context a' could not be saved due to Unavailability of resources2-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Working with the Configuration
• For contexts that are not saved because the remote destination is unreachable, the following message
appears:
The context 'context a' could not be saved due to non-reachability of destination
• For contexts that are not saved because the context is locked, the following message appears:
Unable to save the configuration for the following contexts as these contexts are
locked.
context ‘a’ , context ‘x’ , context ‘z’ .
A context is only locked if another user is already saving the configuration or in the process of
deleting the context.
• For contexts that are not saved because the startup configuration is read-only (for example, on an
HTTP server), the following message report is printed at the end of all other messages:
Unable to save the configuration for the following contexts as these contexts have
read-only config-urls:
context ‘a’ , context ‘b’ , context ‘c’ .
• For contexts that are not saved because of bad sectors in the Flash memory, the following message
appears:
The context 'context a' could not be saved due to Unknown errors
Copying the Startup Configuration to the Running Configuration
Copy a new startup configuration to the running configuration using one of these options:
• To merge the startup configuration with the running configuration, enter the following command:
hostname(config)# copy startup-config running-config
A merge adds any new commands from the new configuration to the running configuration. If the
configurations are the same, no changes occur. If commands conflict or if commands affect the
running of the context, then the effect of the merge depends on the command. You might get errors,
or you might have unexpected results.
• To load the startup configuration and discard the running configuration, restart the security
appliance by entering the following command:
hostname# reload
Alternatively, you can use the following commands to load the startup configuration and discard the
running configuration without requiring a reboot:
hostname/contexta(config)# clear configure all
hostname/contexta(config)# copy startup-config running-config
Viewing the Configuration
The following commands let you view the running and startup configurations.
• To view the running configuration, enter the following command:
hostname# show running-config2-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Working with the Configuration
• To view the running configuration of a specific command, enter the following command:
hostname# show running-config command
• To view the startup configuration, enter the following command:
hostname# show startup-config
Clearing and Removing Configuration Settings
To erase settings, enter one of the following commands.
• To clear all the configuration for a specified command, enter the following command:
hostname(config)# clear configure configurationcommand [level2configurationcommand]
This command clears all the current configuration for the specified configuration command. If you
only want to clear the configuration for a specific version of the command, you can enter a value for
level2configurationcommand.
For example, to clear the configuration for all aaa commands, enter the following command:
hostname(config)# clear configure aaa
To clear the configuration for only aaa authentication commands, enter the following command:
hostname(config)# clear configure aaa authentication
• To disable the specific parameters or options of a command, enter the following command:
hostname(config)# no configurationcommand [level2configurationcommand] qualifier
In this case, you use the no command to remove the specific configuration identified by qualifier.
For example, to remove a specific nat command, enter enough of the command to identify it
uniquely as follows:
hostname(config)# no nat (inside) 1
• To erase the startup configuration, enter the following command:
hostname(config)# write erase
• To erase the running configuration, enter the following command:
hostname(config)# clear configure all
Note In multiple context mode, if you enter clear configure all from the system configuration, you
also remove all contexts and stop them from running.
Creating Text Configuration Files Offline
This guide describes how to use the CLI to configure the security appliance; when you save commands,
the changes are written to a text file. Instead of using the CLI, however, you can edit a text file directly
on your PC and paste a configuration at the configuration mode command-line prompt in its entirety, or
line by line. Alternatively, you can download a text file to the security appliance internal Flash memory.
See Chapter 41, “Managing Software, Licenses, and Configurations,” for information on downloading
the configuration file to the security appliance.2-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 2 Getting Started
Working with the Configuration
In most cases, commands described in this guide are preceded by a CLI prompt. The prompt in the
following example is “hostname(config)#”:
hostname(config)# context a
In the text configuration file you are not prompted to enter commands, so the prompt is omitted as
follows:
context a
For additional information about formatting the file, see Appendix C, “Using the Command-Line
Interface.”C H A P T E R
3-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
3
Enabling Multiple Context Mode
This chapter describes how to use security contexts and enable multiple context mode. This chapter
includes the following sections:
• Security Context Overview, page 3-1
• Enabling or Disabling Multiple Context Mode, page 3-10
Security Context Overview
You can partition a single security appliance into multiple virtual devices, known as security contexts.
Each context is an independent device, with its own security policy, interfaces, and administrators.
Multiple contexts are similar to having multiple standalone devices. Many features are supported in
multiple context mode, including routing tables, firewall features, IPS, and management. Some features
are not supported, including VPN and dynamic routing protocols.
This section provides an overview of security contexts, and includes the following topics:
• Common Uses for Security Contexts, page 3-1
• Unsupported Features, page 3-2
• Context Configuration Files, page 3-2
• How the Security Appliance Classifies Packets, page 3-3
• Cascading Security Contexts, page 3-8
• Management Access to Security Contexts, page 3-9
Common Uses for Security Contexts
You might want to use multiple security contexts in the following situations:
• You are a service provider and want to sell security services to many customers. By enabling
multiple security contexts on the security appliance, you can implement a cost-effective,
space-saving solution that keeps all customer traffic separate and secure, and also eases
configuration.
• You are a large enterprise or a college campus and want to keep departments completely separate.
• You are an enterprise that wants to provide distinct security policies to different departments.
• You have any network that requires more than one security appliance.3-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
Unsupported Features
Multiple context mode does not support the following features:
• Dynamic routing protocols
Security contexts support only static routes. You cannot enable OSPF or RIP in multiple context
mode.
• VPN
• Multicast
Context Configuration Files
This section describes how the security appliance implements multiple context mode configurations and
includes the following sections:
• Context Configurations, page 3-2
• System Configuration, page 3-2
• Admin Context Configuration, page 3-2
Context Configurations
The security appliance includes a configuration for each context that identifies the security policy,
interfaces, and almost all the options you can configure on a standalone device. You can store context
configurations on the internal Flash memory or the external Flash memory card, or you can download
them from a TFTP, FTP, or HTTP(S) server.
System Configuration
The system administrator adds and manages contexts by configuring each context configuration location,
allocated interfaces, and other context operating parameters in the system configuration, which, like a
single mode configuration, is the startup configuration. The system configuration identifies basic
settings for the security appliance. The system configuration does not include any network interfaces or
network settings for itself; rather, when the system needs to access network resources (such as
downloading the contexts from the server), it uses one of the contexts that is designated as the admin
context. The system configuration does include a specialized failover interface for failover traffic only.
Admin Context Configuration
The admin context is just like any other context, except that when a user logs in to the admin context,
then that user has system administrator rights and can access the system and all other contexts. The
admin context is not restricted in any way, and can be used as a regular context. However, because
logging into the admin context grants you administrator privileges over all contexts, you might need to
restrict access to the admin context to appropriate users. The admin context must reside on Flash
memory, and not remotely.
If your system is already in multiple context mode, or if you convert from single mode, the admin context
is created automatically as a file on the internal Flash memory called admin.cfg. This context is named
“admin.” If you do not want to use admin.cfg as the admin context, you can change the admin context.3-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
How the Security Appliance Classifies Packets
Each packet that enters the security appliance must be classified, so that the security appliance can
determine to which context to send a packet. This section includes the following topics:
• Valid Classifier Criteria, page 3-3
• Invalid Classifier Criteria, page 3-4
• Classification Examples, page 3-5
Note If the destination MAC address is a multicast or broadcast MAC address, the packet is duplicated and
delivered to each context.
Valid Classifier Criteria
This section describes the criteria used by the classifier, and includes the following topics:
• Unique Interfaces, page 3-3
• Unique MAC Addresses, page 3-3
• NAT Configuration, page 3-3
Unique Interfaces
If only one context is associated with the ingress interface, the security appliance classifies the packet
into that context. In transparent firewall mode, unique interfaces for contexts are required, so this method
is used to classify packets at all times.
Unique MAC Addresses
If multiple contexts share an interface, then the classifier uses the interface MAC address. The security
appliance lets you assign a different MAC address in each context to the same shared interface, whether
it is a shared physical interface or a shared subinterface. By default, shared interfaces do not have unique
MAC addresses; the interface uses the physical interface burned-in MAC address in every context. An
upstream router cannot route directly to a context without unique MAC addresses. You can set the MAC
addresses manually when you configure each interface (see the “Configuring the Interface” section on
page 7-2), or you can automatically generate MAC addresses (see the “Automatically Assigning MAC
Addresses to Context Interfaces” section on page 6-11).
NAT Configuration
If you do not have unique MAC addresses, then the classifier intercepts the packet and performs a
destination IP address lookup. All other fields are ignored; only the destination IP address is used. To
use the destination address for classification, the classifier must have knowledge about the subnets
located behind each security context. The classifier relies on the NAT configuration to determine the
subnets in each context. The classifier matches the destination IP address to either a static command or
a global command. In the case of the global command, the classifier does not need a matching nat
command or an active NAT session to classify the packet. Whether the packet can communicate with the
destination IP address after classification depends on how you configure NAT and NAT control.
For example, the classifier gains knowledge about subnets 10.10.10.0, 10.20.10.0 and 10.30.10.0 when
the context administrators configure static commands in each context:
• Context A:3-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
static (inside,shared) 10.10.10.0 10.10.10.0 netmask 255.255.255.0
• Context B:
static (inside,shared) 10.20.10.0 10.20.10.0 netmask 255.255.255.0
• Context C:
static (inside,shared) 10.30.10.0 10.30.10.0 netmask 255.255.255.0
Note For management traffic destined for an interface, the interface IP address is used for classification.
Invalid Classifier Criteria
The following configurations are not used for packet classification:
• NAT exemption—The classifier does not use a NAT exemption configuration for classification
purposes because NAT exemption does not identify a mapped interface.
• Routing table—If a context includes a static route that points to an external router as the next-hop
to a subnet, and a different context includes a static command for the same subnet, then the classifier
uses the static command to classify packets destined for that subnet and ignores the static route.3-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
Classification Examples
Figure 3-2 shows multiple contexts sharing an outside interface. The classifier assigns the packet to
Context B because Context B includes the MAC address to which the router sends the packet.
Figure 3-1 Packet Classification with a Shared Interface using MAC Addresses
Classifier
Context A Context B
MAC 000C.F142.4CDA MAC 000C.F142.4CDB MAC 000C.F142.4CDC
GE 0/1.2 GE 0/1.3
GE 0/0.1 (Shared Interface)
Admin
Context
GE 0/1.1
Host
209.165.201.1
Host
209.165.200.225
Host
209.165.202.129
Packet Destination:
209.165.201.1 via MAC 000C.F142.4CDC
Internet
Inside
Customer A
Inside
Customer B
Admin
Network
1533673-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
Figure 3-2 shows multiple contexts sharing an outside interface without MAC addresses assigned. The
classifier assigns the packet to Context B because Context B includes the address translation that
matches the destination address.
Figure 3-2 Packet Classification with a Shared Interface using NAT
Note that all new incoming traffic must be classified, even from inside networks. Figure 3-3 shows a host
on the Context B inside network accessing the Internet. The classifier assigns the packet to Context B
because the ingress interface is Gigabit Ethernet 0/1.3, which is assigned to Context B.
Note If you share an inside interface and do not use unique MAC addresses, the classifier imposes some major
restrictions. The classifier relies on the address translation configuration to classify the packet within a
context, and you must translate the destination addresses of the traffic. Because you do not usually
perform NAT on outside addresses, sending packets from inside to outside on a shared interface is not
always possible; the outside network is large, (the Web, for example), and addresses are not predictable
for an outside NAT configuration. If you share an inside interface, we suggest you use unique MAC
addresses.
Classifier
Context A Context B
GE 0/1.2 GE 0/1.3
GE 0/0.1 (Shared Interface)
Admin
Context
GE 0/1.1
Host
10.1.1.13
Host
10.1.1.13
Host
10.1.1.13
Dest Addr Translation
209.165.201.3
Packet Destination:
209.165.201.3
10.1.1.13
Internet
Inside
Customer A
Inside
Customer B
Admin
Network
923993-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
Figure 3-3 Incoming Traffic from Inside Networks
Host
10.1.1.13
Host
10.1.1.13
Host
10.1.1.13
Classifier
Context A Context B
GE 0/1.2 GE 0/1.3
GE 0/0.1
Admin
Context
GE 0/1.1
Inside
Customer A
Inside
Customer B
Internet
Admin
Network
923953-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
For transparent firewalls, you must use unique interfaces. Figure 3-4 shows a host on the Context B
inside network accessing the Internet. The classifier assigns the packet to Context B because the ingress
interface is Gigabit Ethernet 1/0.3, which is assigned to Context B.
Figure 3-4 Transparent Firewall Contexts
Cascading Security Contexts
Placing a context directly in front of another context is called cascading contexts; the outside interface
of one context is the same interface as the inside interface of another context. You might want to cascade
contexts if you want to simplify the configuration of some contexts by configuring shared parameters in
the top context.
Note Cascading contexts requires that you configure unique MAC addresses for each context interface.
Because of the limitations of classifying packets on shared interfaces without MAC addresses, we do not
recommend using cascading contexts without unique MAC addresses.
Host
10.1.3.13
Host
10.1.2.13
Host
10.1.1.13
Context A Context B
GE 1/0.2 GE 1/0.3
Admin
Context
GE 1/0.1
GE 0/0.1 GE 0/0.3
GE 0/0.2
Classifier
Inside
Customer A
Inside
Customer B
Internet
Admin
Network
924013-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Security Context Overview
Figure 3-5 shows a gateway context with two contexts behind the gateway.
Figure 3-5 Cascading Contexts
Management Access to Security Contexts
The security appliance provides system administrator access in multiple context mode as well as access
for individual context administrators. The following sections describe logging in as a system
administrator or as a a context administrator:
• System Administrator Access, page 3-9
• Context Administrator Access, page 3-10
System Administrator Access
You can access the security appliance as a system administrator in two ways:
• Access the security appliance console.
From the console, you access the system execution space.
• Access the admin context using Telnet, SSH, or ASDM.
See Chapter 40, “Managing System Access,” to enable Telnet, SSH, and SDM access.
As the system administrator, you can access all contexts.
When you change to a context from admin or the system, your username changes to the default
“enable_15” username. If you configured command authorization in that context, you need to either
configure authorization privileges for the “enable_15” user, or you can log in as a different name for
which you provide sufficient privileges in the command authorization configuration for the context. To
log in with a username, enter the login command. For example, you log in to the admin context with the
Admin
Context
Context A
Gateway
Context
GE 1/1.43
GE 0/0.2
Outside
GE 1/1.8
GE 0/0.1
(Shared Interface)
Internet
Inside Inside
Outside
Inside
Outside
1533663-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Enabling or Disabling Multiple Context Mode
username “admin.” The admin context does not have any command authorization configuration, but all
other contexts include command authorization. For convenience, each context configuration includes a
user “admin” with maximum privileges. When you change from the admin context to context A, your
username is altered, so you must log in again as “admin” by entering the login command. When you
change to context B, you must again enter the login command to log in as “admin.”
The system execution space does not support any AAA commands, but you can configure its own enable
password, as well as usernames in the local database to provide individual logins.
Context Administrator Access
You can access a context using Telnet, SSH, or ASDM. If you log in to a non-admin context, you can
only access the configuration for that context. You can provide individual logins to the context. See See
Chapter 40, “Managing System Access,” to enable Telnet, SSH, and SDM access and to configure
management authentication.
Enabling or Disabling Multiple Context Mode
Your security appliance might already be configured for multiple security contexts depending on how
you ordered it from Cisco. If you are upgrading, however, you might need to convert from single mode
to multiple mode by following the procedures in this section. ASDM does not support changing modes,
so you need to change modes using the CLI.
This section includes the following topics:
• Backing Up the Single Mode Configuration, page 3-10
• Enabling Multiple Context Mode, page 3-10
• Restoring Single Context Mode, page 3-11
Backing Up the Single Mode Configuration
When you convert from single mode to multiple mode, the security appliance converts the running
configuration into two files. The original startup configuration is not saved, so if it differs from the
running configuration, you should back it up before proceeding.
Enabling Multiple Context Mode
The context mode (single or multiple) is not stored in the configuration file, even though it does endure
reboots. If you need to copy your configuration to another device, set the mode on the new device to
match using the mode command.
When you convert from single mode to multiple mode, the security appliance converts the running
configuration into two files: a new startup configuration that comprises the system configuration, and
admin.cfg that comprises the admin context (in the root directory of the internal Flash memory). The
original running configuration is saved as old_running.cfg (in the root directory of the internal Flash
memory). The original startup configuration is not saved. The security appliance automatically adds an
entry for the admin context to the system configuration with the name “admin.”
To enable multiple mode, enter the following command:
hostname(config)# mode multiple3-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Enabling or Disabling Multiple Context Mode
You are prompted to reboot the security appliance.
Restoring Single Context Mode
If you convert from multiple mode to single mode, you might want to first copy a full startup
configuration (if available) to the security appliance; the system configuration inherited from multiple
mode is not a complete functioning configuration for a single mode device. Because the system
configuration does not have any network interfaces as part of its configuration, you must access the
security appliance from the console to perform the copy.
To copy the old running configuration to the startup configuration and to change the mode to single
mode, perform the following steps in the system execution space:
Step 1 To copy the backup version of your original running configuration to the current startup configuration,
enter the following command in the system execution space:
hostname(config)# copy flash:old_running.cfg startup-config
Step 2 To set the mode to single mode, enter the following command in the system execution space:
hostname(config)# mode single
The security appliance reboots.3-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 3 Enabling Multiple Context Mode
Enabling or Disabling Multiple Context ModeC H A P T E R
4-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
4
Configuring Switch Ports and VLAN Interfaces
for the Cisco ASA 5505 Adaptive Security
Appliance
This chapter describes how to configure the switch ports and VLAN interfaces of the ASA 5505 adaptive
security appliance.
Note To configure interfaces of other models, see Chapter 5, “Configuring Ethernet Settings and
Subinterfaces,” and Chapter 7, “Configuring Interface Parameters.”
This chapter includes the following sections:
• Interface Overview, page 4-1
• Configuring VLAN Interfaces, page 4-5
• Configuring Switch Ports as Access Ports, page 4-9
• Configuring a Switch Port as a Trunk Port, page 4-11
• Allowing Communication Between VLAN Interfaces on the Same Security Level, page 4-13
Interface Overview
This section describes the ports and interfaces of the ASA 5505 adaptive security appliance, and includes
the following topics:
• Understanding ASA 5505 Ports and Interfaces, page 4-2
• Maximum Active VLAN Interfaces for Your License, page 4-2
• Default Interface Configuration, page 4-4
• VLAN MAC Addresses, page 4-4
• Power Over Ethernet, page 4-4
• Security Level Overview, page 4-54-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Interface Overview
Understanding ASA 5505 Ports and Interfaces
The ASA 5505 adaptive security appliance supports a built-in switch. There are two kinds of ports and
interfaces that you need to configure:
• Physical switch ports—The adaptive security appliance has eight Fast Ethernet switch ports that
forward traffic at Layer 2, using the switching function in hardware. Two of these ports are PoE
ports. See the “Power Over Ethernet” section on page 4-4 for more information. You can connect
these interfaces directly to user equipment such as PCs, IP phones, or a DSL modem. Or you can
connect to another switch.
• Logical VLAN interfaces—In routed mode, these interfaces forward traffic between VLAN
networks at Layer 3, using the configured security policy to apply firewall and VPN services. In
transparent mode, these interfaces forward traffic between the VLANs on the same network at Layer
2, using the configured security policy to apply firewall services. See the “Maximum Active VLAN
Interfaces for Your License” section for more information about the maximum VLAN interfaces.
VLAN interfaces let you divide your equipment into separate VLANs, for example, home, business,
and Internet VLANs.
To segregate the switch ports into separate VLANs, you assign each switch port to a VLAN interface.
Switch ports on the same VLAN can communicate with each other using hardware switching. But when
a switch port on VLAN 1 wants to communicate with a switch port on VLAN 2, then the adaptive
security appliance applies the security policy to the traffic and routes or bridges between the two
VLANs.
Note Subinterfaces are not available for the ASA 5505 adaptive security appliance.
Maximum Active VLAN Interfaces for Your License
In transparent firewall mode, you can configure two active VLANs in the Base license and three active
VLANs in the Security Plus license, one of which must be for failover.
In routed mode, you can configure up to three active VLANs with the Base license, and up to 20 active
VLANs with the Security Plus license.
An active VLAN is a VLAN with a nameif command configured.4-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Interface Overview
With the Base license, the third VLAN can only be configured to initiate traffic to one other VLAN. See
Figure 4-1 for an example network where the Home VLAN can communicate with the Internet, but
cannot initiate contact with Business.
Figure 4-1 ASA 5505 Adaptive Security Appliance with Base License
With the Security Plus license, you can configure 20 VLAN interfaces. You can configure trunk ports to
accomodate multiple VLANs per port.
Note The ASA 5505 adaptive security appliance supports Active/Standby failover, but not Stateful failover.
See Figure 4-2 for an example network.
Figure 4-2 ASA 5505 Adaptive Security Appliance with Security Plus License
ASA 5505
with Base License
Business
Internet
Home
153364
ASA 5505
with Security Plus
License
Failover
ASA 5505
Inside
Backup ISP
Primary ISP
DMZ
Failover Link
1533654-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Interface Overview
Default Interface Configuration
If your adaptive security appliance includes the default factory configuration, your interfaces are
configured as follows:
• The outside interface (security level 0) is VLAN 2.
Ethernet0/0 is assigned to VLAN 2 and is enabled.
The VLAN 2 IP address is obtained from the DHCP server.
• The inside interface (security level 100) is VLAN 1
Ethernet 0/1 through Ethernet 0/7 are assigned to VLAN 1 and is enabled.
VLAN 1 has IP address 192.168.1.1.
Restore the default factory configuration using the configure factory-default command.
Use the procedures in this chapter to modify the default configuration, for example, to add VLAN
interfaces.
If you do not have a factory default configuration, all switch ports are in VLAN 1, but no other
parameters are configured.
VLAN MAC Addresses
In routed firewall mode, all VLAN interfaces share a MAC address. Ensure that any connected switches
can support this scenario. If the connected switches require unique MAC addresses, you can manually
assign MAC addresses.
In transparent firewall mode, each VLAN has a unique MAC address. You can override the generated
MAC addresses if desired by manually assigning MAC addresses.
Power Over Ethernet
Ethernet 0/6 and Ethernet 0/7 support PoE for devices such as IP phones or wireless access points. If you
install a non-PoE device or do not connect to these switch ports, the adaptive security appliance does not
supply power to the switch ports.
If you shut down the switch port using the shutdown command, you disable power to the device. Power
is restored when you enter no shutdown. See the “Configuring Switch Ports as Access Ports” section on
page 4-9 for more information about shutting down a switch port.
To view the status of PoE switch ports, including the type of device connected (Cisco or IEEE 802.3af),
use the show power inline command.
Monitoring Traffic Using SPAN
If you want to monitor traffic that enters or exits one or more switch ports, you can enable SPAN, also
known as switch port monitoring. The port for which you enable SPAN (called the destination port)
receives a copy of every packet transmitted or received on a specified source port. The SPAN feature lets
you attach a sniffer to the destination port so you can monitor all traffic; without SPAN, you would have
to attach a sniffer to every port you want to monitor. You can only enable SPAN for one destination port. 4-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring VLAN Interfaces
See the switchport monitor command in the Cisco Security Appliance Command Reference for more
information.
Security Level Overview
Each VLAN interface must have a security level in the range 0 to 100 (from lowest to highest). For
example, you should assign your most secure network, such as the inside business network, to level 100.
The outside network connected to the Internet can be level 0. Other networks, such as a home network
can be in-between. You can assign interfaces to the same security level.
The level controls the following behavior:
• Network access—By default, there is an implicit permit from a higher security interface to a lower
security interface (outbound). Hosts on the higher security interface can access any host on a lower
security interface. You can limit access by applying an access list to the interface.
• If you enable communication for same security interfaces, there is an implicit permit for interfaces
to access other interfaces on the same security level or lower. See the “Allowing Communication
Between VLAN Interfaces on the Same Security Level” section on page 4-13 for more information.
• Inspection engines—Some application inspection engines are dependent on the security level. For
same security interfaces, inspection engines apply to traffic in either direction.
– NetBIOS inspection engine—Applied only for outbound connections.
– SQL*Net inspection engine—If a control connection for the SQL*Net (formerly OraServ) port
exists between a pair of hosts, then only an inbound data connection is permitted through the
adaptive security appliance.
• Filtering—HTTP(S) and FTP filtering applies only for outbound connections (from a higher level
to a lower level).
For same security interfaces, you can filter traffic in either direction.
• NAT control—When you enable NAT control, you must configure NAT for hosts on a higher security
interface (inside) when they access hosts on a lower security interface (outside).
Without NAT control, or for same security interfaces, you can choose to use NAT between any
interface, or you can choose not to use NAT. Keep in mind that configuring NAT for an outside
interface might require a special keyword.
• established command—This command allows return connections from a lower security host to a
higher security host if there is already an established connection from the higher level host to the
lower level host.
For same security interfaces, you can configure established commands for both directions.
Configuring VLAN Interfaces
For each VLAN to pass traffic, you need to configure an interface name (the nameif command), and for
routed mode, an IP address. You should also change the security level from the default, which is 0. If
you name an interface “inside” and you do not set the security level explicitly, then the adaptive security
appliance sets the security level to 100.
For information about how many VLANs you can configure, see the “Maximum Active VLAN
Interfaces for Your License” section on page 4-2.4-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring VLAN Interfaces
Note If you are using failover, do not use this procedure to name interfaces that you are reserving for failover
communications. See Chapter 14, “Configuring Failover,” to configure the failover link.
If you change the security level of an interface, and you do not want to wait for existing connections to
time out before the new security information is used, you can clear the connections using the
clear local-host command.
To configure a VLAN interface, perform the following steps:
Step 1 To specify the VLAN ID, enter the following command:
hostname(config)# interface vlan number
Where the number is between 1 and 4090.
For example, enter the following command:
hostname(config)# interface vlan 100
To remove this VLAN interface and all associated configuration, enter the no interface vlan command.
Because this interface also includes the interface name configuration, and the name is used in other
commands, those commands are also removed.
Step 2 (Optional) For the Base license, allow this interface to be the third VLAN by limiting it from initiating
contact to one other VLAN using the following command:
hostname(config-if)# no forward interface vlan number
Where number specifies the VLAN ID to which this VLAN interface cannot initiate traffic.
With the Base license, you can only configure a third VLAN if you use this command to limit it.
For example, you have one VLAN assigned to the outside for Internet access, one VLAN assigned to an
inside business network, and a third VLAN assigned to your home network. The home network does not
need to access the business network, so you can use the no forward interface command on the home
VLAN; the business network can access the home network, but the home network cannot access the
business network.
If you already have two VLAN interfaces configured with a nameif command, be sure to enter the no
forward interface command before the nameif command on the third interface; the adaptive security
appliance does not allow three fully functioning VLAN interfaces with the Base license on the ASA 5505
adaptive security appliance.
Note If you upgrade to the Security Plus license, you can remove this command and achieve full
functionality for this interface. If you leave this command in place, this interface continues to be
limited even after upgrading.
Step 3 To name the interface, enter the following command:
hostname(config-if)# nameif name
The name is a text string up to 48 characters, and is not case-sensitive. You can change the name by
reentering this command with a new value. Do not enter the no form, because that command causes all
commands that refer to that name to be deleted.
Step 4 To set the security level, enter the following command:
hostname(config-if)# security-level number4-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring VLAN Interfaces
Where number is an integer between 0 (lowest) and 100 (highest).
Step 5 (Routed mode only) To set the IP address, enter one of the following commands.
Note To set an IPv6 address, see the “Configuring IPv6 on an Interface” section on page 12-3.
To set the management IP address for transparent firewall mode, see the “Setting the
Management IP Address for a Transparent Firewall” section on page 8-5. In transparent mode,
you do not set the IP address for each interface, but rather for the whole adaptive security
appliance or context.
For failover, you must set the IP address an standby address manually; DHCP and PPPoE are not
supported.
• To set the IP address manually, enter the following command:
hostname(config-if)# ip address ip_address [mask] [standby ip_address]
The standby keyword and address is used for failover. See Chapter 14, “Configuring Failover,” for
more information.
• To obtain an IP address from a DHCP server, enter the following command:
hostname(config-if)# ip address dhcp [setroute]
Reenter this command to reset the DHCP lease and request a new lease.
If you do not enable the interface using the no shutdown command before you enter the ip address
dhcp command, some DHCP requests might not be sent.
• To obtain an IP address from a PPPoE server, see Chapter 35, “Configuring the PPPoE Client.”
Step 6 (Optional) To assign a private MAC address to this interface, enter the following command:
hostname(config-if)# mac-address mac_address [standby mac_address]
By default in routed mode, all VLANs use the same MAC address. In transparent mode, the VLANs use
unique MAC addresses. You might want to set unique VLANs or change the generated VLANs if your
switch requires it, or for access control purposes.
Step 7 (Optional) To set an interface to management-only mode, so that it does not allow through traffic, enter
the following command:
hostname(config-if)# management-only
Step 8 By default, VLAN interfaces are enabled. To enable the interface, if it is not already enabled, enter the
following command:
hostname(config-if)# no shutdown
To disable the interface, enter the shutdown command.
The following example configures seven VLAN interfaces, including the failover interface which is
configured separately using the failover lan command:
hostname(config)# interface vlan 100
hostname(config-if)# nameif outside
hostname(config-if)# security-level 0
hostname(config-if)# ip address 10.1.1.1 255.255.255.04-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring VLAN Interfaces
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 200
hostname(config-if)# nameif inside
hostname(config-if)# security-level 100
hostname(config-if)# ip address 10.2.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 201
hostname(config-if)# nameif dept1
hostname(config-if)# security-level 90
hostname(config-if)# ip address 10.2.2.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 202
hostname(config-if)# nameif dept2
hostname(config-if)# security-level 90
hostname(config-if)# ip address 10.2.3.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 300
hostname(config-if)# nameif dmz
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.3.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 400
hostname(config-if)# nameif backup-isp
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.1.2.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# failover lan faillink vlan500
hostname(config)# failover interface ip faillink 10.4.1.1 255.255.255.0 standby 10.4.1.2
255.255.255.0
The following example configures three VLAN interfaces for the Base license. The third home interface
cannot forward traffic to the business interface.
hostname(config)# interface vlan 100
hostname(config-if)# nameif outside
hostname(config-if)# security-level 0
hostname(config-if)# ip address dhcp
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 200
hostname(config-if)# nameif business
hostname(config-if)# security-level 100
hostname(config-if)# ip address 10.1.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 300
hostname(config-if)# no forward interface vlan 200
hostname(config-if)# nameif home
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.2.1.1 255.255.255.0
hostname(config-if)# no shutdown4-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring Switch Ports as Access Ports
Configuring Switch Ports as Access Ports
By default, all switch ports are shut down. To assign a switch port to one VLAN, configure it as an access
port. To create a trunk port to carry multiple VLANs, see the “Configuring a Switch Port as a Trunk Port”
section on page 4-11.
By default, the speed and duplex for switch ports are set to auto-negotiate. The default auto-negotiation
setting also includes the Auto-MDI/MDIX feature. Auto-MDI/MDIX eliminates the need for crossover
cabling by performing an internal crossover when a straight cable is detected during the auto-negotiation
phase. Either the speed or duplex must be set to auto-negotiate to enable Auto-MDI/MDIX for the
interface. If you explicitly set both the speed and duplex to a fixed value, thus disabling auto-negotiation
for both settings, then Auto-MDI/MDIX is also disabled.
Caution The ASA 5505 adaptive security appliance does not support Spanning Tree Protocol for loop detection
in the network. Therefore you must ensure that any connection with the adaptive security appliance does
not end up in a network loop.
To configure a switch port, perform the following steps:
Step 1 To specify the switch port you want to configure, enter the following command:
hostname(config)# interface ethernet0/port
Where port is 0 through 7. For example, enter the following command:
hostname(config)# interface ethernet0/1
Step 2 To assign this switch port to a VLAN, enter the following command:
hostname(config-if)# switchport access vlan number
Where number is the VLAN ID, between 1 and 4090.
Note You might assign multiple switch ports to the primary or backup VLANs if the Internet access device
includes Layer 2 redundancy.
Step 3 (Optional) To prevent the switch port from communicating with other protected switch ports on the same
VLAN, enter the following command:
hostname(config-if)# switchport protected
You might want to prevent switch ports from communicating with each other if the devices on those
switch ports are primarily accessed from other VLANs, you do not need to allow intra-VLAN access,
and you want to isolate the devices from each other in case of infection or other security breach. For
example, if you have a DMZ that hosts three web servers, you can isolate the web servers from each other
if you apply the switchport protected command to each switch port. The inside and outside networks
can both communicate with all three web servers, and vice versa, but the web servers cannot
communicate with each other.
Step 4 (Optional) To set the speed, enter the following command:
hostname(config-if)# speed {auto | 10 | 100}4-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring Switch Ports as Access Ports
The auto setting is the default. If you set the speed to anything other than auto on PoE ports Ethernet
0/6 or 0/7, then Cisco IP phones and Cisco wireless access points that do not support IEEE 802.3af will
not be detected and supplied with power.
Step 5 (Optional) To set the duplex, enter the following command:
hostname(config-if)# duplex {auto | full | half}
The auto setting is the default. If you set the duplex to anything other than auto on PoE ports Ethernet
0/6 or 0/7, then Cisco IP phones and Cisco wireless access points that do not support IEEE 802.3af will
not be detected and supplied with power.
Step 6 To enable the switch port, if it is not already enabled, enter the following command:
hostname(config-if)# no shutdown
To disable the switch port, enter the shutdown command.
The following example configures five VLAN interfaces, including the failover interface which is
configured using the failover lan command:
hostname(config)# interface vlan 100
hostname(config-if)# nameif outside
hostname(config-if)# security-level 0
hostname(config-if)# ip address 10.1.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 200
hostname(config-if)# nameif inside
hostname(config-if)# security-level 100
hostname(config-if)# ip address 10.2.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 300
hostname(config-if)# nameif dmz
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.3.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 400
hostname(config-if)# nameif backup-isp
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.1.2.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# failover lan faillink vlan500
hostname(config)# failover interface ip faillink 10.4.1.1 255.255.255.0 standby 10.4.1.2
255.255.255.0
hostname(config)# interface ethernet 0/0
hostname(config-if)# switchport access vlan 100
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/1
hostname(config-if)# switchport access vlan 200
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/2
hostname(config-if)# switchport access vlan 300
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/34-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring a Switch Port as a Trunk Port
hostname(config-if)# switchport access vlan 400
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/4
hostname(config-if)# switchport access vlan 500
hostname(config-if)# no shutdown
Configuring a Switch Port as a Trunk Port
By default, all switch ports are shut down. This procedure tells how to create a trunk port that can carry
multiple VLANs using 802.1Q tagging. Trunk mode is available only with the Security Plus license.
To create an access port, where an interface is assigned to only one VLAN, see the “Configuring Switch
Ports as Access Ports” section on page 4-9.
By default, the speed and duplex for switch ports are set to auto-negotiate. The default auto-negotiation
setting also includes the Auto-MDI/MDIX feature. Auto-MDI/MDIX eliminates the need for crossover
cabling by performing an internal crossover when a straight cable is detected during the auto-negotiation
phase. Either the speed or duplex must be set to auto-negotiate to enable Auto-MDI/MDIX for the
interface. If you explicitly set both the speed and duplex to a fixed value, thus disabling auto-negotiation
for both settings, then Auto-MDI/MDIX is also disabled.
To configure a trunk port, perform the following steps:
Step 1 To specify the switch port you want to configure, enter the following command:
hostname(config)# interface ethernet0/port
Where port is 0 through 7. For example, enter the following command:
hostname(config)# interface ethernet0/1
Step 2 To assign VLANs to this trunk, enter one or more of the following commands.
• To assign native VLANs, enter the following command:
hostname(config-if)# switchport trunk native vlan vlan_id
where the vlan_id is a single VLAN ID between 1 and 4090.
Packets on the native VLAN are not modified when sent over the trunk. For example, if a port has
VLANs 2, 3 and 4 assigned to it, and VLAN 2 is the native VLAN, then packets on VLAN 2 that
egress the port are not modified with an 802.1Q header. Frames which ingress (enter) this port and
have no 802.1Q header are put into VLAN 2.
Each port can only have one native VLAN, but every port can have either the same or a different
native VLAN.
• To assign VLANs, enter the following command:
hostname(config-if)# switchport trunk allowed vlan vlan_range
where the vlan_range (with VLANs between 1 and 4090) can be identified in one of the following
ways:
A single number (n)
A range (n-x)
Separate numbers and ranges by commas, for example:4-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Configuring a Switch Port as a Trunk Port
5,7-10,13,45-100
You can enter spaces instead of commas, but the command is saved to the configuration with
commas.
You can include the native VLAN in this command, but it is not required; the native VLAN is passed
whether it is included in this command or not.
This switch port cannot pass traffic until you assign at least one VLAN to it, native or non-native.
Step 3 To make this switch port a trunk port, enter the following command:
hostname(config-if)# switchport mode trunk
To restore this port to access mode, enter the switchport mode access command.
Step 4 (Optional) To prevent the switch port from communicating with other protected switch ports on the same
VLAN, enter the following command:
hostname(config-if)# switchport protected
You might want to prevent switch ports from communicating with each other if the devices on those
switch ports are primarily accessed from other VLANs, you do not need to allow intra-VLAN access,
and you want to isolate the devices from each other in case of infection or other security breach. For
example, if you have a DMZ that hosts three web servers, you can isolate the web servers from each other
if you apply the switchport protected command to each switch port. The inside and outside networks
can both communicate with all three web servers, and vice versa, but the web servers cannot
communicate with each other.
Step 5 (Optional) To set the speed, enter the following command:
hostname(config-if)# speed {auto | 10 | 100}
The auto setting is the default.
Step 6 (Optional) To set the duplex, enter the following command:
hostname(config-if)# duplex {auto | full | half}
The auto setting is the default.
Step 7 To enable the switch port, if it is not already enabled, enter the following command:
hostname(config-if)# no shutdown
To disable the switch port, enter the shutdown command.
The following example configures seven VLAN interfaces, including the failover interface which is
configured using the failover lan command. VLANs 200, 201, and 202 are trunked on Ethernet 0/1.
hostname(config)# interface vlan 100
hostname(config-if)# nameif outside
hostname(config-if)# security-level 0
hostname(config-if)# ip address 10.1.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 200
hostname(config-if)# nameif inside
hostname(config-if)# security-level 100
hostname(config-if)# ip address 10.2.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 201
hostname(config-if)# nameif dept14-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Allowing Communication Between VLAN Interfaces on the Same Security Level
hostname(config-if)# security-level 90
hostname(config-if)# ip address 10.2.2.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 202
hostname(config-if)# nameif dept2
hostname(config-if)# security-level 90
hostname(config-if)# ip address 10.2.3.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 300
hostname(config-if)# nameif dmz
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.3.1.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# interface vlan 400
hostname(config-if)# nameif backup-isp
hostname(config-if)# security-level 50
hostname(config-if)# ip address 10.1.2.1 255.255.255.0
hostname(config-if)# no shutdown
hostname(config-if)# failover lan faillink vlan500
hostname(config)# failover interface ip faillink 10.4.1.1 255.255.255.0 standby 10.4.1.2
255.255.255.0
hostname(config)# interface ethernet 0/0
hostname(config-if)# switchport access vlan 100
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/1
hostname(config-if)# switchport mode trunk
hostname(config-if)# switchport trunk allowed vlan 200-202
hostname(config-if)# switchport trunk native vlan 5
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/2
hostname(config-if)# switchport access vlan 300
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/3
hostname(config-if)# switchport access vlan 400
hostname(config-if)# no shutdown
hostname(config-if)# interface ethernet 0/4
hostname(config-if)# switchport access vlan 500
hostname(config-if)# no shutdown
Allowing Communication Between VLAN Interfaces on the
Same Security Level
By default, interfaces on the same security level cannot communicate with each other. Allowing
communication between same security interfaces lets traffic flow freely between all same security
interfaces without access lists.4-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 4 Configuring Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance
Allowing Communication Between VLAN Interfaces on the Same Security Level
Note If you enable NAT control, you do not need to configure NAT between same security level interfaces.
See the “NAT and Same Security Level Interfaces” section on page 17-13 for more information on NAT
and same security level interfaces.
If you enable same security interface communication, you can still configure interfaces at different
security levels as usual.
To enable interfaces on the same security level so that they can communicate with each other, enter the
following command:
hostname(config)# same-security-traffic permit inter-interface
To disable this setting, use the no form of this command.C H A P T E R
5-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
5
Configuring Ethernet Settings and Subinterfaces
This chapter describes how to configure and enable physical Ethernet interfaces and how to add
subinterfaces. If you have both fiber and copper Ethernet ports (for example, on the 4GE SSM for the
ASA 5510 and higher series adaptive security appliance), this chapter describes how to configure the
inteface media type.
In single context mode, complete the procedures in this chapter and then continue your interface
configuration in Chapter 7, “Configuring Interface Parameters.” In multiple context mode, complete the
procedures in this chapter in the system execution space, then assign interfaces and subinterfaces to
contexts according to Chapter 6, “Adding and Managing Security Contexts,” and finally configure the
interface parameters within each context according to Chapter 7, “Configuring Interface Parameters.”
Note To configure interfaces for the ASA 5505 adaptive security appliance, see Chapter 4, “Configuring
Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance.”
This chapter includes the following sections:
• Configuring and Enabling RJ-45 Interfaces, page 5-1
• Configuring and Enabling Fiber Interfaces, page 5-3
• Configuring and Enabling VLAN Subinterfaces and 802.1Q Trunking, page 5-3
Configuring and Enabling RJ-45 Interfaces
This section describes how to configure Ethernet settings for physical interfaces, and how to enable the
interface. By default, all physical interfaces are shut down. You must enable the physical interface before
any traffic can pass through it or through a subinterface. For multiple context mode, if you allocate a
physical interface or subinterface to a context, the interfaces are enabled by default in the context.
However, before traffic can pass through the context interface, you must also enable the interface in the
system configuration according to this procedure.
By default, the speed and duplex for copper (RJ-45) interfaces are set to auto-negotiate.
The ASA 5550 adaptive security appliance and the 4GE SSM for the ASA 5510 and higher adaptive
security appliance includes two connector types: copper RJ-45 and fiber SFP. RJ-45 is the default. If you
want to configure the security appliance to use the fiber SFP connectors, see the “Configuring and
Enabling Fiber Interfaces” section on page 5-3.
For RJ-45 interfaces on the ASA 5500 series adaptive security appliance, the default auto-negotiation
setting also includes the Auto-MDI/MDIX feature. Auto-MDI/MDIX eliminates the need for crossover
cabling by performing an internal crossover when a straight cable is detected during the auto-negotiation 5-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 5 Configuring Ethernet Settings and Subinterfaces
Configuring and Enabling RJ-45 Interfaces
phase. Either the speed or duplex must be set to auto-negotiate to enable Auto-MDI/MDIX for the
interface. If you explicitly set both the speed and duplex to a fixed value, thus disabling auto-negotiation
for both settings, then Auto-MDI/MDIX is also disabled. For Gigabit Ethernet, when the speed and
duplex are set to 1000 and full, then the interface always auto-negotiates; therefore Auto-MDI/MDIX is
always enabled and you cannot disable it.
To enable the interface, or to set a specific speed and duplex, perform the following steps:
Step 1 To specify the interface you want to configure, enter the following command:
hostname(config)# interface physical_interface
The physical_interface ID includes the type, slot, and port number as type[slot/]port.
The physical interface types include the following:
• ethernet
• gigabitethernet
For the PIX 500 series security appliance, enter the type followed by the port number, for example,
ethernet0.
For the ASA 5500 series adaptive security appliance, enter the type followed by slot/port, for example,
gigabitethernet0/1. Interfaces that are built into the chassis are assigned to slot 0, while interfaces on
the 4GE SSM are assigned to slot 1.
The ASA 5500 series adaptive security appliance also includes the following type:
• management
The management interface is a Fast Ethernet interface designed for management traffic only, and is
specified as management0/0. You can, however, use it for through traffic if desired (see the
management-only command). In transparent firewall mode, you can use the management interface
in addition to the two interfaces allowed for through traffic. You can also add subinterfaces to the
management interface to provide management in each security context for multiple context mode.
Step 2 (Optional) To set the speed, enter the following command:
hostname(config-if)# speed {auto | 10 | 100 | 1000 | nonegotiate}
The auto setting is the default. The speed nonegotiate command disables link negotiation.
Step 3 (Optional) To set the duplex, enter the following command:
hostname(config-if)# duplex {auto | full | half}
The auto setting is the default.
Step 4 To enable the interface, enter the following command:
hostname(config-if)# no shutdown
To disable the interface, enter the shutdown command. If you enter the shutdown command for a
physical interface, you also shut down all subinterfaces. If you shut down an interface in the system
execution space, then that interface is shut down in all contexts that share it.5-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 5 Configuring Ethernet Settings and Subinterfaces
Configuring and Enabling Fiber Interfaces
Configuring and Enabling Fiber Interfaces
This section describes how to configure Ethernet settings for physical interfaces, and how to enable the
interface. By default, all physical interfaces are shut down. You must enable the physical interface before
any traffic can pass through it or through a subinterface. For multiple context mode, if you allocate a
physical interface or subinterface to a context, the interfaces are enabled by default in the context.
However, before traffic can pass through the context interface, you must also enable the interface in the
system configuration according to this procedure.
By default, the connectors used on the 4GE SSM or for built-in interfaces in slot 1 on the ASA 5550
adaptive security appliance are the RJ-45 connectors. To use the fiber SFP connectors, you must set the
media type to SFP. The fiber interface has a fixed speed and does not support duplex, but you can set the
interface to negotiate link parameters (the default) or not to negotiate.
To enable the interface, set the media type, or to set negotiation settings, perform the following steps:
Step 1 To specify the interface you want to configure, enter the following command:
hostname(config)# interface gigabitethernet 1/port
The 4GE SSM interfaces are assigned to slot 1, as shown in the interface ID in the syntax (the interfaces
built into the chassis are assigned to slot 0).
Step 2 To set the media type to SFP, enter the following command:
hostname(config-if)# media-type sfp
To restore the defaukt RJ-45, enter the media-type rj45 command.
Step 3 (Optional) To disable link negotiation, enter the following command:
hostname(config-if)# speed nonegotiate
For fiber Gigabit Ethernet interfaces, the default is no speed nonegotiate, which sets the speed to 1000
Mbps and enables link negotiation for flow-control parameters and remote fault information. The speed
nonegotiate command disables link negotiation.
Step 4 To enable the interface, enter the following command:
hostname(config-if)# no shutdown
To disable the interface, enter the shutdown command. If you enter the shutdown command for a
physical interface, you also shut down all subinterfaces. If you shut down an interface in the system
execution space, then that interface is shut down in all contexts that share it.
Configuring and Enabling VLAN Subinterfaces and 802.1Q
Trunking
This section describes how to configure and enable a VLAN subinterface. An interface with one or more
VLAN subinterfaces is automatically configured as an 802.1Q trunk.5-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 5 Configuring Ethernet Settings and Subinterfaces
Configuring and Enabling VLAN Subinterfaces and 802.1Q Trunking
You must enable the physical interface before any traffic can pass through an enabled subinterface (see
the “Configuring and Enabling RJ-45 Interfaces” section on page 5-1 or the “Configuring and Enabling
Fiber Interfaces” section on page 5-3). For multiple context mode, if you allocate a subinterface to a
context, the interfaces are enabled by default in the context. However, before traffic can pass through the
context interface, you must also enable the interface in the system configuration with this procedure.
Subinterfaces let you divide a physical interface into multiple logical interfaces that are tagged with
different VLAN IDs. Because VLANs allow you to keep traffic separate on a given physical interface,
you can increase the number of interfaces available to your network without adding additional physical
interfaces or security appliances. This feature is particularly useful in multiple context mode so you can
assign unique interfaces to each context.
To determine how many subinterfaces are allowed for your platform, see Appendix A, “Feature Licenses
and Specifications.”
Note If you use subinterfaces, you typically do not also want the physical interface to pass traffic, because the
physical interface passes untagged packets. Because the physical interface must be enabled for the
subinterface to pass traffic, ensure that the physical interface does not pass traffic by leaving out the
nameif command. If you want to let the physical interface pass untagged packets, you can configure the
nameif command as usual. See the “Configuring Interface Parameters” section on page 7-1 for more
information about completing the interface configuration.
To add a subinterface and assign a VLAN to it, perform the following steps:
Step 1 To specify the new subinterface, enter the following command:
hostname(config)# interface physical_interface.subinterface
See the “Configuring and Enabling RJ-45 Interfaces” section for a description of the physical interface
ID.
The subinterface ID is an integer between 1 and 4294967293.
For example, enter the following command:
hostname(config)# interface gigabitethernet0/1.100
Step 2 To specify the VLAN for the subinterface, enter the following command:
hostname(config-subif)# vlan vlan_id
The vlan_id is an integer between 1 and 4094. Some VLAN IDs might be reserved on connected
switches, so check the switch documentation for more information.
You can only assign a single VLAN to a subinterface, and not to the physical interface. Each subinterface
must have a VLAN ID before it can pass traffic. To change a VLAN ID, you do not need to remove the
old VLAN ID with the no option; you can enter the vlan command with a different VLAN ID, and the
security appliance changes the old ID.
Step 3 To enable the subinterface, enter the following command:
hostname(config-subif)# no shutdown
To disable the interface, enter the shutdown command. If you shut down an interface in the system
execution space, then that interface is shut down in all contexts that share it.C H A P T E R
6-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
6
Adding and Managing Security Contexts
This chapter describes how to configure multiple security contexts on the security appliance, and
includes the following sections:
• Configuring Resource Management, page 6-1
• Configuring a Security Context, page 6-7
• Automatically Assigning MAC Addresses to Context Interfaces, page 6-11
• Changing Between Contexts and the System Execution Space, page 6-11
• Managing Security Contexts, page 6-12
For information about how contexts work and how to enable multiple context mode, see Chapter 3,
“Enabling Multiple Context Mode.”
Configuring Resource Management
By default, all security contexts have unlimited access to the resources of the security appliance, except
where maximum limits per context are enforced. However, if you find that one or more contexts use too
many resources, and they cause other contexts to be denied connections, for example, then you can
configure resource management to limit the use of resources per context.
This section includes the following topics:
• Classes and Class Members Overview, page 6-1
• Configuring a Class, page 6-4
Classes and Class Members Overview
The security appliance manages resources by assigning contexts to resource classes. Each context uses
the resource limits set by the class. This section includes the following topics:
• Resource Limits, page 6-2
• Default Class, page 6-3
• Class Members, page 6-46-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring Resource Management
Resource Limits
When you create a class, the security appliance does not set aside a portion of the resources for each
context assigned to the class; rather, the security appliance sets the maximum limit for a context. If you
oversubscribe resources, or allow some resources to be unlimited, a few contexts can “use up” those
resources, potentially affecting service to other contexts.
You can set the limit for individual resources, as a percentage (if there is a hard system limit) or as an
absolute value.
You can oversubscribe the security appliance by assigning more than 100 percent of a resource across
all contexts. For example, you can set the Bronze class to limit connections to 20 percent per context,
and then assign 10 contexts to the class for a total of 200 percent. If contexts concurrently use more than
the system limit, then each context gets less than the 20 percent you intended. (See Figure 6-1.)
Figure 6-1 Resource Oversubscription
If you assign an absolute value to a resource across all contexts that exceeds the practical limit of the
security appliance, then the performance of the security appliance might be impaired.
The security appliance lets you assign unlimited access to one or more resources in a class, instead of a
percentage or absolute number. When a resource is unlimited, contexts can use as much of the resource
as the system has available or that is practically available. For example, Context A, B, and C are in the
Silver Class, which limits each class member to 1 percent of the connections, for a total of 3 percent; but
the three contexts are currently only using 2 percent combined. Gold Class has unlimited access to
connections. The contexts in the Gold Class can use more than the 97 percent of “unassigned”
connections; they can also use the 1 percent of connections not currently in use by Context A, B, and C,
even if that means that Context A, B, and C are unable to reach their 3 percent combined limit. (See
Figure 6-2.) Setting unlimited access is similar to oversubscribing the security appliance, except that you
have less control over how much you oversubscribe the system.
Total Number of System Connections = 999,900
Maximum connections
allowed.
Connections denied
because system limit
was reached.
Connections in use.
1 2 3 4 5 6 7 8 9 10
Max. 20%
(199,800)
16%
(159,984)
12%
(119,988)
8%
(79,992)
4%
(39,996)
Contexts in Class
1048956-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring Resource Management
Figure 6-2 Unlimited Resources
Default Class
All contexts belong to the default class if they are not assigned to another class; you do not have to
actively assign a context to the default class.
If a context belongs to a class other than the default class, those class settings always override the default
class settings. However, if the other class has any settings that are not defined, then the member context
uses the default class for those limits. For example, if you create a class with a 2 percent limit for all
concurrent connections, but no other limits, then all other limits are inherited from the default class.
Conversely, if you create a class with a limit for all resources, the class uses no settings from the default
class.
By default, the default class provides unlimited access to resources for all contexts, except for the
following limits, which are by default set to the maximum allowed per context:
• Telnet sessions—5 sessions.
• SSH sessions—5 sessions.
• IPSec sessions—5 sessions.
• MAC addresses—65,535 entries.
Maximum connections
allowed.
Connections denied
because system limit
was reached.
Connections in use.
A B C 1 2 3
1%
2%
3%
5%
4%
Contexts Silver Class Contexts Gold Class
50% 43%
1532116-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring Resource Management
Figure 6-3 shows the relationship between the default class and other classes. Contexts A and C belong
to classes with some limits set; other limits are inherited from the default class. Context B inherits no
limits from default because all limits are set in its class, the Gold class. Context D was not assigned to
a class, and is by default a member of the default class.
Figure 6-3 Resource Classes
Class Members
To use the settings of a class, assign the context to the class when you define the context. All contexts
belong to the default class if they are not assigned to another class; you do not have to actively assign a
context to default. You can only assign a context to one resource class. The exception to this rule is that
limits that are undefined in the member class are inherited from the default class; so in effect, a context
could be a member of default plus another class.
Configuring a Class
To configure a class in the system configuration, perform the following steps. You can change the value
of a particular resource limit by reentering the command with a new value.
Step 1 To specify the class name and enter the class configuration mode, enter the following command in the
system execution space:
hostname(config)# class name
The name is a string up to 20 characters long. To set the limits for the default class, enter default for the
name.
Step 2 To set the resource limits, see the following options:
• To set all resource limits (shown in Table 6-1) to be unlimited, enter the following command:
hostname(config-resmgmt)# limit-resource all 0
Default Class
Class Gold
(All Limits
Set)
Class Silver
(Some Limits
Set)
Class
Bronze
(Some
Limits
Set)
Context A
Context B
Context C
Context D
1046896-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring Resource Management
For example, you might want to create a class that includes the admin context that has no limitations.
The default class has all resources set to unlimited by default.
• To set a particular resource limit, enter the following command:
hostname(config-resmgmt)# limit-resource [rate] resource_name number[%]
For this particular resource, the limit overrides the limit set for all. Enter the rate argument to set
the rate per second for certain resources. For resources that do not have a system limit, you cannot
set the percentage (%) between 1 and 100; you can only set an absolute value. See Table 6-1 for
resources for which you can set the rate per second and which to not have a system limit.
Table 6-1 lists the resource types and the limits. See also the show resource types command.6-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring Resource Management
For example, to set the default class limit for conns to 10 percent instead of unlimited, enter the
following commands:
hostname(config)# class default
hostname(config-class)# limit-resource conns 10%
All other resources remain at unlimited.
To add a class called gold, enter the following commands:
hostname(config)# class gold
Table 6-1 Resource Names and Limits
Resource Name
Rate or
Concurrent
Minimum and
Maximum Number
per Context System Limit
1
1. If this column value is N/A, then you cannot set a percentage of the resource because there is no hard system limit for the resource.
Description
mac-addresses Concurrent N/A 65,535 For transparent firewall mode, the number of
MAC addresses allowed in the MAC address
table.
conns Concurrent
or Rate
N/A Concurrent connections:
See the “Supported
Platforms and Feature
Licenses” section on
page A-1 for the
connection limit for your
platform.
Rate: N/A
TCP or UDP connections between any two
hosts, including connections between one
host and multiple other hosts.
inspects Rate N/A N/A Application inspections.
hosts Concurrent N/A N/A Hosts that can connect through the security
appliance.
asdm Concurrent 1 minimum
5 maximum
32 ASDM management sessions.
Note ASDM sessions use two HTTPS
connections: one for monitoring that
is always present, and one for making
configuration changes that is present
only when you make changes. For
example, the system limit of 32
ASDM sessions represents a limit of
64 HTTPS sessions.
ssh Concurrent 1 minimum
5 maximum
100 SSH sessions.
syslogs Rate N/A N/A System log messages.
telnet Concurrent 1 minimum
5 maximum
100 Telnet sessions.
xlates Concurrent N/A N/A Address translations.6-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring a Security Context
hostname(config-class)# limit-resource mac-addresses 10000
hostname(config-class)# limit-resource conns 15%
hostname(config-class)# limit-resource rate conns 1000
hostname(config-class)# limit-resource rate inspects 500
hostname(config-class)# limit-resource hosts 9000
hostname(config-class)# limit-resource asdm 5
hostname(config-class)# limit-resource ssh 5
hostname(config-class)# limit-resource rate syslogs 5000
hostname(config-class)# limit-resource telnet 5
hostname(config-class)# limit-resource xlates 36000
Configuring a Security Context
The security context definition in the system configuration identifies the context name, configuration file
URL, and interfaces that a context can use.
Note If you do not have an admin context (for example, if you clear the configuration) then you must first
specify the admin context name by entering the following command:
hostname(config)# admin-context name
Although this context name does not exist yet in your configuration, you can subsequently enter the
context name command to match the specified name to continue the admin context configuration.
To add or change a context in the system configuration, perform the following steps:
Step 1 To add or modify a context, enter the following command in the system execution space:
hostname(config)# context name
The name is a string up to 32 characters long. This name is case sensitive, so you can have two contexts
named “customerA” and “CustomerA,” for example. You can use letters, digits, or hyphens, but you
cannot start or end the name with a hyphen.
“System” or “Null” (in upper or lower case letters) are reserved names, and cannot be used.
Step 2 (Optional) To add a description for this context, enter the following command:
hostname(config-ctx)# description text
Step 3 To specify the interfaces you can use in the context, enter the command appropriate for a physical
interface or for one or more subinterfaces.
• To allocate a physical interface, enter the following command:
hostname(config-ctx)# allocate-interface physical_interface [map_name]
[visible | invisible]
• To allocate one or more subinterfaces, enter the following command:
hostname(config-ctx)# allocate-interface
physical_interface.subinterface[-physical_interface.subinterface]
[map_name[-map_name]] [visible | invisible]6-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring a Security Context
You can enter these commands multiple times to specify different ranges. If you remove an allocation
with the no form of this command, then any context commands that include this interface are removed
from the running configuration.
Transparent firewall mode allows only two interfaces to pass through traffic; however, on the ASA
adaptive security appliance, you can use the dedicated management interface, Management 0/0, (either
the physical interface or a subinterface) as a third interface for management traffic.
Note The management interface for transparent mode does not flood a packet out the interface when that
packet is not in the MAC address table.
You can assign the same interfaces to multiple contexts in routed mode, if desired. Transparent mode
does not allow shared interfaces.
The map_name is an alphanumeric alias for the interface that can be used within the context instead of
the interface ID. If you do not specify a mapped name, the interface ID is used within the context. For
security purposes, you might not want the context administrator to know which interfaces are being used
by the context.
A mapped name must start with a letter, end with a letter or digit, and have as interior characters only
letters, digits, or an underscore. For example, you can use the following names:
int0
inta
int_0
For subinterfaces, you can specify a range of mapped names.
If you specify a range of subinterfaces, you can specify a matching range of mapped names. Follow these
guidelines for ranges:
• The mapped name must consist of an alphabetic portion followed by a numeric portion. The
alphabetic portion of the mapped name must match for both ends of the range. For example, enter
the following range:
int0-int10
If you enter gigabitethernet0/1.1-gigabitethernet0/1.5 happy1-sad5, for example, the command
fails.
• The numeric portion of the mapped name must include the same quantity of numbers as the
subinterface range. For example, both ranges include 100 interfaces:
gigabitethernet0/0.100-gigabitethernet0/0.199 int1-int100
If you enter gigabitethernet0/0.100-gigabitethernet0/0.199 int1-int15, for example, the command
fails.
Specify visible to see physical interface properties in the show interface command even if you set a
mapped name. The default invisible keyword specifies to only show the mapped name.
The following example shows gigabitethernet0/1.100, gigabitethernet0/1.200, and
gigabitethernet0/2.300 through gigabitethernet0/1.305 assigned to the context. The mapped names are
int1 through int8.
hostname(config-ctx)# allocate-interface gigabitethernet0/1.100 int1
hostname(config-ctx)# allocate-interface gigabitethernet0/1.200 int2
hostname(config-ctx)# allocate-interface gigabitethernet0/2.300-gigabitethernet0/2.305
int3-int86-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring a Security Context
Step 4 To identify the URL from which the system downloads the context configuration, enter the following
command:
hostname(config-ctx)# config-url url
When you add a context URL, the system immediately loads the context so that it is running, if the
configuration is available.
Note Enter the allocate-interface command(s) before you enter the config-url command. The security
appliance must assign interfaces to the context before it loads the context configuration; the context
configuration might include commands that refer to interfaces (interface, nat, global...). If you enter the
config-url command first, the security appliance loads the context configuration immediately. If the
context contains any commands that refer to interfaces, those commands fail.
See the following URL syntax:
• disk:/[path/]filename
This URL indicates the internal Flash memory. The filename does not require a file extension,
although we recommend using “.cfg”. If the configuration file is not available, you see the following
message:
WARNING: Could not fetch the URL disk:/url
INFO: Creating context with default config
You can then change to the context, configure it at the CLI, and enter the write memory command
to write the file to Flash memory.
Note The admin context file must be stored on the internal Flash memory.
• ftp://[user[:password]@]server[:port]/[path/]filename[;type=xx]
The type can be one of the following keywords:
– ap—ASCII passive mode
– an—ASCII normal mode
– ip—(Default) Binary passive mode
– in—Binary normal mode
The server must be accessible from the admin context. The filename does not require a file
extension, although we recommend using “.cfg”. If the configuration file is not available, you see
the following message:
WARNING: Could not fetch the URL ftp://url
INFO: Creating context with default config
You can then change to the context, configure it at the CLI, and enter the write memory command
to write the file to the FTP server.
• http[s]://[user[:password]@]server[:port]/[path/]filename
The server must be accessible from the admin context. The filename does not require a file
extension, although we recommend using “.cfg”. If the configuration file is not available, you see
the following message:
WARNING: Could not fetch the URL http://url
INFO: Creating context with default config6-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Configuring a Security Context
If you change to the context and configure the context at the CLI, you cannot save changes back to
HTTP or HTTPS servers using the write memory command. You can, however, use the copy tftp
command to copy the running configuration to a TFTP server.
