GALETTES
POUR COMMANDER CE PRODUIT, Cliquez ici
CINCH-SD-LB-CONNECTOR-BACKSHELL
CINCH-12-140-BLOC-DE-TERMINAISON12VOIES
CAMDEN-BOSS-BIM2001-11-EMI-RFI-COFFRET-GRIS-BLIND
SIBA-160016-5A-FUSIBLE-5A-250V-RETARDE-4.5X8MM
SERVISOL-200002000-GREASE-SILICONE-50G
CINCH-DBM25S-CONNECTEUR-SUB-MINIATURE
CINCH-50GP1-CARD-EDGE-CONNECTOR
CINCH-JA7784800000L00-FICHE-MALE-12-VOIES
CINCH-5810130045-HEADER-ENCLOSURE-LE-30WAY
DATA SHEET Product specification Supersedes data of 1999 May 26 2001 Oct 10 DISCRETE SEMICONDUCTORS BAS16 High-speed diode book, halfpage M3D0882001 Oct 10 2 Philips Semiconductors Product specification High-speed diode BAS16 FEATURES • Small plastic SMD package • High switching speed: max. 4 ns • Continuous reverse voltage: max. 75 V • Repetitive peak reverse voltage: max. 85 V • Repetitive peak forward current: max. 500 mA. APPLICATIONS • High-speed switching in hybrid thick and thin-film circuits. DESCRIPTION The BAS16 is a high-speed switching diode fabricated in planar technology, and encapsulated in a small SOT23 plastic SMD package. MARKING Note 1. ∗ = p : Made in Hong Kong. ∗ = t : Made in Malaysia. ∗ = W : Made in China. PINNING TYPE NUMBER MARKING CODE(1) BAS16 A6∗ PIN DESCRIPTION 1 anode 2 not connected 3 cathode Fig.1 Simplified outline (SOT23) and symbol. handbook, halfpage 2 1 3 MAM185 2 n.c. 1 3 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134). Note 1. Device mounted on an FR4 printed-circuit board. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VRRM repetitive peak reverse voltage − 85 V VR continuous reverse voltage − 75 V IF continuous forward current see Fig.2; note 1 − 215 mA IFRM repetitive peak forward current − 500 mA IFSM non-repetitive peak forward current square wave; Tj = 25 °C prior to surge; see Fig.4 t = 1 µs − 4 A t = 1 ms − 1 A t = 1 s − 0.5 A Ptot total power dissipation Tamb = 25 °C; note 1 − 250 mW Tstg storage temperature −65 +150 °C Tj junction temperature − 150 °C2001 Oct 10 3 Philips Semiconductors Product specification High-speed diode BAS16 ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified. THERMAL CHARACTERISTICS Note 1. Device mounted on an FR4 printed-circuit board. SYMBOL PARAMETER CONDITIONS MAX. UNIT VF forward voltage see Fig.3 IF = 1 mA 715 mV IF = 10 mA 855 mV IF = 50 mA 1 V IF = 150 mA 1.25 V IR reverse current see Fig.5 VR = 25 V 30 nA VR = 75 V 1 µA VR = 25 V; Tj = 150 °C 30 µA VR = 75 V; Tj = 150 °C 50 µA Cd diode capacitance f = 1 MHz; VR = 0; see Fig.6 1.5 pF t rr reverse recovery time when switched from IF = 10 mA to IR = 10 mA; RL = 100 Ω; measured at IR = 1 mA; see Fig.7 4 ns Vfr forward recovery voltage when switched from IF = 10 mA; t r = 20 ns; see Fig.8 1.75 V SYMBOL PARAMETER CONDITIONS VALUE UNIT Rth j-tp thermal resistance from junction to tie-point 330 K/W Rth j-a thermal resistance from junction to ambient note 1 500 K/W2001 Oct 10 4 Philips Semiconductors Product specification High-speed diode BAS16 GRAPHICAL DATA Device mounted on an FR4 printed-circuit board. Fig.2 Maximum permissible continuous forward current as a function of ambient temperature. 0 50 100 200 250 0 200 MSA562 -1 150 150 100 50 I F (mA) T amb ( o C) (1) Tj = 150 °C; typical values. (2) Tj = 25 °C; typical values. (3) Tj = 25 °C; maximum values. Fig.3 Forward current as a function of forward voltage. handbook, halfpage 0 2 300 I F (mA) 0 100 200 MBG382 1 V F (V) (1) (3) (2) handbook, full pagewidth MBG704 10 t p (µs) 1 I FSM (A) 10 2 10 −1 10 4 10 2 10 3 10 1 Fig.4 Maximum permissible non-repetitive peak forward current as a function of pulse duration. Based on square wave currents. Tj = 25 °C prior to surge.2001 Oct 10 5 Philips Semiconductors Product specification High-speed diode BAS16 Fig.5 Reverse current as a function of junction temperature. 10 5 10 4 10 0 200 MGA884 100 T ( C) j o IR (nA) 10 3 10 2 75 V 25 V typ max V = 75 V R typ Fig.6 Diode capacitance as a function of reverse voltage; typical values. f = 1 MHz; Tj = 25 °C. handbook, halfpage 0 8 16 4 12 0.8 0.6 0 0.4 0.2 MBG446 V R (V) C d (pF)2001 Oct 10 6 Philips Semiconductors Product specification High-speed diode BAS16 handbook, full pagewidth t rr (1) I F t output signal t r t t p 10% 90% VR input signal V = V I x R R F S R = 50 S Ω I F D.U.T. R = 50 i Ω SAMPLING OSCILLOSCOPE MGA881 Fig.7 Reverse recovery voltage test circuit and waveforms. (1) IR = 1 mA. t r t t p 10% 90% I input signal R = 50 S Ω I R = 50 i Ω OSCILLOSCOPE 1 k Ω 450 Ω D.U.T. MGA882 Vfr t output signal V Fig.8 Forward recovery voltage test circuit and waveforms.2001 Oct 10 7 Philips Semiconductors Product specification High-speed diode BAS16 PACKAGE OUTLINE UNIT A1 max. bp c D E e 1 HE Lp Q w v REFERENCES OUTLINE VERSION EUROPEAN PROJECTION ISSUE DATE 97-02-28 99-09-13 IEC JEDEC EIAJ mm 0.1 0.48 0.38 0.15 0.09 3.0 2.8 1.4 1.2 0.95 e 1.9 2.5 2.1 0.55 0.45 0.2 0.1 DIMENSIONS (mm are the original dimensions) 0.45 0.15 SOT23 TO-236AB bp D e1 e A A1 Lp Q detail X HE E w M v M A B B A 0 1 2 mm scale A 1.1 0.9 c X 1 2 3 Plastic surface mounted package; 3 leads SOT232001 Oct 10 8 Philips Semiconductors Product specification High-speed diode BAS16 DATA SHEET STATUS Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. DATA SHEET STATUS(1) PRODUCT STATUS(2) DEFINITIONS Objective data Development This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. Product data Production This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. DEFINITIONS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. DISCLAIMERS Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.2001 Oct 10 9 Philips Semiconductors Product specification High-speed diode BAS16 NOTES2001 Oct 10 10 Philips Semiconductors Product specification High-speed diode BAS16 NOTES2001 Oct 10 11 Philips Semiconductors Product specification High-speed diode BAS16 NOTES© Koninklijke Philips Electronics N.V. 2001 SCA73 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. Printed in The Netherlands 613514/04/pp12 Date of release: 2001 Oct 10 Document order number: 9397 750 08757 © 2007 Microchip Technology Inc. DS70165E dsPIC33F Family Data Sheet High-Performance, 16-Bit Digital Signal ControllersDS70165E-page ii © 2007 Microchip Technology Inc. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 1 dsPIC33F Operating Range: • DC – 40 MIPS (40 MIPS @ 3.0-3.6V, -40°C to +85°C) • Industrial temperature range (-40°C to +85°C) High-Performance DSC CPU: • Modified Harvard architecture • C compiler optimized instruction set • 16-bit wide data path • 24-bit wide instructions • Linear program memory addressing up to 4M instruction words • Linear data memory addressing up to 64 Kbytes • 83 base instructions: mostly 1 word/1 cycle • Sixteen 16-bit General Purpose Registers • Two 40-bit accumulators: - With rounding and saturation options • Flexible and powerful addressing modes: - Indirect, Modulo and Bit-Reversed • Software stack • 16 x 16 fractional/integer multiply operations • 32/16 and 16/16 divide operations • Single-cycle multiply and accumulate: - Accumulator write back for DSP operations - Dual data fetch • Up to ±16-bit shifts for up to 40-bit data Direct Memory Access (DMA): • 8-channel hardware DMA: • 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA: - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing) • Most peripherals support DMA Interrupt Controller: • 5-cycle latency • 118 interrupt vectors • Up to 67 available interrupt sources • Up to 5 external interrupts • 7 programmable priority levels • 5 processor exceptions Digital I/O: • Up to 85 programmable digital I/O pins • Wake-up/Interrupt-on-Change on up to 24 pins • Output pins can drive from 3.0V to 3.6V • All digital input pins are 5V tolerant • 4 mA sink on all I/O pins On-Chip Flash and SRAM: • Flash program memory, up to 256 Kbytes • Data SRAM, up to 30 Kbytes (includes 2 Kbytes of DMA RAM): System Management: • Flexible clock options: - External, crystal, resonator, internal RC - Fully integrated PLL - Extremely low jitter PLL • Power-up Timer • Oscillator Start-up Timer/Stabilizer • Watchdog Timer with its own RC oscillator • Fail-Safe Clock Monitor • Reset by multiple sources Power Management: • On-chip 2.5V voltage regulator • Switch between clock sources in real time • Idle, Sleep and Doze modes with fast wake-up Timers/Capture/Compare/PWM: • Timer/Counters, up to nine 16-bit timers: - Can pair up to make four 32-bit timers - 1 timer runs as Real-Time Clock with external 32.768 kHz oscillator - Programmable prescaler • Input Capture (up to 8 channels): - Capture on up, down or both edges - 16-bit capture input functions - 4-deep FIFO on each capture • Output Compare (up to 8 channels): - Single or Dual 16-Bit Compare mode - 16-bit Glitchless PWM mode High-Performance, 16-bit Digital Signal ControllersdsPIC33F DS70165E-page 2 Preliminary © 2007 Microchip Technology Inc. Communication Modules: • 3-wire SPI (up to 2 modules): - Framing supports I/O interface to simple codecs - Supports 8-bit and 16-bit data - Supports all serial clock formats and sampling modes • I 2 C™ (up to 2 modules): - Full Multi-Master Slave mode support - 7-bit and 10-bit addressing - Bus collision detection and arbitration - Integrated signal conditioning - Slave address masking • UART (up to 2 modules): - Interrupt on address bit detect - Interrupt on UART error - Wake-up on Start bit from Sleep mode - 4-character TX and RX FIFO buffers - LIN bus support - IrDA® encoding and decoding in hardware - High-Speed Baud mode - Hardware Flow Control with CTS and RTS • Data Converter Interface (DCI) module: - Codec interface - Supports I 2 S and AC’97 protocols - Up to 16-bit data words, up to 16 words per frame - 4-word deep TX and RX buffers • Enhanced CAN (ECAN™ module) 2.0B active (up to 2 modules): - Up to 8 transmit and up to 32 receive buffers - 16 receive filters and 3 masks - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring - Wake-up on CAN message - Automatic processing of Remote Transmission Requests - FIFO mode using DMA - DeviceNet™ addressing support Motor Control Peripherals: • Motor Control PWM (up to 8 channels): - 4 duty cycle generators - Independent or Complementary mode - Programmable dead time and output polarity - Edge or center-aligned - Manual output override control - Up to 2 Fault inputs - Trigger for ADC conversions - PWM frequency for 16-bit resolution (@ 40 MIPS) = 1220 Hz for Edge-Aligned mode, 610 Hz for Center-Aligned mode - PWM frequency for 11-bit resolution (@ 40 MIPS) = 39.1 kHz for Edge-Aligned mode, 19.55 kHz for Center-Aligned mode • Quadrature Encoder Interface module: - Phase A, Phase B and index pulse input - 16-bit up/down position counter - Count direction status - Position Measurement (x2 and x4) mode - Programmable digital noise filters on inputs - Alternate 16-bit Timer/Counter mode - Interrupt on position counter rollover/underflow Analog-to-Digital Converters (ADCs): • Up to two ADC modules in a device • 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion: - 2, 4 or 8 simultaneous samples - Up to 32 input channels with auto-scanning - Conversion start can be manual or synchronized with 1 of 4 trigger sources - Conversion possible in Sleep mode - ±2 LSb max integral nonlinearity - ±1 LSb max differential nonlinearity CMOS Flash Technology: • Low-power, high-speed Flash technology • Fully static design • 3.3V (±10%) operating voltage • Industrial temperature • Low-power consumption Packaging: • 100-pin TQFP (14x14x1 mm and 12x12x1 mm) • 80-pin TQFP (12x12x1 mm) • 64-pin TQFP (10x10x1 mm) Note: See the device variant tables for exact peripheral features per device.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 3 dsPIC33F dsPIC33F PRODUCT FAMILIES There are two device subfamilies within the dsPIC33F family of devices. They are the General Purpose Family and the Motor Control Family. The General Purpose Family is ideal for a wide variety of 16-bit MCU embedded applications. The variants with codec interfaces are well-suited for speech and audio processing applications. The Motor Control Family supports a variety of motor control applications, such as brushless DC motors, single and 3-phase induction motors and switched reluctance motors. These products are also well-suited for Uninterrupted Power Supply (UPS), inverters, Switched mode power supplies, power factor correction and also for controlling the power management module in servers, telecommunication equipment and other industrial equipment. The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams. dsPIC33F General Purpose Family Variants Device Pins Program Flash Memory (Kbyte) RAM (Kbyte) (1) 16-bit Timer Input Capture Output Compare Std. PWM Codec Interface ADC UART SPI I 2 C™ Enhanced CAN I/O Pins (Max) (2) Packages dsPIC33FJ64GP206 64 64 8 9 8 8 1 1 ADC, 18 ch 2 2 1 0 53 PT dsPIC33FJ64GP306 64 64 16 9 8 8 1 1 ADC, 18 ch 2 2 2 0 53 PT dsPIC33FJ64GP310 100 64 16 9 8 8 1 1 ADC, 32 ch 2 2 2 0 85 PF, PT dsPIC33FJ64GP706 64 64 16 9 8 8 1 2 ADC, 18 ch 2 2 2 2 53 PT dsPIC33FJ64GP708 80 64 16 9 8 8 1 2 ADC, 24 ch 2 2 2 2 69 PT dsPIC33FJ64GP710 100 64 16 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT dsPIC33FJ128GP206 64 128 8 9 8 8 1 1 ADC, 18 ch 2 2 1 0 53 PT dsPIC33FJ128GP306 64 128 16 9 8 8 1 1 ADC, 18 ch 2 2 2 0 53 PT dsPIC33FJ128GP310 100 128 16 9 8 8 1 1 ADC, 32 ch 2 2 2 0 85 PF, PT dsPIC33FJ128GP706 64 128 16 9 8 8 1 2 ADC, 18 ch 2 2 2 2 53 PT dsPIC33FJ128GP708 80 128 16 9 8 8 1 2 ADC, 24 ch 2 2 2 2 69 PT dsPIC33FJ128GP710 100 128 16 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT dsPIC33FJ256GP506 64 256 16 9 8 8 1 1 ADC, 18 ch 2 2 2 1 53 PT dsPIC33FJ256GP510 100 256 16 9 8 8 1 1 ADC, 32 ch 2 2 2 1 85 PF, PT dsPIC33FJ256GP710 100 256 30 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT Note 1: RAM size is inclusive of 2 Kbytes DMA RAM. 2: Maximum I/O pin count includes pins shared by the peripheral functions.dsPIC33F DS70165E-page 4 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/CN18/RF5 CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP206 dsPIC33FJ128GP206© 2007 Microchip Technology Inc. Preliminary DS70165E-page 5 dsPIC33F Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP306 dsPIC33FJ128GP306dsPIC33F DS70165E-page 6 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ256GP506© 2007 Microchip Technology Inc. Preliminary DS70165E-page 7 dsPIC33F Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE C2RX/RG0 C2TX/RG1 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP706 dsPIC33FJ128GP706dsPIC33F DS70165E-page 8 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 dsPIC33FJ64GP708 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD COFS/RG15 AN16/T2CK/T7CK/RC1 TDO/AN21/INT2/RA13 TMS/AN20/INT1/RA12 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ128GP708© 2007 Microchip Technology Inc. Preliminary DS70165E-page 9 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64GP310 dsPIC33FJ128GP310 100dsPIC33F DS70165E-page 10 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ256GP510 100© 2007 Microchip Technology Inc. Preliminary DS70165E-page 11 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 C2TX/RG1 C1TX/RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ128GP710 100 dsPIC33FJ256GP710 dsPIC33FJ64GP710dsPIC33F DS70165E-page 12 Preliminary © 2007 Microchip Technology Inc. dsPIC33F Motor Control Family Variants Device Pins Progra m Flash Memory (Kbyte) RAM (Kbyte) (1) Timer 16-bit Input Capture Output Compare Std. PWM Motor Control PWM Quadrature Encoder Interface Codec Interface ADC UART SPI I 2 C™ Enhanced CAN I/O Pins (Max) (2) Packages dsPIC33FJ64MC506 64 64 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ64MC508 80 64 8 9 8 8 8 ch 1 0 1 ADC, 18 ch 2 2 2 1 69 PT dsPIC33FJ64MC510 100 64 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ64MC706 64 64 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ64MC710 100 64 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ128MC506 64 128 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ128MC510 100 128 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ128MC706 64 128 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ128MC708 80 128 16 9 8 8 8 ch 1 0 2 ADC, 18 ch 2 2 2 2 69 PT dsPIC33FJ128MC710 100 128 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ256MC510 100 256 16 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ256MC710 100 256 30 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT Note 1: RAM size is inclusive of 2 Kbytes DMA RAM. 2: Maximum I/O pin count includes pins shared by the peripheral functions.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 13 dsPIC33F Pin Diagrams 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 V OC8/UPDN/CN16/RD7 DDCORE PWM1H/RE1 PWM1L/RE0 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/CN18/RF5 CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64MC506dsPIC33F DS70165E-page 14 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 V OC8/UPDN/CN16/RD7 DDCORE PWM1H/RE1 PWM1L/RE0 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ128MC506 dsPIC33FJ64MC506 dsPIC33FJ128MC706© 2007 Microchip Technology Inc. Preliminary DS70165E-page 15 dsPIC33F Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 RG0 RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/UPDN/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD PWM3H/RE5 PWM4L/RE6 TDO/FLTB/INT2/RE9 TMS/FLTA/INT1/RE8 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/QEB/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ64MC508dsPIC33F DS70165E-page 16 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/UPDN/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD PWM3H/RE5 PWM4L/RE6 TDO/FLTB/INT2/RE9 TMS/FLTA/INT1/RE8 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/QEB/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ128MC708© 2007 Microchip Technology Inc. Preliminary DS70165E-page 17 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 RA3 RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64MC510dsPIC33F DS70165E-page 18 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ128MC510 dsPIC33FJ256MC510© 2007 Microchip Technology Inc. Preliminary DS70165E-page 19 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 C2TX/RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64MC710 dsPIC33FJ128MC710 dsPIC33FJ256MC710dsPIC33F DS70165E-page 20 Preliminary © 2007 Microchip Technology Inc. Table of Contents dsPIC33F Product Families ................................................................................................................................................................... 3 1.0 Device Overview ........................................................................................................................................................................ 23 2.0 CPU............................................................................................................................................................................................ 27 3.0 Memory Organization................................................................................................................................................................. 39 4.0 Flash Program Memory.............................................................................................................................................................. 