• tftp://[user[:password]@]server[:port]/[path/]filename[;int=interface_name]
The server must be accessible from the admin context. Specify the interface name if you want to
override the route to the server address. The filename does not require a file extension, although we
recommend using “.cfg”. If the configuration file is not available, you see the following message:
WARNING: Could not fetch the URL tftp://url
INFO: Creating context with default config
You can then change to the context, configure it at the CLI, and enter the write memory command
to write the file to the TFTP server.
To change the URL, reenter the config-url command with a new URL.
See the “Changing the Security Context URL” section on page 6-13 for more information about
changing the URL.
For example, enter the following command:
hostname(config-ctx)# config-url ftp://joe:passw0rd1@10.1.1.1/configlets/test.cfg
Step 5 (Optional) To assign the context to a resource class, enter the following command:
hostname(config-ctx)# member class_name
If you do not specify a class, the context belongs to the default class. You can only assign a context to
one resource class.
For example, to assign the context to the gold class, enter the following command:
hostname(config-ctx)# member gold
Step 6 To view context information, see the show context command in the Cisco Security Appliance Command
Reference.
The following example sets the admin context to be “administrator,” creates a context called
“administrator” on the internal Flash memory, and then adds two contexts from an FTP server:
hostname(config)# admin-context administrator
hostname(config)# context administrator
hostname(config-ctx)# allocate-interface gigabitethernet0/0.1
hostname(config-ctx)# allocate-interface gigabitethernet0/1.1
hostname(config-ctx)# config-url flash:/admin.cfg
hostname(config-ctx)# context test
hostname(config-ctx)# allocate-interface gigabitethernet0/0.100 int1
hostname(config-ctx)# allocate-interface gigabitethernet0/0.102 int2
hostname(config-ctx)# allocate-interface gigabitethernet0/0.110-gigabitethernet0/0.115
int3-int8
hostname(config-ctx)# config-url ftp://user1:passw0rd@10.1.1.1/configlets/test.cfg
hostname(config-ctx)# member gold
hostname(config-ctx)# context sample
hostname(config-ctx)# allocate-interface gigabitethernet0/1.200 int1
hostname(config-ctx)# allocate-interface gigabitethernet0/1.212 int2
hostname(config-ctx)# allocate-interface gigabitethernet0/1.230-gigabitethernet0/1.235
int3-int86-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Automatically Assigning MAC Addresses to Context Interfaces
hostname(config-ctx)# config-url ftp://user1:passw0rd@10.1.1.1/configlets/sample.cfg
hostname(config-ctx)# member silver
Automatically Assigning MAC Addresses to Context Interfaces
To allow contexts to share interfaces, we suggest that you assign unique MAC addresses to each context
interface. The MAC address is used to classify packets within a context. If you share an interface, but do
not have unique MAC addresses for the interface in each context, then the destination IP address is used
to classify packets. The destination address is matched with the context NAT configuration, and this
method has some limitations compared to the MAC address method. See the “How the Security
Appliance Classifies Packets” section on page 3-3 for information about classifying packets.
By default, the physical interface uses the burned-in MAC address, and all subinterfaces of a physical
interface use the same burned-in MAC address.
You can automatically assign private MAC addresses to each shared context interface by entering the
following command in the system configuration:
hostname(config)# mac-address auto
For use with failover, the security appliance generates both an active and standby MAC address for each
interface. If the active unit fails over and the standby unit becomes active, the new active unit starts using
the active MAC addresses to minimize network disruption.
When you assign an interface to a context, the new MAC address is generated immediately. If you enable
this command after you create context interfaces, then MAC addresses are generated for all interfaces
immediately after you enter the command. If you use the no mac-address auto command, the MAC
address for each interface reverts to the default MAC address. For example, subinterfaces of
GigabitEthernet 0/1 revert to using the MAC address of GigabitEthernet 0/1.
The MAC address is generated using the following format:
• Active unit MAC address: 12_slot.port_subid.contextid.
• Standby unit MAC address: 02_slot.port_subid.contextid.
For platforms with no interface slots, the slot is always 0. The port is the interface port. The subid is an
internal ID for the subinterface, which is not viewable. The contextid is an internal ID for the context,
viewable with the show context detail command. For example, the interface GigabitEthernet 0/1.200 in
the context with the ID 1 has the following generated MAC addresses, where the internal ID for
subinterface 200 is 31:
• Active: 1200.0131.0001
• Standby: 0200.0131.0001
In the rare circumstance that the generated MAC address conflicts with another private MAC address in
your network, you can manually set the MAC address for the interface within the context. See the
“Configuring the Interface” section on page 7-2 to manually set the MAC address.
Changing Between Contexts and the System Execution Space
If you log in to the system execution space (or the admin context using Telnet or SSH), you can change
between contexts and perform configuration and monitoring tasks within each context. The running
configuration that you edit in a configuration mode, or that is used in the copy or write commands, 6-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
depends on your location. When you are in the system execution space, the running configuration
consists only of the system configuration; when you are in a context, the running configuration consists
only of that context. For example, you cannot view all running configurations (system plus all contexts)
by entering the show running-config command. Only the current configuration displays.
To change between the system execution space and a context, or between contexts, see the following
commands:
• To change to a context, enter the following command:
hostname# changeto context name
The prompt changes to the following:
hostname/name#
• To change to the system execution space, enter the following command:
hostname/admin# changeto system
The prompt changes to the following:
hostname#
Managing Security Contexts
This section describes how to manage security contexts, and includes the following topics:
• Removing a Security Context, page 6-12
• Changing the Admin Context, page 6-13
• Changing the Security Context URL, page 6-13
• Reloading a Security Context, page 6-14
• Monitoring Security Contexts, page 6-15
Removing a Security Context
You can only remove a context by editing the system configuration. You cannot remove the current
admin context, unless you remove all contexts using the clear context command.
Note If you use failover, there is a delay between when you remove the context on the active unit and when
the context is removed on the standby unit. You might see an error message indicating that the number
of interfaces on the active and standby units are not consistent; this error is temporary and can be
ignored.
Use the following commands for removing contexts:
• To remove a single context, enter the following command in the system execution space:
hostname(config)# no context name
All context commands are also removed.
• To remove all contexts (including the admin context), enter the following command in the system
execution space:6-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
hostname(config)# clear context
Changing the Admin Context
The system configuration does not include any network interfaces or network settings for itself; rather,
when the system needs to access network resources (such as downloading the contexts from the server),
it uses one of the contexts that is designated as the admin context.
The admin context is just like any other context, except that when a user logs in to the admin context,
then that user has system administrator rights and can access the system and all other contexts. The
admin context is not restricted in any way, and can be used as a regular context. However, because
logging into the admin context grants you administrator privileges over all contexts, you might need to
restrict access to the admin context to appropriate users.
You can set any context to be the admin context, as long as the configuration file is stored in the internal
Flash memory. To set the admin context, enter the following command in the system execution space:
hostname(config)# admin-context context_name
Any remote management sessions, such as Telnet, SSH, or HTTPS, that are connected to the admin
context are terminated. You must reconnect to the new admin context.
Note A few system commands, including ntp server, identify an interface name that belongs to the admin
context. If you change the admin context, and that interface name does not exist in the new admin
context, be sure to update any system commands that refer to the interface.
Changing the Security Context URL
You cannot change the security context URL without reloading the configuration from the new URL.
The security appliance merges the new configuration with the current running configuration. Reentering
the same URL also merges the saved configuration with the running configuration. A merge adds any
new commands from the new configuration to the running configuration. If the configurations are the
same, no changes occur. If commands conflict or if commands affect the running of the context, then the
effect of the merge depends on the command. You might get errors, or you might have unexpected
results. If the running configuration is blank (for example, if the server was unavailable and the
configuration was never downloaded), then the new configuration is used. If you do not want to merge
the configurations, you can clear the running configuration, which disrupts any communications through
the context, and then reload the configuration from the new URL.
To change the URL for a context, perform the following steps:
Step 1 If you do not want to merge the configuration, change to the context and clear its configuration by
entering the following commands. If you want to perform a merge, skip to Step 2.
hostname# changeto context name
hostname/name# configure terminal
hostname/name(config)# clear configure all
Step 2 If required, change to the system execution space by entering the following command:
hostname/name(config)# changeto system6-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
Step 3 To enter the context configuration mode for the context you want to change, enter the following
command:
hostname(config)# context name
Step 4 To enter the new URL, enter the following command:
hostname(config)# config-url new_url
The system immediately loads the context so that it is running.
Reloading a Security Context
You can reload the context in two ways:
• Clear the running configuration and then import the startup configuration.
This action clears most attributes associated with the context, such as connections and NAT tables.
• Remove the context from the system configuration.
This action clears additional attributes, such as memory allocation, which might be useful for
troubleshooting. However, to add the context back to the system requires you to respecify the URL
and interfaces.
This section includes the following topics:
• Reloading by Clearing the Configuration, page 6-14
• Reloading by Removing and Re-adding the Context, page 6-15
Reloading by Clearing the Configuration
To reload the context by clearing the context configuration, and reloading the configuration from the
URL, perform the following steps:
Step 1 To change to the context that you want to reload, enter the following command:
hostname# changeto context name
Step 2 To access configuration mode, enter the following command:
hostname/name# configure terminal
Step 3 To clear the running configuration, enter the following command:
hostname/name(config)# clear configure all
This command clears all connections.
Step 4 To reload the configuration, enter the following command:
hostname/name(config)# copy startup-config running-config
The security appliance copies the configuration from the URL specified in the system configuration. You
cannot change the URL from within a context.6-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
Reloading by Removing and Re-adding the Context
To reload the context by removing the context and then re-adding it, perform the steps in the following
sections:
1. “Automatically Assigning MAC Addresses to Context Interfaces” section on page 6-11
2. “Configuring a Security Context” section on page 6-7
Monitoring Security Contexts
This section describes how to view and monitor context information, and includes the following topics:
• Viewing Context Information, page 6-15
• Viewing Resource Allocation, page 6-16
• Viewing Resource Usage, page 6-19
• Monitoring SYN Attacks in Contexts, page 6-20
Viewing Context Information
From the system execution space, you can view a list of contexts including the name, allocated
interfaces, and configuration file URL.
From the system execution space, view all contexts by entering the following command:
hostname# show context [name | detail| count]
The detail option shows additional information. See the following sample displays below for more
information.
If you want to show information for a particular context, specify the name.
The count option shows the total number of contexts.
The following is sample output from the show context command. The following sample display shows
three contexts:
hostname# show context
Context Name Interfaces URL
*admin GigabitEthernet0/1.100 disk0:/admin.cfg
GigabitEthernet0/1.101
contexta GigabitEthernet0/1.200 disk0:/contexta.cfg
GigabitEthernet0/1.201
contextb GigabitEthernet0/1.300 disk0:/contextb.cfg
GigabitEthernet0/1.301
Total active Security Contexts: 3
Table 6-2 shows each field description.
Table 6-2 show context Fields
Field Description
Context Name Lists all context names. The context name with the asterisk (*) is the admin context.
Interfaces The interfaces assigned to the context.
URL The URL from which the security appliance loads the context configuration.6-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
The following is sample output from the show context detail command:
hostname# show context detail
Context "admin", has been created, but initial ACL rules not complete
Config URL: disk0:/admin.cfg
Real Interfaces: Management0/0
Mapped Interfaces: Management0/0
Flags: 0x00000013, ID: 1
Context "ctx", has been created, but initial ACL rules not complete
Config URL: ctx.cfg
Real Interfaces: GigabitEthernet0/0.10, GigabitEthernet0/1.20,
GigabitEthernet0/2.30
Mapped Interfaces: int1, int2, int3
Flags: 0x00000011, ID: 2
Context "system", is a system resource
Config URL: startup-config
Real Interfaces:
Mapped Interfaces: Control0/0, GigabitEthernet0/0,
GigabitEthernet0/0.10, GigabitEthernet0/1, GigabitEthernet0/1.10,
GigabitEthernet0/1.20, GigabitEthernet0/2, GigabitEthernet0/2.30,
GigabitEthernet0/3, Management0/0, Management0/0.1
Flags: 0x00000019, ID: 257
Context "null", is a system resource
Config URL: ... null ...
Real Interfaces:
Mapped Interfaces:
Flags: 0x00000009, ID: 258
See the Cisco Security Appliance Command Reference for more information about the detail output.
The following is sample output from the show context count command:
hostname# show context count
Total active contexts: 2
Viewing Resource Allocation
From the system execution space, you can view the allocation for each resource across all classes and
class members.
To view the resource allocation, enter the following command:
hostname# show resource allocation [detail]
This command shows the resource allocation, but does not show the actual resources being used. See the
“Viewing Resource Usage” section on page 6-19 for more information about actual resource usage.
The detail argument shows additional information. See the following sample displays for more
information.
The following sample display shows the total allocation of each resource as an absolute value and as a
percentage of the available system resources:
hostname# show resource allocation
Resource Total % of Avail
Conns [rate] 35000 N/A
Inspects [rate] 35000 N/A
Syslogs [rate] 10500 N/A
Conns 305000 30.50%
Hosts 78842 N/A6-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
SSH 35 35.00%
Telnet 35 35.00%
Xlates 91749 N/A
All unlimited
Table 6-3 shows each field description.
The following is sample output from the show resource allocation detail command:
hostname# show resource allocation detail
Resource Origin:
A Value was derived from the resource 'all'
C Value set in the definition of this class
D Value set in default class
Resource Class Mmbrs Origin Limit Total Total %
Conns [rate] default all CA unlimited
gold 1 C 34000 34000 N/A
silver 1 CA 17000 17000 N/A
bronze 0 CA 8500
All Contexts: 3 51000 N/A
Inspects [rate] default all CA unlimited
gold 1 DA unlimited
silver 1 CA 10000 10000 N/A
bronze 0 CA 5000
All Contexts: 3 10000 N/A
Syslogs [rate] default all CA unlimited
gold 1 C 6000 6000 N/A
silver 1 CA 3000 3000 N/A
bronze 0 CA 1500
All Contexts: 3 9000 N/A
Conns default all CA unlimited
gold 1 C 200000 200000 20.00%
silver 1 CA 100000 100000 10.00%
bronze 0 CA 50000
All Contexts: 3 300000 30.00%
Hosts default all CA unlimited
gold 1 DA unlimited
silver 1 CA 26214 26214 N/A
bronze 0 CA 13107
All Contexts: 3 26214 N/A
SSH default all C 5
gold 1 D 5 5 5.00%
Table 6-3 show resource allocation Fields
Field Description
Resource The name of the resource that you can limit.
Total The total amount of the resource that is allocated across all contexts. The amount
is an absolute number of concurrent instances or instances per second. If you
specified a percentage in the class definition, the security appliance converts the
percentage to an absolute number for this display.
% of Avail The percentage of the total system resources that is allocated across all contexts, if
the resource has a hard system limit. If a resource does not have a system limit, this
column shows N/A.6-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
silver 1 CA 10 10 10.00%
bronze 0 CA 5
All Contexts: 3 20 20.00%
Telnet default all C 5
gold 1 D 5 5 5.00%
silver 1 CA 10 10 10.00%
bronze 0 CA 5
All Contexts: 3 20 20.00%
Xlates default all CA unlimited
gold 1 DA unlimited
silver 1 CA 23040 23040 N/A
bronze 0 CA 11520
All Contexts: 3 23040 N/A
mac-addresses default all C 65535
gold 1 D 65535 65535 100.00%
silver 1 CA 6553 6553 9.99%
bronze 0 CA 3276
All Contexts: 3 137623 209.99%
Table 6-4 shows each field description.
Table 6-4 show resource allocation detail Fields
Field Description
Resource The name of the resource that you can limit.
Class The name of each class, including the default class.
The All contexts field shows the total values across all classes.
Mmbrs The number of contexts assigned to each class.
Origin The origin of the resource limit, as follows:
• A—You set this limit with the all option, instead of as an individual resource.
• C—This limit is derived from the member class.
• D—This limit was not defined in the member class, but was derived from the
default class. For a context assigned to the default class, the value will be “C”
instead of “D.”
The security appliance can combine “A” with “C” or “D.”
Limit The limit of the resource per context, as an absolute number. If you specified a
percentage in the class definition, the security appliance converts the percentage to
an absolute number for this display.
Total The total amount of the resource that is allocated across all contexts in the class.
The amount is an absolute number of concurrent instances or instances per second.
If the resource is unlimited, this display is blank.
% of Avail The percentage of the total system resources that is allocated across all contexts in
the class. If the resource is unlimited, this display is blank. If the resource does not
have a system limit, then this column shows N/A.6-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
Viewing Resource Usage
From the system execution space, you can view the resource usage for each context and display the
system resource usage.
From the system execution space, view the resource usage for each context by entering the following
command:
hostname# show resource usage [context context_name | top n | all | summary | system]
[resource {resource_name | all} | detail] [counter counter_name [count_threshold]]
By default, all context usage is displayed; each context is listed separately.
Enter the top n keyword to show the contexts that are the top n users of the specified resource. You must
specify a single resource type, and not resource all, with this option.
The summary option shows all context usage combined.
The system option shows all context usage combined, but shows the system limits for resources instead
of the combined context limits.
For the resource resource_name, see Table 6- 1 for available resource names. See also the show resource
type command. Specify all (the default) for all types.
The detail option shows the resource usage of all resources, including those you cannot manage. For
example, you can view the number of TCP intercepts.
The counter counter_name is one of the following keywords:
• current—Shows the active concurrent instances or the current rate of the resource.
• denied—Shows the number of instances that were denied because they exceeded the resource limit
shown in the Limit column.
• peak—Shows the peak concurrent instances, or the peak rate of the resource since the statistics were
last cleared, either using the clear resource usage command or because the device rebooted.
• all—(Default) Shows all statistics.
The count_threshold sets the number above which resources are shown. The default is 1. If the usage of
the resource is below the number you set, then the resource is not shown. If you specify all for the
counter name, then the count_threshold applies to the current usage.
Note To show all resources, set the count_threshold to 0.
The following is sample output from the show resource usage context command, which shows the
resource usage for the admin context:
hostname# show resource usage context admin
Resource Current Peak Limit Denied Context
Telnet 1 1 5 0 admin
Conns 44 55 N/A 0 admin
Hosts 45 56 N/A 0 admin
The following is sample output from the show resource usage summary command, which shows the
resource usage for all contexts and all resources. This sample shows the limits for 6 contexts.
hostname# show resource usage summary
Resource Current Peak Limit Denied Context
Syslogs [rate] 1743 2132 N/A 0 Summary
Conns 584 763 280000(S) 0 Summary6-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
Xlates 8526 8966 N/A 0 Summary
Hosts 254 254 N/A 0 Summary
Conns [rate] 270 535 N/A 1704 Summary
Inspects [rate] 270 535 N/A 0 Summary
S = System: Combined context limits exceed the system limit; the system limit is shown.
The following is sample output from the show resource usage summary command, which shows the
limits for 25 contexts. Because the context limit for Telnet and SSH connections is 5 per context, then
the combined limit is 125. The system limit is only 100, so the system limit is shown.
hostname# show resource usage summary
Resource Current Peak Limit Denied Context
Telnet 1 1 100[S] 0 Summary
SSH 2 2 100[S] 0 Summary
Conns 56 90 N/A 0 Summary
Hosts 89 102 N/A 0 Summary
S = System: Combined context limits exceed the system limit; the system limit is shown.
The following is sample output from the show resource usage system command, which shows the
resource usage for all contexts, but it shows the system limit instead of the combined context limits. The
counter all 0 option is used to show resources that are not currently in use. The Denied statistics indicate
how many times the resource was denied due to the system limit, if available.
hostname# show resource usage system counter all 0
Resource Current Peak Limit Denied Context
Telnet 0 0 100 0 System
SSH 0 0 100 0 System
ASDM 0 0 32 0 System
Syslogs [rate] 1 18 N/A 0 System
Conns 0 1 280000 0 System
Xlates 0 0 N/A 0 System
Hosts 0 2 N/A 0 System
Conns [rate] 1 1 N/A 0 System
Inspects [rate] 0 0 N/A 0 System
Monitoring SYN Attacks in Contexts
The security appliance prevents SYN attacks using TCP Intercept. TCP Intercept uses the SYN cookies
algorithm to prevent TCP SYN-flooding attacks. A SYN-flooding attack consists of a series of SYN
packets usually originating from spoofed IP addresses. The constant flood of SYN packets keeps the
server SYN queue full, which prevents it from servicing connection requests. When the embryonic
connection threshold of a connection is crossed, the security appliance acts as a proxy for the server and
generates a SYN-ACK response to the client SYN request. When the security appliance receives an ACK
back from the client, it can then authenticate the client and allow the connection to the server.
You can monitor the rate of attacks for individual contexts using the show perfmon command; you can
monitor the amount of resources being used by TCP intercept for individual contexts using the show
resource usage detail command; you can monitor the resources being used by TCP intercept for the
entire system using the show resource usage summary detail command.
The following is sample output from the show perfmon command that shows the rate of TCP intercepts
for a context called admin.
hostname/admin# show perfmon
Context:admin
PERFMON STATS: Current Average
Xlates 0/s 0/s6-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
Connections 0/s 0/s
TCP Conns 0/s 0/s
UDP Conns 0/s 0/s
URL Access 0/s 0/s
URL Server Req 0/s 0/s
WebSns Req 0/s 0/s
TCP Fixup 0/s 0/s
HTTP Fixup 0/s 0/s
FTP Fixup 0/s 0/s
AAA Authen 0/s 0/s
AAA Author 0/s 0/s
AAA Account 0/s 0/s
TCP Intercept 322779/s 322779/s
The following is sample output from the show resource usage detail command that shows the amount
of resources being used by TCP Intercept for individual contexts. (Sample text in italics shows the TCP
intercept information.)
hostname(config)# show resource usage detail
Resource Current Peak Limit Denied Context
memory 843732 847288 unlimited 0 admin
chunk:channels 14 15 unlimited 0 admin
chunk:fixup 15 15 unlimited 0 admin
chunk:hole 1 1 unlimited 0 admin
chunk:ip-users 10 10 unlimited 0 admin
chunk:list-elem 21 21 unlimited 0 admin
chunk:list-hdr 3 4 unlimited 0 admin
chunk:route 2 2 unlimited 0 admin
chunk:static 1 1 unlimited 0 admin
tcp-intercepts 328787 803610 unlimited 0 admin
np-statics 3 3 unlimited 0 admin
statics 1 1 unlimited 0 admin
ace-rules 1 1 unlimited 0 admin
console-access-rul 2 2 unlimited 0 admin
fixup-rules 14 15 unlimited 0 admin
memory 959872 960000 unlimited 0 c1
chunk:channels 15 16 unlimited 0 c1
chunk:dbgtrace 1 1 unlimited 0 c1
chunk:fixup 15 15 unlimited 0 c1
chunk:global 1 1 unlimited 0 c1
chunk:hole 2 2 unlimited 0 c1
chunk:ip-users 10 10 unlimited 0 c1
chunk:udp-ctrl-blk 1 1 unlimited 0 c1
chunk:list-elem 24 24 unlimited 0 c1
chunk:list-hdr 5 6 unlimited 0 c1
chunk:nat 1 1 unlimited 0 c1
chunk:route 2 2 unlimited 0 c1
chunk:static 1 1 unlimited 0 c1
tcp-intercept-rate 16056 16254 unlimited 0 c1
globals 1 1 unlimited 0 c1
np-statics 3 3 unlimited 0 c1
statics 1 1 unlimited 0 c1
nats 1 1 unlimited 0 c1
ace-rules 2 2 unlimited 0 c1
console-access-rul 2 2 unlimited 0 c1
fixup-rules 14 15 unlimited 0 c1
memory 232695716 232020648 unlimited 0 system
chunk:channels 17 20 unlimited 0 system
chunk:dbgtrace 3 3 unlimited 0 system
chunk:fixup 15 15 unlimited 0 system
chunk:ip-users 4 4 unlimited 0 system
chunk:list-elem 1014 1014 unlimited 0 system
chunk:list-hdr 1 1 unlimited 0 system
chunk:route 1 1 unlimited 0 system6-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 6 Adding and Managing Security Contexts
Managing Security Contexts
block:16384 510 885 unlimited 0 system
block:2048 32 34 unlimited 0 system
The following sample output shows the resources being used by TCP intercept for the entire system.
(Sample text in italics shows the TCP intercept information.)
hostname(config)# show resource usage summary detail
Resource Current Peak Limit Denied Context
memory 238421312 238434336 unlimited 0 Summary
chunk:channels 46 48 unlimited 0 Summary
chunk:dbgtrace 4 4 unlimited 0 Summary
chunk:fixup 45 45 unlimited 0 Summary
chunk:global 1 1 unlimited 0 Summary
chunk:hole 3 3 unlimited 0 Summary
chunk:ip-users 24 24 unlimited 0 Summary
chunk:udp-ctrl-blk 1 1 unlimited 0 Summary
chunk:list-elem 1059 1059 unlimited 0 Summary
chunk:list-hdr 10 11 unlimited 0 Summary
chunk:nat 1 1 unlimited 0 Summary
chunk:route 5 5 unlimited 0 Summary
chunk:static 2 2 unlimited 0 Summary
block:16384 510 885 unlimited 0 Summary
block:2048 32 35 unlimited 0 Summary
tcp-intercept-rate 341306 811579 unlimited 0 Summary
globals 1 1 unlimited 0 Summary
np-statics 6 6 unlimited 0 Summary
statics 2 2 N/A 0 Summary
nats 1 1 N/A 0 Summary
ace-rules 3 3 N/A 0 Summary
console-access-rul 4 4 N/A 0 Summary
fixup-rules 43 44 N/A 0 SummaryC H A P T E R
7-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
7
Configuring Interface Parameters
This chapter describes how to configure each interface and subinterface for a name, security level, and
IP address. For single context mode, the procedures in this chapter continue the interface configuration
started in Chapter 5, “Configuring Ethernet Settings and Subinterfaces.” For multiple context mode, the
procedures in Chapter 5, “Configuring Ethernet Settings and Subinterfaces,” are performed in the system
execution space, while the procedures in this chapter are performed within each security context.
Note To configure interfaces for the ASA 5505 adaptive security appliance, see Chapter 4, “Configuring
Switch Ports and VLAN Interfaces for the Cisco ASA 5505 Adaptive Security Appliance.”
This chapter includes the following sections:
• Security Level Overview, page 7-1
• Configuring the Interface, page 7-2
• Allowing Communication Between Interfaces on the Same Security Level, page 7-6
Security Level Overview
Each interface must have a security level from 0 (lowest) to 100 (highest). For example, you should
assign your most secure network, such as the inside host network, to level 100. While the outside
network connected to the Internet can be level 0. Other networks, such as DMZs can be in between. You
can assign interfaces to the same security level. See the “Allowing Communication Between Interfaces
on the Same Security Level” section on page 7-6 for more information.
The level controls the following behavior:
• Network access—By default, there is an implicit permit from a higher security interface to a lower
security interface (outbound). Hosts on the higher security interface can access any host on a lower
security interface. You can limit access by applying an access list to the interface.
If you enable communication for same security interfaces (see the “Allowing Communication
Between Interfaces on the Same Security Level” section on page 7-6), there is an implicit permit for
interfaces to access other interfaces on the same security level or lower.
• Inspection engines—Some application inspection engines are dependent on the security level. For
same security interfaces, inspection engines apply to traffic in either direction.
– NetBIOS inspection engine—Applied only for outbound connections.7-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 7 Configuring Interface Parameters
Configuring the Interface
– SQL*Net inspection engine—If a control connection for the SQL*Net (formerly OraServ) port
exists between a pair of hosts, then only an inbound data connection is permitted through the
security appliance.
• Filtering—HTTP(S) and FTP filtering applies only for outbound connections (from a higher level
to a lower level).
For same security interfaces, you can filter traffic in either direction.
• NAT control—When you enable NAT control, you must configure NAT for hosts on a higher security
interface (inside) when they access hosts on a lower security interface (outside).
Without NAT control, or for same security interfaces, you can choose to use NAT between any
interface, or you can choose not to use NAT. Keep in mind that configuring NAT for an outside
interface might require a special keyword.
• established command—This command allows return connections from a lower security host to a
higher security host if there is already an established connection from the higher level host to the
lower level host.
For same security interfaces, you can configure established commands for both directions.
Configuring the Interface
By default, all physical interfaces are shut down. You must enable the physical interface before any
traffic can pass through an enabled subinterface. For multiple context mode, if you allocate a physical
interface or subinterface to a context, the interfaces are enabled by default in the context. However,
before traffic can pass through the context interface, you must also enable the interface in the system
configuration. If you shut down an interface in the system execution space, then that interface is down
in all contexts that share it.
Before you can complete your configuration and allow traffic through the security appliance, you need
to configure an interface name, and for routed mode, an IP address. You should also change the security
level from the default, which is 0. If you name an interface “inside” and you do not set the security level
explicitly, then the security appliance sets the security level to 100.
Note If you are using failover, do not use this procedure to name interfaces that you are reserving for failover
and Stateful Failover communications. See Chapter 14, “Configuring Failover.” to configure the failover
and state links.
For multiple context mode, follow these guidelines:
• Configure the context interfaces from within each context.
• You can only configure context interfaces that you already assigned to the context in the system
configuration.
• The system configuration only lets you configure Ethernet settings and VLANs. The exception is
for failover interfaces; do not configure failover interfaces with this procedure. See the Failover
chapter for more information.
Note If you change the security level of an interface, and you do not want to wait for existing connections to
time out before the new security information is used, you can clear the connections using the
clear local-host command.7-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 7 Configuring Interface Parameters
Configuring the Interface
To configure an interface or subinterface, perform the following steps:
Step 1 To specify the interface you want to configure, enter the following command:
hostname(config)# interface {physical_interface[.subinterface] | mapped_name}
The physical_interface ID includes the type, slot, and port number as type[slot/]port.
The physical interface types include the following:
• ethernet
• gigabitethernet
For the PIX 500 series security appliance, enter the type followed by the port number, for example,
ethernet0.
For the ASA 5500 series adaptive security appliance, enter the type followed by slot/port, for example,
gigabitethernet0/1. Interfaces that are built into the chassis are assigned to slot 0, while interfaces on
the 4GE SSM are assigned to slot 1. For the ASA 5550 adaptive security appliance, for maximum
throughput, be sure to balance your traffic over the two interface slots; for example, assign the inside
interface to slot 1 and the outside interface to slot 0.
The ASA 5510 and higher adaptive security appliance also includes the following type:
• management
The management interface is a Fast Ethernet interface designed for management traffic only, and is
specified as management0/0. You can, however, use it for through traffic if desired (see the
management-only command). In transparent firewall mode, you can use the management interface
in addition to the two interfaces allowed for through traffic. You can also add subinterfaces to the
management interface to provide management in each security context for multiple context mode.
Append the subinterface ID to the physical interface ID separated by a period (.).
In multiple context mode, enter the mapped name if one was assigned using the allocate-interface
command.
For example, enter the following command:
hostname(config)# interface gigabitethernet0/1.1
Step 2 To name the interface, enter the following command:
hostname(config-if)# nameif name
The name is a text string up to 48 characters, and is not case-sensitive. You can change the name by
reentering this command with a new value. Do not enter the no form, because that command causes all
commands that refer to that name to be deleted.
Step 3 To set the security level, enter the following command:
hostname(config-if)# security-level number
Where number is an integer between 0 (lowest) and 100 (highest).
Step 4 (Optional) To set an interface to management-only mode, enter the following command:
hostname(config-if)# management-only
The ASA 5510 and higher adaptive security appliance includes a dedicated management interface called
Management 0/0, which is meant to support traffic to the security appliance. However, you can configure
any interface to be a management-only interface using the management-only command. Also, for
Management 0/0, you can disable management-only mode so the interface can pass through traffic just
like any other interface.7-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 7 Configuring Interface Parameters
Configuring the Interface
Note Transparent firewall mode allows only two interfaces to pass through traffic; however, on the
The ASA 5510 and higher adaptive security appliance, you can use the Management 0/0
interface (either the physical interface or a subinterface) as a third interface for management
traffic. The mode is not configurable in this case and must always be management-only.
Step 5 To set the IP address, enter one of the following commands.
In routed firewall mode, you set the IP address for all interfaces. In transparent firewall mode, you do
not set the IP address for each interface, but rather for the whole security appliance or context. The
exception is for the Management 0/0 management-only interface, which does not pass through traffic.
To set the management IP address for transparent firewall mode, see the “Setting the Management IP
Address for a Transparent Firewall” section on page 8-5. To set the IP address of the Management 0/0
interface or subinterface, use one of the following commands.
To set an IPv6 address, see the “Configuring IPv6 on an Interface” section on page 12-3.
For failover, you must set the IP address an standby address manually; DHCP and PPPoE are not
supported.
• To set the IP address manually, enter the following command:
hostname(config-if)# ip address ip_address [mask] [standby ip_address]
The standby keyword and address is used for failover. See Chapter 14, “Configuring Failover,” for
more information.
• To obtain an IP address from a DHCP server, enter the following command:
hostname(config-if)# ip address dhcp [setroute]
Reenter this command to reset the DHCP lease and request a new lease.
If you do not enable the interface using the no shutdown command before you enter the ip address
dhcp command, some DHCP requests might not be sent.
• To obtain an IP address from a PPPoE server, see Chapter 35, “Configuring the PPPoE Client.”
Step 6 (Optional) To assign a private MAC address to this interface, enter the following command:
hostname(config-if)# mac-address mac_address [standby mac_address]
The mac_address is in H.H.H format, where H is a 16-bit hexadecimal digit. For example, the
MAC address 00-0C-F1-42-4C-DE would be entered as 000C.F142.4CDE.
By default, the physical interface uses the burned-in MAC address, and all subinterfaces of a physical
interface use the same burned-in MAC address.
For use with failover, set the standby MAC address. If the active unit fails over and the standby unit
becomes active, the new active unit starts using the active MAC addresses to minimize network
disruption, while the old active unit uses the standby address.
In multiple context mode, if you share an interface between contexts, you can assign a unique MAC
address to the interface in each context. This feature lets the security appliance easily classify packets
into the appropriate context. Using a shared interface without unique MAC addresses is possible, but has
some limitations. See the “How the Security Appliance Classifies Packets” section on page 3-3 for more
information. You can assign each MAC address manually, or you can automatically generate MAC
addresses for shared interfaces in contexts. See the “Automatically Assigning MAC Addresses to
Context Interfaces” section on page 6-11 to automatically generate MAC addresses. If you automatically
generate MAC addresses, you can use the mac-address command to override the generated address.7-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 7 Configuring Interface Parameters
Configuring the Interface
For single context mode, or for interfaces that are not shared in multiple context mode, you might want
to assign unique MAC addresses to subinterfaces. For example, your service provider might perform
access control based on the MAC address.
Step 7 To enable the interface, if it is not already enabled, enter the following command:
hostname(config-if)# no shutdown
To disable the interface, enter the shutdown command. If you enter the shutdown command for a
physical interface, you also shut down all subinterfaces. If you shut down an interface in the system
execution space, then that interface is shut down in all contexts that share it, even though the context
configurations show the interface as enabled.
The following example configures parameters for the physical interface in single mode:
hostname(config)# interface gigabitethernet0/1
hostname(config-if)# speed 1000
hostname(config-if)# duplex full
hostname(config-if)# nameif inside
hostname(config-if)# security-level 100
hostname(config-if)# ip address 10.1.1.1 255.255.255.0
hostname(config-if)# no shutdown
The following example configures parameters for a subinterface in single mode:
hostname(config)# interface gigabitethernet0/1.1
hostname(config-subif)# vlan 101
hostname(config-subif)# nameif dmz1
hostname(config-subif)# security-level 50
hostname(config-subif)# ip address 10.1.2.1 255.255.255.0
hostname(config-subif)# mac-address 000C.F142.4CDE standby 020C.F142.4CDE
hostname(config-subif)# no shutdown
The following example configures interface parameters in multiple context mode for the system
configuration, and allocates the gigabitethernet 0/1.1 subinterface to contextA:
hostname(config)# interface gigabitethernet0/1
hostname(config-if)# speed 1000
hostname(config-if)# duplex full
hostname(config-if)# no shutdown
hostname(config-if)# interface gigabitethernet0/1.1
hostname(config-subif)# vlan 101
hostname(config-subif)# no shutdown
hostname(config-subif)# context contextA
hostname(config-ctx)# ...
hostname(config-ctx)# allocate-interface gigabitethernet0/1.1
The following example configures parameters in multiple context mode for the context configuration:
hostname/contextA(config)# interface gigabitethernet0/1.1
hostname/contextA(config-if)# nameif inside
hostname/contextA(config-if)# security-level 100
hostname/contextA(config-if)# ip address 10.1.2.1 255.255.255.0
hostname/contextA(config-if)# mac-address 030C.F142.4CDE standby 040C.F142.4CDE
hostname/contextA(config-if)# no shutdown7-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 7 Configuring Interface Parameters
Allowing Communication Between Interfaces on the Same Security Level
Allowing Communication Between Interfaces on the Same
Security Level
By default, interfaces on the same security level cannot communicate with each other. Allowing
communication between same security interfaces provides the following benefits:
• You can configure more than 101 communicating interfaces.
If you use different levels for each interface and do not assign any interfaces to the same security
level, you can configure only one interface per level (0 to 100).
• You want traffic to flow freely between all same security interfaces without access lists.
Note If you enable NAT control, you do not need to configure NAT between same security level interfaces.
See the “NAT and Same Security Level Interfaces” section on page 17-13 for more information on NAT
and same security level interfaces.
If you enable same security interface communication, you can still configure interfaces at different
security levels as usual.
To enable interfaces on the same security level so that they can communicate with each other, enter the
following command:
hostname(config)# same-security-traffic permit inter-interface
To disable this setting, use the no form of this command.C H A P T E R
8-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
8
Configuring Basic Settings
This chapter describes how to configure basic settings on your security appliance that are typically
required for a functioning configuration. This chapter includes the following sections:
• Changing the Login Password, page 8-1
• Changing the Enable Password, page 8-1
• Setting the Hostname, page 8-2
• Setting the Domain Name, page 8-2
• Setting the Date and Time, page 8-2
• Setting the Management IP Address for a Transparent Firewall, page 8-5
Changing the Login Password
The login password is used for Telnet and SSH connections. By default, the login password is “cisco.”
To change the password, enter the following command:
hostname(config)# {passwd | password} password
You can enter passwd or password. The password is a case-sensitive password of up to 16 alphanumeric
and special characters. You can use any character in the password except a question mark or a space.
The password is saved in the configuration in encrypted form, so you cannot view the original password
after you enter it. Use the no password command to restore the password to the default setting.
Changing the Enable Password
The enable password lets you enter privileged EXEC mode. By default, the enable password is blank. To
change the enable password, enter the following command:
hostname(config)# enable password password
The password is a case-sensitive password of up to 16 alphanumeric and special characters. You can use
any character in the password except a question mark or a space.
This command changes the password for the highest privilege level. If you configure local command
authorization, you can set enable passwords for each privilege level from 0 to 15.8-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 8 Configuring Basic Settings
Setting the Hostname
The password is saved in the configuration in encrypted form, so you cannot view the original password
after you enter it. Enter the enable password command without a password to set the password to the
default, which is blank.
Setting the Hostname
When you set a hostname for the security appliance, that name appears in the command line prompt. If
you establish sessions to multiple devices, the hostname helps you keep track of where you enter
commands. The default hostname depends on your platform.
For multiple context mode, the hostname that you set in the system execution space appears in the
command line prompt for all contexts. The hostname that you optionally set within a context does not
appear in the command line, but can be used by the banner command $(hostname) token.
To specify the hostname for the security appliance or for a context, enter the following command:
hostname(config)# hostname name
This name can be up to 63 characters. A hostname must start and end with a letter or digit, and have as
interior characters only letters, digits, or a hyphen.
This name appears in the command line prompt. For example:
hostname(config)# hostname farscape
farscape(config)#
Setting the Domain Name
The security appliance appends the domain name as a suffix to unqualified names. For example, if you
set the domain name to “example.com,” and specify a syslog server by the unqualified name of “jupiter,”
then the security appliance qualifies the name to “jupiter.example.com.”
The default domain name is default.domain.invalid.
For multiple context mode, you can set the domain name for each context, as well as within the system
execution space.
To specify the domain name for the security appliance, enter the following command:
hostname(config)# domain-name name
For example, to set the domain as example.com, enter the following command:
hostname(config)# domain-name example.com
Setting the Date and Time
This section describes how to set the date and time, either manually or dynamically using an NTP server.
Time derived from an NTP server overrides any time set manually. This section also describes how to
set the time zone and daylight saving time date range.
Note In multiple context mode, set the time in the system configuration only.8-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 8 Configuring Basic Settings
Setting the Date and Time
This section includes the following topics:
• Setting the Time Zone and Daylight Saving Time Date Range, page 8-3
• Setting the Date and Time Using an NTP Server, page 8-4
• Setting the Date and Time Manually, page 8-5
Setting the Time Zone and Daylight Saving Time Date Range
By default, the time zone is UTC and the daylight saving time date range is from 2:00 a.m. on the first
Sunday in April to 2:00 a.m. on the last Sunday in October. To change the time zone and daylight saving
time date range, perform the following steps:
Step 1 To set the time zone, enter the following command in global configuration mode:
hostname(config)# clock timezone zone [-]hours [minutes]
Where zone specifies the time zone as a string, for example, PST for Pacific Standard Time.
The [-]hours value sets the number of hours of offset from UTC. For example, PST is -8 hours.
The minutes value sets the number of minutes of offset from UTC.
Step 2 To change the date range for daylight saving time from the default, enter one of the following commands.
The default recurring date range is from 2:00 a.m. on the first Sunday in April to 2:00 a.m. on the last
Sunday in October.
• To set the start and end dates for daylight saving time as a specific date in a specific year, enter the
following command:
hostname(config)# clock summer-time zone date {day month | month day} year hh:mm {day
month | month day} year hh:mm [offset]
If you use this command, you need to reset the dates every year.
The zone value specifies the time zone as a string, for example, PDT for Pacific Daylight Time.
The day value sets the day of the month, from 1 to 31. You can enter the day and month as April 1
or as 1 April, for example, depending on your standard date format.
The month value sets the month as a string. You can enter the day and month as April 1 or as 1 April,
for example, depending on your standard date format.
The year value sets the year using four digits, for example, 2004. The year range is 1993 to 2035.
The hh:mm value sets the hour and minutes in 24-hour time.
The offset value sets the number of minutes to change the time for daylight saving time. By default,
the value is 60 minutes.
• To specify the start and end dates for daylight saving time, in the form of a day and time of the
month, and not a specific date in a year, enter the following command.
hostname(config)# clock summer-time zone recurring [week weekday month hh:mm week
weekday month hh:mm] [offset]
This command lets you set a recurring date range that you do not need to alter yearly.
The zone value specifies the time zone as a string, for example, PDT for Pacific Daylight Time.
The week value specifies the week of the month as an integer between 1 and 4 or as the words first
or last. For example, if the day might fall in the partial fifth week, then specify last.8-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 8 Configuring Basic Settings
Setting the Date and Time
The weekday value specifies the day of the week: Monday, Tuesday, Wednesday, and so on.
The month value sets the month as a string.
The hh:mm value sets the hour and minutes in 24-hour time.
The offset value sets the number of minutes to change the time for daylight saving time. By default,
the value is 60 minutes.
Setting the Date and Time Using an NTP Server
To obtain the date and time from an NTP server, perform the following steps:
Step 1 To configure authentication with an NTP server, perform the following steps:
a. To enable authentication, enter the following command:
hostname(config)# ntp authenticate
b. To specify an authentication key ID to be a trusted key, which is required for authentication with an
NTP server, enter the following command:
hostname(config)# ntp trusted-key key_id
Where the key_id is between 1 and 4294967295. You can enter multiple trusted keys for use with
multiple servers.
c. To set a key to authenticate with an NTP server, enter the following command:
hostname(config)# ntp authentication-key key_id md5 key
Where key_id is the ID you set in Step 1b using the ntp trusted-key command, and key is a string
up to 32 characters in length.
Step 2 To identify an NTP server, enter the following command:
hostname(config)# ntp server ip_address [key key_id] [source interface_name] [prefer]
Where the key_id is the ID you set in Step 1b using the ntp trusted-key command.
The source interface_name identifies the outgoing interface for NTP packets if you do not want to use
the default interface in the routing table. Because the system does not include any interfaces in multiple
context mode, specify an interface name defined in the admin context.
The prefer keyword sets this NTP server as the preferred server if multiple servers have similar
accuracy. NTP uses an algorithm to determine which server is the most accurate and synchronizes to that
one. If servers are of similar accuracy, then the prefer keyword specifies which of those servers to use.
However, if a server is significantly more accurate than the preferred one, the security appliance uses the
more accurate one. For example, the security appliance uses a server of stratum 2 over a server of
stratum 3 that is preferred.
You can identify multiple servers; the security appliance uses the most accurate server.
Note SNTP is not supported; only NTP is supported.8-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 8 Configuring Basic Settings
Setting the Management IP Address for a Transparent Firewall
Setting the Date and Time Manually
To set the date time manually, enter the following command:
hostname# clock set hh:mm:ss {month day | day month} year
Where hh:mm:ss sets the hour, minutes, and seconds in 24-hour time. For example, set 20:54:00 for 8:54
pm.
The day value sets the day of the month, from 1 to 31. You can enter the day and month as april 1 or as
1 april, for example, depending on your standard date format.
The month value sets the month. Depending on your standard date format, you can enter the day and
month as april 1 or as 1 april.
The year value sets the year using four digits, for example, 2004. The year range is 1993 to 2035.
The default time zone is UTC. If you change the time zone after you enter the clock set command using
the clock timezone command, the time automatically adjusts to the new time zone.
This command sets the time in the hardware chip, and does not save the time in the configuration file.
This time endures reboots. Unlike the other clock commands, this command is a privileged EXEC
command. To reset the clock, you need to set a new time for the clock set command.
Setting the Management IP Address for a Transparent Firewall
Transparent firewall mode only
A transparent firewall does not participate in IP routing. The only IP configuration required for the
security appliance is to set the management IP address. This address is required because the security
appliance uses this address as the source address for traffic originating on the security appliance, such
as system messages or communications with AAA servers. You can also use this address for remote
management access.
For multiple context mode, set the management IP address within each context.
To set the management IP address, enter the following command:
hostname(config)# ip address ip_address [mask] [standby ip_address]
This address must be on the same subnet as the upstream and downstream routers. You cannot set the
subnet to a host subnet (255.255.255.255). This address must be IPv4; the transparent firewall does not
support IPv6.
The standby keyword and address is used for failover. See Chapter 14, “Configuring Failover,” for more
information.8-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 8 Configuring Basic Settings
Setting the Management IP Address for a Transparent FirewallC H A P T E R
9-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
9
Configuring IP Routing
This chapter describes how to configure IP routing on the security appliance. This chapter includes the
following sections:
• How Routing Behaves Within the ASA Security Appliance, page 9-1
• Configuring Static and Default Routes, page 9-2
• Defining Route Maps, page 9-7
• Configuring OSPF, page 9-8
• Configuring RIP, page 9-20
• The Routing Table, page 9-24
• Dynamic Routing and Failover, page 9-26
How Routing Behaves Within the ASA Security Appliance
The ASA security appliance uses both routing table and XLATE tables for routing decisions. To handle
destination IP translated traffic, that is, untranslated traffic, ASA searches for existing XLATE, or static
translation to select the egress interface. The selection process is as follows:
Egress Interface Selection Process
1. If destination IP translating XLATE already exists, the egress interface for the packet is determined
from the XLATE table, but not from the routing table.
2. If destination IP translating XLATE does not exist, but a matching static translation exists, then the
egress interface is determined from the static route and an XLATE is created, and the routing table
is not used.
3. If destination IP translating XLATE does not exist and no matching static translation exists, the
packet is not destination IP translated. The security appliance processes this packet by looking up
the route to select egress interface, then source IP translation is performed (if necessary).
For regular dynamic outbound NAT, initial outgoing packets are routed using the route table and
then creating the XLATE. Incoming return packets are forwarded using existing XLATE only. For
static NAT, destination translated incoming packets are always forwarded using existing XLATE or
static translation rules.9-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring Static and Default Routes
Next Hop Selection Process
After selecting egress interface using any method described above, an additional route lookup is
performed to find out suitable next hop(s) that belong to previously selected egress interface. If there are
no routes in routing table that explicitly belong to selected interface, the packet is dropped with level 6
error message 110001 "no route to host", even if there is another route for a given destination network
that belongs to different egress interface. If the route that belongs to selected egress interface is found,
the packet is forwarded to corresponding next hop.
Load sharing on the security appliance is possible only for multiple next-hops available using single
egress interface. Load sharing cannot share multiple egress interfaces.
If dynamic routing is in use on security appliance and route table changes after XLATE creation, for
example route flap, then destination translated traffic is still forwarded using old XLATE, not via route
table, until XLATE times out. It may be either forwarded to wrong interface or dropped with message
110001 "no route to host" if old route was removed from the old interface and attached to another one
by routing process.
The same problem may happen when there is no route flaps on the security appliance itself, but some
routing process is flapping around it, sending source translated packets that belong to the same flow
through the security appliance using different interfaces. Destination translated return packets may be
forwarded back using the wrong egress interface.
This issue has a high probability in same security traffic configuration, where virtually any traffic may
be either source-translated or destination-translated, depending on direction of initial packet in the flow.
When this issue occurs after a route flap, it can be resolved manually by using the clear xlate
command, or automatically resolved by an XLATE timeout. XLATE timeout may be decreased if
necessary. To ensure that this rarely happens, make sure that there is no route flaps on security appliance
and around it. That is, ensure that destination translated packets that belong to the same flow are always
forwarded the same way through the security appliance.
Configuring Static and Default Routes
This section describes how to configure static and default routes on the security appliance.
Multiple context mode does not support dynamic routing, so you must use static routes for any networks
to which the security appliance is not directly connected; for example, when there is a router between a
network and the security appliance.
You might want to use static routes in single context mode in the following cases:
• Your networks use a different router discovery protocol from RIP or OSPF.
• Your network is small and you can easily manage static routes.
• You do not want the traffic or CPU overhead associated with routing protocols.
The simplest option is to configure a default route to send all traffic to an upstream router, relying on the
router to route the traffic for you. However, in some cases the default gateway might not be able to reach
the destination network, so you must also configure more specific static routes. For example, if the
default gateway is outside, then the default route cannot direct traffic to any inside networks that are not
directly connected to the security appliance.
In transparent firewall mode, for traffic that originates on the security appliance and is destined for a
non-directly connected network, you need to configure either a default route or static routes so the
security appliance knows out of which interface to send traffic. Traffic that originates on the security 9-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring Static and Default Routes
appliance might include communications to a syslog server, Websense or N2H2 server, or AAA server.
If you have servers that cannot all be reached through a single default route, then you must configure
static routes.
The security appliance supports up to three equal cost routes on the same interface for load balancing.
This section includes the following topics:
• Configuring a Static Route, page 9-3
• Configuring a Default Route, page 9-4
• Configuring Static Route Tracking, page 9-5
For information about configuring IPv6 static and default routes, see the “Configuring IPv6 Default and
Static Routes” section on page 12-5.
Configuring a Static Route
To add a static route, enter the following command:
hostname(config)# route if_name dest_ip mask gateway_ip [distance]
The dest_ip and mask is the IP address for the destination network and the gateway_ip is the address of
the next-hop router.The addresses you specify for the static route are the addresses that are in the packet
before entering the security appliance and performing NAT.
The distance is the administrative distance for the route. The default is 1 if you do not specify a value.
Administrative distance is a parameter used to compare routes among different routing protocols. The
default administrative distance for static routes is 1, giving it precedence over routes discovered by
dynamic routing protocols but not directly connect routes. The default administrative distance for routes
discovered by OSPF is 110. If a static route has the same administrative distance as a dynamic route, the
static routes take precedence. Connected routes always take precedence over static or dynamically
discovered routes.
Static routes remain in the routing table even if the specified gateway becomes unavailable. If the
specified gateway becomes unavailable, you need to remove the static route from the routing table
manually. However, static routes are removed from the routing table if the specified interface goes down.
They are reinstated when the interface comes back up.
Note If you create a static route with an administrative distance greater than the administrative distance of the
routing protocol running on the security appliance, then a route to the specified destination discovered
by the routing protocol takes precedence over the static route. The static route is used only if the
dynamically discovered route is removed from the routing table.
The following example creates a static route that sends all traffic destined for 10.1.1.0/24 to the router
(10.1.2.45) connected to the inside interface:
hostname(config)# route inside 10.1.1.0 255.255.255.0 10.1.2.45 1
You can define up to three equal cost routes to the same destination per interface. ECMP is not supported
across multiple interfaces. With ECMP, the traffic is not necessarily divided evenly between the routes;
traffic is distributed among the specified gateways based on an algorithm that hashes the source and
destination IP addresses.
The following example shows static routes that are equal cost routes that direct traffic to three different
gateways on the outside interface. The security appliance distributes the traffic among the specified
gateways.9-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring Static and Default Routes
hostname(config)# route outside 10.10.10.0 255.255.255.0 192.168.1.1
hostname(config)# route outside 10.10.10.0 255.255.255.0 192.168.1.2
hostname(config)# route outside 10.10.10.0 255.255.255.0 192.168.1.3
Configuring a Default Route
A default route identifies the gateway IP address to which the security appliance sends all IP packets for
which it does not have a learned or static route. A default route is simply a static route with 0.0.0.0/0 as
the destination IP address. Routes that identify a specific destination take precedence over the default
route.
Note In ASA software Versions 7.0 and later, if you have two default routes configured on different interfaces
that have different metrics, the connection to the ASA firewall that is made from the higher metric
interface fails, but connections to the ASA firewall from the lower metric interface succeed as expected.
PIX software Version 6.3 supports connections from both the the higher and the lower metric interfaces.
You can define up to three equal cost default route entries per device. Defining more than one equal cost
default route entry causes the traffic sent to the default route to be distributed among the specified
gateways. When defining more than one default route, you must specify the same interface for each
entry.
If you attempt to define more than three equal cost default routes, or if you attempt to define a default
route with a different interface than a previously defined default route, you receive the message
“ERROR: Cannot add route entry, possible conflict with existing routes.”
You can define a separate default route for tunneled traffic along with the standard default route. When
you create a default route with the tunneled option, all traffic from a tunnel terminating on the security
appliance that cannot be routed using learned or static routes, is sent to this route. For traffic emerging
from a tunnel, this route overrides over any other configured or learned default routes.
The following restrictions apply to default routes with the tunneled option:
• Do not enable unicast RPF (ip verify reverse-path) on the egress interface of tunneled route.
Enabling uRPF on the egress interface of a tunneled route causes the session to fail.
• Do not enable TCP intercept on the egress interface of the tunneled route. Doing so causes the
session to fail.
• Do not use the VoIP inspection engines (CTIQBE, H.323, GTP, MGCP, RTSP, SIP, SKINNY), the
DNS inspect engine, or the DCE RPC inspection engine with tunneled routes. These inspection
engines ignore the tunneled route.
You cannot define more than one default route with the tunneled option; ECMP for tunneled traffic is
not supported.
To define the default route, enter the following command:
hostname(config)# route if_name 0.0.0.0 0.0.0.0 gateway_ip [distance | tunneled]
Tip You can enter 0 0 instead of 0.0.0.0 0.0.0.0 for the destination network address and mask, for example:
hostname(config)# route outside 0 0 192.168.1 19-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring Static and Default Routes
The following example shows a security appliance configured with three equal cost default routes and a
default route for tunneled traffic. Unencrypted traffic received by the security appliance for which there
is no static or learned route is distributed among the gateways with the IP addresses 192.168.2.1,
192.168.2.2, 192.168.2.3. Encrypted traffic receive by the security appliance for which there is no static
or learned route is passed to the gateway with the IP address 192.168.2.4.
hostname(config)# route outside 0 0 192.168.2.1
hostname(config)# route outside 0 0 192.168.2.2
hostname(config)# route outside 0 0 192.168.2.3
hostname(config)# route outside 0 0 192.168.2.4 tunneled
Configuring Static Route Tracking
One of the problems with static routes is that there is no inherent mechanism for determining if the route
is up or down. They remain in the routing table even if the next hop gateway becomes unavailable. Static
routes are only removed from the routing table if the associated interface on the security appliance goes
down.
The static route tracking feature provides a method for tracking the availability of a static route and
installing a backup route if the primary route should fail. This allows you to, for example, define a
default route to an ISP gateway and a backup default route to a secondary ISP in case the primary ISP
becomes unavailable.
The security appliance does this by associating a static route with a monitoring target that you define. It
monitors the target using ICMP echo requests. If an echo reply is not received within a specified time
period, the object is considered down and the associated route is removed from the routing table. A
previously configured backup route is used in place of the removed route.
When selecting a monitoring target, you need to make sure it can respond to ICMP echo requests. The
target can be any network object that you choose, but you should consider using:
• the ISP gateway (for dual ISP support) address
• the next hop gateway address (if you are concerned about the availability of the gateway)
• a server on the target network, such as a AAA server, that the security appliance needs to
communicate with
• a persistent network object on the destination network (a desktop or notebook computer that may be
shut down at night is not a good choice)
You can configure static route tracking for statically defined routes or default routes obtained through
DHCP or PPPoE. You can only enable PPPoE clients on multiple interface with route tracking.
To configure static route tracking, perform the following steps:
Step 1 Configure the tracked object monitoring parameters:
a. Define the monitoring process:
hostname(config)# sla monitor sla_id
If you are configuring a new monitoring process, you are taken to SLA monitor configuration mode.
If you are changing the monitoring parameters for an unscheduled monitoring process that already
has a type defined, you are taken directly to the SLA protocol configuration mode.
b. Specify the monitoring protocol. If you are changing the monitoring parameters for an unscheduled
monitoring process that already has a type defined, you are taken directly to SLA protocol
configuration mode and cannot change this setting.9-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring Static and Default Routes
hostname(config-sla-monitor)# type echo protocol ipIcmpEcho target_ip interface
if_name
The target_ip is the IP address of the network object whose availability the tracking process
monitors. While this object is available, the tracking process route is installed in the routing table.
When this object becomes unavailable, the tracking process removed the route and the backup route
is used in its place.
c. Schedule the monitoring process:
hostname(config)# sla monitor schedule sla_id [life {forever | seconds}] [start-time
{hh:mm[:ss] [month day | day month] | pending | now | after hh:mm:ss}] [ageout
seconds] [recurring]
Typically, you will use sla monitor schedule sla_id life forever start-time now for the monitoring
schedule, and allow the monitoring configuration determine how often the testing occurs. However,
you can schedule this monitoring process to begin in the future and to only occur at specified times.
Step 2 Associate a tracked static route with the SLA monitoring process by entering the following command:
hostname(config)# track track_id rtr sla_id reachability
The track_id is a tracking number you assign with this command. The sla_id is the ID number of the
SLA process you defined in Step 1.
Step 3 Define the static route to be installed in the routing table while the tracked object is reachable using one
of the following options:
• To track a static route, enter the following command:
hostname(config)# route if_name dest_ip mask gateway_ip [admin_distance] track
track_id
You cannot use the tunneled option with the route command with static route tracking.
• To track a default route obtained through DHCP, enter the following commands:
hostname(config)# interface phy_if
hostname(config-if)# dhcp client route track track_id
hostname(config-if)# ip addresss dhcp setroute
hostname(config-if)# exit
Note You must use the setroute argument with the ip address dhcp command to obtain the
default route using DHCP.
• To track a default route obtained through PPPoE, enter the following commands:
hostname(config)# interface phy_if
hostname(config-if)# pppoe client route track track_id
hostname(config-if)# ip addresss pppoe setroute
hostname(config-if)# exit
Note You must use the setroute argument with the ip address pppoe command to obtain the
default route using PPPoE.
Step 4 Define the backup route to use when the tracked object is unavailable using one of the following options.
The administrative distance of the backup route must be greater than the administrative distance of the
tracked route. If it is not, the backup route will be installed in the routing table instead of the tracked
route.9-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Defining Route Maps
• To use a static route, enter the following command:
hostname(config)# route if_name dest_ip mask gateway_ip [admin_distance]
The static route must have the same destination and mask as the tracked route. If you are tracking a
default route obtained through DHCP or PPPoE, then the address and mask would be 0.0.0.0 0.0.0.0.
• To use a default route obtained through DHCP, enter the following commands:
hostname(config)# interface phy_if
hostname(config-if)# dhcp client route track track_id
hostname(config-if)# dhcp client route distance admin_distance
hostname(config-if)# ip addresss dhcp setroute
hostname(config-if)# exit
You must use the setroute argument with the ip address dhcp command to obtain the default route
using DHCP. Make sure the administrative distance is greater than the administrative distance of the
tracked route.
• To use a default route obtained through PPPoE, enter the following commands:
hostname(config)# interface phy_if
hostname(config-if)# pppoe client route track track_id
hostname(config-if)# pppoe client route distance admin_distance
hostname(config-if)# ip addresss pppoe setroute
hostname(config-if)# exit
You must use the setroute argument with the ip address pppoe command to obtain the default route
using PPPoE. Make sure the administrative distance is greater than the administrative distance of
the tracked route.
Defining Route Maps
Route maps are used when redistributing routes into an OSPF or RIP routing process. They are also used
when generating a default route into an OSPF routing process. A route map defines which of the routes
from the specified routing protocol are allowed to be redistributed into the target routing process.
To define a route map, perform the following steps:
Step 1 To create a route map entry, enter the following command:
hostname(config)# route-map name {permit | deny} [sequence_number]
Route map entries are read in order. You can identify the order using the sequence_number option, or
the security appliance uses the order in which you add the entries.
Step 2 Enter one or more match commands:
• To match any routes that have a destination network that matches a standard ACL, enter the
following command:
hostname(config-route-map)# match ip address acl_id [acl_id] [...]
If you specify more than one ACL, then the route can match any of the ACLs.
• To match any routes that have a specified metric, enter the following command:
hostname(config-route-map)# match metric metric_value9-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
The metric_value can be from 0 to 4294967295.
• To match any routes that have a next hop router address that matches a standard ACL, enter the
following command:
hostname(config-route-map)# match ip next-hop acl_id [acl_id] [...]
If you specify more than one ACL, then the route can match any of the ACLs.
• To match any routes with the specified next hop interface, enter the following command:
hostname(config-route-map)# match interface if_name
If you specify more than one interface, then the route can match either interface.
• To match any routes that have been advertised by routers that match a standard ACL, enter the
following command:
hostname(config-route-map)# match ip route-source acl_id [acl_id] [...]
If you specify more than one ACL, then the route can match any of the ACLs.
• To match the route type, enter the following command:
hostname(config-route-map)# match route-type {internal | external [type-1 | type-2]}
Step 3 Enter one or more set commands.
If a route matches the match commands, then the following set commands determine the action to
perform on the route before redistributing it.
• To set the metric, enter the following command:
hostname(config-route-map)# set metric metric_value
The metric_value can be a value between 0 and 294967295
• To set the metric type, enter the following command:
hostname(config-route-map)# set metric-type {type-1 | type-2}
The following example shows how to redistribute routes with a hop count equal to 1 into OSPF. The
security appliance redistributes these routes as external LSAs with a metric of 5, metric type of Type 1.
hostname(config)# route-map 1-to-2 permit
hostname(config-route-map)# match metric 1
hostname(config-route-map)# set metric 5
hostname(config-route-map)# set metric-type type-1
Configuring OSPF
This section describes how to configure OSPF. This section includes the following topics:
• OSPF Overview, page 9-9
• Enabling OSPF, page 9-10
• Redistributing Routes Into OSPF, page 9-10
• Configuring OSPF Interface Parameters, page 9-11
• Configuring OSPF Area Parameters, page 9-139-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
• Configuring OSPF NSSA, page 9-14
• Defining Static OSPF Neighbors, page 9-16
• Configuring Route Summarization Between OSPF Areas, page 9-15
• Configuring Route Summarization When Redistributing Routes into OSPF, page 9-16
• Generating a Default Route, page 9-17
• Configuring Route Calculation Timers, page 9-17
• Logging Neighbors Going Up or Down, page 9-18
• Displaying OSPF Update Packet Pacing, page 9-19
• Monitoring OSPF, page 9-19
• Restarting the OSPF Process, page 9-20
OSPF Overview
OSPF uses a link-state algorithm to build and calculate the shortest path to all known destinations. Each
router in an OSPF area contains an identical link-state database, which is a list of each of the router
usable interfaces and reachable neighbors.
The advantages of OSPF over RIP include the following:
• OSPF link-state database updates are sent less frequently than RIP updates, and the link-state
database is updated instantly rather than gradually as stale information is timed out.
• Routing decisions are based on cost, which is an indication of the overhead required to send packets
across a certain interface. The security appliance calculates the cost of an interface based on link
bandwidth rather than the number of hops to the destination. The cost can be configured to specify
preferred paths.
The disadvantage of shortest path first algorithms is that they require a lot of CPU cycles and memory.
The security appliance can run two processes of OSPF protocol simultaneously, on different sets of
interfaces. You might want to run two processes if you have interfaces that use the same IP addresses
(NAT allows these interfaces to coexist, but OSPF does not allow overlapping addresses). Or you might
want to run one process on the inside, and another on the outside, and redistribute a subset of routes
between the two processes. Similarly, you might need to segregate private addresses from public
addresses.
You can redistribute routes into an OSPF routing process from another OSPF routing process, a RIP
routing process, or from static and connected routes configured on OSPF-enabled interfaces.
The security appliance supports the following OSPF features:
• Support of intra-area, interarea, and external (Type I and Type II) routes.
• Support of a virtual link.
• OSPF LSA flooding.
• Authentication to OSPF packets (both password and MD5 authentication).
• Support for configuring the security appliance as a designated router or a designated backup router.
The security appliance also can be set up as an ABR; however, the ability to configure the security
appliance as an ASBR is limited to default information only (for example, injecting a default route).
• Support for stub areas and not-so-stubby-areas.9-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
• Area boundary router type-3 LSA filtering.
• Advertisement of static and global address translations.
Enabling OSPF
To enable OSPF, you need to create an OSPF routing process, specify the range of IP addresses
associated with the routing process, then assign area IDs associated with that range of IP addresses.
To enable OSPF, perform the following steps:
Step 1 To create an OSPF routing process, enter the following command:
hostname(config)# router ospf process_id
This command enters the router configuration mode for this OSPF process.
The process_id is an internally used identifier for this routing process. It can be any positive integer. This
ID does not have to match the ID on any other device; it is for internal use only. You can use a maximum
of two processes.
Step 2 To define the IP addresses on which OSPF runs and to define the area ID for that interface, enter the
following command:
hostname(config-router)# network ip_address mask area area_id
The following example shows how to enable OSPF:
hostname(config)# router ospf 2
hostname(config-router)# network 10.0.0.0 255.0.0.0 area 0
Redistributing Routes Into OSPF
The security appliance can control the redistribution of routes between OSPF routing processes. The
security appliance matches and changes routes according to settings in the redistribute command or by
using a route map. See also the “Generating a Default Route” section on page 9-17 for another use for
route maps.
To redistribute static, connected, RIP, or OSPF routes into an OSPF process, perform the following steps:
Step 1 (Optional) Create a route-map to further define which routes from the specified routing protocol are
redistributed in to the OSPF routing process. See the “Defining Route Maps” section on page 9-7.
Step 2 If you have not already done so, enter the router configuration mode for the OSPF process you want to
redistribute into by entering the following command:
hostname(config)# router ospf process_id
Step 3 To specify the routes you want to redistribute, enter the following command:
hostname(config-router)# redistribute {ospf process_id
[match {internal | external 1 | external 2}] | static | connected | rip}
[metric metric-value] [metric-type {type-1 | type-2}] [tag tag_value] [subnets] [route-map
map_name]9-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
The ospf process_id, static, connected, and rip keywords specify from where you want to redistribute
routes.
You can either use the options in this command to match and set route properties, or you can use a route
map. The tag and subnets options do not have equivalents in the route-map command. If you use both
a route map and options in the redistribute command, then they must match.
The following example shows route redistribution from OSPF process 1 into OSPF process 2 by
matching routes with a metric equal to 1. The security appliance redistributes these routes as external
LSAs with a metric of 5, metric type of Type 1, and a tag equal to 1.
hostname(config)# route-map 1-to-2 permit
hostname(config-route-map)# match metric 1
hostname(config-route-map)# set metric 5
hostname(config-route-map)# set metric-type type-1
hostname(config-route-map)# set tag 1
hostname(config-route-map)# router ospf 2
hostname(config-router)# redistribute ospf 1 route-map 1-to-2
The following example shows the specified OSPF process routes being redistributed into OSPF
process 109. The OSPF metric is remapped to 100.
hostname(config)# router ospf 109
hostname(config-router)# redistribute ospf 108 metric 100 subnets
The following example shows route redistribution where the link-state cost is specified as 5 and the
metric type is set to external, indicating that it has lower priority than internal metrics.
hostname(config)# router ospf 1
hostname(config-router)# redistribute ospf 2 metric 5 metric-type external
Configuring OSPF Interface Parameters
You can alter some interface-specific OSPF parameters as necessary. You are not required to alter any
of these parameters, but the following interface parameters must be consistent across all routers in an
attached network: ospf hello-interval, ospf dead-interval, and ospf authentication-key. Be sure that if
you configure any of these parameters, the configurations for all routers on your network have
compatible values.
To configure OSPF interface parameters, perform the following steps:
Step 1 To enter the interface configuration mode, enter the following command:
hostname(config)# interface interface_name
Step 2 Enter any of the following commands:
• To specify the authentication type for an interface, enter the following command:
hostname(config-interface)# ospf authentication [message-digest | null]
• To assign a password to be used by neighboring OSPF routers on a network segment that is using
the OSPF simple password authentication, enter the following command:
hostname(config-interface)# ospf authentication-key key
The key can be any continuous string of characters up to 8 bytes in length.9-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
The password created by this command is used as a key that is inserted directly into the OSPF header
when the security appliance software originates routing protocol packets. A separate password can
be assigned to each network on a per-interface basis. All neighboring routers on the same network
must have the same password to be able to exchange OSPF information.
• To explicitly specify the cost of sending a packet on an OSPF interface, enter the following
command:
hostname(config-interface)# ospf cost cost
The cost is an integer from 1 to 65535.
• To set the number of seconds that a device must wait before it declares a neighbor OSPF router down
because it has not received a hello packet, enter the following command:
hostname(config-interface)# ospf dead-interval seconds
The value must be the same for all nodes on the network.
• To specify the length of time between the hello packets that the security appliance sends on an OSPF
interface, enter the following command:
hostname(config-interface)# ospf hello-interval seconds
The value must be the same for all nodes on the network.
• To enable OSPF MD5 authentication, enter the following command:
hostname(config-interface)# ospf message-digest-key key_id md5 key
Set the following values:
– key_id—An identifier in the range from 1 to 255.
– key—Alphanumeric password of up to 16 bytes.
Usually, one key per interface is used to generate authentication information when sending packets
and to authenticate incoming packets. The same key identifier on the neighbor router must have the
same key value.
We recommend that you not keep more than one key per interface. Every time you add a new key,
you should remove the old key to prevent the local system from continuing to communicate with a
hostile system that knows the old key. Removing the old key also reduces overhead during rollover.
• To set the priority to help determine the OSPF designated router for a network, enter the following
command:
hostname(config-interface)# ospf priority number_value
The number_value is between 0 to 255.
• To specify the number of seconds between LSA retransmissions for adjacencies belonging to an
OSPF interface, enter the following command:
hostname(config-interface)# ospf retransmit-interval seconds
The seconds must be greater than the expected round-trip delay between any two routers on the
attached network. The range is from 1 to 65535 seconds. The default is 5 seconds.
• To set the estimated number of seconds required to send a link-state update packet on an OSPF
interface, enter the following command:
hostname(config-interface)# ospf transmit-delay seconds9-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
The seconds is from 1 to 65535 seconds. The default is 1 second.
The following example shows how to configure the OSPF interfaces:
hostname(config)# router ospf 2
hostname(config-router)# network 2.0.0.0 255.0.0.0 area 0
hostname(config-router)# interface inside
hostname(config-interface)# ospf cost 20
hostname(config-interface)# ospf retransmit-interval 15
hostname(config-interface)# ospf transmit-delay 10
hostname(config-interface)# ospf priority 20
hostname(config-interface)# ospf hello-interval 10
hostname(config-interface)# ospf dead-interval 40
hostname(config-interface)# ospf authentication-key cisco
hostname(config-interface)# ospf message-digest-key 1 md5 cisco
hostname(config-interface)# ospf authentication message-digest
The following is sample output from the show ospf command:
hostname(config)# show ospf
Routing Process "ospf 2" with ID 20.1.89.2 and Domain ID 0.0.0.2
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
Number of external LSA 5. Checksum Sum 0x 26da6
Number of opaque AS LSA 0. Checksum Sum 0x 0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
Area BACKBONE(0)
Number of interfaces in this area is 1
Area has no authentication
SPF algorithm executed 2 times
Area ranges are
Number of LSA 5. Checksum Sum 0x 209a3
Number of opaque link LSA 0. Checksum Sum 0x 0
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0
Configuring OSPF Area Parameters
You can configure several area parameters. These area parameters (shown in the following task table)
include setting authentication, defining stub areas, and assigning specific costs to the default summary
route. Authentication provides password-based protection against unauthorized access to an area.
Stub areas are areas into which information on external routes is not sent. Instead, there is a default
external route generated by the ABR, into the stub area for destinations outside the autonomous system.
To take advantage of the OSPF stub area support, default routing must be used in the stub area. To further
reduce the number of LSAs sent into a stub area, you can configure the no-summary keyword of the
area stub command on the ABR to prevent it from sending summary link advertisement (LSA type 3)
into the stub area.
To specify area parameters for your network, perform the following steps:9-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id
Step 2 Enter any of the following commands:
• To enable authentication for an OSPF area, enter the following command:
hostname(config-router)# area area-id authentication
• To enable MD5 authentication for an OSPF area, enter the following command:
hostname(config-router)# area area-id authentication message-digest
• To define an area to be a stub area, enter the following command:
hostname(config-router)# area area-id stub [no-summary]
• To assign a specific cost to the default summary route used for the stub area, enter the following
command:
hostname(config-router)# area area-id default-cost cost
The cost is an integer from 1 to 65535. The default is 1.
The following example shows how to configure the OSPF area parameters:
hostname(config)# router ospf 2
hostname(config-router)# area 0 authentication
hostname(config-router)# area 0 authentication message-digest
hostname(config-router)# area 17 stub
hostname(config-router)# area 17 default-cost 20
Configuring OSPF NSSA
The OSPF implementation of an NSSA is similar to an OSPF stub area. NSSA does not flood type 5
external LSAs from the core into the area, but it can import autonomous system external routes in a
limited way within the area.
NSSA imports type 7 autonomous system external routes within an NSSA area by redistribution. These
type 7 LSAs are translated into type 5 LSAs by NSSA ABRs, which are flooded throughout the whole
routing domain. Summarization and filtering are supported during the translation.
You can simplify administration if you are an ISP or a network administrator that must connect a central
site using OSPF to a remote site that is using a different routing protocol using NSSA.
Before the implementation of NSSA, the connection between the corporate site border router and the
remote router could not be run as an OSPF stub area because routes for the remote site could not be
redistributed into the stub area, and two routing protocols needed to be maintained. A simple protocol
such as RIP was usually run and handled the redistribution. With NSSA, you can extend OSPF to cover
the remote connection by defining the area between the corporate router and the remote router as an
NSSA.9-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
To specify area parameters for your network as needed to configure OSPF NSSA, perform the following
steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id
Step 2 Enter any of the following commands:
• To define an NSSA area, enter the following command:
hostname(config-router)# area area-id nssa [no-redistribution]
[default-information-originate]
• To summarize groups of addresses, enter the following command:
hostname(config-router)# summary address ip_address mask [not-advertise] [tag tag]
This command helps reduce the size of the routing table. Using this command for OSPF causes an
OSPF ASBR to advertise one external route as an aggregate for all redistributed routes that are
covered by the address.
OSPF does not support summary-address 0.0.0.0 0.0.0.0.
In the following example, the summary address 10.1.0.0 includes address 10.1.1.0, 10.1.2.0,
10.1.3.0, and so on. Only the address 10.1.0.0 is advertised in an external link-state advertisement:
hostname(config-router)# summary-address 10.1.1.0 255.255.0.0
Before you use this feature, consider these guidelines:
– You can set a type 7 default route that can be used to reach external destinations. When
configured, the router generates a type 7 default into the NSSA or the NSSA area boundary
router.
– Every router within the same area must agree that the area is NSSA; otherwise, the routers will
not be able to communicate.
Configuring Route Summarization Between OSPF Areas
Route summarization is the consolidation of advertised addresses. This feature causes a single summary
route to be advertised to other areas by an area boundary router. In OSPF, an area boundary router
advertises networks in one area into another area. If the network numbers in an area are assigned in a
way such that they are contiguous, you can configure the area boundary router to advertise a summary
route that covers all the individual networks within the area that fall into the specified range.
To define an address range for route summarization, perform the following steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id9-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
Step 2 To set the address range, enter the following command:
hostname(config-router)# area area-id range ip-address mask [advertise | not-advertise]
The following example shows how to configure route summarization between OSPF areas:
hostname(config)# router ospf 1
hostname(config-router)# area 17 range 12.1.0.0 255.255.0.0
Configuring Route Summarization When Redistributing Routes into OSPF
When routes from other protocols are redistributed into OSPF, each route is advertised individually in
an external LSA. However, you can configure the security appliance to advertise a single route for all
the redistributed routes that are covered by a specified network address and mask. This configuration
decreases the size of the OSPF link-state database.
To configure the software advertisement on one summary route for all redistributed routes covered by a
network address and mask, perform the following steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id
Step 2 To set the summary address, enter the following command:
hostname(config-router)# summary-address ip_address mask [not-advertise] [tag tag]
Note OSPF does not support summary-address 0.0.0.0 0.0.0.0.
The following example shows how to configure route summarization. The summary address 10.1.0.0
includes address 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. Only the address 10.1.0.0 is advertised in an
external link-state advertisement:
hostname(config)# router ospf 1
hostname(config-router)# summary-address 10.1.0.0 255.255.0.0
Defining Static OSPF Neighbors
You need to define static OSPF neighbors to advertise OSPF routes over a point-to-point, non-broadcast
network. This lets you broadcast OSPF advertisements across an existing VPN connection without
having to encapsulate the advertisements in a GRE tunnel.
To define a static OSPF neighbor, perform the following tasks:
Step 1 Create a static route to the OSPF neighbor. See the “Configuring Static and Default Routes” section on
page 9-2 for more information about creating static routes.9-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
Step 2 Define the OSPF neighbor by performing the following tasks:
a. Enter router configuration mode for the OSPF process. Enter the following command:
hostname(config)# router ospf pid
b. Define the OSPF neighbor by entering the following command:
hostname(config-router)# neighbor addr [interface if_name]
The addr argument is the IP address of the OSPF neighbor. The if_name is the interface used to
communicate with the neighbor. If the OSPF neighbor is not on the same network as any of the
directly-connected interfaces, you must specify the interface.
Generating a Default Route
You can force an autonomous system boundary router to generate a default route into an OSPF routing
domain. Whenever you specifically configure redistribution of routes into an OSPF routing domain, the
router automatically becomes an autonomous system boundary router. However, an autonomous system
boundary router does not by default generate a default route into the OSPF routing domain.
To generate a default route, perform the following steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id
Step 2 To force the autonomous system boundary router to generate a default route, enter the following
command:
hostname(config-router)# default-information originate [always] [metric metric-value]
[metric-type {1 | 2}] [route-map map-name]
The following example shows how to generate a default route:
hostname(config)# router ospf 2
hostname(config-router)# default-information originate always
Configuring Route Calculation Timers
You can configure the delay time between when OSPF receives a topology change and when it starts an
SPF calculation. You also can configure the hold time between two consecutive SPF calculations.
To configure route calculation timers, perform the following steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id9-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
Step 2 To configure the route calculation time, enter the following command:
hostname(config-router)# timers spf spf-delay spf-holdtime
The spf-delay is the delay time (in seconds) between when OSPF receives a topology change and when
it starts an SPF calculation. It can be an integer from 0 to 65535. The default time is 5 seconds. A value
of 0 means that there is no delay; that is, the SPF calculation is started immediately.
The spf-holdtime is the minimum time (in seconds) between two consecutive SPF calculations. It can be
an integer from 0 to 65535. The default time is 10 seconds. A value of 0 means that there is no delay;
that is, two SPF calculations can be done, one immediately after the other.
The following example shows how to configure route calculation timers:
hostname(config)# router ospf 1
hostname(config-router)# timers spf 10 120
Logging Neighbors Going Up or Down
By default, the system sends a system message when an OSPF neighbor goes up or down.
Configure this command if you want to know about OSPF neighbors going up or down without turning
on the debug ospf adjacency command. The log-adj-changes router configuration command provides
a higher level view of the peer relationship with less output. Configure log-adj-changes detail if you
want to see messages for each state change.
To log neighbors going up or down, perform the following steps:
Step 1 If you have not already done so, enter the router configuration mode for the OSPF process you want to
configure by entering the following command:
hostname(config)# router ospf process_id
Step 2 To configure logging for neighbors going up or down, enter the following command:
hostname(config-router)# log-adj-changes [detail]
Note Logging must be enabled for the the neighbor up/down messages to be sent.
The following example shows how to log neighbors up/down messages:
hostname(config)# router ospf 1
hostname(config-router)# log-adj-changes detail9-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring OSPF
Displaying OSPF Update Packet Pacing
OSPF update packets are automatically paced so they are not sent less than 33 milliseconds apart.
Without pacing, some update packets could get lost in situations where the link is slow, a neighbor could
not receive the updates quickly enough, or the router could run out of buffer space. For example, without
pacing packets might be dropped if either of the following topologies exist:
• A fast router is connected to a slower router over a point-to-point link.
• During flooding, several neighbors send updates to a single router at the same time.
Pacing is also used between resends to increase efficiency and minimize lost retransmissions. You also
can display the LSAs waiting to be sent out an interface. The benefit of the pacing is that OSPF update
and retransmission packets are sent more efficiently.
There are no configuration tasks for this feature; it occurs automatically.
To observe OSPF packet pacing by displaying a list of LSAs waiting to be flooded over a specified
interface, enter the following command:
hostname# show ospf flood-list if_name
Monitoring OSPF
You can display specific statistics such as the contents of IP routing tables, caches, and databases. You
can use the information provided to determine resource utilization and solve network problems. You can
also display information about node reachability and discover the routing path that your device packets
are taking through the network.
To display various OSPF routing statistics, perform one of the following tasks, as needed:
• To display general information about OSPF routing processes, enter the following command:
hostname# show ospf [process-id [area-id]]
• To display the internal OSPF routing table entries to the ABR and ASBR, enter the following
command:
hostname# show ospf border-routers
• To display lists of information related to the OSPF database for a specific router, enter the following
command:
hostname# show ospf [process-id [area-id]] database
• To display a list of LSAs waiting to be flooded over an interface (to observe OSPF packet pacing),
enter the following command:
hostname# show ospf flood-list if-name
• To display OSPF-related interface information, enter the following command:
hostname# show ospf interface [if_name]
• To display OSPF neighbor information on a per-interface basis, enter the following command:
hostname# show ospf neighbor [interface-name] [neighbor-id] [detail]
• To display a list of all LSAs requested by a router, enter the following command:
hostname# show ospf request-list neighbor if_name9-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring RIP
• To display a list of all LSAs waiting to be resent, enter the following command:
hostname# show ospf retransmission-list neighbor if_name
• To display a list of all summary address redistribution information configured under an OSPF
process, enter the following command:
hostname# show ospf [process-id] summary-address
• To display OSPF-related virtual links information, enter the following command:
hostname# show ospf [process-id] virtual-links
Restarting the OSPF Process
To restart an OSPF process, clear redistribution, or counters, enter the following command:
hostname(config)# clear ospf pid {process | redistribution | counters
[neighbor [neighbor-interface] [neighbor-id]]}
Configuring RIP
Devices that support RIP send routing-update messages at regular intervals and when the network
topology changes. These RIP packets contain information about the networks that the devices can reach,
as well as the number of routers or gateways that a packet must travel through to reach the destination
address. RIP generates more traffic than OSPF, but is easier to configure.
RIP has advantages over static routes because the initial configuration is simple, and you do not need to
update the configuration when the topology changes. The disadvantage to RIP is that there is more
network and processing overhead than static routing.
The security appliance supports RIP Version 1 and RIP Version 2.
This section describes how to configure RIP. This section includes the following topics:
• Enabling and Configuring RIP, page 9-20
• Redistributing Routes into the RIP Routing Process, page 9-22
• Configuring RIP Send/Receive Version on an Interface, page 9-22
• Enabling RIP Authentication, page 9-23
• Monitoring RIP, page 9-23
Enabling and Configuring RIP
You can only enable one RIP routing process on the security appliance. After you enable the RIP routing
process, you must define the interfaces that will participate in that routing process using the network
command. By default, the security appliance sends RIP Version 1 updates and accepts RIP Version 1 and
Version 2 updates.9-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring RIP
To enable and configure the RIP routing process, perform the following steps:
Step 1 Start the RIP routing process by entering the following command in global configuration mode:
hostname(config): router rip
You enter router configuration mode for the RIP routing process.
Step 2 Specify the interfaces that will participate in the RIP routing process. Enter the following command for
each interface that will participate in the RIP routing process:
hostname(config-router): network network_address
If an interface belongs to a network defined by this command, the interface will participate in the RIP
routing process. If an interface does not belong to a network defined by this command, it will not send
or receive RIP updates.
Step 3 (Optional) Specify the version of RIP used by the security appliance by entering the following command:
hostname(config-router): version [1 | 2]
You can override this setting on a per-interface basis.
Step 4 (Optional) To generate a default route into RIP, enter the following command:
hostname(config-router): default-information originate
Step 5 (Optional) To specify an interface to operate in passive mode, enter the following command:
hostname(config-router): passive-interface [default | if_name]
Using the default keyword causes all interfaces to operate in passive mode. Specifying an interface name
sets only that interface to passive RIP mode. In passive mode, RIP routing updates are accepted by but
not sent out of the specified interface. You can enter this command for each interface you want to set to
passive mode.
Step 6 (Optional) Disable automatic route summarization by entering the following command:
hostname(config-router): no auto-summarize
RIP Version 1 always uses automatic route summarization; you cannot disable it for RIP Version 1. RIP
Version 2 uses route summarization by default; you can disable it using this command.
Step 7 (Optional) To filter the networks received in updates, perform the following steps:
a. Create a standard access list permitting the networks you want the RIP process to allow in the
routing table and denying the networks you want the RIP process to discard.
b. Enter the following command to apply the filter. You can specify an interface to apply the filter to
only those updates received by that interface.
hostname(config-router): distribute-list acl in [interface if_name]
You can enter this command for each interface you want to apply a filter to. If you do not specify an
interface name, the filter is applied to all RIP updates.
Step 8 (Optional) To filter the networks sent in updates, perform the following steps:
a. Create a standard access list permitting the networks you want the RIP process to advertise and
denying the networks you do not want the RIP process to advertise.
b. Enter the following command to apply the filter. You can specify an interface to apply the filter to
only those updates sent by that interface.
hostname(config-router): distribute-list acl out [interface if_name]9-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring RIP
You can enter this command for each interface you want to apply a filter to. If you do not specify an
interface name, the filter is applied to all RIP updates.
Redistributing Routes into the RIP Routing Process
You can redistribute routes from the OSPF, static, and connected routing processes into the RIP routing
process.
To redistribute a routes into the RIP routing process, perform the following steps:
Step 1 (Optional) Create a route-map to further define which routes from the specified routing protocol are
redistributed in to the RIP routing process. See the “Defining Route Maps” section on page 9-7 for more
information about creating a route map.
Step 2 Choose one of the following options to redistribute the selected route type into the RIP routing process.
• To redistribute connected routes into the RIP routing process, enter the following command:
hostname(config-router): redistribute connected [metric {metric_value | transparent}]
[route-map map_name]
• To redistribute static routes into the RIP routing process, enter the following command:
hostname(config-router): redistribute static [metric {metric_value | transparent}]
[route-map map_name]
• To redistribute routes from an OSPF routing process into the RIP routing process, enter the
following command:
hostname(config-router): redistribute ospf pid [match {internal | external [1 | 2] |
nssa-external [1 | 2]}] [metric {metric_value | transparent}] [route-map map_name]
Configuring RIP Send/Receive Version on an Interface
You can override the globally-set version of RIP the security appliance uses to send and receive RIP
updates on a per-interface basis.
To configure the RIP send and receive
Step 1 (Optional) To specify the version of RIP advertisements sent from an interface, perform the following
steps:
a. Enter interface configuration mode for the interface you are configuring by entering the following
command:
hostname(config)# interface phy_if
b. Specify the version of RIP to use when sending RIP updates out of the interface by entering the
following command:
hostname(config-if)# rip send version {[1] [2]}9-23
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Configuring RIP
Step 2 (Optional) To specify the version of RIP advertisements permitted to be received by an interface,
perform the following steps:
a. Enter interface configuration mode for the interface you are configuring by entering the following
command:
hostname(config)# interface phy_if
b. Specify the version of RIP to allow when receiving RIP updates on the interface by entering the
following command:
hostname(config-if)# rip receive version {[1] [2]}
RIP updates received on the interface that do not match the allowed version are dropped.
Enabling RIP Authentication
The security appliance supports RIP message authentication for RIP Version 2 messages.
To enable RIP message authentication, perform the following steps:
Step 1 Enter interface configuration mode for the interface you are configuring by entering the following
command:
hostname(config)# interface phy_if
Step 2 (Optional) Set the authentication mode by entering the following command. By default, text
authentication is used. MD5 authentication is recommended.
hostname(config-if)# rip authentication mode {text | md5}
Step 3 Enable authentication and configure the authentication key by entering the following command:
hostname(config-if)# rip authentication key key key_id key-id
Monitoring RIP
To display various RIP routing statistics, perform one of the following tasks, as needed:
• To display the contents of the RIP routing database, enter the following command:
hostname# show rip database
• To display the RIP commands in the running configuration, enter the following command:
hostname# show running-config router rip
Use the following debug commands only to troubleshoot specific problems or during troubleshooting
sessions with Cisco TAC. Debugging output is assigned high priority in the CPU process and can render
the system unusable. It is best to use debug commands during periods of lower network traffic and fewer
users. Debugging during these periods decreases the likelihood that increased debug command
processing overhead will affect system performance.
• To display RIP processing events, enter the following command:
hostname# debug rip events9-24
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
The Routing Table
• To display RIP database events, enter the following command:
hostname# debug rip database
The Routing Table
This section contains the following topics:
• Displaying the Routing Table, page 9-24
• How the Routing Table is Populated, page 9-24
• How Forwarding Decisions are Made, page 9-26
Displaying the Routing Table
To view the entries in the routing table, enter the following command:
hostname# show route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is 10.86.194.1 to network 0.0.0.0
S 10.1.1.0 255.255.255.0 [3/0] via 10.86.194.1, outside
C 10.86.194.0 255.255.254.0 is directly connected, outside
S* 0.0.0.0 0.0.0.0 [1/0] via 10.86.194.1, outside
On the ASA 5505 adaptive security appliance, the following route is also shown. It is the internal
loopback interface, which is used by the VPN Hardware Client feature for individual user authentication.
C 127.1.0.0 255.255.0.0 is directly connected, _internal_loopback
How the Routing Table is Populated
The security appliance routing table can be populated by statically defined routes, directly connected
routes, and routes discovered by the RIP and OSPF routing protocols. Because the security appliance
can run multiple routing protocols in addition to having static and connected routed in the routing table,
it is possible that the same route is discovered or entered in more than one manner. When two routes to
the same destination are put into the routing table, the one that remains in the routing table is determined
as follows:
• If the two routes have different network prefix lengths (network masks), then both routes are
considered unique and are entered in to the routing table. The packet forwarding logic then
determines which of the two to use.
For example, if the RIP and OSPF processes discovered the following routes:
– RIP: 192.168.32.0/249-25
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
The Routing Table
– OSPF: 192.168.32.0/19
Even though OSPF routes have the better administrative distance, both routes are installed in the
routing table because each of these routes has a different prefix length (subnet mask). They are
considered different destinations and the packet forwarding logic determine which route to use.
• If the security appliance learns about multiple paths to the same destination from a single routing
protocol, such as RIP, the route with the better metric (as determined by the routing protocol) is
entered into the routing table.
Metrics are values associated with specific routes, ranking them from most preferred to least
preferred. The parameters used to determine the metrics differ for different routing protocols. The
path with the lowest metric is selected as the optimal path and installed in the routing table. If there
are multiple paths to the same destination with equal metrics, load balancing is done on these equal
cost paths.
• If the security appliance learns about a destination from more than one routing protocol, the
administrative distances of the routes are compared and the routes with lower administrative
distance is entered into the routing table.
Administrative distance is a route parameter that security appliance uses to select the best path when
there are two or more different routes to the same destination from two different routing protocols.
Because the routing protocols have metrics based on algorithms that are different from the other
protocols, it is not always possible to determine the “best path” for two routes to the same destination
that were generated by different routing protocols.
Each routing protocol is prioritized using an administrative distance value. Table 9-1 shows the default
administrative distance values for the routing protocols supported by the security appliance.
The smaller the administrative distance value, the more preference is given to the protocol. For example,
if the security appliance receives a route to a certain network from both an OSPF routing process (default
administrative distance - 110) and a RIP routing process (default administrative distance - 100), the
security appliance chooses the OSPF route because OSPF has a higher preference. This means the router
adds the OSPF version of the route to the routing table.
In the above example, if the source of the OSPF-derived route was lost (for example, due to a power
shutdown), the security appliance would then use the RIP-derived route until the OSPF-derived route
reappears.
The administrative distance is a local setting. For example, if you use the distance-ospf command to
change the administrative distance of routes obtained through OSPF, that change would only affect the
routing table for the security appliance the command was entered on. The administrative distance is not
advertised in routing updates.
Administrative distance does not affect the routing process. The OSPF and RIP routing processes only
advertise the routes that have been discovered by the routing process or redistributed into the routing
process. For example, the RIP routing process advertises RIP routes, even if routes discovered by the
OSPF routing process are used in the security appliance routing table.
Table 9-1 Default Administrative Distance for Supported Routing Protocols
Route Source Default Administrative Distance
Connected interface 0
Static route 1
OSPF 110
RIP 1209-26
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 9 Configuring IP Routing
Dynamic Routing and Failover
Backup Routes
A backup route is registered when the initial attempt to install the route in the routing table fails because
another route was installed instead. If the route that was installed in the routing table fails, the routing
table maintenance process calls each routing protocol process that has registered a backup route and
requests them to reinstall the route in the routing table. If there are multiple protocols with registered
backup routes for the failed route, the preferred route is chosen based on administrative distance.
Because of this process, you can create “floating” static routes that are installed in the routing table when
the route discovered by a dynamic routing protocol fails. A floating static route is simply a static route
configured with a greater administrative distance than the dynamic routing protocols running on the
security appliance. When the corresponding route discover by a dynamic routing process fails, the static
route is installed in the routing table.
How Forwarding Decisions are Made
Forwarding decisions are made as follows:
• If the destination does not match an entry in the routing table, the packet is forwarded through the
interface specified for the default route. If a default route has not been configured, the packet is
discarded.
• If the destination matches a single entry in the routing table, the packet is forwarded through the
interface associated with that route.
• If the destination matches more than one entry in the routing table, and the entries all have the same
network prefix length, the packets for that destination are distributed among the interfaces
associated with that route.
• If the destination matches more than one entry in the routing table, and the entries have different
network prefix lengths, then the packet is forwarded out of the interface associated with the route
that has the longer network prefix length.
For example, a packet destined for 192.168.32.1 arrives on an interface of a security appliance with the
following routes in the routing table:
hostname# show route
....
R 192.168.32.0/24 [120/4] via 10.1.1.2
O 192.168.32.0/19 [110/229840] via 10.1.1.3
....
In this case, a packet destined to 192.168.32.1 is directed toward 10.1.1.2, because 192.168.32.1 falls
within the 192.168.32.0/24 network. It also falls within the other route in the routing table, but the
192.168.32.0/24 has the longest prefix within the routing table (24 bits verses 19 bits). Longer prefixes
are always preferred over shorter ones when forwarding a packet.
Dynamic Routing and Failover
Dynamic routes are not replicated to the standby unit or failover group in a failover configuration.
Therefore, immediately after a failover occurs, some packets received by the security appliance may be
dropped because of a lack of routing information or routed to a default static route while the routing table
is repopulated by the configured dynamic routing protocols.C H A P T E R
10-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
10
Configuring DHCP, DDNS, and WCCP Services
This chapter describes how to configure the DHCP server, dynamic DNS (DDNS) update methods, and
WCCP on the security appliance. DHCP provides network configuration parameters, such as IP
addresses, to DHCP clients. The security appliance can provide a DHCP server or DHCP relay services
to DHCP clients attached to security appliance interfaces. The DHCP server provides network
configuration parameters directly to DHCP clients. DHCP relay passes DHCP requests received on one
interface to an external DHCP server located behind a different interface.
DDNS update integrates DNS with DHCP. The two protocols are complementary: DHCP centralizes and
automates IP address allocation; DDNS update automatically records the association between assigned
addresses and hostnames at pre-defined intervals. DDNS allows frequently changing address-hostname
associations to be updated frequently. Mobile hosts, for example, can then move freely on a network
without user or administrator intervention. DDNS provides the necessary dynamic updating and
synchronizing of the name to address and address to name mappings on the DNS server.
WCCP specifies interactions between one or more routers, Layer 3 switches, or security appliances and
one or more web caches. The feature transparently redirects selected types of traffic to a group of web
cache engines to optimize resource usage and lower response times.
This chapter includes the following sections:
• Configuring a DHCP Server, page 10-1
• Configuring DHCP Relay Services, page 10-5
• Configuring Dynamic DNS, page 10-6
• Configuring Web Cache Services Using WCCP, page 10-9
Configuring a DHCP Server
This section describes how to configure DHCP server provided by the security appliance. This section
includes the following topics:
• Enabling the DHCP Server, page 10-2
• Configuring DHCP Options, page 10-3
• Using Cisco IP Phones with a DHCP Server, page 10-410-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring a DHCP Server
Enabling the DHCP Server
The security appliance can act as a DHCP server. DHCP is a protocol that supplies network settings to
hosts including the host IP address, the default gateway, and a DNS server.
Note The security appliance DHCP server does not support BOOTP requests.
In multiple context mode, you cannot enable the DHCP server or DHCP relay on an interface that is used
by more than one context.
You can configure a DHCP server on each interface of the security appliance. Each interface can have
its own pool of addresses to draw from. However the other DHCP settings, such as DNS servers, domain
name, options, ping timeout, and WINS servers, are configured globally and used by the DHCP server
on all interfaces.
You cannot configure a DHCP client or DHCP Relay services on an interface on which the server is
enabled. Additionally, DHCP clients must be directly connected to the interface on which the server is
enabled.
To enable the DHCP server on a given security appliance interface, perform the following steps:
Step 1 Create a DHCP address pool. Enter the following command to define the address pool:
hostname(config)# dhcpd address ip_address-ip_address interface_name
The security appliance assigns a client one of the addresses from this pool to use for a given length of time.
These addresses are the local, untranslated addresses for the directly connected network.
The address pool must be on the same subnet as the security appliance interface.
Step 2 (Optional) To specify the IP address(es) of the DNS server(s) the client will use, enter the following
command:
hostname(config)# dhcpd dns dns1 [dns2]
You can specify up to two DNS servers.
Step 3 (Optional) To specify the IP address(es) of the WINS server(s) the client will use, enter the following
command:
hostname(config)# dhcpd wins wins1 [wins2]
You can specify up to two WINS servers.
Step 4 (Optional) To change the lease length to be granted to the client, enter the following command:
hostname(config)# dhcpd lease lease_length
This lease equals the amount of time (in seconds) the client can use its allocated IP address before the
lease expires. Enter a value between 300 to 1,048,575. The default value is 3600 seconds.
Step 5 (Optional) To configure the domain name the client uses, enter the following command:
hostname(config)# dhcpd domain domain_name
Step 6 (Optional) To configure the DHCP ping timeout value, enter the following command:
hostname(config)# dhcpd ping_timeout milliseconds
To avoid address conflicts, the security appliance sends two ICMP ping packets to an address before
assigning that address to a DHCP client. This command specifies the timeout value for those packets.10-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring a DHCP Server
Step 7 (Transparent Firewall Mode) Define a default gateway. To define the default gateway that is sent to
DHCP clients, enter the following command.
hostname(config)# dhcpd option 3 ip gateway_ip
If you do not use the DHCP option 3 to define the default gateway, DHCP clients use the IP address of
the management interface. The management interface does not route traffic.
Step 8 To enable the DHCP daemon within the security appliance to listen for DHCP client requests on the
enabled interface, enter the following command:
hostname(config)# dhcpd enable interface_name
For example, to assign the range 10.0.1.101 to 10.0.1.110 to hosts connected to the inside interface, enter
the following commands:
hostname(config)# dhcpd address 10.0.1.101-10.0.1.110 inside
hostname(config)# dhcpd dns 209.165.201.2 209.165.202.129
hostname(config)# dhcpd wins 209.165.201.5
hostname(config)# dhcpd lease 3000
hostname(config)# dhcpd domain example.com
hostname(config)# dhcpd enable inside
Configuring DHCP Options
You can configure the security appliance to send information for the DHCP options listed in RFC 2132.
The DHCP options fall into one of three categories:
• Options that return an IP address.
• Options that return a text string.
• Options that return a hexadecimal value.
The security appliance supports all three categories of DHCP options. To configure a DHCP option, do
one of the following:
• To configure a DHCP option that returns one or two IP addresses, enter the following command:
hostname(config)# dhcpd option code ip addr_1 [addr_2]
• To configure a DHCP option that returns a text string, enter the following command:
hostname(config)# dhcpd option code ascii text
• To configure a DHCP option that returns a hexadecimal value, enter the following command:
hostname(config)# dhcpd option code hex value
Note The security appliance does not verify that the option type and value that you provide match the expected
type and value for the option code as defined in RFC 2132. For example, you can enter the dhcpd option
46 ascii hello command and the security appliance accepts the configuration although option 46 is
defined in RFC 2132 as expecting a single-digit, hexadecimal value. For more information about the
option codes and their associated types and expected values, refer to RFC 2132.
Table 10-1 shows the DHCP options that are not supported by the dhcpd option command.10-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring a DHCP Server
Specific options, DHCP option 3, 66, and 150, are used to configure Cisco IP Phones. See the “Using
Cisco IP Phones with a DHCP Server” section on page 10-4 topic for more information about
configuring those options.
Using Cisco IP Phones with a DHCP Server
Enterprises with small branch offices that implement a Cisco IP Telephony Voice over IP solution
typically implement Cisco CallManager at a central office to control Cisco IP Phones at small branch
offices. This implementation allows centralized call processing, reduces the equipment required, and
eliminates the administration of additional Cisco CallManager and other servers at branch offices.
Cisco IP Phones download their configuration from a TFTP server. When a Cisco IP Phone starts, if it
does not have both the IP address and TFTP server IP address preconfigured, it sends a request with
option 150 or 66 to the DHCP server to obtain this information.
• DHCP option 150 provides the IP addresses of a list of TFTP servers.
• DHCP option 66 gives the IP address or the hostname of a single TFTP server.
Cisco IP Phones might also include DHCP option 3 in their requests, which sets the default route.
Cisco IP Phones might include both option 150 and 66 in a single request. In this case, the security
appliance DHCP server provides values for both options in the response if they are configured on the
security appliance.
You can configure the security appliance to send information for most options listed in RFC 2132. The
following example shows the syntax for any option number, as well as the syntax for commonly-used
options 66, 150, and 3:
• To provide information for DHCP requests that include an option number as specified in RFC-2132,
enter the following command:
Table 10-1 Unsupported DHCP Options
Option Code Description
0 DHCPOPT_PAD
1 HCPOPT_SUBNET_MASK
12 DHCPOPT_HOST_NAME
50 DHCPOPT_REQUESTED_ADDRESS
51 DHCPOPT_LEASE_TIME
52 DHCPOPT_OPTION_OVERLOAD
53 DHCPOPT_MESSAGE_TYPE
54 DHCPOPT_SERVER_IDENTIFIER
58 DHCPOPT_RENEWAL_TIME
59 DHCPOPT_REBINDING_TIME
61 DHCPOPT_CLIENT_IDENTIFIER
67 DHCPOPT_BOOT_FILE_NAME
82 DHCPOPT_RELAY_INFORMATION
255 DHCPOPT_END10-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring DHCP Relay Services
hostname(config)# dhcpd option number value
• To provide the IP address or name of a TFTP server for option 66, enter the following command:
hostname(config)# dhcpd option 66 ascii server_name
• To provide the IP address or names of one or two TFTP servers for option 150, enter the following
command:
hostname(config)# dhcpd option 150 ip server_ip1 [server_ip2]
The server_ip1 is the IP address or name of the primary TFTP server while server_ip2 is the
IP address or name of the secondary TFTP server. A maximum of two TFTP servers can be
identified using option 150.
• To set the default route, enter the following command:
hostname(config)# dhcpd option 3 ip router_ip1
Configuring DHCP Relay Services
A DHCP relay agent allows the security appliance to forward DHCP requests from clients to a router
connected to a different interface.
The following restrictions apply to the use of the DHCP relay agent:
• The relay agent cannot be enabled if the DHCP server feature is also enabled.
• Clients must be directly connected to the security appliance and cannot send requests through
another relay agent or a router.
• For multiple context mode, you cannot enable DHCP relay on an interface that is used by more than
one context.
Note DHCP Relay services are not available in transparent firewall mode. A security appliance in transparent
firewall mode only allows ARP traffic through; all other traffic requires an access list. To allow DHCP
requests and replies through the security appliance in transparent mode, you need to configure two
access lists, one that allows DCHP requests from the inside interface to the outside, and one that allows
the replies from the server in the other direction.
Note When DHCP relay is enabled and more than one DHCP relay server is defined, the security appliance
forwards client requests to each defined DHCP relay server. Replies from the servers are also forwarded
to the client until the client DHCP relay binding is removed. The binding is removed when the security
appliance receives any of the following DHCP messages: ACK, NACK, or decline.
To enable DHCP relay, perform the following steps:
Step 1 To set the IP address of a DHCP server on a different interface from the DHCP client, enter the following
command:
hostname(config)# dhcprelay server ip_address if_name
You can use this command up to 4 times to identify up to 4 servers.
Step 2 To enable DHCP relay on the interface connected to the clients, enter the following command:10-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Dynamic DNS
hostname(config)# dhcprelay enable interface
Step 3 (Optional) To set the number of seconds allowed for relay address negotiation, enter the following
command:
hostname(config)# dhcprelay timeout seconds
Step 4 (Optional) To change the first default router address in the packet sent from the DHCP server to the
address of the security appliance interface, enter the following command:
hostname(config)# dhcprelay setroute interface_name
This action allows the client to set its default route to point to the security appliance even if the DHCP
server specifies a different router.
If there is no default router option in the packet, the security appliance adds one containing the interface
address.
The following example enables the security appliance to forward DHCP requests from clients connected
to the inside interface to a DHCP server on the outside interface:
hostname(config)# dhcprelay server 201.168.200.4
hostname(config)# dhcprelay enable inside
hostname(config)# dhcprelay setroute inside
Configuring Dynamic DNS
This section describes examples for configuring the security appliance to support Dynamic DNS. DDNS
update integrates DNS with DHCP. The two protocols are complementary—DHCP centralizes and
automates IP address allocation, while dynamic DNS update automatically records the association
between assigned addresses and hostnames. When you use DHCP and dynamic DNS update, this
configures a host automatically for network access whenever it attaches to the IP network. You can locate
and reach the host using its permanent, unique DNS hostname. Mobile hosts, for example, can move
freely without user or administrator intervention.
DDNS provides address and domain name mappings so hosts can find each other even though their
DHCP-assigned IP addresses change frequently. The DDNS name and address mappings are held on the
DHCP server in two resource records: the A RR contains the name to IP address mapping while the PTR
RR maps addresses to names. Of the two methods for performing DDNS updates—the IETF standard
defined by RFC 2136 and a generic HTTP method—the security appliance supports the IETF method in
this release.
The two most common DDNS update configurations are:
• The DHCP client updates the A RR while the DHCP server updates PTR RR.
• The DHCP server updates both the A and PTR RRs.
In general, the DHCP server maintains DNS PTR RRs on behalf of clients. Clients may be configured
to perform all desired DNS updates. The server may be configured to honor these updates or not. To
update the PTR RR, the DHCP server must know the Fully Qualified Domain Name of the client. The
client provides an FQDN to the server using a DHCP option called Client FQDN.
The following examples present these common scenarios:
• Example 1: Client Updates Both A and PTR RRs for Static IP Addresses, page 10-710-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Dynamic DNS
• Example 2: Client Updates Both A and PTR RRs; DHCP Server Honors Client Update Request;
FQDN Provided Through Configuration, page 10-7
• Example 3: Client Includes FQDN Option Instructing Server Not to Update Either RR; Server
Overrides Client and Updates Both RRs., page 10-8
• Example 4: Client Asks Server To Perform Both Updates; Server Configured to Update PTR RR
Only; Honors Client Request and Updates Both A and PTR RR, page 10-8
• Example 5: Client Updates A RR; Server Updates PTR RR, page 10-9
Example 1: Client Updates Both A and PTR RRs for Static IP Addresses
The following example configures the client to request that it update both A and PTR resource records
for static IP addresses. To configure this example, perform the following steps:
Step 1 To define a DDNS update method called ddns-2 that requests that the client update both the A and PTR
RRs, enter the following commands:
hostname(config)# ddns update method ddns-2
hostname(DDNS-update-method)# ddns both
Step 2 To associate the method ddns-2 with the eth1 interface, enter the following commands:
hostname(DDNS-update-method)# interface eth1
hostname(config-if)# ddns update ddns-2
hostname(config-if)# ddns update hostname asa.example.com
Step 3 To configure a static IP address for eth1, enter the following commands:
hostname(config-if)# ip address 10.0.0.40 255.255.255.0
Example 2: Client Updates Both A and PTR RRs; DHCP Server Honors Client
Update Request; FQDN Provided Through Configuration
The following example configures 1) the DHCP client to request that it update both the A and PTR RRs,
and 2) the DHCP server to honor the requests. To configure this example, perform the following steps:
Step 1 To configure the DHCP client to request that the DHCP server perform no updates, enter the following
command:
hostname(config)# dhcp-client update dns server none
Step 2 To create a DDNS update method named ddns-2 on the DHCP client that requests that the client perform
both A and PTR updates, enter the following commands:
hostname(config)# ddns update method ddns-2
hostname(DDNS-update-method)# ddns both
Step 3 To associate the method named ddns-2 with the security appliance interface named Ethernet0, and enable
DHCP on the interface, enter the following commands:
hostname(DDNS-update-method)# interface Ethernet0
hostname(if-config)# ddns update ddns-2
hostname(if-config)# ddns update hostname asa.example.com
hostname(if-config)# ip address dhcp10-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Dynamic DNS
Step 4 To configure the DHCP server, enter the following command:
hostname(if-config)# dhcpd update dns
Example 3: Client Includes FQDN Option Instructing Server Not to Update Either
RR; Server Overrides Client and Updates Both RRs.
The following example configures the DHCP client to include the FQDN option instructing the DHCP
server not to update either the A or PTR updates. The example also configures the server to override the
client request. As a result, the client backs off without performing any updates.
To configure this scenario, perform the following steps:
Step 1 To configure the update method named ddns-2 to request that it make both A and PTR RR updates, enter
the following commands:
hostname(config)# ddns update method ddns-2
hostname(DDNS-update-method)# ddns both
Step 2 To assign the DDNS update method named ddns-2 on interface Ethernet0 and provide the client
hostname (asa), enter the following commands:
hostname(DDNS-update-method)# interface Ethernet0
hostname(if-config)# ddns update ddns-2
hostname(if-config)# ddns update hostname asa.example.com
Step 3 To enable the DHCP client feature on the interface, enter the following commands:
hostname(if-config)# dhcp client update dns server none
hostname(if-config)# ip address dhcp
Step 4 To configure the DHCP server to override the client update requests, enter the following command:
hostname(if-config)# dhcpd update dns both override
Example 4: Client Asks Server To Perform Both Updates; Server Configured to
Update PTR RR Only; Honors Client Request and Updates Both A and PTR RR
The following example configures the server to perform only PTR RR updates by default. However, the
server honors the client request that it perform both A and PTR updates. The server also forms the FQDN
by appending the domain name (example.com) to the hostname provided by the client (asa).
To configure this scenario, perform the following steps:
Step 1 To configure the DHCP client on interface Ethernet0, enter the following commands:
hostname(config)# interface Ethernet0
hostname(config-if)# dhcp client update dns both
hostname(config-if)# ddns update hostname asa
Step 2 To configure the DHCP server, enter the following commands:
hostname(config-if)# dhcpd update dns10-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Web Cache Services Using WCCP
hostname(config-if)# dhcpd domain example.com
Example 5: Client Updates A RR; Server Updates PTR RR
The following example configures the client to update the A resource record and the server to update the
PTR records. Also, the client uses the domain name from the DHCP server to form the FQDN.
To configure this scenario, perform the following steps:
Step 1 To define the DDNS update method named ddns-2, enter the following commands:
hostname(config)# ddns update method ddns-2
hostname(DDNS-update-method)# ddns
Step 2 To configure the DHCP client for interface Ethernet0 and assign the update method to the interface, enter
the following commands:
hostname(DDNS-update-method)# interface Ethernet0
hostname(config-if)# dhcp client update dns
hostname(config-if)# ddns update ddns-2
hostname(config-if)# ddns update hostname asa
Step 3 To configure the DHCP server, enter the following commands:
hostname(config-if)# dhcpd update dns
hostname(config-if)# dhcpd domain example.com
Configuring Web Cache Services Using WCCP
The purpose of web caching is to reduce latency and network traffic. Previously-accessed web pages are
stored in a cache buffer, so if a user needs the page again, they can retrieve it from the cache instead of
the web server.
WCCP specifies interactions between the security appliance and external web caches. The feature
transparently redirects selected types of traffic to a group of web cache engines to optimize resource
usage and lower response times. The security appliance only supports WCCP version 2.
Using a security appliance as an intermediary eliminates the need for a separate router to do the WCCP
redirect because the security appliance takes care of redirecting requests to cache engines. When the
security appliance knows when a packet needs redirection, it skips TCP state tracking, TCP sequence
number randomization, and NAT on these traffic flows.
This section includes the following topics:
• WCCP Feature Support, page 10-9
• WCCP Interaction With Other Features, page 10-10
• Enabling WCCP Redirection, page 10-10
WCCP Feature Support
The following WCCPv2 features are supported with the security appliance:10-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Web Cache Services Using WCCP
• Redirection of multiple TCP/UDP port-destined traffic.
• Authentication for cache engines in a service group.
The following WCCPv2 features are not supported with the security appliance:
• Multiple routers in a service group is not supported. Multiple Cache Engines in a service group is
still supported.
• Multicast WCCP is not supported.
• The Layer 2 redirect method is not supported; only GRE encapsulation is supported.
• WCCP source address spoofing.
WCCP Interaction With Other Features
In the security appliance implementation of WCCP, the following applies as to how the protocol interacts
with other configurable features:
• An ingress access list entry always takes higher priority over WCCP. For example, if an access list
does not permit a client to communicate with a server then traffic will not be redirected to a cache
engine. Both ingress interface access lists and egress interface access lists will be applied.
• TCP intercept, authorization, URL filtering, inspect engines, and IPS features are not applied to a
redirected flow of traffic.
• When a cache engine cannot service a request and packet is returned, or when a cache miss happens
on a cache engine and it requests data from a web server, then the contents of the traffic flow will
be subject to all the other configured features of the security appliance.
• In failover, WCCP redirect tables are not replicated to standby units. After a failover, packets will
not be redirected until the tables are rebuilt. Sessions redirected prior to failover will likely be reset
by the web server.
Enabling WCCP Redirection
There are two steps to configuring WCCP redirection on the security appliance. The first involves
identifying the service to be redirected with the wccp command, and the second is defining on which
interface the redirection occurs with the wccp redirect command. The wccp command can optionally
also define which cache engines can participate in the service group, and what traffic should be
redirected to the cache engine.
WCCP redirect is supported only on the ingress of an interface. The only topology that the security
appliance supports is when client and cache engine are behind the same interface of the security
appliance and the cache engine can directly communicate with the client without going through the
security appliance.
The following configuration tasks assume you have already installed and configured the cache engines
you wish to include in your network.
To configure WCCP redirection, perform the following steps:
Step 1 To enable a WCCP service group, enter the following command:
hostname(config)# wccp {web-cache | service_number} [redirect-list access_list]
[group-list access_list] [password password]10-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Web Cache Services Using WCCP
The standard service is web-cache, which intercepts TCP port 80 (HTTP) traffic and redirects that traffic
to the cache engines, but you can identify a service number if desired between 0 and 254. For example,
to transparently redirect native FTP traffic to a cache engine, use WCCP service 60. You can enter this
command multiple times for each service group you want to enable.
The redirect-list access_list argument controls traffic redirected to this service group.
The group-list access_list argument determines which web cache IP addresses are allowed to participate
in the service group.
The password password argument specifies MD5 authentication for messages received from the service
group. Messages that are not accepted by the authentication are discarded.
Step 2 To enable WCCP redirection on an interface, enter the following command:
hostname(config)# wccp interface interface_name {web-cache | service_number} redirect in
The standard service is web-cache, which intercepts TCP port 80 (HTTP) traffic and redirects that traffic
to the cache engines, but you can identify a service number if desired between 0 and 254. For example,
to transparently redirect native FTP traffic to a cache engine, use WCCP service 60. You can enter this
command multiple times for each service group you want to participate in.
For example, to enable the standard web-cache service and redirect HTTP traffic that enters the inside
interface to a web cache, enter the following commands:
hostname(config)# wccp web-cache
hostname(config)# wccp interface inside web-cache redirect in10-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 10 Configuring DHCP, DDNS, and WCCP Services
Configuring Web Cache Services Using WCCPC H A P T E R
11-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
11
Configuring Multicast Routing
This chapter describes how to configure multicast routing. This section includes the following topics:
• Multicast Routing Overview, page 11-13
• Enabling Multicast Routing, page 11-14
• Configuring IGMP Features, page 11-14
• Configuring Stub Multicast Routing, page 11-17
• Configuring a Static Multicast Route, page 11-17
• Configuring PIM Features, page 11-18
• For More Information about Multicast Routing, page 11-22
Multicast Routing Overview
The security appliance supports both stub multicast routing and PIM multicast routing. However, you
cannot configure both concurrently on a single security appliance.
Stub multicast routing provides dynamic host registration and facilitates multicast routing. When
configured for stub multicast routing, the security appliance acts as an IGMP proxy agent. Instead of
fully participating in multicast routing, the security appliance forwards IGMP messages to an upstream
multicast router, which sets up delivery of the multicast data. When configured for stub multicast
routing, the security appliance cannot be configured for PIM.
The security appliance supports both PIM-SM and bi-directional PIM. PIM-SM is a multicast routing
protocol that uses the underlying unicast routing information base or a separate multicast-capable
routing information base. It builds unidirectional shared trees rooted at a single Rendezvous Point per
multicast group and optionally creates shortest-path trees per multicast source.
Bi-directional PIM is a variant of PIM-SM that builds bi-directional shared trees connecting multicast
sources and receivers. Bi-directional trees are built using a DF election process operating on each link
of the multicast topology. With the assistance of the DF, multicast data is forwarded from sources to the
Rendezvous Point, and therefore along the shared tree to receivers, without requiring source-specific
state. The DF election takes place during Rendezvous Point discovery and provides a default route to the
Rendezvous Point.
Note If the security appliance is the PIM RP, use the untranslated outside address of the security appliance as
the RP address.11-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Enabling Multicast Routing
Enabling Multicast Routing
Enabling multicast routing lets the security appliance forward multicast packets. Enabling multicast
routing automatically enables PIM and IGMP on all interfaces. To enable multicast routing, enter the
following command:
hostname(config)# multicast-routing
The number of entries in the multicast routing tables are limited by the amount of RAM on the system.
Table 11-1 lists the maximum number of entries for specific multicast tables based on the amount of
RAM on the security appliance. Once these limits are reached, any new entries are discarded.
Configuring IGMP Features
IP hosts use IGMP to report their group memberships to directly connected multicast routers. IGMP uses
group addresses (Class D IP address) as group identifiers. Host group address can be in the range
224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is never assigned to any group. The address
224.0.0.1 is assigned to all systems on a subnet. The address 224.0.0.2 is assigned to all routers on a
subnet.
When you enable multicast routing on the security appliance, IGMP Version 2 is automatically enabled
on all interfaces.
Note Only the no igmp command appears in the interface configuration when you use the show run
command. If the multicast-routing command appears in the device configuration, then IGMP is
automatically enabled on all interfaces.
This section describes how to configure optional IGMP setting on a per-interface basis. This section
includes the following topics:
• Disabling IGMP on an Interface, page 11-15
• Configuring Group Membership, page 11-15
• Configuring a Statically Joined Group, page 11-15
• Controlling Access to Multicast Groups, page 11-15
• Limiting the Number of IGMP States on an Interface, page 11-16
• Modifying the Query Interval and Query Timeout, page 11-16
• Changing the Query Response Time, page 11-17
• Changing the IGMP Version, page 11-17
Table 11-1 Entry Limits for Multicast Tables
Table 16 MB 128 MB 128+ MB
MFIB 1000 3000 5000
IGMP Groups 1000 3000 5000
PIM Routes 3000 7000 1200011-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring IGMP Features
Disabling IGMP on an Interface
You can disable IGMP on specific interfaces. This is useful if you know that you do not have any
multicast hosts on a specific interface and you want to prevent the security appliance from sending host
query messages on that interface.
To disable IGMP on an interface, enter the following command:
hostname(config-if)# no igmp
To reenable IGMP on an interface, enter the following command:
hostname(config-if)# igmp
Note Only the no igmp command appears in the interface configuration.
Configuring Group Membership
You can configure the security appliance to be a member of a multicast group. Configuring the security
appliance to join a multicast group causes upstream routers to maintain multicast routing table
information for that group and keep the paths for that group active.
To have the security appliance join a multicast group, enter the following command:
hostname(config-if)# igmp join-group group-address
Configuring a Statically Joined Group
Sometimes a group member cannot report its membership in the group, or there may be no members of
a group on the network segment, but you still want multicast traffic for that group to be sent to that
network segment. You can have multicast traffic for that group sent to the segment in one of two ways:
• Using the igmp join-group command (see Configuring Group Membership, page 11-15). This
causes the security appliance to accept and to forward the multicast packets.
• Using the igmp static-group command. The security appliance does not accept the multicast
packets but rather forwards them to the specified interface.
To configure a statically joined multicast group on an interface, enter the following command:
hostname(config-if)# igmp static-group group-address
Controlling Access to Multicast Groups
To control the multicast groups that hosts on the security appliance interface can join, perform the
following steps:
Step 1 Create an access list for the multicast traffic. You can create more than one entry for a single access list.
You can use extended or standard access lists.
• To create a standard access list, enter the following command:11-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring IGMP Features
hostname(config)# access-list name standard [permit | deny] ip_addr mask
The ip_addr argument is the IP address of the multicast group being permitted or denied.
• To create an extended access list, enter the following command:
hostname(config)# access-list name extended [permit | deny] protocol src_ip_addr
src_mask dst_ip_addr dst_mask
The dst_ip_addr argument is the IP address of the multicast group being permitted or denied.
Step 2 Apply the access list to an interface by entering the following command:
hostname(config-if)# igmp access-group acl
The acl argument is the name of a standard or extended IP access list.
Limiting the Number of IGMP States on an Interface
You can limit the number of IGMP states resulting from IGMP membership reports on a per-interface
basis. Membership reports exceeding the configured limits are not entered in the IGMP cache and traffic
for the excess membership reports is not forwarded.
To limit the number of IGMP states on an interface, enter the following command:
hostname(config-if)# igmp limit number
Valid values range from 0 to 500, with 500 being the default value. Setting this value to 0 prevents
learned groups from being added, but manually defined memberships (using the igmp join-group and
igmp static-group commands) are still permitted. The no form of this command restores the default
value.
Modifying the Query Interval and Query Timeout
The security appliance sends query messages to discover which multicast groups have members on the
networks attached to the interfaces. Members respond with IGMP report messages indicating that they
want to receive multicast packets for specific groups. Query messages are addressed to the all-systems
multicast group, which has an address of 224.0.0.1, with a time-to-live value of 1.
These messages are sent periodically to refresh the membership information stored on the security
appliance. If the security appliance discovers that there are no local members of a multicast group still
attached to an interface, it stops forwarding multicast packet for that group to the attached network and
it sends a prune message back to the source of the packets.
By default, the PIM designated router on the subnet is responsible for sending the query messages. By
default, they are sent once every 125 seconds. To change this interval, enter the following command:
hostname(config-if)# igmp query-interval seconds
If the security appliance does not hear a query message on an interface for the specified timeout value
(by default, 255 seconds), then the security appliance becomes the designated router and starts sending
the query messages. To change this timeout value, enter the following command:
hostname(config-if)# igmp query-timeout seconds11-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring Stub Multicast Routing
Note The igmp query-timeout and igmp query-interval commands require IGMP Version 2.
Changing the Query Response Time
By default, the maximum query response time advertised in IGMP queries is 10 seconds. If the security
appliance does not receive a response to a host query within this amount of time, it deletes the group.
To change the maximum query response time, enter the following command:
hostname(config-if)# igmp query-max-response-time seconds
Changing the IGMP Version
By default, the security appliance runs IGMP Version 2, which enables several additional features such
as the igmp query-timeout and igmp query-interval commands.
All multicast routers on a subnet must support the same version of IGMP. The security appliance does
not automatically detect version 1 routers and switch to version 1. However, a mix of IGMP Version 1
and 2 hosts on the subnet works; the security appliance running IGMP Version 2 works correctly when
IGMP Version 1 hosts are present.
To control which version of IGMP is running on an interface, enter the following command:
hostname(config-if)# igmp version {1 | 2}
Configuring Stub Multicast Routing
A security appliance acting as the gateway to the stub area does not need to participate in PIM. Instead,
you can configure it to act as an IGMP proxy agent and forward IGMP messages from hosts connected
on one interface to an upstream multicast router on another. To configure the security appliance as an
IGMP proxy agent, forward the host join and leave messages from the stub area interface to an upstream
interface.
To forward the host join and leave messages, enter the following command from the interface attached
to the stub area:
hostname(config-if)# igmp forward interface if_name
Note Stub Multicast Routing and PIM are not supported concurrently.