77 5.0 Resets ....................................................................................................................................................................................... 83 6.0 Interrupt Controller ..................................................................................................................................................................... 87 7.0 Direct Memory Access (DMA).................................................................................................................................................. 135 8.0 Oscillator Configuration ............................................................................................................................................................ 149 9.0 Power-Saving Features............................................................................................................................................................ 157 10.0 I/O Ports ................................................................................................................................................................................... 159 11.0 Timer1 ...................................................................................................................................................................................... 161 12.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 163 13.0 Input Capture............................................................................................................................................................................ 169 14.0 Output Compare....................................................................................................................................................................... 171 15.0 Motor Control PWM Module ..................................................................................................................................................... 175 16.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 197 17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 205 18.0 Inter-Integrated Circuit (I 2 C)..................................................................................................................................................... 213 19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 223 20.0 Enhanced CAN Module............................................................................................................................................................ 231 21.0 Data Converter Interface (DCI) Module.................................................................................................................................... 261 22.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 275 23.0 Special Features ...................................................................................................................................................................... 289 24.0 Instruction Set Summary.......................................................................................................................................................... 297 25.0 Development Support............................................................................................................................................................... 305 26.0 Electrical Characteristics.......................................................................................................................................................... 309 27.0 Packaging Information.............................................................................................................................................................. 351 Appendix A: Revision History............................................................................................................................................................. 357 Index ................................................................................................................................................................................................. 359 The Microchip Web Site..................................................................................................................................................................... 365 Customer Change Notification Service .............................................................................................................................................. 365 Customer Support.............................................................................................................................................................................. 365 Reader Response .............................................................................................................................................................................. 