Configuring a Static Multicast Route
When using PIM, the security appliance expects to receive packets on the same interface where it sends
unicast packets back to the source. In some cases, such as bypassing a route that does not support
multicast routing, you may want unicast packets to take one path and multicast packets to take another.
Static multicast routes are not advertised or redistributed.11-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring PIM Features
To configure a static multicast route for PIM, enter the following command:
hostname(config)# mroute src_ip src_mask {input_if_name | rpf_addr) [distance]
To configure a static multicast route for a stub area, enter the following command:
hostname(config)# mroute src_ip src_mask input_if_name [dense output_if_name] [distance]
Note The dense output_if_name keyword and argument pair is only supported for stub multicast routing.
Configuring PIM Features
Routers use PIM to maintain forwarding tables for forwarding multicast diagrams. When you enable
multicast routing on the security appliance, PIM and IGMP are automatically enabled on all interfaces.
Note PIM is not supported with PAT. The PIM protocol does not use ports and PAT only works with protocols
that use ports.
This section describes how to configure optional PIM settings. This section includes the following
topics:
• Disabling PIM on an Interface, page 11-18
• Configuring a Static Rendezvous Point Address, page 11-19
• Configuring the Designated Router Priority, page 11-19
• Filtering PIM Register Messages, page 11-19
• Configuring PIM Message Intervals, page 11-20
• Configuring a Multicast Boundary, page 11-20
• Filtering PIM Neighbors, page 11-20
• Supporting Mixed Bidirectional/Sparse-Mode PIM Networks, page 11-21
Disabling PIM on an Interface
You can disable PIM on specific interfaces. To disable PIM on an interface, enter the following
command:
hostname(config-if)# no pim
To reenable PIM on an interface, enter the following command:
hostname(config-if)# pim
Note Only the no pim command appears in the interface configuration.11-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring PIM Features
Configuring a Static Rendezvous Point Address
All routers within a common PIM sparse mode or bidir domain require knowledge of the PIM RP
address. The address is statically configured using the pim rp-address command.
Note The security appliance does not support Auto-RP or PIM BSR; you must use the pim rp-address
command to specify the RP address.
You can configure the security appliance to serve as RP to more than one group. The group range
specified in the access list determines the PIM RP group mapping. If an access list is not specified, then
the RP for the group is applied to the entire multicast group range (224.0.0.0/4).
To configure the address of the PIM PR, enter the following command:
hostname(config)# pim rp-address ip_address [acl] [bidir]
The ip_address argument is the unicast IP address of the router to be a PIM RP. The acl argument is the
name or number of a standard access list that defines which multicast groups the RP should be used with.
Do not use a host ACL with this command. Excluding the bidir keyword causes the groups to operate
in PIM sparse mode.
Note The security appliance always advertises the bidir capability in the PIM hello messages regardless of the
actual bidir configuration.
Configuring the Designated Router Priority
The DR is responsible for sending PIM register, join, and prune messaged to the RP. When there is more
than one multicast router on a network segment, there is an election process to select the DR based on
DR priority. If multiple devices have the same DR priority, then the device with the highest IP address
becomes the DR.
By default, the security appliance has a DR priority of 1. You can change this value by entering the
following command:
hostname(config-if)# pim dr-priority num
The num argument can be any number from 1 to 4294967294.
Filtering PIM Register Messages
You can configure the security appliance to filter PIM register messages. To filter PIM register messages,
enter the following command:
hostname(config)# pim accept-register {list acl | route-map map-name}11-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring PIM Features
Configuring PIM Message Intervals
Router query messages are used to elect the PIM DR. The PIM DR is responsible for sending router
query messages. By default, router query messages are sent every 30 seconds. You can change this value
by entering the following command:
hostname(config-if)# pim hello-interval seconds
Valid values for the seconds argument range from 1 to 3600 seconds.
Every 60 seconds, the security appliance sends PIM join/prune messages. To change this value, enter the
following command:
hostname(config-if)# pim join-prune-interval seconds
Valid values for the seconds argument range from 10 to 600 seconds.
Configuring a Multicast Boundary
Address scoping defines domain boundaries so that domains with RPs that have the same IP address do
not leak into each other. Scoping is performed on the subnet boundaries within large domains and on the
boundaries between the domain and the Internet.
You can set up an administratively scoped boundary on an interface for multicast group addresses using
the multicast boundary command. IANA has designated the multicast address range 239.0.0.0 to
239.255.255.255 as the administratively scoped addresses. This range of addresses can be reused in
domains administered by different organizations. They would be considered local, not globally unique.
To configure a multicast boundary, enter the following command:
hostname(config-if)# multicast boundary acl [filter-autorp]
A standard ACL defines the range of addresses affected. When a boundary is set up, no multicast data
packets are allowed to flow across the boundary from either direction. The boundary allows the same
multicast group address to be reused in different administrative domains.
You can configure the filter-autorp keyword to examine and filter Auto-RP discovery and
announcement messages at the administratively scoped boundary. Any Auto-RP group range
announcements from the Auto-RP packets that are denied by the boundary access control list (ACL) are
removed. An Auto-RP group range announcement is permitted and passed by the boundary only if all
addresses in the Auto-RP group range are permitted by the boundary ACL. If any address is not
permitted, the entire group range is filtered and removed from the Auto-RP message before the Auto-RP
message is forwarded.
Filtering PIM Neighbors
You can define the routers that can become PIM neighbors with the pim neighbor-filter command. By
filtering the routers that can become PIM neighbors, you can:
• Prevent unauthorized routers from becoming PIM neighbors.
• Prevent attached stub routers from participating in PIM.
To define the neighbors that can become a PIM neighbor, perform the following steps:11-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
Configuring PIM Features
Step 1 Use the access-list command to define a standard access list defines the routers you want to participate
in PIM.
For example the following access list, when used with the pim neighbor-filter command, prevents the
10.1.1.1 router from becoming a PIM neighbor:
hostname(config)# access-list pim_nbr deny 10.1.1.1 255.255.255.255
Step 2 Use the pim neighbor-filter command on an interface to filter the neighbor routers.
For example, the following commands prevent the 10.1.1.1 router from becoming a PIM neighbor on
interface GigabitEthernet0/3:
hostname(config)# interface GigabitEthernet0/3
hostname(config-if)# pim neighbor-filter pim_nbr
Supporting Mixed Bidirectional/Sparse-Mode PIM Networks
Bidirectional PIM allows multicast routers to keep reduced state information. All of the multicast routers
in a segment must be bidirectionally enabled in order for bidir to elect a DF.
The pim bidir-neighbor-filter command enables the transition from a sparse-mode-only network to a
bidir network by letting you specify the routers that should participate in DF election while still allowing
all routers to participate in the sparse-mode domain. The bidir-enabled routers can elect a DF from
among themselves, even when there are non-bidir routers on the segment. Multicast boundaries on the
non-bidir routers prevent PIM messages and data from the bidir groups from leaking in or out of the bidir
subset cloud.
When the pim bidir-neighbor-filter command is enabled, the routers that are permitted by the ACL are
considered to be bidir-capable. Therefore:
• If a permitted neighbor does not support bidir, the DF election does not occur.
• If a denied neighbor supports bidir, then DF election does not occur.
• If a denied neighbor des not support bidir, the DF election occurs.
To control which neighbors can participate in the DF election, perform the following steps:
Step 1 Use the access-list command to define a standard access list that permits the routers you want to
participate in the DF election and denies all others.
For example, the following access list permits the routers at 10.1.1.1 and 10.2.2.2 to participate in the
DF election and denies all others:
hostname(config)# access-list pim_bidir permit 10.1.1.1 255.255.255.255
hostname(config)# access-list pim_bidir permit 10.1.1.2 255.255.255.255
hostname(config)# access-list pim_bidir deny any
Step 2 Enable the pim bidir-neighbor-filter command on an interface.
The following example applies the access list created previous step to the interface GigabitEthernet0/3.
hostname(config)# interface GigabitEthernet0/3
hostname(config-if)# pim bidir-neighbor-filter pim_bidir11-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 11 Configuring Multicast Routing
For More Information about Multicast Routing
For More Information about Multicast Routing
The following RFCs from the IETF provide technical details about the IGMP and multicast routing
standards used for implementing the SMR feature:
• RFC 2236 IGMPv2
• RFC 2362 PIM-SM
• RFC 2588 IP Multicast and Firewalls
• RFC 2113 IP Router Alert Option
• IETF draft-ietf-idmr-igmp-proxy-01.txtC H A P T E R
12-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
12
Configuring IPv6
This chapter describes how to enable and configure IPv6 on the security appliance. IPv6 is available in
Routed firewall mode only.
This chapter includes the following sections:
• IPv6-enabled Commands, page 12-1
• Configuring IPv6, page 12-2
• Verifying the IPv6 Configuration, page 12-11
For an sample IPv6 configuration, see Appendix B, “Sample Configurations.”
IPv6-enabled Commands
The following security appliance commands can accept and display IPv6 addresses:
• capture
• configure
• copy
• http
• name
• object-group
• ping
• show conn
• show local-host
• show tcpstat
• ssh
• telnet
• tftp-server
• who
• write12-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Note Failover does not support IPv6. The ipv6 address command does not support setting standby addresses
for failover configurations. The failover interface ip command does not support using IPv6 addresses
on the failover and Stateful Failover interfaces.
When entering IPv6 addresses in commands that support them, simply enter the IPv6 address using
standard IPv6 notation, for example ping fe80::2e0:b6ff:fe01:3b7a. The security appliance correctly
recognizes and processes the IPv6 address. However, you must enclose the IPv6 address in square
brackets ([ ]) in the following situations:
• You need to specify a port number with the address, for example
[fe80::2e0:b6ff:fe01:3b7a]:8080.
• The command uses a colon as a separator, such as the write net and config net commands, for
example configure net [fe80::2e0:b6ff:fe01:3b7a]:/tftp/config/pixconfig.
The following commands were modified to work for IPv6:
• debug
• fragment
• ip verify
• mtu
• icmp (entered as ipv6 icmp)
The following inspection engines support IPv6:
• FTP
• HTTP
• ICMP
• SMTP
• TCP
• UDP
Configuring IPv6
This section contains the following topics:
• Configuring IPv6 on an Interface, page 12-3
• Configuring a Dual IP Stack on an Interface, page 12-4
• Enforcing the Use of Modified EUI-64 Interface IDs in IPv6 Addresses, page 12-4
• Configuring IPv6 Duplicate Address Detection, page 12-4
• Configuring IPv6 Default and Static Routes, page 12-5
• Configuring IPv6 Access Lists, page 12-6
• Configuring IPv6 Neighbor Discovery, page 12-7
• Configuring a Static IPv6 Neighbor, page 12-1112-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Configuring IPv6 on an Interface
At a minimum, each interface needs to be configured with an IPv6 link-local address. Additionally, you
can add a site-local and global address to the interface.
Note The security appliance does not support IPv6 anycast addresses.
You can configure both IPv6 and IPv4 addresses on an interface.
To configure IPv6 on an interface, perform the following steps:
Step 1 Enter interface configuration mode for the interface on which you are configuring the IPv6 addresses:
hostname(config)# interface if
Step 2 Configure an IPv6 address on the interface. You can assign several IPv6 addresses to an interface, such
as an IPv6 link-local, site-local, and global address. However, at a minimum, you must configure a
link-local address.
There are several methods for configuring IPv6 addresses. Pick the method that suits your needs from
the following:
• The simplest method is to enable stateless autoconfiguration on the interface. Enabling stateless
autoconfiguration on the interface configures IPv6 addresses based on prefixes received in Router
Advertisement messages. A link-local address, based on the Modified EUI-64 interface ID, is
automatically generated for the interface when stateless autoconfiguration is enabled. To enable
stateless autoconfiguration, enter the following command:
hostname(config-if)# ipv6 address autoconfig
• If you only need to configure a link-local address on the interface and are not going to assign any
other IPv6 addresses to the interface, you have the option of manually defining the link-local address
or generating one based on the interface MAC address (Modified EUI-64 format):
– Enter the following command to manually specify the link-local address:
hostname(config-if)# ipv6 address ipv6-address link-local
– Enter the following command to enable IPv6 on the interface and automatically generate the
link-local address using the Modified EUI-64 interface ID based on the interface MAC address:
hostname(config-if)# ipv6 enable
Note You do not need to use the ipv6 enable command if you enter any other ipv6 address
commands on an interface; IPv6 support is automatically enabled as soon as you assign an
IPv6 address to the interface.
• Assign a site-local or global address to the interface. When you assign a site-local or global address,
a link-local address is automatically created. Enter the following command to add a global or
site-local address to the interface. Use the optional eui-64 keyword to use the Modified EUI-64
interface ID in the low order 64 bits of the address.
hostname(config-if)# ipv6 address ipv6-address [eui-64]12-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Step 3 (Optional) Suppress Router Advertisement messages on an interface. By default, Router Advertisement
messages are automatically sent in response to router solicitation messages. You may want to disable
these messages on any interface for which you do not want the security appliance to supply the IPv6
prefix (for example, the outside interface).
Enter the following command to suppress Router Advertisement messages on an interface:
hostname(config-if)# ipv6 nd suppress-ra
Configuring a Dual IP Stack on an Interface
The security appliance supports the configuration of both IPv6 and IPv4 on an interface. You do not need
to enter any special commands to do so; simply enter the IPv4 configuration commands and IPv6
configuration commands as you normally would. Make sure you configure a default route for both IPv4
and IPv6.
Enforcing the Use of Modified EUI-64 Interface IDs in IPv6 Addresses
RFC 3513: Internet Protocol Version 6 (IPv6) Addressing Architecture requires that the interface
identifier portion of all unicast IPv6 addresses, except those that start with binary value 000, be 64 bits
long and be constructed in Modified EUI-64 format. The security appliance can enforce this requirement
for hosts attached to the local link.
To enforce the use of Modified EUI-64 format interface identifiers in IPv6 addresses on a local link,
enter the following command:
hostname(config)# ipv6 enforce-eui64 if_name
The if_name argument is the name of the interface, as specified by the namif command, on which you
are enabling the address format enforcement.
When this command is enabled on an interface, the source addresses of IPv6 packets received on that
interface are verified against the source MAC addresses to ensure that the interface identifiers use the
Modified EUI-64 format. If the IPv6 packets do not use the Modified EUI-64 format for the interface
identifier, the packets are dropped and the following system log message is generated:
%PIX|ASA-3-325003: EUI-64 source address check failed.
The address format verification is only performed when a flow is created. Packets from an existing flow
are not checked. Additionally, the address verification can only be performed for hosts on the local link.
Packets received from hosts behind a router will fail the address format verification, and be dropped,
because their source MAC address will be the router MAC address and not the host MAC address.
Configuring IPv6 Duplicate Address Detection
During the stateless autoconfiguration process, duplicate address detection verifies the uniqueness of
new unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in
a tentative state while duplicate address detection is performed). Duplicate address detection is
performed first on the new link-local address. When the link local address is verified as unique, then
duplicate address detection is performed all the other IPv6 unicast addresses on the interface. 12-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Duplicate address detection is suspended on interfaces that are administratively down. While an
interface is administratively down, the unicast IPv6 addresses assigned to the interface are set to a
pending state. An interface returning to an administratively up state restarts duplicate address detection
for all of the unicast IPv6 addresses on the interface.
When a duplicate address is identified, the state of the address is set to DUPLICATE, the address is not
used, and the following error message is generated:
%PIX|ASA-4-325002: Duplicate address ipv6_address/MAC_address on interface
If the duplicate address is the link-local address of the interface, the processing of IPv6 packets is
disabled on the interface. If the duplicate address is a global address, the address is not used. However,
all configuration commands associated with the duplicate address remain as configured while the state
of the address is set to DUPLICATE.
If the link-local address for an interface changes, duplicate address detection is performed on the new
link-local address and all of the other IPv6 address associated with the interface are regenerated
(duplicate address detection is performed only on the new link-local address).
The security appliance uses neighbor solicitation messages to perform duplicate address detection. By
default, the number of times an interface performs duplicate address detection is 1.
To change the number of duplicate address detection attempts, enter the following command:
hostname(config-if)# ipv6 nd dad attempts value
The value argument can be any value from 0 to 600. Setting the value argument to 0 disables duplicate
address detection on the interface.
When you configure an interface to send out more than one duplicate address detection attempt, you can
also use the ipv6 nd ns-interval command to configure the interval at which the neighbor solicitation
messages are sent out. By default, they are sent out once every 1000 milliseconds.
To change the neighbor solicitation message interval, enter the following command:
hostname(config-if)# ipv6 nd ns-interval value
The value argument can be from 1000 to 3600000 milliseconds.
Note Changing this value changes it for all neighbor solicitation messages sent out on the interface, not just
those used for duplicate address detection.
Configuring IPv6 Default and Static Routes
The security appliance automatically routes IPv6 traffic between directly connected hosts if the
interfaces to which the hosts are attached are enabled for IPv6 and the IPv6 ACLs allow the traffic.
The security appliance does not support dynamic routing protocols. Therefore, to route IPv6 traffic to a
non-connected host or network, you need to define a static route to the host or network or, at a minimum,
a default route. Without a static or default route defined, traffic to non-connected hosts or networks
generate the following error message:
%PIX|ASA-6-110001: No route to dest_address from source_address
You can add a default route and static routes using the ipv6 route command.
To configure an IPv6 default route and static routes, perform the following steps:12-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Step 1 To add the default route, use the following command:
hostname(config)# ipv6 route if_name ::/0 next_hop_ipv6_addr
The address ::/0 is the IPv6 equivalent of “any.”
Step 2 (Optional) Define IPv6 static routes. Use the following command to add an IPv6 static route to the IPv6
routing table:
hostname(config)# ipv6 route if_name destination next_hop_ipv6_addr [admin_distance]
Note The ipv6 route command works like the route command used to define IPv4 static routes.
Configuring IPv6 Access Lists
Configuring an IPv6 access list is similar configuring an IPv4 access, but with IPv6 addresses.
To configure an IPv6 access list, perform the following steps:
Step 1 Create an access entry. To create an access list, use the ipv6 access-list command to create entries for
the access list. There are two main forms of this command to choose from, one for creating access list
entries specifically for ICMP traffic, and one to create access list entries for all other types of IP traffic.
• To create an IPv6 access list entry specifically for ICMP traffic, enter the following command:
hostname(config)# ipv6 access-list id [line num] {permit | deny} icmp source
destination [icmp_type]
• To create an IPv6 access list entry, enter the following command:
hostname(config)# ipv6 access-list id [line num] {permit | deny} protocol source
[src_port] destination [dst_port]
The following describes the arguments for the ipv6 access-list command:
• id—The name of the access list. Use the same id in each command when you are entering multiple
entries for an access list.
• line num—When adding an entry to an access list, you can specify the line number in the list where
the entry should appear.
• permit | deny—Determines whether the specified traffic is blocked or allowed to pass.
• icmp—Indicates that the access list entry applies to ICMP traffic.
• protocol—Specifies the traffic being controlled by the access list entry. This can be the name (ip,
tcp, or udp) or number (1-254) of an IP protocol. Alternatively, you can specify a protocol object
group using object-group grp_id.
• source and destination—Specifies the source or destination of the traffic. The source or destination
can be an IPv6 prefix, in the format prefix/length, to indicate a range of addresses, the keyword any,
to specify any address, or a specific host designated by host host_ipv6_addr. 12-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
• src_port and dst_port—The source and destination port (or service) argument. Enter an operator (lt
for less than, gt for greater than, eq for equal to, neq for not equal to, or range for an inclusive
range) followed by a space and a port number (or two port numbers separated by a space for the
range keyword).
• icmp_type—Specifies the ICMP message type being filtered by the access rule. The value can be a
valid ICMP type number (from 0 to 155) or one of the ICMP type literals as shown in Appendix D,
“Addresses, Protocols, and Ports”. Alternatively, you can specify an ICMP object group using
object-group id.
Step 2 To apply the access list to an interface, enter the following command:
hostname(config)# access-group access_list_name {in | out} interface if_name
Configuring IPv6 Neighbor Discovery
The IPv6 neighbor discovery process uses ICMPv6 messages and solicited-node multicast addresses to
determine the link-layer address of a neighbor on the same network (local link), verify the reachability
of a neighbor, and keep track of neighboring routers.
This section contains the following topics:
• Configuring Neighbor Solicitation Messages, page 12-7
• Configuring Router Advertisement Messages, page 12-9
• Multicast Listener Discovery Support, page 12-11
Configuring Neighbor Solicitation Messages
Neighbor solicitation messages (ICMPv6 Type 135) are sent on the local link by nodes attempting to
discover the link-layer addresses of other nodes on the local link. The neighbor solicitation message is
sent to the solicited-node multicast address.The source address in the neighbor solicitation message is
the IPv6 address of the node sending the neighbor solicitation message. The neighbor solicitation
message also includes the link-layer address of the source node.
After receiving a neighbor solicitation message, the destination node replies by sending a neighbor
advertisement message (ICPMv6 Type 136) on the local link. The source address in the neighbor
advertisement message is the IPv6 address of the node sending the neighbor advertisement message; the
destination address is the IPv6 address of the node that sent the neighbor solicitation message. The data
portion of the neighbor advertisement message includes the link-layer address of the node sending the
neighbor advertisement message.
After the source node receives the neighbor advertisement, the source node and destination node can
communicate. Figure 12-1 shows the neighbor solicitation and response process.12-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Figure 12-1 IPv6 Neighbor Discovery—Neighbor Solicitation Message
Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer
address of a neighbor is identified. When a node wants to verifying the reachability of a neighbor, the
destination address in a neighbor solicitation message is the unicast address of the neighbor.
Neighbor advertisement messages are also sent when there is a change in the link-layer address of a node
on a local link. When there is such a change, the destination address for the neighbor advertisement is
the all-nodes multicast address.
You can configure the neighbor solicitation message interval and neighbor reachable time on a
per-interface basis. See the following topics for more information:
• Configuring the Neighbor Solicitation Message Interval, page 12-8
• Configuring the Neighbor Reachable Time, page 12-8
Configuring the Neighbor Solicitation Message Interval
To configure the interval between IPv6 neighbor solicitation retransmissions on an interface, enter the
following command:
hostname(config-if)# ipv6 nd ns-interval value
Valid values for the value argument range from 1000 to 3600000 milliseconds. The default value is 1000
milliseconds.
This setting is also sent in router advertisement messages.
Configuring the Neighbor Reachable Time
The neighbor reachable time enables detecting unavailable neighbors. Shorter configured times enable
detecting unavailable neighbors more quickly; however, shorter times consume more IPv6 network
bandwidth and processing resources in all IPv6 network devices. Very short configured times are not
recommended in normal IPv6 operation.
To configure the amount of time that a remote IPv6 node is considered reachable after a reachability
confirmation event has occurred, enter the following command:
hostname(config-if)# ipv6 nd reachable-time value
132958
A and B can now exchange
packets on this link
ICMPv6 Type = 135
Src = A
Dst = solicited-node multicast of B
Data = link-layer address of A
Query = what is your link address?
ICMPv6 Type = 136
Src = B
Dst = A
Data = link-layer address of B12-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
Valid values for the value argument range from 0 to 3600000 milliseconds. The default is 0.
This information is also sent in router advertisement messages.
When 0 is used for the value, the reachable time is sent as undetermined. It is up to the receiving devices
to set and track the reachable time value. To see the time used by the security appliance when this value
is set to 0, use the show ipv6 interface command to display information about the IPv6 interface,
including the ND reachable time being used.
Configuring Router Advertisement Messages
Router advertisement messages (ICMPv6 Type 134) are periodically sent out each IPv6 configured
interface of security appliance. The router advertisement messages are sent to the all-nodes multicast
address.
Figure 12-2 IPv6 Neighbor Discovery—Router Advertisement Message
Router advertisement messages typically include the following information:
• One or more IPv6 prefix that nodes on the local link can use to automatically configure their IPv6
addresses.
• Lifetime information for each prefix included in the advertisement.
• Sets of flags that indicate the type of autoconfiguration (stateless or stateful) that can be completed.
• Default router information (whether the router sending the advertisement should be used as a default
router and, if so, the amount of time (in seconds) the router should be used as a default router).
• Additional information for hosts, such as the hop limit and MTU a host should use in packets that it
originates.
• The amount of time between neighbor solicitation message retransmissions on a given link.
• The amount of time a node considers a neighbor reachable.
Router advertisements are also sent in response to router solicitation messages (ICMPv6 Type 133).
Router solicitation messages are sent by hosts at system startup so that the host can immediately
autoconfigure without needing to wait for the next scheduled router advertisement message. Because
router solicitation messages are usually sent by hosts at system startup, and the host does not have a
configured unicast address, the source address in router solicitation messages is usually the unspecified
IPv6 address (0:0:0:0:0:0:0:0). If the host has a configured unicast address, the unicast address of the
interface sending the router solicitation message is used as the source address in the message. The
destination address in router solicitation messages is the all-routers multicast address with a scope of the
link. When a router advertisement is sent in response to a router solicitation, the destination address in
the router advertisement message is the unicast address of the source of the router solicitation message.
132917
Router advertisement packet definitions:
ICMPv6 Type = 134
Src = router link-local address
Dst = all-nodes multicast address
Data = options, prefix, lifetime, autoconfig flag
Router
advertisement
Router
advertisement12-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Configuring IPv6
You can configure the following settings for router advertisement messages:
• The time interval between periodic router advertisement messages.
• The router lifetime value, which indicates the amount of time IPv6 nodes should consider security
appliance to be the default router.
• The IPv6 network prefixes in use on the link.
• Whether or not an interface transmits router advertisement messages.
Unless otherwise noted, the router advertisement message settings are specific to an interface and are
entered in interface configuration mode. See the following topics for information about changing these
settings:
• Configuring the Router Advertisement Transmission Interval, page 12-10
• Configuring the Router Lifetime Value, page 12-10
• Configuring the IPv6 Prefix, page 12-10
• Suppressing Router Advertisement Messages, page 12-11
Configuring the Router Advertisement Transmission Interval
By default, router advertisements are sent out every 200 seconds. To change the interval between router
advertisement transmissions on an interface, enter the following command:
ipv6 nd ra-interval [msec] value
Valid values range from 3 to 1800 seconds (or 500 to 1800000 milliseconds if the msec keyword is used).
The interval between transmissions should be less than or equal to the IPv6 router advertisement lifetime
if security appliance is configured as a default router by using the ipv6 nd ra-lifetime command. To
prevent synchronization with other IPv6 nodes, randomly adjust the actual value used to within 20
percent of the desired value.
Configuring the Router Lifetime Value
The router lifetime value specifies how long nodes on the local link should consider security appliance
as the default router on the link.
To configure the router lifetime value in IPv6 router advertisements on an interface, enter the following
command:
hostname(config-if)# ipv6 nd ra-lifetime seconds
Valid values range from 0 to 9000 seconds. The default is 1800 seconds. Entering 0 indicates that
security appliance should not be considered a default router on the selected interface.
Configuring the IPv6 Prefix
Stateless autoconfiguration uses IPv6 prefixes provided in router advertisement messages to create the
global unicast address from the link-local address.
To configure which IPv6 prefixes are included in IPv6 router advertisements, enter the following
command:
hostname(config-if)# ipv6 nd prefix ipv6-prefix/prefix-length
Note For stateless autoconfiguration to work properly, the advertised prefix length in router advertisement
messages must always be 64 bits. 12-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Verifying the IPv6 Configuration
Suppressing Router Advertisement Messages
By default, Router Advertisement messages are automatically sent in response to router solicitation
messages. You may want to disable these messages on any interface for which you do not want security
appliance to supply the IPv6 prefix (for example, the outside interface).
To suppress IPv6 router advertisement transmissions on an interface, enter the following command:
hostname(config-if)# ipv6 nd suppress-ra
Entering this command causes the security appliance to appear as a regular IPv6 neighbor on the link
and not as an IPv6 router.
Multicast Listener Discovery Support
Multicast Listener Discovery Protocol (MLD) Version 2 is supported to discover the presence of
multicast address listeners on their directly attached links, and to discover specifically which multicast
addresses are of interest to those neighboring nodes. ASA becomes a multicast address listener, or a
host, but not a multicast router, and responds to Multicast Listener Queries and sends Multicast Listener Reports only.
The following commands were added or enhanced to support MLD:
• clear ipv6 mld traffic Command
• show ipv6 mld Command
Configuring a Static IPv6 Neighbor
You can manually define a neighbor in the IPv6 neighbor cache. If an entry for the specified IPv6 address
already exists in the neighbor discovery cache—learned through the IPv6 neighbor discovery
process—the entry is automatically converted to a static entry. Static entries in the IPv6 neighbor
discovery cache are not modified by the neighbor discovery process.
To configure a static entry in the IPv6 neighbor discovery cache, enter the following command:
hostname(config-if)# ipv6 neighbor ipv6_address if_name mac_address
The ipv6_address argument is the link-local IPv6 address of the neighbor, the if_name argument is the
interface through which the neighbor is available, and the mac_address argument is the MAC address of
the neighbor interface.
Note The clear ipv6 neighbors command does not remove static entries from the IPv6 neighbor discovery
cache; it only clears the dynamic entries.
Verifying the IPv6 Configuration
This section describes how to verify your IPv6 configuration. You can use various clear, and show
commands to verify your IPv6 settings.
This section includes the following topics:
• The show ipv6 interface Command, page 12-1212-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Verifying the IPv6 Configuration
• The show ipv6 route Command, page 12-12
• The show ipv6 mld traffic Command, page 12-13
The show ipv6 interface Command
To display the IPv6 interface settings, enter the following command:
hostname# show ipv6 interface [if_name]
Including the interface name, such as “outside”, displays the settings for the specified interface.
Excluding the name from the command displays the setting for all interfaces that have IPv6 enabled on
them. The output for the command shows the following:
• The name and status of the interface.
• The link-local and global unicast addresses.
• The multicast groups the interface belongs to.
• ICMP redirect and error message settings.
• Neighbor discovery settings.
The following is sample output from the show ipv6 interface command:
hostname# show ipv6 interface
ipv6interface is down, line protocol is down
IPv6 is enabled, link-local address is fe80::20d:88ff:feee:6a82 [TENTATIVE]
No global unicast address is configured
Joined group address(es):
ff02::1
ff02::1:ffee:6a82
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
Note The show interface command only displays the IPv4 settings for an interface. To see the IPv6
configuration on an interface, you need to use the show ipv6 interface command. The show ipv6
interface command does not display any IPv4 settings for the interface (if both types of addresses are
configured on the interface).
The show ipv6 route Command
To display the routes in the IPv6 routing table, enter the following command:
hostname# show ipv6 route
The output from the show ipv6 route command is similar to the IPv4 show route command. It displays
the following information:
• The protocol that derived the route.
• The IPv6 prefix of the remote network.
• The administrative distance and metric for the route.
• The address of the next-hop router.12-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Verifying the IPv6 Configuration
• The interface through which the next hop router to the specified network is reached.
The following is sample output from the show ipv6 route command:
hostname# show ipv6 route
IPv6 Routing Table - 7 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
L fe80::/10 [0/0]
via ::, inside
L fec0::a:0:0:a0a:a70/128 [0/0]
via ::, inside
C fec0:0:0:a::/64 [0/0]
via ::, inside
L ff00::/8 [0/0]
via ::, inside
The show ipv6 mld traffic Command
To display the MLD traffic counters in the IPv6 routing table, enter the following command:
hostname# show ipv6 mld traffic
The output from the show ipv6 mld traffic command displays whether the expected number of MLD
protocol messages have been received and sent.
The following is sample output from the show ipv6 mld traffic command:
hostname# show ipv6 mld traffic
show ipv6 mld traffic
MLD Traffic Counters
Elapsed time since counters cleared: 00:01:19
Received Sent
Valid MLD Packets 1 3
Queries 1 0
Reports 0 3
Leaves 0 0
Mtrace packets 0 0
Errors:
Malformed Packets 0
Martian source 0
Non link-local source 0
Hop limit is not equal to 1 012-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 12 Configuring IPv6
Verifying the IPv6 ConfigurationC H A P T E R
13-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
13
Configuring AAA Servers and the Local Database
This chapter describes support for AAA (pronounced “triple A”) and how to configure AAA servers and
the local database.
This chapter contains the following sections:
• AAA Overview, page 13-1
• AAA Server and Local Database Support, page 13-2
• Configuring the Local Database, page 13-10
• Identifying AAA Server Groups and Servers, page 13-12
• Using Certificates and User Login Credentials, page 13-15
• Supporting a Zone Labs Integrity Server, page 13-16
AAA Overview
AAA enables the security appliance to determine who the user is (authentication), what the user can do
(authorization), and what the user did (accounting).
AAA provides an extra level of protection and control for user access than using access lists alone. For
example, you can create an access list allowing all outside users to access Telnet on a server on the DMZ
network. If you want only some users to access the server and you might not always know IP addresses
of these users, you can enable AAA to allow only authenticated and/or authorized users to make it
through the security appliance. (The Telnet server enforces authentication, too; the security appliance
prevents unauthorized users from attempting to access the server.)
You can use authentication alone or with authorization and accounting. Authorization always requires a
user to be authenticated first. You can use accounting alone, or with authentication and authorization.
This section includes the following topics:
• About Authentication, page 13-1
• About Authorization, page 13-2
• About Accounting, page 13-2
About Authentication
Authentication controls access by requiring valid user credentials, which are typically a username and
password. You can configure the security appliance to authenticate the following items:13-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
• All administrative connections to the security appliance including the following sessions:
– Telnet
– SSH
– Serial console
– ASDM (using HTTPS)
– VPN management access
• The enable command
• Network access
• VPN access
About Authorization
Authorization controls access per user after users authenticate. You can configure the security appliance
to authorize the following items:
• Management commands
• Network access
• VPN access
Authorization controls the services and commands available to each authenticated user. Were you not to
enable authorization, authentication alone would provide the same access to services for all
authenticated users.
If you need the control that authorization provides, you can configure a broad authentication rule, and
then have a detailed authorization configuration. For example, you authenticate inside users who attempt
to access any server on the outside network and then limit the outside servers that a particular user can
access using authorization.
The security appliance caches the first 16 authorization requests per user, so if the user accesses the same
services during the current authentication session, the security appliance does not resend the request to
the authorization server.
About Accounting
Accounting tracks traffic that passes through the security appliance, enabling you to have a record of
user activity. If you enable authentication for that traffic, you can account for traffic per user. If you do
not authenticate the traffic, you can account for traffic per IP address. Accounting information includes
when sessions start and stop, username, the number of bytes that pass through the security appliance for
the session, the service used, and the duration of each session.
AAA Server and Local Database Support
The security appliance supports a variety of AAA server types and a local database that is stored on the
security appliance. This section describes support for each AAA server type and the local database.
This section contains the following topics:
• Summary of Support, page 13-313-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
• RADIUS Server Support, page 13-3
• TACACS+ Server Support, page 13-4
• SDI Server Support, page 13-4
• NT Server Support, page 13-5
• Kerberos Server Support, page 13-5
• LDAP Server Support, page 13-6
• SSO Support for WebVPN with HTTP Forms, page 13-9
• Local Database Support, page 13-9
Summary of Support
Table 13-1 summarizes the support for each AAA service by each AAA server type, including the local
database. For more information about support for a specific AAA server type, refer to the topics
following the table.
RADIUS Server Support
The security appliance supports RADIUS servers.
Table 13-1 Summary of AAA Support
AAA Service
Database Type
Local RADIUS TACACS+ SDI NT Kerberos LDAP
HTTP
Form
Authentication of...
VPN u s er s Yes Yes Yes Yes Yes Yes Yes Yes
1
1. HTTP Form protocol supports single sign-on authentication for WebVPN users only.
Fir ewall s es s ion s Yes Yes Yes Yes Yes Yes Yes No
Administrators Yes Yes Yes Yes
2
2. SDI is not supported for HTTP administrative access.
Yes Yes Yes No
Authorization of...
VPN users Yes Yes No No No No Yes No
Firewall sessions No Yes
3
3. For firewall sessions, RADIUS authorization is supported with user-specific access lists only, which are received or
specified in a RADIUS authentication response.
Yes No No No No No
Administrators Yes
4
4. Local command authorization is supported by privilege level only.
No Yes No No No No No
Accounting of...
VPN connections No Yes Yes No No No No No
Firewall sessions No Yes Yes No No No No No
Administrators No Yes
5
5. Command accounting is available for TACACS+ only.
Yes No No No No No13-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
This section contains the following topics:
• Authentication Methods, page 13-4
• Attribute Support, page 13-4
• RADIUS Authorization Functions, page 13-4
Authentication Methods
The security appliance supports the following authentication methods with RADIUS:
• PAP—For all connection types.
• CHAP—For L2TP-over-IPSec.
• MS-CHAPv1—For L2TP-over-IPSec.
• MS-CHAPv2—For L2TP-over-IPSec, and for regular IPSec remote access connections when the
password management feature is enabled.
Attribute Support
The security appliance supports the following sets of RADIUS attributes:
• Authentication attributes defined in RFC 2138.
• Accounting attributes defined in RFC 2139.
• RADIUS attributes for tunneled protocol support, defined in RFC 2868.
• Cisco IOS VSAs, identified by RADIUS vendor ID 9.
• Cisco VPN-related VSAs, identified by RADIUS vendor ID 3076.
• Microsoft VSAs, defined in RFC 2548.
RADIUS Authorization Functions
The security appliance can use RADIUS servers for user authorization for network access using dynamic
access lists or access list names per user. To implement dynamic access lists, you must configure the
RADIUS server to support it. When the user authenticates, the RADIUS server sends a downloadable
access list or access list name to the security appliance. Access to a given service is either permitted or
denied by the access list. The security appliance deletes the access list when the authentication session
expires.
TACACS+ Server Support
The security appliance supports TACACS+ authentication with ASCII, PAP, CHAP, and MS-CHAPv1.
SDI Server Support
The RSA SecureID servers are also known as SDI servers.
This section contains the following topics:
• SDI Version Support, page 13-513-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
• Two-step Authentication Process, page 13-5
• SDI Primary and Replica Servers, page 13-5
SDI Version Support
The security appliance supports SDI Version 5.0 and 6.0. SDI uses the concepts of an SDI primary and
SDI replica servers. Each primary and its replicas share a single node secret file. The node secret file has
its name based on the hexadecimal value of the ACE/Server IP address with .sdi appended.
A version 5.0 or 6.0 SDI server that you configure on the security appliance can be either the primary or
any one of the replicas. See the “SDI Primary and Replica Servers” section on page 13-5 for information
about how the SDI agent selects servers to authenticate users.
Two-step Authentication Process
SDI version 5.0 and 6.0 uses a two-step process to prevent an intruder from capturing information from
an RSA SecurID authentication request and using it to authenticate to another server. The Agent first
sends a lock request to the SecurID server before sending the user authentication request. The server
locks the username, preventing another (replica) server from accepting it. This means that the same user
cannot authenticate to two security appliances using the same authentication servers simultaneously.
After a successful username lock, the security appliance sends the passcode.
SDI Primary and Replica Servers
The security appliance obtains the server list when the first user authenticates to the configured server,
which can be either a primary or a replica. The security appliance then assigns priorities to each of the
servers on the list, and subsequent server selection derives at random from those assigned priorities. The
highest priority servers have a higher likelihood of being selected.
NT Server Support
The security appliance supports Microsoft Windows server operating systems that support NTLM
version 1, collectively referred to as NT servers.
Note NT servers have a maximum length of 14 characters for user passwords. Longer passwords are truncated.
This is a limitation of NTLM version 1.
Kerberos Server Support
The security appliance supports 3DES, DES, and RC4 encryption types.
Note The security appliance does not support changing user passwords during tunnel negotiation. To avoid
this situation happening inadvertently, disable password expiration on the Kerberos/Active Directory
server for users connecting to the security appliance.
For a simple Kerberos server configuration example, see Example 13-2.13-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
LDAP Server Support
This section describes using an LDAP directory with the security appliance for user authentication and
VPN authorization. This section includes the following topics:
• Authentication with LDAP, page 13-6
• Authorization with LDAP for VPN, page 13-7
• LDAP Attribute Mapping, page 13-8
For example configuration procedures used to set up LDAP authentication or authorization, see
Appendix E, “Configuring an External Server for Authorization and Authentication”.
Authentication with LDAP
During authentication, the security appliance acts as a client proxy to the LDAP server for the user, and
authenticates to the LDAP server in either plain text or using the Simple Authentication and Security
Layer (SASL) protocol. By default, the security appliance passes authentication parameters, usually a
username and password, to the LDAP server in plain text. Whether using SASL or plain text, you can
secure the communications between the security appliance and the LDAP server with SSL using the
ldap-over-ssl command.
Note If you do not configure SASL, we strongly recommend that you secure LDAP communications with
SSL. See the ldap-over-ssl command in the Cisco Security Appliance Command Reference.
When user LDAP authentication has succeeded, the LDAP server returns the attributes for the
authenticated user. For VPN authentication, these attributes generally include authorization data which
is applied to the VPN session. Thus, using LDAP accomplishes authentication and authorization in a
single step.
Securing LDAP Authentication with SASL
The security appliance supports the following SASL mechanisms, listed in order of increasing strength:
• Digest-MD5 — The security appliance responds to the LDAP server with an MD5 value computed
from the username and password.
• Kerberos — The security appliance responds to the LDAP server by sending the username and realm
using the GSSAPI (Generic Security Services Application Programming Interface) Kerberos
mechanism.
You can configure the security appliance and LDAP server to support any combination of these SASL
mechanisms. If you configure multiple mechanisms, the security appliance retrieves the list of SASL
mechanisms configured on the server and sets the authentication mechanism to the strongest mechanism
configured on both the security appliance and the server. For example, if both the LDAP server and the
security appliance support both mechanisms, the security appliance selects Kerberos, the stronger of the
mechanisms.
The following example configures the security appliance for authentication to an LDAP directory server
named ldap_dir_1 using the digest-MD5 SASL mechanism, and communicating over an SSL-secured
connection:
hostname(config)# aaa-server ldap_dir_1 protocol ldap
hostname(config-aaa-server-group)# aaa-server ldap_dir_1 host 10.1.1.4
hostname(config-aaa-server-host)# sasl-mechanism digest-md5
hostname(config-aaa-server-host)# ldap-over-ssl enable13-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
hostname(config-aaa-server-host)#
Setting the LDAP Server Type
The security appliance supports LDAP Version 3. In the current release, it is compatible only with the
Sun Microsystems JAVA System Directory Server (formerly named the Sun ONE Directory Server) and
the Microsoft Active Directory. In later releases, the security appliance will support other OpenLDAP
servers.
By default, the security appliance auto-detects whether it is connected to a Microsoft or a Sun LDAP
directory server. However, if auto-detection fails to determine the LDAP server type, and you know the
server is either a Microsoft or Sun server, you can manually configure the server type. The following
example sets the LDAP directory server ldap_dir_1 to the Sun Microsystems type:
hostname(config)# aaa-server ldap_dir_1 protocol ldap
hostname(config-aaa-server-group)# aaa-server ldap_dir_1 host 10.1.1.4
hostname(config-aaa-server-host)# server-type sun
hostname(config-aaa-server-host)#
Note • Sun—The DN configured on the security appliance to access a Sun directory server must be able to
access the default password policy on that server. We recommend using the directory administrator,
or a user with directory administrator privileges, as the DN. Alternatively, you can place an ACI on
the default password policy.
• Microsoft—You must configure LDAP over SSL to enable password management with Microsoft
Active Directory.
Authorization with LDAP for VPN
When user LDAP authentication for VPN access has succeeded, the security appliance queries the LDAP
server which returns LDAP attributes. These attributes generally include authorization data that applies
to the VPN session. Thus, using LDAP accomplishes authentication and authorization in a single step.
There may be cases, however, where you require authorization from an LDAP directory server that is
separate and distinct from the authentication mechanism. For example, if you use an SDI or certificate
server for authentication, no authorization information is passed back. For user authorizations in this
case, you can query an LDAP directory after successful authentication, accomplishing authentication
and authorization in two steps.
To set up VPN user authorization using LDAP, you must first create a AAA server group and a tunnel
group. You then associate the server and tunnel groups using the tunnel-group general-attributes
command. While there are other authorization-related commands and options available for specific
requirements, the following example shows fundamental commands for enabling user authorization with
LDAP. This example then creates an IPSec remote access tunnel group named remote-1, and assigns that
new tunnel group to the previously created ldap_dir_1 AAA server for authorization.
hostname(config)# tunnel-group remote-1 type ipsec-ra
hostname(config)# tunnel-group remote-1 general-attributes
hostname(config-general)# authorization-server-group ldap_dir_1
hostname(config-general)#13-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
After you complete this fundamental configuration work, you can configure additional LDAP
authorization parameters such as a directory password, a starting point for searching a directory, and the
scope of a directory search:
hostname(config)# aaa-server ldap_dir_1 protocol ldap
hostname(config-aaa-server-group)# aaa-server ldap_dir_1 host 10.1.1.4
hostname(config-aaa-server-host)# ldap-login-dn obscurepassword
hostname(config-aaa-server-host)# ldap-base-dn starthere
hostname(config-aaa-server-host)# ldap-scope subtree
hostname(config-aaa-server-host)#
See LDAP commands in the Cisco Security Appliance Command Reference for more information.
LDAP Attribute Mapping
If you are introducing a security appliance to an existing LDAP directory, your existing LDAP attribute
names and values are probably different from the existing ones. You must create LDAP attribute maps
that map your existing user-defined attribute names and values to Cisco attribute names and values that
are compatible with the security appliance. You can then bind these attribute maps to LDAP servers or
remove them as needed. You can also show or clear attribute maps.
Note To use the attribute mapping features correctly, you need to understand the Cisco LDAP attribute names
and values as well as the user-defined attribute names and values.
The following command, entered in global configuration mode, creates an unpopulated LDAP attribute
map table named att_map_1:
hostname(config)# ldap attribute-map att_map_1
hostname(config-ldap-attribute-map)#
The following commands map the user-defined attribute name department to the Cisco attribute name
cVPN3000-IETF-Radius-Class. The second command maps the user-defined attribute value Engineering
to the user-defined attribute department and the Cisco-defined attribute value group1.
hostname(config)# ldap attribute-map att_map_1
hostname(config-ldap-attribute-map)# map-name department cVPN3000-IETF-Radius-Class
hostname(config-ldap-attribute-map)# map-value department Engineering group1
hostname(config-ldap-attribute-map)#
The following commands bind the attribute map att_map_1 to the LDAP server ldap_dir_1:
hostname(config)# aaa-server ldap_dir_1 host 10.1.1.4
hostname(config-aaa-server-host)# ldap-attribute-map att_map_1
hostname(config-aaa-server-host)#
Note The command to create an attribute map (ldap attribute-map) and the command to bind it to an LDAP
server (ldap-attribute-map) differ only by a hyphen and the mode.
The following commands display or clear all LDAP attribute maps in the running configuration:
hostname# show running-config all ldap attribute-map
hostname(config)# clear configuration ldap attribute-map
hostname(config)#
The names of frequently mapped Cisco LDAP attributes and the type of user-defined attributes they
would commonly be mapped to include:13-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
AAA Server and Local Database Support
cVPN3000-IETF-Radius-Class — Department or user group
cVPN3000-IETF-Radius-Filter-Id — Access control list
cVPN3000-IETF-Radius-Framed-IP-Address — A static IP address
cVPN3000-IPSec-Banner1 — A organization title
cVPN3000-Tunneling-Protocols — Allow or deny dial-in
For a list of Cisco LDAP attribute names and values, see Appendix E, “Configuring an External Server
for Authorization and Authentication”. Alternatively, you can enter “?” within ldap-attribute-map mode
to display the complete list of Cisco LDAP attribute names, as shown in the following example:
hostname(config)# ldap attribute-map att_map_1
hostname(config-ldap-attribute-map)# map-name att_map_1 ?
ldap mode commands/options:
cisco-attribute-names:
cVPN3000-Access-Hours
cVPN3000-Allow-Network-Extension-Mode
cVPN3000-Auth-Service-Type
cVPN3000-Authenticated-User-Idle-Timeout
cVPN3000-Authorization-Required
cVPN3000-Authorization-Type
:
:
cVPN3000-X509-Cert-Data
hostname(config-ldap-attribute-map)#
SSO Support for WebVPN with HTTP Forms
The security appliance can use the HTTP Form protocol for single sign-on (SSO) authentication of
WebVPN users only. Single sign-on support lets WebVPN users enter a username and password only
once to access multiple protected services and Web servers. The WebVPN server running on the security
appliance acts as a proxy for the user to the authenticating server. When a user logs in, the WebVPN
server sends an SSO authentication request, including username and password, to the authenticating
server using HTTPS. If the server approves the authentication request, it returns an SSO authentication
cookie to the WebVPN server. The security appliance keeps this cookie on behalf of the user and uses it
to authenticate the user to secure websites within the domain protected by the SSO server.
In addition to the HTTP Form protocol, WebVPN administrators can choose to configure SSO with the
HTTP Basic and NTLM authentication protocols (the auto-signon command), or with Computer
Associates eTrust SiteMinder SSO server (formerly Netegrity SiteMinder) as well. For an in-depth
discussion of configuring SSO with either HTTP Forms, auto-signon or SiteMinder, see the Configuring
WebVPN chapter.
Local Database Support
The security appliance maintains a local database that you can populate with user profiles.
This section contains the following topics:
• User Profiles, page 13-10
• Fallback Support, page 13-1013-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Configuring the Local Database
User Profiles
User profiles contain, at a minimum, a username. Typically, a password is assigned to each username,
although passwords are optional.
The username attributes command lets you enter the username mode. In this mode, you can add other
information to a specific user profile. The information you can add includes VPN-related attributes, such
as a VPN session timeout value.
Fallback Support
The local database can act as a fallback method for several functions. This behavior is designed to help
you prevent accidental lockout from the security appliance.
For users who need fallback support, we recommend that their usernames and passwords in the local
database match their usernames and passwords in the AAA servers. This provides transparent fallback
support. Because the user cannot determine whether a AAA server or the local database is providing the
service, using usernames and passwords on AAA servers that are different than the usernames and
passwords in the local database means that the user cannot be certain which username and password
should be given.
The local database supports the following fallback functions:
• Console and enable password authentication—When you use the aaa authentication console
command, you can add the LOCAL keyword after the AAA server group tag. If the servers in the
group all are unavailable, the security appliance uses the local database to authenticate
administrative access. This can include enable password authentication, too.
• Command authorization—When you use the aaa authorization command command, you can
add the LOCAL keyword after the AAA server group tag. If the TACACS+ servers in the group all
are unavailable, the local database is used to authorize commands based on privilege levels.
• VPN authentication and authorization—VPN authentication and authorization are supported to
enable remote access to the security appliance if AAA servers that normally support these VPN
services are unavailable. The authentication-server-group command, available in tunnel-group
general attributes mode, lets you specify the LOCAL keyword when you are configuring attributes
of a tunnel group. When VPN client of an administrator specifies a tunnel group configured to
fallback to the local database, the VPN tunnel can be established even if the AAA server group is
unavailable, provided that the local database is configured with the necessary attributes.
Configuring the Local Database
This section describes how to manage users in the local database. You can use the local database for
CLI access authentication, privileged mode authentication, command authorization, network access
authentication, and VPN authentication and authorization. You cannot use the local database for network
access authorization. The local database does not support accounting.
For multiple context mode, you can configure usernames in the system execution space to provide
individual logins using the login command; however, you cannot configure any aaa commands in the
system execution space.
Caution If you add to the local database users who can gain access to the CLI but who should not be allowed to
enter privileged mode, enable command authorization. (See the “Configuring Local Command
Authorization” section on page 40-8.) Without command authorization, users can access privileged 13-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Configuring the Local Database
mode (and all commands) at the CLI using their own password if their privilege level is 2 or greater (2 is
the default). Alternatively, you can use RADIUS or TACACS+ authentication so that the user cannot use
the login command, or you can set all local users to level 1 so you can control who can use the system
enable password to access privileged mode.
To define a user account in the local database, perform the following steps:
Step 1 Create the user account. To do so, enter the following command:
hostname(config)# username name {nopassword | password password [mschap]} [privilege
priv_level]
where the options are as follows:
• username—A string from 4 to 64 characters long.
• password password—A string from 3 to 16 characters long.
• mschap—Specifies that the password will be converted to unicode and hashed using MD4 after you
enter it. Use this keyword if users are authenticated using MSCHAPv1 or MSCHAPv2.
• privilege level—The privilege level that you want to assign to the new user account (from 0 to 15).
The default is 2. This privilege level is used with command authorization.
• nopassword—Creates a user account with no password.
The encrypted and nt-encrypted keywords are typically for display only. When you define a password
in the username command, the security appliance encrypts it when it saves it to the configuration for
security purposes. When you enter the show running-config command, the username command does
not show the actual password; it shows the encrypted password followed by the encrypted or
nt-encrypted keyword (when you specify mschap). For example, if you enter the password “test,” the
show running-config display would appear to be something like the following:
username pat password DLaUiAX3l78qgoB5c7iVNw== nt-encrypted
The only time you would actually enter the encrypted or nt-encrypted keyword at the CLI is if you are
cutting and pasting a configuration to another security appliance and you are using the same password.
Step 2 To configure a local user account with VPN attributes, follow these steps:
a. Enter the following command:
hostname(config)# username username attributes
When you enter a username attributes command, you enter username mode. The commands
available in this mode are as follows:
• group-lock
• password-storage
• vpn-access-hours
• vpn-filter
• vpn-framed-ip-address
• vpn-group-policy
• vpn-idle-timeout
• vpn-session-timeout
• vpn-simultaneous-logins
• vpn-tunnel-protocol13-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Identifying AAA Server Groups and Servers
• webvpn
Use these commands as needed to configure the user profile. For more information about these
commands, see the Cisco Security Appliance Command Reference.
b. When you have finished configuring the user profiles, enter exit to return to config mode.
For example, the following command assigns a privilege level of 15 to the admin user account:
hostname(config)# username admin password passw0rd privilege 15
The following command creates a user account with no password:
hostname(config)# username bcham34 nopassword
The following commands creates a user account with a password, enters username mode, and specifies
a few VPN attributes:
hostname(config)# username rwilliams password gOgeOus
hostname(config)# username rwilliams attributes
hostname(config-username)# vpn-tunnel-protocol IPSec
hostname(config-username)# vpn-simultaneous-logins 6
hostname(config-username)# exit
Identifying AAA Server Groups and Servers
If you want to use an external AAA server for authentication, authorization, or accounting, you must first
create at least one AAA server group per AAA protocol and add one or more servers to each group. You
identify AAA server groups by name. Each server group is specific to one type of server: Kerberos,
LDAP, NT, RADIUS, SDI, or TACACS+.
The security appliance contacts the first server in the group. If that server is unavailable, the security
appliance contacts the next server in the group, if configured. If all servers in the group are unavailable,
the security appliance tries the local database if you configured it as a fallback method (management
authentication and authorization only). If you do not have a fallback method, the security appliance
continues to try the AAA servers.
To create a server group and add AAA servers to it, follow these steps:
Step 1 For each AAA server group you need to create, follow these steps:
a. Identify the server group name and the protocol. To do so, enter the following command:
hostname(config)# aaa-server server_group protocol {kerberos | ldap | nt | radius |
sdi | tacacs+}
For example, to use RADIUS to authenticate network access and TACACS+ to authenticate CLI
access, you need to create at least two server groups, one for RADIUS servers and one for TACACS+
servers.
You can have up to 15 single-mode server groups or 4 multi-mode server groups. Each server group
can have up to 16 servers in single mode or up to 4 servers in multi-mode.
When you enter a aaa-server protocol command, you enter group mode.
b. If you want to specify the maximum number of requests sent to a AAA server in the group before
trying the next server, enter the following command:13-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Identifying AAA Server Groups and Servers
hostname(config-aaa-server-group)# max-failed-attempts number
The number can be between 1 and 5. The default is 3.
If you configured a fallback method using the local database (for management access only; see the
“Configuring AAA for System Administrators” section on page 40-5 and the “Configuring
TACACS+ Command Authorization” section on page 40-11 to configure the fallback mechanism),
and all the servers in the group fail to respond, then the group is considered to be unresponsive, and
the fallback method is tried. The server group remains marked as unresponsive for a period of 10
minutes (by default) so that additional AAA requests within that period do not attempt to contact
the server group, and the fallback method is used immediately. To change the unresponsive period
from the default, see the reactivation-mode command in the following step.
If you do not have a fallback method, the security appliance continues to retry the servers in the
group.
c. If you want to specify the method (reactivation policy) by which failed servers in a group are
reactivated, enter the following command:
hostname(config-aaa-server-group)# # reactivation-mode {depletion [deadtime minutes] |
timed}
Where the depletion keyword reactivates failed servers only after all of the servers in the group are
inactive.
The deadtime minutes argument specifies the amount of time in minutes, between 0 and 1440, that
elapses between the disabling of the last server in the group and the subsequent re-enabling of all
servers. The default is 10 minutes.
The timed keyword reactivates failed servers after 30 seconds of down time.
d. If you want to send accounting messages to all servers in the group (RADIUS or TACACS+ only),
enter the following command:
hostname(config-aaa-server-group)# accounting-mode simultaneous
To restore the default of sending messages only to the active server, enter the accounting-mode
single command.
Step 2 For each AAA server on your network, follow these steps:
a. Identify the server, including the AAA server group it belongs to. To do so, enter the following
command:
hostname(config)# aaa-server server_group (interface_name) host server_ip
When you enter a aaa-server host command, you enter host mode.
b. As needed, use host mode commands to further configure the AAA server.
The commands in host mode do not apply to all AAA server types. Table 13-2 lists the available
commands, the server types they apply to, and whether a new AAA server definition has a default
value for that command. Where a command is applicable to the server type you specified and no
default value is provided (indicated by “—”), use the command to specify the value. For more
information about these commands, see the Cisco Security Appliance Command Reference.13-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Identifying AAA Server Groups and Servers
Example 13-1 shows commands that add one TACACS+ group with one primary and one backup server,
one RADIUS group with a single server, and an NT domain server.
Example 13-1 Multiple AAA Server Groups and Servers
hostname(config)# aaa-server AuthInbound protocol tacacs+
hostname(config-aaa-server-group)# max-failed-attempts 2
hostname(config-aaa-server-group)# reactivation-mode depletion deadtime 20
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthInbound (inside) host 10.1.1.1
hostname(config-aaa-server-host)# key TACPlusUauthKey
Table 13-2 Host Mode Commands, Server Types, and Defaults
Command Applicable AAA Server Types Default Value
accounting-port RADIUS 1646
acl-netmask-convert RADIUS standard
authentication-port RADIUS 1645
kerberos-realm Kerberos —
key RADIUS —
TACACS+ —
ldap-attribute-map LDAP —
ldap-base-dn LDAP —
ldap-login-dn LDAP —
ldap-login-password LDAP —
ldap-naming-attribute LDAP —
ldap-over-ssl LDAP —
ldap-scope LDAP —
nt-auth-domain-controller NT —
radius-common-pw RADIUS —
retry-interval Kerberos 10 seconds
RADIUS 10 seconds
SDI 10 seconds
sasl-mechanism LDAP —
server-port Kerberos 88
LDAP 389
NT 139
SDI 5500
TACACS+ 49
server-type LDAP auto-discovery
timeout All 10 seconds13-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Using Certificates and User Login Credentials
hostname(config-aaa-server-host)# exit
hostname(config)# aaa-server AuthInbound (inside) host 10.1.1.2
hostname(config-aaa-server-host)# key TACPlusUauthKey2
hostname(config-aaa-server-host)# exit
hostname(config)# aaa-server AuthOutbound protocol radius
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthOutbound (inside) host 10.1.1.3
hostname(config-aaa-server-host)# key RadUauthKey
hostname(config-aaa-server-host)# exit
hostname(config)# aaa-server NTAuth protocol nt
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server NTAuth (inside) host 10.1.1.4
hostname(config-aaa-server-host)# nt-auth-domain-controller primary1
hostname(config-aaa-server-host)# exit
Example 13-2 shows commands that configure a Kerberos AAA server group named watchdogs, add a
AAA server to the group, and define the Kerberos realm for the server. Because Example 13-2 does not
define a retry interval or the port that the Kerberos server listens to, the security appliance uses the
default values for these two server-specific parameters. Table 13-2 lists the default values for all AAA
server host mode commands.
Note Kerberos realm names use numbers and upper-case letters only. Although the security appliance accepts
lower-case letters for a realm name, it does not translate lower-case letters to upper-case letters. Be sure
to use upper-case letters only.
Example 13-2 Kerberos Server Group and Server
hostname(config)# aaa-server watchdogs protocol kerberos
hostname(config-aaa-server-group)# aaa-server watchdogs host 192.168.3.4
hostname(config-aaa-server-host)# kerberos-realm EXAMPLE.COM
hostname(config-aaa-server-host)# exit
hostname(config)#
Using Certificates and User Login Credentials
The following section describes the different methods of using certificates and user login credentials
(username and password) for authentication and authorization. This applies to both IPSec and WebVPN.
In all cases, LDAP authorization does not use the password as a credential. RADIUS authorization uses
either a common password for all users or the username as a password.
Using User Login Credentials
The default method for authentication and authorization uses the user login credentials.
• Authentication
– Enabled by authentication server group setting
– Uses the username and password as credentials
• Authorization
– Enabled by authorization server group setting
– Uses the username as a credential13-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Supporting a Zone Labs Integrity Server
Using certificates
If user digital certificates are configured, the security appliance first validates the certificate. It does not,
however, use any of the DNs from the certificates as a username for the authentication.
If both authentication and authorization are enabled, the security appliance uses the user login
credentials for both user authentication and authorization.
• Authentication
– Enabled by authentication server group setting
– Uses the username and password as credentials
• Authorization
– Enabled by authorization server group setting
– Uses the username as a credential
If authentication is disabled and authorization is enabled, the security appliance uses the primary DN
field for authorization.
• Authentication
– DISABLED (set to None) by authentication server group setting
– No credentials used
• Authorization
– Enabled by authorization server group setting
– Uses the username value of the certificate primary DN field as a credential
Note If the primary DN field is not present in the certificate, the security appliance uses the secondary DN
field value as the username for the authorization request.
For example, consider a user certificate that contains the following Subject DN fields and values:
Cn=anyuser,OU=sales;O=XYZCorporation;L=boston;S=mass;C=us;ea=anyuser@example.com.
If the Primary DN = EA (E-mail Address) and the Secondary DN = CN (Common Name), then the
username used in the authorization request would be anyuser@example.com.
Supporting a Zone Labs Integrity Server
This section introduces the Zone Labs Integrity Server, also called Check Point Integrity Server, and
presents an example procedure for configuring the security appliance to support the Zone Labs Integrity
Server. The Integrity server is a central management station for configuring and enforcing security
policies on remote PCs. If a remote PC does not conform to the security policy dictated by the Integrity
Server, it will not be granted access to the private network protected by the Integrity Server and security
appliance.
This section includes the following topics:
• Overview of Integrity Server and Security Appliance Interaction, page 13-17
• Configuring Integrity Server Support, page 13-1713-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Supporting a Zone Labs Integrity Server
Overview of Integrity Server and Security Appliance Interaction
The VPN client software and the Integrity client software are co-resident on a remote PC. The following
steps summarize the actions of the remote PC, security appliance, and Integrity server in the
establishment of a session between the PC and the enterprise private network:
1. The VPN client software (residing on the same remote PC as the Integrity client software) connects
to the security appliance and tells the security appliance what type of firewall client it is.
2. Once it approves the client firewall type, the security appliance passes Integrity server address
information back to the Integrity client.
3. With the security appliance acting as a proxy, the Integrity client establishes a restricted connection
with the Integrity server. A restricted connection is only between the Integrity client and server.
4. The Integrity server determines if the Integrity client is in compliance with the mandated security
policies. If the client is in compliance with security policies, the Integrity server instructs the
security appliance to open the connection and provide the client with connection details.
5. On the remote PC, the VPN client passes connection details to the Integrity client and signals that
policy enforcement should begin immediately and the client can no enter the private network.
6. Once the connection is established, the server continues to monitor the state of the client using client
heartbeat messages.
Note The current release of the security appliance supports one Integrity Server at a time even though the user
interfaces support the configuration of up to five Integrity Servers. If the active Server fails, configure
another Integrity Server on the security appliance and then reestablish the client VPN session.
Configuring Integrity Server Support
This section describes an example procedure for configuring the security appliance to support the Zone
Labs Integrity Servers. The procedure involves configuring address, port, connection fail timeout and
fail states, and SSL certificate parameters.
First, you must configure the hostname or IP address of the Integrity server. The following example
commands, entered in global configuration mode, configure an Integrity server using the IP address
10.0.0.5. They also specify port 300 (the default port is 5054) and the inside interface for
communications with the Integrity server.
hostname(config)# zonelabs-integrity server-address 10.0.0.5
hostname(config)# zonelabs-integrity port 300
hostname(config)# zonelabs-integrity interface inside
hostname(config)#
If the connection between the security appliance and the Integrity server fails, the VPN client
connections remain open by default so that the enterprise VPN is not disrupted by the failure of an
Integrity server. However, you may want to close the VPN connections if the Zone Labs Integrity Server
fails. The following commands ensure that the security appliance waits 12 seconds for a response from
either the active or standby Integrity servers before declaring an the Integrity server as failed and closing
the VPN client connections:
hostname(config)# zonelabs-integrity fail-timeout 12
hostname(config)# zonelabs-integrity fail-close
hostname(config)# 13-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 13 Configuring AAA Servers and the Local Database
Supporting a Zone Labs Integrity Server
The following command returns the configured VPN client connection fail state to the default and
ensures the client connections remain open:
hostname(config)# zonelabs-integrity fail-open
hostname(config)#
The following example commands specify that the Integrity server connects to port 300 (default is port
80) on the security appliance to request the server SSL certificate. While the server SSL certificate is
always authenticated, these commands also specify that the client SSL certificate of the Integrity server
be authenticated.
hostname(config)# zonelabs-integrity ssl-certificate-port 300
hostname(config)# zonelabs-integrity ssl-client-authentication
hostname(config)#
To set the firewall client type to the Zone Labs Integrity type, use the client-firewall command as
described in the “Configuring Firewall Policies” section on page 30-55. The command arguments that
specify firewall policies are not used when the firewall type is zonelabs-integrity because the Integrity
server determines the policies.C H A P T E R
14-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
14
Configuring Failover
This chapter describes the security appliance failover feature, which lets you configure two security
appliances so that one takes over operation if the other one fails.
Note The ASA 5505 series adaptive security appliance does not support Stateful Failover or Active/Active
failover.
This chapter includes the following sections:
• Understanding Failover, page 14-1
• Configuring Failover, page 14-19
• Controlling and Monitoring Failover, page 14-49
For failover configuration examples, see Appendix B, “Sample Configurations.”
Understanding Failover
The failover configuration requires two identical security appliances connected to each other through a
dedicated failover link and, optionally, a Stateful Failover link. The health of the active interfaces and
units is monitored to determine if specific failover conditions are met. If those conditions are met,
failover occurs.
The security appliance supports two failover configurations, Active/Active failover and Active/Standby
failover. Each failover configuration has its own method for determining and performing failover.
With Active/Active failover, both units can pass network traffic. This lets you configure load balancing
on your network. Active/Active failover is only available on units running in multiple context mode.
With Active/Standby failover, only one unit passes traffic while the other unit waits in a standby state.
Active/Standby failover is available on units running in either single or multiple context mode.
Both failover configurations support stateful or stateless (regular) failover.
Note VPN failover is not supported on units running in multiple context mode. VPN failover available for
Active/Standby failover configurations only. 14-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
This section includes the following topics:
• Failover System Requirements, page 14-2
• The Failover and Stateful Failover Links, page 14-3
• Active/Active and Active/Standby Failover, page 14-6
• Regular and Stateful Failover, page 14-15
• Failover Health Monitoring, page 14-16
• Failover Feature/Platform Matrix, page 14-18
• Failover Times by Platform, page 14-18
Failover System Requirements
This section describes the hardware, software, and license requirements for security appliances in a
failover configuration. This section contains the following topics:
• Hardware Requirements, page 14-2
• Software Requirements, page 14-2
• License Requirements, page 14-2
Hardware Requirements
The two units in a failover configuration must have the same hardware configuration. They must be the
same model, have the same number and types of interfaces, and the same amount of RAM.
Note The two units do not have to have the same size Flash memory. If using units with different Flash
memory sizes in your failover configuration, make sure the unit with the smaller Flash memory has
enough space to accommodate the software image files and the configuration files. If it does not,
configuration synchronization from the unit with the larger Flash memory to the unit with the smaller
Flash memory will fail.
Software Requirements
The two units in a failover configuration must be in the operating modes (routed or transparent, single
or multiple context). They have the same major (first number) and minor (second number) software
version. However, you can use different versions of the software during an upgrade process; for example,
you can upgrade one unit from Version 7.0(1) to Version 7.0(2) and have failover remain active. We
recommend upgrading both units to the same version to ensure long-term compatibility.
See “Performing Zero Downtime Upgrades for Failover Pairs” section on page 41-6 for more
information about upgrading the software on a failover pair.
License Requirements
On the PIX 500 series security appliance, at least one of the units must have an unrestricted (UR) license.
The other unit can have a Failover Only (FO) license, a Failover Only Active-Active (FO_AA) license,
or another UR license. Units with a Restricted license cannot be used for failover, and two units with FO
or FO_AA licenses cannot be used together as a failover pair.14-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Note The FO license does not support Active/Active failover.
The FO and FO_AA licenses are intended to be used solely for units in a failover configuration and not
for units in standalone mode. If a failover unit with one of these licenses is used in standalone mode, the
unit reboots at least once every 24 hours until the unit is returned to failover duty. A unit with an FO or
FO_AA license operates in standalone mode if it is booted without being connected to a failover peer
with a UR license. If the unit with a UR license in a failover pair fails and is removed from the
configuration, the unit with the FO or FO_AA license does not automatically reboot every 24 hours; it
operates uninterrupted unless the it is manually rebooted.
When the unit automatically reboots, the following message displays on the console:
=========================NOTICE=========================
This machine is running in secondary mode without
a connection to an active primary PIX. Please
check your connection to the primary system.
REBOOTING....
========================================================
The ASA 5500 series adaptive security appliance platform does not have this restriction.
The Failover and Stateful Failover Links
This section describes the failover and the Stateful Failover links, which are dedicated connections
between the two units in a failover configuration. This section includes the following topics:
• Failover Link, page 14-3
• Stateful Failover Link, page 14-5
Failover Link
The two units in a failover pair constantly communicate over a failover link to determine the operating
status of each unit. The following information is communicated over the failover link:
• The unit state (active or standby).
• Power status (cable-based failover only—available only on the PIX 500 series security appliance).
• Hello messages (keep-alives).
• Network link status.
• MAC address exchange.
• Configuration replication and synchronization.
Caution All information sent over the failover and Stateful Failover links is sent in clear text unless you secure
the communication with a failover key. If the security appliance is used to terminate VPN tunnels, this
information includes any usernames, passwords and preshared keys used for establishing the tunnels.
Transmitting this sensitive data in clear text could pose a significant security risk. We recommend
securing the failover communication with a failover key if you are using the security appliance to
terminate VPN tunnels.14-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
On the PIX 500 series security appliance, the failover link can be either a LAN-based connection or a
dedicated serial Failover cable. On the ASA 5500 series adaptive security appliance, the failover link can
only be a LAN-based connection.
This section includes the following topics:
• LAN-Based Failover Link, page 14-4
• Serial Cable Failover Link (PIX Security Appliance Only), page 14-4
LAN-Based Failover Link
You can use any unused Ethernet interface on the device as the failover link; however, you cannot specify
an interface that is currently configured with a name. The LAN failover link interface is not configured
as a normal networking interface. It exists for failover communication only. This interface should only
be used for the LAN failover link (and optionally for the stateful failover link).
Connect the LAN failover link in one of the following two ways:
• Using a switch, with no other device on the same network segment (broadcast domain or VLAN) as
the LAN failover interfaces of the ASA.
• Using a crossover Ethernet cable to connect the appliances directly, without the need for an external
switch.
Note When you use a crossover cable for the LAN failover link, if the LAN interface fails, the link is brought
down on both peers. This condition may hamper troubleshooting efforts because you cannot easily
determine which interface failed and caused the link to come down.
Note The ASA supports Auto-MDI/MDIX on its copper Ethernet ports, so you can either use a crossover cable
or a straight-through cable. If you use a straight-through cable, the interface automatically detects the
cable and swaps one of the transmit/receive pairs to MDIX.
Serial Cable Failover Link (PIX Security Appliance Only)
The serial Failover cable, or “cable-based failover,” is only available on the PIX 500 series security
appliance. If the two units are within six feet of each other, then we recommend that you use the serial
Failover cable.
The cable that connects the two units is a modified RS-232 serial link cable that transfers data at
117,760 bps (115 Kbps). One end of the cable is labeled “Primary”. The unit attached to this end of the
cable automatically becomes the primary unit. The other end of the cable is labeled “Secondary”. The
unit attached to this end of the cable automatically becomes the secondary unit. You cannot override
these designations in the PIX 500 series security appliance software. If you purchased a PIX 500 series
security appliance failover bundle, this cable is included. To order a spare, use part number PIX-FO=.
The benefits of using cable-based failover include:
• The PIX 500 series security appliance can immediately detect a power loss on the peer unit and
differentiate between a power loss from an unplugged cable.
• The standby unit can communicate with the active unit and can receive the entire configuration
without having to be bootstrapped for failover. In LAN-based failover you need to configure the
failover link on the standby unit before it can communicate with the active unit.
• The switch between the two units in LAN-based failover can be another point of hardware failure;
cable-based failover eliminates this potential point of failure.14-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
• You do not have to dedicate an Ethernet interface (and switch) to the failover link.
• The cable determines which unit is primary and which is secondary, eliminating the need to
manually enter that information in the unit configurations.
The disadvantages include:
• Distance limitation—the units cannot be separated by more than 6 feet.
• Slower configuration replication.
Stateful Failover Link
To use Stateful Failover, you must configure a Stateful Failover link to pass all state information. You
have three options for configuring a Stateful Failover link:
• You can use a dedicated Ethernet interface for the Stateful Failover link.
• If you are using LAN-based failover, you can share the failover link.
• You can share a regular data interface, such as the inside interface. However, this option is not
recommended.
If you are using a dedicated Ethernet interface for the Stateful Failover link, you can use either a switch
or a crossover cable to directly connect the units. If you use a switch, no other hosts or routers should be
on this link.
Note Enable the PortFast option on Cisco switch ports that connect directly to the security appliance.
If you use a data interface as the Stateful Failover link, you receive the following warning when you
specify that interface as the Stateful Failover link:
******* WARNING ***** WARNING ******* WARNING ****** WARNING *********
Sharing Stateful failover interface with regular data interface is not
a recommended configuration due to performance and security concerns.
******* WARNING ***** WARNING ******* WARNING ****** WARNING *********
Sharing a data interface with the Stateful Failover interface can leave you vulnerable to replay attacks.
Additionally, large amounts of Stateful Failover traffic may be sent on the interface, causing
performance problems on that network segment.
Note Using a data interface as the Stateful Failover interface is only supported in single context, routed mode.
In multiple context mode, the Stateful Failover link resides in the system context. This interface and the
failover interface are the only interfaces in the system context. All other interfaces are allocated to and
configured from within security contexts.
Note The IP address and MAC address for the Stateful Failover link does not change at failover unless the
Stateful Failover link is configured on a regular data interface.
Caution All information sent over the failover and Stateful Failover links is sent in clear text unless you secure
the communication with a failover key. If the security appliance is used to terminate VPN tunnels, this
information includes any usernames, passwords and preshared keys used for establishing the tunnels. 14-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Transmitting this sensitive data in clear text could pose a significant security risk. We recommend
securing the failover communication with a failover key if you are using the security appliance to
terminate VPN tunnels.
Failover Interface Speed for Stateful Links
If you use the failover link as the Stateful Failover link, you should use the fastest Ethernet interface
available. If you experience performance problems on that interface, consider dedicating a separate
interface for the Stateful Failover interface.
Use the following failover interface speed guidelines for Cisco PIX security appliances and Cisco ASA
adaptive security appliances:
• Cisco ASA 5520/5540/5550 and PIX 515E/535
– The stateful link speed should match the fastest data link
• Cisco ASA 5510 and PIX 525
– Stateful link speed can be 100 Mbps, even though the data interface can operate at 1 Gigabit due
to the CPU speed limitation.
For optimum performance when using long distance LAN failover, the latency for the failover link
should be less than 10 milliseconds and no more than 250 milliseconds. If latency is less than 10
milliseconds, some performance degradation occurs due to retransmission of failover messages.
All platforms support sharing of failover heartbeat and stateful link, but we recommend using a separate
heartbeat link on systems with high Stateful Failover traffic.
Active/Active and Active/Standby Failover
This section describes each failover configuration in detail. This section includes the following topics:
• Active/Standby Failover, page 14-6
• Active/Active Failover, page 14-10
• Determining Which Type of Failover to Use, page 14-15
Active/Standby Failover
This section describes Active/Standby failover and includes the following topics:
• Active/Standby Failover Overview, page 14-6
• Primary/Secondary Status and Active/Standby Status, page 14-7
• Device Initialization and Configuration Synchronization, page 14-7
• Command Replication, page 14-8
• Failover Triggers, page 14-9
• Failover Actions, page 14-9
Active/Standby Failover Overview
Active/Standby failover lets you use a standby security appliance to take over the functionality of a failed
unit. When the active unit fails, it changes to the standby state while the standby unit changes to the
active state. The unit that becomes active assumes the IP addresses (or, for transparent firewall, the 14-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
management IP address) and MAC addresses of the failed unit and begins passing traffic. The unit that
is now in standby state takes over the standby IP addresses and MAC addresses. Because network
devices see no change in the MAC to IP address pairing, no ARP entries change or time out anywhere
on the network.
Note For multiple context mode, the security appliance can fail over the entire unit (including all contexts)
but cannot fail over individual contexts separately.
Primary/Secondary Status and Active/Standby Status
The main differences between the two units in a failover pair are related to which unit is active and which
unit is standby, namely which IP addresses to use and which unit actively passes traffic.
However, a few differences exist between the units based on which unit is primary (as specified in the
configuration) and which unit is secondary:
• The primary unit always becomes the active unit if both units start up at the same time (and are of
equal operational health).
• The primary unit MAC addresses are always coupled with the active IP addresses. The exception to
this rule occurs when the secondary unit is active, and cannot obtain the primary unit MAC addresses
over the failover link. In this case, the secondary unit MAC addresses are used.
Device Initialization and Configuration Synchronization
Configuration synchronization occurs when one or both devices in the failover pair boot. Configurations
are always synchronized from the active unit to the standby unit. When the standby unit completes its
initial startup, it clears its running configuration (except for the failover commands needed to
communicate with the active unit), and the active unit sends its entire configuration to the standby unit.
The active unit is determined by the following:
• If a unit boots and detects a peer already running as active, it becomes the standby unit.
• If a unit boots and does not detect a peer, it becomes the active unit.
• If both units boot simultaneously, then the primary unit becomes the active unit and the secondary
unit becomes the standby unit.
Note If the secondary unit boots without detecting the primary unit, it becomes the active unit. It uses its own
MAC addresses for the active IP addresses. However, when the primary unit becomes available, the
secondary unit changes the MAC addresses to those of the primary unit, which can cause an interruption
in your network traffic. To avoid this, configure the failover pair with virtual MAC addresses. See the
“Configuring Virtual MAC Addresses” section on page 14-26 for more information.
When the replication starts, the security appliance console on the active unit displays the message
“Beginning configuration replication: Sending to mate,” and when it is complete, the security appliance
displays the message “End Configuration Replication to mate.” During replication, commands entered
on the active unit may not replicate properly to the standby unit, and commands entered on the standby
unit may be overwritten by the configuration being replicated from the active unit. Avoid entering
commands on either unit in the failover pair during the configuration replication process. Depending
upon the size of the configuration, replication can take from a few seconds to several minutes.
On the standby unit, the configuration exists only in running memory. To save the configuration to Flash
memory after synchronization:14-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
• For single context mode, enter the write memory command on the active unit. The command is
replicated to the standby unit, which proceeds to write its configuration to Flash memory.
• For multiple context mode, enter the write memory all command on the active unit from the system
execution space. The command is replicated to the standby unit, which proceeds to write its
configuration to Flash memory. Using the all keyword with this command causes the system and all
context configurations to be saved.
Note Startup configurations saved on external servers are accessible from either unit over the network and do
not need to be saved separately for each unit. Alternatively, you can copy the contexts on disk from the
active unit to an external server, and then copy them to disk on the standby unit, where they become
available when the unit reloads.
Command Replication
Command replication always flows from the active unit to the standby unit. As commands are entered
on the active unit, they are sent across the failover link to the standby unit. You do not have to save the
active configuration to Flash memory to replicate the commands.
The following commands are replicated to the standby unit:
• all configuration commands except for the mode, firewall, and failover lan unit commands
• copy running-config startup-config
• delete
• mkdir
• rename
• rmdir
• write memory
The following commands are not replicated to the standby unit:
• all forms of the copy command except for copy running-config startup-config
• all forms of the write command except for write memory
• debug
• failover lan unit
• firewall
• mode
• show
Note Changes made on the standby unit are not replicated to the active unit. If you enter a command on the
standby unit, the security appliance displays the message **** WARNING **** Configuration
Replication is NOT performed from Standby unit to Active unit. Configurations are no
longer synchronized. This message displays even when you enter many commands that do not affect
the configuration.
If you enter the write standby command on the active unit, the standby unit clears its running
configuration (except for the failover commands used to communicate with the active unit), and the
active unit sends its entire configuration to the standby unit.14-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
For multiple context mode, when you enter the write standby command in the system execution space,
all contexts are replicated. If you enter the write standby command within a context, the command
replicates only the context configuration.
Replicated commands are stored in the running configuration. To save the replicated commands to the
Flash memory on the standby unit:
• For single context mode, enter the copy running-config startup-config command on the active unit.
The command is replicated to the standby unit, which proceeds to write its configuration to Flash
memory.
• For multiple context mode, enter the copy running-config startup-config command on the active
unit from the system execution space and within each context on disk. The command is replicated
to the standby unit, which proceeds to write its configuration to Flash memory. Contexts with startup
configurations on external servers are accessible from either unit over the network and do not need
to be saved separately for each unit. Alternatively, you can copy the contexts on disk from the active
unit to an external server, and then copy them to disk on the standby unit.
Failover Triggers
The unit can fail if one of the following events occurs:
• The unit has a hardware failure or a power failure.
• The unit has a software failure.
• Too many monitored interfaces fail.
• The no failover active command is entered on the active unit or the failover active command is
entered on the standby unit.
Failover Actions
In Active/Standby failover, failover occurs on a unit basis. Even on systems running in multiple context
mode, you cannot fail over individual or groups of contexts.
Table 14-1 shows the failover action for each failure event. For each failure event, the table shows the
failover policy (failover or no failover), the action taken by the active unit, the action taken by the
standby unit, and any special notes about the failover condition and actions.
Table 14-1 Failover Behavior
Failure Event Policy Active Action Standby Action Notes
Active unit failed (power or
hardware)
Failover n/a Become active
Mark active as
failed
No hello messages are received on
any monitored interface or the
failover link.
Formerly active unit recovers No failover Become standby No action None.
Standby unit failed (power or
hardware)
No failover Mark standby as
failed
n/a When the standby unit is marked as
failed, then the active unit does not
attempt to fail over, even if the
interface failure threshold is
surpassed.
Failover link failed during
operation
No failover Mark failover
interface as failed
Mark failover
interface as failed
You should restore the failover link
as soon as possible because the
unit cannot fail over to the standby
unit while the failover link is down.14-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Active/Active Failover
This section describes Active/Active failover. This section includes the following topics:
• Active/Active Failover Overview, page 14-10
• Primary/Secondary Status and Active/Standby Status, page 14-11
• Device Initialization and Configuration Synchronization, page 14-11
• Command Replication, page 14-12
• Failover Triggers, page 14-13
• Failover Actions, page 14-14
Active/Active Failover Overview
Active/Active failover is only available to security appliances in multiple context mode. In an
Active/Active failover configuration, both security appliances can pass network traffic.
In Active/Active failover, you divide the security contexts on the security appliance into failover groups.
A failover group is simply a logical group of one or more security contexts. You can create a maximum
of two failover groups on the security appliance. The admin context is always a member of failover
group 1. Any unassigned security contexts are also members of failover group 1 by default.
The failover group forms the base unit for failover in Active/Active failover. Interface failure monitoring,
failover, and active/standby status are all attributes of a failover group rather than the unit. When an
active failover group fails, it changes to the standby state while the standby failover group becomes
active. The interfaces in the failover group that becomes active assume the MAC and IP addresses of the
interfaces in the failover group that failed. The interfaces in the failover group that is now in the standby
state take over the standby MAC and IP addresses.
Note A failover group failing on a unit does not mean that the unit has failed. The unit may still have another
failover group passing traffic on it.
When creating the failover groups, you should create them on the unit that will have failover group 1 in
the active state.
Failover link failed at startup No failover Mark failover
interface as failed
Become active If the failover link is down at
startup, both units become active.
Stateful Failover link failed No failover No action No action State information becomes out of
date, and sessions are terminated if
a failover occurs.
Interface failure on active unit
above threshold
Failover Mark active as
failed
Become active None.
Interface failure on standby
unit above threshold
No failover No action Mark standby as
failed
When the standby unit is marked as
failed, then the active unit does not
attempt to fail over even if the
interface failure threshold is
surpassed.
Table 14-1 Failover Behavior (continued)
Failure Event Policy Active Action Standby Action Notes14-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Note Active/Active failover generates virtual MAC addresses for the interfaces in each failover group. If you
have more than one Active/Active failover pair on the same network, it is possible to have the same
default virtual MAC addresses assigned to the interfaces on one pair as are assigned to the interfaces of
the other pairs because of the way the default virtual MAC addresses are determined. To avoid having
duplicate MAC addresses on your network, make sure you assign each physical interface a virtual active
and standby MAC address.
Primary/Secondary Status and Active/Standby Status
As in Active/Standby failover, one unit in an Active/Active failover pair is designated the primary unit,
and the other unit the secondary unit. Unlike Active/Standby failover, this designation does not indicate
which unit becomes active when both units start simultaneously. Instead, the primary/secondary
designation does two things:
• Determines which unit provides the running configuration to the pair when they boot
simultaneously.
• Determines on which unit each failover group appears in the active state when the units boot
simultaneously. Each failover group in the configuration is configured with a primary or secondary
unit preference. You can configure both failover groups be in the active state on a single unit in the
pair, with the other unit containing the failover groups in the standby state. However, a more typical
configuration is to assign each failover group a different role preference to make each one active on
a different unit, distributing the traffic across the devices.
Note The security appliance does not provide load balancing services. Load balancing must be
handled by a router passing traffic to the security appliance.
Which unit each failover group becomes active on is determined as follows:
• When a unit boots while the peer unit is not available, both failover groups become active on the
unit.
• When a unit boots while the peer unit is active (with both failover groups in the active state), the
failover groups remain in the active state on the active unit regardless of the primary or secondary
preference of the failover group until one of the following:
– A failover occurs.
– You manually force the failover group to the other unit with the no failover active command.
– You configured the failover group with the preempt command, which causes the failover group
to automatically become active on the preferred unit when the unit becomes available.
• When both units boot at the same time, each failover group becomes active on its preferred unit after
the configurations have been synchronized.
Device Initialization and Configuration Synchronization
Configuration synchronization occurs when one or both units in a failover pair boot. The configurations
are synchronized as follows:
• When a unit boots while the peer unit is active (with both failover groups active on it), the booting
unit contacts the active unit to obtain the running configuration regardless of the primary or
secondary designation of the booting unit. 14-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
• When both units boot simultaneously, the secondary unit obtains the running configuration from the
primary unit.
When the replication starts, the security appliance console on the unit sending the configuration displays
the message “Beginning configuration replication: Sending to mate,” and when it is complete, the
security appliance displays the message “End Configuration Replication to mate.” During replication,
commands entered on the unit sending the configuration may not replicate properly to the peer unit, and
commands entered on the unit receiving the configuration may be overwritten by the configuration being
received. Avoid entering commands on either unit in the failover pair during the configuration
replication process. Depending upon the size of the configuration, replication can take from a few
seconds to several minutes.
On the unit receiving the configuration, the configuration exists only in running memory. To save the
configuration to Flash memory after synchronization enter the write memory all command in the system
execution space on the unit that has failover group 1 in the active state. The command is replicated to
the peer unit, which proceeds to write its configuration to Flash memory. Using the all keyword with this
command causes the system and all context configurations to be saved.
Note Startup configurations saved on external servers are accessible from either unit over the network and do
not need to be saved separately for each unit. Alternatively, you can copy the contexts configuration files
from the disk on the primary unit to an external server, and then copy them to disk on the secondary unit,
where they become available when the unit reloads.
Command Replication
After both units are running, commands are replicated from one unit to the other as follows:
• Commands entered within a security context are replicated from the unit on which the security
context appears in the active state to the peer unit.
Note A context is considered in the active state on a unit if the failover group to which it belongs is
in the active state on that unit.
• Commands entered in the system execution space are replicated from the unit on which failover
group 1 is in the active state to the unit on which failover group 1 is in the standby state.
• Commands entered in the admin context are replicated from the unit on which failover group 1 is in
the active state to the unit on which failover group 1 is in the standby state.
All configuration and file commands (copy, rename, delete, mkdir, rmdir, and so on) are replicated,
with the following exceptions. The show, debug, mode, firewall, and failover lan unit commands are
not replicated.
Failure to enter the commands on the appropriate unit for command replication to occur causes the
configurations to be out of synchronization. Those changes may be lost the next time the initial
configuration synchronization occurs.
The following commands are replicated to the standby unit:
• all configuration commands except for the mode, firewall, and failover lan unit commands
• copy running-config startup-config
• delete
• mkdir
• rename14-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
• rmdir
• write memory
The following commands are not replicated to the standby unit:
• all forms of the copy command except for copy running-config startup-config
• all forms of the write command except for write memory
• debug
• failover lan unit
• firewall
• mode
• show
You can use the write standby command to resynchronize configurations that have become out of sync.
For Active/Active failover, the write standby command behaves as follows:
• If you enter the write standby command in the system execution space, the system configuration
and the configurations for all of the security contexts on the security appliance is written to the peer
unit. This includes configuration information for security contexts that are in the standby state. You
must enter the command in the system execution space on the unit that has failover group 1 in the
active state.
Note If there are security contexts in the active state on the peer unit, the write standby command
causes active connections through those contexts to be terminated. Use the failover active
command on the unit providing the configuration to make sure all contexts are active on that
unit before entering the write standby command.
• If you enter the write standby command in a security context, only the configuration for the security
context is written to the peer unit. You must enter the command in the security context on the unit
where the security context appears in the active state.
Replicated commands are not saved to the Flash memory when replicated to the peer unit. They are
added to the running configuration. To save replicated commands to Flash memory on both units, use
the write memory or copy running-config startup-config command on the unit that you made the
changes on. The command is replicated to the peer unit and cause the configuration to be saved to Flash
memory on the peer unit.
Failover Triggers
In Active/Active failover, failover can be triggered at the unit level if one of the following events occurs:
• The unit has a hardware failure.
• The unit has a power failure.
• The unit has a software failure.
• The no failover active or the failover active command is entered in the system execution space.
Failover is triggered at the failover group level when one of the following events occurs:
• Too many monitored interfaces in the group fail.
• The no failover active group group_id or failover active group group_id command is entered. 14-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
You configure the failover threshold for each failover group by specifying the number or percentage of
interfaces within the failover group that must fail before the group fails. Because a failover group can
contain multiple contexts, and each context can contain multiple interfaces, it is possible for all
interfaces in a single context to fail without causing the associated failover group to fail.
See the “Failover Health Monitoring” section on page 14-16 for more information about interface and
unit monitoring.
Failover Actions
In an Active/Active failover configuration, failover occurs on a failover group basis, not a system basis.
For example, if you designate both failover groups as active on the primary unit, and failover group 1
fails, then failover group 2 remains active on the primary unit while failover group 1 becomes active on
the secondary unit.
Note When configuring Active/Active failover, make sure that the combined traffic for both units is within the
capacity of each unit.
Table 14-2 shows the failover action for each failure event. For each failure event, the policy (whether
or not failover occurs), actions for the active failover group, and actions for the standby failover group
are given.
Table 14-2 Failover Behavior for Active/Active Failover
Failure Event Policy
Active Group
Action
Standby Group
Action Notes
A unit experiences a power or
software failure
Failover Become standby
Mark as failed
Become active
Mark active as
failed
When a unit in a failover pair fails,
any active failover groups on that
unit are marked as failed and
become active on the peer unit.
Interface failure on active failover
group above threshold
Failover Mark active
group as failed
Become active None.
Interface failure on standby failover
group above threshold
No failover No action Mark standby
group as failed
When the standby failover group is
marked as failed, the active failover
group does not attempt to fail over,
even if the interface failure
threshold is surpassed.
Formerly active failover group
recovers
No failover No action No action Unless configured with the
preempt command, the failover
groups remain active on their
current unit.
Failover link failed at startup No failover Become active Become active If the failover link is down at
startup, both failover groups on
both units become active.14-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Determining Which Type of Failover to Use
The type of failover you choose depends upon your security appliance configuration and how you plan
to use the security appliances.
If you are running the security appliance in single mode, then you can only use Active/Standby failover.
Active/Active failover is only available to security appliances running in multiple context mode.
If you are running the security appliance in multiple context mode, then you can configure either
Active/Active failover or Active/Standby failover.
• To provide load balancing, use Active/Active failover.
• If you do not want to provide load balancing, use Active/Standby or Active/Active failover.
Table 14-3 provides a comparison of some of the features supported by each type of failover
configuration:
Regular and Stateful Failover
The security appliance supports two types of failover, regular and stateful. This section includes the
following topics:
• Regular Failover, page 14-16
• Stateful Failover, page 14-16
Stateful Failover link failed No failover No action No action State information becomes out of
date, and sessions are terminated if
a failover occurs.
Failover link failed during operation No failover n/a n/a Each unit marks the failover
interface as failed. You should
restore the failover link as soon as
possible because the unit cannot fail
over to the standby unit while the
failover link is down.
Table 14-2 Failover Behavior for Active/Active Failover (continued)
Failure Event Policy
Active Group
Action
Standby Group
Action Notes
Table 14-3 Failover Configuration Feature Support
Feature Active/Active Active/Standby
Single Context Mode No Yes
Multiple Context Mode Yes Yes
Load Balancing Network Configurations Yes No
Unit Failover Yes Yes
Failover of Groups of Contexts Yes No
Failover of Individual Contexts No No14-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
Regular Failover
When a failover occurs, all active connections are dropped. Clients need to reestablish connections when
the new active unit takes over.
Stateful Failover
When Stateful Failover is enabled, the active unit continually passes per-connection state information to
the standby unit. After a failover occurs, the same connection information is available at the new active
unit. Supported end-user applications are not required to reconnect to keep the same communication
session.
The state information passed to the standby unit includes the following:
• NAT translation table.
• TCP connection states.
• UDP connection states.
• The ARP table.
• The Layer 2 bridge table (when running in transparent firewall mode).
• The HTTP connection states (if HTTP replication is enabled).
• The ISAKMP and IPSec SA table.
• GTP PDP connection database.
The information that is not passed to the standby unit when Stateful Failover is enabled includes the
following:
• The HTTP connection table (unless HTTP replication is enabled).
• The user authentication (uauth) table.
• The routing tables. After a failover occurs, some packets may be lost our routed out of the wrong
interface (the default route) while the dynamic routing protocols rediscover routes.
• State information for Security Service Modules.
• DHCP server address leases.
• L2TP over IPSec sessions.
Note If failover occurs during an active Cisco IP SoftPhone session, the call remains active because the call
session state information is replicated to the standby unit. When the call is terminated, the IP SoftPhone
client loses connection with the Call Manager. This occurs because there is no session information for
the CTIQBE hangup message on the standby unit. When the IP SoftPhone client does not receive a
response back from the Call Manager within a certain time period, it considers the Call Manager
unreachable and unregisters itself.
Failover Health Monitoring
The security appliance monitors each unit for overall health and for interface health. See the following
sections for more information about how the security appliance performs tests to determine the state of
each unit:
• Unit Health Monitoring, page 14-1714-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
• Interface Monitoring, page 14-17
Unit Health Monitoring
The security appliance determines the health of the other unit by monitoring the failover link. When a
unit does not receive three consecutive hello messages on the failover link, the unit sends an ARP request
on all interfaces, including the failover interface. The action the security appliance takes depends on the
response from the other unit. See the following possible actions:
• If the security appliance receives a response on the failover interface, then it does not fail over.
• If the security appliance does not receive a response on the failover link, but receives a response on
another interface, then the unit does not failover. The failover link is marked as failed. You should
restore the failover link as soon as possible because the unit cannot fail over to the standby while
the failover link is down.
• If the security appliance does not receive a response on any interface, then the standby unit switches
to active mode and classifies the other unit as failed.
Note If a failed unit does not recover and you believe it should not be failed, you can reset the state by entering
the failover reset command. If the failover condition persists, however, the unit will fail again.
You can configure the frequency of the hello messages and the hold time before failover occurs. A faster
poll time and shorter hold time speed the detection of unit failures and make failover occur more quickly,
but it can also cause “false” failures due to network congestion delaying the keepalive packets. See
Configuring Unit Health Monitoring, page 14-39 for more information about configuring unit health
monitoring.
Interface Monitoring
You can monitor up to 250 interfaces divided between all contexts. You should monitor important
interfaces, for example, you might configure one context to monitor a shared interface (because the
interface is shared, all contexts benefit from the monitoring).
When a unit does not receive hello messages on a monitored interface for half of the configured hold
time, it runs the following tests:
1. Link Up/Down test—A test of the interface status. If the Link Up/Down test indicates that the
interface is operational, then the security appliance performs network tests. The purpose of these
tests is to generate network traffic to determine which (if either) unit has failed. At the start of each
test, each unit clears its received packet count for its interfaces. At the conclusion of each test, each
unit looks to see if it has received any traffic. If it has, the interface is considered operational. If one
unit receives traffic for a test and the other unit does not, the unit that received no traffic is
considered failed. If neither unit has received traffic, then the next test is used.
2. Network Activity test—A received network activity test. The unit counts all received packets for up
to 5 seconds. If any packets are received at any time during this interval, the interface is considered
operational and testing stops. If no traffic is received, the ARP test begins.
3. ARP test—A reading of the unit ARP cache for the 2 most recently acquired entries. One at a time,
the unit sends ARP requests to these machines, attempting to stimulate network traffic. After each
request, the unit counts all received traffic for up to 5 seconds. If traffic is received, the interface is
considered operational. If no traffic is received, an ARP request is sent to the next machine. If at the
end of the list no traffic has been received, the ping test begins.14-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Understanding Failover
4. Broadcast Ping test—A ping test that consists of sending out a broadcast ping request. The unit then
counts all received packets for up to 5 seconds. If any packets are received at any time during this
interval, the interface is considered operational and testing stops.
If all network tests fail for an interface, but this interface on the other unit continues to successfully pass
traffic, then the interface is considered to be failed. If the threshold for failed interfaces is met, then a
failover occurs. If the other unit interface also fails all the network tests, then both interfaces go into the
“Unknown” state and do not count towards the failover limit.
An interface becomes operational again if it receives any traffic. A failed security appliance returns to
standby mode if the interface failure threshold is no longer met.
Note If a failed unit does not recover and you believe it should not be failed, you can reset the state by entering
the failover reset command. If the failover condition persists, however, the unit will fail again.
Failover Feature/Platform Matrix
Table 14-4 shows the failover features supported by each hardware platform.
Failover Times by Platform
Table 14-5 shows the minimum, default, and maximum failover times for the PIX 500 series security
appliance.
Table 14-6 shows the minimum, default, and maximum failover times for the ASA 5500 series adaptive
security appliance.
Table 14-4 Failover Feature Support by Platform
Platform Cable-Base Failover LAN-Based Failover Stateful Failover
ASA 5505 series adaptive
security appliance
No Yes No
ASA 5500 series adaptive
security appliance (other than
the ASA 5505)
No Yes Yes
PIX 500 series security
appliance
Yes Yes Yes
Table 14-5 PIX 500 series security appliance failover times.
Failover Condition Minimum Default Maximum
Active unit loses power or stops normal operation. 800 milliseconds 45 seconds 45 seconds
Active unit interface link down. 500 milliseconds 5 seconds 15 seconds
Active unit interface up, but connection problem
causes interface testing.
5 seconds 25 seconds 75 seconds14-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Configuring Failover
This section describes how to configure failover and includes the following topics:
• Failover Configuration Limitations, page 14-19
• Configuring Active/Standby Failover, page 14-19
• Configuring Active/Active Failover, page 14-27
• Configuring Unit Health Monitoring, page 14-39
• Configuring Failover Communication Authentication/Encryption, page 14-39
• Verifying the Failover Configuration, page 14-40
Failover Configuration Limitations
You cannot configure failover with the following type of IP addresses:
• IP addresses obtained through DHCP
• IP addresses obtained through PPPoE
• IPv6 addresses
Additionally, the following restrictions apply:
• Stateful Failover is not supported on the ASA 5505 adaptive security appliance.
• Active/Active failover is not supported on the ASA 5505 adaptive security appliance.
• You cannot configure failover when Easy VPN Remote is enabled on the ASA 5505 adaptive
security appliance.
• VPN failover is not supported in multiple context mode.
Configuring Active/Standby Failover
This section provides step-by-step procedures for configuring Active/Standby failover. This section
includes the following topics:
• Prerequisites, page 14-20
• Configuring Cable-Based Active/Standby Failover (PIX Security Appliance Only), page 14-20
Table 14-6 ASA 5500 series adaptive security appliance failover times.
Failover Condition Minimum Default Maximum
Active unit loses power or stops normal operation. 800 milliseconds 15 seconds 45 seconds
Active unit main board interface link down. 500 milliseconds 5 seconds 15 seconds
Active unit 4GE card interface link down. 2 seconds 5 seconds 15 seconds
Active unit IPS or CSC card fails. 2 seconds 2 seconds 2 seconds
Active unit interface up, but connection problem
causes interface testing.
5 seconds 25 seconds 75 seconds14-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
• Configuring LAN-Based Active/Standby Failover, page 14-21
• Configuring Optional Active/Standby Failover Settings, page 14-25
Prerequisites
Before you begin, verify the following:
• Both units have the same hardware, software configuration, and proper license.
• Both units are in the same mode (single or multiple, transparent or routed).
Configuring Cable-Based Active/Standby Failover (PIX Security Appliance Only)
Follow these steps to configure Active/Standby failover using a serial cable as the failover link. The
commands in this task are entered on the primary unit in the failover pair. The primary unit is the unit
that has the end of the cable labeled “Primary” plugged into it. For devices in multiple context mode, the
commands are entered in the system execution space unless otherwise noted.
You do not need to bootstrap the secondary unit in the failover pair when you use cable-based failover.
Leave the secondary unit powered off until instructed to power it on.
Cable-based failover is only available on the PIX 500 series security appliance.
To configure cable-based Active/Standby failover, perform the following steps:
Step 1 Connect the Failover cable to the PIX 500 series security appliances. Make sure that you attach the end
of the cable marked “Primary” to the unit you use as the primary unit, and that you attach the end of the
cable marked “Secondary” to the other unit.
Step 2 Power on the primary unit.
Step 3 If you have not done so already, configure the active and standby IP addresses for each data interface
(routed mode), for the management IP address (transparent mode), or for the management-only
interface. To receive packets from both units in a failover pair, standby IP addresses need to be
configured on all interfaces. The standby IP address is used on the security appliance that is currently
the standby unit, and it must be in the same subnet as the active IP address.
Note Do not configure an IP address for the Stateful Failover link if you are going to use a dedicated
Stateful Failover interface. You use the failover interface ip command to configure a dedicated
Stateful Failover interface in a later step.
hostname(config-if)# ip address active_addr netmask standby standby_addr
In routed firewall mode and for the management-only interface, this command is entered in interface
configuration mode for each interface. In transparent firewall mode, the command is entered in global
configuration mode.
In multiple context mode, you must configure the interface addresses from within each context. Use the
changeto context command to switch between contexts. The command prompt changes to
hostname/context(config-if)#, where context is the name of the current context. You must enter a
management IP address for each context in transparent firewall multiple context mode.
Step 4 (Optional) To enable Stateful Failover, configure the Stateful Failover link. 14-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Note Stateful Failover is not available on the ASA 5505 series adaptive security appliance.
a. Specify the interface to be used as the Stateful Failover link:
hostname(config)# failover link if_name phy_if
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. This interface should not be used for any other purpose.
b. Assign an active and standby IP address to the Stateful Failover link:
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
Note If the Stateful Failover link uses a data interface, skip this step. You have already defined the
active and standby IP addresses for the interface.
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby IP address subnet mask.
The Stateful Failover link IP address and MAC address do not change at failover unless it uses a data
interface. The active IP address always stays with the primary unit, while the standby IP address
stays with the secondary unit.
c. Enable the interface:
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 5 Enable failover:
hostname(config)# failover
Step 6 Power on the secondary unit and enable failover on the unit if it is not already enabled:
hostname(config)# failover
The active unit sends the configuration in running memory to the standby unit. As the configuration
synchronizes, the messages “Beginning configuration replication: sending to mate.” and “End
Configuration Replication to mate” appear on the primary console.
Step 7 Save the configuration to Flash memory on the primary unit. Because the commands entered on the
primary unit are replicated to the secondary unit, the secondary unit also saves its configuration to Flash
memory.
hostname(config)# copy running-config startup-config
Configuring LAN-Based Active/Standby Failover
This section describes how to configure Active/Standby failover using an Ethernet failover link. When
configuring LAN-based failover, you must bootstrap the secondary device to recognize the failover link
before the secondary device can obtain the running configuration from the primary device.14-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Note If you are changing from cable-based failover to LAN-based failover, you can skip any steps, such as
assigning the active and standby IP addresses for each interface, that you completed for the cable-based
failover configuration.
This section includes the following topics:
• Configuring the Primary Unit, page 14-22
• Configuring the Secondary Unit, page 14-24
Configuring the Primary Unit
Follow these steps to configure the primary unit in a LAN-based, Active/Standby failover configuration.
These steps provide the minimum configuration needed to enable failover on the primary unit. For
multiple context mode, all steps are performed in the system execution space unless otherwise noted.
To configure the primary unit in an Active/Standby failover pair, perform the following steps:
Step 1 If you have not done so already, configure the active and standby IP addresses for each data interface
(routed mode), for the management IP address (transparent mode), or for the management-only
interface. To receive packets from both units in a failover pair, standby IP addresses need to be
configured on all interfaces. The standby IP address is used on the security appliance that is currently
the standby unit, and it must be in the same subnet as the active IP address.
Note Do not configure an IP address for the Stateful Failover link if you are going to use a dedicated
Stateful Failover interface. You use the failover interface ip command to configure a dedicated
Stateful Failover interface in a later step.
hostname(config-if)# ip address active_addr netmask standby standby_addr
In routed firewall mode and for the management-only interface, this command is entered in interface
configuration mode for each interface. In transparent firewall mode, the command is entered in global
configuration mode.
In multiple context mode, you must configure the interface addresses from within each context. Use the
changeto context command to switch between contexts. The command prompt changes to
hostname/context(config-if)#, where context is the name of the current context. You must enter a
management IP address for each context in transparent firewall multiple context mode.
Step 2 (PIX security appliance only) Enable LAN-based failover:
hostname(config)# failover lan enable
Step 3 Designate the unit as the primary unit:
hostname(config)# failover lan unit primary
Step 4 Define the failover interface:
a. Specify the interface to be used as the failover interface:
hostname(config)# failover lan interface if_name phy_if
The if_name argument assigns a name to the interface specified by the phy_if argument. The phy_if
argument can be the physical port name, such as Ethernet1, or a previously created subinterface,
such as Ethernet0/2.3. On the ASA 5505 adaptive security appliance, the phy_if specifies a VLAN.14-23
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
b. Assign the active and standby IP address to the failover link:
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby address subnet mask.
The failover link IP address and MAC address do not change at failover. The active IP address for
the failover link always stays with the primary unit, while the standby IP address stays with the
secondary unit.
c. Enable the interface:
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 5 (Optional) To enable Stateful Failover, configure the Stateful Failover link.
Note Stateful Failover is not available on the ASA 5505 series adaptive security appliance.
a. Specify the interface to be used as Stateful Failover link:
hostname(config)# failover link if_name phy_if
Note If the Stateful Failover link uses the failover link or a data interface, then you only need to
supply the if_name argument.
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. This interface should not be used for any other purpose (except,
optionally, the failover link).
b. Assign an active and standby IP address to the Stateful Failover link.
Note If the Stateful Failover link uses the failover link or data interface, skip this step. You have
already defined the active and standby IP addresses for the interface.
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby address subnet mask.
The Stateful Failover link IP address and MAC address do not change at failover unless it uses a data
interface. The active IP address always stays with the primary unit, while the standby IP address
stays with the secondary unit.
c. Enable the interface.
Note If the Stateful Failover link uses the failover link or data interface, skip this step. You have
already enabled the interface.
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 6 Enable failover:14-24
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
hostname(config)# failover
Step 7 Save the system configuration to Flash memory:
hostname(config)# copy running-config startup-config
Configuring the Secondary Unit
The only configuration required on the secondary unit is for the failover interface. The secondary unit
requires these commands to initially communicate with the primary unit. After the primary unit sends
its configuration to the secondary unit, the only permanent difference between the two configurations is
the failover lan unit command, which identifies each unit as primary or secondary.
For multiple context mode, all steps are performed in the system execution space unless noted otherwise.
To configure the secondary unit, perform the following steps:
Step 1 (PIX security appliance only) Enable LAN-based failover:
hostname(config)# failover lan enable
Step 2 Define the failover interface. Use the same settings as you used for the primary unit.
a. Specify the interface to be used as the failover interface:
hostname(config)# failover lan interface if_name phy_if
The if_name argument assigns a name to the interface specified by the phy_if argument.
b. Assign the active and standby IP address to the failover link. To receive packets from both units in
a failover pair, standby IP addresses need to be configured on all interfaces.
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
Note Enter this command exactly as you entered it on the primary unit when you configured the
failover interface on the primary unit.
c. Enable the interface:
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 3 (Optional) Designate this unit as the secondary unit:
hostname(config)# failover lan unit secondary
Note This step is optional because by default units are designated as secondary unless previously
configured.
Step 4 Enable failover:
hostname(config)# failover
After you enable failover, the active unit sends the configuration in running memory to the standby unit.
As the configuration synchronizes, the messages “Beginning configuration replication: Sending to mate”
and “End Configuration Replication to mate” appear on the active unit console.14-25
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Step 5 After the running configuration has completed replication, save the configuration to Flash memory:
hostname(config)# copy running-config startup-config
Configuring Optional Active/Standby Failover Settings
You can configure the following optional Active/Standby failover setting when you are initially
configuring failover or after failover has already been configured. Unless otherwise noted, the
commands should be entered on the active unit.
This section includes the following topics:
• Enabling HTTP Replication with Stateful Failover, page 14-25
• Disabling and Enabling Interface Monitoring, page 14-25
• Configuring Interface Health Monitoring, page 14-26
• Configuring Failover Criteria, page 14-26
• Configuring Virtual MAC Addresses, page 14-26
Enabling HTTP Replication with Stateful Failover
To allow HTTP connections to be included in the state information replication, you need to enable HTTP
replication. Because HTTP connections are typically short-lived, and because HTTP clients typically
retry failed connection attempts, HTTP connections are not automatically included in the replicated state
information.
Enter the following command in global configuration mode to enable HTTP state replication when
Stateful Failover is enabled:
hostname(config)# failover replication http
Disabling and Enabling Interface Monitoring
By default, monitoring physical interfaces is enabled and monitoring subinterfaces is disabled. You can
monitor up to 250 interfaces on a unit. You can control which interfaces affect your failover policy by
disabling the monitoring of specific interfaces and enabling the monitoring of others. This lets you
exclude interfaces attached to less critical networks from affecting your failover policy.
For units in multiple configuration mode, use the following commands to enable or disable health
monitoring for specific interfaces:
• To disable health monitoring for an interface, enter the following command within a context:
hostname/context(config)# no monitor-interface if_name
• To enable health monitoring for an interface, enter the following command within a context:
hostname/context(config)# monitor-interface if_name
For units in single configuration mode, use the following commands to enable or disable health
monitoring for specific interfaces:
• To disable health monitoring for an interface, enter the following command in global configuration
mode:
hostname(config)# no monitor-interface if_name14-26
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
• To enable health monitoring for an interface, enter the following command in global configuration
mode:
hostname(config)# monitor-interface if_name
Configuring Interface Health Monitoring
The security appliance sends hello packets out of each data interface to monitor interface health. If the
security appliance does not receive a hello packet from the corresponding interface on the peer unit for
over half of the hold time, then the additional interface testing begins. If a hello packet or a successful
test result is not received within the specified hold time, the interface is marked as failed. Failover occurs
if the number of failed interfaces meets the failover criteria.
Decreasing the poll and hold times enables the security appliance to detect and respond to interface
failures more quickly, but may consume more system resources.
To change the interface poll time, enter the following command in global configuration mode:
hostname(config)# failover polltime interface [msec] time [holdtime time]
Valid values for the poll time are from 1 to 15 seconds or, if the optional msec keyword is used, from
500 to 999 milliseconds. The hold time determines how long it takes from the time a hello packet is
missed to when the interface is marked as failed. Valid values for the hold time are from 5 to 75 seconds.
You cannot enter a hold time that is less than 5 times the poll time.
Note If the interface link is down, interface testing is not conducted and the standby unit could become active
in just one interface polling period if the number of failed interface meets or exceeds the configured
failover criteria.
Configuring Failover Criteria
By default, a single interface failure causes failover. You can specify a specific number of interfaces or
a percentage of monitored interfaces that must fail before a failover occurs.
To change the default failover criteria, enter the following command in global configuration mode:
hostname(config)# failover interface-policy num[%]
When specifying a specific number of interfaces, the num argument can be from 1 to 250. When
specifying a percentage of interfaces, the num argument can be from 1 to 100.
Configuring Virtual MAC Addresses
In Active/Standby failover, the MAC addresses for the primary unit are always associated with the active
IP addresses. If the secondary unit boots first and becomes active, it uses the burned-in MAC address for
its interfaces. When the primary unit comes online, the secondary unit obtains the MAC addresses from
the primary unit. The change can disrupt network traffic.
You can configure virtual MAC addresses for each interface to ensure that the secondary unit uses the
correct MAC addresses when it is the active unit, even if it comes online before the primary unit. If you
do not specify virtual MAC addresses the failover pair uses the burned-in NIC addresses as the MAC
addresses.
Note You cannot configure a virtual MAC address for the failover or Stateful Failover links. The MAC and IP
addresses for those links do not change during failover.14-27
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Enter the following command on the active unit to configure the virtual MAC addresses for an interface:
hostname(config)# failover mac address phy_if active_mac standby_mac
The phy_if argument is the physical name of the interface, such as Ethernet1. The active_mac and
standby_mac arguments are MAC addresses in H.H.H format, where H is a 16-bit hexadecimal digit. For
example, the MAC address 00-0C-F1-42-4C-DE would be entered as 000C.F142.4CDE.
The active_mac address is associated with the active IP address for the interface, and the standby_mac
is associated with the standby IP address for the interface.
There are multiple ways to configure virtual MAC addresses on the security appliance. When more than
one method has been used to configure virtual MAC addresses, the security appliance uses the following
order of preference to determine which virtual MAC address is assigned to an interface:
1. The mac-address command (in interface configuration mode) address.
2. The failover mac address command address.
3. The mac-address auto command generated address.
4. The burned-in MAC address.
Use the show interface command to display the MAC address used by an interface.
Configuring Active/Active Failover
This section describes how to configure Active/Active failover.
Note Active/Active failover is not available on the ASA 5505 series adaptive security appliance.
This section includes the following topics:
• Prerequisites, page 14-27
• Configuring Cable-Based Active/Active Failover (PIX security appliance), page 14-27
• Configuring LAN-Based Active/Active Failover, page 14-29
• Configuring Optional Active/Active Failover Settings, page 14-33
Prerequisites
Before you begin, verify the following:
• Both units have the same hardware, software configuration, and proper license.
• Both units are in multiple context mode.
Configuring Cable-Based Active/Active Failover (PIX security appliance)
Follow these steps to configure Active/Active failover using a serial cable as the failover link. The
commands in this task are entered on the primary unit in the failover pair. The primary unit is the unit
that has the end of the cable labeled “Primary” plugged into it. For devices in multiple context mode, the
commands are entered in the system execution space unless otherwise noted.
You do not need to bootstrap the secondary unit in the failover pair when you use cable-based failover.
Leave the secondary unit powered off until instructed to power it on.14-28
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Cable-based failover is only available on the PIX 500 series security appliance.
To configure cable-based, Active/Active failover, perform the following steps:
Step 1 Connect the failover cable to the PIX 500 series security appliances. Make sure that you attach the end
of the cable marked “Primary” to the unit you use as the primary unit, and that you attach the end of the
cable marked “Secondary” to the unit you use as the secondary unit.
Step 2 Power on the primary unit.
Step 3 If you have not done so already, configure the active and standby IP addresses for each data interface
(routed mode), for the management IP address (transparent mode), or for the management-only
interface. To receive packets from both units in a failover pair, standby IP addresses need to be
configured on all interfaces. The standby IP address is used on the security appliance that is currently
the standby unit, and it must be in the same subnet as the active IP address.
You must configure the interface addresses from within each context. Use the changeto context
command to switch between contexts. The command prompt changes to
hostname/context(config-if)#, where context is the name of the current context. You must enter a
management IP address for each context in transparent firewall multiple context mode.
Note Do not configure an IP address for the Stateful Failover link if you are going to use a dedicated
Stateful Failover interface. You use the failover interface ip command to configure a dedicated
Stateful Failover interface in a later step.
hostname/context(config-if)# ip address active_addr netmask standby standby_addr
In routed firewall mode and for the management-only interface, this command is entered in interface
configuration mode for each interface. In transparent firewall mode, the command is entered in global
configuration mode.
Step 4 (Optional) To enable Stateful Failover, configure the Stateful Failover link.
a. Specify the interface to be used as Stateful Failover link:
hostname(config)# failover link if_name phy_if
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. This interface should not be used for any other purpose (except,
optionally, the failover link).
b. Assign an active and standby IP address to the Stateful Failover link:
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby IP address subnet mask.
The Stateful Failover link IP address and MAC address do not change at failover except for when
Stateful Failover uses a regular data interface. The active IP address always stays with the primary
unit, while the standby IP address stays with the secondary unit.
c. Enable the interface:
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 5 Configure the failover groups. You can have at most two failover groups. The failover group command
creates the specified failover group if it does not exist and enters the failover group configuration mode.14-29
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
For each failover group, you need to specify whether the failover group has primary or secondary
preference using the primary or secondary command. You can assign the same preference to both
failover groups. For load balancing configurations, you should assign each failover group a different unit
preference.
The following example assigns failover group 1 a primary preference and failover group 2 a secondary
preference:
hostname(config)# failover group 1
hostname(config-fover-group)# primary
hostname(config-fover-group)# exit
hostname(config)# failover group 2
hostname(config-fover-group)# secondary
hostname(config-fover-group)# exit
Step 6 Assign each user context to a failover group using the join-failover-group command in context
configuration mode.
Any unassigned contexts are automatically assigned to failover group 1. The admin context is always a
member of failover group 1.
Enter the following commands to assign each context to a failover group:
hostname(config)# context context_name
hostname(config-context)# join-failover-group {1 | 2}
hostname(config-context)# exit
Step 7 Enable failover:
hostname(config)# failover
Step 8 Power on the secondary unit and enable failover on the unit if it is not already enabled:
hostname(config)# failover
The active unit sends the configuration in running memory to the standby unit. As the configuration
synchronizes, the messages “Beginning configuration replication: Sending to mate” and “End
Configuration Replication to mate” appear on the primary console.
Step 9 Save the configuration to Flash memory on the Primary unit. Because the commands entered on the
primary unit are replicated to the secondary unit, the secondary unit also saves its configuration to Flash
memory.
hostname(config)# copy running-config startup-config
Step 10 If necessary, force any failover group that is active on the primary to the active state on the secondary.
To force a failover group to become active on the secondary unit, issue the following command in the
system execution space on the primary unit:
hostname# no failover active group group_id
The group_id argument specifies the group you want to become active on the secondary unit.
Configuring LAN-Based Active/Active Failover
This section describes how to configure Active/Active failover using an Ethernet failover link. When
configuring LAN-based failover, you must bootstrap the secondary device to recognize the failover link
before the secondary device can obtain the running configuration from the primary device.
This section includes the following topics:14-30
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
• Configure the Primary Unit, page 14-30
• Configure the Secondary Unit, page 14-32
Configure the Primary Unit
To configure the primary unit in an Active/Active failover configuration, perform the following steps:
Step 1 If you have not done so already, configure the active and standby IP addresses for each data interface
(routed mode), for the management IP address (transparent mode), or for the management-only
interface.To receive packets from both units in a failover pair, standby IP addresses need to be configured
on all interfaces. The standby IP address is used on the security appliance that is currently the standby
unit, and it must be in the same subnet as the active IP address.
You must configure the interface addresses from within each context. Use the changeto context
command to switch between contexts. The command prompt changes to
hostname/context(config-if)#, where context is the name of the current context. In transparent
firewall mode, you must enter a management IP address for each context.
Note Do not configure an IP address for the Stateful Failover link if you are going to use a dedicated
Stateful Failover interface. You use the failover interface ip command to configure a dedicated
Stateful Failover interface in a later step.
hostname/context(config-if)# ip address active_addr netmask standby standby_addr
In routed firewall mode and for the management-only interface, this command is entered in interface
configuration mode for each interface. In transparent firewall mode, the command is entered in global
configuration mode.
Step 2 Configure the basic failover parameters in the system execution space.
a. (PIX security appliance only) Enable LAN-based failover:
hostname(config)# hostname(config)# failover lan enable
b. Designate the unit as the primary unit:
hostname(config)# failover lan unit primary
c. Specify the failover link:
hostname(config)# failover lan interface if_name phy_if
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. On the ASA 5505 adaptive security appliance, the phy_if
specifies a VLAN. This interface should not be used for any other purpose (except, optionally, the
Stateful Failover link).
d. Specify the failover link active and standby IP addresses:
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby IP address subnet mask. The failover link IP address and MAC address do not
change at failover. The active IP address always stays with the primary unit, while the standby IP
address stays with the secondary unit. 14-31
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Step 3 (Optional) To enable Stateful Failover, configure the Stateful Failover link:
a. Specify the interface to be used as Stateful Failover link:
hostname(config)# failover link if_name phy_if
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. This interface should not be used for any other purpose (except,
optionally, the failover link).
Note If the Stateful Failover link uses the failover link or a regular data interface, then you only
need to supply the if_name argument.
b. Assign an active and standby IP address to the Stateful Failover link.
Note If the Stateful Failover link uses the failover link or a regular data interface, skip this step.
You have already defined the active and standby IP addresses for the interface.
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby address subnet mask.
The state link IP address and MAC address do not change at failover. The active IP address always
stays with the primary unit, while the standby IP address stays with the secondary unit.
c. Enable the interface.
Note If the Stateful Failover link uses the failover link or regular data interface, skip this step. You
have already enabled the interface.
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 4 Configure the failover groups. You can have at most two failover groups. The failover group command
creates the specified failover group if it does not exist and enters the failover group configuration mode.
For each failover group, specify whether the failover group has primary or secondary preference using
the primary or secondary command. You can assign the same preference to both failover groups. For
load balancing configurations, you should assign each failover group a different unit preference.
The following example assigns failover group 1 a primary preference and failover group 2 a secondary
preference:
hostname(config)# failover group 1
hostname(config-fover-group)# primary
hostname(config-fover-group)# exit
hostname(config)# failover group 2
hostname(config-fover-group)# secondary
hostname(config-fover-group)# exit
Step 5 Assign each user context to a failover group using the join-failover-group command in context
configuration mode.
Any unassigned contexts are automatically assigned to failover group 1. The admin context is always a
member of failover group 1.14-32
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Enter the following commands to assign each context to a failover group:
hostname(config)# context context_name
hostname(config-context)# join-failover-group {1 | 2}
hostname(config-context)# exit
Step 6 Enable failover:
hostname(config)# failover
Configure the Secondary Unit
When configuring LAN-based Active/Active failover, you need to bootstrap the secondary unit to
recognize the failover link. This allows the secondary unit to communicate with and receive the running
configuration from the primary unit.
To bootstrap the secondary unit in an Active/Active failover configuration, perform the following steps:
Step 1 (PIX security appliance only) Enable LAN-based failover:
hostname(config)# failover lan enable
Step 2 Define the failover interface. Use the same settings as you used for the primary unit:
a. Specify the interface to be used as the failover interface:
hostname(config)# failover lan interface if_name phy_if
The if_name argument assigns a logical name to the interface specified by the phy_if argument. The
phy_if argument can be the physical port name, such as Ethernet1, or a previously created
subinterface, such as Ethernet0/2.3. On the ASA 5505 adaptive security appliance, the phy_if
specifies a VLAN.
b. Assign the active and standby IP address to the failover link. To receive packets from both units in
a failover pair, standby IP addresses need to be configured on all interfaces.
hostname(config)# failover interface ip if_name ip_addr mask standby ip_addr
Note Enter this command exactly as you entered it on the primary unit when you configured the
failover interface.
The standby IP address must be in the same subnet as the active IP address. You do not need to
identify the standby address subnet mask.
c. Enable the interface:
hostname(config)# interface phy_if
hostname(config-if)# no shutdown
Step 3 (Optional) Designate this unit as the secondary unit:
hostname(config)# failover lan unit secondary
Note This step is optional because by default units are designated as secondary unless previously
configured otherwise.14-33
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Step 4 Enable failover:
hostname(config)# failover
After you enable failover, the active unit sends the configuration in running memory to the standby unit.
As the configuration synchronizes, the messages Beginning configuration replication: Sending to
mate and End Configuration Replication to mate appear on the active unit console.
Step 5 After the running configuration has completed replication, enter the following command to save the
configuration to Flash memory:
hostname(config)# copy running-config startup-config
Step 6 If necessary, force any failover group that is active on the primary to the active state on the secondary
unit. To force a failover group to become active on the secondary unit, enter the following command in
the system execution space on the primary unit:
hostname# no failover active group group_id
The group_id argument specifies the group you want to become active on the secondary unit.
Configuring Optional Active/Active Failover Settings
The following optional Active/Active failover settings can be configured when you are initially
configuring failover or after you have already established failover. Unless otherwise noted, the
commands should be entered on the unit that has failover group 1 in the active state.
This section includes the following topics:
• Configuring Failover Group Preemption, page 14-33
• Enabling HTTP Replication with Stateful Failover, page 14-34
• Disabling and Enabling Interface Monitoring, page 14-34
• Configuring Interface Health Monitoring, page 14-34
• Configuring Failover Criteria, page 14-34
• Configuring Virtual MAC Addresses, page 14-35
• Configuring Asymmetric Routing Support, page 14-35
Configuring Failover Group Preemption
Assigning a primary or secondary priority to a failover group specifies which unit the failover group
becomes active on when both units boot simultaneously. However, if one unit boots before the other, then
both failover groups become active on that unit. When the other unit comes online, any failover groups
that have the unit as a priority do not become active on that unit unless manually forced over, a failover
occurs, or the failover group is configured with the preempt command. The preempt command causes
a failover group to become active on the designated unit automatically when that unit becomes available.
Enter the following commands to configure preemption for the specified failover group:
hostname(config)# failover group {1 | 2}
hostname(config-fover-group)# preempt [delay]
You can enter an optional delay value, which specifies the number of seconds the failover group remains
active on the current unit before automatically becoming active on the designated unit.14-34
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Enabling HTTP Replication with Stateful Failover
To allow HTTP connections to be included in the state information, you need to enable HTTP
replication. Because HTTP connections are typically short-lived, and because HTTP clients typically
retry failed connection attempts, HTTP connections are not automatically included in the replicated state
information. You can use the replication http command to cause a failover group to replicate HTTP state
information when Stateful Failover is enabled.
To enable HTTP state replication for a failover group, enter the following command. This command only
affects the failover group in which it was configured. To enable HTTP state replication for both failover
groups, you must enter this command in each group. This command should be entered in the system
execution space.
hostname(config)# failover group {1 | 2}
hostname(config-fover-group)# replication http
Disabling and Enabling Interface Monitoring
You can monitor up to 250 interfaces on a unit. By default, monitoring of physical interfaces is enabled
and the monitoring of subinterfaces is disabled. You can control which interfaces affect your failover
policy by disabling the monitoring of specific interfaces and enabling the monitoring of others. This lets
you exclude interfaces attached to less critical networks from affecting your failover policy.
To disable health monitoring on an interface, enter the following command within a context:
hostname/context(config)# no monitor-interface if_name
To enable health monitoring on an interface, enter the following command within a context:
hostname/context(config)# monitor-interface if_name
Configuring Interface Health Monitoring
The security appliance sends hello packets out of each data interface to monitor interface health. If the
security appliance does not receive a hello packet from the corresponding interface on the peer unit for
over half of the hold time, then the additional interface testing begins. If a hello packet or a successful
test result is not received within the specified hold time, the interface is marked as failed. Failover occurs
if the number of failed interfaces meets the failover criteria.
Decreasing the poll and hold times enables the security appliance to detect and respond to interface
failures more quickly, but may consume more system resources.
To change the default interface poll time, enter the following commands:
hostname(config)# failover group {1 | 2}
hostname(config-fover-group)# polltime interface seconds
Valid values for the poll time are from 1 to 15 seconds or, if the optional msec keyword is used, from
500 to 999 milliseconds. The hold time determines how long it takes from the time a hello packet is
missed to when the interface is marked as failed. Valid values for the hold time are from 5 to 75 seconds.
You cannot enter a hold time that is less than 5 times the poll time.
Configuring Failover Criteria
By default, if a single interface fails failover occurs. You can specify a specific number of interfaces or
a percentage of monitored interfaces that must fail before a failover occurs. The failover criteria is
specified on a failover group basis.14-35
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
To change the default failover criteria for the specified failover group, enter the following commands:
hostname(config)# failover group {1 | 2}
hostname(config-fover-group)# interface-policy num[%]
When specifying a specific number of interfaces, the num argument can be from 1 to 250. When
specifying a percentage of interfaces, the num argument can be from 1 to 100.
Configuring Virtual MAC Addresses
Active/Active failover uses virtual MAC addresses on all interfaces. If you do not specify the virtual
MAC addresses, then they are computed as follows:
• Active unit default MAC address: 00a0.c9physical_port_number.failover_group_id01.
• Standby unit default MAC address: 00a0.c9physical_port_number.failover_group_id02.
Note If you have more than one Active/Active failover pair on the same network, it is possible to have the
same default virtual MAC addresses assigned to the interfaces on one pair as are assigned to the
interfaces of the other pairs because of the way the default virtual MAC addresses are determined. To
avoid having duplicate MAC addresses on your network, make sure you assign each physical interface
a virtual active and standby MAC address for all failover groups.
You can configure specific active and standby MAC addresses for an interface by entering the following
commands:
hostname(config)# failover group {1 | 2}
hostname(config-fover-group)# mac address phy_if active_mac standby_mac
The phy_if argument is the physical name of the interface, such as Ethernet1. The active_mac and
standby_mac arguments are MAC addresses in H.H.H format, where H is a 16-bit hexadecimal digit. For
example, the MAC address 00-0C-F1-42-4C-DE would be entered as 000C.F142.4CDE.
The active_mac address is associated with the active IP address for the interface, and the standby_mac
is associated with the standby IP address for the interface.
There are multiple ways to configure virtual MAC addresses on the security appliance. When more than
one method has been used to configure virtual MAC addresses, the security appliance uses the following
order of preference to determine which virtual MAC address is assigned to an interface:
1. The mac-address command (in interface configuration mode) address.
2. The failover mac address command address.
3. The mac-address auto command generate address.
4. The automatically generated failover MAC address.
Use the show interface command to display the MAC address used by an interface.
Configuring Asymmetric Routing Support
When running in Active/Active failover, a unit may receive a return packet for a connection that
originated through its peer unit. Because the security appliance that receives the packet does not have
any connection information for the packet, the packet is dropped. This most commonly occurs when the
two security appliances in an Active/Active failover pair are connected to different service providers and
the outbound connection does not use a NAT address.14-36
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
You can prevent the return packets from being dropped using the asr-group command on interfaces
where this is likely to occur. When an interface configured with the asr-group command receives a
packet for which it has no session information, it checks the session information for the other interfaces
that are in the same group. If it does not find a match, the packet is dropped. If it finds a match, then one
of the following actions occurs:
• If the incoming traffic originated on a peer unit, some or all of the layer 2 header is rewritten and
the packet is redirected to the other unit. This redirection continues as long as the session is active.
• If the incoming traffic originated on a different interface on the same unit, some or all of the layer
2 header is rewritten and the packet is reinjected into the stream.
Note Using the asr-group command to configure asymmetric routing support is more secure than using the
static command with the nailed option.
The asr-group command does not provide asymmetric routing; it restores asymmetrically routed packets
to the correct interface.
Prerequisites
You must have to following configured for asymmetric routing support to function properly:
• Active/Active Failover
• Stateful Failover—passes state information for sessions on interfaces in the active failover group to
the standby failover group.
• replication http—HTTP session state information is not passed to the standby failover group, and
therefore is not present on the standby interface. For the security appliance to be able re-route
asymmetrically routed HTTP packets, you need to replicate the HTTP state information.
You can configure the asr-group command on an interface without having failover configured, but it
does not have any effect until Stateful Failover is enabled.
Configuring Support for Asymmetrically Routed Packets
To configure support for asymmetrically routed packets, perform the following steps:
Step 1 Configure Active/Active Stateful Failover for the failover pair. See Configuring Active/Active Failover,
page 14-27.
Step 2 For each interface that you want to participate in asymmetric routing support enter the following
command. You must enter the command on the unit where the context is in the active state so that the
command is replicated to the standby failover group. For more information about command replication,
see Command Replication, page 14-12.
hostname/ctx(config)# interface phy_if
hostname/ctx(config-if)# asr-group num
Valid values for num range from 1 to 32. You need to enter the command for each interface that
participates in the asymmetric routing group. You can view the number of ASR packets transmitted,
received, or dropped by an interface using the show interface detail command. You can have more than
one ASR group configured on the security appliance, but only one per interface. Only members of the
same ASR group are checked for session information.14-37
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Example
Figure 14-1 shows an example of using the asr-group command for asymmetric routing support.
Figure 14-1 ASR Example
The two units have the following configuration (configurations show only the relevant commands). The
device labeled SecAppA in the diagram is the primary unit in the failover pair.
Example 14-1 Primary Unit System Configuration
hostname primary
interface GigabitEthernet0/1
description LAN/STATE Failover Interface
interface GigabitEthernet0/2
no shutdown
interface GigabitEthernet0/3
no shutdown
interface GigabitEthernet0/4
no shutdown
interface GigabitEthernet0/5
no shutdown
failover
failover lan unit primary
failover lan interface folink GigabitEthernet0/1
failover link folink
failover interface ip folink 10.0.4.1 255.255.255.0 standby 10.0.4.11
failover group 1
primary
failover group 2
secondary
admin-context admin
context admin
description admin
250093
192.168.1.1 192.168.2.2
SecAppA SecAppB
ISP A
Inside
network
Failover/State link
Outbound Traffic
Return Traffic
ISP B
192.168.2.1 192.168.1.214-38
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
allocate-interface GigabitEthernet0/2
allocate-interface GigabitEthernet0/3
config-url flash:/admin.cfg
join-failover-group 1
context ctx1
description context 1
allocate-interface GigabitEthernet0/4
allocate-interface GigabitEthernet0/5
config-url flash:/ctx1.cfg
join-failover-group 2
Example 14-2 admin Context Configuration
hostname SecAppA
interface GigabitEthernet0/2
nameif outsideISP-A
security-level 0
ip address 192.168.1.1 255.255.255.0 standby 192.168.1.2
asr-group 1
interface GigabitEthernet0/3
nameif inside
security-level 100
ip address 10.1.0.1 255.255.255.0 standby 10.1.0.11
monitor-interface outside
Example 14-3 ctx1 Context Configuration
hostname SecAppB
interface GigabitEthernet0/4
nameif outsideISP-B
security-level 0
ip address 192.168.2.2 255.255.255.0 standby 192.168.2.1
asr-group 1
interface GigabitEthernet0/5
nameif inside
security-level 100
ip address 10.2.20.1 255.255.255.0 standby 10.2.20.11
Figure 14-1 on page 14-37 shows the ASR support working as follows:
1. An outbound session passes through security appliance SecAppA. It exits interface outsideISP-A
(192.168.1.1).
2. Because of asymmetric routing configured somewhere upstream, the return traffic comes back
through the interface outsideISP-B (192.168.2.2) on security appliance SecAppB.
3. Normally the return traffic would be dropped because there is no session information for the traffic
on interface 192.168.2.2. However, the interface is configure with the command asr-group 1. The
unit looks for the session on any other interface configured with the same ASR group ID.
4. The session information is found on interface outsideISP-A (192.168.1.2), which is in the standby
state on the unit SecAppB. Stateful Failover replicated the session information from SecAppA to
SecAppB.
5. Instead of being dropped, the layer 2 header is re-written with information for interface 192.168.1.1
and the traffic is redirected out of the interface 192.168.1.2, where it can then return through the
interface on the unit from which it originated (192.168.1.1 on SecAppA). This forwarding continues
as needed until the session ends.14-39
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Configuring Unit Health Monitoring
The security appliance sends hello packets over the failover interface to monitor unit health. If the
standby unit does not receive a hello packet from the active unit for two consecutive polling periods, it
sends additional testing packets through the remaining device interfaces. If a hello packet or a response
to the interface test packets is not received within the specified hold time, the standby unit becomes
active.
You can configure the frequency of hello messages when monitoring unit health. Decreasing the poll
time allows a unit failure to be detected more quickly, but consumes more system resources.
To change the unit poll time, enter the following command in global configuration mode:
hostname(config)# failover polltime [msec] time [holdtime [msec] time]
You can configure the polling frequency from 1 to 15 seconds or, if the optional msec keyword is used,
from 200 to 999 milliseconds. The hold time determines how long it takes from the time a hello packet
is missed to when failover occurs. The hold time must be at least 3 times the poll time. You can configure
the hold time from 1 to 45 seconds or, if the optional msec keyword is used, from 800 to 990
milliseconds.
Setting the security appliance to use the minimum poll and hold times allows it to detect and respond to
unit failures in under a second, but it also increases system resource usage and can cause false failure
detection in cases where the networks are congested or where the security appliance is running near full
capacity.
Configuring Failover Communication Authentication/Encryption
You can encrypt and authenticate the communication between failover peers by specifying a shared
secret or hexadecimal key.
Note On the PIX 500 series security appliance, if you are using the dedicated serial failover cable to connect
the units, then communication over the failover link is not encrypted even if a failover key is configured.
The failover key only encrypts LAN-based failover communication.
Caution All information sent over the failover and Stateful Failover links is sent in clear text unless you secure
the communication with a failover key. If the security appliance is used to terminate VPN tunnels, this
information includes any usernames, passwords and preshared keys used for establishing the tunnels.
Transmitting this sensitive data in clear text could pose a significant security risk. We recommend
securing the failover communication with a failover key if you are using the security appliance to
terminate VPN tunnels.
Enter the following command on the active unit of an Active/Standby failover pair or on the unit that has
failover group 1 in the active state of an Active/Active failover pair:
hostname(config)# failover key {secret | hex key}
The secret argument specifies a shared secret that is used to generate the encryption key. It can be from
1 to 63 characters. The characters can be any combination of numbers, letters, or punctuation. The hex
key argument specifies a hexadecimal encryption key. The key must be 32 hexadecimal characters (0-9,
a-f).14-40
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Note To prevent the failover key from being replicated to the peer unit in clear text for an existing failover
configuration, disable failover on the active unit (or in the system execution space on the unit that has
failover group 1 in the active state), enter the failover key on both units, and then re-enable failover.
When failover is re-enabled, the failover communication is encrypted with the key.
For new LAN-based failover configurations, the failover key command should be part of the failover
pair bootstrap configuration.
Verifying the Failover Configuration
This section describes how to verify your failover configuration. This section includes the following
topics:
• Using the show failover Command, page 14-40
• Viewing Monitored Interfaces, page 14-48
• Displaying the Failover Commands in the Running Configuration, page 14-48
• Testing the Failover Functionality, page 14-49
Using the show failover Command
This section describes the show failover command output. On each unit you can verify the failover status
by entering the show failover command. The information displayed depends upon whether you are using
Active/Standby or Active/Active failover.
This section includes the following topics:
• show failover—Active/Standby, page 14-40
• Show Failover—Active/Active, page 14-44
show failover—Active/Standby
The following is sample output from the show failover command for Active/Standby Failover.
Table 14-7 provides descriptions for the information shown.
hostname# show failover
Failover On
Cable status: N/A - LAN-based failover enabled
Failover unit Primary
Failover LAN Interface: fover Ethernet2 (up)
Unit Poll frequency 1 seconds, holdtime 3 seconds
Interface Poll frequency 15 seconds
Interface Policy 1
Monitored Interfaces 2 of 250 maximum
failover replication http
Last Failover at: 22:44:03 UTC Dec 8 2004
This host: Primary - Active
Active time: 13434 (sec)
Interface inside (10.130.9.3): Normal
Interface outside (10.132.9.3): Normal
Other host: Secondary - Standby Ready
Active time: 0 (sec)
Interface inside (10.130.9.4): Normal
Interface outside (10.132.9.4): Normal 14-41
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Stateful Failover Logical Update Statistics
Link : fover Ethernet2 (up)
Stateful Obj xmit xerr rcv rerr
General 1950 0 1733 0
sys cmd 1733 0 1733 0
up time 0 0 0 0
RPC services 0 0 0 0
TCP conn 6 0 0 0
UDP conn 0 0 0 0
ARP tbl 106 0 0 0
Xlate_Timeout 0 0 0 0
VPN IKE upd 15 0 0 0
VPN IPSEC upd 90 0 0 0
VPN CTCP upd 0 0 0 0
VPN SDI upd 0 0 0 0
VPN DHCP upd 0 0 0 0
Logical Update Queue Information
Cur Max Total
Recv Q: 0 2 1733
Xmit Q: 0 2 15225
In multiple context mode, using the show failover command in a security context displays the failover
information for that context. The information is similar to the information shown when using the
command in single context mode. Instead of showing the active/standby status of the unit, it displays the
active/standby status of the context. Table 14-7 provides descriptions for the information shown.
Failover On
Last Failover at: 04:03:11 UTC Jan 4 2003
This context: Negotiation
Active time: 1222 (sec)
Interface outside (192.168.5.121): Normal
Interface inside (192.168.0.1): Normal
Peer context: Not Detected
Active time: 0 (sec)
Interface outside (192.168.5.131): Normal
Interface inside (192.168.0.11): Normal
Stateful Failover Logical Update Statistics
Status: Configured.
Stateful Obj xmit xerr rcv rerr
RPC services 0 0 0 0
TCP conn 99 0 0 0
UDP conn 0 0 0 0
ARP tbl 22 0 0 0
Xlate_Timeout 0 0 0 0
GTP PDP 0 0 0 0
GTP PDPMCB 0 0 0 0 14-42
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Table 14-7 Show Failover Display Description
Field Options
Failover • On
• Off
Cable status: • Normal—The cable is connected to both units, and they both have
power.
• My side not connected—The serial cable is not connected to this
unit. It is unknown if the cable is connected to the other unit.
• Other side is not connected—The serial cable is connected to this
unit, but not to the other unit.
• Other side powered off—The other unit is turned off.
• N/A—LAN-based failover is enabled.
Failover Unit Primary or Secondary.
Failover LAN Interface Displays the logical and physical name of the failover link.
Unit Poll frequency Displays the number of seconds between hello messages sent to the
peer unit and the number of seconds during which the unit must receive
a hello message on the failover link before declaring the peer failed.
Interface Poll frequency n seconds
The number of seconds you set with the failover polltime interface
command. The default is 15 seconds.
Interface Policy Displays the number or percentage of interfaces that must fail to trigger
failover.
Monitored Interfaces Displays the number of interfaces monitored out of the maximum
possible.
failover replication http Displays if HTTP state replication is enabled for Stateful Failover.
Last Failover at: The date and time of the last failover in the following form:
hh:mm:ss UTC DayName Month Day yyyy
UTC (Coordinated Universal Time) is equivalent to GMT (Greenwich
Mean Time).
This host:
Other host:
For each host, the display shows the following information.
Primary or Secondary • Active
• Standby
Active time: n (sec)
The amount of time the unit has been active. This time is cumulative,
so the standby unit, if it was active in the past, also shows a value.
slot x Information about the module in the slot or empty.14-43
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Interface name (n.n.n.n): For each interface, the display shows the IP address currently being
used on each unit, as well as one of the following conditions:
• Failed—The interface has failed.
• No Link—The interface line protocol is down.
• Normal—The interface is working correctly.
• Link Down—The interface has been administratively shut down.
• Unknown—The security appliance cannot determine the status of
the interface.
• Waiting—Monitoring of the network interface on the other unit has
not yet started.
Stateful Failover Logical
Update Statistics
The following fields relate to the Stateful Failover feature. If the Link
field shows an interface name, the Stateful Failover statistics are shown.
Link • interface_name—The interface used for the Stateful Failover link.
• Unconfigured—You are not using Stateful Failover.
• up—The interface is up and functioning.
• down—The interface is either administratively shutdown or is
physically down.
• failed—The interface has failed and is not passing stateful data.
Stateful Obj For each field type, the following statistics are shown. They are
counters for the number of state information packets sent between the
two units; the fields do not necessarily show active connections through
the unit.
• xmit—Number of transmitted packets to the other unit.
• xerr—Number of errors that occurred while transmitting packets to
the other unit.
• rcv—Number of received packets.
• rerr—Number of errors that occurred while receiving packets from
the other unit.
General Sum of all stateful objects.
sys cmd Logical update system commands; for example, LOGIN and Stay
Alive.
up time Up time, which the active unit passes to the standby unit.
RPC services Remote Procedure Call connection information.
TCP conn TCP connection information.
UDP conn Dynamic UDP connection information.
ARP tbl Dynamic ARP table information.
L2BRIDGE tbl Layer 2 bridge table information (transparent firewall mode only).
Xlate_Timeout Indicates connection translation timeout information.
VPN IKE upd IKE connection information.
Table 14-7 Show Failover Display Description (continued)
Field Options14-44
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Show Failover—Active/Active
The following is sample output from the show failover command for Active/Active Failover. Table 14-8
provides descriptions for the information shown.
hostname# show failover
Failover On
Failover unit Primary
Failover LAN Interface: third GigabitEthernet0/2 (up)
Unit Poll frequency 1 seconds, holdtime 15 seconds
Interface Poll frequency 4 seconds
Interface Policy 1
Monitored Interfaces 8 of 250 maximum
failover replication http
Group 1 last failover at: 13:40:18 UTC Dec 9 2004
Group 2 last failover at: 13:40:06 UTC Dec 9 2004
This host: Primary
Group 1 State: Active
Active time: 2896 (sec)
Group 2 State: Standby Ready
Active time: 0 (sec)
slot 0: ASA-5530 hw/sw rev (1.0/7.0(0)79) status (Up Sys)
slot 1: SSM-IDS-20 hw/sw rev (1.0/5.0(0.11)S91(0.11)) status (Up)
admin Interface outside (10.132.8.5): Normal
admin Interface third (10.132.9.5): Normal
admin Interface inside (10.130.8.5): Normal
admin Interface fourth (10.130.9.5): Normal
ctx1 Interface outside (10.1.1.1): Normal
ctx1 Interface inside (10.2.2.1): Normal
ctx2 Interface outside (10.3.3.2): Normal
ctx2 Interface inside (10.4.4.2): Normal
Other host: Secondary
VPN IPSEC upd IPSec connection information.
VPN CTCP upd cTCP tunnel connection information.
VPN SDI upd SDI AAA connection information.
VPN DHCP upd Tunneled DHCP connection information.
GTP PDP GTP PDP update information. This information appears only if inspect
GTP is enabled.
GTP PDPMCB GTP PDPMCB update information. This information appears only if
inspect GTP is enabled.
Logical Update Queue
Information
For each field type, the following statistics are used:
• Cur—Current number of packets
• Max—Maximum number of packets
• Total—Total number of packets
Recv Q The status of the receive queue.
Xmit Q The status of the transmit queue.
Table 14-7 Show Failover Display Description (continued)
Field Options14-45
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Group 1 State: Standby Ready
Active time: 190 (sec)
Group 2 State: Active
Active time: 3322 (sec)
slot 0: ASA-5530 hw/sw rev (1.0/7.0(0)79) status (Up Sys)
slot 1: SSM-IDS-20 hw/sw rev (1.0/5.0(0.1)S91(0.1)) status (Up)
admin Interface outside (10.132.8.6): Normal
admin Interface third (10.132.9.6): Normal
admin Interface inside (10.130.8.6): Normal
admin Interface fourth (10.130.9.6): Normal
ctx1 Interface outside (10.1.1.2): Normal
ctx1 Interface inside (10.2.2.2): Normal
ctx2 Interface outside (10.3.3.1): Normal
ctx2 Interface inside (10.4.4.1): Normal
Stateful Failover Logical Update Statistics
Link : third GigabitEthernet0/2 (up)
Stateful Obj xmit xerr rcv rerr
General 1973 0 1895 0
sys cmd 380 0 380 0
up time 0 0 0 0
RPC services 0 0 0 0
TCP conn 1435 0 1450 0
UDP conn 0 0 0 0
ARP tbl 124 0 65 0
Xlate_Timeout 0 0 0 0
VPN IKE upd 15 0 0 0
VPN IPSEC upd 90 0 0 0
VPN CTCP upd 0 0 0 0
VPN SDI upd 0 0 0 0
VPN DHCP upd 0 0 0 0
Logical Update Queue Information
Cur Max Total
Recv Q: 0 1 1895
Xmit Q: 0 0 1940
The following is sample output from the show failover group command for Active/Active Failover. The
information displayed is similar to that of the show failover command, but limited to the specified
group. Table 14-8 provides descriptions for the information shown.
hostname# show failover group 1
Last Failover at: 04:09:59 UTC Jan 4 2005
This host: Secondary
State: Active
Active time: 186 (sec)
admin Interface outside (192.168.5.121): Normal
admin Interface inside (192.168.0.1): Normal
Other host: Primary
State: Standby
Active time: 0 (sec)
admin Interface outside (192.168.5.131): Normal
admin Interface inside (192.168.0.11): Normal
Stateful Failover Logical Update Statistics
Status: Configured.14-46
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
RPC services 0 0 0 0
TCP conn 33 0 0 0
UDP conn 0 0 0 0
ARP tbl 12 0 0 0
Xlate_Timeout 0 0 0 0
GTP PDP 0 0 0 0
GTP PDPMCB 0 0 0 0
Table 14-8 Show Failover Display Description
Field Options
Failover • On
• Off
Failover Unit Primary or Secondary.
Failover LAN Interface Displays the logical and physical name of the failover link.
Unit Poll frequency Displays the number of seconds between hello messages sent to the
peer unit and the number of seconds during which the unit must receive
a hello message on the failover link before declaring the peer failed.
Interface Poll frequency n seconds
The number of seconds you set with the failover polltime interface
command. The default is 15 seconds.
Interface Policy Displays the number or percentage of interfaces that must fail before
triggering failover.
Monitored Interfaces Displays the number of interfaces monitored out of the maximum
possible.
Group 1 Last Failover at:
Group 2 Last Failover at:
The date and time of the last failover for each group in the following
form:
hh:mm:ss UTC DayName Month Day yyyy
UTC (Coordinated Universal Time) is equivalent to GMT (Greenwich
Mean Time).
This host:
Other host:
For each host, the display shows the following information.
Role Primary or Secondary
System State • Active or Standby Ready
• Active Time in seconds
Group 1 State
Group 2 State
• Active or Standby Ready
• Active Time in seconds
slot x Information about the module in the slot or empty.14-47
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
context Interface name
(n.n.n.n):
For each interface, the display shows the IP address currently being
used on each unit, as well as one of the following conditions:
• Failed—The interface has failed.
• No link—The interface line protocol is down.
• Normal—The interface is working correctly.
• Link Down—The interface has been administratively shut down.
• Unknown—The security appliance cannot determine the status of
the interface.
• Waiting—Monitoring of the network interface on the other unit has
not yet started.
Stateful Failover Logical
Update Statistics
The following fields relate to the Stateful Failover feature. If the Link
field shows an interface name, the Stateful Failover statistics are shown.
Link • interface_name—The interface used for the Stateful Failover link.
• Unconfigured—You are not using Stateful Failover.
• up—The interface is up and functioning.
• down—The interface is either administratively shutdown or is
physically down.
• failed—The interface has failed and is not passing stateful data.
Stateful Obj For each field type, the following statistics are used. They are counters
for the number of state information packets sent between the two units;
the fields do not necessarily show active connections through the unit.
• xmit—Number of transmitted packets to the other unit
• xerr—Number of errors that occurred while transmitting packets to
the other unit
• rcv—Number of received packets
• rerr—Number of errors that occurred while receiving packets from
the other unit
General Sum of all stateful objects.
sys cmd Logical update system commands; for example, LOGIN and Stay
Alive.
up time Up time, which the active unit passes to the standby unit.
RPC services Remote Procedure Call connection information.
TCP conn TCP connection information.
UDP conn Dynamic UDP connection information.
ARP tbl Dynamic ARP table information.
L2BRIDGE tbl Layer 2 bridge table information (transparent firewall mode only).
Xlate_Timeout Indicates connection translation timeout information.
VPN IKE upd IKE connection information.
Table 14-8 Show Failover Display Description (continued)
Field Options14-48
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Configuring Failover
Viewing Monitored Interfaces
To view the status of monitored interfaces, enter the following command. In single context mode, enter
this command in global configuration mode. In multiple context mode, enter this command within a
context.
primary/context(config)# show monitor-interface
For example:
hostname/context(config)# show monitor-interface
This host: Primary - Active
Interface outside (192.168.1.2): Normal
Interface inside (10.1.1.91): Normal
Other host: Secondary - Standby
Interface outside (192.168.1.3): Normal
Interface inside (10.1.1.100): Normal
Displaying the Failover Commands in the Running Configuration
To view the failover commands in the running configuration, enter the following command:
hostname(config)# show running-config failover
All of the failover commands are displayed. On units running multiple context mode, enter this command
in the system execution space. Entering show running-config all failover displays the failover
commands in the running configuration and includes commands for which you have not changed the
default value.
VPN IPSEC upd IPSec connection information.
VPN CTCP upd cTCP tunnel connection information.
VPN SDI upd SDI AAA connection information.
VPN DHCP upd Tunneled DHCP connection information.
GTP PDP GTP PDP update information. This information appears only if inspect
GTP is enabled.
GTP PDPMCB GTP PDPMCB update information. This information appears only if
inspect GTP is enabled.
Logical Update Queue
Information
For each field type, the following statistics are used:
• Cur—Current number of packets
• Max—Maximum number of packets
• Total—Total number of packets
Recv Q The status of the receive queue.
Xmit Q The status of the transmit queue.
Table 14-8 Show Failover Display Description (continued)
Field Options14-49
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Controlling and Monitoring Failover
Testing the Failover Functionality
To test failover functionality, perform the following steps:
Step 1 Test that your active unit or failover group is passing traffic as expected by using FTP (for example) to
send a file between hosts on different interfaces.
Step 2 Force a failover to the standby unit by entering the following command:
• For Active/Standby failover, enter the following command on the active unit:
hostname(config)# no failover active
• For Active/Active failover, enter the following command on the unit where the failover group
containing the interface connecting your hosts is active:
hostname(config)# no failover active group group_id
Step 3 Use FTP to send another file between the same two hosts.
Step 4 If the test was not successful, enter the show failover command to check the failover status.
Step 5 When you are finished, you can restore the unit or failover group to active status by enter the following
command:
• For Active/Standby failover, enter the following command on the active unit:
hostname(config)# failover active
• For Active/Active failover, enter the following command on the unit where the failover group
containing the interface connecting your hosts is active:
hostname(config)# failover active group group_id
Controlling and Monitoring Failover
This sections describes how to control and monitor failover. This section includes the following topics:
• Forcing Failover, page 14-49
• Disabling Failover, page 14-50
• Restoring a Failed Unit or Failover Group, page 14-50
• Monitoring Failover, page 14-50
Forcing Failover
To force the standby unit or failover group to become active, enter one of the following commands:
• For Active/Standby failover:
Enter the following command on the standby unit:
hostname# failover active
Or, enter the following command on the active unit:14-50
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Controlling and Monitoring Failover
hostname# no failover active
• For Active/Active failover:
Enter the following command in the system execution space of the unit where the failover group is
in the standby state:
hostname# failover active group group_id
Or, enter the following command in the system execution space of the unit where the failover group
is in the active state:
hostname# no failover active group group_id
Entering the following command in the system execution space causes all failover groups to become
active:
hostname# failover active
Disabling Failover
To disable failover, enter the following command:
hostname(config)# no failover
Disabling failover on an Active/Standby pair causes the active and standby state of each unit to be
maintained until you restart. For example, the standby unit remains in standby mode so that both units
do not start passing traffic. To make the standby unit active (even with failover disabled), see the
“Forcing Failover” section on page 14-49.
Disabling failover on an Active/Active pair causes the failover groups to remain in the active state on
whichever unit they are currently active on, no matter which unit they are configured to prefer. The no
failover command should be entered in the system execution space.
Restoring a Failed Unit or Failover Group
To restore a failed unit to an unfailed state, enter the following command:
hostname(config)# failover reset
To restore a failed Active/Active failover group to an unfailed state, enter the following command:
hostname(config)# failover reset group group_id
Restoring a failed unit or group to an unfailed state does not automatically make it active; restored units
or groups remain in the standby state until made active by failover (forced or natural). An exception is a
failover group configured with the preempt command. If previously active, a failover group becomes
active if it is configured with the preempt command and if the unit on which it failed is the preferred
unit.
Monitoring Failover
When a failover occurs, both security appliances send out system messages. This section includes the
following topics:
• Failover System Messages, page 14-5114-51
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Controlling and Monitoring Failover
• Debug Messages, page 14-51
• SNMP, page 14-51
Failover System Messages
The security appliance issues a number of system messages related to failover at priority level 2, which
indicates a critical condition. To view these messages, see the Cisco Security Appliance Logging
Configuration and System Log Messages to enable logging and to see descriptions of the system
messages.
Note During switchover, failover logically shuts down and then bring up interfaces, generating syslog 411001
and 411002 messages. This is normal activity.
Debug Messages
To see debug messages, enter the debug fover command. See the Cisco Security Appliance Command
Reference for more information.
Note Because debugging output is assigned high priority in the CPU process, it can drastically affect system
performance. For this reason, use the debug fover commands only to troubleshoot specific problems or
during troubleshooting sessions with Cisco TAC.
SNMP
To receive SNMP syslog traps for failover, configure the SNMP agent to send SNMP traps to SNMP
management stations, define a syslog host, and compile the Cisco syslog MIB into your SNMP
management station. See the snmp-server and logging commands in the Cisco Security Appliance
Command Reference for more information. 14-52
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 14 Configuring Failover
Controlling and Monitoring FailoverP A R T 2
Configuring the FirewallC H A P T E R
15-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
15
Firewall Mode Overview
This chapter describes how the firewall works in each firewall mode. To set the firewall mode, see the
“Setting Transparent or Routed Firewall Mode” section on page 2-5.
Note In multiple context mode, you cannot set the firewall mode separately for each context; you can only set
the firewall mode for the entire security appliance.
This chapter includes the following sections:
• Routed Mode Overview, page 15-1
• Transparent Mode Overview, page 15-8
Routed Mode Overview
In routed mode, the security appliance is considered to be a router hop in the network. It can perform
NAT between connected networks, and can use OSPF or RIP (in single context mode). Routed mode
supports many interfaces. Each interface is on a different subnet. You can share interfaces between
contexts.
This section includes the following topics:
• IP Routing Support, page 15-1
• Network Address Translation, page 15-2
• How Data Moves Through the Security Appliance in Routed Firewall Mode, page 15-3
IP Routing Support
The security appliance acts as a router between connected networks, and each interface requires an
IP address on a different subnet. In single context mode, the routed firewall supports OSPF and RIP.
Multiple context mode supports static routes only. We recommend using the advanced routing
capabilities of the upstream and downstream routers instead of relying on the security appliance for
extensive routing needs.15-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
Network Address Translation
NAT substitutes the local address on a packet with a global address that is routable on the destination
network. By default, NAT is not required. If you want to enforce a NAT policy that requires hosts on a
higher security interface (inside) to use NAT when communicating with a lower security interface
(outside), you can enable NAT control (see the nat-control command).
Note NAT control was the default behavior for software versions earlier than Version 7.0. If you upgrade a
security appliance from an earlier version, then the nat-control command is automatically added to your
configuration to maintain the expected behavior.
Some of the benefits of NAT include the following:
• You can use private addresses on your inside networks. Private addresses are not routable on the
Internet.
• NAT hides the local addresses from other networks, so attackers cannot learn the real address of a
host.
• NAT can resolve IP routing problems by supporting overlapping IP addresses.
Figure 15-1 shows a typical NAT scenario, with a private network on the inside. When the inside user
sends a packet to a web server on the Internet, the local source address of the packet is changed to a
routable global address. When the web server responds, it sends the response to the global address, and
the security appliance receives the packet. The security appliance then translates the global address to
the local address before sending it on to the user.
Figure 15-1 NAT Example
Web Server
www.example.com
209.165.201.2
10.1.2.1
10.1.2.27
Source Addr Translation
10.1.2.27 209.165.201.10
Originating
Packet
Dest Addr Translation
209.165.201.10 10.1.2.27
Responding
Packet
Outside
Inside
9240515-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
How Data Moves Through the Security Appliance in Routed Firewall Mode
This section describes how data moves through the security appliance in routed firewall mode, and
includes the following topics:
• An Inside User Visits a Web Server, page 15-3
• An Outside User Visits a Web Server on the DMZ, page 15-4
• An Inside User Visits a Web Server on the DMZ, page 15-6
• An Outside User Attempts to Access an Inside Host, page 15-7
• A DMZ User Attempts to Access an Inside Host, page 15-8
An Inside User Visits a Web Server
Figure 15-2 shows an inside user accessing an outside web server.
Figure 15-2 Inside to Outside
The following steps describe how data moves through the security appliance (see Figure 15-2):
1. The user on the inside network requests a web page from www.example.com.
2. The security appliance receives the packet and because it is a new session, the security appliance
verifies that the packet is allowed according to the terms of the security policy (access lists, filters,
AAA).
Web Server
10.1.1.3
www.example.com
User
10.1.2.27
209.165.201.2
10.1.2.1 10.1.1.1
Source Addr Translation
10.1.2.27 209.165.201.10
Outside
Inside DMZ
9240415-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
For multiple context mode, the security appliance first classifies the packet according to either a
unique interface or a unique destination address associated with a context; the destination address
is associated by matching an address translation in a context. In this case, the interface would be
unique; the www.example.com IP address does not have a current address translation in a context.
3. The security appliance translates the local source address (10.1.2.27) to the global address
209.165.201.10, which is on the outside interface subnet.
The global address could be on any subnet, but routing is simplified when it is on the outside
interface subnet.
4. The security appliance then records that a session is established and forwards the packet from the
outside interface.
5. When www.example.com responds to the request, the packet goes through the security appliance,
and because the session is already established, the packet bypasses the many lookups associated
with a new connection. The security appliance performs NAT by translating the global destination
address to the local user address, 10.1.2.27.
6. The security appliance forwards the packet to the inside user.
An Outside User Visits a Web Server on the DMZ
Figure 15-3 shows an outside user accessing the DMZ web server.
Figure 15-3 Outside to DMZ
Web Server
10.1.1.3
User
209.165.201.2
10.1.2.1 10.1.1.1
Dest Addr Translation
209.165.201.3 10.1.1.13
Outside
Inside DMZ
9240615-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
The following steps describe how data moves through the security appliance (see Figure 15-3):
1. A user on the outside network requests a web page from the DMZ web server using the global
destination address of 209.165.201.3, which is on the outside interface subnet.
2. The security appliance receives the packet and because it is a new session, the security appliance
verifies that the packet is allowed according to the terms of the security policy (access lists, filters,
AAA).
For multiple context mode, the security appliance first classifies the packet according to either a
unique interface or a unique destination address associated with a context; the destination address
is associated by matching an address translation in a context. In this case, the classifier “knows” that
the DMZ web server address belongs to a certain context because of the server address translation.
3. The security appliance translates the destination address to the local address 10.1.1.3.
4. The security appliance then adds a session entry to the fast path and forwards the packet from the
DMZ interface.
5. When the DMZ web server responds to the request, the packet goes through the security appliance
and because the session is already established, the packet bypasses the many lookups associated
with a new connection. The security appliance performs NAT by translating the local source address
to 209.165.201.3.
6. The security appliance forwards the packet to the outside user.15-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
An Inside User Visits a Web Server on the DMZ
Figure 15-4 shows an inside user accessing the DMZ web server.
Figure 15-4 Inside to DMZ
The following steps describe how data moves through the security appliance (see Figure 15-4):
1. A user on the inside network requests a web page from the DMZ web server using the destination
address of 10.1.1.3.
2. The security appliance receives the packet and because it is a new session, the security appliance
verifies that the packet is allowed according to the terms of the security policy (access lists, filters,
AAA).
For multiple context mode, the security appliance first classifies the packet according to either a
unique interface or a unique destination address associated with a context; the destination address
is associated by matching an address translation in a context. In this case, the interface is unique;
the web server IP address does not have a current address translation.
3. The security appliance then records that a session is established and forwards the packet out of the
DMZ interface.
4. When the DMZ web server responds to the request, the packet goes through the fast path, which lets
the packet bypass the many lookups associated with a new connection.
5. The security appliance forwards the packet to the inside user.
Web Server
10.1.1.3
User
10.1.2.27
209.165.201.2
10.1.2.1 10.1.1.1
Inside DMZ
Outside
9240315-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Routed Mode Overview
An Outside User Attempts to Access an Inside Host
Figure 15-5 shows an outside user attempting to access the inside network.
Figure 15-5 Outside to Inside
The following steps describe how data moves through the security appliance (see Figure 15-5):
1. A user on the outside network attempts to reach an inside host (assuming the host has a routable
IP address).
If the inside network uses private addresses, no outside user can reach the inside network without
NAT. The outside user might attempt to reach an inside user by using an existing NAT session.
2. The security appliance receives the packet and because it is a new session, the security appliance
verifies if the packet is allowed according to the security policy (access lists, filters, AAA).
3. The packet is denied, and the security appliance drops the packet and logs the connection attempt.
If the outside user is attempting to attack the inside network, the security appliance employs many
technologies to determine if a packet is valid for an already established session.
www.example.com
User
10.1.2.27
209.165.201.2
10.1.2.1 10.1.1.1
Outside
Inside DMZ
9240715-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
A DMZ User Attempts to Access an Inside Host
Figure 15-6 shows a user in the DMZ attempting to access the inside network.
Figure 15-6 DMZ to Inside
The following steps describe how data moves through the security appliance (see Figure 15-6):
1. A user on the DMZ network attempts to reach an inside host. Because the DMZ does not have to
route the traffic on the internet, the private addressing scheme does not prevent routing.
2. The security appliance receives the packet and because it is a new session, the security appliance
verifies if the packet is allowed according to the security policy (access lists, filters, AAA).
3. The packet is denied, and the security appliance drops the packet and logs the connection attempt.
Transparent Mode Overview
Traditionally, a firewall is a routed hop and acts as a default gateway for hosts that connect to one of its
screened subnets. A transparent firewall, on the other hand, is a Layer 2 firewall that acts like a “bump
in the wire,” or a “stealth firewall,” and is not seen as a router hop to connected devices.
This section describes transparent firewall mode, and includes the following topics:
• Transparent Firewall Network, page 15-9
• Allowing Layer 3 Traffic, page 15-9
• Passing Traffic Not Allowed in Routed Mode, page 15-9
• MAC Address Lookups, page 15-10
• Using the Transparent Firewall in Your Network, page 15-10
• Transparent Firewall Guidelines, page 15-10
Web Server
10.1.1.3
User
10.1.2.27
209.165.201.2
10.1.2.1 10.1.1.1
Outside
Inside DMZ
9240215-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
• Unsupported Features in Transparent Mode, page 15-11
• How Data Moves Through the Transparent Firewall, page 15-13
Transparent Firewall Network
The security appliance connects the same network on its inside and outside interfaces. Because the
firewall is not a routed hop, you can easily introduce a transparent firewall into an existing network; IP
readdressing is unnecessary.
Allowing Layer 3 Traffic
IPv4 traffic is allowed through the transparent firewall automatically from a higher security interface to
a lower security interface, without an access list. ARPs are allowed through the transparent firewall in
both directions without an access list. ARP traffic can be controlled by ARP inspection. For Layer 3
traffic travelling from a low to a high security interface, an extended access list is required.
Allowed MAC Addresses
The following destination MAC addresses are allowed through the transparent firewall. Any MAC
address not on this list is dropped.
• TRUE broadcast destination MAC address equal to FFFF.FFFF.FFFF
• IPv4 multicast MAC addresses from 0100.5E00.0000 to 0100.5EFE.FFFF
• IPv6 multicast MAC addresses from 3333.0000.0000 to 3333.FFFF.FFFF
• BPDU multicast address equal to 0100.0CCC.CCCD
• Appletalk multicast MAC addresses from 0900.0700.0000 to 0900.07FF.FFFF
Passing Traffic Not Allowed in Routed Mode
In routed mode, some types of traffic cannot pass through the security appliance even if you allow it in
an access list. The transparent firewall, however, can allow almost any traffic through using either an
extended access list (for IP traffic) or an EtherType access list (for non-IP traffic).
Note The transparent mode security appliance does not pass CDP packets or IPv6 packets, or any packets that
do not have a valid EtherType greater than or equal to 0x600. For example, you cannot pass IS-IS
packets. An exception is made for BPDUs, which are supported.
For example, you can establish routing protocol adjacencies through a transparent firewall; you can
allow OSPF, RIP, EIGRP, or BGP traffic through based on an extended access list. Likewise, protocols
like HSRP or VRRP can pass through the security appliance.
Non-IP traffic (for example AppleTalk, IPX, BPDUs, and MPLS) can be configured to go through using
an EtherType access list.15-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
For features that are not directly supported on the transparent firewall, you can allow traffic to pass
through so that upstream and downstream routers can support the functionality. For example, by using
an extended access list, you can allow DHCP traffic (instead of the unsupported DHCP relay feature) or
multicast traffic such as that created by IP/TV.
MAC Address Lookups
When the security appliance runs in transparent mode, the outgoing interface of a packet is determined
by performing a MAC address lookup instead of a route lookup. Route statements can still be configured,
but they only apply to security appliance-originated traffic. For example, if your syslog server is located
on a remote network, you must use a static route so the security appliance can reach that subnet.
Using the Transparent Firewall in Your Network
Figure 15-7 shows a typical transparent firewall network where the outside devices are on the same
subnet as the inside devices. The inside router and hosts appear to be directly connected to the outside
router.
Figure 15-7 Transparent Firewall Network
Transparent Firewall Guidelines
Follow these guidelines when planning your transparent firewall network:
10.1.1.1
10.1.1.2
Management IP
10.1.1.3
192.168.1.2
Network A
Network B
Internet
9241115-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
• A management IP address is required; for multiple context mode, an IP address is required for each
context.
Unlike routed mode, which requires an IP address for each interface, a transparent firewall has an
IP address assigned to the entire device. The security appliance uses this IP address as the source
address for packets originating on the security appliance, such as system messages or AAA
communications.
The management IP address must be on the same subnet as the connected network. You cannot set
the subnet to a host subnet (255.255.255.255).
You can configure an IP address for the Management 0/0 management-only interface. This IP
address can be on a separate subnet from the main management IP address.
Note If the management IP address is not configured, transient traffic does not pass through the
transparent firewall. For multiple context mode, transient traffic does not pass through virtual
contexts.
• The transparent security appliance uses an inside interface and an outside interface only. If your
platform includes a dedicated management interface, you can also configure the management
interface or subinterface for management traffic only.
In single mode, you can only use two data interfaces (and the dedicated management interface, if
available) even if your security appliance includes more than two interfaces.
• Each directly connected network must be on the same subnet.
• Do not specify the security appliance management IP address as the default gateway for connected
devices; devices need to specify the router on the other side of the security appliance as the default
gateway.
• For multiple context mode, each context must use different interfaces; you cannot share an interface
across contexts.
• For multiple context mode, each context typically uses a different subnet. You can use overlapping
subnets, but your network topology requires router and NAT configuration to make it possible from
a routing standpoint.
Unsupported Features in Transparent Mode
Table 15-1 lists the features are not supported in transparent mode.
Table 15-1 Unsupported Features in Transparent Mode
Feature Description
Dynamic DNS —
DHCP relay The transparent firewall can act as a DHCP server, but it does not
support the DHCP relay commands. DHCP relay is not required
because you can allow DHCP traffic to pass through using two
extended access lists: one that allows DCHP requests from the inside
interface to the outside, and one that allows the replies from the server
in the other direction.15-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
Dynamic routing protocols You can, however, add static routes for traffic originating on the
security appliance. You can also allow dynamic routing protocols
through the security appliance using an extended access list.
IPv6 You also cannot allow IPv6 using an EtherType access list.
Multicast You can allow multicast traffic through the security appliance by
allowing it in an extended access list.
NAT NAT is performed on the upstream router.
QoS —
VPN termination for through
traffic
The transparent firewall supports site-to-site VPN tunnels for
management connections only. It does not terminate VPN connections
for traffic through the security appliance. You can pass VPN traffic
through the security appliance using an extended access list, but it
does not terminate non-management connections. WebVPN is also not
supported.
Table 15-1 Unsupported Features in Transparent Mode (continued)
Feature Description15-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
How Data Moves Through the Transparent Firewall
Figure 15-8 shows a typical transparent firewall implementation with an inside network that contains a
public web server. The security appliance has an access list so that the inside users can access Internet
resources. Another access list lets the outside users access only the web server on the inside network.
Figure 15-8 Typical Transparent Firewall Data Path
This section describes how data moves through the security appliance, and includes the following topics:
• An Inside User Visits a Web Server, page 15-14
• An Outside User Visits a Web Server on the Inside Network, page 15-15
• An Outside User Attempts to Access an Inside Host, page 15-16
www.example.com
209.165.201.2
Management IP
209.165.201.6
209.165.200.230
Web Server
209.165.200.225
Host
209.165.201.3
Internet
9241215-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
An Inside User Visits a Web Server
Figure 15-9 shows an inside user accessing an outside web server.
Figure 15-9 Inside to Outside
The following steps describe how data moves through the security appliance (see Figure 15-9):
1. The user on the inside network requests a web page from www.example.com.
2. The security appliance receives the packet and adds the source MAC address to the MAC address
table, if required. Because it is a new session, it verifies that the packet is allowed according to the
terms of the security policy (access lists, filters, AAA).
For multiple context mode, the security appliance first classifies the packet according to a unique
interface.
3. The security appliance records that a session is established.
4. If the destination MAC address is in its table, the security appliance forwards the packet out of the
outside interface. The destination MAC address is that of the upstream router, 209.186.201.2.
If the destination MAC address is not in the security appliance table, the security appliance attempts
to discover the MAC address by sending an ARP request and a ping. The first packet is dropped.
5. The web server responds to the request; because the session is already established, the packet
bypasses the many lookups associated with a new connection.
6. The security appliance forwards the packet to the inside user.
Management IP
209.165.201.6
www.example.com
209.165.201.2
Host
209.165.201.3
Internet
9240815-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
An Outside User Visits a Web Server on the Inside Network
Figure 15-10 shows an outside user accessing the inside web server.
Figure 15-10 Outside to Inside
The following steps describe how data moves through the security appliance (see Figure 15-10):
1. A user on the outside network requests a web page from the inside web server.
2. The security appliance receives the packet and adds the source MAC address to the MAC address
table, if required. Because it is a new session, it verifies that the packet is allowed according to the
terms of the security policy (access lists, filters, AAA).
For multiple context mode, the security appliance first classifies the packet according to a unique
interface.
3. The security appliance records that a session is established.
4. If the destination MAC address is in its table, the security appliance forwards the packet out of the
inside interface. The destination MAC address is that of the downstream router, 209.186.201.1.
If the destination MAC address is not in the security appliance table, the security appliance attempts
to discover the MAC address by sending an ARP request and a ping. The first packet is dropped.
5. The web server responds to the request; because the session is already established, the packet
bypasses the many lookups associated with a new connection.
Host
209.165.201.2
209.165.201.1
209.165.200.230
Web Server
209.165.200.225
Management IP
209.165.201.6
Internet
9240915-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 15 Firewall Mode Overview
Transparent Mode Overview
6. The security appliance forwards the packet to the outside user.
An Outside User Attempts to Access an Inside Host
Figure 15-11 shows an outside user attempting to access a host on the inside network.
Figure 15-11 Outside to Inside
The following steps describe how data moves through the security appliance (see Figure 15-11):
1. A user on the outside network attempts to reach an inside host.
2. The security appliance receives the packet and adds the source MAC address to the MAC address
table, if required. Because it is a new session, it verifies if the packet is allowed according to the
terms of the security policy (access lists, filters, AAA).
For multiple context mode, the security appliance first classifies the packet according to a unique
interface.
3. The packet is denied, and the security appliance drops the packet.
4. If the outside user is attempting to attack the inside network, the security appliance employs many
technologies to determine if a packet is valid for an already established session.
Management IP
209.165.201.6
Host
209.165.201.2
Host
209.165.201.3
Internet
92410C H A P T E R
16-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
16
Identifying Traffic with Access Lists
This chapter describes how to identify traffic with access lists. This chapter includes the following
topics:
• Access List Overview, page 16-1
• Adding an Extended Access List, page 16-5
• Adding an EtherType Access List, page 16-8
• Adding a Standard Access List, page 16-11
• Adding a Webtype Access List, page 16-11
• Simplifying Access Lists with Object Grouping, page 16-11
• Adding Remarks to Access Lists, page 16-18
• Scheduling Extended Access List Activation, page 16-18
• Logging Access List Activity, page 16-20
For information about IPv6 access lists, see the “Configuring IPv6 Access Lists” section on page 12-6.
Access List Overview
Access lists are made up of one or more Access Control Entries. An ACE is a single entry in an access
list that specifies a permit or deny rule, and is applied to a protocol, a source and destination IP address
or network, and optionally the source and destination ports.
Access lists are used in a variety of features. If your feature uses Modular Policy Framework, you can
use an access list to identify traffic within a traffic class map. For more information on Modular Policy
Framework, see Chapter 21, “Using Modular Policy Framework.”
This section includes the following topics:
• Access List Types, page 16-2
• Access Control Entry Order, page 16-2
• Access Control Implicit Deny, page 16-3
• IP Addresses Used for Access Lists When You Use NAT, page 16-316-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Access List Overview
Access List Types
Table 16-1 lists the types of access lists and some common uses for them.
Access Control Entry Order
An access list is made up of one or more Access Control Entries. Depending on the access list type, you
can specify the source and destination addresses, the protocol, the ports (for TCP or UDP), the ICMP
type (for ICMP), or the EtherType.
Each ACE that you enter for a given access list name is appended to the end of the access list.
The order of ACEs is important. When the security appliance decides whether to forward or drop a
packet, the security appliance tests the packet against each ACE in the order in which the entries are
listed. After a match is found, no more ACEs are checked. For example, if you create an ACE at the
beginning of an access list that explicitly permits all traffic, no further statements are ever checked.
Table 16-1 Access List Types and Common Uses
Access List Use Access List Type Description
Control network access for IP traffic
(routed and transparent mode)
Extended The security appliance does not allow any traffic from a
lower security interface to a higher security interface
unless it is explicitly permitted by an extended access list.
Note To access the security appliance interface for
management access, you do not also need an
access list allowing the host IP address. You only
need to configure management access according
to Chapter 40, “Managing System Access.”
Identify traffic for AAA rules Extended AAA rules use access lists to identify traffic.
Control network access for IP traffic for a
given user
Extended,
downloaded from a
AAA server per user
You can configure the RADIUS server to download a
dynamic access list to be applied to the user, or the server
can send the name of an access list that you already
configured on the security appliance.
Identify addresses for NAT (policy NAT
and NAT exemption)
Extended Policy NAT lets you identify local traffic for address
translation by specifying the source and destination
addresses in an extended access list.
Establish VPN access Extended You can use an extended access list in VPN commands.
Identify traffic in a traffic class map for
Modular Policy Framework
Extended
EtherType
Access lists can be used to identify traffic in a class map,
which is used for features that support Modular Policy
Framework. Features that support Modular Policy
Framework include TCP and general connection settings,
and inspection.
For transparent firewall mode, control
network access for non-IP traffic
EtherType You can configure an access list that controls traffic based
on its EtherType.
Identify OSPF route redistribution Standard Standard access lists include only the destination address.
You can use a standard access list to control the
redistribution of OSPF routes.
Filtering for WebVPN Webtype You can configure a Webtype access list to filter URLs.16-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Access List Overview
You can disable an ACE by specifying the keyword inactive in the access-list command.
Access Control Implicit Deny
Access lists have an implicit deny at the end of the list, so unless you explicitly permit it, traffic cannot
pass. For example, if you want to allow all users to access a network through the security appliance
except for particular addresses, then you need to deny the particular addresses and then permit all others.
For EtherType access lists, the implicit deny at the end of the access list does not affect IP traffic or
ARPs; for example, if you allow EtherType 8037, the implicit deny at the end of the access list does not
now block any IP traffic that you previously allowed with an extended access list (or implicitly allowed
from a high security interface to a low security interface). However, if you explicitly deny all traffic with
an EtherType ACE, then IP and ARP traffic is denied.
IP Addresses Used for Access Lists When You Use NAT
When you use NAT, the IP addresses you specify for an access list depend on the interface to which the
access list is attached; you need to use addresses that are valid on the network connected to the interface.
This guideline applies for both inbound and outbound access lists: the direction does not determine the
address used, only the interface does.
For example, you want to apply an access list to the inbound direction of the inside interface. You
configure the security appliance to perform NAT on the inside source addresses when they access outside
addresses. Because the access list is applied to the inside interface, the source addresses are the original
untranslated addresses. Because the outside addresses are not translated, the destination address used in
the access list is the real address (see Figure 16-1).
Figure 16-1 IP Addresses in Access Lists: NAT Used for Source Addresses
See the following commands for this example:
hostname(config)# access-list INSIDE extended permit ip 10.1.1.0 255.255.255.0 host
209.165.200.225
209.165.200.225
Inside
Outside
Inbound ACL
Permit from 10.1.1.0/24 to 209.165.200.225
10.1.1.0/24
PAT
10.1.1.0/24 209.165.201.4:port
10463416-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Access List Overview
hostname(config)# access-group INSIDE in interface inside
If you want to allow an outside host to access an inside host, you can apply an inbound access list on the
outside interface. You need to specify the translated address of the inside host in the access list because
that address is the address that can be used on the outside network (see Figure 16-2).
Figure 16-2 IP Addresses in Access Lists: NAT used for Destination Addresses
See the following commands for this example:
hostname(config)# access-list OUTSIDE extended permit ip host 209.165.200.225 host
209.165.201.5
hostname(config)# access-group OUTSIDE in interface outside
209.165.200.225
Inside
Outside
Static NAT
10.1.1.34 209.165.201.5
ACL
Permit from 209.165.200.225 to 209.165.201.5
10463616-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an Extended Access List
If you perform NAT on both interfaces, keep in mind the addresses that are visible to a given interface.
In Figure 16-3, an outside server uses static NAT so that a translated address appears on the inside
network.
Figure 16-3 IP Addresses in Access Lists: NAT used for Source and Destination Addresses
See the following commands for this example:
hostname(config)# access-list INSIDE extended permit ip 10.1.1.0 255.255.255.0 host
10.1.1.56
hostname(config)# access-group INSIDE in interface inside
Adding an Extended Access List
This section describes how to add an extended access list, and includes the following sections:
• Extended Access List Overview, page 16-5
• Allowing Broadcast and Multicast Traffic through the Transparent Firewall, page 16-6
• Adding an Extended ACE, page 16-6
Extended Access List Overview
An extended access list is made up of one or more ACEs, in which you can specify the line number to
insert the ACE, source and destination addresses, and, depending on the ACE type, the protocol, the
ports (for TCP or UDP), or the ICMP type (for ICMP). You can identify all of these parameters within
the access-list command, or you can use object groups for each parameter. This section describes how
to identify the parameters within the command. To use object groups, see the “Simplifying Access Lists
with Object Grouping” section on page 16-11.
209.165.200.225
10.1.1.0/24
Inside
Outside
Static NAT
10.1.1.56
ACL
Permit from 10.1.1.0/24 to 10.1.1.56
PAT
10.1.1.0/24 209.165.201.4:port
10463516-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an Extended Access List
For information about logging options that you can add to the end of the ACE, see the “Logging Access
List Activity” section on page 16-20. For information about time range options, see “Scheduling
Extended Access List Activation” section on page 16-18.
For TCP and UDP connections, you do not need an access list to allow returning traffic, because the
FWSM allows all returning traffic for established, bidirectional connections. For connectionless
protocols such as ICMP, however, the security appliance establishes unidirectional sessions, so you
either need access lists to allow ICMP in both directions (by applying access lists to the source and
destination interfaces), or you need to enable the ICMP inspection engine. The ICMP inspection engine
treats ICMP sessions as bidirectional connections.
You can apply only one access list of each type (extended and EtherType) to each direction of an
interface. You can apply the same access lists on multiple interfaces. See Chapter 18, “Permitting or
Denying Network Access,” for more information about applying an access list to an interface.
Note If you change the access list configuration, and you do not want to wait for existing connections to time
out before the new access list information is used, you can clear the connections using the clear
local-host command.
Allowing Broadcast and Multicast Traffic through the Transparent Firewall
In routed firewall mode, broadcast and multicast traffic is blocked even if you allow it in an access list,
including unsupported dynamic routing protocols and DHCP (unless you configure DHCP relay).
Transparent firewall mode can allow any IP traffic through. This feature is especially useful in multiple
context mode, which does not allow dynamic routing, for example.
Note Because these special types of traffic are connectionless, you need to apply an extended access list to
both interfaces, so returning traffic is allowed through.
Table 16-2 lists common traffic types that you can allow through the transparent firewall.
Adding an Extended ACE
When you enter the access-list command for a given access list name, the ACE is added to the end of
the access list unless you specify the line number.
Table 16-2 Transparent Firewall Special Traffic
Traffic Type Protocol or Port Notes
DHCP UDP ports 67 and 68 If you enable the DHCP server, then the security
appliance does not pass DHCP packets.
EIGRP Protocol 88 —
OSPF Protocol 89 —
Multicast streams The UDP ports vary depending
on the application.
Multicast streams are always destined to a
Class D address (224.0.0.0 to 239.x.x.x).
RIP (v1 or v2) UDP port 520 —16-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an Extended Access List
To add an ACE, enter the following command:
hostname(config)# access-list access_list_name [line line_number] [extended]
{deny | permit} protocol source_address mask [operator port] dest_address mask
[operator port | icmp_type] [inactive]
Tip Enter the access list name in upper case letters so the name is easy to see in the configuration. You might
want to name the access list for the interface (for example, INSIDE), or for the purpose for which it is
created (for example, NO_NAT or VPN).
Typically, you identify the ip keyword for the protocol, but other protocols are accepted. For a list of
protocol names, see the “Protocols and Applications” section on page D-11.
Enter the host keyword before the IP address to specify a single address. In this case, do not enter a mask.
Enter the any keyword instead of the address and mask to specify any address.
You can specify the source and destination ports only for the tcp or udp protocols. For a list of permitted
keywords and well-known port assignments, see the “TCP and UDP Ports” section on page D-11. DNS,
Discard, Echo, Ident, NTP, RPC, SUNRPC, and Talk each require one definition for TCP and one for
UDP. TACACS+ requires one definition for port 49 on TCP.
Use an operator to match port numbers used by the source or destination. The permitted operators are
as follows:
• lt—less than
• gt—greater than
• eq—equal to
• neq—not equal to
• range—an inclusive range of values. When you use this operator, specify two port numbers, for
example:
range 100 200
You can specify the ICMP type only for the icmp protocol. Because ICMP is a connectionless protocol,
you either need access lists to allow ICMP in both directions (by applying access lists to the source and
destination interfaces), or you need to enable the ICMP inspection engine (see the “Adding an ICMP
Type Object Group” section on page 16-15). The ICMP inspection engine treats ICMP sessions as
stateful connections. To control ping, specify echo-reply (0) (security appliance to host) or echo (8)
(host to security appliance). See the “Adding an ICMP Type Object Group” section on page 16-15 for a
list of ICMP types.
When you specify a network mask, the method is different from the Cisco IOS software access-list
command. The security appliance uses a network mask (for example, 255.255.255.0 for a Class C mask).
The Cisco IOS mask uses wildcard bits (for example, 0.0.0.255).
To make an ACE inactive, use the inactive keyword. To reenable it, enter the entire ACE without the
inactive keyword. This feature lets you keep a record of an inactive ACE in your configuration to make
reenabling easier.
To remove an ACE, enter the no access-list command with the entire command syntax string as it
appears in the configuration:
hostname(config)# no access-list access_list_name [line line_number] [extended]
{deny | permit} protocol source_address mask [operator port] dest_address mask
[operator port | icmp_type] [inactive]
If the entry that you are removing is the only entry in the access list, the entire access list is removed.16-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an EtherType Access List
See the following examples:
The following access list allows all hosts (on the interface to which you apply the access list) to go
through the security appliance:
hostname(config)# access-list ACL_IN extended permit ip any any
The following sample access list prevents hosts on 192.168.1.0/24 from accessing the 209.165.201.0/27
network. All other addresses are permitted.
hostname(config)# access-list ACL_IN extended deny tcp 192.168.1.0 255.255.255.0
209.165.201.0 255.255.255.224
hostname(config)# access-list ACL_IN extended permit ip any any
If you want to restrict access to only some hosts, then enter a limited permit ACE. By default, all other
traffic is denied unless explicitly permitted.
hostname(config)# access-list ACL_IN extended permit ip 192.168.1.0 255.255.255.0
209.165.201.0 255.255.255.224
The following access list restricts all hosts (on the interface to which you apply the access list) from
accessing a website at address 209.165.201.29. All other traffic is allowed.
hostname(config)# access-list ACL_IN extended deny tcp any host 209.165.201.29 eq www
hostname(config)# access-list ACL_IN extended permit ip any any
Adding an EtherType Access List
Transparent firewall mode only
This section describes how to add an EtherType access list, and includes the following sections:
• EtherType Access List Overview, page 16-8
• Adding an EtherType ACE, page 16-10
EtherType Access List Overview
An EtherType access list is made up of one or more ACEs that specify an EtherType. This section
includes the following topics:
• Supported EtherTypes, page 16-8
• Implicit Permit of IP and ARPs Only, page 16-9
• Implicit and Explicit Deny ACE at the End of an Access List, page 16-9
• IPv6 Unsupported, page 16-9
• Using Extended and EtherType Access Lists on the Same Interface, page 16-9
• Allowing MPLS, page 16-9
Supported EtherTypes
An EtherType ACE controls any EtherType identified by a 16-bit hexadecimal number.
EtherType access lists support Ethernet V2 frames.16-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an EtherType Access List
802.3-formatted frames are not handled by the access list because they use a length field as opposed to
a type field.
BPDUs, which are handled by the access list, are the only exception: they are SNAP-encapsulated, and
the security appliance is designed to specifically handle BPDUs.
The security appliance receives trunk port (Cisco proprietary) BPDUs. Trunk BPDUs have VLAN
information inside the payload, so the security appliance modifies the payload with the outgoing VLAN
if you allow BPDUs.
Note If you use failover, you must allow BPDUs on both interfaces with an EtherType access list to avoid
bridging loops.
Implicit Permit of IP and ARPs Only
IPv4 traffic is allowed through the transparent firewall automatically from a higher security interface to
a lower security interface, without an access list. ARPs are allowed through the transparent firewall in
both directions without an access list. ARP traffic can be controlled by ARP inspection.
However, to allow any traffic with EtherTypes other than IPv4 and ARP, you need to apply an EtherType
access list, even from a high security to a low security interface.
Because EtherTypes are connectionless, you need to apply the access list to both interfaces if you want
traffic to pass in both directions.
Implicit and Explicit Deny ACE at the End of an Access List
For EtherType access lists, the implicit deny at the end of the access list does not affect IP traffic or
ARPs; for example, if you allow EtherType 8037, the implicit deny at the end of the access list does not
now block any IP traffic that you previously allowed with an extended access list (or implicitly allowed
from a high security interface to a low security interface). However, if you explicitly deny all traffic with
an EtherType ACE, then IP and ARP traffic is denied.
IPv6 Unsupported
EtherType ACEs do not allow IPv6 traffic, even if you specify the IPv6 EtherType.
Using Extended and EtherType Access Lists on the Same Interface
You can apply only one access list of each type (extended and EtherType) to each direction of an
interface. You can also apply the same access lists on multiple interfaces.
Allowing MPLS
If you allow MPLS, ensure that Label Distribution Protocol and Tag Distribution Protocol TCP
connections are established through the security appliance by configuring both MPLS routers connected
to the security appliance to use the IP address on the security appliance interface as the router-id for LDP
or TDP sessions. (LDP and TDP allow MPLS routers to negotiate the labels (addresses) used to forward
packets.)
On Cisco IOS routers, enter the appropriate command for your protocol, LDP or TDP. The interface is
the interface connected to the security appliance.16-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding an EtherType Access List
hostname(config)# mpls ldp router-id interface force
Or
hostname(config)# tag-switching tdp router-id interface force
Adding an EtherType ACE
To add an EtherType ACE, enter the following command:
hostname(config)# access-list access_list_name ethertype {permit | deny} {ipx | bpdu |
mpls-unicast | mpls-multicast | any | hex_number}
The hex_number is any EtherType that can be identified by a 16-bit hexadecimal number greater than or
equal to 0x600. See RFC 1700, “Assigned Numbers,” at http://www.ietf.org/rfc/rfc1700.txt for a list of
EtherTypes.
To remove an ACE, enter the no access-list command with the entire command syntax string as it
appears in the configuration:
hostname(config)# no access-list access_list_name [line line_number] [extended]
{deny | permit} protocol source_address mask [operator port] dest_address mask
[operator port | icmp_type] [inactive]
To remove an EtherType ACE, enter the no access-list command with the entire command syntax string
as it appears in the configuration:
ehostname(config)# no access-list access_list_name ethertype {permit | deny} {ipx | bpdu |
mpls-unicast | mpls-multicast | any | hex_number}
Note If an EtherType access list is configured to deny all, all ethernet frames are discarded. Only physical
protocol traffic, such as auto-negotiation, is still allowed.
When you enter the access-list command for a given access list name, the ACE is added to the end of
the access list.
Tip Enter the access_list_name in upper case letters so the name is easy to see in the configuration. You
might want to name the access list for the interface (for example, INSIDE), or for the purpose (for
example, MPLS or IPX).
For example, the following sample access list allows common EtherTypes originating on the inside
interface:
hostname(config)# access-list ETHER ethertype permit ipx
hostname(config)# access-list ETHER ethertype permit bpdu
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside
The following access list allows some EtherTypes through the security appliance, but denies IPX:
hostname(config)# access-list ETHER ethertype deny ipx
hostname(config)# access-list ETHER ethertype permit 0x1234
hostname(config)# access-list ETHER ethertype permit bpdu
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside
hostname(config)# access-group ETHER in interface outside16-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding a Standard Access List
The following access list denies traffic with EtherType 0x1256, but allows all others on both interfaces:
hostname(config)# access-list nonIP ethertype deny 1256
hostname(config)# access-list nonIP ethertype permit any
hostname(config)# access-group ETHER in interface inside
hostname(config)# access-group ETHER in interface outside
Adding a Standard Access List
Single context mode only
Standard access lists identify the destination IP addresses of OSPF routes, and can be used in a route
map for OSPF redistribution. Standard access lists cannot be applied to interfaces to control traffic.
The following command adds a standard ACE. To add another ACE at the end of the access list, enter
another access-list command specifying the same access list name. Apply the access list using the
“Defining Route Maps” section on page 9-7.
To add an ACE, enter the following command:
hostname(config)# access-list access_list_name standard {deny | permit} {any | ip_address
mask}
To remove an ACE, enter the no access-list command with the entire command syntax string as it
appears in the configuration:
hostname(config)# no access-list access_list_name standard {deny | permit} {any |
ip_address mask}
The following sample access list identifies routes to 192.168.1.0/24:
hostname(config)# access-list OSPF standard permit 192.168.1.0 255.255.255.0
Adding a Webtype Access List
To add an access list to the configuration that supports filtering for WebVPN, enter the following
command:
hostname(config)# access-list access_list_name webtype {deny | permit} url [url_string | any]
To remove a Webtype access list, enter the no access-list command with the entire syntax string as it
appears in the configuration:
hostname(config)# access-list access_list_name webtype {deny | permit} url [url_string | any]
For information about logging options that you can add to the end of the ACE, see the “Logging Access
List Activity” section on page 16-20.
Simplifying Access Lists with Object Grouping
This section describes how to use object grouping to simplify access list creation and maintenance.
This section includes the following topics:
• How Object Grouping Works, page 16-12
• Adding Object Groups, page 16-1216-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
• Nesting Object Groups, page 16-15
• Displaying Object Groups, page 16-17
• Removing Object Groups, page 16-17
• Using Object Groups with an Access List, page 16-16
How Object Grouping Works
By grouping like-objects together, you can use the object group in an ACE instead of having to enter an
ACE for each object separately. You can create the following types of object groups:
• Protocol
• Network
• Service
• ICMP type
For example, consider the following three object groups:
• MyServices—Includes the TCP and UDP port numbers of the service requests that are allowed
access to the internal network
• TrustedHosts—Includes the host and network addresses allowed access to the greatest range of
services and servers
• PublicServers—Includes the host addresses of servers to which the greatest access is provided
After creating these groups, you could use a single ACE to allow trusted hosts to make specific service
requests to a group of public servers.
You can also nest object groups in other object groups.
Note The ACE system limit applies to expanded access lists. If you use object groups in ACEs, the number of
actual ACEs that you enter is fewer, but the number of expanded ACEs is the same as without object
groups. In many cases, object groups create more ACEs than if you added them manually, because
creating ACEs manually leads you to summarize addresses more than an object group does. To view the
number of expanded ACEs in an access list, enter the show access-list access_list_name command.
Adding Object Groups
This section describes how to add object groups.
This section includes the following topics:
• Adding a Protocol Object Group, page 16-13
• Adding a Network Object Group, page 16-13
• Adding a Service Object Group, page 16-14
• Adding an ICMP Type Object Group, page 16-1516-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
Adding a Protocol Object Group
To add or change a protocol object group, follow these steps. After you add the group, you can add more
objects as required by following this procedure again for the same group name and specifying additional
objects. You do not need to reenter existing objects; the commands you already set remain in place unless
you remove them with the no form of the command.
To add a protocol group, follow these steps:
Step 1 To add a protocol group, enter the following command:
hostname(config)# object-group protocol grp_id
The grp_id is a text string up to 64 characters in length.
The prompt changes to protocol configuration mode.
Step 2 (Optional) To add a description, enter the following command:
hostname(config-protocol)# description text
The description can be up to 200 characters.
Step 3 To define the protocols in the group, enter the following command for each protocol:
hostname(config-protocol)# protocol-object protocol
The protocol is the numeric identifier of the specific IP protocol (1 to 254) or a keyword identifier (for
example, icmp, tcp, or udp). To include all IP protocols, use the keyword ip. For a list of protocols you
can specify, see the “Protocols and Applications” section on page D-11.
For example, to create a protocol group for TCP, UDP, and ICMP, enter the following commands:
hostname(config)# object-group protocol tcp_udp_icmp
hostname(config-protocol)# protocol-object tcp
hostname(config-protocol)# protocol-object udp
hostname(config-protocol)# protocol-object icmp
Adding a Network Object Group
To add or change a network object group, follow these steps. After you add the group, you can add more
objects as required by following this procedure again for the same group name and specifying additional
objects. You do not need to reenter existing objects; the commands you already set remain in place unless
you remove them with the no form of the command.
Note A network object group supports IPv4 and IPv6 addresses, depending on the type of access list. For more
information about IPv6 access lists, see “Configuring IPv6 Access Lists” section on page 12-6.
To add a network group, follow these steps:
Step 1 To add a network group, enter the following command:
hostname(config)# object-group network grp_id
The grp_id is a text string up to 64 characters in length.
The prompt changes to network configuration mode.16-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
Step 2 (Optional) To add a description, enter the following command:
hostname(config-network)# description text
The description can be up to 200 characters.
Step 3 To define the networks in the group, enter the following command for each network or address:
hostname(config-network)# network-object {host ip_address | ip_address mask}
For example, to create network group that includes the IP addresses of three administrators, enter the
following commands:
hostname(config)# object-group network admins
hostname(config-network)# description Administrator Addresses
hostname(config-network)# network-object host 10.1.1.4
hostname(config-network)# network-object host 10.1.1.78
hostname(config-network)# network-object host 10.1.1.34
Adding a Service Object Group
To add or change a service object group, follow these steps. After you add the group, you can add more
objects as required by following this procedure again for the same group name and specifying additional
objects. You do not need to reenter existing objects; the commands you already set remain in place unless
you remove them with the no form of the command.
To add a service group, follow these steps:
Step 1 To add a service group, enter the following command:
hostname(config)# object-group service grp_id {tcp | udp | tcp-udp}
The grp_id is a text string up to 64 characters in length.
Specify the protocol for the services (ports) you want to add, either tcp, udp, or tcp-udp keywords.
Enter tcp-udp keyword if your service uses both TCP and UDP with the same port number, for example,
DNS (port 53).
The prompt changes to service configuration mode.
Step 2 (Optional) To add a description, enter the following command:
hostname(config-service)# description text
The description can be up to 200 characters.
Step 3 To define the ports in the group, enter the following command for each port or range of ports:
hostname(config-service)# port-object {eq port | range begin_port end_port}
For a list of permitted keywords and well-known port assignments, see the “Protocols and Applications”
section on page D-11.
For example, to create service groups that include DNS (TCP/UDP), LDAP (TCP), and RADIUS (UDP),
enter the following commands:
hostname(config)# object-group service services1 tcp-udp
hostname(config-service)# description DNS Group
hostname(config-service)# port-object eq domain16-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
hostname(config-service)# object-group service services2 udp
hostname(config-service)# description RADIUS Group
hostname(config-service)# port-object eq radius
hostname(config-service)# port-object eq radius-acct
hostname(config-service)# object-group service services3 tcp
hostname(config-service)# description LDAP Group
hostname(config-service)# port-object eq ldap
Adding an ICMP Type Object Group
To add or change an ICMP type object group, follow these steps. After you add the group, you can add
more objects as required by following this procedure again for the same group name and specifying
additional objects. You do not need to reenter existing objects; the commands you already set remain in
place unless you remove them with the no form of the command.
To add an ICMP type group, follow these steps:
Step 1 To add an ICMP type group, enter the following command:
hostname(config)# object-group icmp-type grp_id
The grp_id is a text string up to 64 characters in length.
The prompt changes to ICMP type configuration mode.
Step 2 (Optional) To add a description, enter the following command:
hostname(config-icmp-type)# description text
The description can be up to 200 characters.
Step 3 To define the ICMP types in the group, enter the following command for each type:
hostname(config-icmp-type)# icmp-object icmp_type
See the “ICMP Types” section on page D-15 for a list of ICMP types.
For example, to create an ICMP type group that includes echo-reply and echo (for controlling ping),
enter the following commands:
hostname(config)# object-group icmp-type ping
hostname(config-service)# description Ping Group
hostname(config-icmp-type)# icmp-object echo
hostname(config-icmp-type)# icmp-object echo-reply
Nesting Object Groups
To nest an object group within another object group of the same type, first create the group that you want
to nest according to the “Adding Object Groups” section on page 16-12. Then follow these steps:
Step 1 To add or edit an object group under which you want to nest another object group, enter the following
command:
hostname(config)# object-group {{protocol | network | icmp-type} grp_id | service grp_id
{tcp | udp | tcp-udp}}16-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
Step 2 To add the specified group under the object group you specified in Step 1, enter the following command:
hostname(config-group_type)# group-object grp_id
The nested group must be of the same type.
You can mix and match nested group objects and regular objects within an object group.
For example, you create network object groups for privileged users from various departments:
hostname(config)# object-group network eng
hostname(config-network)# network-object host 10.1.1.5
hostname(config-network)# network-object host 10.1.1.9
hostname(config-network)# network-object host 10.1.1.89
hostname(config-network)# object-group network hr
hostname(config-network)# network-object host 10.1.2.8
hostname(config-network)# network-object host 10.1.2.12
hostname(config-network)# object-group network finance
hostname(config-network)# network-object host 10.1.4.89
hostname(config-network)# network-object host 10.1.4.100
You then nest all three groups together as follows:
hostname(config)# object-group network admin
hostname(config-network)# group-object eng
hostname(config-network)# group-object hr
hostname(config-network)# group-object finance
You only need to specify the admin object group in your ACE as follows:
hostname(config)# access-list ACL_IN extended permit ip object-group admin host
209.165.201.29
Using Object Groups with an Access List
To use object groups in an access list, replace the normal protocol (protocol), network
(source_address mask, etc.), service (operator port), or ICMP type (icmp_type) parameter with
object-group grp_id parameter.
For example, to use object groups for all available parameters in the access-list {tcp | udp} command,
enter the following command:
hostname(config)# access-list access_list_name [line line_number] [extended] {deny |
permit} {tcp | udp} object-group nw_grp_id [object-group svc_grp_id] object-group
nw_grp_id [object-group svc_grp_id] [log [[level] [interval secs] | disable | default]]
[inactive | time-range time_range_name]
You do not have to use object groups for all parameters; for example, you can use an object group for
the source address, but identify the destination address with an address and mask.
The following normal access list that does not use object groups restricts several hosts on the inside
network from accessing several web servers. All other traffic is allowed.
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.29
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.29
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.29
eq www16-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Simplifying Access Lists with Object Grouping
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-group ACL_IN in interface inside
If you make two network object groups, one for the inside hosts, and one for the web servers, then the
configuration can be simplified and can be easily modified to add more hosts:
hostname(config)# object-group network denied
hostname(config-network)# network-object host 10.1.1.4
hostname(config-network)# network-object host 10.1.1.78
hostname(config-network)# network-object host 10.1.1.89
hostname(config-network)# object-group network web
hostname(config-network)# network-object host 209.165.201.29
hostname(config-network)# network-object host 209.165.201.16
hostname(config-network)# network-object host 209.165.201.78
hostname(config-network)# access-list ACL_IN extended deny tcp object-group denied
object-group web eq www
hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-group ACL_IN in interface inside
Displaying Object Groups
To display a list of the currently configured object groups, enter the following command:
hostname(config)# show object-group [protocol | network | service | icmp-type | id grp_id]
If you enter the command without any parameters, the system displays all configured object groups.
The following is sample output from the show object-group command:
hostname# show object-group
object-group network ftp_servers
description: This is a group of FTP servers
network-object host 209.165.201.3
network-object host 209.165.201.4
object-group network TrustedHosts
network-object host 209.165.201.1
network-object 192.168.1.0 255.255.255.0
group-object ftp_servers
Removing Object Groups
To remove an object group, enter one of the following commands.
Note You cannot remove an object group or make an object group empty if it is used in an access list.16-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Adding Remarks to Access Lists
• To remove a specific object group, enter the following command:
hostname(config)# no object-group grp_id
• To remove all object groups of the specified type, enter the following command:
hostname(config)# clear object-group [protocol | network | services | icmp-type]
If you do not enter a type, all object groups are removed.
Adding Remarks to Access Lists
You can include remarks about entries in any access list, including extended, EtherType, and standard
access lists. The remarks make the access list easier to understand.
To add a remark after the last access-list command you entered, enter the following command:
hostname(config)# access-list access_list_name remark text
If you enter the remark before any access-list command, then the remark is the first line in the access list.
If you delete an access list using the no access-list access_list_name command, then all the remarks are
also removed.
The text can be up to 100 characters in length. You can enter leading spaces at the beginning of the text.
Trailing spaces are ignored.
For example, you can add remarks before each ACE, and the remark appears in the access list in this
location. Entering a dash (-) at the beginning of the remark helps set it apart from ACEs.
hostname(config)# access-list OUT remark - this is the inside admin address
hostname(config)# access-list OUT extended permit ip host 209.168.200.3 any
hostname(config)# access-list OUT remark - this is the hr admin address
hostname(config)# access-list OUT extended permit ip host 209.168.200.4 any
Scheduling Extended Access List Activation
You can schedule each ACE to be activated at specific times of the day and week by applying a time
range to the ACE. This section includes the following topics:
• Adding a Time Range, page 16-18
• Applying the Time Range to an ACE, page 16-19
Adding a Time Range
To add a time range to implement a time-based access list, perform the following steps:
Step 1 Identify the time-range name by entering the following command:
hostname(config)# time-range name
Step 2 Specify the time range as either a recurring time range or an absolute time range.16-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Scheduling Extended Access List Activation
Note Users could experience a delay of approximately 80 to 100 seconds after the specified end time
for the ACL to become inactive. For example, if the specified end time is 3:50, because the end
time is inclusive, the command is picked up anywhere between 3:51:00 and 3:51:59. After the
command is picked up, the security appliance finishes any currently running task and then
services the command to deactivate the ACL.
Multiple periodic entries are allowed per time-range command. If a time-range command has both
absolute and periodic values specified, then the periodic commands are evaluated only after the
absolute start time is reached, and are not further evaluated after the absolute end time is reached.
• Recurring time range:
hostname(config-time-range)# periodic days-of-the-week time to [days-of-the-week] time
You can specify the following values for days-of-the-week:
– monday, tuesday, wednesday, thursday, friday, saturday, and sunday.
– daily
– weekdays
– weekend
The time is in the format hh:mm. For example, 8:00 is 8:00 a.m. and 20:00 is 8:00 p.m.
• Absolute time range:
hostname(config-time-range)# absolute start time date [end time date]
The time is in the format hh:mm. For example, 8:00 is 8:00 a.m. and 20:00 is 8:00 p.m.
The date is in the format day month year; for example, 1 january 2006.
The following is an example of an absolute time range beginning at 8:00 a.m. on January 1, 2006.
Because no end time and date are specified, the time range is in effect indefinitely.
hostname(config)# time-range for2006
hostname(config-time-range)# absolute start 8:00 1 january 2006
The following is an example of a weekly periodic time range from 8:00 a.m. to 6:00 p.m on weekdays.:
hostname(config)# time-range workinghours
hostname(config-time-range)# periodic weekdays 8:00 to 18:00
Applying the Time Range to an ACE
To apply the time range to an ACE, use the following command:
hostname(config)# access-list access_list_name [extended] {deny | permit}...[time-range
name]
See the “Adding an Extended Access List” section on page 16-5 for complete access-list command
syntax.16-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Logging Access List Activity
Note If you also enable logging for the ACE, use the log keyword before the time-range keyword. If you
disable the ACE using the inactive keyword, use the inactive keyword as the last keyword.
The following example binds an access list named “Sales” to a time range named “New_York_Minute.”
hostname(config)# access-list Sales line 1 extended deny tcp host 209.165.200.225 host
209.165.201.1 time-range New_York_Minute
Logging Access List Activity
This section describes how to configure access list logging for extended access lists and Webtype access
lists.
This section includes the following topics:
• Access List Logging Overview, page 16-20
• Configuring Logging for an Access Control Entry, page 16-21
• Managing Deny Flows, page 16-22
Access List Logging Overview
By default, when traffic is denied by an extended ACE or a Webtype ACE, the security appliance
generates system message 106023 for each denied packet, in the following form:
%ASA|PIX-4-106023: Deny protocol src [interface_name:source_address/source_port] dst
interface_name:dest_address/dest_port [type {string}, code {code}] by access_group acl_id
If the security appliance is attacked, the number of system messages for denied packets can be very large.
We recommend that you instead enable logging using system message 106100, which provides statistics
for each ACE and lets you limit the number of system messages produced. Alternatively, you can disable
all logging.
Note Only ACEs in the access list generate logging messages; the implicit deny at the end of the access list
does not generate a message. If you want all denied traffic to generate messages, add the implicit ACE
manually to the end of the access list, as follows.
hostname(config)# access-list TEST deny ip any any log
The log options at the end of the extended access-list command lets you to set the following behavior:
• Enable message 106100 instead of message 106023
• Disable all logging
• Return to the default logging using message 106023
System message 106100 is in the following form:
%ASA|PIX-n-106100: access-list acl_id {permitted | denied} protocol
interface_name/source_address(source_port) -> interface_name/dest_address(dest_port)
hit-cnt number ({first hit | number-second interval})16-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Logging Access List Activity
When you enable logging for message 106100, if a packet matches an ACE, the security appliance
creates a flow entry to track the number of packets received within a specific interval. The security
appliance generates a system message at the first hit and at the end of each interval, identifying the total
number of hits during the interval. At the end of each interval, the security appliance resets the hit count
to 0. If no packets match the ACE during an interval, the security appliance deletes the flow entry.
A flow is defined by the source and destination IP addresses, protocols, and ports. Because the source
port might differ for a new connection between the same two hosts, you might not see the same flow
increment because a new flow was created for the connection. See the “Managing Deny Flows” section
on page 16-22 to limit the number of logging flows.
Permitted packets that belong to established connections do not need to be checked against access lists;
only the initial packet is logged and included in the hit count. For connectionless protocols, such as
ICMP, all packets are logged even if they are permitted, and all denied packets are logged.
See the Cisco Security Appliance Logging Configuration and System Log Messages for detailed
information about this system message.
Configuring Logging for an Access Control Entry
To configure logging for an ACE, see the following information about the log option:
hostname(config)# access-list access_list_name [extended] {deny | permit}...[log [[level]
[interval secs] | disable | default]]
See the “Adding an Extended Access List” section on page 16-5 and “Adding a Webtype Access List”
section on page 16-11 for complete access-list command syntax.
If you enter the log option without any arguments, you enable system log message 106100 at the default
level (6) and for the default interval (300 seconds). See the following options:
• level—A severity level between 0 and 7. The default is 6.
• interval secs—The time interval in seconds between system messages, from 1 to 600. The default
is 300. This value is also used as the timeout value for deleting an inactive flow.
• disable—Disables all access list logging.
• default—Enables logging to message 106023. This setting is the same as having no log option.
For example, you configure the following access list:
hostname(config)# access-list outside-acl permit ip host 1.1.1.1 any log 7 interval 600
hostname(config)# access-list outside-acl permit ip host 2.2.2.2 any
hostname(config)# access-list outside-acl deny ip any any log 2
hostname(config)# access-group outside-acl in interface outside
When a packet is permitted by the first ACE of outside-acl, the security appliance generates the
following system message:
%ASA|PIX-7-106100: access-list outside-acl permitted tcp outside/1.1.1.1(12345) ->
inside/192.168.1.1(1357) hit-cnt 1 (first hit)
Although 20 additional packets for this connection arrive on the outside interface, the traffic does not
have to be checked against the access list, and the hit count does not increase.
If one more connection by the same host is initiated within the specified 10 minute interval (and the
source and destination ports remain the same), then the hit count is incremented by 1 and the following
message is displayed at the end of the 10 minute interval:
%ASA|PIX-7-106100: access-list outside-acl permitted tcp outside/1.1.1.1(12345)->
inside/192.168.1.1(1357) hit-cnt 2 (600-second interval)16-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 16 Identifying Traffic with Access Lists
Logging Access List Activity
When a packet is denied by the third ACE, the security appliance generates the following system
message:
%ASA|PIX-2-106100: access-list outside-acl denied ip outside/3.3.3.3(12345) ->
inside/192.168.1.1(1357) hit-cnt 1 (first hit)
20 additional attempts within a 5 minute interval (the default) result in the following message at the end
of 5 minutes:
%ASA|PIX-2-106100: access-list outside-acl denied ip outside/3.3.3.3(12345) ->
inside/192.168.1.1(1357) hit-cnt 21 (300-second interval)
Managing Deny Flows
When you enable logging for message 106100, if a packet matches an ACE, the security appliance
creates a flow entry to track the number of packets received within a specific interval. The security
appliance has a maximum of 32 K logging flows for ACEs. A large number of flows can exist
concurrently at any point of time. To prevent unlimited consumption of memory and CPU resources, the
security appliance places a limit on the number of concurrent deny flows; the limit is placed only on deny
flows (and not permit flows) because they can indicate an attack. When the limit is reached, the security
appliance does not create a new deny flow for logging until the existing flows expire.
For example, if someone initiates a DoS attack, the security appliance can create a large number of deny
flows in a short period of time. Restricting the number of deny flows prevents unlimited consumption of
memory and CPU resources.
When you reach the maximum number of deny flows, the security appliance issues system message
106100:
%ASA|PIX-1-106101: The number of ACL log deny-flows has reached limit (number).
To configure the maximum number of deny flows and to set the interval between deny flow alert
messages (106101), enter the following commands:
• To set the maximum number of deny flows permitted per context before the security appliance stops
logging, enter the following command:
hostname(config)# access-list deny-flow-max number
The number is between 1 and 4096. 4096 is the default.
• To set the amount of time between system messages (number 106101) that identify that the
maximum number of deny flows was reached, enter the following command:
hostname(config)# access-list alert-interval secs
The seconds are between 1 and 3600. 300 is the default.C H A P T E R
17-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
17
Applying NAT
This chapter describes Network Address Translation (NAT). In routed firewall mode, the security
appliance can perform NAT between each network.
Note In transparent firewall mode, the security appliance does not support NAT.
This chapter contains the following sections:
• NAT Overview, page 17-1
• Configuring NAT Control, page 17-16
• Using Dynamic NAT and PAT, page 17-17
• Using Static NAT, page 17-26
• Using Static PAT, page 17-27
• Bypassing NAT, page 17-29
• NAT Examples, page 17-33
NAT Overview
This section describes how NAT works on the security appliance, and includes the following topics:
• Introduction to NAT, page 17-2
• NAT Control, page 17-3
• NAT Types, page 17-5
• Policy NAT, page 17-9
• NAT and Same Security Level Interfaces, page 17-13
• Order of NAT Commands Used to Match Real Addresses, page 17-14
• Mapped Address Guidelines, page 17-14
• DNS and NAT, page 17-1417-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Introduction to NAT
Address translation substitutes the real address in a packet with a mapped address that is routable on the
destination network. NAT is comprised of two steps: the process in which a real address is translated into
a mapped address, and then the process to undo translation for returning traffic.
The security appliance translates an address when a NAT rule matches the traffic. If no NAT rule
matches, processing for the packet continues. The exception is when you enable NAT control.
NAT control requires that packets traversing from a higher security interface (inside) to a lower security
interface (outside) match a NAT rule, or else processing for the packet stops. (See the “Security Level
Overview” section on page 7-1 for more information about security levels, and see “NAT Control”
section on page 17-3 for more information about NAT control).
Note In this document, all types of translation are generally referred to as NAT. When discussing NAT, the
terms inside and outside are relative, and represent the security relationship between any two interfaces.
The higher security level is inside and the lower security level is outside; for example, interface 1 is at
60 and interface 2 is at 50, so interface 1 is “inside” and interface 2 is “outside.”
Some of the benefits of NAT are as follows:
• You can use private addresses on your inside networks. Private addresses are not routable on the
Internet. (See the “Private Networks” section on page D-2 for more information.)
• NAT hides the real addresses from other networks, so attackers cannot learn the real address of a
host.
• You can resolve IP routing problems such as overlapping addresses.
See Table 25-1 on page 25-3 for information about protocols that do not support NAT.
Figure 17-1 shows a typical NAT scenario, with a private network on the inside. When the inside host at
10.1.2.27 sends a packet to a web server, the real source address, 10.1.2.27, of the packet is changed to
a mapped address, 209.165.201.10. When the server responds, it sends the response to the mapped
address, 209.165.201.10, and the security appliance receives the packet. The security appliance then
undoes the translation of the mapped address, 209.165.201.10 back to the real address, 10.1.2.27 before
sending it on to the host.17-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-1 NAT Example
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.1-209.165.201.15
NAT Control
NAT control requires that packets traversing from an inside interface to an outside interface match a NAT
rule; for any host on the inside network to access a host on the outside network, you must configure NAT
to translate the inside host address (see Figure 17-2).
Figure 17-2 NAT Control and Outbound Traffic
Web Server
www.cisco.com
Outside
Inside
209.165.201.2
10.1.2.1
10.1.2.27 130023
Translation
10.1.2.27 209.165.201.10
Originating
Packet
Undo Translation
209.165.201.10 10.1.2.27
Responding
Security Packet
Appliance
10.1.1.1 NAT
No NAT
209.165.201.1
Inside Outside
10.1.2.1
Security
Appliance
13221217-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Interfaces at the same security level are not required to use NAT to communicate. However, if you
configure dynamic NAT or PAT on a same security interface, then all traffic from the interface to a same
security interface or an outside interface must match a NAT rule (see Figure 17-3).
Figure 17-3 NAT Control and Same Security Traffic
Similarly, if you enable outside dynamic NAT or PAT, then all outside traffic must match a NAT rule
when it accesses an inside interface (see Figure 17-4).
Figure 17-4 NAT Control and Inbound Traffic
Static NAT does not cause these restrictions.
By default, NAT control is disabled, so you do not need to perform NAT on any networks unless you
choose to perform NAT. If you upgraded from an earlier version of software, however, NAT control
might be enabled on your system. Even with NAT control disabled, you need to perform NAT on any
addresses for which you configure dynamic NAT. See the “Dynamic NAT and PAT Implementation”
section on page 17-17 for more information on how dynamic NAT is applied.
If you want the added security of NAT control but do not want to translate inside addresses in some cases,
you can apply a NAT exemption or identity NAT rule on those addresses. (See the “Bypassing NAT”
section on page 17-29 for more information).
To configure NAT control, see the “Configuring NAT Control” section on page 17-16.
Note In multiple context mode, the packet classifier might rely on the NAT configuration to assign packets to
contexts if you do not enable unique MAC addresses for shared interfaces. See the “How the Security
Appliance Classifies Packets” section on page 3-3 for more information about the relationship between
the classifier and NAT.
10.1.1.1 Dyn. NAT
No NAT
209.165.201.1
Level 50 Level 50
or
Outside
10.1.2.1
Security
Appliance
10.1.1.1 10.1.1.1 No NAT
Level 50 Level 50
Security
Appliance
132215
209.165.202.129 No NAT 209.165.202.129
Outside Inside
Security
Appliance
209.165.202.129
209.165.200.240
Dyn. NAT 10.1.1.50
Outside Inside
Security
Appliance
No NAT
13221317-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
NAT Types
This section describes the available NAT types. You can implement address translation as dynamic NAT,
Port Address Translation, static NAT, or static PAT or as a mix of these types. You can also configure
rules to bypass NAT, for example, if you enable NAT control but do not want to perform NAT. This
section includes the following topics:
• Dynamic NAT, page 17-5
• PAT, page 17-7
• Static NAT, page 17-7
• Static PAT, page 17-8
• Bypassing NAT When NAT Control is Enabled, page 17-9
Dynamic NAT
Dynamic NAT translates a group of real addresses to a pool of mapped addresses that are routable on the
destination network. The mapped pool can include fewer addresses than the real group. When a host you
want to translate accesses the destination network, the security appliance assigns it an IP address from
the mapped pool. The translation is added only when the real host initiates the connection. The
translation is in place only for the duration of the connection, and a given user does not keep the same
IP address after the translation times out (see the timeout xlate command in the Cisco Security
Appliance Command Reference). Users on the destination network, therefore, cannot reliably initiate a
connection to a host that uses dynamic NAT (even if the connection is allowed by an access list), and the
security appliance rejects any attempt to connect to a real host address directly. See the following “Static
NAT” or “Static PAT” sections for reliable access to hosts.
Note In some cases, a translation is added for a connection (see the show xlate command) even though the
session is denied by the security appliance. This condition occurs with an outbound access list, a
management-only interface, or a backup interface. The translation times out normally.
Figure 17-5 shows a remote host attempting to connect to the real address. The connection is denied
because the security appliance only allows returning connections to the mapped address.17-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-5 Remote Host Attempts to Connect to the Real Address
Figure 17-6 shows a remote host attempting to initiate a connection to a mapped address. This address
is not currently in the translation table, so the security appliance drops the packet.
Figure 17-6 Remote Host Attempts to Initiate a Connection to a Mapped Address
Note For the duration of the translation, a remote host can initiate a connection to the translated host if an
access list allows it. Because the address is unpredictable, a connection to the host is unlikely. However
in this case, you can rely on the security of the access list.
Web Server
www.example.com
Outside
Inside
209.165.201.2
10.1.2.1
10.1.2.27
Translation
10.1.2.27 209.165.201.10
10.1.2.27
Security
Appliance
132216
Web Server
www.example.com
Outside
Inside
209.165.201.2
10.1.2.1
10.1.2.27
Security
Appliance
209.165.201.10
13221717-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Dynamic NAT has these disadvantages:
• If the mapped pool has fewer addresses than the real group, you could run out of addresses if the
amount of traffic is more than expected.
Use PAT if this event occurs often, because PAT provides over 64,000 translations using ports of a
single address.
• You have to use a large number of routable addresses in the mapped pool; if the destination network
requires registered addresses, such as the Internet, you might encounter a shortage of usable
addresses.
The advantage of dynamic NAT is that some protocols cannot use PAT. For example, PAT does not work
with IP protocols that do not have a port to overload, such as GRE version 0. PAT also does not work
with some applications that have a data stream on one port and the control path on another and are not
open standard, such as some multimedia applications. See the “When to Use Application Protocol
Inspection” section on page 25-2 for more information about NAT and PAT support.
PAT
PAT translates multiple real addresses to a single mapped IP address. Specifically, the security appliance
translates the real address and source port (real socket) to the mapped address and a unique port above
1024 (mapped socket). Each connection requires a separate translation, because the source port differs
for each connection. For example, 10.1.1.1:1025 requires a separate translation from 10.1.1.1:1026.
After the connection expires, the port translation also expires after 30 seconds of inactivity. The timeout
is not configurable. Users on the destination network cannot reliably initiate a connection to a host that
uses PAT (even if the connection is allowed by an access list). Not only can you not predict the real or
mapped port number of the host, but the security appliance does not create a translation at all unless the
translated host is the initiator. See the following “Static NAT” or “Static PAT” sections for reliable access
to hosts.
PAT lets you use a single mapped address, thus conserving routable addresses. You can even use the
security appliance interface IP address as the PAT address. PAT does not work with some multimedia
applications that have a data stream that is different from the control path. See the “When to Use
Application Protocol Inspection” section on page 25-2 for more information about NAT and PAT
support.
Note For the duration of the translation, a remote host can initiate a connection to the translated host if an
access list allows it. Because the port address (both real and mapped) is unpredictable, a connection to
the host is unlikely. Nevertheless, in this case, you can rely on the security of the access list. However,
policy PAT does not support time-based ACLs.
Static NAT
Static NAT creates a fixed translation of real address(es) to mapped address(es).With dynamic NAT and
PAT, each host uses a different address or port for each subsequent translation. Because the mapped
address is the same for each consecutive connection with static NAT, and a persistent translation rule
exists, static NAT allows hosts on the destination network to initiate traffic to a translated host (if there
is an access list that allows it).
The main difference between dynamic NAT and a range of addresses for static NAT is that static NAT
allows a remote host to initiate a connection to a translated host (if there is an access list that allows it),
while dynamic NAT does not. You also need an equal number of mapped addresses as real addresses with
static NAT.17-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Static PAT
Static PAT is the same as static NAT, except it lets you specify the protocol (TCP or UDP) and port for
the real and mapped addresses.
This feature lets you identify the same mapped address across many different static statements, so long
as the port is different for each statement (you cannot use the same mapped address for multiple static
NAT statements).
For applications that require application inspection for secondary channels (FTP, VoIP, etc.), the security
appliance automatically translates the secondary ports.
For example, if you want to provide a single address for remote users to access FTP, HTTP, and SMTP,
but these are all actually different servers on the real network, you can specify static PAT statements for
each server that uses the same mapped IP address, but different ports (see Figure 17-7).
Figure 17-7 Static PAT
See the following commands for this example:
hostname(config)# static (inside,outside) tcp 209.165.201.3 ftp 10.1.2.27 ftp netmask
255.255.255.255
hostname(config)# static (inside,outside) tcp 209.165.201.3 http 10.1.2.28 http netmask
255.255.255.255
hostname(config)# static (inside,outside) tcp 209.165.201.3 smtp 10.1.2.29 smtp netmask
255.255.255.255
You can also use static PAT to translate a well-known port to a non-standard port or vice versa. For
example, if your inside web servers use port 8080, you can allow outside users to connect to port 80, and
then undo translation to the original port 8080. Similarly, if you want to provide extra security, you can
tell your web users to connect to non-standard port 6785, and then undo translation to port 80.
Host
Outside
Inside
Undo Translation
209.165.201.3:21 10.1.2.27
Undo Translation
209.165.201.3:80 10.1.2.28
Undo Translation
209.165.201.3:25 10.1.2.29
FTP server
10.1.2.27
HTTP server
10.1.2.28
SMTP server
10.1.2.29
13003117-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Bypassing NAT When NAT Control is Enabled
If you enable NAT control, then inside hosts must match a NAT rule when accessing outside hosts. If
you do not want to perform NAT for some hosts, then you can bypass NAT for those hosts (alternatively,
you can disable NAT control). You might want to bypass NAT, for example, if you are using an
application that does not support NAT (see the “When to Use Application Protocol Inspection” section
on page 25-2 for information about inspection engines that do not support NAT).
You can configure traffic to bypass NAT using one of three methods. All methods achieve compatibility
with inspection engines. However, each method offers slightly different capabilities, as follows:
• Identity NAT (nat 0 command)—When you configure identity NAT (which is similar to dynamic
NAT), you do not limit translation for a host on specific interfaces; you must use identity NAT for
connections through all interfaces. Therefore, you cannot choose to perform normal translation on
real addresses when you access interface A, but use identity NAT when accessing interface B.
Regular dynamic NAT, on the other hand, lets you specify a particular interface on which to translate
the addresses. Make sure that the real addresses for which you use identity NAT are routable on all
networks that are available according to your access lists.
For identity NAT, even though the mapped address is the same as the real address, you cannot initiate
a connection from the outside to the inside (even if the interface access list allows it). Use static
identity NAT or NAT exemption for this functionality.
• Static identity NAT (static command)—Static identity NAT lets you specify the interface on which
you want to allow the real addresses to appear, so you can use identity NAT when you access
interface A, and use regular translation when you access interface B. Static identity NAT also lets
you use policy NAT, which identifies the real and destination addresses when determining the real
addresses to translate (see the “Policy NAT” section on page 17-9 for more information about policy
NAT). For example, you can use static identity NAT for an inside address when it accesses the
outside interface and the destination is server A, but use a normal translation when accessing the
outside server B.
• NAT exemption (nat 0 access-list command)—NAT exemption allows both translated and remote
hosts to initiate connections. Like identity NAT, you do not limit translation for a host on specific
interfaces; you must use NAT exemption for connections through all interfaces. However,
NAT exemption does let you specify the real and destination addresses when determining the real
addresses to translate (similar to policy NAT), so you have greater control using NAT exemption.
However unlike policy NAT, NAT exemption does not consider the ports in the access list.
Policy NAT
Policy NAT lets you identify real addresses for address translation by specifying the source and
destination addresses in an extended access list. You can also optionally specify the source and
destination ports. Regular NAT can only consider the real addresses. For example, you can use translate
the real address to mapped address A when it accesses server A, but translate the real address to mapped
address B when it accesses server B.
Note Policy NAT does not support time-based ACLs.
When you specify the ports in policy NAT for applications that require application inspection for
secondary channels (FTP, VoIP, etc.), the security appliance automatically translates the secondary ports.17-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Note All types of NAT support policy NAT except for NAT exemption. NAT exemption uses an access list to
identify the real addresses, but differs from policy NAT in that the ports are not considered. See the
“Bypassing NAT” section on page 17-29 for other differences. You can accomplish the same result as
NAT exemption using static identity NAT, which does support policy NAT.
Figure 17-8 shows a host on the 10.1.2.0/24 network accessing two different servers. When the host
accesses the server at 209.165.201.11, the real address is translated to 209.165.202.129. When the host
accesses the server at 209.165.200.225, the real address is translated to 209.165.202.130 so that the host
appears to be on the same network as the servers, which can help with routing.
Figure 17-8 Policy NAT with Different Destination Addresses
See the following commands for this example:
hostname(config)# access-list NET1 permit ip 10.1.2.0 255.255.255.0 209.165.201.0
255.255.255.224
hostname(config)# access-list NET2 permit ip 10.1.2.0 255.255.255.0 209.165.200.224
255.255.255.224
hostname(config)# nat (inside) 1 access-list NET1
hostname(config)# global (outside) 1 209.165.202.129
hostname(config)# nat (inside) 2 access-list NET2
hostname(config)# global (outside) 2 209.165.202.130
Server 1
209.165.201.11
Server 2
209.165.200.225
DMZ
Inside
10.1.2.27
10.1.2.0/24
130039
209.165.201.0/27 209.165.200.224/27
Translation
10.1.2.27 209.165.202.129
Translation
10.1.2.27 209.165.202.130
Packet
Dest. Address:
209.165.201.11
Packet
Dest. Address:
209.165.200.22517-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-9 shows the use of source and destination ports. The host on the 10.1.2.0/24 network accesses
a single host for both web services and Telnet services. When the host accesses the server for web
services, the real address is translated to 209.165.202.129. When the host accesses the same server for
Telnet services, the real address is translated to 209.165.202.130.
Figure 17-9 Policy NAT with Different Destination Ports
See the following commands for this example:
hostname(config)# access-list WEB permit tcp 10.1.2.0 255.255.255.0 209.165.201.11
255.255.255.255 eq 80
hostname(config)# access-list TELNET permit tcp 10.1.2.0 255.255.255.0 209.165.201.11
255.255.255.255 eq 23
hostname(config)# nat (inside) 1 access-list WEB
hostname(config)# global (outside) 1 209.165.202.129
hostname(config)# nat (inside) 2 access-list TELNET
hostname(config)# global (outside) 2 209.165.202.130
For policy static NAT (and for NAT exemption, which also uses an access list to identify traffic), both
translated and remote hosts can originate traffic. For traffic originated on the translated network, the
NAT access list specifies the real addresses and the destination addresses, but for traffic originated on
the remote network, the access list identifies the real addresses and the source addresses of remote hosts
who are allowed to connect to the host using this translation.
Web and Telnet server:
209.165.201.11
Internet
Inside
Translation
10.1.2.27:80 209.165.202.129
10.1.2.27
10.1.2.0/24
Translation
10.1.2.27:23 209.165.202.130
Web Packet
Dest. Address:
209.165.201.11:80
Telnet Packet
Dest. Address:
209.165.201.11:23
13004017-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-10 shows a remote host connecting to a translated host. The translated host has a policy static
NAT translation that translates the real address only for traffic to and from the 209.165.201.0/27
network. A translation does not exist for the 209.165.200.224/27 network, so the translated host cannot
connect to that network, nor can a host on that network connect to the translated host.
Figure 17-10 Policy Static NAT with Destination Address Translation
See the following commands for this example:
hostname(config)# access-list NET1 permit ip 10.1.2.0 255.255.255.224 209.165.201.0
255.255.255.224
hostname(config)# static (inside,outside) 209.165.202.128 access-list NET1
Note For policy static NAT, in undoing the translation, the ACL in the static command is not used. If the
destination address in the packet matches the mapped address in the static rule, the static rule is used to
untranslate the address.
Note Policy NAT does not support SQL*Net, but it is supported by regular NAT. See the “When to Use
Application Protocol Inspection” section on page 25-2 for information about NAT support for other
protocols.
You cannot use policy static NAT to translate different real addresses to the same mapped address. For
example, Figure 17-11 shows two inside hosts, 10.1.1.1 and 10.1.1.2, that you want to be translated to
209.165.200.225. When outside host 209.165.201.1 connects to 209.165.200.225, then the connection
goes to 10.1.1.1. When outside host 209.165.201.2 connects to the same mapped address,
209.165.200.225, you want the connection to go to 10.1.1.2. However, only one source address in the
access list can be used. Since the first ACE is for 10.1.1.1, then all inbound connections sourced from
209.165.201.1 and 209.165.201.2 and destined to 209.165.200.255 will have their destination address
translated to 10.1.1.1.
209.165.201.11 209.165.200.225
DMZ
Inside
No Translation
10.1.2.27
10.1.2.27
10.1.2.0/27
209.165.201.0/27 209.165.200.224/27
Undo Translation
209.165.202.128
13003717-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-11 Real Addresses Cannot Share the Same Mapped Address
See the following commands for this example. (Although the second ACE in the example does allow
209.165.201.2 to connect to 209.165.200.225, it only allows 209.165.200.225 to be translated to
10.1.1.1.)
hostname(config)# static (in,out) 209.165.200.225 access-list policy-nat
hostname(config)# access-list policy-nat permit ip host 10.1.1.1 host 209.165.201.1
hostname(config)# access-list policy-nat permit ip host 10.1.1.2 host 209.165.201.2
NAT and Same Security Level Interfaces
NAT is not required between same security level interfaces even if you enable NAT control. You can
optionally configure NAT if desired. However, if you configure dynamic NAT when NAT control is
enabled, then NAT is required. See the “NAT Control” section on page 17-3 for more information. Also,
when you specify a group of IP address(es) for dynamic NAT or PAT on a same security interface, then
you must perform NAT on that group of addresses when they access any lower or same security level
interface (even when NAT control is not enabled). Traffic identified for static NAT is not affected.
See the “Allowing Communication Between Interfaces on the Same Security Level” section on page 7-6
to enable same security communication.
Note The security appliance does not support VoIP inspection engines when you configure NAT on same
security interfaces. These inspection engines include Skinny, SIP, and H.323. See the “When to Use
Application Protocol Inspection” section on page 25-2 for supported inspection engines.
209.165.201.1
Outside
Inside
10.1.1.1
209.165.201.2
10.1.1.2
Undo Translation
209.165.200.225 10.1.1.1
209.165.200.225 10.1.1.2
No Undo Translation
24298117-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Order of NAT Commands Used to Match Real Addresses
The security appliance matches real addresses to NAT commands in the following order:
1. NAT exemption (nat 0 access-list)—In order, until the first match. Identity NAT is not included in
this category; it is included in the regular static NAT or regular NAT category. We do not recommend
overlapping addresses in NAT exemption statements because unexpected results can occur.
2. Static NAT and Static PAT (regular and policy) (static)—In order, until the first match. Static
identity NAT is included in this category.
3. Policy dynamic NAT (nat access-list)—In order, until the first match. Overlapping addresses are
allowed.
4. Regular dynamic NAT (nat)—Best match. Regular identity NAT is included in this category. The
order of the NAT commands does not matter; the NAT statement that best matches the real address
is used. For example, you can create a general statement to translate all addresses (0.0.0.0) on an
interface. If you want to translate a subset of your network (10.1.1.1) to a different address, then you
can create a statement to translate only 10.1.1.1. When 10.1.1.1 makes a connection, the specific
statement for 10.1.1.1 is used because it matches the real address best. We do not recommend using
overlapping statements; they use more memory and can slow the performance of the security
appliance.
Mapped Address Guidelines
When you translate the real address to a mapped address, you can use the following mapped addresses:
• Addresses on the same network as the mapped interface.
If you use addresses on the same network as the mapped interface (through which traffic exits the
security appliance), the security appliance uses proxy ARP to answer any requests for mapped
addresses, and thus intercepts traffic destined for a real address. This solution simplifies routing,
because the security appliance does not have to be the gateway for any additional networks.
However, this approach does put a limit on the number of available addresses used for translations.
For PAT, you can even use the IP address of the mapped interface.
• Addresses on a unique network.
If you need more addresses than are available on the mapped interface network, you can identify
addresses on a different subnet. The security appliance uses proxy ARP to answer any requests for
mapped addresses, and thus intercepts traffic destined for a real address. If you use OSPF, and you
advertise routes on the mapped interface, then the security appliance advertises the mapped
addresses. If the mapped interface is passive (not advertising routes) or you are using static routing,
then you need to add a static route on the upstream router that sends traffic destined for the mapped
addresses to the security appliance.
DNS and NAT
You might need to configure the security appliance to modify DNS replies by replacing the address in
the reply with an address that matches the NAT configuration. You can configure DNS modification
when you configure each translation.
For example, a DNS server is accessible from the outside interface. A server, ftp.cisco.com, is on the
inside interface. You configure the security appliance to statically translate the ftp.cisco.com real address
(10.1.3.14) to a mapped address (209.165.201.10) that is visible on the outside network (see 17-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Overview
Figure 17-12). In this case, you want to enable DNS reply modification on this static statement so that
inside users who have access to ftp.cisco.com using the real address receive the real address from the
DNS server, and not the mapped address.
When an inside host sends a DNS request for the address of ftp.cisco.com, the DNS server replies with
the mapped address (209.165.201.10). The security appliance refers to the static statement for the inside
server and translates the address inside the DNS reply to 10.1.3.14. If you do not enable DNS reply
modification, then the inside host attempts to send traffic to 209.165.201.10 instead of accessing
ftp.cisco.com directly.
Figure 17-12 DNS Reply Modification
See the following command for this example:
hostname(config)# static (inside,outside) 209.165.201.10 10.1.3.14 netmask 255.255.255.255
dns
Note If a user on a different network (for example, DMZ) also requests the IP address for ftp.cisco.com from
the outside DNS server, then the IP address in the DNS reply is also modified for this user, even though
the user is not on the Inside interface referenced by the static command.
DNS Server
Outside
Inside
User
130021
1
2
3
4
5
DNS Reply Modification
209.165.201.10 10.1.3.14
DNS Reply
209.165.201.10
DNS Reply
10.1.3.14
DNS Query
ftp.cisco.com?
FTP Request
10.1.3.14
Security
Appliance
ftp.cisco.com
10.1.3.14
Static Translation
on Outside to:
209.165.201.1017-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Configuring NAT Control
Figure 17-13 shows a web server and DNS server on the outside. The security appliance has a static
translation for the outside server. In this case, when an inside user requests the address for ftp.cisco.com
from the DNS server, the DNS server responds with the real address, 209.165.20.10. Because you want
inside users to use the mapped address for ftp.cisco.com (10.1.2.56) you need to configure DNS reply
modification for the static translation.
Figure 17-13 DNS Reply Modification Using Outside NAT
See the following command for this example:
hostname(config)# static (outside,inside) 10.1.2.56 209.165.201.10 netmask 255.255.255.255
dns
Configuring NAT Control
NAT control requires that packets traversing from an inside interface to an outside interface match a NAT
rule. See the “NAT Control” section on page 17-3 for more information.
To enable NAT control, enter the following command:
hostname(config)# nat-control
To disable NAT control, enter the no form of the command.
ftp.cisco.com
209.165.201.10
DNS Server
Outside
Inside
User
10.1.2.27
Static Translation on Inside to:
10.1.2.56
130022
1
2
7
6
5
4
3
DNS Query
ftp.cisco.com?
DNS Reply
209.165.201.10
DNS Reply Modification
209.165.201.10 10.1.2.56
DNS Reply
10.1.2.56
FTP Request
209.165.201.10
Dest Addr. Translation
10.1.2.56 209.165.201.10
FTP Request
10.1.2.56
Security
Appliance17-17
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
Using Dynamic NAT and PAT
This section describes how to configure dynamic NAT and PAT, and includes the following topics:
• Dynamic NAT and PAT Implementation, page 17-17
• Configuring Dynamic NAT or PAT, page 17-23
Dynamic NAT and PAT Implementation
For dynamic NAT and PAT, you first configure a nat command identifying the real addresses on a given
interface that you want to translate. Then you configure a separate global command to specify the
mapped addresses when exiting another interface (in the case of PAT, this is one address). Each nat
command matches a global command by comparing the NAT ID, a number that you assign to each
command (see Figure 17-14).
Figure 17-14 nat and global ID Matching
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.10
130027
Web Server:
www.cisco.com
Outside
Inside
Global 1: 209.165.201.3-
209.165.201.10
NAT 1: 10.1.2.0/24
10.1.2.27
Translation
10.1.2.27 209.165.201.317-18
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
You can enter a nat command for each interface using the same NAT ID; they all use the same global
command when traffic exits a given interface. For example, you can configure nat commands for Inside
and DMZ interfaces, both on NAT ID 1. Then you configure a global command on the Outside interface
that is also on ID 1. Traffic from the Inside interface and the DMZ interface share a mapped pool or a
PAT address when exiting the Outside interface (see Figure 17-15).
Figure 17-15 nat Commands on Multiple Interfaces
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# nat (dmz) 1 10.1.1.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.10
Web Server:
www.cisco.com
Outside
DMZ
Inside
Global 1: 209.165.201.3-
209.165.201.10
NAT 1: 10.1.2.0/24
NAT 1: 10.1.1.0/24
10.1.1.15
10.1.2.27
130028
Translation
10.1.2.27 209.165.201.3
Translation
10.1.1.15 209.165.201.417-19
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
You can also enter a global command for each interface using the same NAT ID. If you enter a global
command for the Outside and DMZ interfaces on ID 1, then the Inside nat command identifies traffic to
be translated when going to both the Outside and the DMZ interfaces. Similarly, if you also enter a nat
command for the DMZ interface on ID 1, then the global command on the Outside interface is also used
for DMZ traffic. (See Figure 17-16).
Figure 17-16 global and nat Commands on Multiple Interfaces
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# nat (dmz) 1 10.1.1.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.10
hostname(config)# global (dmz) 1 10.1.1.23
If you use different NAT IDs, you can identify different sets of real addresses to have different mapped
addresses. For example, on the Inside interface, you can have two nat commands on two different
NAT IDs. On the Outside interface, you configure two global commands for these two IDs. Then, when
traffic from Inside network A exits the Outside interface, the IP addresses are translated to pool A
addresses; while traffic from Inside network B are translated to pool B addresses (see Figure 17-17). If
you use policy NAT, you can specify the same real addresses for multiple nat commands, as long as the
the destination addresses and ports are unique in each access list.
Web Server:
www.cisco.com
Outside
DMZ
Inside
Global 1: 209.165.201.3-
209.165.201.10
NAT 1: 10.1.2.0/24
NAT 1: 10.1.1.0/24
Global 1: 10.1.1.23
10.1.1.15
10.1.2.27
130024
Translation
10.1.2.27 209.165.201.3
Translation
10.1.1.15 209.165.201.4
Translation
10.1.2.27 10.1.1.23:2024
Security
Appliance17-20
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
Figure 17-17 Different NAT IDs
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# nat (inside) 2 192.168.1.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.10
hostname(config)# global (outside) 2 209.165.201.11
You can enter multiple global commands for one interface using the same NAT ID; the security
appliance uses the dynamic NAT global commands first, in the order they are in the configuration, and
then uses the PAT global commands in order. You might want to enter both a dynamic NAT global
command and a PAT global command if you need to use dynamic NAT for a particular application, but
want to have a backup PAT statement in case all the dynamic NAT addresses are depleted. Similarly, you
might enter two PAT statements if you need more than the approximately 64,000 PAT sessions that a
single PAT mapped statement supports (see Figure 17-18).
Web Server:
www.cisco.com
Outside
Inside
Global 1: 209.165.201.3-
209.165.201.10
Global 2: 209.165.201.11
NAT 1: 10.1.2.0/24
NAT 2: 192.168.1.0/24
10.1.2.27
192.168.1.14
Translation
10.1.2.27 209.165.201.3
Translation
192.168.1.14 209.165.201.11:4567
130025
Security
Appliance17-21
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
Figure 17-18 NAT and PAT Together
See the following commands for this example:
hostname(config)# nat (inside) 1 10.1.2.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.4
hostname(config)# global (outside) 1 209.165.201.5
For outside NAT, you need to identify the nat command for outside NAT (the outside keyword). If you
also want to translate the same traffic when it accesses an inside interface (for example, traffic on a DMZ
is translated when accessing the Inside and the Outside interfaces), then you must configure a separate
nat command without the outside option. In this case, you can identify the same addresses in both
statements and use the same NAT ID (see Figure 17-19). Note that for outside NAT (DMZ interface to
Inside interface), the inside host uses a static command to allow outside access, so both the source and
destination addresses are translated.
Web Server:
www.cisco.com
Outside
Inside
Global 1: 209.165.201.3-
209.165.201.4
Global 1: 209.165.201.5
NAT 1: 10.1.2.0/24
10.1.2.27
10.1.2.28
10.1.2.29
130026
Translation
10.1.2.27 209.165.201.3
Translation
10.1.2.28 209.165.201.4
Translation
10.1.2.29 209.165.201.5:609617-22
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
Figure 17-19 Outside NAT and Inside NAT Combined
See the following commands for this example:
hostname(config)# nat (dmz) 1 10.1.1.0 255.255.255.0 outside
hostname(config)# nat (dmz) 1 10.1.1.0 255.255.255.0
hostname(config)# static (inside,dmz) 10.1.1.5 10.1.2.27 netmask 255.255.255.255
hostname(config)# global (outside) 1 209.165.201.3-209.165.201.4
hostname(config)# global (inside) 1 10.1.2.30-1-10.1.2.40
When you specify a group of IP address(es) in a nat command, then you must perform NAT on that group
of addresses when they access any lower or same security level interface; you must apply a global
command with the same NAT ID on each interface, or use a static command. NAT is not required for
that group when it accesses a higher security interface, because to perform NAT from outside to inside,
you must create a separate nat command using the outside keyword. If you do apply outside NAT, then
the NAT requirements preceding come into effect for that group of addresses when they access all higher
security interfaces. Traffic identified by a static command is not affected.
Outside
DMZ
Inside
Global 1: 209.165.201.3-
209.165.201.10
Global 1: 10.1.2.30-
10.1.2.40 Static to DMZ: 10.1.2.27 10.1.1.5
Outside NAT 1: 10.1.1.0/24
NAT 1: 10.1.1.0/24
10.1.1.15
10.1.2.27
Translation
10.1.1.15 209.165.201.4
Translation
10.1.1.15 10.1.2.30
Undo Translation
10.1.1.5 10.1.2.27
13003817-23
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
Configuring Dynamic NAT or PAT
This section describes how to configure dynamic NAT or dynamic PAT. The configuration for dynamic
NAT and PAT are almost identical; for NAT you specify a range of mapped addresses, and for PAT you
specify a single address.
Figure 17-20 shows a typical dynamic NAT scenario. Only translated hosts can create a NAT session,
and responding traffic is allowed back. The mapped address is dynamically assigned from a pool defined
by the global command.
Figure 17-20 Dynamic NAT
Figure 17-21 shows a typical dynamic PAT scenario. Only translated hosts can create a NAT session, and
responding traffic is allowed back. The mapped address defined by the global command is the same for
each translation, but the port is dynamically assigned.
Figure 17-21 Dynamic PAT
For more information about dynamic NAT, see the “Dynamic NAT” section on page 17-5. For more
information about PAT, see the “PAT” section on page 17-7.
Note If you change the NAT configuration, and you do not want to wait for existing translations to time out
before the new NAT information is used, you can clear the translation table using the clear xlate
command. However, clearing the translation table disconnects all current connections that use
translations.
10.1.1.1 209.165.201.1
Inside Outside
10.1.1.2 209.165.201.2
130032
Security
Appliance
10.1.1.1:1025 209.165.201.1:2020
Inside Outside
10.1.1.1:1026 209.165.201.1:2021
10.1.1.2:1025 209.165.201.1:2022
130034
Security
Appliance17-24
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
To configure dynamic NAT or PAT, perform the following steps:
Step 1 To identify the real addresses that you want to translate, enter one of the following commands:
• Policy NAT:
hostname(config)# nat (real_interface) nat_id access-list acl_name [dns] [outside]
[norandomseq] [[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
You can identify overlapping addresses in other nat commands. For example, you can identify
10.1.1.0 in one command, but 10.1.1.1 in another. The traffic is matched to a policy NAT command
in order, until the first match, or for regular NAT, using the best match.
See the following description about options for this command:
– access-list acl_name—Identify the real addresses and destination addresses using an extended
access list. Create the access list using the access-list command (see the “Adding an Extended
Access List” section on page 16-5). This access list should include only permit ACEs. You can
optionally specify the real and destination ports in the access list using the eq operator. Policy
NAT considers the inactive and time-range keywords, but it does not support ACL with all
inactive and time-range ACEs.