366 Product Identification System ............................................................................................................................................................ 367© 2007 Microchip Technology Inc. Preliminary DS70165E-page 21 dsPIC33F TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.dsPIC33F DS70165E-page 22 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 23 dsPIC33F 1.0 DEVICE OVERVIEW This document contains device specific information for the following devices: • dsPIC33FJ64GP206 • dsPIC33FJ64GP306 • dsPIC33FJ64GP310 • dsPIC33FJ64GP706 • dsPIC33FJ64GP708 • dsPIC33FJ64GP710 • dsPIC33FJ128GP206 • dsPIC33FJ128GP306 • dsPIC33FJ128GP310 • dsPIC33FJ128GP706 • dsPIC33FJ128GP708 • dsPIC33FJ128GP710 • dsPIC33FJ256GP506 • dsPIC33FJ256GP510 • dsPIC33FJ256GP710 • dsPIC33FJ64MC506 • dsPIC33FJ64MC508 • dsPIC33FJ64MC510 • dsPIC33FJ64MC706 • dsPIC33FJ64MC710 • dsPIC33FJ128MC506 • dsPIC33FJ128MC510 • dsPIC33FJ128MC706 • dsPIC33FJ128MC708 • dsPIC33FJ128MC710 • dsPIC33FJ256MC510 • dsPIC33FJ256MC710 The dsPIC33F General Purpose and Motor Control Families of devices include devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes) This makes these families suitable for a wide variety of high-performance digital signal control application. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application. The dsPIC33F device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control. The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33F Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33F devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33F devices. Figure 1-1 shows a general block diagram of the various core and peripheral modules in the dsPIC33F family of devices, while Table 1-1 lists the functions of the various pins shown in the pinout diagrams. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 24 Preliminary © 2007 Microchip Technology Inc. FIGURE 1-1: dsPIC33F GENERAL BLOCK DIAGRAM 16 OSC1/CLKI OSC2/CLKO VDD, VSS Timing Generation MCLR Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer Brown-out Reset Precision Reference Band Gap FRC/LPRC Oscillators Regulator Voltage VDDCORE/VCAP UART1,2 PWM DCI ECAN1,2 IC1-8 OC/ SPI1,2 I2C1,2 QEI PORTA Note: Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features present on each device. PWM1-8 CN1-23 Instruction Decode & Control PCH PCL 16 Program Counter 16-bit ALU 23 23 24 23 Instruction Reg PCU 16 x 16 W Register Array ROM Latch 16 EA MUX 16 16 8 Interrupt Controller PSV & Table Data Access Control Block Stack Control Logic Loop Control Logic Data Latch Address Latch Address Latch Program Memory Data Latch Address Bus Literal Data 16 16 16 16 Data Latch Address Latch 16 X RAM Y RAM 16 Y Data Bus X Data Bus DSP Engine Divide Support 16 DMA RAM DMA Controller Control Signals to Various Blocks ADC1,2 Timers PORTB PORTC PORTD PORTE PORTF PORTG Address Generator Units 1-9© 2007 Microchip Technology Inc. Preliminary DS70165E-page 25 dsPIC33F TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Name Pin Type Buffer Type Description AN0-AN31 I Analog Analog input channels. AVDD P P Positive supply for analog modules. AVSS P P Ground reference for analog modules. CLKI CLKO I O ST/CMOS — External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. CN0-CN23 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. COFS CSCK CSDI CSDO I/O I/O I O ST ST ST — Data Converter Interface frame synchronization pin. Data Converter Interface serial clock input/output pin. Data Converter Interface serial data input pin. Data Converter Interface serial data output pin. C1RX C1TX C2RX C2TX I O I O ST — ST — ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin. PGD1/EMUD1 PGC1/EMUC1 PGD2/EMUD2 PGC2/EMUC2 PGD3/EMUD3 PGC3/EMUC3 I/O I I/O I I/O I ST ST ST ST ST ST Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3. IC1-IC8 I ST Capture inputs 1 through 8. INDX QEA QEB UPDN I I I O ST ST ST CMOS Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Position Up/Down Counter Direction State. INT0 INT1 INT2 INT3 INT4 I I I I I ST ST ST ST ST External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4. FLTA FLTB PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM4L PWM4H I I O O O O O O O O ST ST — — — — — — — — PWM Fault A input. PWM Fault B input. PWM 1 low output. PWM 1 high output. PWM 2 low output. PWM 2 high output. PWM 3 low output. PWM 3 high output. PWM 4 low output. PWM 4 high output. MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. OCFA OCFB OC1-OC8 I I O ST ST — Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8. OSC1 OSC2 I I/O ST/CMOS — Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Legend: CMOS = CMOS compatible input or output; Analog = Analog input ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = PowerdsPIC33F DS70165E-page 26 Preliminary © 2007 Microchip Technology Inc. RA0-RA7 