– nat_id—An integer between 1 and 65535. The NAT ID should match a global command NAT
ID. See the “Dynamic NAT and PAT Implementation” section on page 17-17 for more
information about how NAT IDs are used. 0 is reserved for NAT exemption. (See the
“Configuring NAT Exemption” section on page 17-32 for more information about NAT
exemption.)
– dns—If your nat command includes the address of a host that has an entry in a DNS server, and
the DNS server is on a different interface from a client, then the client and the DNS server need
different addresses for the host; one needs the mapped address and one needs the real address.
This option rewrites the address in the DNS reply to the client. The translated host needs to be
on the same interface as either the client or the DNS server. Typically, hosts that need to allow
access from other interfaces use a static translation, so this option is more likely to be used with
the static command. (See the “DNS and NAT” section on page 17-14 for more information.)
– outside—If this interface is on a lower security level than the interface you identify by the
matching global statement, then you must enter outside to identify the NAT instance as
outside NAT.
– norandomseq, tcp tcp_max_conns, udp udp_max_conns, and emb_limit—These keywords set
connection limits. However, we recommend using a more versatile method for setting
connection limits; see the “Configuring Connection Limits and Timeouts” section on page 23-6.
• Regular NAT:
hostname(config)# nat (real_interface) nat_id real_ip [mask [dns] [outside]
[norandomseq] [[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]]
The nat_id is an integer between 1 and 2147483647. The NAT ID must match a global command
NAT ID. See the “Dynamic NAT and PAT Implementation” section on page 17-17 for more
information about how NAT IDs are used. 0 is reserved for identity NAT. See the “Configuring
Identity NAT” section on page 17-30 for more information about identity NAT.
See the preceding policy NAT command for information about other options.
Step 2 To identify the mapped address(es) to which you want to translate the real addresses when they exit a
particular interface, enter the following command:
hostname(config)# global (mapped_interface) nat_id {mapped_ip[-mapped_ip] | interface}17-25
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Dynamic NAT and PAT
This NAT ID should match a nat command NAT ID. The matching nat command identifies the addresses
that you want to translate when they exit this interface.
You can specify a single address (for PAT) or a range of addresses (for NAT). The range can go across
subnet boundaries if desired. For example, you can specify the following “supernet”:
192.168.1.1-192.168.2.254
For example, to translate the 10.1.1.0/24 network on the inside interface, enter the following command:
hostname(config)# nat (inside) 1 10.1.1.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.1-209.165.201.30
To identify a pool of addresses for dynamic NAT as well as a PAT address for when the NAT pool is
exhausted, enter the following commands:
hostname(config)# nat (inside) 1 10.1.1.0 255.255.255.0
hostname(config)# global (outside) 1 209.165.201.5
hostname(config)# global (outside) 1 209.165.201.10-209.165.201.20
To translate the lower security dmz network addresses so they appear to be on the same network as the
inside network (10.1.1.0), for example, to simplify routing, enter the following commands:
hostname(config)# nat (dmz) 1 10.1.2.0 255.255.255.0 outside dns
hostname(config)# global (inside) 1 10.1.1.45
To identify a single real address with two different destination addresses using policy NAT, enter the
following commands (see Figure 17-8 on page 17-10 for a related figure):
hostname(config)# access-list NET1 permit ip 10.1.2.0 255.255.255.0 209.165.201.0
255.255.255.224
hostname(config)# access-list NET2 permit ip 10.1.2.0 255.255.255.0 209.165.200.224
255.255.255.224
hostname(config)# nat (inside) 1 access-list NET1 tcp 0 2000 udp 10000
hostname(config)# global (outside) 1 209.165.202.129
hostname(config)# nat (inside) 2 access-list NET2 tcp 1000 500 udp 2000
hostname(config)# global (outside) 2 209.165.202.130
To identify a single real address/destination address pair that use different ports using policy NAT, enter
the following commands (see Figure 17-9 on page 17-11 for a related figure):
hostname(config)# access-list WEB permit tcp 10.1.2.0 255.255.255.0 209.165.201.11
255.255.255.255 eq 80
hostname(config)# access-list TELNET permit tcp 10.1.2.0 255.255.255.0 209.165.201.11
255.255.255.255 eq 23
hostname(config)# nat (inside) 1 access-list WEB
hostname(config)# global (outside) 1 209.165.202.129
hostname(config)# nat (inside) 2 access-list TELNET
hostname(config)# global (outside) 2 209.165.202.13017-26
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Static NAT
Using Static NAT
This section describes how to configure a static translation.
Figure 17-22 shows a typical static NAT scenario. The translation is always active so both translated and
remote hosts can originate connections, and the mapped address is statically assigned by the static
command.
Figure 17-22 Static NAT
You cannot use the same real or mapped address in multiple static commands between the same two
interfaces. Do not use a mapped address in the static command that is also defined in a global command
for the same mapped interface.
For more information about static NAT, see the “Static NAT” section on page 17-7.
Note If you remove a static command, existing connections that use the translation are not affected. To remove
these connections, enter the clear local-host command.
You cannot clear static translations from the translation table with the clear xlate command; you must
remove the static command instead. Only dynamic translations created by the nat and global commands
can be removed with the clear xlate command.
To configure static NAT, enter one of the following commands.
• For policy static NAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) {mapped_ip | interface}
access-list acl_name [dns] [norandomseq] [[tcp] tcp_max_conns [emb_limit]]
[udp udp_max_conns]
Create the access list using the access-list command (see the “Adding an Extended Access List”
section on page 16-5). This access list should include only permit ACEs. The source subnet mask
used in the access list is also used for the mapped addresses. You can also specify the real and
destination ports in the access list using the eq operator. Policy NAT does not consider the inactive
or time-range keywords; all ACEs are considered to be active for policy NAT configuration. See the
“Policy NAT” section on page 17-9 for more information.
If you specify a network for translation (for example, 10.1.1.0 255.255.255.0), then the security
appliance translates the .0 and .255 addresses. If you want to prevent access to these addresses, be
sure to configure an access list to deny access.
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the other
options.
10.1.1.1 209.165.201.1
Inside Outside
10.1.1.2 209.165.201.2
130035
Security
Appliance17-27
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Static PAT
• To configure regular static NAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) {mapped_ip | interface}
real_ip [netmask mask] [dns] [norandomseq] [[tcp] tcp_max_conns [emb_limit]]
[udp udp_max_conns]
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the
options.
For example, the following policy static NAT example shows a single real address that is translated to
two mapped addresses depending on the destination address (see Figure 17-8 on page 17-10 for a related
figure):
hostname(config)# access-list NET1 permit ip host 10.1.2.27 209.165.201.0 255.255.255.224
hostname(config)# access-list NET2 permit ip host 10.1.2.27 209.165.200.224
255.255.255.224
hostname(config)# static (inside,outside) 209.165.202.129 access-list NET1
hostname(config)# static (inside,outside) 209.165.202.130 access-list NET2
The following command maps an inside IP address (10.1.1.3) to an outside IP address (209.165.201.12):
hostname(config)# static (inside,outside) 209.165.201.12 10.1.1.3 netmask 255.255.255.255
The following command maps the outside address (209.165.201.15) to an inside address (10.1.1.6):
hostname(config)# static (outside,inside) 10.1.1.6 209.165.201.15 netmask 255.255.255.255
The following command statically maps an entire subnet:
hostname(config)# static (inside,dmz) 10.1.1.0 10.1.2.0 netmask 255.255.255.0
Using Static PAT
This section describes how to configure a static port translation. Static PAT lets you translate the real IP
address to a mapped IP address, as well as the real port to a mapped port. You can choose to translate
the real port to the same port, which lets you translate only specific types of traffic, or you can take it
further by translating to a different port.
Figure 17-23 shows a typical static PAT scenario. The translation is always active so both translated and
remote hosts can originate connections, and the mapped address and port is statically assigned by the
static command.
Figure 17-23 Static PAT
For applications that require application inspection for secondary channels (FTP, VoIP, etc.), the security
appliance automatically translates the secondary ports.
10.1.1.1:23 209.165.201.1:23
Inside Outside
10.1.1.2:8080 209.165.201.2:80
130044
Security
Appliance17-28
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Using Static PAT
You cannot use the same real or mapped address in multiple static statements between the same two
interfaces. Do not use a mapped address in the static command that is also defined in a global command
for the same mapped interface.
For more information about static PAT, see the “Static PAT” section on page 17-8.
Note If you remove a static command, existing connections that use the translation are not affected. To remove
these connections, enter the clear local-host command.
You cannot clear static translations from the translation table with the clear xlate command; you must
remove the static command instead. Only dynamic translations created by the nat and global commands
can be removed with the clear xlate command.
To configure static PAT, enter one of the following commands.
• For policy static PAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) {tcp | udp}
{mapped_ip | interface} mapped_port access-list acl_name [dns] [norandomseq]
[[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
Create the access list using the access-list command (see the “Adding an Extended Access List”
section on page 16-5). The protocol in the access list must match the protocol you set in this
command. For example, if you specify tcp in the static command, then you must specify tcp in the
access list. Specify the port using the eq operator. This access list should include only permit ACEs.
The source subnet mask used in the access list is also used for the mapped addresses. Policy NAT
does not consider the inactive or time-range keywords; all ACEs are considered to be active for
policy NAT configuration.
If you specify a network for translation (for example, 10.1.1.0 255.255.255.0), then the security
appliance translates the .0 and .255 addresses. If you want to prevent access to these addresses, be
sure to configure an access list to deny access.
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the other
options.
• To configure regular static PAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) {tcp | udp} {mapped_ip |
interface} mapped_port real_ip real_port [netmask mask] [dns] [norandomseq] [[tcp]
tcp_max_conns [emb_limit]] [udp udp_max_conns]
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the
options.
Note When configuring static PAT with FTP, you need to add entries for both TCP ports 20 and 21. You must
specify port 20 so that the source port for the active transfer is not modified to another port, which may
interfere with other devices that perform NAT on FTP traffic.
For example, for Telnet traffic initiated from hosts on the 10.1.3.0 network to the security appliance
outside interface (10.1.2.14), you can redirect the traffic to the inside host at 10.1.1.15 by entering the
following commands:
hostname(config)# access-list TELNET permit tcp host 10.1.1.15 eq telnet 10.1.3.0
255.255.255.0 eq telnet
hostname(config)# static (inside,outside) tcp 10.1.2.14 telnet access-list TELNET17-29
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Bypassing NAT
For HTTP traffic initiated from hosts on the 10.1.3.0 network to the security appliance outside interface
(10.1.2.14), you can redirect the traffic to the inside host at 10.1.1.15 by entering:
hostname(config)# access-list HTTP permit tcp host 10.1.1.15 eq http 10.1.3.0
255.255.255.0 eq http
hostname(config)# static (inside,outside) tcp 10.1.2.14 http access-list HTTP
To redirect Telnet traffic from the security appliance outside interface (10.1.2.14) to the inside host at
10.1.1.15, enter the following command:
hostname(config)# static (inside,outside) tcp 10.1.2.14 telnet 10.1.1.15 telnet netmask
255.255.255.255
If you want to allow the preceding real Telnet server to initiate connections, though, then you need to
provide additional translation. For example, to translate all other types of traffic, enter the following
commands. The original static command provides translation for Telnet to the server, while the nat and
global commands provide PAT for outbound connections from the server.
hostname(config)# static (inside,outside) tcp 10.1.2.14 telnet 10.1.1.15 telnet netmask
255.255.255.255
hostname(config)# nat (inside) 1 10.1.1.15 255.255.255.255
hostname(config)# global (outside) 1 10.1.2.14
If you also have a separate translation for all inside traffic, and the inside hosts use a different mapped
address from the Telnet server, you can still configure traffic initiated from the Telnet server to use the
same mapped address as the static statement that allows Telnet traffic to the server. You need to create
a more exclusive nat statement just for the Telnet server. Because nat statements are read for the best
match, more exclusive nat statements are matched before general statements. The following example
shows the Telnet static statement, the more exclusive nat statement for initiated traffic from the Telnet
server, and the statement for other inside hosts, which uses a different mapped address.
hostname(config)# static (inside,outside) tcp 10.1.2.14 telnet 10.1.1.15 telnet netmask
255.255.255.255
hostname(config)# nat (inside) 1 10.1.1.15 255.255.255.255
hostname(config)# global (outside) 1 10.1.2.14
hostname(config)# nat (inside) 2 10.1.1.0 255.255.255.0
hostname(config)# global (outside) 2 10.1.2.78
To translate a well-known port (80) to another port (8080), enter the following command:
hostname(config)# static (inside,outside) tcp 10.1.2.45 80 10.1.1.16 8080 netmask
255.255.255.255
Bypassing NAT
This section describes how to bypass NAT. You might want to bypass NAT when you enable NAT control.
You can bypass NAT using identity NAT, static identity NAT, or NAT exemption. See the “Bypassing
NAT When NAT Control is Enabled” section on page 17-9 for more information about these methods.
This section includes the following topics:
• Configuring Identity NAT, page 17-30
• Configuring Static Identity NAT, page 17-30
• Configuring NAT Exemption, page 17-3217-30
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Bypassing NAT
Configuring Identity NAT
Identity NAT translates the real IP address to the same IP address. Only “translated” hosts can create
NAT translations, and responding traffic is allowed back.
Figure 17-24 shows a typical identity NAT scenario.
Figure 17-24 Identity NAT
Note If you change the NAT configuration, and you do not want to wait for existing translations to time out
before the new NAT information is used, you can clear the translation table using the clear xlate
command. However, clearing the translation table disconnects all current connections that use
translations.
To configure identity NAT, enter the following command:
hostname(config)# nat (real_interface) 0 real_ip [mask [dns] [outside] [norandomseq]
[[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the options.
For example, to use identity NAT for the inside 10.1.1.0/24 network, enter the following command:
hostname(config)# nat (inside) 0 10.1.1.0 255.255.255.0
Configuring Static Identity NAT
Static identity NAT translates the real IP address to the same IP address. The translation is always active,
and both “translated” and remote hosts can originate connections. Static identity NAT lets you use
regular NAT or policy NAT. Policy NAT lets you identify the real and destination addresses when
determining the real addresses to translate (see the “Policy NAT” section on page 17-9 for more
209.165.201.1 209.165.201.1
Inside Outside
209.165.201.2 209.165.201.2
130033
Security
Appliance17-31
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Bypassing NAT
information about policy NAT). For example, you can use policy static identity NAT for an inside address
when it accesses the outside interface and the destination is server A, but use a normal translation when
accessing the outside server B.
Figure 17-25 shows a typical static identity NAT scenario.
Figure 17-25 Static Identity NAT
Note If you remove a static command, existing connections that use the translation are not affected. To remove
these connections, enter the clear local-host command.
You cannot clear static translations from the translation table with the clear xlate command; you must
remove the static command instead. Only dynamic translations created by the nat and global commands
can be removed with the clear xlate command.
To configure static identity NAT, enter one of the following commands:
• To configure policy static identity NAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) real_ip access-list acl_id
[dns] [norandomseq] [[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
Create the access list using the access-list command (see the “Adding an Extended Access List”
section on page 16-5). This access list should include only permit ACEs. Make sure the source
address in the access list matches the real_ip in this command. Policy NAT does not consider the
inactive or time-range keywords; all ACEs are considered to be active for policy NAT
configuration. See the “Policy NAT” section on page 17-9 for more information.
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the other
options.
• To configure regular static identity NAT, enter the following command:
hostname(config)# static (real_interface,mapped_interface) real_ip real_ip [netmask
mask] [dns] [norandomseq] [[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
Specify the same IP address for both real_ip arguments.
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the other
options.
For example, the following command uses static identity NAT for an inside IP address (10.1.1.3) when
accessed by the outside:
hostname(config)# static (inside,outside) 10.1.1.3 10.1.1.3 netmask 255.255.255.255
209.165.201.1 209.165.201.1
Inside Outside
209.165.201.2 209.165.201.2
130036
Security
Appliance17-32
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
Bypassing NAT
The following command uses static identity NAT for an outside address (209.165.201.15) when accessed
by the inside:
hostname(config)# static (outside,inside) 209.165.201.15 209.165.201.15 netmask
255.255.255.255
The following command statically maps an entire subnet:
hostname(config)# static (inside,dmz) 10.1.2.0 10.1.2.0 netmask 255.255.255.0
The following static identity policy NAT example shows a single real address that uses identity NAT
when accessing one destination address, and a translation when accessing another:
hostname(config)# access-list NET1 permit ip host 10.1.2.27 209.165.201.0 255.255.255.224
hostname(config)# access-list NET2 permit ip host 10.1.2.27 209.165.200.224
255.255.255.224
hostname(config)# static (inside,outside) 10.1.2.27 access-list NET1
hostname(config)# static (inside,outside) 209.165.202.130 access-list NET2
Configuring NAT Exemption
NAT exemption exempts addresses from translation and allows both real and remote hosts to originate
connections. NAT exemption lets you specify the real and destination addresses when determining the
real traffic to exempt (similar to policy NAT), so you have greater control using NAT exemption than
identity NAT. However unlike policy NAT, NAT exemption does not consider the ports in the access list.
Use static identity NAT to consider ports in the access list.
Figure 17-26 shows a typical NAT exemption scenario.
Figure 17-26 NAT Exemption
Note If you remove a NAT exemption configuration, existing connections that use NAT exemption are not
affected. To remove these connections, enter the clear local-host command.
To configure NAT exemption, enter the following command:
hostname(config)# nat (real_interface) 0 access-list acl_name [outside] [norandomseq]
[[tcp] tcp_max_conns [emb_limit]] [udp udp_max_conns]
Create the access list using the access-list command (see the “Adding an Extended Access List” section
on page 16-5). This access list can include both permit ACEs and deny ACEs. Do not specify the real
and destination ports in the access list; NAT exemption does not consider the ports. NAT exemption
considers the inactive and time-range keywords, but it does not support ACL with all inactive and
time-range ACEs.
209.165.201.1 209.165.201.1
Inside Outside
209.165.201.2 209.165.201.2
130036
Security
Appliance17-33
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Examples
See the “Configuring Dynamic NAT or PAT” section on page 17-23 for information about the other
options.
By default, this command exempts traffic from inside to outside. If you want traffic from outside to
inside to bypass NAT, then add an additional nat command and enter outside to identify the NAT
instance as outside NAT. You might want to use outside NAT exemption if you configure dynamic NAT
for the outside interface and want to exempt other traffic.
For example, to exempt an inside network when accessing any destination address, enter the following
command:
hostname(config)# access-list EXEMPT permit ip 10.1.2.0 255.255.255.0 any
hostname(config)# nat (inside) 0 access-list EXEMPT
To use dynamic outside NAT for a DMZ network, and exempt another DMZ network, enter the following
command:
hostname(config)# nat (dmz) 1 10.1.2.0 255.255.255.0 outside dns
hostname(config)# global (inside) 1 10.1.1.45
hostname(config)# access-list EXEMPT permit ip 10.1.3.0 255.255.255.0 any
hostname(config)# nat (dmz) 0 access-list EXEMPT
To exempt an inside address when accessing two different destination addresses, enter the following
commands:
hostname(config)# access-list NET1 permit ip 10.1.2.0 255.255.255.0 209.165.201.0
255.255.255.224
hostname(config)# access-list NET1 permit ip 10.1.2.0 255.255.255.0 209.165.200.224
255.255.255.224
hostname(config)# nat (inside) 0 access-list NET1
NAT Examples
This section describes typical scenarios that use NAT solutions, and includes the following topics:
• Overlapping Networks, page 17-34
• Redirecting Ports, page 17-3517-34
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Examples
Overlapping Networks
In Figure 17-27, the security appliance connects two private networks with overlapping address ranges.
Figure 17-27 Using Outside NAT with Overlapping Networks
Two networks use an overlapping address space (192.168.100.0/24), but hosts on each network must
communicate (as allowed by access lists). Without NAT, when a host on the inside network tries to access
a host on the overlapping DMZ network, the packet never makes it past the security appliance, which
sees the packet as having a destination address on the inside network. Moreover, if the destination
address is being used by another host on the inside network, that host receives the packet.
To solve this problem, use NAT to provide non-overlapping addresses. If you want to allow access in
both directions, use static NAT for both networks. If you only want to allow the inside interface to access
hosts on the DMZ, then you can use dynamic NAT for the inside addresses, and static NAT for the DMZ
addresses you want to access. This example shows static NAT.
To configure static NAT for these two interfaces, perform the following steps. The 10.1.1.0/24 network
on the DMZ is not translated.
Step 1 Translate 192.168.100.0/24 on the inside to 10.1.2.0 /24 when it accesses the DMZ by entering the
following command:
hostname(config)# static (inside,dmz) 10.1.2.0 192.168.100.0 netmask 255.255.255.0
Step 2 Translate the 192.168.100.0/24 network on the DMZ to 10.1.3.0/24 when it accesses the inside by
entering the following command:
hostname(config)# static (dmz,inside) 10.1.3.0 192.168.100.0 netmask 255.255.255.0
Step 3 Configure the following static routes so that traffic to the dmz network can be routed correctly by the
security appliance:
hostname(config)# route dmz 192.168.100.128 255.255.255.128 10.1.1.2 1
hostname(config)# route dmz 192.168.100.0 255.255.255.128 10.1.1.2 1
192.168.100.2
inside
192.168.100.0/24
outside
10.1.1.2
192.168.100.1
192.168.100.2
dmz
192.168.100.0/24
192.168.100.3
10.1.1.1
130029
192.168.100.317-35
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Examples
The security appliance already has a connected route for the inside network. These static routes allow
the security appliance to send traffic for the 192.168.100.0/24 network out the DMZ interface to the
gateway router at 10.1.1.2. (You need to split the network into two because you cannot create a static
route with the exact same network as a connected route.) Alternatively, you could use a more broad route
for the DMZ traffic, such as a default route.
If host 192.168.100.2 on the DMZ network wants to initiate a connection to host 192.168.100.2 on the
inside network, the following events occur:
1. The DMZ host 192.168.100.2 sends the packet to IP address 10.1.2.2.
2. When the security appliance receives this packet, the security appliance translates the source address
from 192.168.100.2 to 10.1.3.2.
3. Then the security appliance translates the destination address from 10.1.2.2 to 192.168.100.2, and
the packet is forwarded.
Redirecting Ports
Figure 17-28 illustrates a typical network scenario in which the port redirection feature might be useful.
Figure 17-28 Port Redirection Using Static PAT
In the configuration described in this section, port redirection occurs for hosts on external networks as
follows:
• Telnet requests to IP address 209.165.201.5 are redirected to 10.1.1.6.
• FTP requests to IP address 209.165.201.5 are redirected to 10.1.1.3.
• HTTP request to security appliance outside IP address 209.165.201.25 are redirected to 10.1.1.5.
• HTTP port 8080 requests to PAT address 209.165.201.15 are redirected to 10.1.1.7 port 80.
Telnet Server
10.1.1.6
209.165.201.25
209.165.201.5
209.165.201.15
10.1.1.1
Inside
FTP Server
10.1.1.3
Web Server
10.1.1.5
Web Server
10.1.1.7
Outside
13003017-36
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 17 Applying NAT
NAT Examples
To implement this scenario, perform the following steps:
Step 1 Configure PAT for the inside network by entering the following commands:
hostname(config)# nat (inside) 1 0.0.0.0 0.0.0.0 0 0
hostname(config)# global (outside) 1 209.165.201.15
Step 2 Redirect Telnet requests for 209.165.201.5 to 10.1.1.6 by entering the following command:
hostname(config)# static (inside,outside) tcp 209.165.201.5 telnet 10.1.1.6 telnet netmask
255.255.255.255
Step 3 Redirect FTP requests for IP address 209.165.201.5 to 10.1.1.3 by entering the following command:
hostname(config)# static (inside,outside) tcp 209.165.201.5 ftp 10.1.1.3 ftp netmask
255.255.255.255
Step 4 Redirect HTTP requests for the security appliance outside interface address to 10.1.1.5 by entering the
following command:
hostname(config)# static (inside,outside) tcp interface www 10.1.1.5 www netmask
255.255.255.255
Step 5 Redirect HTTP requests on port 8080 for PAT address 209.165.201.15 to 10.1.1.7 port 80 by entering
the following command:
hostname(config)# static (inside,outside) tcp 209.165.201.15 8080 10.1.1.7 www netmask
255.255.255.255C H A P T E R
18-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
18
Permitting or Denying Network Access
This chapter describes how to control network access through the security appliance using access lists.
To create an extended access lists or an EtherType access list, see Chapter 16, “Identifying Traffic with
Access Lists.”
Note You use ACLs to control network access in both routed and transparent firewall modes. In transparent
mode, you can use both extended ACLs (for Layer 3 traffic) and EtherType ACLs (for Layer 2 traffic).
To access the security appliance interface for management access, you do not also need an access list
allowing the host IP address. You only need to configure management access according to Chapter 40,
“Managing System Access.”
This chapter includes the following sections:
• Inbound and Outbound Access List Overview, page 18-1
• Applying an Access List to an Interface, page 18-2
Inbound and Outbound Access List Overview
By default, all traffic from a higher-security interface to a lower-security interface is allowed. Access
lists let you either allow traffic from lower-security interfaces, or restrict traffic from higher-security
interfaces.
The security appliance supports two types of access lists:
• Inbound—Inbound access lists apply to traffic as it enters an interface.
• Outbound—Outbound access lists apply to traffic as it exits an interface.
Note “Inbound” and “outbound” refer to the application of an access list on an interface, either to traffic
entering the security appliance on an interface or traffic exiting the security appliance on an interface.
These terms do not refer to the movement of traffic from a lower security interface to a higher security
interface, commonly known as inbound, or from a higher to lower interface, commonly known as
outbound.
An outbound access list is useful, for example, if you want to allow only certain hosts on the inside
networks to access a web server on the outside network. Rather than creating multiple inbound access
lists to restrict access, you can create a single outbound access list that allows only the specified hosts 18-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 18 Permitting or Denying Network Access
Applying an Access List to an Interface
(see Figure 18-1). See the “IP Addresses Used for Access Lists When You Use NAT” section on
page 16-3 for information about NAT and IP addresses. The outbound access list prevents any other hosts
from reaching the outside network.
Figure 18-1 Outbound Access List
See the following commands for this example:
hostname(config)# access-list OUTSIDE extended permit tcp host 209.165.201.4
host 209.165.200.225 eq www
hostname(config)# access-list OUTSIDE extended permit tcp host 209.165.201.6
host 209.165.200.225 eq www
hostname(config)# access-list OUTSIDE extended permit tcp host 209.165.201.8
host 209.165.200.225 eq www
hostname(config)# access-group OUTSIDE out interface outside
Applying an Access List to an Interface
To apply an extended access list to the inbound or outbound direction of an interface, enter the following
command:
hostname(config)# access-group access_list_name {in | out} interface interface_name
[per-user-override]
You can apply one access list of each type (extended and EtherType) to both directions of the interface.
See the “Inbound and Outbound Access List Overview” section on page 18-1 for more information about
access list directions.
Web Server:
209.165.200.225
Inside HR Eng
Outside
Static NAT
10.1.1.14 209.165.201.4
Static NAT
10.1.2.67 209.165.201.6
Static NAT
10.1.3.34 209.165.201.8
ACL Outbound
Permit HTTP from 209.165.201.4, 209.165.201.6,
and 209.165.201.8 to 209.165.200.225
Deny all others
132210
ACL Inbound
Permit from any to any
ACL Inbound
Permit from any to any
ACL Inbound
Permit from any to any
Security
appliance18-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 18 Permitting or Denying Network Access
Applying an Access List to an Interface
The per-user-override keyword allows dynamic access lists that are downloaded for user authorization
to override the access list assigned to the interface. For example, if the interface access list denies all
traffic from 10.0.0.0, but the dynamic access list permits all traffic from 10.0.0.0, then the dynamic
access list overrides the interface access list for that user. See the “Configuring RADIUS Authorization”
section for more information about per-user access lists. The per-user-override keyword is only
available for inbound access lists.
For connectionless protocols, you need to apply the access list to the source and destination interfaces
if you want traffic to pass in both directions.
The following example illustrates the commands required to enable access to an inside web server with
the IP address 209.165.201.12 (this IP address is the address visible on the outside interface after NAT):
hostname(config)# access-list ACL_OUT extended permit tcp any host 209.165.201.12 eq www
hostname(config)# access-group ACL_OUT in interface outside
You also need to configure NAT for the web server.
The following access lists allow any hosts to communicate between the inside and hr networks, but only
specific hosts (209.168.200.3 and 209.168.200.4) to access the outside network, as shown in the last line
below:
hostname(config)# access-list ANY extended permit ip any any
hostname(config)# access-list OUT extended permit ip host 209.168.200.3 any
hostname(config)# access-list OUT extended permit ip host 209.168.200.4 any
hostname(config)# access-group ANY in interface inside
hostname(config)# access-group ANY in interface hr
hostname(config)# access-group OUT out interface outside
For example, the following sample access list allows common EtherTypes originating on the inside
interface:
hostname(config)# access-list ETHER ethertype permit ipx
hostname(config)# access-list ETHER ethertype permit bpdu
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside
The following access list allows some EtherTypes through the security appliance, but denies all others:
hostname(config)# access-list ETHER ethertype permit 0x1234
hostname(config)# access-list ETHER ethertype permit bpdu
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside
hostname(config)# access-group ETHER in interface outside
The following access list denies traffic with EtherType 0x1256 but allows all others on both interfaces:
hostname(config)# access-list nonIP ethertype deny 1256
hostname(config)# access-list nonIP ethertype permit any
hostname(config)# access-group ETHER in interface inside
hostname(config)# access-group ETHER in interface outside18-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 18 Permitting or Denying Network Access
Applying an Access List to an InterfaceC H A P T E R
19-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
19
Applying AAA for Network Access
This chapter describes how to enable AAA (pronounced “triple A”) for network access.
For information about AAA for management access, see the “Configuring AAA for System
Administrators” section on page 40-5.
This chapter contains the following sections:
• AAA Performance, page 19-1
• Configuring Authentication for Network Access, page 19-1
• Configuring Authorization for Network Access, page 19-6
• Configuring Accounting for Network Access, page 19-13
• Using MAC Addresses to Exempt Traffic from Authentication and Authorization, page 19-14
AAA Performance
The security appliance uses “cut-through proxy” to significantly improve performance compared to a
traditional proxy server. The performance of a traditional proxy server suffers because it analyzes every
packet at the application layer of the OSI model. The security appliance cut-through proxy challenges a
user initially at the application layer and then authenticates against standard AAA servers or the local
database. After the security appliance authenticates the user, it shifts the session flow, and all traffic
flows directly and quickly between the source and destination while maintaining session state
information.
Configuring Authentication for Network Access
This section includes the following topics:
• Authentication Overview, page 19-2
• Enabling Network Access Authentication, page 19-3
• Enabling Secure Authentication of Web Clients, page 19-5
• Authenticating Directly with the Security Appliance, page 19-619-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authentication for Network Access
Authentication Overview
The security appliance lets you configure network access authentication using AAA servers. This section
includes the following topics:
• One-Time Authentication, page 19-2
• Applications Required to Receive an Authentication Challenge, page 19-2
• Security Appliance Authentication Prompts, page 19-2
• Static PAT and HTTP, page 19-3
• Enabling Network Access Authentication, page 19-3
One-Time Authentication
A user at a given IP address only needs to authenticate one time for all rules and types, until the
authentication session expires. (See the timeout uauth command in the Cisco Security Appliance
Command Reference for timeout values.) For example, if you configure the security appliance to
authenticate Telnet and FTP, and a user first successfully authenticates for Telnet, then as long as the
authentication session exists, the user does not also have to authenticate for FTP.
Applications Required to Receive an Authentication Challenge
Although you can configure the security appliance to require authentication for network access to any
protocol or service, users can authenticate directly with HTTP, HTTPS, Telnet, or FTP only. A user must
first authenticate with one of these services before the security appliance allows other traffic requiring
authentication.
The authentication ports that the security appliance supports for AAA are fixed:
• Port 21 for FTP
• Port 23 for Telnet
• Port 80 for HTTP
• Port 443 for HTTPS
Security Appliance Authentication Prompts
For Telnet and FTP, the security appliance generates an authentication prompt.
For HTTP, the security appliance uses basic HTTP authentication by default, and provides an
authentication prompt. You can optionally configure the security appliance to redirect users to an
internal web page where they can enter their username and password (configured with the aaa
authentication listener command).
For HTTPS, the security appliance generates a custom login screen. You can optionally configure the
security appliance to redirect users to an internal web page where they can enter their username and
password (configured with the aaa authentication listener command).
Redirection is an improvement over the basic method because it provides an improved user experience
when authenticating, and an identical user experience for HTTP and HTTPS in both Easy VPN and
firewall modes. It also supports authenticating directly with the security appliance.19-3
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authentication for Network Access
You might want to continue to use basic HTTP authentication if: you do not want the security appliance
to open listening ports; if you use NAT on a router and you do not want to create a translation rule for
the web page served by the security appliance; basic HTTP authentication might work better with your
network. For example non-browser applications, like when a URL is embedded in email, might be more
compatible with basic authentication.
After you authenticate correctly, the security appliance redirects you to your original destination. If the
destination server also has its own authentication, the user enters another username and password. If you
use basic HTTP authentication and need to enter another username and password for the destination
server, then you need to configure the virtual http command.
Note If you use HTTP authentication without using the aaa authentication secure-http-client command, the
username and password are sent from the client to the security appliance in clear text. We recommend
that you use the aaa authentication secure-http-client command whenever you enable HTTP
authentication. For more information about the aaa authentication secure-http-client command, see
the “Enabling Secure Authentication of Web Clients” section on page 19-5.
For FTP, a user has the option of entering the security appliance username followed by an at sign (@)
and then the FTP username (name1@name2). For the password, the user enters the security appliance
password followed by an at sign (@) and then the FTP password (password1@password2). For example,
enter the following text.
name> jamiec@jchrichton
password> letmein@he110
This feature is useful when you have cascaded firewalls that require multiple logins. You can separate
several names and passwords by multiple at signs (@).
Static PAT and HTTP
For HTTP authentication, the security appliance checks real ports when static PAT is configured. If it
detects traffic destined for real port 80, regardless of the mapped port, the security appliance intercepts
the HTTP connection and enforces authentication.
For example, assume that outside TCP port 889 is translated to port 80 (www) and that any relevant
access lists permit the traffic:
static (inside,outside) tcp 10.48.66.155 889 192.168.123.10 www netmask 255.255.255.255
Then when users try to access 10.48.66.155 on port 889, the security appliance intercepts the traffic and
enforces HTTP authentication. Users see the HTTP authentication page in their web browsers before the
security appliance allows HTTP connection to complete.
If the local port is different than port 80, as in the following example:
static (inside,outside) tcp 10.48.66.155 889 192.168.123.10 111 netmask 255.255.255.255
Then users do not see the authentication page. Instead, the security appliance sends to the web browser
an error message indicating that the user must be authenticated prior using the requested service.
Enabling Network Access Authentication
To enable network access authentication, perform the following steps:19-4
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authentication for Network Access
Step 1 Using the aaa-server command, identify your AAA servers. If you have already identified your AAA
servers, continue to the next step.
For more information about identifying AAA servers, see the “Identifying AAA Server Groups and
Servers” section on page 13-12.
Step 2 Using the access-list command, create an access list that identifies the source addresses and destination
addresses of traffic you want to authenticate. For steps, see the “Adding an Extended Access List”
section on page 16-5.
The permit ACEs mark matching traffic for authentication, while deny entries exclude matching traffic
from authentication. Be sure to include the destination ports for either HTTP, HTTPS, Telnet, or FTP in
the access list because the user must authenticate with one of these services before other services are
allowed through the security appliance.
Step 3 To configure authentication, enter the following command:
hostname(config)# aaa authentication match acl_name interface_name server_group
Where acl_name is the name of the access list you created in Step 2, interface_name is the name of the
interface as specified with the nameif command, and server_group is the AAA server group you created
in Step 1.
Note You can alternatively use the aaa authentication include command (which identifies traffic within the
command). However, you cannot use both methods in the same configuration. See the Cisco Security
Appliance Command Reference for more information.
Step 4 (Optional) To enable the redirection method of authentication for HTTP or HTTPS connections, enter
the following command:
hostname(config)# aaa authentication listener http[s] interface_name [port portnum]
redirect
where the interface_name argument is the interface on which you want to enable listening ports.
The port portnum argument specifies the port number that the security appliance listens on; the defaults
are 80 (HTTP) and 443 (HTTPS).
Enter this command separately for HTTP and for HTTPS.
Step 5 (Optional) If you are using the local database for network access authentication and you want to limit
the number of consecutive failed login attempts that the security appliance allows any given user
account, use the following command:
hostname(config)# aaa local authentication attempts max-fail number
Where number is between 1 and 16.
For example:
hostname(config)# aaa local authentication attempts max-fail 7
Tip To clear the lockout status of a specific user or all users, use the clear aaa local user lockout command.
For example, the following commands authenticate all inside HTTP traffic and SMTP traffic:
hostname(config)# aaa-server AuthOutbound protocol tacacs+19-5
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authentication for Network Access
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthOutbound (inside) host 10.1.1.1
hostname(config-aaa-server-host)# key TACPlusUauthKey
hostname(config-aaa-server-host)# exit
hostname(config)# access-list MAIL_AUTH extended permit tcp any any eq smtp
hostname(config)# access-list MAIL_AUTH extended permit tcp any any eq www
hostname(config)# aaa authentication match MAIL_AUTH inside AuthOutbound
hostname(config)# aaa authentication listener http inside redirect
The following commands authenticate Telnet traffic from the outside interface to a particular server
(209.165.201.5):
hostname(config)# aaa-server AuthInbound protocol tacacs+
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthInbound (inside) host 10.1.1.1
hostname(config-aaa-server-host)# key TACPlusUauthKey
hostname(config-aaa-server-host)# exit
hostname(config)# access-list TELNET_AUTH extended permit tcp any host 209.165.201.5 eq
telnet
hostname(config)# aaa authentication match TELNET_AUTH outside AuthInbound
Enabling Secure Authentication of Web Clients
The security appliance provides a method of securing HTTP authentication. Without securing HTTP
authentication, usernames and passwords from the client to the security appliance would be passed as
clear text. By using the aaa authentication secure-http-client command, you enable the exchange of
usernames and passwords between a web client and the security appliance with HTTPS.
After enabling this feature, when a user requires authentication when using HTTP, the security appliance
redirects the HTTP user to an HTTPS prompt. After you authenticate correctly, the security appliance
redirects you to the original HTTP URL.
To enable secure authentication of web clients, enter the following command:
hostname(config)# aaa authentication secure-http-client
Secured web-client authentication has the following limitations:
• A maximum of 16 concurrent HTTPS authentication sessions are allowed. If all 16 HTTPS
authentication processes are running, a new connection requiring authentication will not succeed.
• When uauth timeout 0 is configured (the uauth timeout is set to 0), HTTPS authentication might
not work. If a browser initiates multiple TCP connections to load a web page after HTTPS
authentication, the first connection is let through, but the subsequent connections trigger
authentication. As a result, users are continuously presented with an authentication page, even if the
correct username and password are entered each time. To work around this, set the uauth timeout
to 1 second with the timeout uauth 0:0:1 command. However, this workaround opens a 1-second
window of opportunity that might allow non-authenticated users to go through the firewall if they
are coming from the same source IP address.
• Because HTTPS authentication occurs on the SSL port 443, users must not configure an access-list
command statement to block traffic from the HTTP client to HTTP server on port 443. Furthermore,
if static PAT is configured for web traffic on port 80, it must also be configured for the SSL port. In
the following example, the first line configures static PAT for web traffic and the second line must
be added to support the HTTPS authentication configuration.
static (inside,outside) tcp 10.132.16.200 www 10.130.16.10 www
static (inside,outside) tcp 10.132.16.200 443 10.130.16.10 44319-6
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
Authenticating Directly with the Security Appliance
If you do not want to allow HTTP, HTTPS, Telnet, or FTP through the security appliance but want to
authenticate other types of traffic, you can authenticate with the security appliance directly using HTTP,
HTTPS, or Telnet.
This section includes the following topics:
• Enabling Direct Authentication Using HTTP and HTTPS, page 19-6
• Enabling Direct Authentication Using Telnet, page 19-6
Enabling Direct Authentication Using HTTP and HTTPS
If you enabled the redirect method of HTTP and HTTPS authentication in the “Enabling Network Access
Authentication” section on page 19-3, then you also automatically enabled direct authentication. If you
want to continue to use basic HTTP authentication, but want to enable direct authentication for HTTP
and HTTPS, then enter the following command:
hostname(config)# aaa authentication listener http[s] interface_name [port portnum]
where the interface_name argument is the interface on which you want to enable direct authentication.
The port portnum argument specifies the port number that the security appliance listens on; the defaults
are 80 (HTTP) and 443 (HTTPS).
Enter this command separately for HTTP and for HTTPS.
You can authenticate directly with the security appliance at the following URLs when you enable AAA
for the interface:
http://interface_ip[:port]/netaccess/connstatus.html
https://interface_ip[:port]/netaccess/connstatus.html
Enabling Direct Authentication Using Telnet
To enable direct authentication with Telnet, configure a virtual Telnet server. With virtual Telnet, the user
Telnets to a given IP address configured on the security appliance, and the security appliance provides a
Telnet prompt. To configure a virtual Telnet server, enter the following command:
hostname(config)# virtual telnet ip_address
where the ip_address argument sets the IP address for the virtual Telnet server. Make sure this address
is an unused address that is routed to the security appliance. For example, if you perform NAT for inside
addresses when they access the outside, and you want to provide outside access to the virtual Telnet
server, you can use one of the global NAT addresses for the virtual Telnet server address.
Configuring Authorization for Network Access
After a user authenticates for a given connection, the security appliance can use authorization to further
control traffic from the user.
This section includes the following topics:
• Configuring TACACS+ Authorization, page 19-7
• Configuring RADIUS Authorization, page 19-819-7
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
Configuring TACACS+ Authorization
You can configure the security appliance to perform network access authorization with TACACS+. You
identify the traffic to be authorized by specifying access lists that authorization rules must match.
Alternatively, you can identify the traffic directly in authorization rules themselves.
Tip Using access lists to identify traffic to be authorized can greatly reduced the number of authorization
commands you must enter. This is because each authorization rule you enter can specify only one source
and destination subnet and service, whereas an access list can include many entries.
Authentication and authorization statements are independent; however, any unauthenticated traffic
matched by an authorization statement will be denied. For authorization to succeed, a user must first
authenticate with the security appliance. Because a user at a given IP address only needs to authenticate
one time for all rules and types, if the authentication session hasn’t expired, authorization can occur even
if the traffic is matched by an authentication statement.
After a user authenticates, the security appliance checks the authorization rules for matching traffic. If
the traffic matches the authorization statement, the security appliance sends the username to the
TACACS+ server. The TACACS+ server responds to the security appliance with a permit or a deny for
that traffic, based on the user profile. The security appliance enforces the authorization rule in the
response.
See the documentation for your TACACS+ server for information about configuring network access
authorizations for a user.
To configure TACACS+ authorization, perform the following steps:
Step 1 Enable authentication. For more information, see the “Enabling Network Access Authentication” section
on page 19-3. If you have already enabled authentication, continue to the next step.
Step 2 Using the access-list command, create an access list that identifies the source addresses and destination
addresses of traffic you want to authorize. For steps, see the “Adding an Extended Access List” section
on page 16-5.
The permit ACEs mark matching traffic for authorization, while deny entries exclude matching traffic
from authorization. The access list you use for authorization matching should contain rules that are equal
to or a subset of the rules in the access list used for authentication matching.
Note If you have configured authentication and want to authorize all the traffic being authenticated,
you can use the same access list you created for use with the aaa authentication match
command.
Step 3 To enable authorization, enter the following command:
hostname(config)# aaa authorization match acl_name interface_name server_group
where acl_name is the name of the access list you created in Step 2, interface_name is the name of the
interface as specified with the nameif command or by default, and server_group is the AAA server group
you created when you enabled authentication.19-8
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
Note Alternatively, you can use the aaa authorization include command (which identifies traffic
within the command) but you cannot use both methods in the same configuration. See the Cisco
Security Appliance Command Reference for more information.
The following commands authenticate and authorize inside Telnet traffic. Telnet traffic to servers other
than 209.165.201.5 can be authenticated alone, but traffic to 209.165.201.5 requires authorization.
hostname(config)# access-list TELNET_AUTH extended permit tcp any any eq telnet
hostname(config)# access-list SERVER_AUTH extended permit tcp any host 209.165.201.5 eq
telnet
hostname(config)# aaa-server AuthOutbound protocol tacacs+
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthOutbound (inside) host 10.1.1.1
hostname(config-aaa-server-host)# key TACPlusUauthKey
hostname(config-aaa-server-host)# exit
hostname(config)# aaa authentication match TELNET_AUTH inside AuthOutbound
hostname(config)# aaa authorization match SERVER_AUTH inside AuthOutbound
Configuring RADIUS Authorization
When authentication succeeds, the RADIUS protocol returns user authorizations in the access-accept
message sent by a RADIUS server. For more information about configuring authentication, see the
“Configuring Authentication for Network Access” section on page 19-1.
When you configure the security appliance to authenticate users for network access, you are also
implicitly enabling RADIUS authorizations; therefore, this section contains no information about
configuring RADIUS authorization on the security appliance. It does provide information about how the
security appliance handles access list information received from RADIUS servers.
You can configure a RADIUS server to download an access list to the security appliance or an access list
name at the time of authentication. The user is authorized to do only what is permitted in the
user-specific access list.
Note If you have used the access-group command to apply access lists to interfaces, be aware of the following
effects of the per-user-override keyword on authorization by user-specific access lists:
• Without the per-user-override keyword, traffic for a user session must be permitted by both the
interface access list and the user-specific access list.
• With the per-user-override keyword, the user-specific access list determines what is permitted.
For more information, see the access-group command entry in the Cisco Security Appliance Command
Reference.
This section includes the following topics:
• Configuring a RADIUS Server to Send Downloadable Access Control Lists, page 19-9
• Configuring a RADIUS Server to Download Per-User Access Control List Names, page 19-1219-9
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
Configuring a RADIUS Server to Send Downloadable Access Control Lists
This section describes how to configure Cisco Secure ACS or a third-party RADIUS server, and includes
the following topics:
• About the Downloadable Access List Feature and Cisco Secure ACS, page 19-9
• Configuring Cisco Secure ACS for Downloadable Access Lists, page 19-10
• Configuring Any RADIUS Server for Downloadable Access Lists, page 19-11
• Converting Wildcard Netmask Expressions in Downloadable Access Lists, page 19-12
About the Downloadable Access List Feature and Cisco Secure ACS
Downloadable access lists is the most scalable means of using Cisco Secure ACS to provide the
appropriate access lists for each user. It provides the following capabilities:
• Unlimited access list size—Downloadable access lists are sent using as many RADIUS packets as
required to transport the full access list from Cisco Secure ACS to the security appliance.
• Simplified and centralized management of access lists—Downloadable access lists enable you to
write a set of access lists once and apply it to many user or group profiles and distribute it to many
security appliances.
This approach is most useful when you have very large access list sets that you want to apply to more
than one Cisco Secure ACS user or group; however, its ability to simplify Cisco Secure ACS user and
group management makes it useful for access lists of any size.
The security appliance receives downloadable access lists from Cisco Secure ACS using the following
process:
1. The security appliance sends a RADIUS authentication request packet for the user session.
2. If Cisco Secure ACS successfully authenticates the user, Cisco Secure ACS returns a RADIUS
access-accept message that contains the internal name of the applicable downloadable access list.
The Cisco IOS cisco-av-pair RADIUS VSA (vendor 9, attribute 1) contains the following
attribute-value pair to identify the downloadable access list set:
ACS:CiscoSecure-Defined-ACL=acl-set-name
where acl-set-name is the internal name of the downloadable access list, which is a combination of
the name assigned to the access list by the Cisco Secure ACS administrator and the date and time
that the access list was last modified.
3. The security appliance examines the name of the downloadable access list and determines if it has
previously received the named downloadable access list.
– If the security appliance has previously received the named downloadable access list,
communication with Cisco Secure ACS is complete and the security appliance applies the
access list to the user session. Because the name of the downloadable access list includes the
date and time it was last modified, matching the name sent by Cisco Secure ACS to the name of
an access list previous downloaded means that the security appliance has the most recent
version of the downloadable access list.
– If the security appliance has not previously received the named downloadable access list, it may
have an out-of-date version of the access list or it may not have downloaded any version of the
access list. In either case, the security appliance issues a RADIUS authentication request using
the downloadable access list name as the username in the RADIUS request and a null password
attribute. In a cisco-av-pair RADIUS VSA, the request also includes the following
attribute-value pairs:19-10
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
AAA:service=ip-admission
AAA:event=acl-download
In addition, the security appliance signs the request with the Message-Authenticator attribute
(IETF RADIUS attribute 80).
4. Upon receipt of a RADIUS authentication request that has a username attribute containing the name
of a downloadable access list, Cisco Secure ACS authenticates the request by checking the
Message-Authenticator attribute. If the Message-Authenticator attribute is missing or incorrect,
Cisco Secure ACS ignores the request. The presence of the Message-Authenticator attribute
prevents malicious use of a downloadable access list name to gain unauthorized network access. The
Message-Authenticator attribute and its use are defined in RFC 2869, RADIUS Extensions,
available at http://www.ietf.org.
5. If the access list required is less than approximately 4 KB in length, Cisco Secure ACS responds
with an access-accept message containing the access list. The largest access list that can fit in a
single access-accept message is slightly less than 4 KB because some of the message must be other
required attributes.
Cisco Secure ACS sends the downloadable access list in a cisco-av-pair RADIUS VSA. The access
list is formatted as a series of attribute-value pairs that each contain an ACE and are numbered
serially:
ip:inacl#1=ACE-1
ip:inacl#2=ACE-2
.
.
.
ip:inacl#n=ACE-n
An example of an attribute-value pair follows:
ip:inacl#1=permit tcp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
6. If the access list required is more than approximately 4 KB in length, Cisco Secure ACS responds
with an access-challenge message that contains a portion of the access list, formatted as described
above, and an State attribute (IETF RADIUS attribute 24), which contains control data used by
Cisco Secure ACS to track the progress of the download. Cisco Secure ACS fits as many complete
attribute-value pairs into the cisco-av-pair RADIUS VSA as it can without exceeding the maximum
RADIUS message size.
The security appliance stores the portion of the access list received and responds with another
access-request message containing the same attributes as the first request for the downloadable
access list plus a copy of the State attribute received in the access-challenge message.
This repeats until Cisco Secure ACS sends the last of the access list in an access-accept message.
Configuring Cisco Secure ACS for Downloadable Access Lists
You can configure downloadable access lists on Cisco Secure ACS as a shared profile component and
then assign the access list to a group or to an individual user.
The access list definition consists of one or more security appliance commands that are similar to the
extended access-list command (see the “Adding an Extended Access List” section on page 16-5), except
without the following prefix:
access-list acl_name extended
The following example is a downloadable access list definition on Cisco Secure ACS version 3.3:
+--------------------------------------------+19-11
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
| Shared profile Components |
| |
| Downloadable IP ACLs Content |
| |
| Name: acs_ten_acl |
| |
| ACL Definitions |
| |
| permit tcp any host 10.0.0.254 |
| permit udp any host 10.0.0.254 |
| permit icmp any host 10.0.0.254 |
| permit tcp any host 10.0.0.253 |
| permit udp any host 10.0.0.253 |
| permit icmp any host 10.0.0.253 |
| permit tcp any host 10.0.0.252 |
| permit udp any host 10.0.0.252 |
| permit icmp any host 10.0.0.252 |
| permit ip any any |
+--------------------------------------------+
For more information about creating downloadable access lists and associating them with users, see the
user guide for your version of Cisco Secure ACS.
On the security appliance, the downloaded access list has the following name:
#ACSACL#-ip-acl_name-number
The acl_name argument is the name that is defined on Cisco Secure ACS (acs_ten_acl in the preceding
example), and number is a unique version ID generated by Cisco Secure ACS.
The downloaded access list on the security appliance consists of the following lines:
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.254
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.254
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.254
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.253
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.253
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.253
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.252
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.252
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.252
access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit ip any any
Configuring Any RADIUS Server for Downloadable Access Lists
You can configure any RADIUS server that supports Cisco IOS RADIUS VSAs to send user-specific
access lists to the security appliance in a Cisco IOS RADIUS cisco-av-pair VSA (vendor 9, attribute 1).
In the cisco-av-pair VSA, configure one or more ACEs that are similar to the access-list extended
command (see the “Adding an Extended Access List” section on page 16-5), except that you replace the
following command prefix:
access-list acl_name extended
with the following text:
ip:inacl#nnn=
The nnn argument is a number in the range from 0 to 999999999 that identifies the order of the command
statement to be configured on the security appliance. If this parameter is omitted, the sequence value is
0, and the order of the ACEs inside the cisco-av-pair RADIUS VSA is used.19-12
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Authorization for Network Access
The following example is an access list definition as it should be configured for a cisco-av-pair VSA on
a RADIUS server:
ip:inacl#1=permit tcp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
ip:inacl#99=deny tcp any any
ip:inacl#2=permit udp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
ip:inacl#100=deny udp any any
ip:inacl#3=permit icmp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
For information about making unique per user the access lists that are sent in the cisco-av-pair attribute,
see the documentation for your RADIUS server.
On the security appliance, the downloaded access list name has the following format:
AAA-user-username
The username argument is the name of the user that is being authenticated.
The downloaded access list on the security appliance consists of the following lines. Notice the order
based on the numbers identified on the RADIUS server.
access-list AAA-user-bcham34-79AD4A08 permit tcp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
access-list AAA-user-bcham34-79AD4A08 permit udp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
access-list AAA-user-bcham34-79AD4A08 permit icmp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0
access-list AAA-user-bcham34-79AD4A08 deny tcp any any
access-list AAA-user-bcham34-79AD4A08 deny udp any any
Downloaded access lists have two spaces between the word “access-list” and the name. These spaces
serve to differentiate a downloaded access list from a local access list. In this example, “79AD4A08” is
a hash value generated by the security appliance to help determine when access list definitions have
changed on the RADIUS server.
Converting Wildcard Netmask Expressions in Downloadable Access Lists
If a RADIUS server provides downloadable access lists to Cisco VPN 3000 Series Concentrators as well
as to the security appliance, you may need the security appliance to convert wildcard netmask
expressions to standard netmask expressions. This is because Cisco VPN 3000 Series Concentrators
support wildcard netmask expressions but the security appliance only supports standard netmask
expressions. Configuring the security appliance to convert wildcard netmask expressions helps minimize
the effects of these differences upon how you configure downloadable access lists on your RADIUS
servers. Translation of wildcard netmask expressions means that downloadable access lists written for
Cisco VPN 3000 Series Concentrators can be used by the security appliance without altering the
configuration of the downloadable access lists on the RADIUS server.
You configure access list netmask conversion on a per server basis, using the acl-netmask-convert
command, available in the AAA-server configuration mode. For more information about configuring a
RADIUS server, see “Identifying AAA Server Groups and Servers” section on page 13-12. For more
information about the acl-netmask-convert command, see the Cisco Security Appliance Command
Reference.
Configuring a RADIUS Server to Download Per-User Access Control List Names
To download a name for an access list that you already created on the security appliance from the
RADIUS server when a user authenticates, configure the IETF RADIUS filter-id attribute (attribute
number 11) as follows:
filter-id=acl_name19-13
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Configuring Accounting for Network Access
Note In Cisco Secure ACS, the value for filter-id attributes are specified in boxes in the HTML interface,
omitting filter-id= and entering only acl_name.
For information about making unique per user the filter-id attribute value, see the documentation for your
RADIUS server.
See the “Adding an Extended Access List” section on page 16-5 to create an access list on the security
appliance.
Configuring Accounting for Network Access
The security appliance can send accounting information to a RADIUS or TACACS+ server about any
TCP or UDP traffic that passes through the security appliance. If that traffic is also authenticated, then
the AAA server can maintain accounting information by username. If the traffic is not authenticated, the
AAA server can maintain accounting information by IP address. Accounting information includes when
sessions start and stop, username, the number of bytes that pass through the security appliance for the
session, the service used, and the duration of each session.
To configure accounting, perform the following steps:
Step 1 If you want the security appliance to provide accounting data per user, you must enable authentication.
For more information, see the “Enabling Network Access Authentication” section on page 19-3. If you
want the security appliance to provide accounting data per IP address, enabling authentication is not
necessary and you can continue to the next step.
Step 2 Using the access-list command, create an access list that identifies the source addresses and destination
addresses of traffic you want accounted. For steps, see the “Adding an Extended Access List” section on
page 16-5.
The permit ACEs mark matching traffic for authorization, while deny entries exclude matching traffic
from authorization.
Note If you have configured authentication and want accounting data for all the traffic being
authenticated, you can use the same access list you created for use with the aaa authentication
match command.
Step 3 To enable accounting, enter the following command:
hostname(config)# aaa accounting match acl_name interface_name server_group
Note Alternatively, you can use the aaa accounting include command (which identifies traffic within
the command) but you cannot use both methods in the same configuration. See the Cisco
Security Appliance Command Reference for more information.
The following commands authenticate, authorize, and account for inside Telnet traffic. Telnet traffic to
servers other than 209.165.201.5 can be authenticated alone, but traffic to 209.165.201.5 requires
authorization and accounting.19-14
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Using MAC Addresses to Exempt Traffic from Authentication and Authorization
hostname(config)# aaa-server AuthOutbound protocol tacacs+
hostname(config-aaa-server-group)# exit
hostname(config)# aaa-server AuthOutbound (inside) host 10.1.1.1
hostname(config-aaa-server-host)# key TACPlusUauthKey
hostname(config-aaa-server-host)# exit
hostname(config)# access-list TELNET_AUTH extended permit tcp any any eq telnet
hostname(config)# access-list SERVER_AUTH extended permit tcp any host 209.165.201.5 eq
telnet
hostname(config)# aaa authentication match TELNET_AUTH inside AuthOutbound
hostname(config)# aaa authorization match SERVER_AUTH inside AuthOutbound
hostname(config)# aaa accounting match SERVER_AUTH inside AuthOutbound
Using MAC Addresses to Exempt Traffic from Authentication
and Authorization
The security appliance can exempt from authentication and authorization any traffic from specific MAC
addresses. For example, if the security appliance authenticates TCP traffic originating on a particular
network but you want to allow unauthenticated TCP connections from a specific server, you would use
a MAC exempt rule to exempt from authentication and authorization any traffic from the server specified
by the rule.
This feature is particularly useful to exempt devices such as IP phones that cannot respond to
authentication prompts.
To use MAC addresses to exempt traffic from authentication and authorization, perform the following
steps:
Step 1 To configure a MAC list, enter the following command:
hostname(config)# mac-list id {deny | permit} mac macmask
Where the id argument is the hexadecimal number that you assign to the MAC list. To group a set of
MAC addresses, enter the mac-list command as many times as needed with the same ID value. Because
you can only use one MAC list for AAA exemption, be sure that your MAC list includes all the MAC
addresses you want to exempt. You can create multiple MAC lists, but you can only use one at a time.
The order of entries matters, because the packet uses the first entry it matches, as opposed to a best match
scenario. If you have a permit entry, and you want to deny an address that is allowed by the permit entry,
be sure to enter the deny entry before the permit entry.
The mac argument specifies the source MAC address in 12-digit hexadecimal form; that is,
nnnn.nnnn.nnnn.
The macmask argument specifies the portion of the MAC address that should be used for matching. For
example, ffff.ffff.ffff matches the MAC address exactly. ffff.ffff.0000 matches only the first 8 digits.
Step 2 To exempt traffic for the MAC addresses specified in a particular MAC list, enter the following
command:
hostname(config)# aaa mac-exempt match id
Where id is the string identifying the MAC list containing the MAC addresses whose traffic is to be
exempt from authentication and authorization. You can only enter one instance of the aaa mac-exempt
command.19-15
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Using MAC Addresses to Exempt Traffic from Authentication and Authorization
The following example bypasses authentication for a single MAC address:
hostname(config)# mac-list abc permit 00a0.c95d.0282 ffff.ffff.ffff
hostname(config)# aaa mac-exempt match abc
The following entry bypasses authentication for all Cisco IP Phones, which have the hardware ID
0003.E3:
hostname(config)# mac-list acd permit 0003.E300.0000 FFFF.FF00.0000
hostname(config)# aaa mac-exempt match acd
The following example bypasses authentication for a a group of MAC addresses except for
00a0.c95d.02b2. Enter the deny statement before the permit statement, because 00a0.c95d.02b2 matches
the permit statement as well, and if it is first, the deny statement will never be matched.
hostname(config)# mac-list 1 deny 00a0.c95d.0282 ffff.ffff.ffff
hostname(config)# mac-list 1 permit 00a0.c95d.0000 ffff.ffff.0000
hostname(config)# aaa mac-exempt match 119-16
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 19 Applying AAA for Network Access
Using MAC Addresses to Exempt Traffic from Authentication and AuthorizationC H A P T E R
20-1
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
20
Applying Filtering Services
This chapter describes ways to filter web traffic to reduce security risks or prevent inappropriate use.
This chapter contains the following sections:
• Filtering Overview, page 20-1
• Filtering ActiveX Objects, page 20-2
• Filtering Java Applets, page 20-3
• Filtering URLs and FTP Requests with an External Server, page 20-4
• Viewing Filtering Statistics and Configuration, page 20-9
Filtering Overview
This section describes how filtering can provide greater control over traffic passing through the security
appliance. Filtering can be used in two distinct ways:
• Filtering ActiveX objects or Java applets
• Filtering with an external filtering server
Instead of blocking access altogether, you can remove specific undesirable objects from HTTP traffic,
such as ActiveX objects or Java applets, that may pose a security threat in certain situations.
You can also use URL filtering to direct specific traffic to an external filtering server, such an Secure
Computing SmartFilter (formerly N2H2) or Websense filtering server. Long URL, HTTPS, and FTP
filtering can now be enabled using both Websense and Secure Computing SmartFilter for URL filtering.
Filtering servers can block traffic to specific sites or types of sites, as specified by the security policy.
Note URL caching will only work if the version of the URL server software from the URL server vender
supports it.
Because URL filtering is CPU-intensive, using an external filtering server ensures that the throughput of
other traffic is not affected. However, depending on the speed of your network and the capacity of your
URL filtering server, the time required for the initial connection may be noticeably slower when filtering
traffic with an external filtering server.20-2
Cisco Security Appliance Command Line Configuration Guide
OL-10088-02
Chapter 20 Applying Filtering Services
Filtering ActiveX Objects
Filtering ActiveX Objects
This section describes how to apply filtering to remove ActiveX objects from HTTP traffic passing
through the firewall. This section includes the following topics:
• ActiveX Filtering Overview, page 20-2
• Enabling ActiveX Filtering, page 20-2
ActiveX Filtering Overview
ActiveX objects may pose security risks because they can contain code intended to attack hosts and
servers on a protected network. You can disable ActiveX objects with ActiveX filtering.
ActiveX controls, formerly known as OLE or OCX controls, are components you can insert in a web
page or other application. These controls include custom forms, calendars, or any of the extensive
third-party forms for gathering or displaying information. As a technology, ActiveX creates many
potential problems for network clients including causing workstations to fail, introducing network
security problems, or being used to attack servers.
The filter activex command blocks the HTML