RA9-RA10 RA12-RA15 I/O I/O I/O ST ST ST PORTA is a bidirectional I/O port. RB0-RB15 I/O ST PORTB is a bidirectional I/O port. RC1-RC4 RC12-RC15 I/O I/O ST ST PORTC is a bidirectional I/O port. RD0-RD15 I/O ST PORTD is a bidirectional I/O port. RE0-RE9 I/O ST PORTE is a bidirectional I/O port. RF0-RF8 RF12-RF13 I/O ST PORTF is a bidirectional I/O port. RG0-RG3 RG6-RG9 RG12-RG15 I/O I/O I/O ST ST ST PORTG is a bidirectional I/O port. SCK1 SDI1 SDO1 SS1 SCK2 SDI2 SDO2 SS2 I/O I O I/O I/O I O I/O ST ST — ST ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 SCL2 SDA2 I/O I/O I/O I/O ST ST ST ST Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. SOSCI SOSCO I O ST/CMOS — 32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output. TMS TCK TDI TDO I I I O ST ST ST — JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK I I I I I I I I I ST ST ST ST ST ST ST ST ST Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX I O I O I O I O ST — ST — ST — ST — UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 receive. UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VDDCORE P — CPU logic filter capacitor connection. VSS P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input. TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Type Buffer Type Description Legend: CMOS = CMOS compatible input or output; Analog = Analog input ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power© 2007 Microchip Technology Inc. Preliminary DS70165E-page 27 dsPIC33F 2.0 CPU The dsPIC33F CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33F devices have sixteen, 16-bit working registers in the programmer’s model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The dsPIC33F instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33F is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. A block diagram of the CPU is shown in Figure 2-1, and the programmer’s model for the dsPIC33F is shown in Figure 2-2. 2.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM. 2.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space. 2.3 Special MCU Features The dsPIC33F features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33F supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data. A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 28 Preliminary © 2007 Microchip Technology Inc. FIGURE 2-1: dsPIC33F CPU CORE BLOCK DIAGRAM Instruction Decode & Control PCH PCL Program Counter 16-bit ALU 24 23 Instruction Reg PCU 16 x 16 W Register Array ROM Latch EA MUX Interrupt Controller Stack Control Logic Loop Control Logic Data Latch Address Latch Control Signals to Various Blocks Address Bus Literal Data 16 16 16 To Peripheral Modules Data Latch Address Latch 16 X RAM Y RAM Address Generator Units 16 Y Data Bus X Data Bus DMA Controller DMA RAM DSP Engine Divide Support 16 16 23 23 8 16 PSV & Table Data Access Control Block 16 16 16 16 Program Memory Data Latch Address Latch© 2007 Microchip Technology Inc. Preliminary DS70165E-page 29 dsPIC33F FIGURE 2-2: dsPIC33F PROGRAMMER’S MODEL PC22 PC0 7 0 D15 D0 Program Counter Data Table Page Address STATUS Register Working Registers DSP Operand Registers W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer DSP Address Registers AD39 AD0 AD31 DSP Accumulators AccA AccB 7 0 Program Space Visibility Page Address Z 0 OA OB SA SB RCOUNT 15 0 REPEAT Loop Counter DCOUNT 15 0 DO Loop Counter DOSTART 22 0 DO Loop Start Address IPL2 IPL1 SPLIM Stack Pointer Limit Register AD15 SRL PUSH.S Shadow DO Shadow OAB SAB 15 0 Core Configuration Register Legend CORCON DA DC RA N TBLPAG PSVPAG IPL0 OV W0/WREG SRH DOEND DO Loop End Address 22 CdsPIC33F DS70165E-page 30 Preliminary © 2007 Microchip Technology Inc. 2.4 CPU Control Registers REGISTER 2-1: SR: CPU STATUS REGISTER R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0 OA OB SA (1) SB (1) OAB SAB DA DC bit 15 bit 8 R/W-0 (2) R/W-0 (3) R/W-0 (3) R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL<2:0> (2) RA N OV Z C bit 7 bit 0 Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Set only bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A overflowed 0 = Accumulator A has not overflowed bit 14 OB: Accumulator B Overflow Status bit 1 = Accumulator B overflowed 0 = Accumulator B has not overflowed bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit (1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit (1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated Note: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB. bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred Note 1: This bit may be read or cleared (not set). 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 31 dsPIC33F bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits (2) 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred REGISTER 2-1: SR: CPU STATUS REGISTER (CONTINUED) Note 1: This bit may be read or cleared (not set). 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).dsPIC33F DS70165E-page 32 Preliminary © 2007 Microchip Technology Inc. REGISTER 2-2: CORCON: CORE CONTROL REGISTER U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0 — — — US EDT (1) DL<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 (2) PSV RND IF bit 7 bit 0 Legend: C = Clear only bit R = Readable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared ‘x = Bit is unknown U = Unimplemented bit, read as ‘0’ bit 15-13 Unimplemented: Read as ‘0’ bit 12 US: DSP Multiply Unsigned/Signed Control bit 1 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are signed bit 11 EDT: Early DO Loop Termination Control bit (1) 1 = Terminate executing DO loop at end of current loop iteration 0 = No effect bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits 111 = 7 DO loops active • • 001 = 1 DO loop active 000 = 0 DO loops active bit 7 SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled bit 6 SATB: AccB Saturation Enable bit 1 = Accumulator B saturation enabled 0 = Accumulator B saturation disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled 0 = Data space write saturation disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 (2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less bit 2 PSV: Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space bit 1 RND: Rounding Mode Select bit 1 = Biased (conventional) rounding enabled 0 = Unbiased (convergent) rounding enabled bit 0 IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode enabled for DSP multiply ops 0 = Fractional mode enabled for DSP multiply ops Note 1: This bit will always read as ‘0’. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 33 dsPIC33F 2.5 Arithmetic Logic Unit (ALU) The dsPIC33F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for information on the SR bits affected by each instruction. The dsPIC33F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division. 2.5.1 MULTIPLIER Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes: 1. 16-bit x 16-bit signed 2. 16-bit x 16-bit unsigned 3. 16-bit signed x 5-bit (literal) unsigned 4. 16-bit unsigned x 16-bit unsigned 5. 16-bit unsigned x 5-bit (literal) unsigned 6. 16-bit unsigned x 16-bit signed 7. 8-bit unsigned x 8-bit unsigned 2.5.2 DIVIDER The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes: 1. 32-bit signed/16-bit signed divide 2. 32-bit unsigned/16-bit unsigned divide 3. 16-bit signed/16-bit signed divide 4. 16-bit unsigned/16-bit unsigned divide The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. 2.6 DSP Engine The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic). The dsPIC33F is a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG. The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below: 1. Fractional or integer DSP multiply (IF). 2. Signed or unsigned DSP multiply (US). 3. Conventional or convergent rounding (RND). 4. Automatic saturation on/off for AccA (SATA). 5. Automatic saturation on/off for AccB (SATB). 6. Automatic saturation on/off for writes to data memory (SATDW). 7. Accumulator Saturation mode selection (ACCSAT). A block diagram of the DSP engine is shown in Figure 2-3. TABLE 2-1: DSP INSTRUCTIONS SUMMARY Instruction Algebraic Operation ACC Write Back CLR A = 0 Yes ED A = (x – y) 2 No EDAC A = A + (x – y) 2 No MAC A = A + (x * y) Yes MAC A = A + x 2 No MOVSAC No change in A Yes MPY A = x * y No MPY A = x 2 No MPY.N A = – x * y No MSC A = A – x * y YesdsPIC33F DS70165E-page 34 Preliminary © 2007 Microchip Technology Inc. FIGURE 2-3: DSP ENGINE BLOCK DIAGRAM Zero Backfill Sign-Extend Barrel Shifter 40-bit Accumulator A 40-bit Accumulator B Round Logic X Data Bus To/From W Array Adder Saturate Negate 32 32 33 16 16 16 16 40 40 40 40 S a t u r a t e Y Data Bus 40 Carry/Borrow Out Carry/Borrow In 16 40 Multiplier/Scaler 17-bit© 2007 Microchip Technology Inc. Preliminary DS70165E-page 35 dsPIC33F 2.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two’s complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2 N-1 to 2 N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including ‘0’. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two’s complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 2 1-N ). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’ and has a precision of 3.01518x10 -5 . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10 -10 . The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies. The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array. 2.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation. 2.6.2.1 Adder/Subtracter, Overflow and Saturation The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the carry/borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register: • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT