LM158, LM258, LM358-STMicroelectronics - Farnell Element 14
- Revenir à l'accueil
Farnell Element 14 :
See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…
Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.
Puce électronique / Microchip :
Sans fil - Wireless :
Texas instrument :
Ordinateurs :
Logiciels :
Tutoriels :
Autres documentations :
Analog-Devices-Convo..> 09-Sep-2014 08:26 2.1M
Analog-Devices-Convo..> 09-Sep-2014 08:25 2.2M
Analog-Devices-Convo..> 09-Sep-2014 08:25 2.2M
Analog-Devices-ADMC4..> 09-Sep-2014 08:23 2.3M
Analog-Devices-Wi-Fi..> 09-Sep-2014 08:23 2.3M
Analog-Devices-ADMC2..> 09-Sep-2014 08:21 2.4M
Analog-Devices-ADC-S..> 09-Sep-2014 08:21 2.4M
Analog-Devices-Visua..> 09-Sep-2014 08:18 2.5M
Analog-Devices-ANF32..> 09-Sep-2014 08:18 2.6M
Farnell-Compensating..> 09-Sep-2014 08:16 2.6M
Farnell-Compensating..> 09-Sep-2014 08:16 2.6M
Farnell-LM7805-Fairc..> 09-Sep-2014 08:13 2.7M
Farnell-AD620-Rev-H-..> 09-Sep-2014 08:13 2.6M
Farnell-Datasheet-FT..> 09-Sep-2014 08:10 2.8M
Farnell-MAX4661-MAX4..> 09-Sep-2014 08:10 2.8M
Farnell-OPA627-Texas..> 09-Sep-2014 08:08 2.8M
Farnell-REF19x-Serie..> 09-Sep-2014 08:08 2.8M
Farnell-Data-Sheet-M..> 09-Sep-2014 08:05 2.8M
Farnell-ULN2803A-Rev..> 09-Sep-2014 08:05 2.9M
Analog-Devices-Digit..> 08-Sep-2014 18:03 2.0M
Analog-Devices-Digit..> 08-Sep-2014 18:02 2.1M
Analog-Devices-Basic..> 08-Sep-2014 17:49 1.9M
Farnell-AD9833-Rev-E..> 08-Sep-2014 17:49 1.8M
Farnell-The-Discrete..> 08-Sep-2014 17:44 1.8M
Electronique-Basic-o..> 08-Sep-2014 17:43 1.8M
Analog-Devices-AN300..> 08-Sep-2014 17:42 2.0M
Analog-Devices-The-C..> 08-Sep-2014 17:41 1.9M
Analog-Devices-Intro..> 08-Sep-2014 17:39 1.9M
Analog-Devices-Compl..> 08-Sep-2014 17:38 2.0M
Analog-Devices-Gloss..> 08-Sep-2014 17:36 2.0M
Farnell-ADuM1300-ADu..> 08-Sep-2014 08:11 1.7M
Farnell-AD586BRZ-Ana..> 08-Sep-2014 08:09 1.6M
Farnell-ADuM1200-ADu..> 08-Sep-2014 08:09 1.6M
Farnell-NA555-NE555-..> 08-Sep-2014 07:51 1.5M
Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32 1.2M
Farnell-MSP430F15x-M..> 08-Sep-2014 07:32 1.3M
Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31 1.3M
Farnell-AD8307-Data-..> 08-Sep-2014 07:30 1.3M
Farnell-Single-Chip-..> 08-Sep-2014 07:30 1.5M
Farnell-Quadruple-2-..> 08-Sep-2014 07:29 1.5M
Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28 1.7M
Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28 1.8M
Farnell-USB-to-Seria..> 08-Sep-2014 07:27 2.0M
Farnell-AD8313-Analo..> 08-Sep-2014 07:26 2.0M
Farnell-SN54HC164-SN..> 08-Sep-2014 07:25 2.0M
Farnell-AD8310-Analo..> 08-Sep-2014 07:24 2.1M
Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23 2.1M
Farnell-2N3906-Fairc..> 08-Sep-2014 07:22 2.1M
Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20 2.2M
Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20 2.3M
Farnell-TLV320AIC23B..> 08-Sep-2014 07:18 2.4M
Farnell-NA555-NE555-..> 08-Sep-2014 07:33 1.5M
Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32 1.2M
Farnell-MSP430F15x-M..> 08-Sep-2014 07:32 1.3M
Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31 1.3M
Farnell-AD8307-Data-..> 08-Sep-2014 07:30 1.3M
Farnell-Single-Chip-..> 08-Sep-2014 07:30 1.5M
Farnell-Quadruple-2-..> 08-Sep-2014 07:29 1.5M
Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28 1.7M
Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28 1.8M
Farnell-USB-to-Seria..> 08-Sep-2014 07:27 2.0M
Farnell-AD8313-Analo..> 08-Sep-2014 07:26 2.0M
Farnell-SN54HC164-SN..> 08-Sep-2014 07:25 2.0M
Farnell-AD8310-Analo..> 08-Sep-2014 07:24 2.1M
Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23 2.1M
Farnell-2N3906-Fairc..> 08-Sep-2014 07:22 2.1M
Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20 2.2M
Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20 2.3M
Farnell-TLV320AIC23B..> 08-Sep-2014 07:18 2.4M
Farnell-AD586BRZ-Ana..> 08-Sep-2014 07:17 1.6M
Farnell-STM32F405xxS..> 27-Aug-2014 18:27 1.8M
Farnell-MSP430-Hardw..> 29-Jul-2014 10:36 1.1M
Farnell-LM324-Texas-..> 29-Jul-2014 10:32 1.5M
Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32 1.5M
Farnell-NE5532-Texas..> 29-Jul-2014 10:32 1.5M
Farnell-Hex-Inverter..> 29-Jul-2014 10:31 875K
Farnell-AT90USBKey-H..> 29-Jul-2014 10:31 902K
Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31 1.2M
Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31 1.2M
Farnell-Explorer-16-..> 29-Jul-2014 10:31 1.3M
Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30 1.3M
Farnell-Gertboard-Us..> 29-Jul-2014 10:30 1.4M
Farnell-LMP91051-Use..> 29-Jul-2014 10:30 1.4M
Farnell-Thermometre-..> 29-Jul-2014 10:30 1.4M
Farnell-user-manuel-..> 29-Jul-2014 10:29 1.5M
Farnell-fx-3650P-fx-..> 29-Jul-2014 10:29 1.5M
Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42 2.7M
Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42 2.8M
Farnell-Octal-Genera..> 28-Jul-2014 17:42 2.8M
Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41 2.8M
Farnell-TLV320AIC325..> 28-Jul-2014 17:41 2.9M
Farnell-SN54LV4053A-..> 28-Jul-2014 17:20 5.9M
Farnell-TAS1020B-USB..> 28-Jul-2014 17:19 6.2M
Farnell-TPS40060-Wid..> 28-Jul-2014 17:19 6.3M
Farnell-TL082-Wide-B..> 28-Jul-2014 17:16 6.3M
Farnell-RF-short-tra..> 28-Jul-2014 17:16 6.3M
Farnell-maxim-integr..> 28-Jul-2014 17:14 6.4M
Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14 6.4M
Farnell-Fast-Charge-..> 28-Jul-2014 17:12 6.4M
Farnell-NVE-datashee..> 28-Jul-2014 17:12 6.5M
Farnell-Excalibur-Hi..> 28-Jul-2014 17:10 2.4M
Farnell-Excalibur-Hi..> 28-Jul-2014 17:10 2.4M
Farnell-REF102-10V-P..> 28-Jul-2014 17:09 2.4M
Farnell-TMS320F28055..> 28-Jul-2014 17:09 2.7M
Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:35 5.9M
Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35 5.9M
Farnell-Dremel-Exper..> 22-Jul-2014 12:34 1.6M
Farnell-STM32F103x8-..> 22-Jul-2014 12:33 1.6M
Farnell-BD6xxx-PDF.htm 22-Jul-2014 12:33 1.6M
Farnell-L78S-STMicro..> 22-Jul-2014 12:32 1.6M
Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32 1.6M
Farnell-SB520-SB5100..> 22-Jul-2014 12:32 1.6M
Farnell-iServer-Micr..> 22-Jul-2014 12:32 1.6M
Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31 3.6M
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31 2.4M
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30 4.6M
Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30 4.7M
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29 4.8M
Farnell-Evaluating-t..> 22-Jul-2014 12:28 4.9M
Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27 5.9M
Farnell-Keyboard-Mou..> 22-Jul-2014 12:27 5.9M
Farnell-Full-Datashe..> 15-Jul-2014 17:08 951K
Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06 959K
Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06 969K
Farnell-Datasheet-NX..> 15-Jul-2014 17:06 1.0M
Farnell-Datasheet-Fa..> 15-Jul-2014 17:05 1.0M
Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05 1.0M
Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05 1.0M
Farnell-MCOC1-Farnel..> 15-Jul-2014 17:05 1.0M
Farnell-TMR-2-series..> 15-Jul-2014 16:48 787K
Farnell-DC-DC-Conver..> 15-Jul-2014 16:48 781K
Farnell-Full-Datashe..> 15-Jul-2014 16:47 803K
Farnell-TMLM-Series-..> 15-Jul-2014 16:47 810K
Farnell-TEL-5-Series..> 15-Jul-2014 16:47 814K
Farnell-TXL-series-t..> 15-Jul-2014 16:47 829K
Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47 837K
Farnell-AC-DC-Power-..> 15-Jul-2014 16:47 845K
Farnell-TIS-Instruct..> 15-Jul-2014 16:47 845K
Farnell-TOS-tracopow..> 15-Jul-2014 16:47 852K
Farnell-TCL-DC-traco..> 15-Jul-2014 16:46 858K
Farnell-TIS-series-t..> 15-Jul-2014 16:46 875K
Farnell-TMR-2-Series..> 15-Jul-2014 16:46 897K
Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46 939K
Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46 939K
Farnell-Full-Datashe..> 15-Jul-2014 16:46 947K
Farnell-HIP4081A-Int..> 07-Jul-2014 19:47 1.0M
Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47 1.1M
Farnell-DG411-DG412-..> 07-Jul-2014 19:47 1.0M
Farnell-3367-ARALDIT..> 07-Jul-2014 19:46 1.2M
Farnell-ICM7228-Inte..> 07-Jul-2014 19:46 1.1M
Farnell-Data-Sheet-K..> 07-Jul-2014 19:46 1.2M
Farnell-Silica-Gel-M..> 07-Jul-2014 19:46 1.2M
Farnell-TKC2-Dusters..> 07-Jul-2014 19:46 1.2M
Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46 1.2M
Farnell-760G-French-..> 07-Jul-2014 19:45 1.2M
Farnell-Decapant-KF-..> 07-Jul-2014 19:45 1.2M
Farnell-1734-ARALDIT..> 07-Jul-2014 19:45 1.2M
Farnell-Araldite-Fus..> 07-Jul-2014 19:45 1.2M
Farnell-fiche-de-don..> 07-Jul-2014 19:44 1.4M
Farnell-safety-data-..> 07-Jul-2014 19:44 1.4M
Farnell-A-4-Hardener..> 07-Jul-2014 19:44 1.4M
Farnell-CC-Debugger-..> 07-Jul-2014 19:44 1.5M
Farnell-MSP430-Hardw..> 07-Jul-2014 19:43 1.8M
Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43 1.6M
Farnell-CC2531-USB-H..> 07-Jul-2014 19:43 1.8M
Farnell-Alimentation..> 07-Jul-2014 19:43 1.8M
Farnell-BK889B-PONT-..> 07-Jul-2014 19:42 1.8M
Farnell-User-Guide-M..> 07-Jul-2014 19:41 2.0M
Farnell-T672-3000-Se..> 07-Jul-2014 19:41 2.0M
Farnell-0050375063-D..> 18-Jul-2014 17:03 2.5M
Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03 2.5M
Farnell-43031-0002-M..> 18-Jul-2014 17:03 2.5M
Farnell-0433751001-D..> 18-Jul-2014 17:02 2.5M
Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02 2.5M
Farnell-MTX-Compact-..> 18-Jul-2014 17:01 2.5M
Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01 2.5M
Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00 2.6M
Farnell-MCP3421-Micr..> 18-Jul-2014 17:00 1.2M
Farnell-LM19-Texas-I..> 18-Jul-2014 17:00 1.2M
Farnell-Data-Sheet-S..> 18-Jul-2014 17:00 1.2M
Farnell-LMH6518-Texa..> 18-Jul-2014 16:59 1.3M
Farnell-AD7719-Low-V..> 18-Jul-2014 16:59 1.4M
Farnell-DAC8143-Data..> 18-Jul-2014 16:59 1.5M
Farnell-BGA7124-400-..> 18-Jul-2014 16:59 1.5M
Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58 1.5M
Farnell-LT3757-Linea..> 18-Jul-2014 16:58 1.6M
Farnell-LT1961-Linea..> 18-Jul-2014 16:58 1.6M
Farnell-PIC18F2420-2..> 18-Jul-2014 16:57 2.5M
Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57 2.5M
Farnell-RDS-80-PDF.htm 18-Jul-2014 16:57 1.3M
Farnell-AD8300-Data-..> 18-Jul-2014 16:56 1.3M
Farnell-LT6233-Linea..> 18-Jul-2014 16:56 1.3M
Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56 1.4M
Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56 1.4M
Farnell-DP83846A-DsP..> 18-Jul-2014 16:55 1.5M
Farnell-Dremel-Exper..> 18-Jul-2014 16:55 1.6M
Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04 1.0M
Farnell-SL3S1203_121..> 16-Jul-2014 09:04 1.1M
Farnell-PN512-Full-N..> 16-Jul-2014 09:03 1.4M
Farnell-SL3S4011_402..> 16-Jul-2014 09:03 1.1M
Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03 1.6M
Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03 1.7M
Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02 2.0M
Farnell-LPC1769-68-6..> 16-Jul-2014 09:02 1.9M
Farnell-Download-dat..> 16-Jul-2014 09:02 2.2M
Farnell-LPC3220-30-4..> 16-Jul-2014 09:02 2.2M
Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01 2.4M
Farnell-SL3ICS1002-1..> 16-Jul-2014 09:01 2.5M
Farnell-T672-3000-Se..> 08-Jul-2014 18:59 2.0M
Farnell-tesa®pack63..> 08-Jul-2014 18:56 2.0M
Farnell-Encodeur-USB..> 08-Jul-2014 18:56 2.0M
Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55 2.1M
Farnell-2020-Manuel-..> 08-Jul-2014 18:55 2.1M
Farnell-Synchronous-..> 08-Jul-2014 18:54 2.1M
Farnell-Arithmetic-L..> 08-Jul-2014 18:54 2.1M
Farnell-NA555-NE555-..> 08-Jul-2014 18:53 2.2M
Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53 2.2M
Farnell-LM555-Timer-..> 08-Jul-2014 18:53 2.2M
Farnell-L293d-Texas-..> 08-Jul-2014 18:53 2.2M
Farnell-SN54HC244-SN..> 08-Jul-2014 18:52 2.3M
Farnell-MAX232-MAX23..> 08-Jul-2014 18:52 2.3M
Farnell-High-precisi..> 08-Jul-2014 18:51 2.3M
Farnell-SMU-Instrume..> 08-Jul-2014 18:51 2.3M
Farnell-900-Series-B..> 08-Jul-2014 18:50 2.3M
Farnell-BA-Series-Oh..> 08-Jul-2014 18:50 2.3M
Farnell-UTS-Series-S..> 08-Jul-2014 18:49 2.5M
Farnell-270-Series-O..> 08-Jul-2014 18:49 2.3M
Farnell-UTS-Series-S..> 08-Jul-2014 18:49 2.8M
Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49 2.6M
Farnell-UTO-Souriau-..> 08-Jul-2014 18:48 2.8M
Farnell-Clipper-Seri..> 08-Jul-2014 18:48 2.8M
Farnell-SOURIAU-Cont..> 08-Jul-2014 18:47 3.0M
Farnell-851-Series-P..> 08-Jul-2014 18:47 3.0M
Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M
Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06 4.0M
Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06 1.0M
Farnell-Low-Noise-24..> 06-Jul-2014 10:05 1.0M
Farnell-ESCON-Featur..> 06-Jul-2014 10:05 938K
Farnell-74LCX573-Fai..> 06-Jul-2014 10:05 1.9M
Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04 1.9M
Farnell-FAN6756-Fair..> 06-Jul-2014 10:04 850K
Farnell-Datasheet-Fa..> 06-Jul-2014 10:04 861K
Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04 867K
Farnell-QRE1113-Fair..> 06-Jul-2014 10:03 879K
Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03 886K
Farnell-FDC2512-Fair..> 06-Jul-2014 10:03 886K
Farnell-FDV301N-Digi..> 06-Jul-2014 10:03 886K
Farnell-S1A-Fairchil..> 06-Jul-2014 10:03 896K
Farnell-BAV99-Fairch..> 06-Jul-2014 10:03 896K
Farnell-74AC00-74ACT..> 06-Jul-2014 10:03 911K
Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02 911K
Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02 924K
Farnell-ev-relays-ae..> 06-Jul-2014 10:02 926K
Farnell-ESCON-Featur..> 06-Jul-2014 10:02 931K
Farnell-Amplifier-In..> 06-Jul-2014 10:02 940K
Farnell-Serial-File-..> 06-Jul-2014 10:02 941K
Farnell-Both-the-Del..> 06-Jul-2014 10:01 948K
Farnell-Videk-PDF.htm 06-Jul-2014 10:01 948K
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-0430300011-D..> 14-Jun-2014 18:13 2.0M
Farnell-06-6544-8-PD..> 26-Mar-2014 17:56 2.7M
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-3M-VolitionT..> 25-Mar-2014 08:18 3.3M
Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50 2.4M
Farnell-10TPB47M-End..> 14-Jun-2014 18:16 3.4M
Farnell-12mm-Size-In..> 14-Jun-2014 09:50 2.4M
Farnell-24AA024-24LC..> 23-Jun-2014 10:26 3.1M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-1907-2006-PD..> 26-Mar-2014 17:56 2.7M
Farnell-5910-PDF.htm 25-Mar-2014 08:15 3.0M
Farnell-6517b-Electr..> 29-Mar-2014 11:12 3.3M
Farnell-A-True-Syste..> 29-Mar-2014 11:13 3.3M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19 3.4M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39 4.0M
Farnell-ALF1225-12-V..> 01-Apr-2014 07:40 3.4M
Farnell-ALF2412-24-V..> 01-Apr-2014 07:39 3.4M
Farnell-AN10361-Phil..> 23-Jun-2014 10:29 2.1M
Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55 2.8M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56 2.7M
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-ATmega640-VA..> 14-Jun-2014 09:49 2.5M
Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19 3.6M
Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40 1.8M
Farnell-Alimentation..> 14-Jun-2014 18:24 2.5M
Farnell-Alimentation..> 01-Apr-2014 07:42 3.4M
Farnell-Amplificateu..> 29-Mar-2014 11:11 3.3M
Farnell-An-Improved-..> 14-Jun-2014 09:49 2.5M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-Avvertenze-e..> 14-Jun-2014 18:20 3.3M
Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42 1.6M
Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24 3.3M
Farnell-BF545A-BF545..> 23-Jun-2014 10:28 2.1M
Farnell-BK2650A-BK26..> 29-Mar-2014 11:10 3.3M
Farnell-BT151-650R-N..> 13-Jun-2014 18:40 1.7M
Farnell-BTA204-800C-..> 13-Jun-2014 18:42 1.6M
Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41 1.7M
Farnell-BYV29F-600-N..> 13-Jun-2014 18:42 1.6M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-BZX384-serie..> 23-Jun-2014 10:29 2.1M
Farnell-Battery-GBA-..> 14-Jun-2014 18:13 2.0M
Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24 2.5M
Farnell-C.A 8332B-C...> 01-Apr-2014 07:40 3.4M
Farnell-CC2560-Bluet..> 29-Mar-2014 11:14 2.8M
Farnell-CD4536B-Type..> 14-Jun-2014 18:13 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-CS5532-34-BS..> 01-Apr-2014 07:39 3.5M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-Ceramic-tran..> 14-Jun-2014 18:19 3.4M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Connectors-N..> 14-Jun-2014 18:12 2.1M
Farnell-Construction..> 14-Jun-2014 18:25 2.5M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-Cordless-dri..> 14-Jun-2014 18:13 2.0M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:48 2.5M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:51 1.8M
Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27 2.4M
Farnell-De-la-puissa..> 29-Mar-2014 11:10 3.3M
Farnell-Directive-re..> 25-Mar-2014 08:16 3.0M
Farnell-Documentatio..> 14-Jun-2014 18:26 2.5M
Farnell-Download-dat..> 13-Jun-2014 18:40 1.8M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-ELMA-PDF.htm 29-Mar-2014 11:13 3.3M
Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-F28069-Picco..> 14-Jun-2014 18:14 2.0M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22 3.3M
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-Fastrack-Sup..> 23-Jun-2014 10:25 3.3M
Farnell-Ferric-Chlor..> 29-Mar-2014 11:14 2.8M
Farnell-Fiche-de-don..> 14-Jun-2014 09:47 2.5M
Farnell-Fiche-de-don..> 14-Jun-2014 18:26 2.5M
Farnell-Fluke-1730-E..> 14-Jun-2014 18:23 2.5M
Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56 2.7M
Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57 2.7M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20 3.3M
Farnell-HFE1600-Data..> 14-Jun-2014 18:22 3.3M
Farnell-HI-70300-Sol..> 14-Jun-2014 18:27 2.4M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41 1.7M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28 2.1M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19 3.2M
Farnell-LME49725-Pow..> 14-Jun-2014 09:49 2.5M
Farnell-LOCTITE-542-..> 25-Mar-2014 08:15 3.0M
Farnell-LOCTITE-3463..> 25-Mar-2014 08:19 3.0M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Leaded-Trans..> 23-Jun-2014 10:26 3.2M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Loctite3455-..> 25-Mar-2014 08:16 3.0M
Farnell-Low-cost-Enc..> 13-Jun-2014 18:42 1.7M
Farnell-Lubrifiant-a..> 26-Mar-2014 18:00 2.7M
Farnell-MC3510-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14 2.8M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-MX670-MX675-..> 14-Jun-2014 09:46 2.5M
Farnell-Microchip-MC..> 13-Jun-2014 18:27 1.8M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-Midas-Active..> 14-Jun-2014 18:17 3.4M
Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11 2.1M
Farnell-Miniature-Ci..> 26-Mar-2014 17:55 2.8M
Farnell-Mistral-PDF.htm 14-Jun-2014 18:12 2.1M
Farnell-Molex-83421-..> 14-Jun-2014 18:17 3.4M
Farnell-Molex-COMMER..> 14-Jun-2014 18:16 3.4M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-Nilï¬-sk-E-..> 14-Jun-2014 09:47 2.5M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40 1.8M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43 1.5M
Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43 1.5M
Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43 1.6M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PIC18F2455-2..> 23-Jun-2014 10:27 3.1M
Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51 2.4M
Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44 1.5M
Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27 3.1M
Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18 3.4M
Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43 1.6M
Farnell-Panasonic-15..> 23-Jun-2014 10:29 2.1M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-Pompes-Charg..> 24-Apr-2014 20:23 3.3M
Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23 3.3M
Farnell-Portable-Ana..> 29-Mar-2014 11:16 2.8M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-Produit-3430..> 14-Jun-2014 09:48 2.5M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-Q48-PDF.htm 23-Jun-2014 10:29 2.1M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-Repartiteurs..> 14-Jun-2014 18:26 2.5M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-SMBJ-Transil..> 29-Mar-2014 11:12 3.3M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-SPLC780A1-16..> 14-Jun-2014 18:25 2.5M
Farnell-SSC7102-Micr..> 23-Jun-2014 10:25 3.2M
Farnell-SVPE-series-..> 14-Jun-2014 18:15 2.0M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-Standa..> 14-Jun-2014 18:23 3.3M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-Signal-PCB-R..> 14-Jun-2014 18:11 2.1M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Supercapacit..> 26-Mar-2014 17:57 2.7M
Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21 3.3M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-Tektronix-AC..> 13-Jun-2014 18:44 1.5M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Termometros-..> 14-Jun-2014 18:14 2.0M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-U2270B-PDF.htm 14-Jun-2014 18:15 3.4M
Farnell-USB-Buccanee..> 14-Jun-2014 09:48 2.5M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-V4N-PDF.htm 14-Jun-2014 18:11 2.1M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11 2.1M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-china_rohs_o..> 21-Mar-2014 10:04 3.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11 3.3M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46 472K
Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46 461K
Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46 435K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 481K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 442K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 422K
Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46 464K
LM158, LM258, LM358
Low-power dual operational amplifiers
Datasheet - production data
Features
• Internally frequency-compensated
• Large DC voltage gain: 100 dB
• Wide bandwidth (unity gain): 1.1 MHz
(temperature compensated)
• Very low supply current per operator
essentially independent of supply voltage
• Low input bias current: 20 nA
(temperature compensated)
• Low input offset voltage: 2 mV
• Low input offset current: 2 nA
• Input common-mode voltage range includes
negative rails
• Differential input voltage range equal to the
power supply voltage
• Large output voltage swing 0 V to (VCC
+ -1.5 V)
Description
These circuits consist of two independent, high-gain, internally frequency-compensated op-amps, specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply.
In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
DIP8
(Plastic package)
SO8 and MiniSO8
(Plastic micropackage)
TSSOP8
(Thin shrink small outline package)
Pin connections
(Top view)
1
2
3
Out1
In1-
In1+
Vcc- 4
8
7
6
Vcc+
Out2
In2-
5 In2+
DFN8 2 x 2 mm
(Plastic micropackage)
www.st.com
Contents LM158, LM258, LM358
2/22 DocID2163 Rev 11
Contents
1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.5 DFN8 2 x 2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID2163 Rev 11 3/22
LM158, LM258, LM358 Schematic diagram
22
1 Schematic diagram
Figure 1. Schematic diagram (1/2 LM158)
6μA 4μA 100μA
Q2 Q3
Q1 Q4
Inverting
input
Non-inverting
input
Q8 Q9
Q10
Q11
Q12
50μA
Q13
Output
Q7
Q6
Q5
R SC
VCC
CC
GND
Absolute maximum ratings LM158, LM258, LM358
4/22 DocID2163 Rev 11
2 Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol Parameter LM158,A LM258,A LM358,A Unit
VCC Supply voltage +/-16 or 32 V
Vi Input voltage 32 V
Vid Differential input voltage 32 V
Output short-circuit duration (1)
1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short circuits on all amplifiers.
Infinite
Iin Input current (2)
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input
diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor
action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large
overdrive) for the time during which an input is driven negative.
This is not destructive and normal output is restored for input voltages above -0.3 V.
5 mA in DC or 50 mA in AC (duty
cycle = 10%, T=1s) mA
Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C
Tstg Storage temperature range -65 to +150 °C
Tj Maximum junction temperature 150 °C
Rthja
Thermal resistance junction to ambient(3)
SO8
MiniSO8
TSSOP8
DIP8
DFN8 2x2
3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
125
190
120
85
57
°C/W
Rthjc
Thermal resistance junction to case (3)
SO8
MiniSO8
TSSOP8
DIP8
40
39
37
41
°C/W
ESD
HBM: human body model(4)
4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kW resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
300 V
MM: machine model(5)
5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 W). This is done for all couples
of connected pin combinations while the other pins are floating.
200 V
CDM: charged device model(6)
6. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
1.5 kV
DocID2163 Rev 11 5/22
LM158, LM258, LM358 Operating conditions
22
3 Operating conditions
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 3 to 30 V
Vicm Common mode input voltage range(1)
1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the
operating common mode voltage range.
VCC
-
-0.3 to VCC
+ -1.5 V
Toper
Operating free air temperature range
LM158
LM258
LM358
-55 to +125
-40 to +105
0 to +70
°C
Electrical characteristics LM158, LM258, LM358
6/22 DocID2163 Rev 11
4 Electrical characteristics
Table 3. Electrical characteristics for VCC
+ = +5 V, VCC
- = Ground, Vo = 1.4 V, Tamb = +25°C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
Vio
Input offset voltage (1)
LM158A
LM258A, LM358A
LM158, LM258
LM358
1
2
2357
mV
Tmin £ Tamb £ Tmax
LM158A, LM258A, LM358A
LM158, LM258
LM358
479
DVio
Input offset voltage drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
77
15
30
μV/°C
Iio
Input offset current
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin £ Tamb £ Tmax
LM158A, LM258A, LM358A
LM158, LM258, LM358
22
10
30
30
40
nA
DIio
Input offset current drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
10
10
200
300
pA/°C
Iib
Input bias current (2)
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin £ Tamb £ Tmax
LM158A, LM258A, LM358A
LM158, LM258, LM358
20
20
50
150
100
200
nA
Avd
Large signal voltage gain
VCC
+= +15 V, RL = 2 kW, Vo = 1.4 V to 11.4 V
Tmin £ Tamb £ Tmax
50
25
100 V/mV
SVR
Supply voltage rejection ratio
VCC
+ = 5 V to 30 V, Rs £ 10 kW
Tmin £ Tamb £ Tmax
65
65
100 dB
ICC
Supply current, all amp, no load
Tmin £ Tamb £ Tmax VCC
+ = +5 V
Tmin £ Tamb £ Tmax VCC
+ = +30 V
0.7 1.2
2
mA
Vicm
Input common mode voltage range
VCC
+= +30 V (3)
Tmin £ Tamb £ Tmax
0
0
VCC
+ -1.5
VCC
+ -2
V
DocID2163 Rev 11 7/22
LM158, LM258, LM358 Electrical characteristics
22
CMR
Common mode rejection ratio
Rs £ 10 kW
Tmin £ Tamb £ Tmax
70
60
85 dB
Isource
Output current source
VCC
+ = +15 V, Vo = +2 V, Vid = +1 V
20 40 60 mA
Isink
Output sink current
VCC
+ = +15 V, Vo = +2 V, Vid = -1 V
VCC
+ = +15 V, Vo = +0.2 V, Vid = -1 V
10
12
20
50
mA
μA
VOH
High level output voltage
RL = 2 kW, VCC
+ = 30 V
Tmin £ Tamb £ Tmax
RL = 10 kW, VCC
+ = 30 V
Tmin £ Tamb £ Tmax
26
26
27
27
27
28
V
VOL
Low level output voltage
RL = 10 kW
Tmin £ Tamb £ Tmax
5 20
20
mV
SR
Slew rate
VCC
+ = 15 V, Vi = 0.5 to 3 V, RL = 2 kW,
CL = 100 pF, unity gain
0.3 0.6 V/μs
GBP
Gain bandwidth product
VCC
+ = 30 V, f = 100 kHz, Vin = 10 mV,
RL = 2 kW, CL = 100 pF
0.7 1.1 MHz
THD
Total harmonic distortion
f = 1 kHz, Av = 20 dB, RL = 2 kW, Vo = 2 Vpp,
CL = 100 pF, VO = 2 Vpp
0.02 %
en
Equivalent input noise voltage
f = 1 kHz, Rs = 100 W, VCC
+ = 30 V
55
Vo1/Vo2
Channel separation(4)
1 kHz £ f £ 20 kHz
120 dB
1. Vo = 1.4 V, Rs = 0 W, 5 V < VCC
+ < 30 V, 0 < Vic < VCC
+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so there is no change in the load on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.
The upper end of the common-mode voltage range is VCC
+ - 1.5 V, but either or both inputs can go to +32 V without
damage.
4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause
coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies.
Table 3. Electrical characteristics for VCC
+ = +5 V, VCC
- = Ground, Vo = 1.4 V, Tamb = +25°C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
nV
Hz
-----------
Electrical characteristics LM158, LM258, LM358
8/22 DocID2163 Rev 11
Figure 2. Open-loop frequency response Figure 3. Large signal frequency response
VOLTAGE GAIN (dB)
1.0 10 100 1k 10k 100k 1M 10M
VCC = +10 to +15 V &
FREQUENCY (Hz)
10 M
VI
VCC/2
VCC = 30 V &
-55°C
0.1 F
VCC
VO
-
+
-55°C Tamb +125°C
140
120
100
80
60
40
20
0
Tamb +125°C
-
+
OUTPUT SWING (Vpp)
1k 10k 100k 1M
FREQUENCY (Hz)
100 k
VI
1 k
VO
20
15
10
5
0
2 k
+15 V
+7 V
Figure 4. Voltage follower pulse response
with VCC = 15 V
Figure 5. Voltage follower pulse response
with VCC = 30 V
INPUT
VOLTAGE (V)
TIME (s)
RL 2 k
OUTPUT
VOLTAGE (V)
4
3
2
1
0
3
2
1
VCC = +15 V
0 10 20 30 40
Input
Output
50 pF
+
-
OUTPUT VOLTAGE (mV)
0 1 2 3 4 5 6 7 8
TIME (s)
eI
Tamb = +25°C
VCC = 30 V
500
450
400
350
300
250
eO
Figure 6. Input current Figure 7. Output voltage vs sink current
INPUT CURRENT (mA)
TEMPERATURE (°C)
-55 -35 -15 5 25 45 65 85 105 125
90
80
70
60
50
40
30
20
10
0
VCC = +30 V
VCC = +15 V
VCC = +5 V
VI = 0 V
-
+
OUTPUT VOLTAGE (v)
0.001 0.01 0.1 1 10 100
OUTPUT SINK CURRENT (mA)
VO
VCC/2
VCC = +5 V
VCC = +15 V
VCC = +30 V
VCC
IO
10
1
0.1
0.01
Tamb = + 25°C
DocID2163 Rev 11 9/22
LM158, LM258, LM358 Electrical characteristics
22
Figure 8. Output voltage vs source current Figure 9. Current limiting
+
-
OUTPUT VOLTAGE REFERENCED
TO VCC+ (V)
0.001 0.01 0.1 1 10 100
OUTPUT SOURCE CURRENT (mA)
VO
Independent of VCC
VCC/2
IO
8
5
2
1
Tamb = + 25°C
VCC
7
6
4
3
-
+
OUTPUT CURRENT (mA)
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE °C
IO
90
80
50
40
30
20
10
0
70
60
Figure 10. Input voltage range Figure 11. Open-loop gain
Figure 12. Supply current Figure 13. Input current
Negative
Positive
INPUT VOLTAGE (V)
0 5 10 15
POWER SUPPLY VOLTAGE (±V)
10
5
15
VOLTAGE GAIN (dB)
POSITIVE SUPPLY VOLTAGE (V)
0 10 20 30 40
120
40
160
80
RL = 20 k
RL = 2 k
-
+
SUPPLY CURRENT (mA)
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
mA
VCC
ID
Tamb = 0°C to +125°C
4
3
2
1
Tamb = -55°C
INPUT CURRENT (nA)
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
100
75
50
25
Tamb = +25°C
Electrical characteristics LM158, LM258, LM358
10/22 DocID2163 Rev 11
Figure 14. Gain bandwidth product Figure 15. Power supply rejection ratio
GAIN BANDWIDTH PRODUCT (MHz)
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
1.05
0.45
0.3
0.15
VCC = ± 15 V
1.2
0.9
0.75
0.6
1.35
1.5
0
POWER SUPPLY REJECTION RATIO (dB)
SVR
-55 -35 -15 5 25 45 65 85 105 125
100
80
75
70
105
95
90
85
110
115
65
TEMPERATURE (°C)
60
Figure 16. Common-mode rejection ratio Figure 17. Phase margin vs. capacitive load
COMMON MODE REJECTION RATIO (dB)
-55 -35 -15 5 25 45 65 85 105 125
100
80
75
70
105
95
90
85
110
115
65
TEMPERATURE (°C)
60
Phase Margin at Vcc=15V and Vicm=7.5V
Vs. Iout and Capacitive load value
DocID2163 Rev 11 11/22
LM158, LM258, LM358 Typical applications
22
5 Typical applications
Single supply voltage VCC = +5 VDC.
Figure 18. AC-coupled inverting amplifier Figure 19. Non-inverting DC amplifier
1/2
LM158
~
0 2VPP
R
10k
L
Co
eo
R
6.2k
B
R
100k
f
R1
CI 10k
eI
VCC
R2
100k
C1
10F
R3
100k
A =-
R
V R1
f
(as shown AV = -10)
R1
10k
R2
1M
1/2
LM158
10k
eI
eO +5V
e
O
(V)
(mV)
0
AV= 1 + R2
R1
(As shown AV = 101)
Figure 20. AC-coupled non-inverting amplifier Figure 21. DC summing amplifier
1/2
LM158
~
0 2VPP
R
10k
L
Co
eo
R
6.2k
B
C1
0.1F
eI
VCC
(as shown AV = 11)
A = 1 +R2
V R1
R1
100k
R2
1M
CI
R3
1M
R4
100k
R5
100k
C2
10F
1/2
LM158
eO
e 4
e 3
e 2
e 1 100k
100k
100k
100k
100k
100k
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC
instrumentation amplifier
R1
100k
R2
100k
R4
100k
R3
100k
+V2
+V1 Vo
1/2
LM158 1/2
LM158
if R1 = R5 and R3 = R4 = R6 = R7
eo = [1 + ] ( (e2 + e1)
As shown eo = 101 (e2 + e1)
2R1
R2
-----------
R3
100k
eO
1/2
LM158
R1
100k
e 1
R7
100k
R6
100k
R5
100k
e 2
R2
2k
Gain adjust
R4
100k
1/2
LM158
1/2
LM158
if R1 = R5 and
R3 = R4 = R6 = R7
eo = [ 1 + ] ( (e2 + e1)
As shown eo = 101 (e2 + e1)
2R1
R2
-----------
Typical applications LM158, LM258, LM358
12/22 DocID2163 Rev 11
Figure 24. Using symmetrical amplifiers to
reduce input current
Figure 25. Low drift peak detector
Figure 26. Active band-pass filter
1/2
LM158
IB
2N 929
0.001F
IB
3M
IB
I eo I
e I
IB
IB
Input current compensation
1.5M
1/2
LM158
IB
2N 929 0.001F
IB
3R
3M
IB
Input current
compensation
eo
IB
e I
1/2
LM158 Zo
ZI
C
1F
2IB
R
1M
2IB
1/2
LM158
1/2
LM158
1/2
LM158
R8
100k
C3
10F
R7
100k
R5
470k
C1
330pF
Vo
VCC
R6
470k
C2
330pF
R4
10M
R1
100k
R2
100k
+V1
R3
100k
1/2
LM158
1/2
LM158
DocID2163 Rev 11 13/22
LM158, LM258, LM358 Package information
22
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
Package information LM158, LM258, LM358
14/22 DocID2163 Rev 11
6.1 DIP8 package information
Figure 27. DIP8 package mechanical drawing
Table 4. DIP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 5.33 0.210
A1 0.38 0.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.045 0.060 0.070
c 0.20 0.25 0.36 0.008 0.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
DocID2163 Rev 11 15/22
LM158, LM258, LM358 Package information
22
6.2 SO8 package information
Figure 28. SO8 package mechanical drawing
Table 5. SO8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 1° 8° 1° 8°
ccc 0.10 0.004
Package information LM158, LM258, LM358
16/22 DocID2163 Rev 11
6.3 MiniSO8 package information
Figure 29. MiniSO8 package mechanical drawing
Table 6. MiniSO8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.1 0.043
A1 0 0.15 0 0.006
A2 0.75 0.85 0.95 0.030 0.033 0.037
b 0.22 0.40 0.009 0.016
c 0.08 0.23 0.003 0.009
D 2.80 3.00 3.20 0.11 0.118 0.126
E 4.65 4.90 5.15 0.183 0.193 0.203
E1 2.80 3.00 3.10 0.11 0.118 0.122
e 0.65 0.026
L 0.40 0.60 0.80 0.016 0.024 0.031
L1 0.95 0.037
L2 0.25 0.010
k 0° 8° 0° 8°
ccc 0.10 0.004
DocID2163 Rev 11 17/22
LM158, LM258, LM358 Package information
22
6.4 TSSOP8 package information
Figure 30. TSSOP8 package mechanical drawing
Table 7. TSSOP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.2 0.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k 0° 8° 0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.1 0.004
Package information LM158, LM258, LM358
18/22 DocID2163 Rev 11
6.5 DFN8 2 x 2 package mechanical data
Figure 31. DFN8 2 x 2 package mechanical drawing
Table 8. DFN8 2 x 2 x 0.6 mm package mechanical data (pitch 0.5 mm)
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 0.51 0.55 0.60 0.020 0.022 0.024
A1 0.05 0.002
A3 0.15 0.006
b 0.18 0.25 0.30 0.007 0.010 0.012
D 1.85 2.00 2.15 0.073 0.079 0.085
D2 1.45 1.60 1.70 0.057 0.063 0.067
E 1.85 2.00 2.15 0.073 0.079 0.085
E2 0.75 0.90 1.00 0.030 0.035 0.039
e 0.50 0.020
L 0.50 0.020
ddd 0.08 0.003
DocID2163 Rev 11 19/22
LM158, LM258, LM358 Package information
22
Figure 32. DFN8 2 x 2 footprint recommendation
Ordering information LM158, LM258, LM358
20/22 DocID2163 Rev 11
7 Ordering information
Table 9. Order codes
Order code Temperature range Package Packaging Marking
LM158N
-55°C, +125°C
DIP8 Tube LM158N
LM158QT DFN8 2x2
Tape and reel
K4A
LM158DT SO8 158
LM258AN
LM258N
-40°C, +105°C
DIP8 Tube LM258A
LM258N
LM258ADT SO8
Tape and reel
258A
LM258AYDT(1) SO8
Automotive grade 258AY
LM258D
LM258DT SO8 Tube or tape and reel 258
Tape and reel
LM258PT
LM258APT TSSOP8 258
258A
LM258YPT(2)
LM258AYPT(2)
TSSOP8
Automotive grade
258Y
258AY
LM258AST
LM258ST MiniSO8 K408
K416
LM258QT DFN8 2x2 K4C
LM358N
LM358AN
0°C, +70°C
DIP8 Tube LM358N
LM358AN
LM358D
LM358DT SO8 Tube or tape and reel 358
LM358YDT(1) SO8
Automotive grade Tape and reel 358Y
LM358AD
LM358ADT SO8 Tube or tape and reel 358A
LM358PT
LM358APT TSSOP8
Tape and reel
358
358A
LM358YPT(2)
LM358AYPT(2)
TSSOP8
Automotive grade
358Y
358AY
LM358ST
LM358AST MiniSO8 K405
K404
LM358QT DFN8 2x2 K4E
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are qualified.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are on-going.
DocID2163 Rev 11 21/22
LM158, LM258, LM358 Revision history
22
8 Revision history
Table 10. Document revision history
Date Revision Changes
01-Jul- 2003 1 First release.
02-Jan-2005 2 Rthja and Tj parameters added in AMR Table 1 on page 4.
01-Jul-2005 3 ESD protection inserted in Table 1 on page 4.
05-Oct-2006 4 Added Figure 17: Phase margin vs. capacitive load.
30-Nov-2006 5 Added missing ordering information.
25-Apr-2007 6
Removed LM158A, LM258A and LM358A from document title.
Corrected error in MiniSO-8 package data. L1 is 0.004 inch.
Added automotive grade order codes in Section 7 on page 20.
12-Feb-2008 7
Corrected VCC max (30 V instead of 32 V) in operating conditions.
Changed presentation of electrical characteristics table.
Deleted Vopp parameter in electrical characteristics table.
Corrected miniSO-8 package information.
Corrected temperature range for automotive grade order codes.
Updated automotive grade footnotes in order codes table.
26-Aug-2008 8
Added limitations on input current in Table 1: Absolute maximum
ratings.
Corrected title for Figure 11.
Added E and L1 parameters in Table 5: SO8 package mechanical
data.
Changed Figure 30.
02-Sep-2011 9
In Chapter 6: Package information, added:
– DFN8 2 x 2 mm package mechanical drawing
– DFN8 2 x 2 mm recommended footprint
– DFN8 2 x 2 mm order codes.
06-Apr-2012 10 Removed order codes LM158YD, LM258AYD, LM258YD and
LM358YD from Table 9: Order codes.
11-Jun-2013 11
Table 9: Order codes: removed order codes LM158D, LM158YDT,
LM258YDT, and LM258AD; added automotive grade qualification to
order codes LM258ATDT and LM358YDT; updated marking for order
codes LM158DT and LM258D/LM258DT; updated temperature
range, packages, and packaging for several order codes.
LM158, LM258, LM358
22/22 DocID2163 Rev 11
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
L78
Positive voltage regulator ICs
Datasheet - production data
Features
• Output current up to 1.5 A
• Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18;
24 V
• Thermal overload protection
• Short circuit protection
• Output transition SOA protection
• 2 % output voltage tolerance (A version)
• Guaranteed in extended temperature range
(A version)
Description
The L78 series of three-terminal positive
regulators is available in TO-220, TO-220FP,
D²PAK and DPAK packages and several fixed
output voltages, making it useful in a wide range
of applications.
These regulators can provide local on-card
regulation, eliminating the distribution problems
associated with single point regulation. Each type
embeds internal current limiting, thermal shutdown
and safe area protection, making it
essentially indestructible. If adequate heat sinking
is provided, they can deliver over 1 A output
current. Although designed primarily as fixed
voltage regulators, these devices can be used
with external components to obtain adjustable
voltage and currents.
TO-220 TO-220FP
DPAK D²PAK
www.st.com
Contents Positive voltage regulator ICs
2/58 DocID2143 Rev 32
Contents
1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Design consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Packaging mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID2143 Rev 32 3/58
Positive voltage regulator ICs List of tables
58
List of tables
Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Electrical characteristics of L7805A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Electrical characteristics of L7806A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Electrical characteristics of L7808A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. Electrical characteristics of L7809A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Electrical characteristics of L7812A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Electrical characteristics of L7815A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Electrical characteristics of L7824A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 10. Electrical characteristics of L7805C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 11. Electrical characteristics of L7806C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12. Electrical characteristics of L7808C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Electrical characteristics of L7885C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 14. Electrical characteristics of L7809C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 15. Electrical characteristics of L7812C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 16. Electrical characteristics of L7815C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 17. Electrical characteristics of L7818C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 18. Electrical characteristics of L7824C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 19. TO-220 (dual gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 20. TO-220 SG (single gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 21. TO-220FP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 22. DPAK mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 23. D²PAK (SMD 2L STD-ST) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. DPAK and D²PAK tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 26. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 27. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
List of figures Positive voltage regulator ICs
4/58 DocID2143 Rev 32
List of figures
Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. DC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Ripple rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Fixed output regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. Current regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. Circuit for increasing output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. Adjustable output regulator (7 to 30 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12. 0.5 to 10 V regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. High current voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. High output current with short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 15. Tracking voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16. Split power supply (± 15 V - 1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 17. Negative output voltage circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 18. Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 19. High input voltage circuit (configuration 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 20. High input voltage circuit (configuration 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 21. High input and output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 22. Reducing power dissipation with dropping resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 23. Remote shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 24. Power AM modulator (unity voltage gain, IO £ 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 25. Adjustable output voltage with temperature compensation . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 26. Light controllers (VO(min) = VXX + VBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 27. Protection against input short-circuit with high capacitance loads . . . . . . . . . . . . . . . . . . . 34
Figure 28. Dropout voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 29. Peak output current vs. input/output differential voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 30. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 31. Output voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 32. Output impedance vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 33. Quiescent current vs. junction temp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 34. Load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 35. Line transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 36. Quiescent current vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 37. TO-220 (dual gauge) drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 38. TO-220 SG (single gauge) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 39. TO-220FP drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 40. DPAK drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 41. DPAK footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 42. D²PAK (SMD 2L STD-ST) type A drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 45. Tube for TO-220 (dual gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 46. Tube for TO-220 (single gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 47. Tape for DPAK and D2PAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 48. Reel for DPAK and D2PAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DocID2143 Rev 32 5/58
Positive voltage regulator ICs Diagram
58
1 Diagram
Figure 1. Block diagram
Pin configuration Positive voltage regulator ICs
6/58 DocID2143 Rev 32
2 Pin configuration
Figure 2. Pin connections (top view)
Figure 3. Schematic diagram
DocID2143 Rev 32 7/58
Positive voltage regulator ICs Maximum ratings
58
3 Maximum ratings
Note: Absolute maximum ratings are those values beyond which damage to the device may occur.
Functional operation under these condition is not implied.
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VI DC input voltage
for VO= 5 to 18 V 35
V
for VO= 20, 24 V 40
IO Output current Internally limited
PD Power dissipation Internally limited
TSTG Storage temperature range -65 to 150 °C
TOP Operating junction temperature range
for L78xxC, L78xxAC 0 to 125
°C
for L78xxAB -40 to 125
Table 2. Thermal data
Symbol Parameter D²PAK DPAK TO-220 TO-220FP Unit
RthJC Thermal resistance junction-case 3 8 5 5 °C/W
RthJA Thermal resistance junction-ambient 62.5 100 50 60 °C/W
Figure 4. Application circuits
Test circuits Positive voltage regulator ICs
8/58 DocID2143 Rev 32
4 Test circuits
Figure 5. DC parameter
Figure 6. Load regulation
Figure 7. Ripple rejection
DocID2143 Rev 32 9/58
Positive voltage regulator ICs Electrical characteristics
58
5 Electrical characteristics
VI = 10 V, IO = 1 A, TJ = 0 to 125 °C (L7805AC), TJ = -40 to 125 °C (L7805AB), unless
otherwise specified(a).
a. Minimum load current for regulation is 5 mA.
Table 3. Electrical characteristics of L7805A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 4.9 5 5.1 V
VO Output voltage IO = 5 mA to 1 A, VI = 7.5 to 18 V 4.8 5 5.2 V
VO Output voltage IO = 1 A, VI = 18 to 20 V, TJ = 25°C 4.8 5 5.2 V
ΔVO
(1) Line regulation
VI = 7.5 to 25 V, IO = 500 mA, TJ = 25°C 7 50 mV
VI = 8 to 12 V 10 50 mV
VI = 8 to 12 V, TJ = 25°C 2 25 mV
VI = 7.3 to 20 V, TJ = 25°C 7 50 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 8 50
Iq Quiescent current
TJ = 25°C 4.3 6 mA
6 mA
ΔIq Quiescent current change
VI = 8 to 23 V, IO = 500 mA 0.8 mA
VI = 7.5 to 20 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz, IO = 500 mA 68 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 17 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -1.1 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
10/58 DocID2143 Rev 32
VI = 11 V, IO = 1 A, TJ = 0 to 125 °C (L7806AC), TJ = -40 to 125 °C (L7806AB), unless
otherwise specified(b).
b. Minimum load current for regulation is 5 mA.
Table 4. Electrical characteristics of L7806A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 5.88 6 6.12 V
VO Output voltage IO = 5 mA to 1 A, VI = 8.6 to 19 V 5.76 6 6.24 V
VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.76 6 6.24 V
ΔVO
(1) Line regulation
VI = 8.6 to 25 V, IO = 500 mA, TJ = 25°C 9 60 mV
VI = 9 to 13 V 11 60 mV
VI = 9 to 13 V, TJ = 25°C 3 30 mV
VI = 8.3 to 21 V, TJ = 25°C 9 60 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.3 6 mA
6 mA
ΔIq Quiescent current change
VI = 9 to 24 V, IO = 500 mA 0.8 mA
VI = 8.6 to 21 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz, IO = 500 mA 65 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 17 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -0.8 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 11/58
Positive voltage regulator ICs Electrical characteristics
58
VI = 14 V, IO = 1 A, TJ = 0 to 125 °C (L7808AC), TJ = -40 to 125 °C (L7808AB), unless
otherwise specified(c).
c. Minimum load current for regulation is 5 mA.
Table 5. Electrical characteristics of L7808A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 7.84 8 8.16 V
VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 21 V 7.7 8 8.3 V
VO Output voltage IO = 1 A, VI = 21 to 23 V, TJ = 25°C 7.7 8 8.3 V
ΔVO
(1) Line regulation
VI = 10.6 to 25 V, IO = 500 mA,
TJ = 25°C
12 80 mV
VI = 11 to 17 V 15 80 mV
VI = 11 to 17 V, TJ = 25°C 5 40 mV
VI = 10.4 to 23 V, TJ = 25°C 12 80 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.3 6 mA
6 mA
ΔIq Quiescent current change
VI = 11 to 23 V, IO = 500 mA 0.8 mA
VI = 10.6 to 23 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection
VI = 11.5 to 21.5 V, f = 120 Hz,
IO = 500 mA
62 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 18 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -0.8 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
12/58 DocID2143 Rev 32
VI = 15 V, IO = 1 A, TJ = 0 to 125 °C (L7809AC), TJ = -40 to 125 °C (L7809AB), unless
otherwise specified(d).
d. Minimum load current for regulation is 5 mA.
Table 6. Electrical characteristics of L7809A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 8.82 9 9.18 V
VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 22 V 8.65 9 9.35 V
VO Output voltage IO = 1 A, VI = 22 to 24 V, TJ = 25°C 8.65 9 9.35 V
ΔVO
(1) Line regulation
VI = 10.6 to 25 V, IO = 500 mA,
TJ = 25°C
12 90 mV
VI = 11 to 17 V 15 90 mV
VI = 11 to 17 V, TJ = 25°C 5 45 mV
VI = 11.4 to 23 V, TJ = 25°C 12 90 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.3 6 mA
6 mA
ΔIq Quiescent current change
VI = 11 to 25 V, IO = 500 mA 0.8 mA
VI = 10.6 to 23 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection
VI = 11.5 to 21.5 V, f = 120 Hz,
IO = 500 mA
61 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 18 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -0.8 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 13/58
Positive voltage regulator ICs Electrical characteristics
58
VI = 19 V, IO = 1 A, TJ = 0 to 125 °C (L7812AC), TJ = -40 to 125 °C (L7812AB), unless
otherwise specified(e).
e. Minimum load current for regulation is 5 mA.
Table 7. Electrical characteristics of L7812A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 11.75 12 12.25 V
VO Output voltage IO = 5 mA to 1 A, VI = 14.8 to 25 V 11.5 12 12.5 V
VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.5 12 12.5 V
ΔVO
(1) Line regulation
VI = 14.8 to 30 V, IO = 500 mA,
TJ = 25°C
13 120 mV
VI = 16 to 12 V 16 120 mV
VI = 16 to 12 V, TJ = 25°C 6 60 mV
VI = 14.5 to 27 V, TJ = 25°C 13 120 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.4 6 mA
6 mA
ΔIq Quiescent current change
VI = 15 to 30 V, IO = 500 mA 0.8 mA
VI = 14.8 to 27 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz, IO = 500 mA 60 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 18 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -1 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
14/58 DocID2143 Rev 32
VI = 23 V, IO = 1 A, TJ = 0 to 125 °C (L7815AC), TJ = -40 to 125 °C (L7815AB), unless
otherwise specified(f).
f. Minimum load current for regulation is 5 mA.
Table 8. Electrical characteristics of L7815A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 14.7 15 15.3 V
VO Output voltage IO = 5 mA to 1 A, VI = 17.9 to 28 V 14.4 15 15.6 V
VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.4 15 15.6 V
ΔVO
(1) Line regulation
VI = 17.9 to 30 V, IO = 500 mA,
TJ = 25°C
13 150 mV
VI = 20 to 26 V 16 150 mV
VI = 20 to 26 V, TJ = 25°C 6 75 mV
VI = 17.5 to 30 V, TJ = 25°C 13 150 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.4 6 mA
6 mA
ΔIq Quiescent current change
VI = 17.5 to 30 V, IO = 500 mA 0.8 mA
VI = 17.5 to 30 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection
VI = 18.5 to 28.5 V, f = 120 Hz,
IO = 500 mA
58 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B = 10Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 19 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -1 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 15/58
Positive voltage regulator ICs Electrical characteristics
58
VI = 33 V, IO = 1 A, TJ = 0 to 125 °C (L7824AC), TJ = -40 to 125 °C (L7824AB), unless
otherwise specified(g).
g. Minimum load current for regulation is 5 mA.
Table 9. Electrical characteristics of L7824A
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 23.5 24 24.5 V
VO Output voltage IO = 5 mA to 1 A, VI = 27.3 to 37 V 23 24 25 V
VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 23 24 25 V
ΔVO
(1) Line regulation
VI = 27 to 38 V, IO = 500 mA, TJ = 25°C 31 240 mV
VI = 30 to 36 V 35 200 mV
VI = 30 to 36 V, TJ = 25°C 14 120 mV
VI = 26.7 to 38 V, TJ = 25°C 31 240 mV
ΔVO
(1) Load regulation
IO = 5 mA to 1 A 25 100
IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV
IO = 250 to 750 mA 10 50
Iq Quiescent current
TJ = 25°C 4.6 6 mA
6 mA
ΔIq Quiescent current change
VI = 27.3 to 38 V, IO = 500 mA 0.8 mA
VI = 27.3 to 38 V, TJ = 25°C 0.8 mA
IO = 5 mA to 1 A 0.5 mA
SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz, IO = 500 mA 54 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO
RO Output resistance f = 1 kHz 20 mΩ
Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
ΔVO/ΔT Output voltage drift -1.5 mV/°C
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
16/58 DocID2143 Rev 32
Refer to the test circuits, TJ = 0 to 125 °C, VI = 10 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(h).
h. Minimum load current for regulation is 5 mA.
Table 10. Electrical characteristics of L7805C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 4.8 5 5.2 V
VO Output voltage IO = 5 mA to 1 A, VI = 7 to 18 V 4.75 5 5.25 V
VO Output voltage IO = 1 A, VI = 18 to 20V, TJ = 25°C 4.75 5 5.25 V
ΔVO
(1) Line regulation
VI = 7 to 25 V, TJ = 25°C 3 100
mV
VI = 8 to 12 V, TJ = 25°C 1 50
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 100
mV
IO = 250 to 750 mA, TJ = 25°C 50
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 7 to 23 V 0.8
ΔVO/ΔT Output voltage drift IO = 5 mA -1.1 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 40 μV/VO
SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz 62 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 17 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.75 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 17/58
Positive voltage regulator ICs Electrical characteristics
58
Refer to the test circuits, TJ = 0 to 125 °C, VI = 11 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(i).
i. Minimum load current for regulation is 5 mA.
Table 11. Electrical characteristics of L7806C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 5.75 6 6.25 V
VO Output voltage IO = 5 mA to 1 A, VI = 8 to 19 V 5.7 6 6.3 V
VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.7 6 6.3 V
ΔVO
(1) Line regulation
VI = 8 to 25 V, TJ = 25°C 120
mV
VI = 9 to 13 V, TJ = 25°C 60
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 120
mV
IO = 250 to 750 mA, TJ = 25°C 60
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 8 to 24 V 1.3
ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 45 μV/VO
SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz 59 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 19 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.55 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
18/58 DocID2143 Rev 32
Refer to the test circuits, TJ = 0 to 125 °C, VI = 14 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(j).
j. Minimum load current for regulation is 5 mA.
Table 12. Electrical characteristics of L7808C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 7.7 8 8.3 V
VO Output voltage IO = 5 mA to 1 A, VI = 10.5 to 21 V 7.6 8 8.4 V
VO Output voltage IO = 1 A, VI = 21 to 25 V, TJ = 25°C 7.6 8 8.4 V
ΔVO
(1) Line regulation
VI = 10.5 to 25 V, TJ = 25°C 160
mV
VI = 11 to 17 V, TJ = 25°C 80
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 160
mV
IO = 250 to 750 mA, TJ = 25°C 80
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 10.5 to 25 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 52 μV/VO
SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz 56 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 16 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 19/58
Positive voltage regulator ICs Electrical characteristics
58
Refer to the test circuits, TJ = 0 to 125 °C, VI = 14.5 V, IO = 500 mA, CI = 0.33 μF,
CO = 0.1 μF unless otherwise specified(k).
k. Minimum load current for regulation is 5 mA.
Table 13. Electrical characteristics of L7885C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 8.2 8.5 8.8 V
VO Output voltage IO = 5 mA to 1 A, VI = 11 to 21.5 V 8.1 8.5 8.9 V
VO Output voltage IO = 1 A, VI = 21.5 to 26 V, TJ = 25°C 8.1 8.5 8.9 V
ΔVO
(1) Line regulation
VI = 11 to 27 V, TJ = 25°C 160
mV
VI = 11.5 to 17.5 V, TJ = 25°C 80
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 160
mV
IO = 250 to 750 mA, TJ = 25°C 80
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 11 to 26 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 55 μV/VO
SVR Supply voltage rejection VI = 12 to 22 V, f = 120 Hz 56 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 16 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
20/58 DocID2143 Rev 32
Refer to the test circuits, TJ = 0 to 125 °C, VI = 15 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(l).
l. Minimum load current for regulation is 5 mA.
Table 14. Electrical characteristics of L7809C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 8.64 9 9.36 V
VO Output voltage IO = 5 mA to 1 A, VI = 11.5 to 22 V 8.55 9 9.45 V
VO Output voltage IO = 1 A, VI = 22 to 26 V, TJ = 25°C 8.55 9 9.45 V
ΔVO
(1) Line regulation
VI = 11.5 to 26 V, TJ = 25°C 180
mV
VI = 12 to 18 V, TJ = 25°C 90
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 180
mV
IO = 250 to 750 mA, TJ = 25°C 90
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 11.5 to 26 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 70 μV/VO
SVR Supply voltage rejection VI = 12 to 23 V, f = 120 Hz 55 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 17 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.40 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 21/58
Positive voltage regulator ICs Electrical characteristics
58
Refer to the test circuits, TJ = 0 to 125 °C, VI = 19 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(m).
m. Minimum load current for regulation is 5 mA.
Table 15. Electrical characteristics of L7812C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 11.5 12 12.5 V
VO Output voltage IO = 5 mA to 1 A, VI = 14.5 to 25 V 11.4 12 12.6 V
VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.4 12 12.6 V
ΔVO
(1) Line regulation
VI = 14.5 to 30 V, TJ = 25°C 240
mV
VI = 16 to 22 V, TJ = 25°C 120
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 240
mV
IO = 250 to 750 mA, TJ = 25°C 120
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 14.5 to 30 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 75 μV/VO
SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz 55 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 18 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.35 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
22/58 DocID2143 Rev 32
Refer to the test circuits, TJ = 0 to 125 °C, VI = 23 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(n).
n. Minimum load current for regulation is 5 mA.
Table 16. Electrical characteristics of L7815C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 14.4 15 15.6 V
VO Output voltage IO = 5 mA to 1 A, VI = 17.5 to 28 V 14.25 15 15.75 V
VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.25 15 15.75 V
ΔVO
(1) Line regulation
VI = 17.5 to 30 V, TJ = 25°C 300
mV
VI = 20 to 26 V, TJ = 25°C 150
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 300
mV
IO = 250 to 750 mA, TJ = 25°C 150
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1A 0.5
mA
VI = 17.5 to 30 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C
eN Output noise voltage B = 10 Hz to 100kHz, TJ = 25°C 90 μV/VO
SVR Supply voltage rejection VI = 18.5 to 28.5 V, f = 120 Hz 54 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 19 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.23 A
Iscp Short circuit peak current TJ = 25°C 2.2 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 23/58
Positive voltage regulator ICs Electrical characteristics
58
Refer to the test circuits, TJ = 0 to 125 °C, VI = 26 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(o).
o. Minimum load current for regulation is 5 mA.
Table 17. Electrical characteristics of L7818C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 17.3 18 18.7 V
VO Output voltage IO = 5 mA to 1 A, VI = 21 to 31 V 17.1 18 18.9 V
VO Output voltage IO = 1 A, VI = 31 to 33 V, TJ = 25°C 17.1 18 18.9 V
ΔVO
(1) Line regulation
VI = 21 to 33 V, TJ = 25°C 360
mV
VI = 24 to 30 V, TJ = 25°C 180
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 360
mV
IO = 250 to 750 mA, TJ = 25°C 180
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 21 to 33 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 110 μV/VO
SVR Supply voltage rejection VI = 22 to 32 V, f = 120 Hz 53 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 22 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.20 A
Iscp Short circuit peak current TJ = 25°C 2.1 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
Electrical characteristics Positive voltage regulator ICs
24/58 DocID2143 Rev 32
Refer to the test circuits, TJ = 0 to 125 °C, VI = 33 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF
unless otherwise specified(p).
p. Minimum load current for regulation is 5 mA.
Table 18. Electrical characteristics of L7824C
Symbol Parameter Test conditions Min. Typ. Max. Unit
VO Output voltage TJ = 25°C 23 24 25 V
VO Output voltage IO = 5 mA to 1 A, VI = 27 to 37 V 22.8 24 25.2 V
VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 22.8 24 25.2 V
ΔVO
(1) Line regulation
VI = 27 to 38 V, TJ = 25°C 480
mV
VI = 30 to 36 V, TJ = 25°C 240
ΔVO
(1) Load regulation
IO = 5 mA to 1.5 A, TJ = 25°C 480
mV
IO = 250 to 750 mA, TJ = 25°C 240
Id Quiescent current TJ = 25°C 8 mA
ΔId Quiescent current change
IO = 5 mA to 1 A 0.5
mA
VI = 27 to 38 V 1
ΔVO/ΔT Output voltage drift IO = 5 mA -1.5 mV/°C
eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 170 μV/VO
SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz 50 dB
Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V
RO Output resistance f = 1 kHz 28 mΩ
Isc Short circuit current VI = 35 V, TJ = 25°C 0.15 A
Iscp Short circuit peak current TJ = 25°C 2.1 A
1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be
taken into account separately. Pulse testing with low duty cycle is used.
DocID2143 Rev 32 25/58
Positive voltage regulator ICs Application information
58
6 Application information
6.1 Design consideration
The L78 Series of fixed voltage regulators are designed with thermal overload protection
that shuts down the circuit when subjected to an excessive power overload condition,
internal short-circuit protection that limits the maximum current the circuit will pass, and
output transistor safe-area compensation that reduces the output short-circuit current as the
voltage across the pass transistor is increased. In many low current applications,
compensation capacitors are not required. However, it is recommended that the regulator
input be bypassed with capacitor if the regulator is connected to the power supply filter with
long lengths, or if the output load capacitance is large. An input bypass capacitor should be
selected to provide good high frequency characteristics to insure stable operation under all
load conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal
impedance at high frequencies should be chosen. The bypass capacitor should be mounted
with the shortest possible leads directly across the regulators input terminals. Normally good
construction techniques should be used to minimize ground loops and lead resistance drops
since the regulator has no external sense lead.
The addition of an operational amplifier allows adjustment to higher or intermediate values
while retaining regulation characteristics. The minimum voltage obtained with the
arrangement is 2 V greater than the regulator voltage.
The circuit of Figure 13 can be modified to provide supply protection against short circuit by
adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current
sensing PNP must be able to handle the short circuit current of the three terminal regulator
Therefore a four ampere plastic power transistor is specified.
Figure 8. Fixed output regulator
1. Although no output capacitor is need for stability, it does improve transient response.
2. Required if regulator is located an appreciable distance from power supply filter.
Application information Positive voltage regulator ICs
26/58 DocID2143 Rev 32
Figure 9. Current regulator
Figure 10. Circuit for increasing output voltage
DocID2143 Rev 32 27/58
Positive voltage regulator ICs Application information
58
Figure 11. Adjustable output regulator (7 to 30 V)
Figure 12. 0.5 to 10 V regulator
VO=VXXR4/R1
Application information Positive voltage regulator ICs
28/58 DocID2143 Rev 32
Figure 13. High current voltage regulator
Figure 14. High output current with short circuit protection
DocID2143 Rev 32 29/58
Positive voltage regulator ICs Application information
58
* Against potential latch-up problems.
Figure 15. Tracking voltage regulator
Figure 16. Split power supply (± 15 V - 1 A)
Application information Positive voltage regulator ICs
30/58 DocID2143 Rev 32
Figure 17. Negative output voltage circuit
Figure 18. Switching regulator
Figure 19. High input voltage circuit (configuration 1)
DocID2143 Rev 32 31/58
Positive voltage regulator ICs Application information
58
Figure 20. High input voltage circuit (configuration 2)
Figure 21. High input and output voltage
Figure 22. Reducing power dissipation with dropping resistor
Application information Positive voltage regulator ICs
32/58 DocID2143 Rev 32
Note: The circuit performs well up to 100 kHz.
Figure 23. Remote shutdown
Figure 24. Power AM modulator (unity voltage gain, IO ≤ 0.5)
DocID2143 Rev 32 33/58
Positive voltage regulator ICs Application information
58
Note: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the
temperature. C allows a slow rise time of the VO.
Figure 25. Adjustable output voltage with temperature compensation
Figure 26. Light controllers (VO(min) = VXX + VBE)
Application information Positive voltage regulator ICs
34/58 DocID2143 Rev 32
Note: Application with high capacitance loads and an output voltage greater than 6 volts need an
external diode (see Figure 22 on page 31) to protect the device against input short circuit. In
this case the input voltage falls rapidly while the output voltage decrease slowly. The
capacitance discharges by means of the base-emitter junction of the series pass transistor
in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The
external diode by-passes the current from the IC to ground.
Figure 27. Protection against input short-circuit with high capacitance loads
DocID2143 Rev 32 35/58
Positive voltage regulator ICs Typical performance
58
7 Typical performance
Figure 28. Dropout voltage vs. junction
temperature
Figure 29. Peak output current vs. input/output
differential voltage
Figure 30. Supply voltage rejection vs.
frequency
Figure 31. Output voltage vs. junction
temperature
Typical performance Positive voltage regulator ICs
36/58 DocID2143 Rev 32
Figure 32. Output impedance vs. frequency Figure 33. Quiescent current vs. junction temp.
Figure 34. Load transient response Figure 35. Line transient response
Figure 36. Quiescent current vs. input voltage
DocID2143 Rev 32 37/58
Positive voltage regulator ICs Package mechanical data
58
8 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package mechanical data Positive voltage regulator ICs
38/58 DocID2143 Rev 32
Figure 37. TO-220 (dual gauge) drawing
DocID2143 Rev 32 39/58
Positive voltage regulator ICs Package mechanical data
58
Table 19. TO-220 (dual gauge) mechanical data
Dim.
mm
Min. Typ. Max.
A 4.40 4.60
b 0.61 0.88
b1 1.14 1.70
c 0.48 0.70
D 15.25 15.75
D1 1.27
E 10 10.40
e 2.40 2.70
e1 4.95 5.15
F 1.23 1.32
H1 6.20 6.60
J1 2.40 2.72
L 13 14
L1 3.50 3.93
L20 16.40
L30 28.90
∅P 3.75 3.85
Q 2.65 2.95
Package mechanical data Positive voltage regulator ICs
40/58 DocID2143 Rev 32
Figure 38. TO-220 SG (single gauge) drawing
DocID2143 Rev 32 41/58
Positive voltage regulator ICs Package mechanical data
58
Table 20. TO-220 SG (single gauge) mechanical data
Dim.
mm
Min. Typ. Max.
A 4.40 4.60
b 0.61 0.88
b1 1.14 1.70
c 0.48 0.70
D 15.25 15.75
E 10 10.40
e 2.40 2.70
e1 4.95 5.15
F 0.51 0.60
H1 6.20 6.60
J1 2.40 2.72
L 13 14
L1 3.50 3.93
L20 16.40
L30 28.90
∅P 3.75 3.85
Q 2.65 2.95
Package mechanical data Positive voltage regulator ICs
42/58 DocID2143 Rev 32
Figure 39. TO-220FP drawing
7012510A-H
DocID2143 Rev 32 43/58
Positive voltage regulator ICs Package mechanical data
58
Table 21. TO-220FP mechanical data
Dim.
mm.
Min. Typ. Max.
A 4.40 4.60
B 2.5 2.7
D 2.5 2.75
E 0.45 0.70
F 0.75 1
F1 1.15 1.50
F2 1.15 1.50
G 4.95 5.2
G1 2.4 2.7
H 10.0 10.40
L2 16
L3 28.6 30.6
L4 9.8 10.6
L5 2.9 3.6
L6 15.9 16.4
L7 9 9.3
DIA. 3 3.2
Package mechanical data Positive voltage regulator ICs
44/58 DocID2143 Rev 32
Figure 40. DPAK drawing
0068772_K
DocID2143 Rev 32 45/58
Positive voltage regulator ICs Package mechanical data
58
Table 22. DPAK mechanical data
Dim.
mm
Min. Typ. Max.
A 2.20 2.40
A1 0.90 1.10
A2 0.03 0.23
b 0.64 0.90
b4 5.20 5.40
c 0.45 0.60
c2 0.48 0.60
D 6.00 6.20
D1 5.10
E 6.40 6.60
E1 4.70
e 2.28
e1 4.40 4.60
H 9.35 10.10
L 1.00 1.50
(L1) 2.80
L2 0.80
L4 0.60 1.00
R 0.20
V2 0° 8°
Package mechanical data Positive voltage regulator ICs
46/58 DocID2143 Rev 32
Figure 41. DPAK footprint (q)
q. All dimensions are in millimeters
Footprint_REV_K
DocID2143 Rev 32 47/58
Positive voltage regulator ICs Package mechanical data
58
Figure 42. D²PAK (SMD 2L STD-ST) type A drawing
0079457_T
Package mechanical data Positive voltage regulator ICs
48/58 DocID2143 Rev 32
Table 23. D²PAK (SMD 2L STD-ST) mechanical data
Dim.
mm
Min. Typ. Max.
A 4.40 4.60
A1 0.03 0.23
b 0.70 0.93
b2 1.14 1.70
c 0.45 0.60
c2 1.23 1.36
D 8.95 9.35
D1 7.50
E 10 10.40
E1 8.50
e 2.54
e1 4.88 5.28
H 15 15.85
J1 2.49 2.69
L 2.29 2.79
L1 1.27 1.40
L2 1.30 1.75
R 0.4
V2 0° 8°
DocID2143 Rev 32 49/58
Positive voltage regulator ICs Package mechanical data
58
Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing
0079457_T
Package mechanical data Positive voltage regulator ICs
50/58 DocID2143 Rev 32
Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data
Dim.
mm
Min. Typ. Max.
A 4.30 4.70
A1 0 0.20
b 0.70 0.90
b2 1.17 1.37
c 0.45 0.50 0.60
c2 1.25 1.30 1.40
D 9 9.20 9.40
D1 7.50
E 10 10.40
E1 8.50
e 2.54
e1 4.88 5.08
H 15 15.30
J1 2.20 2.60
L 1.79 2.79
L1 1 1.40
L2 1.20 1.60
R 0.30
V2 0° 3°
DocID2143 Rev 32 51/58
Positive voltage regulator ICs Package mechanical data
58
Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint
Packaging mechanical data Positive voltage regulator ICs
52/58 DocID2143 Rev 32
9 Packaging mechanical data
Figure 45. Tube for TO-220 (dual gauge) (mm.)
Figure 46. Tube for TO-220 (single gauge) (mm.)
DocID2143 Rev 32 53/58
Positive voltage regulator ICs Packaging mechanical data
58
Figure 47. Tape for DPAK and D2PAK
Figure 48. Reel for DPAK and D2PAK
A0 P1 D1
P0
F
W
E
D
B0
K0
T
User direction of feed
P2
10 pitches cumulative
tolerance on tape +/- 0.2 mm
User direction of feed
R
Bending radius
B1
For machine ref. only
including draft and
radii concentric around B0
AM08852v1
Top cover
tape
A
D
B
Full radius G measured at hub
C
N
REEL DIMENSIONS
40mm min.
Access hole
At sl ot location
T
Tape slot
in core for
tape start 25 mm min.
width
AM08851v2
Packaging mechanical data Positive voltage regulator ICs
54/58 DocID2143 Rev 32
Table 25. DPAK and D²PAK tape and reel mechanical data
Tape Reel
Dim.
mm
Dim.
mm
Min. Max. Min. Max.
A0 6.8 7 A 330
B0 10.4 10.6 B 1.5
B1 12.1 C 12.8 13.2
D 1.5 1.6 D 20.2
D1 1.5 G 16.4 18.4
E 1.65 1.85 N 50
F 7.4 7.6 T 22.4
K0 2.55 2.75
P0 3.9 4.1 Base qty. 2500
P1 7.9 8.1 Bulk qty. 2500
P2 1.9 2.1
R 40
T 0.25 0.35
W 15.7 16.3
DocID2143 Rev 32 55/58
Positive voltage regulator ICs Order codes
58
10 Order codes
Table 26. Order codes
Part
numbers
Order codes
TO-220
(single gauge)
TO-220
(dual gauge)
DPAK D²PAK TO-220FP
Output
voltages
L7805C L7805CV L7805CDT-TR L7805CD2T-TR L7805CP 5 V
L7805CV-DG 5 V
L7805AB L7805ABV L7805ABD2T-TR L7805ABP 5 V
L7805ABV-DG 5 V
L7805AC L7805ACV L7805ACD2T-TR L7805ACP 5 V
L7805ACV-DG 5 V
L7806C L7806CV L7806CD2T-TR 6 V
L7806CV-DG 6 V
L7806AB L7806ABV L7806ABD2T-TR 6 V
L7806ABV-DG 6 V
L7806AC L7806ACV 6 V
L7806ACV-DG 6 V
L7808C L7808CV L7808CD2T-TR 8 V
L7808CV-DG 8 V
L7808AB L7808ABV L7808ABD2T-TR 8 V
L7808ABV-DG 8 V
L7808AC L7808ACV 8 V
L7808ACV-DG 8 V
L7885C L7885CV 8.5 V
L7809C L7809CV L7809CD2T-TR L7809CP 9 V
L7809CV-DG 9 V
L7809AB L7809ABV L7809ABD2T-TR 9 V
L7809ABV-DG 9 V
L7809AC L7809ACV 9 V
L7812C L7812CV L7812CD2T-TR L7812CP 12 V
L7812CV-DG 12 V
L7812AB L7812ABV L7812ABD2T-TR 12 V
L7812ABV-DG 12 V
L7812AC L7812ACV L7812ACD2T-TR 12 V
L7812ACV-DG 12 V
Order codes Positive voltage regulator ICs
56/58 DocID2143 Rev 32
L7815C L7815CV L7815CD2T-TR L7815CP 15 V
L7815CV-DG 15 V
L7815AB L7815ABV L7815ABD2T-TR 15 V
L7815ABV-DG 15 V
L7815AC L7815ACV L7815ACD2T-TR 15 V
L7815ACV-DG 15 V
L7818C L7818CV 18 V
L7818CV-DG 18 V
L7824C L7824CV L7824CD2T-TR L7824CP 24 V
L7824CV-DG 24 V
L7824AB L7824ABV 24 V
L7824ABV-DG 24 V
L7824AC L7824ACV 24 V
L7824ACV-DG 24 V
Table 26. Order codes (continued)
Part
numbers
Order codes
TO-220
(single gauge)
TO-220
(dual gauge)
DPAK D²PAK TO-220FP
Output
voltages
DocID2143 Rev 32 57/58
Positive voltage regulator ICs Revision history
58
11 Revision history
Table 27. Document revision history
Date Revision Changes
21-Jun-2004 12 Document updating.
03-Aug-2006 13 Order codes has been updated and new template.
19-Jan-2007 14 D²PAK mechanical data has been updated and add footprint data.
31-May-2007 15 Order codes has been updated.
29-Aug-2007 16 Added Table 1 in cover page.
11-Dec-2007 17 Modified: Table 26.
06-Feb-2008 18
Added: TO-220 mechanical data Figure 38 on page 38 , Figure 39 on page 39,
and Table 23 on page 37. Modified: Table 26 on page 55.
18-Mar-2008 19
Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel
DPAK mechanical data on page 52. Modified: Table 26 on page 55.
26-Jan-2010 20
Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on
page 38 and Figure 39 on page 39, Figure 45 on page 52 and Figure 46 on
page 52.
04-Mar-2010 21 Added notes Figure 38 on page 38.
08-Sep-2010 22 Modified Table 26 on page 55.
23-Nov-2010 23 Added: TJ = 25 °C test condition in ΔVO on Table 3, 4, 5, 6, 7, 8 and Table 9.
16-Sep-2011 24 Modified title on page 1.
30-Nov-2011 25
Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG
and L7815CV-DG Table 26 on page 55.
08-Feb-2012 26
Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CVDG,
L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG Table 26 on
page 55.
27-Mar-2012 27 Added: order codes L7812ABV-DG, L7815ABV-DG Table 26 on page 55.
27-Apr-2012 28
Modified: VI = 10.4 to 23 V ==> VI = 11.4 to 23 V test conditon value
Line regulation Table 6 on page 12.
10-May-2012 29
Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG,
L7824ABV-DG and L7824ACV-DG Table 26 on page 55.
19-Sep-2012 30 Modified load regulation units from V to mV in Table 3 to Table 9.
12-Mar-2013 31 Modified: VO output voltage at 25 °C min. value 14.4 V Table 16 on page 22.
04-Mar-2014 32
Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78.
Removed TO-3 package.
Updated the description in cover page, Section 2: Pin configuration, Section 3:
Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics,
Section 6: Application information, Section 8: Package mechanical data and
Table 26: Order codes.
Added Section 9: Packaging mechanical data.
Minor text changes.
Positive voltage regulator ICs
58/58 DocID2143 Rev 32
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
STM32F405xx
STM32F407xx
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Datasheet - production data
Features
• Core: ARM 32-bit Cortex™-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 168 MHz,
memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
• Memories
– Up to 1 Mbyte of Flash memory
– Up to 192+4 Kbytes of SRAM including 64-
Kbyte of CCM (core coupled memory) data
RAM
– Flexible static memory controller
supporting Compact Flash, SRAM,
PSRAM, NOR and NAND memories
• LCD parallel interface, 8080/6800 modes
• Clock, reset and supply management
– 1.8 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
• 3×12-bit, 2.4 MSPS A/D converters: up to 24
channels and 7.2 MSPS in triple interleaved
mode
• 2×12-bit D/A converters
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Up to 17 timers: up to twelve 16-bit and two 32-
bit timers up to 168 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
• Debug mode
– Serial wire debug (SWD) & JTAG
interfaces
– Cortex-M4 Embedded Trace Macrocell™
• Up to 140 I/O ports with interrupt capability
– Up to 136 fast I/Os up to 84 MHz
– Up to 138 5 V-tolerant I/Os
• Up to 15 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO
7816 interface, LIN, IrDA, modem control)
– Up to 3 SPIs (42 Mbits/s), 2 with muxed
full-duplex I2S to achieve audio class
accuracy via internal audio PLL or external
clock
– 2 × CAN interfaces (2.0B Active)
– SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
• 8- to 14-bit parallel camera interface up to
54 Mbytes/s
• True random number generator
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
FBGA
UFBGA176
(10 × 10 mm)
LQFP176 (24 × 24 mm)
WLCSP90
Table 1. Device summary
Reference Part number
STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG,
STM32F405OG, STM32F405OE
STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG,
STM32F407VE, STM32F407ZE, STM32F407IE
www.st.com
Contents STM32F405xx, STM32F407xx
2/185 DocID022152 Rev 4
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19
2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20
2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22
2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28
2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 28
2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 33
2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35
2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35
2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID022152 Rev 4 3/185
STM32F405xx, STM32F407xx Contents
2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36
2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36
2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.35 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.37 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.38 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.39 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 80
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 80
5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 80
5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 102
Contents STM32F405xx, STM32F407xx
4/185 DocID022152 Rev 4
5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 108
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 155
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 156
5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 171
A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 173
A.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
DocID022152 Rev 4 5/185
STM32F405xx, STM32F407xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13
Table 3. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 7. STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 8. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 10. STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 79
Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 80
Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 83
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 88
Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 89
Table 26. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 27. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 31. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 33. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 35. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 36. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 37. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 38. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 39. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 40. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 41. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 42. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 43. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 44. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 45. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 46. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
List of tables STM32F405xx, STM32F407xx
6/185 DocID022152 Rev 4
Table 47. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 48. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 49. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 50. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 51. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 52. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 53. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 55. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 56. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 57. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 58. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 59. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 60. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 61. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 62. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 63. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 64. Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 66. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 70. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 71. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 72. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 73. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 74. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 138
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 139
Table 77. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 78. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 79. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 80. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 82. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 83. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 84. Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 85. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 86. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 87. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 88. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 89. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 159
Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 160
Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 162
Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 164
Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 167
DocID022152 Rev 4 7/185
STM32F405xx, STM32F407xx List of tables
Table 96. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 97. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 98. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
List of figures STM32F405xx, STM32F407xx
8/185 DocID022152 Rev 4
List of figures
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64. . . . . . . . . . . . 15
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. STM32F40x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24
Figure 8. PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 13. STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 14. STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 15. STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 16. STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 17. STM32F40x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18. STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 24. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 85
Figure 25. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 85
Figure 26. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 86
Figure 27. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 86
Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 89
Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 90
Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 34. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 39. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
DocID022152 Rev 4 9/185
STM32F405xx, STM32F407xx List of figures
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 44. I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 124
Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 133
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 133
Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 138
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 139
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 148
Figure 64. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 148
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 150
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 151
Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 154
Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154
Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 75. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 159
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 160
Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 162
Figure 80. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 164
Figure 82. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 167
Figure 85. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 86. USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 87. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 171
List of figures STM32F405xx, STM32F407xx
10/185 DocID022152 Rev 4
Figure 88. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 172
Figure 89. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 90. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 91. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 92. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
DocID022152 Rev 4 11/185
STM32F405xx, STM32F407xx Introduction
1 Introduction
This datasheet provides the description of the STM32F405xx and STM32F407xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the
STM32F4xx reference manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming
manual (PM0214) available from www.st.com.
Description STM32F405xx, STM32F407xx
12/185 DocID022152 Rev 4
2 Description
The STM32F405xx and STM32F407xx family is based on the high-performance ARM®
Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM singleprecision
data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security. The
Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document.
The STM32F405xx and STM32F407xx family incorporates high-speed embedded
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG). They also feature standard and advanced
communication interfaces.
• Up to three I2Cs
• Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
• Four USARTs plus two UARTs
• An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
• Two CANs
• An SDIO/MMC interface
• Ethernet and the camera interface available on STM32F407xx devices only.
New advanced peripherals include an SDIO, an enhanced flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera
interface for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features
and peripheral counts for the list of peripherals available on each part number.
The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the
device operates in the 0 to 70 °C temperature range using an external power supply
supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F405xx and STM32F407xx family offers devices in various packages ranging
from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F405xx and STM32F407xx microcontroller family suitable
for a wide range of applications:
• Motor drive and application control
• Medical equipment
• Industrial applications: PLC, inverters, circuit breakers
• Printers, and scanners
• Alarm systems, video intercom, and HVAC
• Home audio appliances
STM32F405xx, STM32F407xx Description
DocID022152 Rev 4 13/185
Figure 5 shows the general block diagram of the device family.
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts
Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix
Flash memory in
Kbytes 1024 512 512 1024 512 1024 512 1024
SRAM in
Kbytes
System 192(112+16+64)
Backup 4
FSMC memory
controller No Yes(1)
Ethernet No Yes
Timers
Generalpurpose
10
Advanced
-control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number
generator Yes
Description STM32F405xx, STM32F407xx
14/185 DocID022152 Rev 4
Communi
cation
interfaces
SPI / I2S 3/2 (full duplex)(2)
I2C 3
USART/
UART 4/2
USB
OTG FS Yes
USB
OTG HS Yes
CAN 2
SDIO Yes
Camera interface No Yes
GPIOs 51 72 82 114 72 82 114 140
12-bit ADC
Number of channels
3
16 13 16 24 13 16 24 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU
frequency 168 MHz
Operating voltage 1.8 to 3.6 V(3)
Operating
temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64 WLCSP90 LQFP100 LQFP144 WLCSP90 LQFP100 LQFP144 UFBGA176
LQFP176
1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this
package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts
Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix
DocID022152 Rev 4 15/185
STM32F405xx, STM32F407xx Description
2.1 Full compatibility throughout the family
The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto-
pin, software and feature compatible with the STM32F2xx devices, allowing the user to
try different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F405xx and STM32F407xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F405xx and STM32F407xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x
family remains simple as only a few pins are impacted.
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the
STM32F40x, STM32F2xxx, and STM32F10xxx families.
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64
31
1 16
17
32
48 33
64
49 47
VSS
VSS
VSS
VSS
0 Ω resistor or soldering bridge
present for the STM32F10xx
configuration, not present in the
STM32F4xx configuration
ai18489
Description STM32F405xx, STM32F407xx
16/185 DocID022152 Rev 4
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package
20
49
1 25
26
50
75 51
100
76 73
19
VSS
VSS
VDD
VSS
VSS
VSS
0 ΩΩ resistor or soldering bridge
present for the STM32F10xxx
configuration, not present in the
STM32F4xx configuration
ai18488c
99 (VSS)
VDD VSS
Two 0 Ω resistors connected to:
- VSS for the STM32F10xx
- VSS for the STM32F4xx
VSS for STM32F10xx
VDD for STM32F4xx
- VSS, VDD or NC for the STM32F2xx
ai18487d
31
71
1 36
37
72
108 73
144
109
VSS
0 Ω resistor or soldering bridge
present for the STM32F10xx
configuration, not present in the
STM32F4xx configuration
106
VSS
30
Two 0 Ω resistors connected to:
- VSS for the STM32F10xx
- VDD or signal from external power supply supervisor for the STM32F4xx
VDD VSS
VSS
VSS
143 (PDR_ON)
VDD VSS
VSS for STM32F10xx
VDD for STM32F4xx
- VSS, VDD or NC for the STM32F2xx
Signal from
external power
supply
supervisor
DocID022152 Rev 4 17/185
STM32F405xx, STM32F407xx Description
Figure 4. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and BGA176 packages
MS19919V3
1 44
45
88
132 89
176
133
Two 0 Ω resistors connected to:
- VSS, VDD or NC for the STM32F2xx
- VDD or signal from external power supply supervisor for the STM32F4xx
171 (PDR_ON)
VDDVSS
Signal from external
power supply
supervisor
Description STM32F405xx, STM32F407xx
18/185 DocID022152 Rev 4
2.2 Device overview
Figure 5. STM32F40x block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to
APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration
in the RCC_DCKCFGR register.
2. The camera interface and ethernet are available only on STM32F407xx devices.
MS19920V3
GPIO PORT A
AHB/APB2
140 AF
PA[15:0]
TIM1 / PWM
4 compl. channels (TIM1_CH1[1:4]N,
4 channels (TIM1_CH1[1:4]ETR,
BKIN as AF
RX, TX, CK,
CTS, RTS as AF
MOSI, MISO,
SCK, NSS as AF
APB 1 30M Hz
8 analog inputs common
to the 3 ADCs
VDDREF_ADC
MOSI/SD, MISO/SD_ext, SCK/CK
NSS/WS, MCK as AF
TX, RX
DAC1_OUT
as AF
ITF
WWDG
4 KB BKPSRAM
RTC_AF1
OSC32_IN
OSC32_OUT
VDDA, VSSA
NRST
16b
SDIO / MMC D[7:0]
CMD, CK as AF
VBAT = 1.65 to 3.6 V
DMA2
SCL, SDA, SMBA as AF
JTAG & SW
ARM Cortex-M4
168 MHz
ETM NVIC
MPU
TRACECLK
TRACED[3:0]
Ethernet MAC
10/100
DMA/
FIFO
MII or RMII as AF
MDIO as AF
USB
OTG HS
DP, DM
ULPI:CK, D[7:0], DIR, STP, NXT
ID, VBUS, SOF
DMA2
8 Streams
FIFO
ART ACCEL/
CACHE
SRAM 112 KB
CLK, NE [3:0], A[23:0],
D[31:0], OEN, WEN,
NBL[3:0], NL, NREG,
NWAIT/IORDY, CD
INTN, NIIS16 as AF
RNG
Camera
interface
HSYNC, VSYNC
PUIXCLK, D[13:0]
PHY
USB
OTG FS
DP
DM
ID, VBUS, SOF
FIFO
AHB1 168 MHz
PHY
FIFO
@VDDA
@VDDA
POR/PDR
BOR
Supply
supervision
@VDDA
PVD
Int
POR
reset
XTAL 32 kHz
MAN AGT
RTC
RC HS
FCLK
RC LS
PWR
interface
IWDG
@VBAT
AWU
Reset &
clock
control
P L L1&2
PCLKx
VDD = 1.8 to 3.6 V
VSS
VCAP1, VCPA2
Voltage
regulator
3.3 to 1.2 V
VDD Power managmt
Backup register RTC_AF1
AHB bus-matrix 8S7M
LS
2 channels as AF
DAC1
DAC2
Flash
up to
1 MB
SRAM, PSRAM, NOR Flash,
PC Card (ATA), NAND Flash
External memory
controller (FSMC)
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
TIM12
TIM13
TIM14
USART2
USART3
UART4
UART5
SP3/I2S3
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
bxCAN1
bxCAN2
SPI1
EXT IT. WKUP
D-BUS
FIFO
FPU
APB142 MHz (max)
SRAM 16 KB
CCM data RAM 64 KB
AHB3
AHB2 168 MHz
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
I-BUS
S-BUS
DMA/
FIFO
DMA1
8 Streams
FIFO
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
PH[15:0]
PI[11:0]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT F
GPIO PORT G
GPIO PORT H
GPIO PORT I
TIM8 / PWM 16b
4 compl. channels (TIM1_CH1[1:4]N,
4 channels (TIM1_CH1[1:4]ETR,
BKIN as AF
1 channel as AF
1 channel as AF
RX, TX, CK,
CTS, RTS as AF
8 analog inputs common
to the ADC1 & 2
8 analog inputs for ADC3
DAC2_OUT
as AF
16b
16b
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI/SD, MISO/SD_ext, SCK/CK
NSS/WS, MCK as AF
TX, RX
RX, TX as AF
RX, TX as AF
RX, TX as AF
CTS, RTS as AF
RX, TX as AF
CTS, RTS as AF
1 channel as AF
smcard
irDA
smcard
irDA
16b
16b
16b
1 channel as AF
2 channels as AF
32b
16b
16b
32b
4 channels
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
DMA1
AHB/APB1
LS
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
FIFO
SP2/I2S2
NIORD, IOWR, INT[2:3]
ADC3
ADC2
ADC1
Temperature sensor
IF
TIM9 16b
TIM10 16b
TIM11 16b
smcard
irDA USART1
irDA smcard USART6
APB2 84 MHz
@VDD
@VDD
@VDDA
DocID022152 Rev 4 19/185
STM32F405xx, STM32F407xx Description
2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software.
Figure 5 shows the general block diagram of the STM32F40x family.
Note: Cortex-M4F is binary compatible with Cortex-M3.
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard
ARM® Cortex™-M4F processors. It balances the inherent performance advantage
of the ARM Cortex-M4F over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor full 210 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 168 MHz.
2.2.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime
operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
2.2.4 Embedded Flash memory
The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for
storing programs and data.
Description STM32F405xx, STM32F407xx
20/185 DocID022152 Rev 4
2.2.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6 Embedded SRAM
All STM32F40x products embed:
• Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
• 4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.2.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DocID022152 Rev 4 21/185
STM32F405xx, STM32F407xx Description
Figure 6. Multi-AHB matrix
2.2.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
• SPI and I2S
• I2C
• USART
• General-purpose, basic and advanced-control timers TIMx
• DAC
• SDIO
• Camera interface (DCMI)
• ADC.
ARM
Cortex-M4
GP
DMA1
GP
DMA2
MAC
Ethernet
USB OTG
HS
Bus matrix-S
S0 S1 S2 S3 S4 S5 S6 S7
ICODE
DCODE
ACCEL
Flash
memory
SRAM1
112 Kbyte
SRAM2
16 Kbyte
AHB1
peripherals
AHB2
FSMC
Static MemCtl
M0
M1
M2
M3
M4
M5
M6
I-bus
D-bus
S-bus
DMA_PI
DMA_MEM1
DMA_MEM2
DMA_P2
ETHERNET_M
USB_HS_M
ai18490c
CCM data RAM
64-Kbyte
APB1
APB2
peripherals
Description STM32F405xx, STM32F407xx
22/185 DocID022152 Rev 4
2.2.9 Flexible static memory controller (FSMC)
The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,
NOR Flash and NAND Flash.
Functionality overview:
• Write FIFO
• Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective
graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.2.10 Nested vectored interrupt controller (NVIC)
The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16
interrupt lines of the Cortex™-M4F.
• Closely coupled NVIC gives low-latency interrupt processing
• Interrupt entry vector table address passed directly to the core
• Allows early processing of interrupts
• Processing of late arriving, higher-priority interrupts
• Support tail chaining
• Processor state automatically saved
• Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.2.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL
DocID022152 Rev 4 23/185
STM32F405xx, STM32F407xx Description
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
buses is 168 MHz while the maximum frequency of the high-speed APB domains is
84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
2.2.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
• Boot from user Flash
• Boot from system memory
• Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14 Power supply schemes
• VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
• VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
• VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 21: Power supply scheme for more details.
Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced
temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
Refer to Table 2 in order to identify the packages supporting this option.
2.2.15 Power supply supervisor
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On all other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
threshold levels, or to disable BOR permanently. Three BOR thresholds are available
through option bytes. The device remains in reset mode when VDD is below a specified
threshold, VPOR/PDR or VBOR, without the need for an external reset circuit.
Description STM32F405xx, STM32F407xx
24/185 DocID022152 Rev 4
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 7: Power supply supervisor
interconnection with internal reset OFF.
Figure 7. Power supply supervisor interconnection with internal reset OFF
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
The VDD specified threshold, below which the device must be maintained under reset, is
1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the
0 to 70 °C temperature range.
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
• The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
• The brownout reset (BOR) circuitry is disabled
• The embedded programmable voltage detector (PVD) is disabled
• VBAT functionality is no more available and VBAT pin should be connected to VDD
All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset
through the PDR_ON signal.
MS31383V3
NRST
VDD
PDR_ON
External VDD power supply supervisor
Ext. reset controller active when
VDD < 1.7 V or 1.8 V (1)
VDD
Application reset
signal (optional)
DocID022152 Rev 4 25/185
STM32F405xx, STM32F407xx Description
Figure 8. PDR_ON and NRST control with internal reset OFF
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
2.2.16 Voltage regulator
The regulator has four operating modes:
• Regulator ON
– Main regulator mode (MR)
– Low power regulator (LPR)
– Power-down
• Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when regulator is ON:
• MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
Refer to Table 14: General operating conditions.
• LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
• Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost)
MS19009V6
VDD
time
PDR = 1.7 V or 1.8 V (1)
time
NRST
PDR_ON PDR_ON
Reset by other source than
power supply supervisor
Description STM32F405xx, STM32F407xx
26/185 DocID022152 Rev 4
Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to
Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions.
All packages have regulator ON feature.
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not manage internally, the external voltage value must
be aligned with the targetted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
Refer to Figure 21: Power supply scheme
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode the following features are no more supported:
• PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
• As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
Figure 9. Regulator OFF
ai18498V4
External VCAP_1/2 power
supply supervisor
Ext. reset controller active
when VCAP_1/2 < Min V12
V12
VCAP_1
VCAP_2
BYPASS_REG
VDD
PA0 NRST
Application reset
signal (optional)
VDD
V12
DocID022152 Rev 4 27/185
STM32F405xx, STM32F407xx Description
The following conditions must be respected:
• VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
• If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10).
• Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see
Figure 11).
• If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then
a reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application
(see Table 14: General operating conditions).
Figure 10. Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (onON or OFFoff).
2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges.
ai18491e
VDD
time
Min V12
PDR = 1.7 V or 1.8 V (2)
VCAP_1/VCAP_2 V12
NRST
time
Description STM32F405xx, STM32F407xx
28/185 DocID022152 Rev 4
Figure 11. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (onON or offOFF).
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.
2.2.17 Regulator ON/OFF and internal reset ON/OFF availability
2.2.18 Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F405xx and STM32F407xx includes:
• The real-time clock (RTC)
• 4 Kbytes of backup SRAM
• 20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
VDD
time
Min V12
VCAP_1/VCAP_2
V12
PA0 asserted externally
NRST
time ai18492d
PDR = 1.7 V or 1.8 V (2)
Table 3. Regulator ON/OFF and internal reset ON/OFF availability
Regulator ON Regulator OFF Internal reset ON Internal reset
OFF
LQFP64
LQFP100
Yes No
Yes No
LQFP144
LQFP176 Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
WLCSP90
UFBGA176
Yes
BYPASS_REG set
to VSS
Yes
BYPASS_REG set
to VDD
DocID022152 Rev 4 29/185
STM32F405xx, STM32F407xx Description
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 μs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
2.2.19 Low-power modes
The STM32F405xx and STM32F407xx support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
• Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
• Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
• Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire V12 domain is powered off. The PLL,
the HSI RC and the HSE crystal oscillators are also switched off. After entering
Description STM32F405xx, STM32F407xx
30/185 DocID022152 Rev 4
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the V12 domain is controlled by an external power.
2.2.20 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
2.2.21 Timers and watchdogs
The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
type Timer
Counter
resolutio
n
Counter
type
Prescaler
factor
DMA
request
generatio
n
Capture/
compare
channels
Complementar
y output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/dow
n
Any integer
between 1
and 65536
Yes 4 Yes 84 168
DocID022152 Rev 4 31/185
STM32F405xx, STM32F407xx Description
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
• Input capture
• Output compare
• PWM generation (edge- or center-aligned modes)
• One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/dow
n
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM3,
TIM4 16-bit
Up,
Down,
Up/dow
n
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 84 168
TIM10
,
TIM11
16-bit Up
Any integer
between 1
and 65536
No 1 No 84 168
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 42 84
TIM13
,
TIM14
16-bit Up
Any integer
between 1
and 65536
No 1 No 42 84
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 42 84
Table 4. Timer feature comparison (continued)
Timer
type Timer
Counter
resolutio
n
Counter
type
Prescaler
factor
DMA
request
generatio
n
Capture/
compare
channels
Complementar
y output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
Description STM32F405xx, STM32F407xx
32/185 DocID022152 Rev 4
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F40x devices
(see Table 4 for differences).
• TIM2, TIM3, TIM4, TIM5
The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DocID022152 Rev 4 33/185
STM32F405xx, STM32F407xx Description
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
• A 24-bit downcounter
• Autoreload capability
• Maskable system interrupt generation when the counter reaches 0
• Programmable clock source.
2.2.22 Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support
the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware
CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.23 Universal synchronous/asynchronous receiver transmitters (USART)
The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at
up to 5.25 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Description STM32F405xx, STM32F407xx
34/185 DocID022152 Rev 4
2.2.24 Serial peripheral interface (SPI)
The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.25 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and half-duplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
2.2.26 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
Table 5. USART feature comparison
USART
name
Standard
features
Modem
(RTS/
CTS)
LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud rate
in Mbit/s
(oversampling
by 16)
Max. baud rate
in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
USART2 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
USART3 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
UART4 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
UART5 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
USART6 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
DocID022152 Rev 4 35/185
STM32F405xx, STM32F407xx Description
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.27 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F407xx devices.
The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard mediumindependent
interface (MII) or a reduced medium-independent interface (RMII). The
STM32F407xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) from the STM32F407xx.
The STM32F407xx includes the following features:
• Supports 10 and 100 Mbit/s rates
• Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F40x reference manual for details)
• Tagged MAC frame support (VLAN support)
• Half-duplex (CSMA/CD) and full-duplex operation
• MAC control sublayer (control frames) support
• 32-bit CRC generation and removal
• Several address filtering modes for physical and multicast address (multicast and
group addresses)
• 32-bit status code for each transmitted or received frame
• Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
• Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
• Triggers interrupt when system time becomes greater than target time
Description STM32F405xx, STM32F407xx
36/185 DocID022152 Rev 4
2.2.29 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.2.30 Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable
endpoint setting and supports suspend/resume. The USB OTG full-speed controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE
oscillator. The major features are:
• Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
• Supports the session request protocol (SRP) and host negotiation protocol (HNP)
• 4 bidirectional endpoints
• 8 host channels with periodic OUT support
• HNP/SNP/IP inside (no need for any external resistor)
• For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.2.31 Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
• Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
• Supports the session request protocol (SRP) and host negotiation protocol (HNP)
• 6 bidirectional endpoints
• 12 host channels with periodic OUT support
• Internal FS OTG PHY support
• External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
• Internal USB DMA
• HNP/SNP/IP inside (no need for any external resistor)
• for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
DocID022152 Rev 4 37/185
STM32F405xx, STM32F407xx Description
2.2.32 Digital camera interface (DCMI)
The camera interface is not available in STM32F405xx devices.
STM32F407xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
• Programmable polarity for the input pixel clock and synchronization signals
• Parallel data communication can be 8-, 10-, 12- or 14-bit
• Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
• Supports continuous mode or snapshot (a single frame) mode
• Capability to automatically crop the image
2.2.33 Random number generator (RNG)
All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random
numbers generated by an integrated analog circuit.
2.2.34 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
2.2.35 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
• Simultaneous sample and hold
• Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.2.36 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
Description STM32F405xx, STM32F407xx
38/185 DocID022152 Rev 4
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.37 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
• two DAC converters: one for each output channel
• 8-bit or 12-bit monotonic output
• left or right data alignment in 12-bit mode
• synchronized update capability
• noise-wave generation
• triangular-wave generation
• dual DAC channel independent or simultaneous conversions
• DMA capability for each channel
• external triggers for conversion
• input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.2.38 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
2.2.39 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F40x through a small number of ETM pins to an external hardware trace port
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DocID022152 Rev 4 39/185
STM32F405xx, STM32F407xx Pinouts and pin description
3 Pinouts and pin description
Figure 12. STM32F40x LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC14
PC15
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0_WKUP
PA1
PA2
VDD
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VCAP_1
VDD
LQFP64
ai18493b
PC13
PH0
PH1
VSS
Pinouts and pin description STM32F405xx, STM32F407xx
40/185 DocID022152 Rev 4
Figure 13. STM32F40x LQFP100 pinout
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE2
PE3
PE4
PE5
PE6
VBAT
PC14
PC15
VSS
VDD
PH0
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
VDD
VSS
VCAP_2
PA13
PA12
PA 11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ai18495c
LQFP100
PC13
PH1
DocID022152 Rev 4 41/185
STM32F405xx, STM32F407xx Pinouts and pin description
Figure 14. STM32F40x LQFP144 pinout
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2 VDD PE3 VSS PE4
PE5 PA13
PE6 PA12
VBAT PA11
PC13 PA10
PC14 PA9
PC15 PA8
PF0 PC9
PF1 PC8
PF2 PC7
PF3 PC6
PF4 VDD PF5 VSS VSS PG8
VDD PG7
PF6 PG6
PF7 PG5
PF8 PG4
PF9 PG3
PF10 PG2
PH0 PD15
PH1 PD14
NRST VDD PC0 VSS PC1 PD13
PC2 PD12
PC3 PD11
VSSA
VDD PD10
PD9
VREF+ PD8
VDDA PB15
PA0 PB14
PA1 PB13
PA2 PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
61
62
63
64
65
66
67
68
69
70
71 26
27
28
29
30
31
32
33
34
35
36
83
82
81
80
79
78
77
76
75
74
73
ai18496b
VCAP_2
VSS
Pinouts and pin description STM32F405xx, STM32F407xx
42/185 DocID022152 Rev 4
Figure 15. STM32F40x LQFP176 pinout
MS19916V3
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PI7
PI6
PE2
PE3
PE4
PE5
PA13
PE6
PA12
VBAT
PA11
PI8
PA10
PC14
PA9
PC15
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
PF5 PG8
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
PH0
PD15
PH1
PD14
NRST
V
PC0
V
PC1
PD13
PC2
PD12
PC3
PD11
PD10
PD9
VREF+
PD8
PB15
PA0
PB14
PA1
PB13
PA2
PB12
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
80
LQFP176
152
151
150
149
148
147
146
145
144
143
142
69
70
71
72
73
74
75
76
77
78
79
26
27
28
29
30
31
32
33
34
35
36
107
106
105
104
103
102
101
100
99
98
89
PI4
PA15
PA14
PI3
PI2
PI5
140
139
138
137
136
135
134
133
PH4
PH5
PH6
PH7
PH8
PH9
PH10
PH11 88
81
82
83
84
85
86
87
PI1
PI0
PH15
PH14
PH13
PH12
96
95
94
93
92
91
90
97
37
38
39
40
41
42
43
44
PC13
PI9
PI10
PI11
VSS
PH2
PH3
VDD
VSS
VDD
VDDA
VSSA
VDDA
BYPASS_REG
VDD
VDD
VSS
VDD
VCAP_1
VDD
VSS
VDD
VCAP_2
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VDD
VSS
VDD
VSS
VDD
DocID022152 Rev 4 43/185
STM32F405xx, STM32F407xx Pinouts and pin description
Figure 16. STM32F40x UFBGA176 ballout
1. This figure shows the package top view.
ai18497b
1 2 3 9 10 11 12 13 14 15
A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13
B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12
C VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11
D PC13 PI8 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10
E PC14 PF0 PI10 PI11 PH13 PH14 PI0 PA9
F PC15 VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8
G PH0 VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7
H PH1 PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6
J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6
K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3
L PF10 PF9 PF8 BYPASS_
REG
PH11 PH10 PD15 PG2
M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13
N VREF- PA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10
P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8
R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15
VSS
4 5 6 7 8
Pinouts and pin description STM32F405xx, STM32F407xx
44/185 DocID022152 Rev 4
Figure 17. STM32F40x WLCSP90 ballout
1. This figure shows the package bump view.
A VBAT PC13 PDR_ON PB4 PD7 PD4 PC12
B PC15 VDD PB7 PB3 PD6 PD2 PA15
C PA0 VSS PB6 PD5 PD1 PC11 PI0
D PC2 PB8 PA13
E PC3 VSS
F PH1 PA1
G NRST
H VSSA
J PA2 PA 4 PA7 PB2 PE11 PB11 PB12
MS30402V1
1
PA14
PI1
PA12
PA10 PA9
PC0 PC9 PC8
PH0
PB13
PC6 PD14
PD12
PE8 PE12
BYPASS_
REG
PD9 PD8
PE9 PB14
10 9 8 7 6 5 4 3 2
VDD
PC14
VCAP_2
PA11
PB5 PD0 PC10 PA8
VSS VDD VSS VDD PC7
VDD PE10 PE14 VCAP_1 PD15
PE13 PE15 PD10 PD11
PA3 PA6 PB1 PB10 PB15
PB9
BOOT0
VDDA PA5 PB0 PE7
Table 6. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DocID022152 Rev 4 45/185
STM32F405xx, STM32F407xx Pinouts and pin description
Table 7. STM32F40x pin and ball definitions
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
- - 1 1 A2 1 PE2 I/O FT
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
- - 2 2 A1 2 PE3 I/O FT TRACED0/FSMC_A19 /
EVENTOUT
- - 3 3 B1 3 PE4 I/O FT TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT
- - 4 4 B2 4 PE5 I/O FT
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6 /
EVENTOUT
- - 5 5 B3 5 PE6 I/O FT
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7 /
EVENTOUT
1 A10 6 6 C1 6 VBAT S
- - - - D2 7 PI8 I/O FT
(2)(
3) EVENTOUT
RTC_TAMP1,
RTC_TAMP2,
RTC_TS
2 A9 7 7 D1 8 PC13 I/O FT
(2)
(3) EVENTOUT
RTC_OUT,
RTC_TAMP1,
RTC_TS
3 B10 8 8 E1 9
PC14/OSC32_IN
(PC14)
I/O FT
(2)(
3) EVENTOUT OSC32_IN(4)
4 B9 9 9 F1 10
PC15/
OSC32_OUT
(PC15)
I/O FT
(2)(
3) EVENTOUT OSC32_OUT(4)
- - - - D3 11 PI9 I/O FT CAN1_RX / EVENTOUT
- - - - E3 12 PI10 I/O FT ETH_MII_RX_ER /
EVENTOUT
- - - - E4 13 PI11 I/O FT OTG_HS_ULPI_DIR /
EVENTOUT
- - - - F2 14 VSS S
- - - - F3 15 VDD S
- - - 10 E2 16 PF0 I/O FT FSMC_A0 / I2C2_SDA /
EVENTOUT
Pinouts and pin description STM32F405xx, STM32F407xx
46/185 DocID022152 Rev 4
- - - 11 H3 17 PF1 I/O FT FSMC_A1 / I2C2_SCL /
EVENTOUT
- - - 12 H2 18 PF2 I/O FT FSMC_A2 / I2C2_SMBA /
EVENTOUT
- - - 13 J2 19 PF3 I/O FT (4) FSMC_A3/EVENTOUT ADC3_IN9
- - - 14 J3 20 PF4 I/O FT (4) FSMC_A4/EVENTOUT ADC3_IN14
- - - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15
- C9 10 16 G2 22 VSS S
- B8 11 17 G3 23 VDD S
- - - 18 K2 24 PF6 I/O FT (4)
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
- - - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG
/ EVENTOUT ADC3_IN5
- - - 20 L3 26 PF8 I/O FT (4)
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
- - - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/
EVENTOUT ADC3_IN7
- - - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8
5 F10 12 23 G1 29
PH0/OSC_IN
(PH0)
I/O FT EVENTOUT OSC_IN(4)
6 F9 13 24 H1 30
PH1/OSC_OUT
(PH1)
I/O FT EVENTOUT OSC_OUT(4)
7 G10 14 25 J1 31 NRST I/O RS
T
8 E10 15 26 M2 32 PC0 I/O FT (4) OTG_HS_ULPI_STP/
EVENTOUT ADC123_IN10
9 - 16 27 M3 33 PC1 I/O FT (4) ETH_MDC/ EVENTOUT ADC123_IN11
10 D10 17 28 M4 34 PC2 I/O FT (4)
SPI2_MISO /
OTG_HS_ULPI_DIR /
ETH_MII_TXD2
/I2S2ext_SD/ EVENTOUT
ADC123_IN12
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 47/185
STM32F405xx, STM32F407xx Pinouts and pin description
11 E9 18 29 M5 35 PC3 I/O FT (4)
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_IN13
- - 19 30 G3 36 VDD S
12 H10 20 31 M1 37 VSSA S
- - - - N1 - VREF– S
- - 21 32 P1 38 VREF+ S
13 G9 22 33 R1 39 VDDA S
14 C10 23 34 N3 40
PA0/WKUP
(PA0)
I/O FT (5)
USART2_CTS/
UART4_TX/
ETH_MII_CRS /
TIM2_CH1_ETR/
TIM5_CH1 / TIM8_ETR/
EVENTOUT
ADC123_IN0/WKUP(4
)
15 F8 24 35 N2 41 PA1 I/O FT (4)
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIM2_CH2/
EVENTOUT
ADC123_IN1
16 J10 25 36 P2 42 PA2 I/O FT (4)
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 /
ETH_MDIO/ EVENTOUT
ADC123_IN2
- - - - F4 43 PH2 I/O FT ETH_MII_CRS/EVENTOU
T
- - - - G4 44 PH3 I/O FT ETH_MII_COL/EVENTOU
T
- - - - H4 45 PH4 I/O FT
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
- - - - J4 46 PH5 I/O FT I2C2_SDA/ EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
48/185 DocID022152 Rev 4
17 H9 26 37 R2 47 PA3 I/O FT (4)
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ETH_MII_COL/
EVENTOUT
ADC123_IN3
18 E5 27 38 - - VSS S
D9 L4 48 BYPASS_REG I FT
19 E4 28 39 K4 49 VDD S
20 J9 29 40 N4 50 PA4 I/O TTa (4)
SPI1_NSS / SPI3_NSS /
USART2_CK /
DCMI_HSYNC /
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
ADC12_IN4
/DAC_OUT1
21 G8 30 41 P4 51 PA5 I/O TTa (4)
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CH1N/ EVENTOUT
ADC12_IN5/DAC_OU
T2
22 H8 31 42 P3 52 PA6 I/O FT (4)
SPI1_MISO /
TIM8_BKIN/TIM13_CH1 /
DCMI_PIXCLK /
TIM3_CH1 / TIM1_BKIN/
EVENTOUT
ADC12_IN6
23 J8 32 43 R3 53 PA7 I/O FT (4)
SPI1_MOSI/ TIM8_CH1N
/ TIM14_CH1/TIM3_CH2/
ETH_MII_RX_DV /
TIM1_CH1N /
ETH_RMII_CRS_DV/
EVENTOUT
ADC12_IN7
24 - 33 44 N5 54 PC4 I/O FT (4)
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25 - 34 45 P5 55 PC5 I/O FT (4)
ETH_RMII_RX_D1 /
ETH_MII_RX_D1/
EVENTOUT
ADC12_IN15
26 G7 35 46 R5 56 PB0 I/O FT (4)
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 49/185
STM32F405xx, STM32F407xx Pinouts and pin description
27 H7 36 47 R4 57 PB1 I/O FT (4)
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
TIM1_CH3N/ EVENTOUT
ADC12_IN9
28 J7 37 48 M6 58
PB2/BOOT1
(PB2)
I/O FT EVENTOUT
- - - 49 R6 59 PF11 I/O FT DCMI_D12/ EVENTOUT
- - - 50 P6 60 PF12 I/O FT FSMC_A6/ EVENTOUT
- - - 51 M8 61 VSS S
- - - 52 N8 62 VDD S
- - - 53 N6 63 PF13 I/O FT FSMC_A7/ EVENTOUT
- - - 54 R7 64 PF14 I/O FT FSMC_A8/ EVENTOUT
- - - 55 P7 65 PF15 I/O FT FSMC_A9/ EVENTOUT
- - - 56 N7 66 PG0 I/O FT FSMC_A10/ EVENTOUT
- - - 57 M7 67 PG1 I/O FT FSMC_A11/ EVENTOUT
- G6 38 58 R8 68 PE7 I/O FT FSMC_D4/TIM1_ETR/
EVENTOUT
- H6 39 59 P8 69 PE8 I/O FT FSMC_D5/ TIM1_CH1N/
EVENTOUT
- J6 40 60 P9 70 PE9 I/O FT FSMC_D6/TIM1_CH1/
EVENTOUT
- - - 61 M9 71 VSS S
- - - 62 N9 72 VDD S
- F6 41 63 R9 73 PE10 I/O FT FSMC_D7/TIM1_CH2N/
EVENTOUT
- J5 42 64 P10 74 PE11 I/O FT FSMC_D8/TIM1_CH2/
EVENTOUT
- H5 43 65 R10 75 PE12 I/O FT FSMC_D9/TIM1_CH3N/
EVENTOUT
- G5 44 66 N11 76 PE13 I/O FT FSMC_D10/TIM1_CH3/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
50/185 DocID022152 Rev 4
- F5 45 67 P11 77 PE14 I/O FT FSMC_D11/TIM1_CH4/
EVENTOUT
- G4 46 68 R11 78 PE15 I/O FT FSMC_D12/TIM1_BKIN/
EVENTOUT
29 H4 47 69 R12 79 PB10 I/O FT
SPI2_SCK / I2S2_CK /
I2C2_SCL/ USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
TIM2_CH3/ EVENTOUT
30 J4 48 70 R13 80 PB11 I/O FT
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
TIM2_CH4/ EVENTOUT
31 F4 49 71 M10 81 VCAP_1 S
32 - 50 72 N10 82 VDD S
- - - - M11 83 PH6 I/O FT
I2C2_SMBA / TIM12_CH1
/ ETH_MII_RXD2/
EVENTOUT
- - - - N12 84 PH7 I/O FT
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
- - - - M12 85 PH8 I/O FT
I2C3_SDA /
DCMI_HSYNC/
EVENTOUT
- - - - M13 86 PH9 I/O FT
I2C3_SMBA /
TIM12_CH2/ DCMI_D0/
EVENTOUT
- - - - L13 87 PH10 I/O FT TIM5_CH1 / DCMI_D1/
EVENTOUT
- - - - L12 88 PH11 I/O FT TIM5_CH2 / DCMI_D2/
EVENTOUT
- - - - K12 89 PH12 I/O FT TIM5_CH3 / DCMI_D3/
EVENTOUT
- - - - H12 90 VSS S
- - - - J12 91 VDD S
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 51/185
STM32F405xx, STM32F407xx Pinouts and pin description
33 J3 51 73 P12 92 PB12 I/O FT
SPI2_NSS / I2S2_WS /
I2C2_SMBA/
USART3_CK/ TIM1_BKIN
/ CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
34 J1 52 74 P13 93 PB13 I/O FT
SPI2_SCK / I2S2_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
OTG_HS_VBUS
35 J2 53 75 R14 94 PB14 I/O FT
SPI2_MISO/ TIM1_CH2N
/ TIM12_CH1 /
OTG_HS_DM/
USART3_RTS /
TIM8_CH2N/I2S2ext_SD/
EVENTOUT
36 H1 54 76 R15 95 PB15 I/O FT
SPI2_MOSI / I2S2_SD/
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP/
EVENTOUT
RTC_REFIN
- H2 55 77 P15 96 PD8 I/O FT FSMC_D13 /
USART3_TX/ EVENTOUT
- H3 56 78 P14 97 PD9 I/O FT FSMC_D14 /
USART3_RX/ EVENTOUT
- G3 57 79 N15 98 PD10 I/O FT FSMC_D15 /
USART3_CK/ EVENTOUT
- G1 58 80 N14 99 PD11 I/O FT
FSMC_CLE /
FSMC_A16/USART3_CT
S/ EVENTOUT
- G2 59 81 N13 100 PD12 I/O FT
FSMC_ALE/
FSMC_A17/TIM4_CH1 /
USART3_RTS/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
52/185 DocID022152 Rev 4
- - 60 82 M15 101 PD13 I/O FT FSMC_A18/TIM4_CH2/
EVENTOUT
- - - 83 - 102 VSS S
- - - 84 J13 103 VDD S
- F2 61 85 M14 104 PD14 I/O FT FSMC_D0/TIM4_CH3/
EVENTOUT/ EVENTOUT
- F1 62 86 L14 105 PD15 I/O FT FSMC_D1/TIM4_CH4/
EVENTOUT
- - - 87 L15 106 PG2 I/O FT FSMC_A12/ EVENTOUT
- - - 88 K15 107 PG3 I/O FT FSMC_A13/ EVENTOUT
- - - 89 K14 108 PG4 I/O FT FSMC_A14/ EVENTOUT
- - - 90 K13 109 PG5 I/O FT FSMC_A15/ EVENTOUT
- - - 91 J15 110 PG6 I/O FT FSMC_INT2/ EVENTOUT
- - - 92 J14 111 PG7 I/O FT
FSMC_INT3
/USART6_CK/
EVENTOUT
- - - 93 H14 112 PG8 I/O FT
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
- - - 94 G12 113 VSS S
- - - 95 H13 114 VDD S
37 F3 63 96 H15 115 PC6 I/O FT
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
38 E1 64 97 G15 116 PC7 I/O FT
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
39 E2 65 98 G14 117 PC8 I/O FT
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK
/ DCMI_D2/ EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 53/185
STM32F405xx, STM32F407xx Pinouts and pin description
40 E3 66 99 F14 118 PC9 I/O FT
I2S_CKIN/ MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
41 D1 67 100 F15 119 PA8 I/O FT
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
42 D2 68 101 E15 120 PA9 I/O FT
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
OTG_FS_VBUS
43 D3 69 102 D15 121 PA10 I/O FT
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
44 C1 70 103 C15 122 PA11 I/O FT
USART1_CTS / CAN1_RX
/ TIM1_CH4 /
OTG_FS_DM/
EVENTOUT
45 C2 71 104 B15 123 PA12 I/O FT
USART1_RTS /
CAN1_TX/ TIM1_ETR/
OTG_FS_DP/
EVENTOUT
46 D4 72 105 A15 124
PA13
(JTMS-SWDIO)
I/O FT JTMS-SWDIO/
EVENTOUT
47 B1 73 106 F13 125 VCAP_2 S
- E7 74 107 F12 126 VSS S
48 E6 75 108 G13 127 VDD S
- - - - E12 128 PH13 I/O FT TIM8_CH1N / CAN1_TX/
EVENTOUT
- - - - E13 129 PH14 I/O FT TIM8_CH2N / DCMI_D4/
EVENTOUT
- - - - D13 130 PH15 I/O FT TIM8_CH3N / DCMI_D11/
EVENTOUT
- C3 - - E14 131 PI0 I/O FT
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
54/185 DocID022152 Rev 4
- B2 - - D14 132 PI1 I/O FT SPI2_SCK / I2S2_CK /
DCMI_D8/ EVENTOUT
- - - - C14 133 PI2 I/O FT
TIM8_CH4 /SPI2_MISO /
DCMI_D9 / I2S2ext_SD/
EVENTOUT
- - - - C13 134 PI3 I/O FT
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
- - - - D9 135 VSS S
- - - - C9 136 VDD S
49 A2 76 109 A14 137
PA14
(JTCK/SWCLK)
I/O FT JTCK-SWCLK/
EVENTOUT
50 B3 77 110 A13 138
PA15
(JTDI)
I/O FT
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ET
R / SPI1_NSS /
EVENTOUT
51 D5 78 111 B14 139 PC10 I/O FT
SPI3_SCK / I2S3_CK/
UART4_TX/SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
52 C4 79 112 B13 140 PC11 I/O FT
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX /
I2S3ext_SD/ EVENTOUT
53 A3 80 113 A12 141 PC12 I/O FT
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI
/I2S3_SD / USART3_CK/
EVENTOUT
- D6 81 114 B12 142 PD0 I/O FT FSMC_D2/CAN1_RX/
EVENTOUT
- C5 82 115 C12 143 PD1 I/O FT FSMC_D3 / CAN1_TX/
EVENTOUT
54 B4 83 116 D12 144 PD2 I/O FT
TIM3_ETR/UART5_RX/
SDIO_CMD / DCMI_D11/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 55/185
STM32F405xx, STM32F407xx Pinouts and pin description
- - 84 117 D11 145 PD3 I/O FT
FSMC_CLK/
USART2_CTS/
EVENTOUT
- A4 85 118 D10 146 PD4 I/O FT
FSMC_NOE/
USART2_RTS/
EVENTOUT
- C6 86 119 C11 147 PD5 I/O FT FSMC_NWE/USART2_TX
/ EVENTOUT
- - - 120 D8 148 VSS S
- - - 121 C8 149 VDD S
- B5 87 122 B11 150 PD6 I/O FT FSMC_NWAIT/
USART2_RX/ EVENTOUT
- A5 88 123 A11 151 PD7 I/O FT
USART2_CK/FSMC_NE1/
FSMC_NCE2/
EVENTOUT
- - - 124 C10 152 PG9 I/O FT
USART6_RX /
FSMC_NE2/FSMC_NCE3
/ EVENTOUT
- - - 125 B10 153 PG10 I/O FT FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT
- - - 126 B9 154 PG11 I/O FT
FSMC_NCE4_2 /
ETH_MII_TX_EN/
ETH _RMII_TX_EN/
EVENTOUT
- - - 127 B8 155 PG12 I/O FT
FSMC_NE4 /
USART6_RTS/
EVENTOUT
- - - 128 A8 156 PG13 I/O FT
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
- - - 129 A7 157 PG14 I/O FT
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F405xx, STM32F407xx
56/185 DocID022152 Rev 4
- E8 - 130 D7 158 VSS S
- F7 - 131 C7 159 VDD S
- - - 132 B7 160 PG15 I/O FT USART6_CTS /
DCMI_D13/ EVENTOUT
55 B6 89 133 A10 161
PB3
(JTDO/
TRACESWO)
I/O FT
JTDO/ TRACESWO/
SPI3_SCK / I2S3_CK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
56 A6 90 134 A9 162
PB4
(NJTRST)
I/O FT
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO /
I2S3ext_SD/ EVENTOUT
57 D7 91 135 A6 163 PB5 I/O FT
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH
2 / SPI1_MOSI/
SPI3_MOSI / DCMI_D10 /
I2S3_SD/ EVENTOUT
58 C7 92 136 B6 164 PB6 I/O FT
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
59 B7 93 137 B5 165 PB7 I/O FT
I2C1_SDA / FSMC_NL /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
60 A7 94 138 D6 166 BOOT0 I B VPP
61 D8 95 139 A5 167 PB8 I/O FT
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
62 C8 96 140 B4 168 PB9 I/O FT
SPI2_NSS/ I2S2_WS /
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022152 Rev 4 57/185
STM32F405xx, STM32F407xx Pinouts and pin description
- - 97 141 A4 169 PE0 I/O FT TIM4_ETR / FSMC_NBL0
/ DCMI_D2/ EVENTOUT
- - 98 142 A3 170 PE1 I/O FT FSMC_NBL1 / DCMI_D3/
EVENTOUT
63 - 99 - D5 - VSS S
- A8 - 143 C6 171 PDR_ON I FT
64 A1 10
0 144 C5 172 VDD S
- - - - D4 173 PI4 I/O FT TIM8_BKIN / DCMI_D5/
EVENTOUT
- - - - C4 174 PI5 I/O FT
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
- - - - C3 175 PI6 I/O FT TIM8_CH2 / DCMI_D6/
EVENTOUT
- - - - C2 176 PI7 I/O FT TIM8_CH3 / DCMI_D7/
EVENTOUT
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset
ON mode), then PA0 is used as an internal Reset (active low).
Table 7. STM32F40x pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Table 8. FSMC pin definition
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
PE2 A23 A23 Yes
PE3 A19 A19 Yes
Pinouts and pin description STM32F405xx, STM32F407xx
58/185 DocID022152 Rev 4
PE4 A20 A20 Yes
PE5 A21 A21 Yes
PE6 A22 A22 Yes
PF0 A0 A0 - -
PF1 A1 A1 - -
PF2 A2 A2 - -
PF3 A3 A3 - -
PF4 A4 A4 - -
PF5 A5 A5 - -
PF6 NIORD - -
PF7 NREG - -
PF8 NIOWR - -
PF9 CD - -
PF10 INTR - -
PF12 A6 A6 - -
PF13 A7 A7 - -
PF14 A8 A8 - -
PF15 A9 A9 - -
PG0 A10 A10 - -
PG1 A11 - -
PE7 D4 D4 DA4 D4 Yes Yes
PE8 D5 D5 DA5 D5 Yes Yes
PE9 D6 D6 DA6 D6 Yes Yes
PE10 D7 D7 DA7 D7 Yes Yes
PE11 D8 D8 DA8 D8 Yes Yes
PE12 D9 D9 DA9 D9 Yes Yes
PE13 D10 D10 DA10 D10 Yes Yes
PE14 D11 D11 DA11 D11 Yes Yes
PE15 D12 D12 DA12 D12 Yes Yes
PD8 D13 D13 DA13 D13 Yes Yes
PD9 D14 D14 DA14 D14 Yes Yes
PD10 D15 D15 DA15 D15 Yes Yes
PD11 A16 A16 CLE Yes Yes
Table 8. FSMC pin definition (continued)
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
DocID022152 Rev 4 59/185
STM32F405xx, STM32F407xx Pinouts and pin description
PD12 A17 A17 ALE Yes Yes
PD13 A18 A18 Yes
PD14 D0 D0 DA0 D0 Yes Yes
PD15 D1 D1 DA1 D1 Yes Yes
PG2 A12 - -
PG3 A13 - -
PG4 A14 - -
PG5 A15 - -
PG6 INT2 - -
PG7 INT3 - -
PD0 D2 D2 DA2 D2 Yes Yes
PD1 D3 D3 DA3 D3 Yes Yes
PD3 CLK CLK Yes
PD4 NOE NOE NOE NOE Yes Yes
PD5 NWE NWE NWE NWE Yes Yes
PD6 NWAIT NWAIT NWAIT NWAIT Yes Yes
PD7 NE1 NE1 NCE2 Yes Yes
PG9 NE2 NE2 NCE3 - -
PG10 NCE4_1 NE3 NE3 - -
PG11 NCE4_2 - -
PG12 NE4 NE4 - -
PG13 A24 A24 - -
PG14 A25 A25 - -
PB7 NADV NADV Yes Yes
PE0 NBL0 NBL0 Yes
PE1 NBL1 NBL1 Yes
1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on
smaller packages are given in the dedicated package column.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Table 8. FSMC pin definition (continued)
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
Pinouts and pin description STM32F405xx, STM32F407xx
60/185 DocID022152 Rev 4
Table 9. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Port A
PA0 TIM2_CH1_E
TR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT
PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX
ETH_MII
_RX_CLK
ETH_RMII__REF
_CLK
EVENTOUT
PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT
PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_
D0 ETH _MII_COL EVENTOUT
PA4 SPI1_NSS SPI3_NSS
I2S3_WS USART2_CK OTG_HS_SO
F
DCMI_HSYN
C EVENTOUT
PA5 TIM2_CH1_E
TR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_
CK EVENTOUT
PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT
PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
EVENTOUT
PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT
PA9 TIM1_CH2 I2C3_SMB
A USART1_TX DCMI_D0 EVENTOUT
PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT
PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT
PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT
PA13 JTMSSWDIO
EVENTOUT
PA14 JTCKSWCLK
EVENTOUT
PA15 JTDI TIM 2_CH1
TIM 2_ETR SPI1_NSS SPI3_NSS/
I2S3_WS EVENTOUT
STM32F405xx, STM32F407xx Pinouts and pin description
DocID022152 Rev 4 61/185
Port B
PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_
D1 ETH _MII_RXD2 EVENTOUT
PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_
D2 ETH _MII_RXD3 EVENTOUT
PB2 EVENTOUT
PB3
JTDO/
TRACES
WO
TIM2_CH2 SPI1_SCK SPI3_SCK
I2S3_CK EVENTOUT
PB4 NJTRST TIM3_CH1 SPI1_MISO SPI3_MISO I2S3ext_SD EVENTOUT
PB5 TIM3_CH2 I2C1_SMB
A SPI1_MOSI SPI3_MOSI
I2S3_SD CAN2_RX OTG_HS_ULPI_
D7 ETH _PPS_OUT DCMI_D10 EVENTOUT
PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT
PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYN
C EVENTOUT
PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT
PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA
SPI2_NSS
I2S2_WS
CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT
PB10 TIM2_CH3 I2C2_SCL SPI2_SCK
I2S2_CK USART3_TX OTG_HS_ULPI_
D3 ETH_ MII_RX_ER EVENTOUT
PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_
D4
ETH _MII_TX_EN
ETH
_RMII_TX_EN
EVENTOUT
PB12 TIM1_BKIN I2C2_SMB
A
SPI2_NSS
I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_
D5
ETH _MII_TXD0
ETH _RMII_TXD0 OTG_HS_ID EVENTOUT
PB13 TIM1_CH1N SPI2_SCK
I2S2_CK USART3_CTS CAN2_TX OTG_HS_ULPI_
D6
ETH _MII_TXD1
ETH _RMII_TXD1
EVENTOUT
PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT
PB15 RTC_
REFIN TIM1_CH3N TIM8_CH3N SPI2_MOSI
I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
62/185 DocID022152 Rev 4
Port C
PC0 OTG_HS_ULPI_
STP EVENTOUT
PC1 ETH_MDC EVENTOUT
PC2 SPI2_MISO I2S2ext_SD OTG_HS_ULPI_
DIR ETH _MII_TXD2 EVENTOUT
PC3 SPI2_MOSI
I2S2_SD
OTG_HS_ULPI_
NXT
ETH
_MII_TX_CLK EVENTOUT
PC4 ETH_MII_RXD0
ETH_RMII_RXD0 EVENTOUT
PC5 ETH _MII_RXD1
ETH _RMII_RXD1 EVENTOUT
PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT
PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT
PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT
PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN SDIO_D1 DCMI_D3 EVENTOUT
PC10 SPI3_SCK/
I2S3_CK USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT
PC11 I2S3ext_SD SPI3_MISO/ USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT
PC12 SPI3_MOSI
I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT
PC13 EVENTOUT
PC14 EVENTOUT
PC15 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
STM32F405xx, STM32F407xx Pinouts and pin description
DocID022152 Rev 4 63/185
Port D
PD0 CAN1_RX FSMC_D2 EVENTOUT
PD1 CAN1_TX FSMC_D3 EVENTOUT
PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT
PD3 USART2_CTS FSMC_CLK EVENTOUT
PD4 USART2_RTS FSMC_NOE EVENTOUT
PD5 USART2_TX FSMC_NWE EVENTOUT
PD6 USART2_RX FSMC_NWAIT EVENTOUT
PD7 USART2_CK FSMC_NE1/
FSMC_NCE2 EVENTOUT
PD8 USART3_TX FSMC_D13 EVENTOUT
PD9 USART3_RX FSMC_D14 EVENTOUT
PD10 USART3_CK FSMC_D15 EVENTOUT
PD11 USART3_CTS FSMC_A16 EVENTOUT
PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT
PD13 TIM4_CH2 FSMC_A18 EVENTOUT
PD14 TIM4_CH3 FSMC_D0 EVENTOUT
PD15 TIM4_CH4 FSMC_D1 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
64/185 DocID022152 Rev 4
Port E
PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT
PE1 FSMC_NBL1 DCMI_D3 EVENTOUT
PE2 TRACECL
K ETH _MII_TXD3 FSMC_A23 EVENTOUT
PE3 TRACED0 FSMC_A19 EVENTOUT
PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT
PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT
PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT
PE7 TIM1_ETR FSMC_D4 EVENTOUT
PE8 TIM1_CH1N FSMC_D5 EVENTOUT
PE9 TIM1_CH1 FSMC_D6 EVENTOUT
PE10 TIM1_CH2N FSMC_D7 EVENTOUT
PE11 TIM1_CH2 FSMC_D8 EVENTOUT
PE12 TIM1_CH3N FSMC_D9 EVENTOUT
PE13 TIM1_CH3 FSMC_D10 EVENTOUT
PE14 TIM1_CH4 FSMC_D11 EVENTOUT
PE15 TIM1_BKIN FSMC_D12 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
STM32F405xx, STM32F407xx Pinouts and pin description
DocID022152 Rev 4 65/185
Port F
PF0 I2C2_SDA FSMC_A0 EVENTOUT
PF1 I2C2_SCL FSMC_A1 EVENTOUT
PF2 I2C2_
SMBA FSMC_A2 EVENTOUT
PF3 FSMC_A3 EVENTOUT
PF4 FSMC_A4 EVENTOUT
PF5 FSMC_A5 EVENTOUT
PF6 TIM10_CH1 FSMC_NIORD EVENTOUT
PF7 TIM11_CH1 FSMC_NREG EVENTOUT
PF8 TIM13_CH1 FSMC_
NIOWR EVENTOUT
PF9 TIM14_CH1 FSMC_CD EVENTOUT
PF10 FSMC_INTR EVENTOUT
PF11 DCMI_D12 EVENTOUT
PF12 FSMC_A6 EVENTOUT
PF13 FSMC_A7 EVENTOUT
PF14 FSMC_A8 EVENTOUT
PF15 FSMC_A9 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
66/185 DocID022152 Rev 4
Port G
PG0 FSMC_A10 EVENTOUT
PG1 FSMC_A11 EVENTOUT
PG2 FSMC_A12 EVENTOUT
PG3 FSMC_A13 EVENTOUT
PG4 FSMC_A14 EVENTOUT
PG5 FSMC_A15 EVENTOUT
PG6 FSMC_INT2 EVENTOUT
PG7 USART6_CK FSMC_INT3 EVENTOUT
PG8 USART6_
RTS ETH _PPS_OUT EVENTOUT
PG9 USART6_RX FSMC_NE2/
FSMC_NCE3 EVENTOUT
PG10
FSMC_
NCE4_1/
FSMC_NE3
EVENTOUT
PG11
ETH _MII_TX_EN
ETH _RMII_
TX_EN
FSMC_NCE4_
2 EVENTOUT
PG12 USART6_
RTS FSMC_NE4 EVENTOUT
PG13 UART6_CTS
ETH _MII_TXD0
ETH _RMII_TXD0
FSMC_A24 EVENTOUT
PG14 USART6_TX ETH _MII_TXD1
ETH _RMII_TXD1 FSMC_A25 EVENTOUT
PG15 USART6_
CTS DCMI_D13 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
STM32F405xx, STM32F407xx Pinouts and pin description
DocID022152 Rev 4 67/185
Port H
PH0 EVENTOUT
PH1 EVENTOUT
PH2 ETH _MII_CRS EVENTOUT
PH3 ETH _MII_COL EVENTOUT
PH4 I2C2_SCL OTG_HS_ULPI_
NXT EVENTOUT
PH5 I2C2_SDA EVENTOUT
PH6 I2C2_SMB
A TIM12_CH1 ETH _MII_RXD2 EVENTOUT
PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT
PH8 I2C3_SDA DCMI_HSYN
C EVENTOUT
PH9 I2C3_SMB
A TIM12_CH2 DCMI_D0 EVENTOUT
PH10 TIM5_CH1 DCMI_D1 EVENTOUT
PH11 TIM5_CH2 DCMI_D2 EVENTOUT
PH12 TIM5_CH3 DCMI_D3 EVENTOUT
PH13 TIM8_CH1N CAN1_TX EVENTOUT
PH14 TIM8_CH2N DCMI_D4 EVENTOUT
PH15 TIM8_CH3N DCMI_D11 EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
Pinouts and pin description STM32F405xx, STM32F407xx
68/185 DocID022152 Rev 4
Port I
PI0 TIM5_CH4 SPI2_NSS
I2S2_WS DCMI_D13 EVENTOUT
PI1 SPI2_SCK
I2S2_CK DCMI_D8 EVENTOUT
PI2 TIM8_CH4 SPI2_MISO I2S2ext_SD DCMI_D9 EVENTOUT
PI3 TIM8_ETR SPI2_MOSI
I2S2_SD DCMI_D10 EVENTOUT
PI4 TIM8_BKIN DCMI_D5 EVENTOUT
PI5 TIM8_CH1 DCMI_
VSYNC EVENTOUT
PI6 TIM8_CH2 DCMI_D6 EVENTOUT
PI7 TIM8_CH3 DCMI_D7 EVENTOUT
PI8 EVENTOUT
PI9 CAN1_RX EVENTOUT
PI10 ETH _MII_RX_ER EVENTOUT
PI11 OTG_HS_ULPI_
DIR EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/1
1 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/
CAN2/
TIM12/13/14
OTG_FS/
OTG_HS ETH FSMC/SDIO/
OTG_FS DCMI
DocID022152 Rev 4 69/185
STM32F405xx, STM32F407xx Memory mapping
4 Memory mapping
The memory map is shown in Figure 18.
Figure 18. STM32F40x memory map
512-Mbyte
block 7
Cortex-M4's
internal
peripherals
512-Mbyte
block 6
Not used
512-Mbyte
block 5
FSMC registers
512-Mbyte
block 4
FSMC bank 3
& bank4
512-Mbyte
block 3
FSMC bank1
& bank2
512-Mbyte
block 2
Peripherals
512-Mbyte
block 1
SRAM
0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
0x6000 0000
0x7FFF FFFF
0x8000 0000
0x9FFF FFFF
0xA000 0000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFF FFFF
512-Mbyte
block 0
Code
Flash
0x0810 0000 - 0x0FFF FFFF
0x1FFF 0000 - 0x1FFF 7A0F
0x1FFF C000 - 0x1FFF C007
0x0800 0000 - 0x080F FFFF
0x0010 0000 - 0x07FF FFFF
0x0000 0000 - 0x000F FFFF
System memory + OTP
Reserved
Reserved
Aliased to Flash, system
memory or SRAM depending
on the BOOT pins
SRAM (16 KB aliased
by bit-banding)
Reserved
0x2000 0000 - 0x2001 BFFF
0x2001 C000 - 0x2001 FFFF
0x2002 0000 - 0x3FFF FFFF
0x4000 0000
Reserved
0x4000 7FFF
0x4000 7800 - 0x4000 FFFF
0x4001 0000
0x4001 57FF
0x4002 000
Reserved 0x5006 0C00 - 0x5FFF FFFF
0x6000 0000
AHB3
0xA000 0FFF
0xA000 1000 - 0xDFFF FFFF
ai18513f
Option Bytes
Reserved 0x4001 5800 - 0x4001 FFFF
0x5006 0BFF
AHB2
0x5000 0000
Reserved 0x4008 0000 - 0x4FFF FFFF
AHB1
SRAM (112 KB aliased
by bit-banding)
Reserved 0x1FFF C008 - 0x1FFF FFFF
Reserved 0x1FFF 7A10 - 0x1FFF 7FFF
CCM data RAM
(64 KB data SRAM) 0x1000 0000 - 0x1000 FFFF
Reserved 0x1001 0000 - 0x1FFE FFFF
Reserved
APB2
0x4007 FFFF
APB1
CORTEX-M4 internal peripherals 0xE000 0000 - 0xE00F FFFF
Reserved 0xE010 0000 - 0xFFFF FFFF
Memory mapping STM32F405xx, STM32F407xx
70/185 DocID022152 Rev 4
Table 10. STM32F40x register boundary addresses
Bus Boundary address Peripheral
0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
0xA000 1000 - 0xDFFF FFFF Reserved
AHB3
0xA000 0000 - 0xA000 0FFF FSMC control register
0x9000 0000 - 0x9FFF FFFF FSMC bank 4
0x8000 0000 - 0x8FFF FFFF FSMC bank 3
0x7000 0000 - 0x7FFF FFFF FSMC bank 2
0x6000 0000 - 0x6FFF FFFF FSMC bank 1
0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800 - 0x5006 0BFF RNG
0x5005 0400 - 0x5006 07FF Reserved
0x5005 0000 - 0x5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
0x4008 0000- 0x4FFF FFFF Reserved
DocID022152 Rev 4 71/185
STM32F405xx, STM32F407xx Memory mapping
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 9400 - 0x4003 FFFF Reserved
0x4002 9000 - 0x4002 93FF
ETHERNET MAC
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0x4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2400 - 0x4002 2FFF Reserved
0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0x4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
0x4001 5800- 0x4001 FFFF Reserved
Table 10. STM32F40x register boundary addresses (continued)
Bus Boundary address Peripheral
Memory mapping STM32F405xx, STM32F407xx
72/185 DocID022152 Rev 4
APB2
0x4001 4C00 - 0x4001 57FF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF Reserved
0x4001 3000 - 0x4001 33FF SPI1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
0x4000 7800- 0x4000 FFFF Reserved
Table 10. STM32F40x register boundary addresses (continued)
Bus Boundary address Peripheral
DocID022152 Rev 4 73/185
STM32F405xx, STM32F407xx Memory mapping
APB1
0x4000 7800 - 0x4000 7FFF Reserved
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF Reserved
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF Reserved
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF Reserved
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 10. STM32F40x register boundary addresses (continued)
Bus Boundary address Peripheral
Electrical characteristics STM32F405xx, STM32F407xx
74/185 DocID022152 Rev 4
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions Figure 20. Pin input voltage
MS19011V1
C = 50 pF
STM32F pin
OSC_OUT (Hi-Z when
using HSE or LSE)
MS19010V1
STM32F pin
VIN OSC_OUT (Hi-Z when
using HSE or LSE)
DocID022152 Rev 4 75/185
STM32F405xx, STM32F407xx Electrical characteristics
5.1.6 Power supply scheme
Figure 21. Power supply scheme
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These
capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the
PCB to ensure the good functionality of the device.
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15:
Power supply supervisor.
3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the
voltage regulator is OFF.
4. The 4.7 μF ceramic capacitor must be connected to one of the VDD pin.
5. VDDA=VDD and VSSA=VSS.
MS19911V2
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers,
backup RAM)
Kernel logic
(CPU, digital
& RAM)
Analog:
RCs,
PLL,..
Power
switch
VBAT
GPIOs
OUT
IN
15 × 100 nF
+ 1 × 4.7 μF
VBAT =
1.65 to 3.6V
Voltage
regulator
VDDA
ADC
Level shifter
IO
Logic
VDD
100 nF
+ 1 μF
Flash memory
VCAP_1
2 × 2.2 μF VCAP_2
BYPASS_REG
PDR_ON
Reset
controller
VDD
1/2/...14/15
VSS
1/2/...14/15
VDD
VREF+
VREFVSSA
VREF
100 nF
+ 1 μF
Electrical characteristics STM32F405xx, STM32F407xx
76/185 DocID022152 Rev 4
5.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage (including VDDA, VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on five-volt tolerant pin(2)
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4
Input voltage on any other pin VSS–0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX − VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
DocID022152 Rev 4 77/185
STM32F405xx, STM32F407xx Electrical characteristics
5.3 Operating conditions
5.3.1 General operating conditions
Table 12. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN)
(2)
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC
characteristics.
Injected current on five-volt tolerant I/O(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
6. In this case HCLK = system clock/2.
Electrical characteristics STM32F405xx, STM32F407xx
84/185 DocID022152 Rev 4
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(2),
all peripherals
enabled(3)(4)
168 MHz 93 109 117
mA
144 MHz 76 89 96
120 MHz 67 79 86
90 MHz 53 65 73
60 MHz 37 49 56
30 MHz 20 32 39
25 MHz 16 27 35
16 MHz 11 23 30
8 MHz 6 18 25
4 MHz 4 16 23
2 MHz 3 15 22
External clock(2),
all peripherals
disabled(3)(4)
168 MHz 46 61 69
144 MHz 40 52 60
120 MHz 37 48 56
90 MHz 30 42 50
60 MHz 22 33 41
30 MHz 12 24 31
25 MHz 10 21 29
16 MHz 7 19 26
8 MHz 4 16 23
4 MHz 3 15 22
2 MHz 2 14 21
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
DocID022152 Rev 4 85/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 24. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
Figure 25. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
MS19974V1
0
5
10
15
20
25
30
35
40
45
50
0 20 40 60 80 100 120 140 160 180
IDD RUN( mA)
CPU Frequency (MHz
-45 °C
0 °C
25 °C
55 °C
85 °C
105 °C
MS19975V1
0
10
20
30
40
50
60
70
80
90
100
0 20 40 60 80 100 120 140 160 180
IDD RUN( mA)
CPU Frequency (MHz
-45°C
0°C
25°C
55°C
85°C
105°C
Electrical characteristics STM32F405xx, STM32F407xx
86/185 DocID022152 Rev 4
Figure 26. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
Figure 27. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
MS19976V1
0
10
20
30
40
50
60
0 20 40 60 80 100 120 140 160 180
IDD RUN( mA)
CPU Frequency (MHz
-45°C
0°C
25°C
55°C
85°C
105°C
MS19977V1
0
20
40
60
80
100
120
0 20 40 60 80 100 120 140 160 180
IDD RUN( mA)
CPU Frequency (MHz
-45°C
0°C
25°C
55°C
85°C
105°C
DocID022152 Rev 4 87/185
STM32F405xx, STM32F407xx Electrical characteristics
Table 22. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
Typ Max(1)
T Unit A =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Sleep mode
External clock(2),
all peripherals enabled(3)
168 MHz 59 77 84
mA
144 MHz 46 61 67
120 MHz 38 53 60
90 MHz 30 44 51
60 MHz 20 34 41
30 MHz 11 24 31
25 MHz 8 21 28
16 MHz 6 18 25
8 MHz 3 16 23
4 MHz 2 15 22
2 MHz 2 14 21
External clock(2), all
peripherals disabled
168 MHz 12 27 35
144 MHz 9 22 29
120 MHz 8 20 28
90 MHz 7 19 26
60 MHz 5 17 24
30 MHz 3 16 23
25 MHz 2 15 22
16 MHz 2 14 21
8 MHz 1 14 21
4 MHz 1 13 21
2 MHz 1 13 21
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Electrical characteristics STM32F405xx, STM32F407xx
88/185 DocID022152 Rev 4
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ Max
T Unit A =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Supply
current in
Stop mode
with main
regulator in
Run mode
Flash in Stop mode, low-speed and highspeed
internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.45 1.5 11.00 20.00
mA
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.40 1.5 11.00 20.00
Supply
current in
Stop mode
with main
regulator in
Low Power
mode
Flash in Stop mode, low-speed and highspeed
internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.31 1.1 8.00 15.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.28 1.1 8.00 15.00
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ Max(1)
TA = 25 °C Unit TA =
85 °C
TA =
105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, lowspeed
oscillator and RTC ON 3.0 3.4 4.0 20 36
μA
Backup SRAM OFF, lowspeed
oscillator and RTC ON 2.4 2.7 3.3 16 32
Backup SRAM ON, RTC
OFF 2.4 2.6 3.0 12.5 24.8
Backup SRAM OFF, RTC
OFF 1.7 1.9 2.2 9.8 19.2
1. Based on characterization, not tested in production.
DocID022152 Rev 4 89/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
Table 25. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
VBAT
=
1.8 V
VBAT=
2.4 V
VBAT
=
3.3 V
VBAT = 3.6 V
IDD_VBA
T
Backup
domain
supply
current
Backup SRAM ON, low-speed
oscillator and RTC ON 1.29 1.42 1.68 6 11
μA
Backup SRAM OFF, low-speed
oscillator and RTC ON 0.62 0.73 0.96 3 5
Backup SRAM ON, RTC OFF 0.79 0.81 0.86 5 10
Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 2 4
1. Based on characterization, not tested in production.
MS19990V1
0
0.5
1
1.5
2
2.5
3
3.5
0 10 20 30 40 50 60 70 80 90 100
IVBAT in (μA)
Temperature in (°C)
1.65V
1.8V
2V
2.4V
2.7V
3V
3.3V
3.6V
Electrical characteristics STM32F405xx, STM32F407xx
90/185 DocID022152 Rev 4
Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 47: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 27: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the MCU
MS19991V1
0
1
2
3
4
5
6
0 10 20 30 40 50 60 70 80 90 100
IVBAT in (μA)
Temperature in (°C)
1.65V
1.8V
2V
2.4V
2.7V
3V
3.3V
3.6V
DocID022152 Rev 4 91/185
STM32F405xx, STM32F407xx Electrical characteristics
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW = VDD × fSW × C
Electrical characteristics STM32F405xx, STM32F407xx
92/185 DocID022152 Rev 4
Table 26. Switching output I/O current consumption
Symbol Parameter Conditions(1) I/O toggling
frequency (fSW) Typ Unit
IDDIO
I/O switching
current
VDD = 3.3 V(2)
C = CINT
2 MHz 0.02
mA
8 MHz 0.14
25 MHz 0.51
50 MHz 0.86
60 MHz 1.30
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.10
8 MHz 0.38
25 MHz 1.18
50 MHz 2.47
60 MHz 2.86
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
2 MHz 0.17
8 MHz 0.66
25 MHz 1.70
50 MHz 2.65
60 MHz 3.48
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
2 MHz 0.23
8 MHz 0.95
25 MHz 3.20
50 MHz 4.69
60 MHz 8.06
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
2 MHz 0.30
8 MHz 1.22
25 MHz 3.90
50 MHz 8.82
60 MHz -(3)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP package pin (pad removal).
3. At 60 MHz, C maximum load is specified 30 pF.
DocID022152 Rev 4 93/185
STM32F405xx, STM32F407xx Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed
under the following conditions:
• At startup, all I/O pins are configured as analog pins by firmware.
• All peripherals are disabled unless otherwise mentioned
• The code is running from Flash memory and the Flash memory access time is equal to
5 wait states at 168 MHz.
• The code is running from Flash memory and the Flash memory access time is equal to
4 wait states at 144 MHz, and the power scale mode is set to 2.
• ART accelerator and Cache off.
• The given value is calculated by measuring the difference of current consumption
– with all peripherals clocked off
– with one peripheral clocked on (with only the clock applied)
• When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2.
• The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 27. Peripheral current consumption
Peripheral(1) 168 MHz 144 MHz Unit
AHB1
GPIO A 0.49 0.36
mA
GPIO B 0.45 0.33
GPIO C 0.45 0.34
GPIO D 0.45 0.34
GPIO E 0.47 0.35
GPIO F 0.45 0.33
GPIO G 0.44 0.33
GPIO H 0.45 0.34
GPIO I 0.44 0.33
OTG_HS + ULPI 4.57 3.55
CRC 0.07 0.06
BKPSRAM 0.11 0.08
DMA1 6.15 4.75
DMA2 6.24 4.8
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
3.28 2.54
AHB2
OTG_FS 4.59 3.69
mA
DCMI 1.04 0.80
Electrical characteristics STM32F405xx, STM32F407xx
94/185 DocID022152 Rev 4
AHB3 FSMC 2.18 1.67
mA
APB1
TIM2 0.80 0.61
TIM3 0.58 0.44
TIM4 0.62 0.48
TIM5 0.79 0.61
TIM6 0.15 0.11
TIM7 0.16 0.12
TIM12 0.33 0.26
TIM13 0.27 0.21
TIM14 0.27 0.21
PWR 0.04 0.03
USART2 0.17 0.13
USART3 0.17 0.13
UART4 0.17 0.13
UART5 0.17 0.13
I2C1 0.17 0.13
I2C2 0.18 0.13
I2C3 0.18 0.13
SPI2/I2S2(2) 0.17/0.16 0.13/0.12
SPI3/I2S3(2) 0.16/0.14 0.12/0.12
CAN1 0.27 0.21
CAN2 0.26 0.20
DAC 0.14 0.10
DAC channel 1(3) 0.91 0.89
DAC channel 2(4) 0.91 0.89
DAC channel 1 and
2(3)(4) 1.69 1.68
WWDG 0.04 0.04
Table 27. Peripheral current consumption (continued)
Peripheral(1) 168 MHz 144 MHz Unit
DocID022152 Rev 4 95/185
STM32F405xx, STM32F407xx Electrical characteristics
5.3.7 Wakeup time from low-power mode
The wakeup times given in Table 28 is measured on a wakeup phase with a 16 MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
• Stop or Standby mode: the clock source is the RC oscillator
• Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
APB2
SDIO 0.64 0.54
mA
TIM1 1.47 1.14
TIM8 1.58 1.22
TIM9 0.68 0.54
TIM10 0.45 0.36
TIM11 0.47 0.38
ADC1(5) 2.20 2.10
ADC2(5) 2.04 1.93
ADC3(5) 2.10 2.00
SPI1 0.14 0.12
USART1 0.34 0.27
USART6 0.34 0.28
1. HSE oscillator with 4 MHz crystal and PLL are ON.
2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
3. EN1 bit is set in DAC_CR register.
4. EN2 bit is set in DAC_CR register.
5. ADON bit set in ADC_CR2 register.
Table 27. Peripheral current consumption (continued)
Peripheral(1) 168 MHz 144 MHz Unit
Table 28. Low-power mode wakeup timings
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP
(2) Wakeup from Sleep mode - 1 - μs
tWUSTOP
(2)
Wakeup from Stop mode (regulator in Run mode) - 13 -
Wakeup from Stop mode (regulator in low power mode) - 17 40 μs
Wakeup from Stop mode (regulator in low power mode
and Flash memory in Deep power down mode) - 110 -
tWUSTDBY
(2)(3) Wakeup from Standby mode 260 375 480 μs
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Electrical characteristics STM32F405xx, STM32F407xx
96/185 DocID022152 Rev 4
5.3.8 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 29 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Low-speed external user clock generated from an external source
The characteristics given in Table 30 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 29. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1 - 50 MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V
VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) - - 10
Cin(HSE) OSC_IN input capacitance(1) - 5 - pF
DuCy(HSE) Duty cycle 45 - 55 %
IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA
Table 30. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1) - 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD - VDD V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) - - 50
Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF
DuCy(LSE) Duty cycle 30 - 70 %
IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA
1. Guaranteed by design, not tested in production.
DocID022152 Rev 4 97/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 30. High-speed external clock source AC timing diagram
Figure 31. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 31. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
ai17528
OSC_IN
External
STM32F
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
tr(HSE) tW(HSE) t
fHSE_ext
VHSEL
ai17529
External OSC32_IN
STM32F
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
tr(LSE) tW(LSE) t
fLSE_ext
VLSEL
Electrical characteristics STM32F405xx, STM32F407xx
98/185 DocID022152 Rev 4
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 32. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 31. HSE 4-26 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RF Feedback resistor - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF@25 MHz
- 449 -
μA
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF@25 MHz
- 532 -
gm Oscillator transconductance Startup 5 - - mA/V
tSU(HSE
(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
ai17530
OSC_OUT
OSC_IN fHSE
CL1
RF
STM32F
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2 REXT(1)
DocID022152 Rev 4 99/185
STM32F405xx, STM32F407xx Electrical characteristics
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 33. Typical application with a 32.768 kHz crystal
5.3.9 Internal clock source characteristics
The parameters given in Table 33 and Table 34 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
RF Feedback resistor - 18.4 - MΩ
IDD LSE current consumption - - 1 μA
gm Oscillator Transconductance 2.8 - - μA/V
tSU(LSE)
(2)
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
startup time VDD is stabilized - 2 - s
ai17531
OSC32_OUT
OSC32_IN fLSE
CL1
RF
STM32F
32.768 kHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Table 33. HSI oscillator characteristics (1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register - - 1 %
Factorycalibrated
TA = –40 to
105 °C(2) –8 - 4.5 %
TA = –10 to 85 °C(2) –4 - 4 %
TA = 25 °C –1 - 1 %
tsu(HSI)
(3) HSI oscillator
startup time - 2.2 4 μs
IDD(HSI)
HSI oscillator
power consumption - 60 80 μA
Electrical characteristics STM32F405xx, STM32F407xx
100/185 DocID022152 Rev 4
Low-speed internal (LSI) RC oscillator
Figure 34. ACCLSI versus temperature
5.3.10 PLL characteristics
The parameters given in Table 35 and Table 36 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Table 34. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI
(2)
2. Based on characterization, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)
(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 μs
IDD(LSI)
(3) LSI oscillator power consumption - 0.4 0.6 μA
MS19013V1
-40
-30
-20
-10
0
10
20
30
40
50
-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105
Normalized deviati on (%)
Temperature (°C)
max
avg
min
DocID022152 Rev 4 101/185
STM32F405xx, STM32F407xx Electrical characteristics
Table 35. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) 0.95(2) 1 2.10 MHz
fPLL_OUT PLL multiplier output clock 24 - 168 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock - 48 75 MHz
fVCO_OUT PLL VCO output 192 - 432 MHz
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
μs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
- ±150 -
Period Jitter
RMS - 15 -
peak
to
peak
- ±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples - 32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples - 40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples - 330 -
IDD(PLL)
(4) PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLL)
(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 36. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10 MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz
fVCO_OUT PLLI2S VCO output 192 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
μs
VCO freq = 432 MHz 100 - 300
Electrical characteristics STM32F405xx, STM32F407xx
102/185 DocID022152 Rev 4
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 43: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
- 90 - ps
WS I2S clock jitter
Cycle to cycle at 48 KHz
on 1000 samples
- 400 - ps
IDD(PLLI2S)
(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLLI2S)
(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Based on characterization, not tested in production.
Table 36. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 37. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - 215−1 -
1. Guaranteed by design, not tested in production.
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]
MODEPER round 106 4 10 3 = [ ⁄ ( × )] = 250
DocID022152 Rev 4 103/185
STM32F405xx, STM32F407xx Electrical characteristics
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
INCSTEP = round[((215 – 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]
INCSTEP = round[((215 – 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 – 1) × PLLN)
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 – 1) × 240) = 2.002%(peak)
Frequency (PLL_OUT)
Time
F0
tmode
md
ai17291
md
2 x tmode
Electrical characteristics STM32F405xx, STM32F407xx
104/185 DocID022152 Rev 4
Figure 36. PLL output clock waveforms in down spread mode
5.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Time
ai17292
Frequency (PLL_OUT)
F0
2 x md
tmode 2 x tmode
Table 38. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.8 V - 5 -
Write / Erase 16-bit mode, VDD = 2.1 V - 8 - mA
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
Table 39. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 - 16 100(2) μs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
Program/erase parallelism ms
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
DocID022152 Rev 4 105/185
STM32F405xx, STM32F407xx Electrical characteristics
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
Program/erase parallelism ms
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 2 4
Program/erase parallelism s
(PSIZE) = x 16 - 1.3 2.6
Program/erase parallelism
(PSIZE) = x 32 - 1 2
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 - 16 32
Program/erase parallelism s
(PSIZE) = x 16 - 11 22
Program/erase parallelism
(PSIZE) = x 32 - 8 16
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.8 - 3.6 V
1. Based on characterization, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
Table 39. Flash memory programming (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Electrical characteristics STM32F405xx, STM32F407xx
106/185 DocID022152 Rev 4
5.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
• Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
• FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
Table 40. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
- 16 100(2)
2. The maximum programming time is measured after 100K erase operations.
μs
tERASE16KB Sector (16 KB) erase time - 230 -
tERASE64KB Sector (64 KB) erase time - 490 - ms
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage 2.7 - 3.6 V
VPP VPP voltage range 7 - 9 V
IPP
Minimum current sunk on
the VPP pin 10 - - mA
tVPP
(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - 1 hour
Table 41. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
NEND Endurance
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
1 kcycle(2) at TA = 105 °C 10 Years
10 kcycles(2) at TA = 55 °C 20
DocID022152 Rev 4 107/185
STM32F405xx, STM32F407xx Electrical characteristics
A device reset allows normal operations to be resumed.
The test results are given in Table 42. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
• Corrupted program counter
• Unexpected reset
• Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 42. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 168 MHz, conforms
to IEC 61000-4-2
4A
Electrical characteristics STM32F405xx, STM32F407xx
108/185 DocID022152 Rev 4
5.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
• A supply overvoltage is applied to each power supply pin
• A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 43. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU] Unit
25/168 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator enabled
0.1 to 30 MHz 32
30 to 130 MHz 25 dBμV
130 MHz to 1GHz 29
SAE EMI Level 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator and PLL spread
spectrum enabled
0.1 to 30 MHz 19
30 to 130 MHz 16 dBμV
130 MHz to 1GHz 18
SAE EMI level 3.5 -
Table 44. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114 2 2000(2)
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to JESD22-C101 II 500
1. Based on characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
DocID022152 Rev 4 109/185
STM32F405xx, STM32F407xx Electrical characteristics
5.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of
5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 46.
5.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 45. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 46. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Negative Unit
injection
Positive
injection
IINJ
(1)
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
Injected current on all FT pins –5 +0
mA
Injected current on any other pin –5 +5
Electrical characteristics STM32F405xx, STM32F407xx
110/185 DocID022152 Rev 4
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
Table 47. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage TTL ports
2.7 V ≤ VDD ≤ 3.6 V
- - 0.8
V
VIH
(1) Input high level voltage 2.0 - -
VIL Input low level voltage
CMOS ports
1.8 V ≤ VDD ≤ 3.6 V
- - 0.3VDD
VIH
(1) Input high level voltage 0.7VDD
- -
- -
Vhys
I/O Schmitt trigger voltage hysteresis(2) - 200 -
IO FT Schmitt trigger voltage mV
hysteresis(2) 5% VDD
(3) - -
Ilkg
I/O input leakage current (4) VSS ≤ VIN ≤ VDD - - ±1
μA
I/O FT input leakage current (4) VIN = 5 V - - 3
RPU
Weak pull-up equivalent
resistor(5)
All pins
except for
PA10 and
PB12 VIN = VSS
30 40 50
kΩ
PA10 and
PB12 8 11 15
RPD
Weak pull-down
equivalent resistor
All pins
except for
PA10 and
PB12 VIN = VDD
30 40 50
PA10 and
PB12 8 11 15
CIO
(6) I/O pin capacitance 5 pF
1. Tested in production.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
6. Guaranteed by design, not tested in production.
DocID022152 Rev 4 111/185
STM32F405xx, STM32F407xx Electrical characteristics
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
• The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
• The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 37 and
Table 49, respectively.
Table 48. Output voltage characteristics(1)
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
Symbol Parameter Conditions Min Max Unit
VOL
(2)
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS port
IIO = +8 mA
2.7 V < VDD < 3.6 V
- 0.4
V
VOH
(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
VOL
(2) Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
- 0.4
V
VOH
(3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4 -
VOL
(2)(4)
4. Based on characterization data, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
- 1.3
V
VOH
(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3 -
VOL
(2)(4) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
- 0.4
V
VOH
(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
Electrical characteristics STM32F405xx, STM32F407xx
112/185 DocID022152 Rev 4
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 49. I/O AC characteristics(1)(2)(3)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(4)
CL = 50 pF, VDD > 2.70 V - - 2
MHz
CL = 50 pF, VDD > 1.8 V - - 2
CL = 10 pF, VDD > 2.70 V - - TBD
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time CL = 50 pF, VDD = 1.8 V to
3.6 V
- - TBD
ns
tr(IO)out
Output low to high level rise
time - - TBD
01
fmax(IO)out Maximum frequency(4)
CL = 50 pF, VDD > 2.70 V - - 25
MHz
CL = 50 pF, VDD > 1.8 V - - 12.5(5)
CL = 10 pF, VDD > 2.70 V - - 50(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 50 pF, VDD < 2.7 V - - TBD
ns
CL = 10 pF, VDD > 2.7 V - - TBD
tr(IO)out
Output low to high level rise
time
CL = 50 pF, VDD < 2.7 V - - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
10
fmax(IO)out Maximum frequency(4)
CL = 40 pF, VDD > 2.70 V - - 50(5)
MHz
CL = 40 pF, VDD > 1.8 V - - 25
CL = 10 pF, VDD > 2.70 V - - 100(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 50 pF,
2.4 < VDD < 2.7 V
- - TBD
CL = 10 pF, VDD > 2.7 V - - TBD ns
tr(IO)out
Output low to high level rise
time
CL = 50 pF,
2.4 < VDD < 2.7 V
- - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
DocID022152 Rev 4 113/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 37. I/O AC characteristics definition
5.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 47).
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
11
Fmax(IO)ou
t
Maximum frequency(4)
CL = 30 pF, VDD > 2.70 V - - 100(5)
MHz
CL = 30 pF, VDD > 1.8 V - - 50(5)
CL = 10 pF, VDD > 2.70 V - - 200(5)
CL = 10 pF, VDD > 1.8 V - - TBD
tf(IO)out
Output high to low level fall
time
CL = 20 pF,
2.4 < VDD < 2.7 V
- - TBD
ns
CL = 10 pF, VDD > 2.7 V - - TBD
tr(IO)out
Output low to high level rise
time
CL = 20 pF,
2.4 < VDD < 2.7 V
- - TBD
CL = 10 pF, VDD > 2.7 V - - TBD
- tEXTIpw
Pulse width of external
signals detected by the EXTI
controller
10 - - ns
1. Based on characterization data, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
3. TBD stands for “to be defined”.
4. The maximum frequency is defined in Figure 37.
5. For maximum frequencies above 50 MHz, the compensation cell should be used.
Table 49. I/O AC characteristics(1)(2)(3) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
ai14131
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
10%
50%
90%
when loaded by 50pF
T
tr(IO)out
Electrical characteristics STM32F405xx, STM32F407xx
114/185 DocID022152 Rev 4
Figure 38. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 50. Otherwise the reset is not taken into account by the device.
5.3.18 TIM timer characteristics
The parameters given in Table 51 and Table 52 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 50. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)
(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage TTL ports
2.7 V ≤ VDD
≤ 3.6 V
- - 0.8
V
VIH(NRST)
(1) NRST Input high level voltage 2 - -
VIL(NRST)
(1) NRST Input low level voltage CMOS ports
1.8 V ≤ VDD
≤ 3.6 V
- 0.3VDD
VIH(NRST)
(1) NRST Input high level voltage 0.7VDD -
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis - 200 - mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)
(1) NRST Input filtered pulse - - 100 ns
VNF(NRST)
(1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal
Reset source 20 - - μs
ai14132c
STM32Fxxx
NRST(2) RPU
VDD
Filter
Internal Reset
0.1 μF
External
reset circuit(1)
DocID022152 Rev 4 115/185
STM32F405xx, STM32F407xx Electrical characteristics
Table 51. Characteristics of TIMx connected to the APB1 domain(1)
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
84 MHz
1 - tTIMxCLK
11.9 - ns
AHB/APB1
prescaler = 1,
fTIMxCLK = 42 MHz
1 - tTIMxCLK
23.8 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 84 MHz
APB1= 42 MHz
0 fTIMxCLK/2 MHz
0 42 MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected
1 65536 tTIMxCLK
0.0119 780 μs
32-bit counter clock
period when internal clock
is selected
1 - tTIMxCLK
0.0119 51130563 μs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 51.1 s
Electrical characteristics STM32F405xx, STM32F407xx
116/185 DocID022152 Rev 4
5.3.19 Communications interfaces
I2C interface characteristics
The STM32F405xx and STM32F407xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 53. Refer also to Section 5.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 52. Characteristics of TIMx connected to the APB2 domain(1)
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
168 MHz
1 - tTIMxCLK
5.95 - ns
AHB/APB2
prescaler = 1,
fTIMxCLK = 84 MHz
1 - tTIMxCLK
11.9 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
fTIMxCLK =
168 MHz
APB2 = 84 MHz
0 fTIMxCLK/2 MHz
0 84 MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock
period when internal
clock is selected
1 65536 tTIMxCLK
tMAX_COUNT Maximum possible count - 32768 tTIMxCLK
Table 53. I2C characteristics
Symbol Parameter
Standard mode I2C(1) Fast mode I2C(1)(2)
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
μs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(3) - 0 900(4)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 20 + 0.1Cb 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
DocID022152 Rev 4 117/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 39. I2C bus AC waveforms and measurement circuit
1. Rs= series protection resistor.
2. Rp = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
th(STA) Start condition hold time 4.0 - 0.6 -
μs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
Table 53. I2C characteristics (continued)
Symbol Parameter
Standard mode I2C(1) Fast mode I2C(1)(2)
Unit
Min Max Min Max
ai14979c
S TAR T
SD A
RP
I²C bus
VDD_I2C
STM32Fxx
SDA
SCL
tf(SDA) tr(SDA)
SCL
th(STA)
tw(SCLH)
tw(SCLL)
tsu(SDA)
tr(SCL) tf(SCL)
th(SDA)
S TAR T REPEATED
t S TAR T su(STA)
tsu(STO)
S TOP tw(STO:STA)
VDD_I2C
RP RS
RS
Electrical characteristics STM32F405xx, STM32F407xx
118/185 DocID022152 Rev 4
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 14 with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO).
Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
Table 55. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
SPI clock frequency
Master mode, SPI1,
2.7V < VDD < 3.6V
- -
42
MHz
Slave mode, SPI1,
2.7V < VDD < 3.6V 42
1/tc(SCK)
Master mode, SPI1/2/3,
1.7V < VDD < 3.6V
- -
21
Slave mode, SPI1/2/3,
1.7V < VDD < 3.6V 21
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
DocID022152 Rev 4 119/185
STM32F405xx, STM32F407xx Electrical characteristics
tw(SCKH)
SCK high and low time
Master mode, SPI presc = 2,
2.7V < VDD < 3.6V TPCLK-0.5 TPCLK TPCLK+0.5
ns
tw(SCKL)
Master mode, SPI presc = 2,
1.7V < VDD < 3.6V TPCLK-2 TPCLK TPCLK+2
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 x TPCLK - -
th(NSS) NSS hold time Slave mode, SPI presc = 2 2 x TPCLK
tsu(MI) Data input setup time
Master mode 6.5 - -
tsu(SI) Slave mode 2.5 - -
th(MI) Data input hold time
Master mode 2.5 - -
th(SI) Slave mode 4 - -
ta(SO)
(2) Data output access time Slave mode, SPI presc = 2 0 - 4 x TPCLK
tdis(SO)
(3) Data output disable time
Slave mode, SPI1,
2.7V < VDD < 3.6V 0 - 7.5
Slave mode, SPI1/2/3
1.7V < VDD < 3.6V 0 - 16.5
tv(SO)
th(SO)
Data output valid/hold time
Slave mode (after enable edge),
SPI1, 2.7V < VDD < 3.6V - 11 13
Slave mode (after enable edge),
SPI2/3, 2.7V < VDD < 3.6V - 12 16.5
Slave mode (after enable edge),
SPI1, 1.7V < VDD < 3.6V - 15.5 19
Slave mode (after enable edge),
SPI2/3, 1.7V < VDD < 3.6V - 18 20.5
tv(MO) Data output valid time
Master mode (after enable edge),
SPI1 , 2.7V < VDD < 3.6V - - 2.5
Master mode (after enable edge),
SPI1/2/3 , 1.7V < VDD < 3.6V - - 4.5
th(MO) Data output hold time Master mode (after enable edge) 0 - -
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Table 55. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F405xx, STM32F407xx
120/185 DocID022152 Rev 4
Figure 40. SPI timing diagram - slave mode and CPHA = 0
Figure 41. SPI timing diagram - slave mode and CPHA = 1
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO)
tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
DocID022152 Rev 4 121/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 42. SPI timing diagram - master mode
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INPUT
CPHA=0
MSBIN
MSB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
Electrical characteristics STM32F405xx, STM32F407xx
122/185 DocID022152 Rev 4
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 56 for the i2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The
value of these parameters might be slightly impacted by the source clock accuracy. DCK
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value
of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV +
ODD). FS maximum value is supported for each mode/condition.
Table 56. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S main clock output - 256 x
8K 256 x FS
(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64 x FS MHz
Slave data: 32 bits - 64 x FS
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode 0 6
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 1 -
th(WS) WS hold time Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 7.5 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 27
tv(SD_MT) Master transmitter (after enable edge) - 20
th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 -
1. Data based on characterization results, not tested in production.
2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency).
DocID022152 Rev 4 123/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 43. I2S slave timing diagram (Philips protocol)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 44. I2S master timing diagram (Philips protocol)(1)
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USB OTG FS characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers. CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS) tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive(2)
LSB transmit(2)
Electrical characteristics STM32F405xx, STM32F407xx
124/185 DocID022152 Rev 4
Figure 45. USB OTG FS timings: definition of data signal rise and fall time
Table 57. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP
(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 μs
Table 58. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2)
2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
- 3.6 V
VDI
(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VCM V
(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE
(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
- - 0.3
V
VOH Static output level high RL of 15 kΩ to VSS
(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
ai14137
tf
Differen tial
Data L ines
VSS
VCRS
tr
Crossover
points
DocID022152 Rev 4 125/185
STM32F405xx, STM32F407xx Electrical characteristics
USB HS characteristics
Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 61
and VDD supply voltage conditions summarized in Table 60, with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section Section 5.3.16: I/O port characteristics for more details on the
input/outputcharacteristics.
Table 59. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
tr Rise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 4 20 ns
tf Fall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf 90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
Table 60. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 2.7 3.6 V
Table 61. USB HS clock timing parameters(1)
Parameter Symbol Min Nominal Max Unit
fHCLK value to guarantee proper operation of
USB HS interface 30 MHz
Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz
Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %
Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY - - 1.4 ms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV - - 5.6
ms
Host TSTART_HOST - - -
PHY preparation time after the first transition
of the input clock TPREP - - - μs
Electrical characteristics STM32F405xx, STM32F407xx
126/185 DocID022152 Rev 4
Figure 46. ULPI timing diagram
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 14 and VDD supply voltage conditions summarized in
Table 63, with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
1. Guaranteed by design, not tested in production.
Table 62. ULPI timing
Parameter Symbol
Value(1)
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Unit
Min. Max.
Control in (ULPI_DIR) setup time
tSC
- 2.0
ns
Control in (ULPI_NXT) setup time - 1.5
Control in (ULPI_DIR, ULPI_NXT) hold time tHC 0 -
Data in setup time tSD - 2.0
Data in hold time tHD 0 -
Control out (ULPI_STP) setup time and hold time tDC - 9.2
Data out available from clock rising edge tDD - 10.7
Clock
Control In
(ULPI_DIR,
ULPI_NXT)
data In
(8-bit)
Control out
(ULPI_STP)
data out
(8-bit)
tDD
tDC
tSD tHD
tSC tHC
ai17361c
tDC
DocID022152 Rev 4 127/185
STM32F405xx, STM32F407xx Electrical characteristics
Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 47 shows the corresponding timing diagram.
Figure 47. Ethernet SMI timing diagram
Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the
corresponding timing diagram.
Figure 48. Ethernet RMII timing diagram
Table 63. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Table 64. Dynamic characteristics: Ehternet MAC signals for SMI(1)
1. Data based on characterization results, not tested in production.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time( 2.38 MHz) 411 420 425
ns
Td(MDIO) Write data valid time 6 10 13
tsu(MDIO) Read data setup time 12 - -
th(MDIO) Read data hold time 0 - -
MS31384V1
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
td(TXEN)
td(TXD)
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
ai15667
Electrical characteristics STM32F405xx, STM32F407xx
128/185 DocID022152 Rev 4
Table 66 gives the list of Ethernet MAC signals for MII and Figure 48 shows the
corresponding timing diagram.
Figure 49. Ethernet MII timing diagram
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - - ns
tih(RXD) Receive data hold time 1 - - ns
tsu(CRS) Carrier sense set-up time 0.5 - - ns
tih(CRS) Carrier sense hold time 2 - - ns
td(TXEN) Transmit enable valid delay time 8 9.5 11 ns
td(TXD) Transmit data valid delay time 8.5 10 11.5 ns
Table 66. Dynamic characteristics: Ethernet MAC signals for MII(1)
1. Data based on characterization results, not tested in production.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 9 -
ns
tih(RXD) Receive data hold time 10 -
tsu(DV) Data valid setup time 9 -
tih(DV) Data valid hold time 8 -
tsu(ER) Error setup time 6 -
tih(ER) Error hold time 8 -
td(TXEN) Transmit enable valid delay time 0 10 14
td(TXD) Transmit data valid delay time 0 10 15
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
DocID022152 Rev 4 129/185
STM32F405xx, STM32F407xx Electrical characteristics
CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 67. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply 1.8(1) - 3.6 V
VREF+ Positive reference voltage 1.8(1)(2)(3) - VDDA V
fADC ADC clock frequency
VDDA = 1.8(1)(3) to
2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V(3) 0.6 30 36 MHz
fTRIG
(4) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
- - 17 1/fADC
VAIN Conversion voltage range(5) 0 (VSSA or VREFtied
to ground) - VREF+ V
RAIN
(4) External input impedance See Equation 1 for
details - - 50 κΩ
RADC
(4)(6) Sampling switch resistance - - 6 κΩ
CADC
(4) Internal sample and hold
capacitor - 4 - pF
tlat
(4) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 μs
- - 3(7) 1/fADC
tlatr
(4) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 μs
- - 2(7) 1/fADC
tS
(4) Sampling time
fADC = 30 MHz 0.100 - 16 μs
3 - 480 1/fADC
tSTAB
(4) Power-up time - 2 3 μs
Electrical characteristics STM32F405xx, STM32F407xx
130/185 DocID022152 Rev 4
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
tCONV
(4) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution
0.50 - 16.40 μs
fADC = 30 MHz
10-bit resolution
0.43 - 16.34 μs
fADC = 30 MHz
8-bit resolution
0.37 - 16.27 μs
fADC = 30 MHz
6-bit resolution
0.30 - 16.20 μs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS
(4)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC
- - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+
(4)
ADC VREF DC current
consumption in conversion
mode
- 300 500 μA
IVDDA
(4)
ADC VDDA DC current
consumption in conversion
mode
- 1.6 1.8 mA
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. VDDA -VREF+ < 1.2 V.
4. Based on characterization, not tested in production.
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.
Table 67. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
(k – 0.5)
fADC CADC 2N + 2 × × ln( )
= -------------------------------------------------------------- – RADC
DocID022152 Rev 4 131/185
STM32F405xx, STM32F407xx Electrical characteristics
a
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
Figure 50. ADC accuracy characteristics
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
Table 68. ADC accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range,
and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
ai14395c
EO
EG
1L SBIDEAL
4095
4094
4093
5
4
3
2
1
0
7
6
1 2 3 456 7 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VSSA VDDA
VREF+
4096
(or depending on package)]
VDDA
4096
[1LSB IDEAL =
Electrical characteristics STM32F405xx, STM32F407xx
132/185 DocID022152 Rev 4
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 51. Typical connection diagram using the ADC
1. Refer to Table 67 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
ai17534
VDD STM32F
AINx
IL±1 μA
0.6 V
VT
RAIN
(1)
Cparasitic
VAIN
0.6 V
VT
RADC
(1)
CADC(1)
12-bit
converter
Sample and hold ADC
converter
DocID022152 Rev 4 133/185
STM32F405xx, STM32F407xx Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
VREF+
STM32F
VDDA
VSSA/V REF-
1 μF // 10 nF
1 μF // 10 nF
ai17535
(See note 1)
(See note 1)
VREF+/VDDA
STM32F
1 μF // 10 nF
VREF–/VSSA
ai17536
(See note 1)
(See note 1)
Electrical characteristics STM32F405xx, STM32F407xx
134/185 DocID022152 Rev 4
5.3.21 Temperature sensor characteristics
5.3.22 VBAT monitoring characteristics
Table 69. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL
(1) VSENSE linearity with temperature - ±1 ±2 °C
Avg_Slope(1) Average slope - 2.5 mV/°C
V25
(1) Voltage at 25 °C - 0.76 V
tSTART
(2) Startup time - 6 10 μs
TS_temp
(3)(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - μs
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
Table 70. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
Table 71. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT - 50 - KΩ
Q Ratio on VBAT measurement - 2 -
Er(1) Error on Q –1 - +1 %
TS_vbat
(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5 - - μs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
DocID022152 Rev 4 135/185
STM32F405xx, STM32F407xx Electrical characteristics
5.3.23 Embedded reference voltage
The parameters given in Table 72 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
5.3.24 DAC electrical characteristics
Table 72. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint
(1) ADC sampling time when reading the
internal reference voltage 10 - - μs
VRERINT_s
(2) Internal reference voltage spread over the
temperature range VDD = 3 V - 3 5 mV
TCoeff
(2) Temperature coefficient - 30 50 ppm/°C
tSTART
(2) Startup time - 6 10 μs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Table 73. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Table 74. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.8(1) - 3.6 V
VREF+ Reference supply voltage 1.8(1) - 3.6 V VREF+ ≤ VDDA
VSSA Ground 0 - 0 V
RLOAD
(2) Resistive load with buffer
ON 5 - - kΩ
RO
(2) Impedance output with
buffer OFF - - 15 kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD
(2) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON - - VDDA – 0.2 V
Electrical characteristics STM32F405xx, STM32F407xx
136/185 DocID022152 Rev 4
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF - 0.5 - mV
It gives the maximum output
DAC_OUT excursion of the DAC.
max(2)
Higher DAC_OUT voltage
with buffer OFF - - VREF+ – 1LSB V
IVREF+
(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
- 170 240
μA
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
- 50 75
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA
(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
- 280 380 μA With no load, middle code (0x800)
on the inputs
- 475 625 μA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
- - ±0.5 LSB Given for the DAC in 10-bit
configuration.
- - ±2 LSB Given for the DAC in 12-bit
configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
- - ±1 LSB Given for the DAC in 10-bit
configuration.
- - ±4 LSB Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VREF+/2)
- - ±10 mV Given for the DAC in 12-bit
configuration
- - ±3 LSB Given for the DAC in 10-bit at
VREF+ = 3.6 V
- - ±12 LSB Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING
(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
- 3 6 μs CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON
- - - dB CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Table 74. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
DocID022152 Rev 4 137/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 54. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
5.3.25 FSMC characteristics
Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 14, with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
- - 1 MS/s CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
tWAKEUP
(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
- 6.5 10 μs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. Guaranteed by design, not tested in production.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization, not tested in production.
Table 74. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
RLOAD
CLOAD
Buffered/Non-buffered DAC
DACx_OUT
Buffer(1)
12-bit
digital to
analog
converter
ai17157
Electrical characteristics STM32F405xx, STM32F407xx
138/185 DocID022152 Rev 4
Asynchronous waveforms and timings
Figure 55 through Figure 58 represent asynchronous waveforms and Table 75 through
Table 78 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
• AddressSetupTime = 1
• AddressHoldTime = 0x1
• DataSetupTime = 0x1
• BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2THCLK–0.5 2 THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 3 ns
tw(NOE) FSMC_NOE low time 2THCLK–2 2THCLK+ 2 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 4.5 ns
th(A_NOE) Address hold time after FSMC_NOE high 4 - ns
Data
FSMC_NE
FSMC_NBL[1:0]
FSMC_D[15:0]
tv(BL_NE)
t h(Data_NE)
FSMC_NOE
FSMC_A[25:0] Address
tv(A_NE)
FSMC_NWE
tsu(Data_NE)
tw(NE)
ai14991c
tv(NOE_NE) t w(NOE) t h(NE_NOE)
th(Data_NOE)
t h(A_NOE)
t h(BL_NOE)
tsu(Data_NOE)
FSMC_NADV(1)
t v(NADV_NE)
tw(NADV)
DocID022152 Rev 4 139/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+4 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK+0.5 ns
tw(NWE) FSMC_NWE low time THCLK–1 THCLK+2 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK–1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_D[15:0]
tv(BL_NE)
th(Data_NWE)
FSMC_NOE
FSMC_A[25:0] Address
tv(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) t h(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
ai14990
FSMC_NADV(1)
t v(NADV_NE)
tw(NADV)
Electrical characteristics STM32F405xx, STM32F407xx
140/185 DocID022152 Rev 4
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms
th(A_NWE) Address hold time after FSMC_NWE high THCLK– 2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+3 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK–1 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK+0.5 ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK–1 3THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK–0.5 2THCLK+0.5 ns
tw(NOE) FSMC_NOE low time THCLK–1 THCLK+1 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
NBL
Data
FSMC_NBL[1:0]
FSMC_AD[15:0]
tv(BL_NE)
th(Data_NE)
FSMC_A[25:16] Address
tv(A_NE)
FSMC_NWE
t v(A_NE)
ai14892b
Address
FSMC_NADV
t v(NADV_NE)
tw(NADV)
tsu(Data_NE)
th(AD_NADV)
FSMC_NE
FSMC_NOE
tw(NE)
t w(NOE)
tv(NOE_NE) t h(NE_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE) th(Data_NOE)
DocID022152 Rev 4 141/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+1 ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK - ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK–1 - ns
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 2 ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+4 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4THCLK–0.5 4THCLK+3 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK -0.5 ns
tw(NWE) FSMC_NWE low tim e 2THCLK–0.5 2THCLK+3 ns
Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued)
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_AD[15:0]
tv(BL_NE)
th(Data_NWE)
FSMC_NOE
FSMC_A[25:16] Address
tv(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) t h(NE_NWE)
th(A_NWE)
th(BL_NWE)
t v(A_NE)
tw(NE)
ai14891B
Address
FSMC_NADV
t v(NADV_NE)
tw(NADV)
t v(Data_NADV)
th(AD_NADV)
Electrical characteristics STM32F405xx, STM32F407xx
142/185 DocID022152 Rev 4
Synchronous waveforms and timings
Figure 59 through Figure 62 represent synchronous waveforms and Table 80 through
Table 82 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
• BurstAccessMode = FSMC_BurstAccessMode_Enable;
• MemoryType = FSMC_MemoryType_CRAM;
• WriteBurst = FSMC_WriteBurst_Enable;
• CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
• DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 60 MHz).
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 1 ns
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high) THCLK–2 - ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK - ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK–2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK–0.5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
DocID022152 Rev 4 143/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 59. Synchronous multiplexed NOR/PSRAM read timings
Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 2 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 4.5 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 - ns
FSMC_CLK
FSMC_NEx
FSMC_NADV
FSMC_A[25:16]
FSMC_NOE
FSMC_AD[15:0] AD[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKL-AIV)
td(CLKL-NOEL) td(CLKL-NOEH)
td(CLKL-ADV)
td(CLKL-ADIV)
tsu(ADV-CLKH)
th(CLKH-ADV)
tsu(ADV-CLKH) th(CLKH-ADV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14893g
Electrical characteristics STM32F405xx, STM32F407xx
144/185 DocID022152 Rev 4
Figure 60. Synchronous multiplexed PSRAM write timings
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 80. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued)
FSMC_CLK
FSMC_NEx
FSMC_NADV
FSMC_A[25:16]
FSMC_NWE
FSMC_AD[15:0] AD[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKL-AIV)
td(CLKL-NWEL) td(CLKL-NWEH)
td(CLKL-NBLH)
td(CLKL-ADV)
td(CLKL-ADIV) td(CLKL-Data)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14992g
td(CLKL-Data)
FSMC_NBL
DocID022152 Rev 4 145/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 0.5 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 3 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK –0.5 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0.5 ns
Table 80. Synchronous multiplexed PSRAM write timings(1)(2)
FSMC_CLK
FSMC_NEx
FSMC_A[25:0]
FSMC_NOE
FSMC_D[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-AV) td(CLKL-AIV)
td(CLKL-NOEL) td(CLKL-NOEH)
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) t h(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14894f
FSMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
Electrical characteristics STM32F405xx, STM32F407xx
146/185 DocID022152 Rev 4
Figure 62. Synchronous non-multiplexed PSRAM write timings
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 2 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0.5 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued)
FSMC_CLK
FSMC_NEx
FSMC_A[25:0]
FSMC_NWE
FSMC_D[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-AV) td(CLKL-AIV)
td(CLKL-NWEL) td(CLKL-NWEH)
td(CLKL-Data)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
ai14993g
FSMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
td(CLKL-Data)
FSMC_NBL
td(CLKL-NBLH)
DocID022152 Rev 4 147/185
STM32F405xx, STM32F407xx Electrical characteristics
PC Card/CompactFlash controller waveforms and timings
Figure 63 through Figure 68 represent synchronous waveforms, and Table 83 and Table 84
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
• COM.FSMC_SetupTime = 0x04;
• COM.FSMC_WaitSetupTime = 0x07;
• COM.FSMC_HoldSetupTime = 0x04;
• COM.FSMC_HiZSetupTime = 0x00;
• ATT.FSMC_SetupTime = 0x04;
• ATT.FSMC_WaitSetupTime = 0x07;
• ATT.FSMC_HoldSetupTime = 0x04;
• ATT.FSMC_HiZSetupTime = 0x00;
• IO.FSMC_SetupTime = 0x04;
• IO.FSMC_WaitSetupTime = 0x07;
• IO.FSMC_HoldSetupTime = 0x04;
• IO.FSMC_HiZSetupTime = 0x00;
• TCLRSetupTime = 0;
• TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 82. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 7 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 6 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 6 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 2 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 3 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 3 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
Electrical characteristics STM32F405xx, STM32F407xx
148/185 DocID022152 Rev 4
Figure 63. PC Card/CompactFlash controller waveforms for common memory read
access
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
Figure 64. PC Card/CompactFlash controller waveforms for common memory write
access
FSMC_NWE
tw(NOE)
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2(1)
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NCE4_1-NOE)
tsu(D-NOE) th(NOE-D)
tv(NCEx-A)
td(NREG-NCEx)
td(NIORD-NCEx)
th(NCEx-AI)
th(NCEx-NREG)
th(NCEx-NIORD)
th(NCEx-NIOWR)
ai14895b
td(NCE4_1-NWE) tw(NWE)
th(NWE-D)
tv(NCE4_1-A)
td(NREG-NCE4_1)
td(NIORD-NCE4_1)
th(NCE4_1-AI)
MEMxHIZ =1
tv(NWE-D)
th(NCE4_1-NREG)
th(NCE4_1-NIORD)
th(NCE4_1-NIOWR)
ai14896b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
td(D-NWE)
FSMC_NCE4_2 High
DocID022152 Rev 4 149/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
td(NCE4_1-NOE) tw(NOE)
tsu(D-NOE) th(NOE-D)
tv(NCE4_1-A) th(NCE4_1-AI)
td(NREG-NCE4_1) th(NCE4_1-NREG)
ai14897b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NOE-NCE4_1)
High
Electrical characteristics STM32F405xx, STM32F407xx
150/185 DocID022152 Rev 4
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write
access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access
tw(NWE)
tv(NCE4_1-A)
td(NREG-NCE4_1)
th(NCE4_1-AI)
th(NCE4_1-NREG)
tv(NWE-D)
ai14898b
FSMC_NWE
FSMC_NOE
FSMC_D[7:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
High
td(NCE4_1-NWE)
td(NIORD-NCE4_1) tw(NIORD)
tsu(D-NIORD) td(NIORD-D)
tv(NCEx-A) th(NCE4_1-AI)
ai14899B
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
DocID022152 Rev 4 151/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access
td(NCE4_1-NIOWR) tw(NIOWR)
tv(NCEx-A) th(NCE4_1-AI)
th(NIOWR-D)
ATTxHIZ =1
tv(NIOWR-D)
ai14900c
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
Table 83. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol Parameter Min Max Unit
tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns
th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+4 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+0.5 ns
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK +0.5 ns
tw(NOE) FSMC_NOE low width 8THCLK–1 8THCLK+1 ns
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+2.5 - ns
tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4.5 - ns
th(N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 3 - ns
tw(NWE) FSMC_NWE low width 8THCLK–0.5 8THCLK+ 3 ns
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK–1 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK –1 - ns
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK –1 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Electrical characteristics STM32F405xx, STM32F407xx
152/185 DocID022152 Rev 4
NAND controller waveforms and timings
Figure 69 through Figure 72 represent synchronous waveforms, and Table 85 and Table 86
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
• COM.FSMC_SetupTime = 0x01;
• COM.FSMC_WaitSetupTime = 0x03;
• COM.FSMC_HoldSetupTime = 0x02;
• COM.FSMC_HiZSetupTime = 0x01;
• ATT.FSMC_SetupTime = 0x01;
• ATT.FSMC_WaitSetupTime = 0x03;
• ATT.FSMC_HoldSetupTime = 0x02;
• ATT.FSMC_HiZSetupTime = 0x01;
• Bank = FSMC_Bank_NAND;
• MemoryDataWidth = FSMC_MemoryDataWidth_16b;
• ECC = FSMC_ECC_Enable;
• ECCPageSize = FSMC_ECCPageSize_512Bytes;
• TCLRSetupTime = 0;
• TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 84. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FSMC_NIOWR low width 8THCLK –1 - ns
tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK– 1 ns
th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK– 2 - ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 2.5 ns
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK–1.5 - ns
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 2 ns
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 1.5 - ns
tw(NIORD) FSMC_NIORD low width 8THCLK–0.5 - ns
tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9 - ns
td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
DocID022152 Rev 4 153/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 69. NAND controller waveforms for read access
Figure 70. NAND controller waveforms for write access
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
tsu(D-NOE) th(NOE-D)
ai14901c
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NOE) th(NOE-ALE)
tv(NWE-D) th(NWE-D)
ai14902c
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NWE) th(NWE-ALE)
Electrical characteristics STM32F405xx, STM32F407xx
154/185 DocID022152 Rev 4
Figure 71. NAND controller waveforms for common memory read access
Figure 72. NAND controller waveforms for common memory write access
Table 85. Switching characteristics for NAND Flash read cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(N0E) FSMC_NOE low width 4THCLK–
0.5 4THCLK+ 3 ns
tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 10 - ns
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 0 - ns
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK– 2 - ns
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
tw(NOE)
tsu(D-NOE) th(NOE-D)
ai14912c
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NOE) th(NOE-ALE)
tw(NWE)
tv(NWE-D) th(NWE-D)
ai14913c
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
td(D-NWE)
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NOE) th(NOE-ALE)
DocID022152 Rev 4 155/185
STM32F405xx, STM32F407xx Electrical characteristics
5.3.26 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 13, with the following configuration:
• PCK polarity: falling
• VSYNC and HSYNC polarity: high
• Data format: 14 bits
Figure 73. DCMI timing diagram
Table 86. Switching characteristics for NAND Flash write cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NWE) FSMC_NWE low width 4THCLK–1 4THCLK+ 3 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns
th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK –2 - ns
td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK–3 - ns
td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK ns
th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK–2 - ns
Table 87. DCMI characteristics(1)
Symbol Parameter Min Max Unit
Frequency ratio DCMI_PIXCLK/fHCLK - 0.4
DCMI_PIXCLK Pixel clock input - 54 MHz
Dpixel Pixel clock input duty cycle 30 70 %
MS32414V1
Pixel clock
tsu(VSYNC)
tsu(HSYNC)
HSYNC
VSYNC
DATA[0:13]
1/DCMI_PIXCLK
th(HSYNC)
th(HSYNC)
tsu(DATA) th(DATA)
Electrical characteristics STM32F405xx, STM32F407xx
156/185 DocID022152 Rev 4
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 88 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 14 with the following configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 74. SDIO high-speed mode
tsu(DATA) Data input setup time 2.5 -
ns
th(DATA) Data hold time 1 -
tsu(HSYNC),
tsu(VSYNC)
HSYNC/VSYNC input setup time 2 -
th(HSYNC),
th(VSYNC)
HSYNC/VSYNC input hold time 0.5 -
1. Data based on characterization results, not tested in production.
Table 87. DCMI characteristics(1) (continued)
Symbol Parameter Min Max Unit
tW(CKH)
CK
D, CMD
(output)
D, CMD
(input)
tC
tW(CKL)
tOV tOH
tISU tIH
tf tr
ai14887
DocID022152 Rev 4 157/185
STM32F405xx, STM32F407xx Electrical characteristics
Figure 75. SD default mode
5.3.28 RTC characteristics
CK
D, CMD
(output)
tOVD tOHD
ai14888
Table 88. Dynamic characteristics: SD / MMC characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode 0 48 MHz
SDIO_CK/fPCLK2 frequency ratio - - 8/3 -
tW(CKL) Clock low time fpp = 48 MHz 8.5 9 -
ns
tW(CKH) Clock high time fpp = 48 MHz 8.3 10 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp = 48 MHz 3 - -
ns
tIH Input hold time HS fpp = 48 MHz 0 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp = 48 MHz - 4.5 6
ns
tOH Output hold time HS fpp = 48 MHz 1 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp = 24 MHz 1.5 - -
ns
tIHD Input hold time SD fpp = 24 MHz 0.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp = 24 MHz - 4.5 7
ns
tOHD Output hold default time SD fpp = 24 MHz 0.5 - -
1. Data based on characterization results, not tested in production.
Table 89. RTC characteristics
Symbol Parameter Conditions Min Max
- fPCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4 -
Package characteristics STM32F405xx, STM32F407xx
158/185 DocID022152 Rev 4
6 Package characteristics
6.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID022152 Rev 4 159/185
STM32F405xx, STM32F407xx Package characteristics
Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline
Bump side
Side view
Detail A
Wafer back side
A1 ball location
A1
Detail A
rotated by 90 °C
eee
D
A0JW_ME
Seating plane
A2
A
b
E
e
e1
e
G
F
e2
Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.520 0.570 0.620 0.0205 0.0224 0.0244
A1 0.165 0.190 0.215 0.0065 0.0075 0.0085
A2 0.350 0.380 0.410 0.0138 0.015 0.0161
b 0.240 0.270 0.300 0.0094 0.0106 0.0118
D 4.178 4.218 4.258 0.1645 0.1661 0.1676
E 3.964 3.969 4.004 0.1561 0.1563 0.1576
e 0.400 0.0157
e1 3.600 0.1417
e2 3.200 0.126
F 0.312 0.0123
G 0.385 0.0152
eee 0.050 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F405xx, STM32F407xx
160/185 DocID022152 Rev 4
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
1. Drawing is not to scale.
ai14398b
A
A2
A1
c
L1
L
E E1
D
D1
e
b
Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 12.000 0.4724
D1 10.000 0.3937
E 12.000 0.4724
E1 10.000 0.3937
e 0.500 0.0197
θ 0° 3.5° 7° 0° 3.5° 7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
N
Number of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID022152 Rev 4 161/185
STM32F405xx, STM32F407xx Package characteristics
Figure 78. LQFP64 recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
48
49 32
64 17
1 16
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Package characteristics STM32F405xx, STM32F407xx
162/185 DocID022152 Rev 4
Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
IDENTIFICATION e
PIN 1
GAUGE PLANE
0.25 mm
SEATING
PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
1 25
100 26
76
75 51
50
1L_ME_V4
A2
A
A1
L1
L
c
b
A1
Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data(1)
Symbol
millimeters inches
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.80v 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0° 3.5° 7° 0° 3.5° 7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID022152 Rev 4 163/185
STM32F405xx, STM32F407xx Package characteristics
Figure 80. LQFP100 recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
75 51
76 50
0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906
Package characteristics STM32F405xx, STM32F407xx
164/185 DocID022152 Rev 4
Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
1. Drawing is not to scale.
D1
D3
D
E3 E1 E
e
Pin 1
identification
73
72
37
36
109
144
108
1
A A2A1
b c
A1 L
L1
k
Seating plane
C
ccc C
0.25 mm
gage plane
ME_1A
Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.689
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
DocID022152 Rev 4 165/185
STM32F405xx, STM32F407xx Package characteristics
Figure 82. LQFP144 recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
k 0° 3.5° 7° 0° 3.5° 7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
ai14905c
0.5
0.35
19.9
17.85
22.6
1.35
22.6
19.9
1 36
37
72
108 73
109
144
Package characteristics STM32F405xx, STM32F407xx
166/185 DocID022152 Rev 4
Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline
1. Drawing is not to scale.
Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2
0.400 0.450 0.500 0.0157 0.0177 0.0197
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.900 10.000 10.100 0.3898 0.3937 0.3976
E 9.900 10.000 10.100 0.3898 0.3937 0.3976
e 0.650 0.0256
F 0.425 0.450 0.475 0.0167 0.0177 0.0187
ddd 0.080 0.0031
eee 0.150 0.0059
fff 0.080 0.0031
A0E7_ME_V4
Seating plane
A2 ddd C
A1
A
e F
F
e
R
A
15 1
BOTTOM VIEW
E
D
TOP VIEW
Øb (176 + 25 balls)
B
A
Ø eee M B
Ø fff M
C
C
A
C
A1 ball
identifier
A1 ball
index area
DocID022152 Rev 4 167/185
STM32F405xx, STM32F407xx Package characteristics
Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline
1. Drawing is not to scale.
ccc C
C Seating plane
A A2
A1 c
0.25 mm
gauge plane
HD
D
A1
L
L1
k
89
88
E HE
45
44
e
1
176
Pin 1
identification
b
133
132
1T_ME
ZD
ZE
Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020
A2 1.350 1.450 0.0531 0.0060
b 0.170 0.270 0.0067 0.0106
C 0.090 0.200 0.0035 0.0079
D 23.900 24.100 0.9409 0.9488
E 23.900 24.100 0.9409 0.9488
e 0.500 0.0197
HD 25.900 26.100 1.0200 1.0276
HE 25.900 26.100 1.0200 1.0276
L 0.450 0.750 0.0177 0.0295
L1 1.000 0.0394
ZD 1.250 0.0492
ZE 1.250 0.0492
Package characteristics STM32F405xx, STM32F407xx
168/185 DocID022152 Rev 4
Figure 85. LQFP176 recommended footprint
1. Dimensions are expressed in millimeters.
ccc 0.080 0.0031
k 0 ° 7 ° 0 ° 7 °
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
1T_FP_V1
133
132
1.2
0.3
0.5
89
88
1.2
44
45
21.8
26.7
1
176
26.7
21.8
DocID022152 Rev 4 169/185
STM32F405xx, STM32F407xx Package characteristics
6.2 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
• TA max is the maximum ambient temperature in °C,
• ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
• PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
• PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 96. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 46
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.65 mm pitch 39
Thermal resistance junction-ambient
WLCSP90 - 0.400 mm pitch 38.1
Part numbering STM32F405xx, STM32F407xx
170/185 DocID022152 Rev 4
7 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 97. Ordering information scheme
Example: STM32 F 405 R E T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
405 = STM32F40x, connectivity
407= STM32F40x, connectivity, camera interface, Ethernet
Pin count
R = 64 pins
O = 90 pins
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
DocID022152 Rev 4 171/185
STM32F405xx, STM32F407xx Application block diagrams
Appendix A Application block diagrams
A.1 USB OTG full speed (FS) interface solutions
Figure 86. USB controller configured as peripheral-only and used
in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 87. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
STM32F4xx
5V to VDD
Volatge regulator (1)
VDD
VBUS
DP
VSS
PA12/PB15
PA11//PB14
USB Std-B connector
DM
OSC_IN
OSC_OUT
MS19000V5
STM32F4xx
VDD
VBUS
DP
VSS
USB Std-A connector
DM
GPIO+IRQ
GPIO
EN
Overcurrent
5 V Pwr
OSC_IN
OSC_OUT
MS19001V4
Current limiter
power switch(1)
PA12/PB15
PA11//PB14
Application block diagrams STM32F405xx, STM32F407xx
172/185 DocID022152 Rev 4
Figure 88. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
STM32F4xx
VDD
VBUS
DP
VSS
PA9/PB13
PA12/PB15
PA11/PB14
USB micro-AB connector
DM
GPIO+IRQ
GPIO
EN
Overcurrent
5 V Pwr
5 V to VDD
voltage regulator (1)
VDD
ID(3)
PA10/PB12
OSC_IN
OSC_OUT
MS19002V3
Current limiter
power switch(2)
DocID022152 Rev 4 173/185
STM32F405xx, STM32F407xx Application block diagrams
A.2 USB OTG high speed (HS) interface solutions
Figure 89. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
DP
STM32F4xx
DM
VBUS
VSS
DM
DP
ID(2)
USB
USB HS
OTG Ctrl
FS PHY
ULPI
High speed
OTG PHY
ULPI_CLK
ULPI_D[7:0]
ULPI_DIR
ULPI_STP
ULPI_NXT
not connected
connector
MCO1 or MCO2
24 or 26 MHz XT(1)
PLL
XT1
XI
MS19005V2
Application block diagrams STM32F405xx, STM32F407xx
174/185 DocID022152 Rev 4
A.3 Ethernet interface solutions
Figure 90. MII mode using a 25 MHz crystal
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 91. RMII with a 50 MHz oscillator
1. fHCLK must be greater than 25 MHz.
MCU
Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
XT1
PHY_CLK 25 MHz
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
MII_CRS
MII_COL
MDIO
MDC
HCLK(1)
PPS_OUT(2)
XTAL
25 MHz
STM32
OSC
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
MII
= 15 pins
MII + MDC
= 17 pins
MS19968V1
MCO1/MCO2
MCU
Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
PHY_CLK 50 MHz XT1
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK(1)
STM32
OSC
50 MHz
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC
= 9 pins
MS19969V1
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
50 MHz
DocID022152 Rev 4 175/185
STM32F405xx, STM32F407xx Application block diagrams
Figure 92. RMII with a 25 MHz crystal and PHY with PLL
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
MCU
Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
PHY_CLK 25 MHz XT1
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK(1)
STM32F
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC
= 9 pins
MS19970V1
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
XTAL
25 MHz OSC
PLL
REF_CLK
MCO1/MCO2
Revision history STM32F405xx, STM32F407xx
176/185 DocID022152 Rev 4
8 Revision history
Table 98. Document revision history
Date Revision Changes
15-Sep-2011 1 Initial release.
24-Jan-2012 2
Added WLCSP90 package on cover page.
Renamed USART4 and USART5 into UART4 and UART5,
respectively.
Updated number of USB OTG HS and FS in Table 2: STM32F405xx
and STM32F407xx: features and peripheral counts.
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and
Figure 4: Compatible board design between STM32F2xx and
STM32F4xx for LQFP176 and BGA176 packages, and removed note
1 and 2.
Updated Section 2.2.9: Flexible static memory controller (FSMC).
Modified I/Os used to reprogram the Flash memory for CAN2 and
USB OTG FS in Section 2.2.13: Boot modes.
Updated note in Section 2.2.14: Power supply schemes.
PDR_ON no more available on LQFP100 package. Updated
Section 2.2.16: Voltage regulator. Updated condition to obtain a
minimum supply voltage of 1.7 V in the whole document.
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for
UART4 and UART5 in Table 5: USART feature comparison.
Removed support of I2C for OTG PHY in Section 2.2.30: Universal
serial bus on-the-go full-speed (OTG_FS).
Added Table 6: Legend/abbreviations used in the pinout table.
Table 7: STM32F40x pin and ball definitions: replaced VSS_3, VSS_4,
and VSS_8 by VSS; reformatted Table 7: STM32F40x pin and ball
definitions to better highlight I/O structure, and alternate functions
versus additional functions; signal corresponding to LQFP100 pin 99
changed from PDR_ON to VSS; EVENTOUT added in the list of
alternate functions for all I/Os; ADC3_IN8 added as alternate function
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions
for PD11 and PD12, respectively; PH10 alternate function
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O
structure to TTa.
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7:
STM32F40x pin and ball definitions and Table 9: Alternate function
mapping.
Changed TCM data RAM to CCM data RAM in Figure 18: STM32F40x
memory map.
Added IVDD and IVSS maximum values in Table 12: Current
characteristics.
Added Note 1 related to fHCLK, updated Note 2 in Table 14: General
operating conditions, and added maximum power dissipation values.
Updated Table 15: Limitations depending on the operating power
supply range.
DocID022152 Rev 4 177/185
STM32F405xx, STM32F407xx Revision history
24-Jan-2012
2
(continued)
Added V12 in Table 19: Embedded reset and power control block
characteristics.
Updated Table 21: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure ,
Figure 25, Figure 26, and Figure 27.
Updated Table 22: Typical and maximum current consumption in Sleep
mode and removed Note 1.
Updated Table 23: Typical and maximum current consumptions in Stop
mode and Table 24: Typical and maximum current consumptions in
Standby mode, Table 25: Typical and maximum current consumptions
in VBAT mode, and Table 26: Switching output I/O current
consumption.
Section : On-chip peripheral current consumption: modified conditions,
and updated Table 27: Peripheral current consumption and Note 2.
Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in
Table 29: High-speed external user clock characteristics.
Added Cin(LSE) in Table 30: Low-speed external user clock
characteristics.
Updated maximum PLL input clock frequency, removed related note,
and deleted jitter for MCO for RMII Ethernet typical value in Table 35:
Main PLL characteristics. Updated maximum PLLI2S input clock
frequency and removed related note in Table 36: PLLI2S (audio PLL)
characteristics.
Updated Section : Flash memory to specify that the devices are
shipped to customers with the Flash memory erased. Updated
Table 38: Flash memory characteristics, and added tME in Table 39:
Flash memory programming.
Updated Table 42: EMS characteristics, and Table 43: EMI
characteristics.
Updated Table 56: I2S dynamic characteristics
Updated Figure 46: ULPI timing diagram and Table 62: ULPI timing.
Added tCOUNTER and tMAX_COUNT in Table 51: Characteristics of TIMx
connected to the APB1 domain and Table 52: Characteristics of TIMx
connected to the APB2 domain. Updated Table 65: Dynamic
characteristics: Ethernet MAC signals for RMII.
Removed USB-IF certification in Section : USB OTG FS
characteristics.
Table 98. Document revision history (continued)
Date Revision Changes
Revision history STM32F405xx, STM32F407xx
178/185 DocID022152 Rev 4
24-Jan-2012
2
(continued)
Updated Table 61: USB HS clock timing parameters
Updated Table 67: ADC characteristics.
Updated Table 68: ADC accuracy at fADC = 30 MHz.
Updated Note 1 in Table 74: DAC characteristics.
Section 5.3.25: FSMC characteristics: updated Table 75 toTable 86,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 60:
Synchronous multiplexed PSRAM write timings.
Updated Table 96: Package thermal characteristics.
Appendix A.1: USB OTG full speed (FS) interface solutions: modified
Figure 86: USB controller configured as peripheral-only and used in
Full speed mode added Note 2, updated Figure 87: USB controller
configured as host-only and used in full speed mode and added
Note 2, changed Figure 88: USB controller configured in dual mode
and used in full speed mode and added Note 3.
Appendix A.2: USB OTG high speed (HS) interface solutions: removed
figures USB OTG HS device-only connection in FS mode and USB
OTG HS host-only connection in FS mode, and updated Figure 89:
USB controller configured as peripheral, host, or dual-mode and used
in high speed mode and added Note 2.
Added Appendix A.3: Ethernet interface solutions.
Table 98. Document revision history (continued)
Date Revision Changes
DocID022152 Rev 4 179/185
STM32F405xx, STM32F407xx Revision history
31-May-2012 3
Updated Figure 5: STM32F40x block diagram and Figure 7: Power
supply supervisor interconnection with internal reset OFF
Added SDIO, added notes related to FSMC and SPI/I2S in Table 2:
STM32F405xx and STM32F407xx: features and peripheral counts.
Starting from Silicon revision Z, USB OTG full-speed interface is now
available for all STM32F405xx devices.
Added full information on WLCSP90 package together with
corresponding part numbers.
Changed number of AHB buses to 3.
Modified available Flash memory sizes in Section 2.2.4: Embedded
Flash memory.
Modified number of maskable interrupt channels in Section 2.2.10:
Nested vectored interrupt controller (NVIC).
Updated case of Regulator ON/internal reset ON, Regulator
ON/internal reset OFF, and Regulator OFF/internal reset ON in
Section 2.2.16: Voltage regulator.
Updated standby mode description in Section 2.2.19: Low-power
modes.
Added Note 1 below Figure 16: STM32F40x UFBGA176 ballout.
Added Note 1 below Figure 17: STM32F40x WLCSP90 ballout.
Updated Table 7: STM32F40x pin and ball definitions.
Added Table 8: FSMC pin definition.
Removed OTG_HS_INTN alternate function in Table 7: STM32F40x
pin and ball definitions and Table 9: Alternate function mapping.
Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function
mapping.
Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and
modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping.
Added Table 10: STM32F40x register boundary addresses.
Updated Figure 18: STM32F40x memory map.
Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power
supply scheme.
Added power dissipation maximum value for WLCSP90 in Table 14:
General operating conditions.
Updated VPOR/PDR in Table 19: Embedded reset and power control
block characteristics.
Updated notes in Table 21: Typical and maximum current consumption
in Run mode, code with data processing running from Flash memory
(ART accelerator disabled), Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM, and Table 22:
Typical and maximum current consumption in Sleep mode.
Updated maximum current consumption at TA = 25 °n Table 23:
Typical and maximum current consumptions in Stop mode.
Table 98. Document revision history (continued)
Date Revision Changes
Revision history STM32F405xx, STM32F407xx
180/185 DocID022152 Rev 4
31-May-2012 3
(continued)
Removed fHSE_ext typical value in Table 29: High-speed external user
clock characteristics. Updated Table 31: HSE 4-26 MHz oscillator
characteristics and Table 32: LSE oscillator characteristics (fLSE =
32.768 kHz).
Added fPLL48_OUT maximum value in Table 35: Main PLL
characteristics.
Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum
clock generation (SSCG) characteristics.
Updated Table 38: Flash memory characteristics, Table 39: Flash
memory programming, and Table 40: Flash memory programming with
VPP.
Updated Section : Output driving current.
Table 53: I2C characteristics: Note 4 updated and applied to th(SDA) in
Fast mode, and removed note 4 related to th(SDA) minimum value.
Updated Table 67: ADC characteristics. Updated note concerning ADC
accuracy vs. negative injection current below Table 68: ADC accuracy
at fADC = 30 MHz.
Added WLCSP90 thermal resistance in Table 96: Package thermal
characteristics.
Updated Table 90: WLCSP90 - 0.400 mm pitch wafer level chip size
package mechanical data.
Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm, package outline and Table 94: UFBGA176+25 -
ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data.
Added Figure 85: LQFP176 recommended footprint.
Removed 256 and 768 Kbyte Flash memory density from Table 97:
Ordering information scheme.
Table 98. Document revision history (continued)
Date Revision Changes
DocID022152 Rev 4 181/185
STM32F405xx, STM32F407xx Revision history
04-Jun-2013 4
Modified Note 1 below Table 2: STM32F405xx and STM32F407xx:
features and peripheral counts.
Updated Figure 4 title.
Updated Note 3 below Figure 21: Power supply scheme.
Changed simplex mode into half-duplex mode in Section 2.2.25: Interintegrated
sound (I2S).
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and
DAC_OUT2, respectively.
Updated pin 36 signal in Figure 15: STM32F40x LQFP176 pinout.
Changed pin number from F8 to D4 for PA13 pin in Table 7:
STM32F40x pin and ball definitions.
Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5
pins in Table 9: Alternate function mapping.
Changed system memory into System memory + OTP in Figure 18:
STM32F40x memory map.
Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions.
Updated IDDA description in Table 74: DAC characteristics.
Removed PA9/PB13 connection to VBUS in Figure 86: USB controller
configured as peripheral-only and used in Full speed mode and
Figure 87: USB controller configured as host-only and used in full
speed mode.
Updated SPI throughput on front page and Section 2.2.24: Serial
peripheral interface (SPI)
Updated operating voltages in Table 2: STM32F405xx and
STM32F407xx: features and peripheral counts
Updated note in Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated “Regulator ON” paragraph in Section 2.2.16: Voltage
regulator
Removed note in Section 2.2.19: Low-power modes
Corrected wrong reference manual in Section 2.2.28: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support
Updated Table 15: Limitations depending on the operating power
supply range
Updated Table 24: Typical and maximum current consumptions in
Standby mode
Updated Table 25: Typical and maximum current consumptions in
VBAT mode
Updated Table 36: PLLI2S (audio PLL) characteristics
Updated Table 43: EMI characteristics
Updated Table 48: Output voltage characteristics
Updated Table 50: NRST pin characteristics
Updated Table 55: SPI dynamic characteristics
Updated Table 56: I2S dynamic characteristics
Deleted Table 59
Updated Table 62: ULPI timing
Updated Figure 47: Ethernet SMI timing diagram
Table 98. Document revision history (continued)
Date Revision Changes
Revision history STM32F405xx, STM32F407xx
182/185 DocID022152 Rev 4
04-Jun-2013 4
(continued)
Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm, package outline
Updated Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm mechanical data
Updated Figure 5: STM32F40x block diagram
Updated Section 2: Description
Updated footnote (3) in Table 2: STM32F405xx and STM32F407xx:
features and peripheral counts
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package
Updated Figure 4: Compatible board design between STM32F2xx and
STM32F4xx for LQFP176 and BGA176 packages
Updated Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated Section 2.2.16: Voltage regulator, including figures.
Updated Table 14: General operating conditions, including footnote (2).
Updated Table 15: Limitations depending on the operating power
supply range, including footnote (3).
Updated footnote (1) in Table 67: ADC characteristics.
Updated footnote (3) in Table 68: ADC accuracy at fADC = 30 MHz.
Updated footnote (1) in Table 74: DAC characteristics.
Updated Figure 9: Regulator OFF.
Updated Figure 7: Power supply supervisor interconnection with
internal reset OFF.
Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated footnote (2) of Figure 21: Power supply scheme.
Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by
“I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate
function mapping.
Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14,
PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping
Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F40x pin and
ball definitions.
Removed the following sentence from Section : I2C interface
characteristics: ”Unless otherwise specified, the parameters
given in Table 53 are derived from tests performed under the
ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 14.”.
In Table 7: STM32F40x pin and ball definitions on page 45:
– For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1,
RTC_TS”
– for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2,
RTC_TS”.
– for pin PB15, added RTC_REFIN in Alternate functions column.
In Table 9: Alternate function mapping on page 60, for port
PB15, replaced “RTC_50Hz” by “RTC_REFIN”.
Table 98. Document revision history (continued)
Date Revision Changes
DocID022152 Rev 4 183/185
STM32F405xx, STM32F407xx Revision history
04-Jun-2013 4
(continued)
Updated Figure 6: Multi-AHB matrix.
Updated Figure 7: Power supply supervisor interconnection with
internal reset OFF
Changed 1.2 V to V12 in Section : Regulator OFF
Updated LQFP176 pin 48.
Updated Section 1: Introduction.
Updated Section 2: Description.
Updated operating voltage in Table 2: STM32F405xx and
STM32F407xx: features and peripheral counts.
Updated Note 1.
Updated Section 2.2.15: Power supply supervisor.
Updated Section 2.2.16: Voltage regulator.
Updated Figure 9: Regulator OFF.
Updated Table 3: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated Section 2.2.19: Low-power modes.
Updated Section 2.2.20: VBAT operation.
Updated Section 2.2.22: Inter-integrated circuit interface (I²C) .
Updated pin 48 in Figure 15: STM32F40x LQFP176 pinout.
Updated Table 6: Legend/abbreviations used in the pinout table.
Updated Table 7: STM32F40x pin and ball definitions.
Updated Table 14: General operating conditions.
Updated Table 15: Limitations depending on the operating power
supply range.
Updated Section 5.3.7: Wakeup time from low-power mode.
Updated Table 33: HSI oscillator characteristics.
Updated Section 5.3.15: I/O current injection characteristics.
Updated Table 47: I/O static characteristics.
Updated Table 50: NRST pin characteristics.
Updated Table 53: I2C characteristics.
Updated Figure 39: I2C bus AC waveforms and measurement circuit.
Updated Section 5.3.19: Communications interfaces.
Updated Table 67: ADC characteristics.
Added Table 70: Temperature sensor calibration values.
Added Table 73: Internal reference voltage calibration values.
Updated Section 5.3.25: FSMC characteristics.
Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO)
characteristics.
Updated Table 23: Typical and maximum current consumptions in Stop
mode.
Updated Section : SPI interface characteristics included Table 55.
Updated Section : I2S interface characteristics included Table 56.
Updated Table 64: Dynamic characteristics: Ehternet MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
Table 98. Document revision history (continued)
Date Revision Changes
Revision history STM32F405xx, STM32F407xx
184/185 DocID022152 Rev 4
04-Jun-2013 4
(continued)
Updated Table 64: Dynamic characteristics: Ehternet MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
Updated Table 79: Synchronous multiplexed NOR/PSRAM read
timings.
Updated Table 80: Synchronous multiplexed PSRAM write timings.
Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read
timings.
Updated Table 82: Synchronous non-multiplexed PSRAM write
timings.
Updated Section 5.3.26: Camera interface (DCMI) timing specifications
including Table 87: DCMI characteristics and addition of Figure 73:
DCMI timing diagram.
Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO)
characteristics including Table 88.
Updated Chapter Figure 9.
Table 98. Document revision history (continued)
Date Revision Changes
DocID022152 Rev 4 185/185
STM32F405xx, STM32F407xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
1IN+
1IN−
FEEDBACK
DTC
CT
RT
GND
C1
2IN+
2IN−
REF
OUTPUT CTRL
VCC
C2
E2
E1
D, DB, N, NS, OR PW PACKAGE
(TOP VIEW)
TL494
www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014
TL494 Pulse-Width-Modulation Control Circuits
Check for Samples: TL494
1FEATURES DESCRIPTION
• Complete PWM Power-Control Circuitry The TL494 device incorporates all the functions
• Uncommitted Outputs for 200-mA Sink or required in the construction of a pulse-width- modulation (PWM) control circuit on a single chip.
Source Current Designed primarily for power-supply control, this
• Output Control Selects Single-Ended or device offers the flexibility to tailor the power-supply
Push-Pull Operation control circuitry to a specific application.
• Internal Circuitry Prohibits Double Pulse at The TL494 device contains two error amplifiers, an
Either Output on-chip adjustable oscillator, a dead-time control
• Variable Dead Time Provides Control Over (DTC) comparator, a pulse-steering control flip-flop, a
Total Range 5-V, 5%-precision regulator, and output-control
circuits.
• Internal Regulator Provides a Stable 5-V
Reference Supply With 5% Tolerance The error amplifiers exhibit a common-mode voltage
• Circuit Architecture Allows Easy range from –0.3 V to VCC – 2 V. The dead-time Synchronization control comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator
can be bypassed by terminating RT to the reference
output and providing a sawtooth input to CT, or it can
drive the common circuits in synchronous multiple-rail
power supplies.
The uncommitted output transistors provide either
common-emitter or emitter-follower output capability.
The TL494 device provides for push-pull or singleended
output operation, which can be selected
through the output-control function. The architecture
of this device prohibits the possibility of either output
being pulsed twice during push-pull operation.
The TL494C device is characterized for operation
from 0°C to 70°C. The TL494I device is characterized
for operation from –40°C to 85°C.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Copyright © 1983–2014, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
GND
VCC
Reference
Regulator
C1
Pulse-Steering
Flip-Flop
C1
1D
DTC
CT
RT
PWM
Comparator
+
−
Error Amplifier 1
≈ 0.1 V
Dead-Time Control
Comparator
Oscillator
OUTPUT CTRL
(see Function Table)
0.7 mA
E1
C2
E2
+
−
Error Amplifier 2
1IN+
1IN−
2IN+
2IN−
FEEDBACK
REF
6
5
4
1
2
16
15
3
13
8
9
11
10
12
14
7
Q1
≈ 0.7 V Q2
TL494
SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
Function Table
INPUT TO OUTPUT FUNCTION OUTPUT CTRL
VI = GND Single-ended or parallel output
VI = Vref Normal push-pull operation
Functional Block Diagram
2 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated
Product Folder Links :TL494
TL494
www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014
Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage(2) 41 V
VI Amplifier input voltage VCC + 0.3 V
VO Collector output voltage 41 V
IO Collector output current 250 mA
D package 73
DB package 82
θJA Package thermal impedance(3) (4) N package 67 °C/W
NS package 64
PW package 108
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the network ground terminal.
(3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions
MIN MAX UNIT
VCC Supply voltage 7 40 V
VI Amplifier input voltage –0.3 VCC – 2 V
VO Collector output voltage 40 V
Collector output current (each transistor) 200 mA
Current into feedback terminal 0.3 mA
fOSC Oscillator frequency 1 300 kHz
CT Timing capacitor 0.47 10000 nF
RT Timing resistor 1.8 500 kΩ
TL494C 0 70
TA Operating free-air temperature °C
TL494I –40 85
Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links :TL494
N
n1
(xnX)2
N1
TL494
SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com
Electrical Characteristics
over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted)
Reference Section
TL494C, TL494I
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP(2) MAX
Output voltage (REF) IO = 1 mA 4.75 5 5.25 V
Input regulation VCC = 7 V to 40 V 2 25 mV
Output regulation IO = 1 mA to 10 mA 1 15 mV
Output voltage change with temperature ΔTA = MIN to MAX 2 10 mV/V
Short-circuit output current(3) REF = 0 V 25 mA
(1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
(2) All typical values, except for parameter changes with temperature, are at TA = 25°C.
(3) Duration of short circuit should not exceed one second.
Oscillator Section
CT = 0.01 μF, RT = 12 kΩ (see Figure 1)
TL494C, TL494I
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP(2) MAX
Frequency 10 kHz
Standard deviation of frequency(3) All values of VCC, CT, RT, and TA constant 100 Hz/kHz
Frequency change with voltage VCC = 7 V to 40 V, TA = 25°C 1 Hz/kHz
Frequency change with temperature(4) ΔTA = MIN to MAX 10 Hz/kHz
(1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
(2) All typical values, except for parameter changes with temperature, are at TA = 25°C.
(3) Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:
(4) Temperature coefficient of timing capacitor and timing resistor are not taken into account.
Error-Amplifier Section
See Figure 2
TL494C, TL494I
PARAMETER TEST CONDITIONS UNIT
MIN TYP(1) MAX
Input offset voltage VO (FEEDBACK) = 2.5 V 2 10 mV
Input offset current VO (FEEDBACK) = 2.5 V 25 250 nA
Input bias current VO (FEEDBACK) = 2.5 V 0.2 1 μA
Common-mode input voltage range VCC = 7 V to 40 V –0.3 to VCC – 2 V
Open-loop voltage amplification ΔVO = 3 V, VO = 0.5 V to 3.5 V, RL = 2 kΩ 70 95 dB
Unity-gain bandwidth VO = 0.5 V to 3.5 V, RL = 2 kΩ 800 kHz
Common-mode rejection ratio ΔVO = 40 V, TA = 25°C 65 80 dB
Output sink current (FEEDBACK) VID = –15 mV to –5 V, V (FEEDBACK) = 0.7 V 0.3 0.7 mA
Output source current (FEEDBACK) VID = 15 mV to 5 V, V (FEEDBACK) = 3.5 V –2 mA
(1) All typical values, except for parameter changes with temperature, are at TA = 25°C.
4 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated
Product Folder Links :TL494
TL494
www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014
Electrical Characteristics
over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted)
Output Section
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Collector off-state current VCE = 40 V, VCC = 40 V 2 100 μA
Emitter off-state current VCC = VC = 40 V, VE = 0 –100 μA
Common emitter VE = 0, IC = 200 mA 1.1 1.3
Collector-emitter saturation voltage V
Emitter follower VO(C1 or C2) = 15 V, IE = –200 mA 1.5 2.5
Output control input current VI = Vref 3.5 mA
(1) All typical values, except for temperature coefficient, are at TA = 25°C.
Dead-Time Control Section
See Figure 1
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Input bias current (DEAD-TIME CTRL) VI = 0 to 5.25 V –2 –10 μA
Maximum duty cycle, each output VI (DEAD-TIME CTRL) = 0, CT = 0.01 μF, 45 % RT = 12 kΩ
Zero duty cycle 3 3.3
Input threshold voltage (DEAD-TIME CTRL) V
Maximum duty cycle 0
(1) All typical values, except for temperature coefficient, are at TA = 25°C.
PWM Comparator Section
See Figure 1
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Input threshold voltage (FEEDBACK) Zero duty cyle 4 4.5 V
Input sink current (FEEDBACK) V (FEEDBACK) = 0.7 V 0.3 0.7 mA
(1) All typical values, except for temperature coefficient, are at TA = 25°C.
Total Device
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
RT = Vref, VCC = 15 V 6 10 Standby supply current All other inputs and outputs open mA VCC = 40 V 9 15
Average supply current VI (DEAD-TIME CTRL) = 2 V, See Figure 1 7.5 mA
(1) All typical values, except for temperature coefficient, are at TA = 25°C.
Switching Characteristics
TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
Rise time 100 200 ns
Common-emitter configuration, See Figure 3
Fall time 25 100 ns
Rise time 100 200 ns
Emitter-follower configuration, See Figure 4
Fall time 40 100 ns
(1) All typical values, except for temperature coefficient, are at TA = 25°C.
Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links :TL494
Test
Inputs
DTC
FEEDBACK
RT
CT
GND
50 kW
12 kW
0.01 mF
VCC
OUTPUT REF
CTRL
E2
C2
E1
C1 Output 1
Output 2
150 W
2 W
150 W
2 W
VCC = 15 V
TEST CIRCUIT
1IN+
VCC
VCC
0 V
0 V
Voltage
at C1
Voltage
at C2
Voltage
at CT
DTC
FEEDBACK
0 V
0.7 V
0% MAX 0%
Threshold Voltage
Threshold Voltage
VOLTAGE WAVEFORMS
Duty Cycle
Error
Amplifiers
7
14
12
8
9
11
10
4
3
6
5
1
2
16
15
13
1IN−
2IN−
2IN+
TL494
SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com
Parameter Measurement Information
Figure 1. Operational Test Circuit and Waveforms
6 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated
Product Folder Links :TL494
Output
Each Output
Circuit
68 W
2 W
15 V
CL = 15 pF
(See Note A)
90%
10%
90%
10%
tr tf
TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM
NOTE A: CL includes probe and jig capacitance.
Output
Each Output
Circuit
68 W
2 W
15 V
CL = 15 pF
(See Note A)
90%
10%
90%
10%
tf tr
TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM
NOTE A: CL includes probe and jig capacitance.
+
−
+
−
VI
Vref
FEEDBACK
Amplifier Under Test
Other Amplifier
TL494
www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014
Parameter Measurement Information
Figure 2. Amplifier Characteristics
Figure 3. Common-Emitter Configuration
Figure 4. Emitter-Follower Configuration
Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links :TL494
10
0
100
20
1 10 100 1 M
A − Amplifier Voltage Amplification − dB
30
f − Frequency − Hz
1 k
VCC = 15 V
!VO = 3 V
TA = 25°C
10 k
40
50
60
70
80
90
100 k
Df = 1%
(1)
40
10
100
1 k 4 k 10 k 40 k 100 k 400 k 1 M
f − Oscillator Frequency and Frequency Variation − Hz
400
1 k
4 k
10 k
40 k
100 k
RT − Timing Resistance − !
0.1 μF
−2%
−1%
0%
0.01 μF
0.001 μF
VCC = 15 V
TA = 25°C
CT = 1 μF
TL494
SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com
Typical Characteristics
(1) Frequency variation (Δf) is the change in oscillator frequency
that occurs over the full temperature range.
Figure 5. Oscillator Frequency and Frequency Variation
vs
Timing Resistance
Figure 6. Amplifier Voltage Amplification
vs
Frequency
8 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated
Product Folder Links :TL494
TL494
www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014
REVISION HISTORY
Changes from Revision E (February 2005) to Revision F Page
• Updated document to new TI data sheet format - no specification changes. ...................................................................... 1
• Removed Ordering Information table. ................................................................................................................................... 1
• Added ESD warning. ............................................................................................................................................................ 2
Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links :TL494
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL494CD ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C
TL494CDG4 ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C
TL494CDR ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 TL494C
TL494CDRE4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C
TL494CDRG3 PREVIEW SOIC D 16 TBD Call TI Call TI 0 to 70 TL494C
TL494CDRG4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C
TL494CJ OBSOLETE CDIP J 16 TBD Call TI Call TI
TL494CN ACTIVE PDIP N 16 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type 0 to 70 TL494CN
TL494CNE4 ACTIVE PDIP N 16 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type 0 to 70 TL494CN
TL494CNSR ACTIVE SO NS 16 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494
TL494CNSRG4 ACTIVE SO NS 16 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494
TL494CPW ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494
TL494CPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494
TL494CPWLE OBSOLETE TSSOP PW 16 TBD Call TI Call TI
TL494CPWR ACTIVE TSSOP PW 16 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494
TL494CPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494
TL494ID ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I
TL494IDG4 ACTIVE SOIC D 16 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL494IDR ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 TL494I
TL494IDRE4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I
TL494IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I
TL494IN ACTIVE PDIP N 16 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 TL494IN
TL494INE4 ACTIVE PDIP N 16 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 TL494IN
TL494MJ OBSOLETE CDIP J 16 TBD Call TI Call TI -55 to 125
TL494MJB OBSOLETE CDIP J 16 TBD Call TI Call TI -55 to 125
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 3
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type
Package
Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
(mm)
Pin1
Quadrant
TL494CDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
TL494CDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
TL494CDRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
TL494CPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TL494IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
TL494IDRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Feb-2014
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TL494CDR SOIC D 16 2500 367.0 367.0 38.0
TL494CDR SOIC D 16 2500 333.2 345.9 28.6
TL494CDRG4 SOIC D 16 2500 333.2 345.9 28.6
TL494CPWR TSSOP PW 16 2000 367.0 367.0 35.0
TL494IDR SOIC D 16 2500 333.2 345.9 28.6
TL494IDRG4 SOIC D 16 2500 333.2 345.9 28.6
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Feb-2014
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
All technical caracteristics are subject to change without previous notice.
Caractéristiques sujettes à modifications sans préavis.
Proud to serve you celduc
r e l a i s
page 1 / 5F/GB
S/MON/SO967460/B/01/03/2005
Relais statique monophasé
de puissance
Power Solid State Relay
SO967460
okpac
❏ Relais statique synchrone spécialement adapté aux charges
résistives.
Zero Cross Solid State Relay specially designed for resistive loads.
❏ Sortie thyristors technologie TMS2 (*) permettant une longue durée
de vie : 24 à 600VAC 75A.
Back to back thyristors on output with TMS2 (*) technology for a
long lifetime expectancy : 24 to 600VAC 75A.
❏ Large plage de contrôle: 3,5 - 32VDC avec un courant de
commande régulé.
LED de visualisation sur l'entrée de couleur verte.
Protection aux surtensions sur l'entrée intégrée.
Large control range: 3.5-32VDC with input current limiter.
Green LED visualization on the input.
Input over-voltage protection.
❏ Protection IP20 sur demande par l'ajout de volets.
IP20 protection flaps on request (option).
❏ Construit en conformité aux normes EN60947-4-3 (IEC947-4-3)
et EN60950/VDE0805 (Isolement renforcé) -UL-cUL
Designed in conformity with EN60947-4-3 (IEC947-4-3)
and EN60950/VDE0805 (Reinforced Insulation) -UL-cUL
Output : 24-600VAC 75A
Input : 3,5-32VDC
Typical
application:
30kW resistor
(AC-51 load)
on 400 VAC
avec protection IP20/ with IP20 flaps
Entrée
control
+
* 1/L1 et 2/T2 peuvent être inversées/
1/L1 T2 can be changed
* le relais doit être monté sur dissipateur thermique /
SSR must be mounted on a heatsink
24-600VAC
-
CHARGE/LOAD
protection
réseau
line
protection
4/A2-
3/A1+
1/L1
2/T1
LED
ZC
sans protection IP20/ without IP20 flaps
(*) : Thermo mechanical Stress Solution
- 1/L1 et 2/T1 peuvent être inversées.
1/L1 and 2/T1 can be swapped.
- Le relais être monté sur dissipateur thermique.
SSR must be mounted on heatsink
Application
typique:
Resistance 30 kW
(Catégorie AC-51)
en 400 VAC
3,5-32VDC
Volets IP20 sur demande/ with IP20 flaps on request
Dimensions :
r e l a i s
Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com
Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20
Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19
www.celduc.com celduc
Caractéristiques d'entrée / Control characteristics (at 25°C)
DC
Paramètre / Parameter Symbol Min Typ Max Unit
Tension de commande / Control voltage Uc 3,5 5-12-24 32 V
Courant de commande / Control current (@ Uc ) Ic <10 <13 <13 mA
Tension de non fonctionnement / Release voltage Uc off 2 V
LED d'entrée / Input LED verte / green
Tension Inverse / Reverse voltage Urv 32 V
Tension de transil d'entrée / Clamping voltage (Transil) Uclamp 36 V
Immunité / Input immunity : EN61000-4-4 2kV
Immunité / Input immunity : EN61000-4-5 2KV
Caractéristiques de sortie / Output characteristics (at 25°C)
Paramètre / Parameter Conditions Symbol Min Typ. Max Unit
Plage de tension utilisation / Operating voltage range Ue 24 400 600 V rms
Tension de crête / Peak voltage Up 1200 V
Niveau de synchronisme / Zero cross level Usync 35 V
Tension minimum amorçage / Latching voltage Ie nom Ua 10 V
Courant nominal / nominal current (AC-51) Ie AC-51 75 90 A rms
Courant surcharge / Non repetitive overload current tp=10ms (Fig. 3) Itsm 1000 1200 A
Chute directe à l'état passant / On state voltage drop @ 25°C Vt 0,9 V
Résistance dynamique / On state dynamic resistance rt 4,5 mΩ
Puissance dissipée (max) /
Output power dissipation (max value) Pd 0,9x0,9xIe + 0,0045xIe2 W
Résistance thermique jonction/semelle
Thermal resistance between junction to case Rthj/c 0,4 K/W
Courant de fuite à l'état bloqué / Off state leakage current @Ue typ, 50Hz Ilk 1 mA
Courant minimum de charge / Minimum load current Iemin 5 mA
Temps de fermeture / Turn on time @Ue typ, 50Hz ton max 10 ms
Temps d'ouverture / Turn off time @Ue typ, 50Hz toff max 10 ms
Fréquence utilisation/ Operating frequency range F mains f 0,1 50-60 800 Hz
dv/dt à l'état bloqué / Off state dv/dt dv/dt 500 V/μs
di/dt max / Maximum di/dt non repetitive di/dt 50 A/μs
I2t (<10ms) I2t 5000 7200 A2s
Immunité / Conducted immunity level IEC/EN61000-4-4 (bursts) 2kV criterion B
Immunité / Conducted immunity level IEC/EN61000-4-5 (surge) 2kV criterion A with external VDR
Protection court-circuit / Short circuit protection voir/see page 5 Example Fuse Ferraz URC63A or fast Breaker
Input : Ic = f( Uc)
page 2 / 5F/GB
S/MON/SO967460/B/01/03/2005 okpac
Caractéristiques générales / General characteristics (at 25°C) Symbol
Isolement entrée/sortie - Input to output insulation Ui 4000 VRMS
Isolation sortie/ semelle - Output to case insulation Ui 4000 VRMS
Résistance Isolement / Insulation resistance Ri 1000 (@500VDC) MΩ
Tenue aux tensions de chocs / Rated impulse voltage Uimp 4000 V
Degré de protection / Protection level / CEI529 IP00
Degré de pollution / Pollution degree - 2
Vibrations / Vibration withstand 10 -55 Hz according to CEI68 double amplitude 1,5 mm
Tenue aux chocs / Shocks withstand according to CEI68 - 30/50 g
Température de fonctionnement / Ambient temperature (no icing, no
condensation) - -40 /+100 °C
Température de stockage/ Storage temperature (no icing, no condensation) -40/+125 °C
Humidité relative / Ambient humidity HR 40 to 85 %
Poids/ Weight 80 g
Conformité / Conformity EN60947-4-3 (IEC947-4-3)
Conformité / Conformity VDE0805/EN60950 UL/cUL
plastique du boitier / Housing Material PA 6 UL94VO
Semelle / Base plate Aluminium, nickel-plated
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0
2
4
6
8
10
12
14
Uc (VDc)
Ic (mA)
r e l a i s
Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com
Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20
Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19
www.celduc.com celduc
page 3 / 5F/GB
S/MON/SO967460/B/01/03/2005 okpac
Surcharge de courant non répétitive sans tension réappliquée /
No repetive surge current without voltage reapplied.
Surcharge de courant répétitive avec tension réappliquée
Repetive surge current with voltage reapplied.
0,01 0,1 1 10
0
500
1000
1500
t (s)
Itsm (Apeak)
Surcharge de courant :Itsm (Apeak)=f(t) pour modéle 75A/
Surge current : Itsm (Apeak) = f(t) for 75A
Fig.3:
1
2
fig 3 : Courants de surcharges / Overload currents
6K/W correspond à un relais monté sur un adaptateur DIN celduc type 1LD12020
6K/W corresponds to a relay mounted on a DIN rail adaptator like celduc 1LD12020
Fig. 2 Courbes thermiques & Choix dissipateur thermique / Thermal curves and heatsink choice
0 10 20 30 40 50 60 70 80 90
0
10
20
30
40
50
60
70
80
90
100
110
Courant de charge / RMS load current (A)
Puissance Dissipée / Power Dissipation (W)
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90
100
110
Température ambiante / Ambient temperature (°C)
1,1K/W
6K/W
2,1K/W
1,5K/W
Full on State
50% on State
0,95K/W
0,75K/W
0,55K/W 0,3K/W
−> Warning ! semiconductor relays don't provide any galvanic insulation between the load and the mains. Always use in conjunction
with an adapted circuit breaker with isolation feature or a similar device in order to ensure a reliable insulation in the event of wrong
function and when the relay must be insulated from the mains (maintenance ; if not used for a long duration ...).
1 -Itsm non répétitif sans tension réappliquée est
donné pour la détermination des protections.
1 - No repetitive Itsm is given without voltage
reapplied . This curve is used to define the
protection (fuses).
2 -Itsm répétitif est donné pour des surcharges de
courant (Tj initiale=70°C).
Attention : la répétition de ces surcharges de courant
diminue la durée de vie du relais.
2 - Repetitive Itsm is given for inrush current with
initial Tj = 70°C. In normal operation , this curve
musn't be exceeded.
Be careful, the repetition of the surge current
decreases the life expectancy of the SSR.
−> Attention ! les relais à semi-conducteurs ne procurent pas d'isolation galvanique entre le réseau et la charge. Ils doivent être utilisés
associés à un disjoncteur avec propriété de sectionnement ou similaire, afin d'assurer un sectionnement fiable en amont de la ligne dans
l'hypothèse d'une défaillance et pour tous les cas où le relais doit être isolé du réseau (maintenance ; non utilisation sur une longue durée...).
r e l a i s
Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com
Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20
Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19
www.celduc.com
page 4 / 5F/GB
S/MON/SO967460/B/01/03/2005 okpac
okpac Raccordement d'entrée / Control wiring
Nombre de fils / Number of wires
Modèle de tournevis /
Screwdriver type
Couple de serrage
recommandé
1 2 Recommended Torque
Fil rigide
(sans embout)
SOLID
(No ferrule)
Fil multibrins
(avec embout)
FINE STRANDED
(With ferrule)
Fil rigide
(sans embout)
SOLID
(No ferrule)
Fil multibrins
(avec embout)
FINE STRANDED
(With ferrule)
M4
N.m
0,75 ... 2,5 mm2
AWG18....AWG14
0,75 ... 2,5 mm2
AWG18....AWG14
0,75 ... 2,5 mm2
AWG18....AWG14
0,75 ... 2,5 mm2
AWG18....AWG14 POZIDRIV 2 1,2
okpac Raccordement de puissance / Power wiring
Nombre de fils / Number of wires
Modèle de tournevis /
Screwdriver type
Couple de serrage
recommandé
1 2 Recommended Torque
Fil rigide
(sans embout)
SOLID
(No ferrule)
Fil multibrins
(avec embout)
FINE STRANDED
(With ferrule)
Fil rigide
(sans embout)
SOLID
(No ferrule)
Fil multibrins
(avec embout)
FINE STRANDED
(With ferrule) M5
N.m
1,5 ... 10 mm2
AWG16....AWG8
1,5 ... 6 mm2
AWG16....AWG10
1,5 ... 10 mm2
AWG16....AWG8
1,5 ... 6 mm2
AWG16....AWG10 POZIDRIV 2 2
Raccordement / Connections
celduc
Options : Volets IP20
1K453000 = référence d'un volet sans le montage
1LK00500 = 1 volet (côté puissance) + 1 montage celduc
1LK00600 = 2 volets (puissance & commande) + montages celduc
Option : IP20 flaps
1K453000 : Flap reference without mounting
1LK00500 = 1 flap (on output) + 1 celduc mounting
1LK00600 = 2 flaps (input & output) + 2 celduc mounting
FASTONS : Nous consulter / Consult us
Directement avec fils avec ou sans embouts/
Direct connection with wires with or without ferrules
Avec cosses/
With ring terminals
Puissance avec cosses / Power with ring
terminals.
W max =12,6mm
16 mm2 (AWG6)
25 mm2 (AWG4)
35mm2 (AWG2 /AWG3)
50mm2 (AWG0 /AWG1)
Des cosses et kits d'adaptation peuvent être fournis :
voir relais forte puissance et documentation connexion
forte puissance/ Suitable ring terminals and special kit
for high current can be delivered: see high power SSR
and data-sheet for power connexion.
r e l a i s
Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com
Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20
Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19
www.celduc.com
S/MON/SO967460/B/01/03/2005 okpac
Montage /Mounting:
−> Les relais statiques de la gamme okpac doivent être montés sur dissipateur thermique.
Une gamme étendue de dissipateurs est disponible.
Voir exemples ci dessous et la gamme "WF" sur www.celduc.com.
okpac SSRs must be mounted on heatsinks. A large range of heatsinks is available.
See below some examples and "WF" range on www.celduc.com.
−> Pour le montage du relais sur dissipateur utiliser de la graisse thermique ou un "thermal pad"
haute performance spécifié par celduc .Une version autocollante précollée sur le relais est
aussi disponible: nous consulter / For heatsink mounting, it is necessary to use thermal grease
or thermal pad with high conductibility specified by celduc. An adhesive model mounted by
celduc on the SSR is also available: please contact us.
Application typiques / Typical LOADS
−> Le produit SO9 est défini principalement pour charge résistive AC-51 (chauffage).
Pour les autres charges, consulter notre guide de choix.
SO9 product is specially designed for AC-51 résistive load (heating). For other loads, consult our selection guide
Protection /Protection :
−> La protection d'un relais statique contre les court-circuits de la charge peut être faite par fusibles rapides avec des I2t = 1/2 I2t
du relais . Un test en laboratoire a été effectué sur les fusibles de marque FERRAZ.
Une protection par MCB ( disjoncteurs modulaires miniatures) est aussi possible.
Voir notre note application ( protection SSR) et utiliser des relais avec I2t >5000A2s
To protect the SSR against a short-circuit of the load , use a fuse with a I2t value = 1/2 I2t value specified page 2.
A test has been made with FERRAZ fuses .
It is possible to protect SSR by MCB ( miniature circuit breaker).
In this case, see application note ( SSR protection) and use a SSR with high I2t value (5000A2s minimum).
EMC :
−> Immunité : Nous spécifions dans nos notices le niveau d'immunité de nos produits selon les normes essentielles pour ce type de
produit, c'est à dire EN61000-4-4 &5.
Immunity :
We give in our data-sheets the immunity level of our SSRs according to the main standards for these products: EN61000-4-4 &5.
−> Emission: Nos relais statiques sont principalement conçus et conformes pour la classe d'appareils A (Industrie).
L'utilisation du produit dans des environnements domestiques peut amener l'utilisateur à employer des moyens d'atténuation
supplémentaires. En effet, les relais statiques sont des dispositifs complexes qui doivent être interconnectés avec d'autres materiels
(charges, cables, etc) pour former un système. Etant donné que les autres materiels ou interconnexions ne sont pas de la responsabilité
de celduc, il est de la responsabilité du réalisateur du système de s'assurer que les systèmes contenant des relais statiques satisfont
aux prescriptions de toutes les règles et règlements applicables au niveau des systèmes.
Consulter celduc qui peut vous conseiller ou réaliser des essais dans son laboratoire sur votre application.
Emission: celduc SSRs are mainly designed in compliance with standards for class A equipment (Industry).
Use of this product in domestic environments may cause radio interference. In this case the user may be required to employ
additionnal devices to reduce noise. SSRs are complex devices that must be interconnected with other equipment (loads, cables, etc.)
to form a system. Because the other equipment or the interconnections may not be under the control of celduc, it shall be the
responsability of the system integrator to ensure that systems containing SSRs comply with the requirement of any rules and
regulations applicable at the system level.
Consult celduc for advices. Tests can be preformed in our laboratory.
Thermal pad :
5TH21000
WF151200
(2-2,5 K/W)
WF108110
( 1,1 K/W)
Installation des volets IP20
/ IP20 flaps mounting
Poussez et
fermer.
Push and
close
M4x12mm
1,2N.m
Thermal grease or pad
page 5 / 5F/GB
celduc
1
2
3
4
5
6
7
8
9
18
17
16
15
14
13
12
11
10
1B
2B
3B
4B
5B
6B
7B
8B
GND
1C
2C
3C
4C
5C
6C
7C
8C
COM
DW OR N PACKAGE
(TOP VIEW)
ULN2803A
www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014
ULN2803A Darlington Transistor Arrays
Check for Samples: ULN2803A
1FEATURES DESCRIPTION
• 500-mA-Rated Collector Current The ULN2803A device is a high-voltage, high-current
(Single Output) Darlington transistor array. The device consists of
eight npn Darlington pairs that feature high-voltage
• High-Voltage Outputs: 50 V outputs with common-cathode clamp diodes for
• Output Clamp Diodes switching inductive loads. The collector-current rating
• Inputs Compatible With Various of each Darlington pair is 500 mA. The Darlington
Types of Logic pairs may be connected in parallel for higher current capability.
• Relay-Driver Applications
• Compatible with ULN2800A Series Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas
discharge), line drivers, and logic buffers. The
ULN2803A device has a 2.7-kΩ series base resistor
for each Darlington pair for operation directly with
TTL or 5-V CMOS devices.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Copyright © 1997–2014, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
2.7 k!
7.2 k! 3 k!
COM
Output C
E
Input B
8C
7C
6C
5C
4C
3C
2C
7
6
5
4
3
2
1
7B
6B
5B
4B
3B
2B
1B
11
12
13
14
15
16
17
COM
8
8B
10
1C
18
ULN2803A
SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
Logic Diagram
Schematic (Each Darlington Pair)
2 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated
Product Folder Links :ULN2803A
ULN2803A
www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014
Absolute Maximum Ratings(1)
at 25°C free-air temperature (unless otherwise noted)
VALUE UNIT
Collector-emitter voltage 50 V
Input voltage(2) 30 V
Peak collector current 500 mA
Output clamp current 500 mA
Total substrate-terminal current –2.5 A
D package 73.14
θJA Package thermal impedance(3) (4) °C/W
DW package 62.66
TJ Operating virtual junction temperature 150 °C
Tstg Storage temperature range –65 to 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, unless otherwise noted, are with respect to the emitter/substrate terminal GND.
(3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.
Electrical Characteristics
at TA = 25°C free-air temperature (unless otherwise noted)
ULN2002A
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX
I VCE = 50 V, CEX Collector cutoff current see Figure 1 II = 0 50 μA
I VCE = 50 V, IC = 500 μA, I(off) Off-state input current T 50 65 μA A = 70°C see Figure 2
II(on) Input current VI = 3.85 V, See Figure 3 0.93 1.35 mA
IC = 200 mA 2.4
V VCE = 2 V, I(on) On-state input voltage see Figure 4 IC = 250 mA 2.7 V
IC = 300 mA 3
II = 250 μA, IC = 100 mA 0.9 1.1 see Figure 5
V II = 350 μA, CE(sat) Collector-emitter saturation voltage see Figure 5 IC = 200 mA 1 1.3 V
II = 500 μA, IC = 350 mA 1.3 1.6 see Figure 5
IR Clamp diode reverse current VR = 50 V, see Figure 6 50 μA
VF Clamp diode forward voltage IF = 350 mA see Figure 7 1.7 2 V
Ci Input capacitance VI = 0, f = 1 MHz 15 25 pF
Switching Characteristics
TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH Propagation delay time, low- to high-level output VS = 50 V, CL = 15 pF, RL = 163 Ω, 130 See Figure 8 ns tPHL Propagation delay time, high- to low-level output 20
VOH High-level output voltage after switching VS = 50 V, IO = 300 mA, See Figure 9 VS – 20 mV
Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links :ULN2803A
Open
VF
IF
Open
VCE
II IC
hFE =
IC
II
VR
Open
IR
Open
VCE
IC
VI
Open
II
VI Open
Open VCE
IC
II(off)
Open VCE
ICEX
Open
ULN2803A
SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com
Parameter Measurement Information
Figure 1. ICEX Test Circuit Figure 2. II(off) Test Circuit
Figure 3. II(on) Test Circuit Figure 4. VI(on) Test Circuit
Figure 5. hFE, VCE(sat) Test Circuit Figure 6. IR Test Circuit
Figure 7. VF Test Circuit
4 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated
Product Folder Links :ULN2803A
Pulse
Generator
(see Note A)
Input Open VS = 50 V
RL = 163 !
CL = 15 pF
(see Note B)
Output
tPHL tPLH
0.5 μs
<5 ns <10 ns
90%
50%
10% 10%
90%
50%
50% 50%
VIH
Input (see Note C)
Output
0
Test Circuit
Voltage Waveforms
VOH
ULN2803A
www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014
Parameter Measurement Information (continued)
A. The pulse generator has the following characteristics: PRR = 12.5 kHz, ZO = 50 Ω.
B. CL includes probe and jig capacitance.
C. VIH = 3 V
Figure 8. Propagation Delay-Times
Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links :ULN2803A
Pulse
Generator
(see Note A)
Input
VS
163 !
CL = 15 pF
(see Note B)
Output
40 μs
<5 ns <10 ns
90%
1.5 V
10% 10%
90%
1.5 V
VIH
Input (see Note C)
Output
0
2 mH
VOH
Test Circuit
Voltage Waveforms
ULN2803A
SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com
Parameter Measurement Information (continued)
A. The pulse generator has the following characteristics: PRR = 12.5 kHz, ZO = 50 Ω.
B. CL includes probe and jig capacitance.
C. VIH = 3 V
Figure 9. Latch-Up Test
6 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated
Product Folder Links :ULN2803A
ULN2803A
www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014
REVISION HISTORY
Changes from Revision E (July 2006) to Revision F Page
• Updated document to new TI data sheet format - no specification changes. ...................................................................... 1
• Deleted Ordering Information table. ...................................................................................................................................... 1
• Added ESD warning. ............................................................................................................................................................ 2
Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links :ULN2803A
PACKAGE OPTION ADDENDUM
www.ti.com 27-Jan-2014
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
ULN2803ADW ACTIVE SOIC DW 18 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A
ULN2803ADWG4 ACTIVE SOIC DW 18 40 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A
ULN2803ADWR ACTIVE SOIC DW 18 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A
ULN2803ADWRG4 ACTIVE SOIC DW 18 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A
ULN2803AN ACTIVE PDIP N 18 20 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 ULN2803AN
ULN2803ANE4 ACTIVE PDIP N 18 20 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 ULN2803AN
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 27-Jan-2014
Addendum-Page 2
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type
Package
Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
(mm)
Pin1
Quadrant
ULN2803ADWR SOIC DW 18 2000 330.0 24.4 10.9 12.0 2.7 12.0 24.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 27-Jan-2014
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
ULN2803ADWR SOIC DW 18 2000 370.0 355.0 55.0
PACKAGE MATERIALS INFORMATION
www.ti.com 27-Jan-2014
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
MAX3222/MAX3232/MAX3237/MAX3241*
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
________________________________________________________________ Maxim Integrated Products 1
19-0273; Rev 7; 1/07
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
________________General Description
The MAX3222/MAX3232/MAX3237/MAX3241 transceivers
have a proprietary low-dropout transmitter output
stage enabling true RS-232 performance from a
3.0V to 5.5V supply with a dual charge pump. The
devices require only four small 0.1μF external chargepump
capacitors. The MAX3222, MAX3232, and
MAX3241 are guaranteed to run at data rates of
120kbps while maintaining RS-232 output levels. The
MAX3237 is guaranteed to run at data rates of 250kbps
in the normal operating mode and 1Mbps in the
MegaBaud™ operating mode, while maintaining RS-232
output levels.
The MAX3222/MAX3232 have 2 receivers and 2
drivers. The MAX3222 features a 1μA shutdown mode
that reduces power consumption and extends battery
life in portable systems. Its receivers remain active in
shutdown mode, allowing external devices such as
modems to be monitored using only 1μA supply current.
The MAX3222 and MAX3232 are pin, package,
and functionally compatible with the industry-standard
MAX242 and MAX232, respectively.
The MAX3241 is a complete serial port (3 drivers/
5 receivers) designed for notebook and subnotebook
computers. The MAX3237 (5 drivers/3 receivers) is ideal
for fast modem applications. Both these devices feature
a shutdown mode in which all receivers can remain
active while using only 1μA supply current. Receivers R1
(MAX3237/MAX3241) and R2 (MAX3241) have extra outputs
in addition to their standard outputs. These extra
outputs are always active, allowing external devices
such as a modem to be monitored without forward biasing
the protection diodes in circuitry that may have VCC
completely removed.
The MAX3222, MAX3232, and MAX3241 are available
in space-saving TSSOP and SSOP packages.
________________________Applications
Notebook, Subnotebook, and Palmtop Computers
High-Speed Modems
Battery-Powered Equipment
Hand-Held Equipment
Peripherals
Printers
__Next Generation Device Features
♦ For Smaller Packaging:
MAX3228E/MAX3229E: +2.5V to +5.5V RS-232
Transceivers in UCSP™
♦ For Integrated ESD Protection:
MAX3222E/MAX3232E/MAX3237E/MAX3241E*/
MAX3246E: ±15kV ESD-Protected, Down to 10nA,
3.0V to 5.5V, Up to 1Mbps, True RS-232
Transceivers
♦ For Low-Voltage or Data Cable Applications:
MAX3380E/MAX3381E: +2.35V to +5.5V, 1μA,
2Tx/2Rx RS-232 Transceivers with ±15kV
ESD-Protected I/O and Logic Pins
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
SHDN
VCC
GND
C1- T1OUT
V+
C1+
EN
TOP VIEW
R1IN
R1OUT
T1IN
T2OUT T2IN
VC2-
C2+
R2IN 9 10 R2OUT
DIP/SO
MAX3222
+
MAX3222
_________________Pin Configurations
_______________Ordering Information
MegaBaud and UCSP are trademarks of Maxim Integrated Products, Inc.
*Covered by U.S. Patent numbers 4,636,930; 4,679,134; 4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.
Typical Operating Circuits appear at end of data sheet.
Pin Configurations continued at end of data sheet.
Ordering Information continued at end of data sheet.
+Denotes lead-free package.
PART TEMP RANGE PIN-PACKAGE
PKG
CODE
MAX3222CUP+ 0°C to +70°C 20 TSSOP U20+2
MAX3222CAP+ 0°C to +70°C 20 SSOP A20+1
MAX3222CWN+ 0°C to +70°C 18 SO W18+1
MAX3222CPN+ 0°C to +70°C 18 Plastic Dip P18+5
VCC = 5.0V
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.
VCC...........................................................................-0.3V to +6V
V+ (Note 1) ...............................................................-0.3V to +7V
V- (Note 1) ................................................................+0.3V to -7V
V+ + V- (Note 1)...................................................................+13V
Input Voltages
T_IN, SHDN, EN ...................................................-0.3V to +6V
MBAUD...................................................-0.3V to (VCC + 0.3V)
R_IN .................................................................................±25V
Output Voltages
T_OUT...........................................................................±13.2V
R_OUT....................................................-0.3V to (VCC + 0.3V)
Short-Circuit Duration
T_OUT ....................................................................Continuous
Continuous Power Dissipation (TA = +70°C)
16-Pin TSSOP (derate 6.7mW/°C above +70°C).............533mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ....696mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C)........762mW
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)...842mW
18-Pin SO (derate 9.52mW/°C above +70°C)..............762mW
18-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ..889mW
20-Pin SSOP (derate 7.00mW/°C above +70°C) .........559mW
20-Pin TSSOP (derate 8.0mW/°C above +70°C).............640mW
28-Pin TSSOP (derate 8.7mW/°C above +70°C).............696mW
28-Pin SSOP (derate 9.52mW/°C above +70°C) .........762mW
28-Pin SO (derate 12.50mW/°C above +70°C) .....................1W
Operating Temperature Ranges
MAX32_ _C_ _.....................................................0°C to +70°C
MAX32_ _E_ _ .................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
IOUT = -1.0mA
IOUT = 1.6mA
Receivers disabled
T_IN, EN, SHDN, MBAUD
T_IN, EN, SHDN, MBAUD
CONDITIONS
V
0.8 1.5
Input Threshold Low
0.6 1.2
Input Voltage Range -25 25 V
0.5 2.0
VCC Power-Supply Current
Output Voltage High VCC - 0.6 VCC - 0.1 V
Output Voltage Low 0.4 V
Output Leakage Current ±0.05 ±10 μA
Input Leakage Current ±0.01 ±1.0 μA
0.8 V
Input Logic Threshold Low
(Note 3)
PARAMETER MIN TYP MAX UNITS
TA = +25°C
TA = +25°C V
1.8 2.4
Input Threshold High
1.5 2.4
VCC = 3.3V
VCC = 5.0V
2.0
V
2.4
Input Logic Threshold High
(Note 3)
No load, VCC = 3.3V or 5.0V,
TA = +25°C
mA
0.3 1.0
MAX3222/MAX3232/
MAX3241
MAX3237
Shutdown Supply Current SHDN = GND, TA = +25°C 1.0 10 μA
VCC = 3.3V
VCC = 5.0V
VCC = 3.3V
VCC = 5.0V
DC CHARACTERISTICS
LOGIC INPUTS AND RECEIVER OUTPUTS
RECEIVER INPUTS
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
_______________________________________________________________________________________ 3
TIMING CHARACTERISTICS—MAX3222/MAX3232/MAX3241
(VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
T1IN = T2IN = GND, T3IN = VCC,
T3OUT loaded with 3kΩ to GND,
T1OUT and T2OUT loaded with 2.5mA each
CONDITIONS
Transmitter Output Voltage ±5.0 V
Input Hysteresis 0.3 V
PARAMETER MIN TYP MAX UNITS
Output Voltage Swing All transmitter outputs loaded with 3kΩ to ground ±5.0 ±5.4 V
Output Short-Circuit Current ±35 ±60 mA
Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V 300 10M Ω
VOUT = ±12V, VCC = 0V or 3V to 5.5V, transmitters
disabled
Output Leakage Current ±25 μA
tPHL
RL = 3kΩ, CL = 1000pF, one transmitter switching
tPLH
| tPHL - tPLH |
| tPHL - tPLH |
Normal operation
Normal operation
CONDITIONS
0.3
μs
0.3
Receiver Propagation Delay
Maximum Data Rate 120 235 kbps
Receiver Skew 300 ns
Transmitter Skew 300 ns
Receiver Output Disable Time 200 ns
Receiver Output Enable Time 200 ns
PARAMETER MIN TYP MAX UNITS
VCC = 3.3V, RL = 3kΩ to 7kΩ, 6 30
+3V to -3V or -3V to +3V,
TA = +25°C, one transmitter
switching
V/μs
4 30
Transition-Region Slew Rate
R_IN to R_OUT, CL = 150pF
CL = 150pF to
1000pF
CL = 150pF to
2500pF
Input Resistance TA = +25°C 3 5 7 kΩ
MOUSE DRIVEABILITY (MAX3241)
TRANSMITTER OUTPUTS
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
4 _______________________________________________________________________________________
__________________________________________Typical Operating Characteristics
(VCC = +3.3V, 235kbps data rate, 0.1μF capacitors, all transmitters loaded with 3kΩ, TA = +25°C, unless otherwise noted.)
RL = 3kΩ, CL = 1000pF, one transmitter switching,
MBAUD = GND
Normal operation
CONDITIONS
Receiver Output Disable Time Normal operation 200 ns
| tPHL - tPLH |, MBAUD = GND 100 ns
0.15
250
μs
0.15
Receiver Propagation Delay
Receiver Output Enable Time 200 ns
PARAMETER MIN TYP MAX UNITS
TIMING CHARACTERISTICS—MAX3237
(VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
VCC = 3.0V to 4.5V, RL = 3kΩ, CL = 250pF,
one transmitter switching, MBAUD = VCC
1000
VCC = 4.5V to 5.5V, RL = 3kΩ, CL = 1000pF,
one transmitter switching, MBAUD = VCC
kbps
1000
Maximum Data Rate
R_IN to R_OUT, CL = 150pF
| tPHL - tPLH |, MBAUD = VCC 25 ns
Transmitter Skew
Receiver Skew | tPHL - tPLH | 50 ns
6 30
V/μs
4 30
tPHL
tPLH
CL = 150pF to 2500pF,
MBAUD = GND
CL = 150pF
to 1000pF
MBAUD =
GND
VCC = 3.3V, RL = 3Ω to 7kΩ,
+3V to -3V or -3V to +3V,
TA = +25°C
Transition-Region Slew Rate MBAUD =
VCC
24 150
Note 2: MAX3222/MAX3232/MAX3241: C1–C4 = 0.1μF tested at 3.3V ±10%; C1 = 0.047μF, C2–C4 = 0.33μF tested at 5.0V ±10%.
MAX3237: C1–C4 = 0.1μF tested at 3.3V ±5%; C1–C4 = 0.22μF tested at 3.3V ±10%; C1 = 0.047μF, C2–C4 = 0.33μF tested
at 5.0V ±10%.
Note 3: Transmitter input hysteresis is typically 250mV.
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
0
MAX3222/MAX3232
TRANSMITTER OUTPUT VOLTAGE
vs. LOAD CAPACITANCE
MAX3222-01
LOAD CAPACITANCE (pF)
TRANSMITTER OUTPUT VOLTAGE (V)
1000 2000 3000 4000 5000
VOUT+
VOUT-
0
2
4
6
8
10
12
14
16
18
20
22
150
MAX3222/MAX3232
SLEW RATE
vs. LOAD CAPACITANCE
MAX3222-02
LOAD CAPACITANCE (pF)
SLEW RATE (V/μs)
1000 2000 3000 4000 5000
FOR DATA RATES UP TO 235kbps
+SLEW
-SLEW
0
5
10
15
20
25
30
35
40
0
MAX3222/MAX3232
SUPPLY CURRENT vs. LOAD CAPACITANCE
WHEN TRANSMITTING DATA
MAX3222-03
LOAD CAPACITANCE (pF)
SUPPLY CURRENT (mA)
1000 2000 3000 4000 5000
235kbps
120kbps
20kbps
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
_______________________________________________________________________________________ 5
-7.5
-5.0
-2.5
0
2.5
5.0
7.5
0
MAX3241
TRANSMITTER OUTPUT VOLTAGE
vs. LOAD CAPACITANCE
MAX3222-04
LOAD CAPACITANCE (pF)
TRANSMITTER OUTPUT VOLTAGE (V)
1000 2000 3000 4000 5000
VOUT+
1 TRANSMITTER AT 235kbps
2 TRANSMITTERS AT 30kbps
VOUTALL
OUTPUTS LOADED WITH 3kΩ +CL
0.1μF CHARGE-PUMP CAPACITORS
4 FOR ALL DATA RATES UP TO 235kbps
6
8
10
12
14
16
18
20
22
24
0
MAX3241
SLEW RATE
vs. LOAD CAPACITANCE
MAX3222-05
LOAD CAPACITANCE (pF)
SLEW RATE (V/μs)
1000 2000 3000 4000 5000
+SLEW
-SLEW
0
5
10
15
20
25
30
35
45
40
0
MAX3241
SUPPLY CURRENT vs. LOAD
CAPACITANCE WHEN TRANSMITTING DATA
MAX3222-06
LOAD CAPACITANCE (pF)
SUPPLY CURRENT (mA)
1000 2000 3000 4000 5000
235kbps
120kbps
20kbps
-7.5
-5.0
-2.5
0
2.5
5.0
7.5
0
MAX3237
TRANSMITTER OUTPUT VOLTAGE
vs. LOAD CAPACITANCE (MBAUD = GND)
MAX3222-07
LOAD CAPACITANCE (pF)
TRANSMITTER OUTPUT VOLTAGE (V)
1000 2000 3000 4000 5000
1 TRANSMITTER AT 240kbps
4 TRANSMITTERS AT 15kbps
3kΩ + CL LOADS
VCC = 3.3V
0
10
20
30
50
40
60
70
0
MAX3237
SLEW RATE vs. LOAD CAPACITANCE
(MBAUD = VCC)
MAX3222-10
LOAD CAPACITANCE (pF)
SLEW RATE (V/μs)
500 1000 1500 2000
-SLEW, 1Mbps
+SLEW, 1Mbps
1 TRANSMITTER AT FULL DATA RATE
4 TRANSMITTERS AT 1/16 DATA RATE
3kΩ + CL LOAD EACH OUTPUT
VCC = 3.3V
-SLEW, 2Mbps
+SLEW, 2Mbps
-7.5
-5.0
-2.5
0
2.5
5.0
7.5
0
MAX3237
TRANSMITTER OUTPUT VOLTAGE
vs. LOAD CAPACITANCE (MBAUD = VCC)
MAX3222-08
LOAD CAPACITANCE (pF)
TRANSMITTER OUTPUT VOLTAGE (V)
500 1000 1500 2000
1 TRANSMITTER AT FULL DATA RATE
4 TRANSMITTERS AT 1/16 DATA RATE
3kΩ + CL LOAD, EACH OUTPUT
VCC = 3.3V
2Mbps 1.5Mbps
1Mbps
2Mbps
1Mbps
1.5Mbps
0
10
20
30
40
50
60
0
MAX3237
SUPPLY CURRENT vs.
LOAD CAPACITANCE (MBAUD = GND)
MAX3222-11
LOAD CAPACITANCE (pF)
SUPPLY CURRENT (mA)
1000 2000 3000 4000 5000
240kbps
120kbps
20kbps
1 TRANSMITTER AT FULL DATA RATE
4 TRANSMITTERS AT 1/16 DATA RATE
3kΩ + CL LOADS
VCC = 3.3V
0
2
4
6
8
10
12
0
MAX3237
SLEW RATE vs. LOAD CAPACITANCE
(MBAUD = GND)
MAX3222-09
LOAD CAPACITANCE (pF)
SLEW RATE (V/μs)
1000 2000 3000 4000 5000
+SLEW
-SLEW
1 TRANSMITTER AT 240kbps
4 TRANSMITTERS AT 15kbps
3kΩ + CL LOADS
VCC = 3.3V
0
10
30
20
40
50
60
70
0
MAX3237
SKEW vs. LOAD CAPACITANCE
(tPLH - tPHL)
MAX3222-12
LOAD CAPACITANCE (pF)
500 1000 1500 2000 2500
MAX
MIN
AVERAGE; 10 PARTS
SKEW (ns)
1 TRANSMITTER AT 512kbps
4 TRANSMITTERS AT 32kbps
3kΩ + CL LOADS
VCC = 3.3V
MBAUD = VCC
_____________________________Typical Operating Characteristics (continued)
(VCC = +3.3V, 235kbps data rate, 0.1μF capacitors, all transmitters loaded with 3kΩ, TA = +25°C, unless otherwise noted.)
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
6 _______________________________________________________________________________________
—
FUNCTION
—
MAX3222
Noninverting Complementary Receiver Outputs.
Always active.
DIP/SO SSOP
— 11, 14
1 1 Receiver Enable. Active low.
2 2
Positive Terminal of Voltage-Doubler Charge-Pump
Capacitor
6 6
Negative Terminal of Inverting Charge-Pump
Capacitor
5 5
Positive Terminal of Inverting Charge-Pump
Capacitor
4 4
Negative Terminal of Voltage-Doubler Charge-Pump
Capacitor
3 3 +5.5V Generated by the Charge Pump
11, 12 12, 13 TTL/CMOS Transmitter Inputs
10, 13 10, 15 TTL/CMOS Receiver Outputs
9, 14 9, 16 RS-232 Receiver Inputs
8, 15 8, 17 RS-232 Transmitter Outputs
7 7 -5.5V Generated by the Charge Pump
18 20 Shutdown Control. Active low.
17 19 +3.0V to +5.5V Supply Voltage
16 18 Ground
No Connection
MAX3232 MAX3237
— 16
— 13
1 28
5 3
4 1
3 25
2 27
10, 11
17, 19, 22,
23, 24
9, 12 18, 20, 21
8, 13 8, 9, 11
7, 14
5, 6, 7,
10, 12
6 4
— 14
16 26
15 2
— —
NAME
EN
C1+
C2-
C2+
C1-
V+
T_IN
R_OUT
R_IN
T_OUT
VSHDN
VCC
GND
R_OUTB
N.C.
MAX3241
20, 21
23
28
2
1
24
27
12, 13, 14
15–19
4–8
9, 10, 11
3
22
26
25
—
PIN
— —
MegaBaud Control Input. Connect to GND for normal
operation; connect to VCC for 1Mbps transmission rates.
— 15 — MBAUD
______________________________________________________________Pin Description
MAX3222/MAX3232/MAX3237/MAX3241
_______________Detailed Description
Dual Charge-Pump Voltage Converter
The MAX3222/MAX3232/MAX3237/MAX3241’s internal
power supply consists of a regulated dual charge pump
that provides output voltages of +5.5V (doubling charge
pump) and -5.5V (inverting charge pump), regardless of
the input voltage (VCC) over the 3.0V to 5.5V range. The
charge pumps operate in a discontinuous mode; if the
output voltages are less than 5.5V, the charge pumps
are enabled, and if the output voltages exceed 5.5V, the
charge pumps are disabled. Each charge pump
requires a flying capacitor (C1, C2) and a reservoir
capacitor (C3, C4) to generate the V+ and V- supplies.
RS-232 Transmitters
The transmitters are inverting level translators that convert
CMOS-logic levels to 5.0V EIA/TIA-232 levels.
The MAX3222/MAX3232/MAX3241 transmitters guarantee
a 120kbps data rate with worst-case loads of 3kΩ in
parallel with 1000pF, providing compatibility with PC-to-
PC communication software (such as LapLink™).
Typically, these three devices can operate at data rates
of 235kbps. Transmitters can be paralleled to drive multiple
receivers or mice.
The MAX3222/MAX3237/MAX3241’s output stage is
turned off (high impedance) when the device is in shutdown
mode. When the power is off, the MAX3222/
MAX3232/MAX3237/MAX3241 permit the outputs to be
driven up to ±12V.
The transmitter inputs do not have pullup resistors.
Connect unused inputs to GND or VCC.
MAX3237 MegaBaud Operation
In normal operating mode (MBAUD = GND), the
MAX3237 transmitters guarantee a 250kbps data rate
with worst-case loads of 3kΩ in parallel with 1000pF.
This provides compatibility with PC-to-PC communication
software, such as LapLink.
For higher speed serial communications, the MAX3237
features MegaBaud operation. In MegaBaud operating
mode (MBAUD = VCC), the MAX3237 transmitters guarantee
a 1Mbps data rate with worst-case loads of 3kΩ in
parallel with 250pF for 3.0V < VCC < 4.5V. For 5V ±10%
operation, the MAX3237 transmitters guarantee a 1Mbps
data rate into worst-case loads of 3kΩ in parallel with
1000pF.
MAX3222
MAX3232
MAX3237
MAX3241
5kΩ
R_ OUT R_ IN
EN*
C2-
C2+
C1-
C1+
VV+
VCC
C4
C1 C3
C2
0.1μF
VCC
SHDN*
T_ IN T_ OUT
GND
VCC
0V
7kΩ 150pF
MAX3222
MAX3232
MAX3237
MAX3241
5kΩ
R_ OUT R_ IN
EN*
C2-
C2+
C1-
C1+
VV+
VCC
C4
C1 C3
C2
0.1μF
VCC
SHDN*
T_ IN T_ OUT
GND
VCC
0V
3kΩ 2500pF
MINIMUM SLEW-RATE TEST CIRCUIT MAXIMUM SLEW-RATE TEST CIRCUIT
*MAX3222/MAX3237/MAX3241 ONLY
Figure 1. Slew-Rate Test Circuits
LapLink is a trademark of Traveling Software, Inc.
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
_______________________________________________________________________________________ 7
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
8 _______________________________________________________________________________________
RS-232 Receivers
The receivers convert RS-232 signals to CMOS-logic output
levels. The MAX3222/MAX3237/MAX3241 receivers
have inverting three-state outputs. In shutdown, the
receivers can be active or inactive (Table 1).
The complementary outputs on the MAX3237 (R1OUTB)
and the MAX3241 (R1OUTB, R2OUTB) are always active,
regardless of the state of EN or SHDN. This allows for
Ring Indicator applications without forward biasing other
devices connected to the receiver outputs. This is ideal
for systems where VCC is set to 0V in shutdown to
accommodate peripherals, such as UARTs (Figure 2).
MAX3222/MAX3237/MAX3241
Shutdown Mode
Supply current falls to less than 1μA in shutdown mode
(SHDN = low). When shut down, the device’s charge
pumps are turned off, V+ is pulled down to VCC, V- is
pulled to ground, and the transmitter outputs are disabled
(high impedance). The time required to exit shutdown
is typically 100μs, as shown in Figure 3. Connect
SHDN to VCC if the shutdown mode is not used. SHDN
has no effect on R_OUT or R_OUTB.
MAX3222/MAX3237/MAX3241
Enable Control
The inverting receiver outputs (R_OUT) are put into a
high-impedance state when EN is high. The complementary
outputs R1OUTB and R2OUTB are always active,
regardless of the state of EN and SHDN (Table 1). EN
has no effect on T_OUT.
__________Applications Information
Capacitor Selection
The capacitor type used for C1–C4 is not critical for
proper operation; polarized or nonpolarized capacitors
can be used. The charge pump requires 0.1μF capacitors
for 3.3V operation. For other supply voltages, refer to
Table 2 for required capacitor values. Do not use values
lower than those listed in Table 2. Increasing the capacitor
values (e.g., by a factor of 2) reduces ripple on the
transmitter outputs and slightly reduces power consumption.
C2, C3, and C4 can be increased without changing
C1’s value. However, do not increase C1 without also
increasing the values of C2, C3, and C4, to maintain the
proper ratios (C1 to the other capacitors).
When using the minimum required capacitor values,
make sure the capacitor value does not degrade excessively
with temperature. If in doubt, use capacitors with a
higher nominal value. The capacitor’s equivalent series
resistance (ESR), which usually rises at low temperatures,
influences the amount of ripple on V+ and V-.
MAX3237
MAX3241
T1OUT
R1OUTB
Tx
UART
VCC
T1IN
LOGIC
TRANSITION
DETECTOR
R1OUT R1IN
EN = VCC
SHDN = GND
VCC
TO
μP
Rx
PREVIOUS
RS-232
Tx
UART
PROTECTION
DIODE
PROTECTION
DIODE
SHDN = GND
VCC
VCC
GND
Rx
5kΩ
a) OLDER RS-232: POWERED-DOWN UART DRAWS CURRENT FROM
ACTIVE RECEIVER OUTPUT IN SHUTDOWN.
b) NEW MAX3237/MAX3241: EN SHUTS DOWN RECEIVER OUTPUTS (EXCEPT FOR
B OUTPUTS), SO NO CURRENT FLOWS TO UART IN SHUTDOWN. B OUTPUTS
INDICATE RECEIVER ACTIVITY DURING SHUTDOWN WITH EN HIGH.
GND
5kΩ
Figure 2. Detection of RS-232 Activity when the UART and
Interface are Shut Down; Comparison of MAX3237/MAX3241
(b) with Previous Transceivers (a).
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
_______________________________________________________________________________________ 9
Power-Supply Decoupling
In most circumstances, a 0.1μF bypass capacitor is
adequate. In applications that are sensitive to powersupply
noise, decouple VCC to ground with a capacitor
of the same value as charge-pump capacitor C1. Connect
bypass capacitors as close to the IC as possible.
Operation Down to 2.7V
Transmitter outputs will meet EIA/TIA-562 levels of
±3.7V with supply voltages as low as 2.7V.
Transmitter Outputs when
Exiting Shutdown
Figure 3 shows two transmitter outputs when exiting
shutdown mode. As they become active, the two transmitter
outputs are shown going to opposite RS-232 levels
(one transmitter input is high, the other is low).
Each transmitter is loaded with 3kΩ in parallel with
2500pF. The transmitter outputs display no ringing or
undesirable transients as they come out of shutdown.
Note that the transmitters are enabled only when the
magnitude of V- exceeds approximately 3V.
Mouse Driveability
The MAX3241 has been specifically designed to power
serial mice while operating from low-voltage power supplies.
It has been tested with leading mouse brands from
manufacturers such as Microsoft and Logitech. The
MAX3241 successfully drove all serial mice tested and
met their respective current and voltage requirements.
Figure 4a shows the transmitter output voltages under
increasing load current at 3.0V. Figure 4b shows a typical
mouse connection using the MAX3241.
Table 1. MAX3222/MAX3237/MAX3241
Shutdown and Enable Control Truth Table
Table 2. Required Minimum Capacitor Values
5V/div
VCC = 3.3V
C1–C4 = 0.1μF
2V/div
T2
50μs/div
T1
Figure 3. Transmitter Outputs when Exiting Shutdown or
Powering Up
VCC
(V)
C1
(μF)
4.5 to 5.5 0.047
3.0 to 5.5 0.1
C2, C3, C4
(μF)
MAX3222/MAX3232/MAX3241
0.33
0.47
1 Active
0
1
1 Active
SHDN
0 1 High-Z
0 0 High-Z
EN T_OUT
High-Z
Active
High-Z
Active
R_OUT
R_OUTB
(MAX3237/
MAX3241)
Active
Active
Active
Active
3.0 to 3.6 0.22
3.15 to 3.6 0.1
MAX3237
0.22
0.1
4.5 to 5.5 0.047
3.0 to 5.5 0.22
0.33
1.0
3.0 to 3.6 0.1 0.1
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
10 ______________________________________________________________________________________
MAX3241
23 EN
15 R5OUT
16 R4OUT
17 R3OUT
18 R2OUT
19 R1OUT
20 R2OUTB
21 R1OUTB
5kΩ
5kΩ
5kΩ
5kΩ
5kΩ
R5IN 8
R4IN 7
6
R2IN 5
R1IN 4
SHDN 22
GND
25
12 T3IN
13 T2IN
14 T1IN
2 C2-
1 C2+
24 C1-
28 C1+
T3OUT 11
+V
COMPUTER SERIAL PORT
MOUSE
+V
-V
GND
Tx
T2OUT 10
T1OUT 9
V-
3
V+
VCC 27
VCC
C4
C1 C3
C2
0.1μF
VCC = 3V
to 5.5V
26
R3IN
Figure 4b. Mouse Driver Test Circuit
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
0 1 2 3 4 5 6 7
MAX3222-04
LOAD CURRENT PER TRANSMITTER (mA)
TRANSMITTER OUTPUT VOLTAGE (V)
VOUT+
VCC = 3.0V
VOUTVOUT+
VCC VOUTT1
T2
T3
Figure 4a. MAX3241 Transmitter Output Voltage vs. Load Current per Transmitter
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
______________________________________________________________________________________ 11
High Data Rates
The MAX3222/MAX3232/MAX3241 maintain the RS-232
±5.0V minimum transmitter output voltage even at high
data rates. Figure 5 shows a transmitter loopback test
circuit. Figure 6 shows a loopback test result at
120kbps, and Figure 7 shows the same test at 235kbps.
For Figure 6, all transmitters were driven simultaneously
at 120kbps into RS-232 loads in parallel with 1000pF.
For Figure 7, a single transmitter was driven at 235kbps,
and all transmitters were loaded with an RS-232 receiver
in parallel with 1000pF.
The MAX3237 maintains the RS-232 ±5.0V minimum
transmitter output voltage at data rates up to 1Mbps.
Figure 8 shows a loopback test result at 1Mbps with
MBAUD = VCC. For Figure 8, all transmitters were
loaded with an RS-232 receiver in parallel with 250pF.
MAX3222
MAX3232
MAX3237
MAX3241
5kΩ
R_ OUT R_ IN
EN*
C2-
C2+
C1-
C1+
VV+
VCC
C4
C1 C3
C2
0.1μF
VCC
SHDN*
T_ IN T_ OUT
GND
VCC
0V 1000pF
*MAX3222/MAX3237/MAX3241 ONLY
T1IN
R1OUT
VCC = 3.3V
T1OUT
5V/div
5V/div
5V/div
5μs/div
Figure 5. Loopback Test Circuit
Figure 6. MAX3241 Loopback Test Result at 120kbps
T1IN
R1OUT
VCC = 3.3V
T1OUT
5V/div
5V/div
2μs/div
5V/div
Figure 7. MAX3241 Loopback Test Result at 235kbps
+5V
0V
+5V
0V
-5V
+5V
0V
T_IN
T_OUT = R_IN
5kΩ + 250pF
R_OUT
150pF
200ns/div
VCC = 3.3V
Figure 8. MAX3237 Loopback Test Result at 1000kbps
(MBAUD = VCC)
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
12 ______________________________________________________________________________________
__________________________________________________Typical Operating Circuits
MAX3222
10 R2OUT
1
13 R1OUT
R2IN 9
18
GND
16
RS-232
OUTPUTS
TTL/CMOS
INPUTS
11 T2IN
12 T1IN
C2-
6
5 C2+
4 C1-
2 C1+
R1IN 14
T2OUT 8
T1OUT 15
V-
7
V+
VCC 3
17
C1
0.1μF
C2
0.1μF
0.1μF
+3.3V
RS-232
INPUTS
TTL/CMOS
OUTPUTS
EN
SHDN
C3*
0.1μF
C4
0.1μF
PIN NUMBERS REFER TO DIP/SO PACKAGES.
* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.
MAX3232
9 R2OUT
12 R1OUT
R2IN 8
GND
15
RS-232
OUTPUTS
TTL/CMOS
INPUTS
10 T2IN
11 T1IN
C2-
5
4 C2+
3 C1-
1 C1+
R1IN 13
T2OUT 7
T1OUT 14
V-
6
V+
VCC 2
C4
0.1μF
16
0.1μF
0.1μF
0.1μF
+3.3V
RS-232
INPUTS
TTL/CMOS
OUTPUTS
C3*
0.1μF
* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.
SEE TABLE 2 FOR CAPACITOR SELECTION
5kΩ
5kΩ
5kΩ
5kΩ
Interconnection with 3V and 5V Logic
The MAX3222/MAX3232/MAX3237/MAX3241 can
directly interface with various 5V logic families, including
ACT and HCT CMOS. See Table 3 for more information
on possible combinations of interconnections.
Table 3. Logic-Family Compatibility
with Various Supply Voltages
Compatible with ACT and
HCT CMOS, and with TTL.
Incompatible with AC, HC,
and CD4000 CMOS.
5 3.3
SYSTEM
POWERSUPPLY
VOLTAGE
(V)
Compatible with all TTL
and CMOS-logic families.
5 5
Compatible with all CMOS
families.
3.3 3.3
COMPATIBILITY
MAX32_ _
VCC
SUPPLY
VOLTAGE
(V)
MAX3222/MAX3232/MAX3237/MAX3241
_____________________________________Typical Operating Circuits (continued)
MAX3241
23 EN
15 R5OUT
16 R4OUT
17 R3OUT
18 R2OUT
19 R1OUT
20 R2OUTB
21 R1OUTB
TTL/CMOS
OUTPUTS
5kΩ
5kΩ
5kΩ
5kΩ
5kΩ
R5IN 8
* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.
R4IN 7
R3IN 6
R2IN 5
R1IN 4
RS-232
INPUTS
SHDN 22
GND
25
RS-232
OUTPUTS
TTL/CMOS
INPUTS
12 T3IN
13 T2IN
14 T1IN
C2-
2
1 C2+
24 C1-
28 C1+
T3OUT 11
T2OUT 10
T1OUT 9
V-
3
V+
VCC 27
C4
0.1μF
C3*
0.1μF
0.1μF
0.1μF
0.1μF
+3.3V
26
MAX3237
13 EN
18 R3OUT
20 R2OUT
21 R1OUT
16 R1OUTB
LOGIC
OUTPUTS
5kΩ
5kΩ
5kΩ
* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.
R3IN 11
R2IN 9
R1IN 8
RS-232
INPUTS
GND
2
RS-232
OUTPUTS
LOGIC
INPUTS
22 T3IN
23 T2IN
24 T1IN
C2-
3
1 C2+
25 C1-
28 C1+
T3OUT 7
T2OUT 6
T1OUT 5
T1
T2
T3
R1
R2
R3
V-
4
V+
VCC 27
0.1μF
0.1μF
0.1μF
0.1μF
0.1μF
26
MBAUD 15
17 T5IN
19 T4IN
T5OUT 12
T4OUT 10
SHDN
14
T4
T5
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
______________________________________________________________________________________ 13
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
14 ______________________________________________________________________________________
_____________________________________________Pin Configurations (continued)
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
VCC
GND
T1OUT
C2+ R1IN
C1-
V+
C1+
MAX3232
R1OUT
T1IN
T2IN
R2IN R2OUT
T2OUT
VC2-
DIP/SO/SSOP/TSSOP
+
TOP VIEW
20
19
18
17
16
15
14
13
1
2
3
8
12
10 11
4
5
6
7
SHDN
VCC
GND
C1- T1OUT
V+
C1+
EN
R1IN
R1OUT
T1IN
T2IN
T2OUT
VC2-
C2+
R2IN 9
R2OUT
SSOP/TSSOP
+
N.C.
N.C.
MAX3222
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
C1+
V+
VCC
C1-
T1IN
T2IN
MBAUD
T3IN
R1OUT
R2OUT
T4IN
R3OUT
T5IN
R1OUTB
SHDN
EN
T5OUT
R3IN
T4OUT
R2IN
R1IN
T3OUT
T2OUT
T1OUT
VC2-
GND
C2+
SSOP
MAX3237
+
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
C1+
V+
VCC
GND
C1-
EN
R5OUT
SHDN
R1OUTB
R2OUTB
R1OUT
R2OUT
R3OUT
R4OUT
T1IN
T2IN
T3IN
T3OUT
T2OUT
T1OUT
R5IN
R4IN
R3IN
R2IN
R1IN
VC2-
C2+
SO/SSOP/TSSOP
MAX3241
+
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
______________________________________________________________________________________ 15
______3V-Powered EIA/TIA-232 and EIA/TIA-562 Transceivers from Maxim
Ordering Information (continued)
*Dice are tested at TA = +25°C, DC parameters only.
+Denotes lead-free package.
0.1μF capacitors, 1 complementary
receiver, MegaBaud
operation
MAX3237 3.0 to 5.5 5/3 3 250/1000 232
0.1μF capacitors, AutoShutdown,
complementary receiver,
drives mice
MAX3243 3.0 to 5.5 3/5 1 120 232
MAX3232 3.0 to 5.5 2/2 N/A 120 232 0.1μF capacitors
MAX3223 3.0 to 5.5 2/2 2 120 232 0.1μF capacitors, AutoShutdown
MAX3222 3.0 to 5.5 2/2 2 120 232 0.1μF capacitors
232
562
232
562
232
EIA/
TIA-232
OR 562
2.7 to 3.6
AutoShutdown, complementary
receiver, drives mice, transient
detection
MAX3212 3/5 5 235
MAX563 3.0 to 3.6 2/2 2 230 0.1μF capacitors
Operates directly from batteries
without a voltage regulator
MAX218 1.8 to 4.25 2/2 2 120
No. OF
RECEIVERS
ACTIVE IN
SHUTDOWN
POWERSUPPLY
VOLTAGE
(V)
MAX562 2.7 to 5.25 3/5 5 230 Wide supply range
MAX212 3.0 to 3.6 3/5 5 120 Drives mice
FEATURES
GUARANTEED
DATA
RATE
(kbps)
No. OF
TRANSMITTERS/
RECEIVERS
PART
0.1μF capacitors, 2 complementary
receivers, drives mice
MAX3241 3.0 to 5.5 3/5 5 120 232
PART TEMP RANGE PIN-PACKAGE
PKG
CODE
MAX3222EUP+ -40°C to +85°C 20 TSSOP U20+2
MAX3222EAP+ -40°C to +85°C 20 SSOP A20+1
MAX3222EWN+ -40°C to +85°C 18 SO W18+1
MAX3222EPN+ -40°C to +85°C 18 Plastic Dip P18+5
MAX3222C/D 0°C to +70°C Dice* —
MAX3232CUE+ 0°C to +70°C 16 TSSOP U16+1
MAX3232CSE+ 0°C to +70°C 16 Narrow SO S16+1
MAX3232CWE+ 0°C to +70°C 16 Wide SO W16+1
MAX3232CPE+ 0°C to +70°C 16 Plastic DIP P16+1
MAX3232EUE+ -40°C to +85°C 16 TSSOP U16+1
MAX3232ESE+ -40°C to +85°C 16 Narrow SO S16+5
PART TEMP RANGE PIN-PACKAGE
PKG
CODE
MAX3232EWE+ -40°C to +85°C 16 Wide SO W16+1
MAX3232EPE+ -40°C to +85°C 16 Plastic DIP P16+1
MAX3232CAE+ 0°C to +70°C 16 SSOP A28+2
MAX3237CAI+ 0°C to +70°C 28 SSOP A28+1
MAX3237ENI+ -40°C to +85°C 28 SSOP A28+1
MAX3241CAI+ 0°C to +70°C 28 SSOP A28+1
MAX3241CWI+ 0°C to +70°C 28 SO W28+6
MAX3241EUI+ -40°C to +85°C 28 TSSOP U28+2
MAX3241EAI+ -40°C to +85°C 28 SSOP A28+1
MAX3241EWI+ -40°C to +85°C 28 SO W28+6
MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
16 ______________________________________________________________________________________
___________________Chip Topography ___________________Chip Information
T2IN T1IN
0.127"
(3.225mm)
0.087"
(2.209mm)
T2OUT R2IN R2OUT
R1OUT
R1IN
T1OUT
V+ C1+ VCC
SHDN
EN
C1-
C2+
C2-
VGND
MAX3222
TRANSISTOR COUNT: 339
SUBSTRATE CONNECTED TO GND
MAX3222 339
MAX3232 339
MAX3237 1212
MAX3241 894
PART TRANSISTOR COUNT
3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232
Transceivers Using Four 0.1μF External Capacitors
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
© 2007 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX3222/MAX3232/MAX3237/MAX3241
TSSOP4.40mm.EPS
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Revision History
Pages changed at Rev 7: 1, 15, 16, 17
Precision Micropower,
Low Dropout Voltage References
Data Sheet REF19x Series
Rev. L
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©1996–2011 Analog Devices, Inc. All rights reserved.
FEATURES
Temperature coefficient: 5 ppm/°C maximum
High output current: 30 mA
Low supply current: 45 μA maximum
Initial accuracy: ±2 mV maximum1
Sleep mode: 15 μA maximum
Low dropout voltage
Load regulation: 4 ppm/mA
Line regulation: 4 ppm/V
Short-circuit protection
APPLICATIONS
Portable instruments
ADCs and DACs
Smart sensors
Solar powered applications
Loop-current-powered instruments
GENERAL DESCRIPTION
The REF19x series precision band gap voltage references use a patented temperature drift curvature correction circuit and laser trimming of highly stable, thin-film resistors to achieve a very low temperature coefficient and high initial accuracy.
The REF19x series is made up of micropower, low dropout voltage (LDV) devices, providing stable output voltage from supplies as low as 100 mV above the output voltage and consuming less than 45 μA of supply current. In sleep mode, which is enabled by applying a low TTL or CMOS level to the SLEEP pin, the output is turned off and supply current is further reduced to less than 15 μA.
The REF19x series references are specified over the extended industrial temperature range (−40°C to +85°C) with typical performance specifications over −40°C to +125°C for applications, such as automotive.
All electrical grades are available in an 8-lead SOIC package; the PDIP and TSSOP packages are available only in the lowest electrical grade.
TEST PINS
Test Pin 1 and Test Pin 5 are reserved for in-package Zener zap. To achieve the highest level of accuracy at the output, the Zener zapping technique is used to trim the output voltage. Because each unit may require a different amount of adjustment, the resistance value at the test pins varies widely from pin to pin and from part to part. The user should leave Pin 1 and Pin 5 unconnected. REF19xSERIESTOP VIEW(Not to Scale)TP1VS2SLEEP3GND4NCNCOUTPUTTP876500371-001NOTES1.NC = NO CONNECT.2.TP PINS ARE FACTORY TESTPOINTS, NO USER CONNECTION.
Figure 1. 8-Lead SOIC_N and TSSOP Pin Configuration (S Suffix and RU Suffix) REF19xSERIESTOP VIEW(Not to Scale)TP1VS2SLEEP3GND4NCNCOUTPUTTP876500371-002NOTES1.NC = NO CONNECT.2.TP PINS ARE FACTORY TESTPOINTS, NO USER CONNECTION.
Figure 2. 8-Lead PDIP Pin Configuration (P Suffix)
Table 1. Nominal Output Voltage
Part Number
Nominal Output Voltage (V)
REF191
2.048
REF192
2.50
REF193
3.00
REF194
4.50
REF195
5.00
REF196
3.30
REF198
4.096
1 Initial accuracy does not include shift due to solder heat effect (see the Applications Information section).
FEATURES
l VERY LOW NOISE: 4.5nV/ÖHz at 10kHz
l FAST SETTLING TIME:
OPA627—550ns to 0.01%
OPA637—450ns to 0.01%
l LOW VOS: 100mV max
l LOW DRIFT: 0.8mV/°C max
l LOW IB: 5pA max
l OPA627: Unity-Gain Stable
l OPA637: Stable in Gain ³ 5
OPA627
OPA637
DESCRIPTION
The OPA627 and OPA637 Difet operational amplifiers
provide a new level of performance in a precision
FET op amp. When compared to the popular OPA111
op amp, the OPA627/637 has lower noise, lower offset
voltage, and much higher speed. It is useful in a broad
range of precision and high speed analog circuitry.
The OPA627/637 is fabricated on a high-speed, dielectrically-
isolated complementary NPN/PNP process. It
operates over a wide range of power supply voltage—
±4.5V to ±18V. Laser-trimmed Difet input circuitry
provides high accuracy and low-noise performance
comparable with the best bipolar-input op amps.
High frequency complementary transistors allow increased
circuit bandwidth, attaining dynamic performance
not possible with previous precision FET op
amps. The OPA627 is unity-gain stable. The OPA637
is stable in gains equal to or greater than five.
Difet fabrication achieves extremely low input bias
currents without compromising input voltage noise
performance. Low input bias current is maintained
over a wide input common-mode voltage range with
unique cascode circuitry.
The OPA627/637 is available in plastic DIP, SOIC
and metal TO-99 packages. Industrial and military
temperature range models are available.
Difet ®, Burr-Brown Corp.
®
Precision High-Speed
Difet ® OPERATIONAL AMPLIFIERS
APPLICATIONS
l PRECISION INSTRUMENTATION
l FAST DATA ACQUISITION
l DAC OUTPUT AMPLIFIER
l OPTOELECTRONICS
l SONAR, ULTRASOUND
l HIGH-IMPEDANCE SENSOR AMPS
l HIGH-PERFORMANCE AUDIO CIRCUITRY
l ACTIVE FILTERS
Trim
5
Trim
1
+In
3
–In
2
Output
6
7
+VS
–VS
4
©1989 Burr-Brown Corporation PDS-998H Printed in U.S.A. March, 1998
International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111
Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
OPA627
OPA627
SBOS165
2
®
OPA627, 637
SPECIFICATIONS
ELECTRICAL
At TA = +25°C, and VS = ±15V, unless otherwise noted.
OPA627BM, BP, SM OPA627AM, AP, AU
OPA637BM, BP, SM OPA637AM, AP, AU
PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
OFFSET VOLTAGE (1)
Input Offset Voltage 40 100 130 250 mV
AP, BP, AU Grades 100 250 280 500 mV
Average Drift 0.4 0.8 1.2 2 mV/°C
AP, BP, AU Grades 0.8 2 2.5 mV/°C
Power Supply Rejection VS = ±4.5 to ±18V 106 120 100 116 dB
INPUT BIAS CURRENT (2)
Input Bias Current VCM = 0V 1 5 2 10 pA
Over Specified Temperature VCM = 0V 1 2 nA
SM Grade VCM = 0V 50 nA
Over Common-Mode Voltage VCM = ±10V 1 2 pA
Input Offset Current VCM = 0V 0.5 5 1 10 pA
Over Specified Temperature VCM = 0V 1 2 nA
SM Grade 50 nA
NOISE
Input Voltage Noise
Noise Density: f = 10Hz 15 40 20 nV/ÖHz
f = 100Hz 8 20 10 nV/ÖHz
f = 1kHz 5.2 8 5.6 nV/ÖHz
f = 10kHz 4.5 6 4.8 nV/ÖHz
Voltage Noise, BW = 0.1Hz to 10Hz 0.6 1.6 0.8 mVp-p
Input Bias Current Noise
Noise Density, f = 100Hz 1.6 2.5 2.5 fA/ÖHz
Current Noise, BW = 0.1Hz to 10Hz 30 60 48 fAp-p
INPUT IMPEDANCE
Differential 1013 || 8 * W || pF
Common-Mode 1013 || 7 * W || pF
INPUT VOLTAGE RANGE
Common-Mode Input Range ±11 ±11.5 * * V
Over Specified Temperature ±10.5 ±11 * * V
Common-Mode Rejection VCM = ±10.5V 106 116 100 110 dB
OPEN-LOOP GAIN
Open-Loop Voltage Gain VO = ±10V, RL = 1kW 112 120 106 116 dB
Over Specified Temperature VO = ±10V, RL = 1kW 106 117 100 110 dB
SM Grade VO = ±10V, RL = 1kW 100 114 dB
FREQUENCY RESPONSE
Slew Rate: OPA627 G = –1, 10V Step 40 55 * * V/ms
OPA637 G = –4, 10V Step 100 135 * * V/ms
Settling Time: OPA627 0.01% G = –1, 10V Step 550 * ns
0.1% G = –1, 10V Step 450 * ns
OPA637 0.01% G = –4, 10V Step 450 * ns
0.1% G = –4, 10V Step 300 * ns
Gain-Bandwidth Product: OPA627 G = 1 16 * MHz
OPA637 G = 10 80 * MHz
Total Harmonic Distortion + Noise G = +1, f = 1kHz 0.00003 * %
POWER SUPPLY
Specified Operating Voltage ±15 * V
Operating Voltage Range ±4.5 ±18 * * V
Current ±7 ±7.5 * * mA
OUTPUT
Voltage Output RL = 1kW ±11.5 ±12.3 * *
Over Specified Temperature ±11 ±11.5 * * V
Current Output VO = ±10V ±45 * mA
Short-Circuit Current ±35 +70/–55 ±100 * * * mA
Output Impedance, Open-Loop 1MHz 55 * W
TEMPERATURE RANGE
Specification: AP, BP, AM, BM, AU –25 +85 * * °C
SM –55 +125 °C
Storage: AM, BM, SM –60 +150 * * °C
AP, BP, AU –40 +125 * * °C
qJ-A: AM, BM, SM 200 * °C/W
AP, BP 100 * °C/W
AU 160 °C/W
* Specifications same as “B” grade.
NOTES: (1) Offset voltage measured fully warmed-up. (2) High-speed test at TJ = +25°C. See Typical Performance Curves for warmed-up performance.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
3
®
OPA627, 637
PIN CONFIGURATIONS
Top View DIP/SOIC
Offset Trim
–In
+In
–V
No Internal Connection
+V
Output
S Offset Trim
S
1
2
3
4
8
7
6
5
Top View TO-99
Offset Trim
–In Output
+In Offset Trim
–VS
+VS
No Internal Connection
Case connected to –VS.
8
1
2
3
4
5
6
7
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage .................................................................................. ±18V
Input Voltage Range .............................................. +VS + 2V to –VS – 2V
Differential Input Range ....................................................... Total VS + 4V
Power Dissipation ........................................................................ 1000mW
Operating Temperature
M Package .................................................................. –55°C to +125°C
P, U Package ............................................................. –40°C to +125°C
Storage Temperature
M Package .................................................................. –65°C to +150°C
P, U Package ............................................................. –40°C to +125°C
Junction Temperature
M Package .................................................................................. +175°C
P, U Package ............................................................................. +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
SOlC (soldering, 3s) ................................................................... +260°C
NOTE: (1) Stresses above these ratings may cause permanent damage.
ELECTROSTATIC
DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Burr-Brown
recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits
may be more susceptible to damage because very small
parametric changes could cause the device not to meet its
published specifications.
PACKAGE/ORDERING INFORMATION
PACKAGE DRAWING TEMPERATURE
PRODUCT PACKAGE NUMBER(1) RANGE
OPA627AP Plastic DIP 006 –25°C to +85°C
OPA627BP Plastic DIP 006 –25°C to +85°C
OPA627AU SOIC 182 –25°C to +85°C
OPA627AM TO-99 Metal 001 –25°C to +85°C
OPA627BM TO-99 Metal 001 –25°C to +85°C
OPA627SM TO-99 Metal 001 –55°C to +125°C
OPA637AP Plastic DIP 006 –25°C to +85°C
OPA637BP Plastic DIP 006 –25°C to +85°C
OPA637AU SOIC 182 –25°C to +85°C
OPA637AM TO-99 Metal 001 –25°C to +85°C
OPA637BM TO-99 Metal 001 –25°C to +85°C
OPA637SM TO-99 Metal 001 –55°C to +125°C
NOTE: (1) For detailed drawing and dimension table, please see end of data
sheet, or Appendix C of Burr-Brown IC Data Book.
4
®
OPA627, 637
TYPICAL PERFORMANCE CURVES
At TA = +25°C, and VS = ±15V, unless otherwise noted.
INPUT VOLTAGE NOISE SPECTRAL DENSITY
1k
100
10
1
1
Frequency (Hz)
Voltage Noise (nV/ Ö Hz)
10 100 1k 10k 100k 1M 10M
VOLTAGE NOISE vs SOURCE RESISTANCE
Source Resistance ( W )
1k
100
10
1
100
OPA627 + Resistor
Resistor Noise Only
Spot Noise
at 10kHz
Voltage Noise (nV/ Ö Hz)
1k 10k 100k 1M 10M 100M
Comparison with
OPA27 Bipolar Op
Amp + Resistor
–
+
RS
OPA627 GAIN/PHASE vs FREQUENCY
Phase (Degrees)
Gain (dB)
30
20
10
0
–10
–90
–120
–150
–180
–210
1
Phase
Gain
Frequency (MHz)
10 100
75° Phase
Margin
OPA637 GAIN/PHASE vs FREQUENCY
Phase (Degrees)
Gain (dB)
30
20
10
0
–10
–90
–120
–150
–180
–210
1 10 100
Phase
Gain
Frequency (MHz)
TOTAL INPUT VOLTAGE NOISE vs BANDWIDTH
100
10
1
0.1
0.01
1 10 100 1k 10k 100k 1M 10M
Bandwidth (Hz)
Input Voltage Noise (μV)
Noise Bandwidth:
0.1Hz to indicated
frequency.
RMS
p-p
OPEN-LOOP GAIN vs FREQUENCY
Frequency (Hz)
Voltage Gain (dB)
1 10 100 1k 10k 100k 1M 10M 100M
140
120
100
80
60
40
20
0
–20
OPA637
OPA627
5
®
OPA627, 637
TYPICAL PERFORMANCE CURVES (CONT)
At TA = +25°C, and VS = ±15V, unless otherwise noted.
OPEN-LOOP GAIN vs TEMPERATURE
Voltage Gain (dB)
Temperature (°C)
125
120
115
110
105
–75 –50 –25 0 25 50 75 100 125
OPEN-LOOP OUTPUT IMPEDANCE vs FREQUENCY
Frequency (Hz)
Output Resistance (W)
100
80
60
40
20
0
2 20 200 2k 20k 200k 2M 20M
COMMON-MODE REJECTION vs FREQUENCY
Frequency (Hz)
Common-Mode Rejection Ratio (dB)
140
120
100
80
60
40
20
0
1 10 100 1k 10k 100k 1M 10M
OPA627
OPA637
COMMON-MODE REJECTION vs
INPUT COMMON MODE VOLTAGE
130
120
110
100
90
80
Common-Mode Rejection (dB)
Common-Mode Voltage (V)
–15 –10 –5 0 5 10 15
POWER-SUPPLY REJECTION vs FREQUENCY
Frequency (Hz)
Power-Supply Rejection (dB)
140
120
100
80
60
40
20
0
1
–VS PSRR 627
and 637
+VS PSRR 627
637
10 100 1k 10k 100k 1M 10M
POWER-SUPPLY REJECTION AND COMMON-MODE
REJECTION vs TEMPERATURE
Temperature (°C)
CMR and PSR (dB)
125
120
115
110
105
–75
PSR
CMR
–50 –25 0 25 50 75 100 125
6
®
OPA627, 637
TYPICAL PERFORMANCE CURVES (CONT)
At TA = +25°C, and VS = ±15V, unless otherwise noted.
SUPPLY CURRENT vs TEMPERATURE
Temperature (°C)
Supply Current (mA)
8
7.5
7
6.5
6
–75 –50 –25 0 25 50 75 100 125
OUTPUT CURRENT LIMIT vs TEMPERATURE
Output Current (mA)
100
80
60
40
20
0
–75 –50 –25 0 25 50 75 100 125
Temperature (°C)
–IL at VO = –10V
–IL at VO = 0V
+IL at VO = +10V
+IL at VO = 0V
OPA627 GAIN-BANDWIDTH AND SLEW RATE
vs TEMPERATURE
Temperature (°C)
Gain-Bandwidth (MHz)
24
20
16
12
8
–75
Slew Rate
GBW
60
55
50
Slew Rate (V/μs)
–50 –25 0 25 50 75 100 125
OPA637 GAIN-BANDWIDTH AND SLEW RATE
vs TEMPERATURE
Temperature (°C)
Gain-Bandwidth (MHz)
120
100
80
60
40
–75
Slew Rate (V/μs)
160
140
120
100
80
Slew Rate
GBW
–50 –25 0 25 50 75 100 125
OPA627 TOTAL HARMONIC DISTORTION + NOISE
vs FREQUENCY
Frequency (Hz)
THD+N (%)
20 100 1k 10k 20k
0.1
0.01
0.001
0.0001
0.00001
G = +10
G = +1
Measurement BW: 80kHz
–
+
–
+
100pF 100pF
G = +1 G = +10
VI VI
549
5k
600 600
VO = ±10V VO = ±10V
W W
W
W
OPA637 TOTAL HARMONIC DISTORTION + NOISE
vs FREQUENCY
Frequency (Hz)
THD+N (%)
20 100 1k 10k 20k
1
0.1
0.01
0.001
0.0001
G = +10
G = +50
–
+
100pF
G = +10
VI
549
5k
600
VO = ±10V
W
W
W
–
+
100pF
G = +50
VI
102
5k
600
VO = ±10V
W
W
W
Measurement BW: 80kHz
7
®
OPA627, 637
TYPICAL PERFORMANCE CURVES (CONT)
At TA = +25°C, and VS = ±15V, unless otherwise noted.
INPUT BIAS AND OFFSET CURRENT
vs JUNCTION TEMPERATURE
Junction Temperature (°C)
Input Current (pA)
10k
1k
100
10
1
0.1
–50 –25 0 25 50 75 100 125 150
IB
IOS
INPUT BIAS CURRENT
vs POWER SUPPLY VOLTAGE
Supply Voltage (±VS)
Input Bias Current (pA)
20
15
10
5
0
±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18
NOTE: Measured fully
warmed-up.
TO-99 with 0807HS Heat Sink
TO-99
Plastic
DIP, SOIC
INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE
Common-Mode Voltage (V)
Input Bias Current Multiplier
1.2
1.1
1
0.9
0.8
–15 –10 –5 0 5 10 15
Beyond Linear
Common-Mode Range
Beyond Linear
Common-Mode Range
INPUT OFFSET VOLTAGE WARM-UP vs TIME
Time From Power Turn-On (Min)
Offset Voltage Change (μV)
50
25
0
–25
–50
0 1 2 3 4 5 6
MAX OUTPUT VOLTAGE vs FREQUENCY
Frequency (Hz)
Output Voltage (Vp-p)
30
20
10
0
100k 1M 10M 100M
OPA627
OPA637
SETTLING TIME vs CLOSED-LOOP GAIN
100
10
1
0.1
–1 –10 –100 –1000
Closed-Loop Gain (V/V)
Settling Time (μs)
Error Band: ±0.01%
OPA637
OPA627
8
®
OPA627, 637
TYPICAL PERFORMANCE CURVES (CONT)
At TA = +25°C, and VS = ±15V, unless otherwise noted.
FIGURE 1. Circuits with Noise Gain Less than Five Require
the OPA627 for Proper Stability.
SETTLING TIME vs ERROR BAND
1500
1000
500
0
0.001 0.01 0.1 1 10
Error Band (%)
Settling Time (ns)
OPA637
G = –4
OPA627
G = –1
–
+
CF
RI RF
2kW
+5V
–5V
OPA627 OPA637
RI 2kW 500W
RF 2kW 2kW
CF 6pF 4pF
SETTLING TIME vs LOAD CAPACITANCE
0 150 200 300 400 500
Load Capacitance (pF)
3
2
1
0
Settling Time (μs)
Error Band:
±0.01%
OPA637
G = –4
OPA627
G = –1
APPLICATIONS INFORMATION
The OPA627 is unity-gain stable. The OPA637 may be used
to achieve higher speed and bandwidth in circuits with noise
gain greater than five. Noise gain refers to the closed-loop
gain of a circuit as if the non-inverting op amp input were
being driven. For example, the OPA637 may be used in a
non-inverting amplifier with gain greater than five, or an
inverting amplifier of gain greater than four.
When choosing between the OPA627 or OPA637, it is
important to consider the high frequency noise gain of your
circuit configuration. Circuits with a feedback capacitor
(Figure 1) place the op amp in unity noise-gain at high
frequency. These applications must use the OPA627 for
proper stability. An exception is the circuit in Figure 2,
where a small feedback capacitance is used to compensate
for the input capacitance at the op amp’s inverting input. In
this case, the closed-loop noise gain remains constant with
frequency, so if the closed-loop gain is equal to five or
greater, the OPA637 may be used.
–
+
–
+
–
+
–
+
–
+
–
+
Buffer
Bandwidth
Limiting
Integrator Filter
RI
RF < 4R
Inverting Amp
G < |–4|
RI
RF < 4RI
Non-Inverting Amp
G < 5
OPA627 OPA627
OPA627 OPA627
OPA627 OPA627
9
®
OPA627, 637
–
+
C2
C1 R2
R1
OPA637
C1 = CIN + CSTRAY
C2 =
R1 C1
R2
OFFSET VOLTAGE ADJUSTMENT
The OPA627/637 is laser-trimmed for low offset voltage
and drift, so many circuits will not require external adjustment.
Figure 3 shows the optional connection of an external
potentiometer to adjust offset voltage. This adjustment should
not be used to compensate for offsets created elsewhere in a
system (such as in later amplification stages or in an A/D
converter) because this could introduce excessive temperature
drift. Generally, the offset drift will change by approximately
4mV/°C for 1mV of change in the offset voltage due
to an offset adjustment (as shown on Figure 3).
FIGURE 2. Circuits with Noise Gain Equal to or Greater than
Five May Use the OPA637.
amp contributes little additional noise. Below 1kW, op amp
noise dominates over the resistor noise, but compares
favorably with precision bipolar op amps.
CIRCUIT LAYOUT
As with any high speed, wide bandwidth circuit, careful
layout will ensure best performance. Make short, direct
interconnections and avoid stray wiring capacitance—especially
at the input pins and feedback circuitry.
The case (TO-99 metal package only) is internally connected
to the negative power supply as it is with most common op
amps. Pin 8 of the plastic DIP, SOIC, and TO-99 packages
has no internal connection.
Power supply connections should be bypassed with good
high frequency capacitors positioned close to the op amp
pins. In most cases 0.1mF ceramic capacitors are adequate.
The OPA627/637 is capable of high output current (in
excess of 45mA). Applications with low impedance loads or
capacitive loads with fast transient signals demand large
currents from the power supplies. Larger bypass capacitors
such as 1mF solid tantalum capacitors may improve dynamic
performance in these applications.
NOISE PERFORMANCE
Some bipolar op amps may provide lower voltage noise
performance, but both voltage noise and bias current noise
contribute to the total noise of a system. The OPA627/637
is unique in providing very low voltage noise and very low
current noise. This provides optimum noise performance
over a wide range of sources, including reactive source
impedances. This can be seen in the performance curve
showing the noise of a source resistor combined with the
noise of an OPA627. Above a 2kW source resistance, the op
FIGURE 4. Connection of Input Guard for Lowest IB.
Board Layout for Input Guarding:
Guard top and bottom of board.
Alternate—use Teflon® standoff for sensitive
input pins.
Teflon® E.I. du Pont de Nemours & Co.
–
+
2
In 3
Non-inverting
6
OPA627
Out
–
+
2
3
In
Inverting
6
OPA627
Out
–
+
2
In 3
Buffer
6
OPA627
Out
3
2
4
5
6
7
8 No Internal Connection
1
TO-99 Bottom View
To Guard Drive
–
+
2
3
7
1
5
6
+VS
–VS
OPA627/637
100kW
10kW to 1MW
Potentiometer
(100kW preferred)
±10mV Typical
Trim Range
4
FIGURE 3. Optional Offset Voltage Trim Circuit.
10
®
OPA627, 637
takes approximately 500ns. When the output is driven into
the positive limit, recovery takes approximately 6ms. Output
recovery of the OPA627 can be improved using the output
clamp circuit shown in Figure 5. Diodes at the inverting
input prevent degradation of input bias current.
INPUT BIAS CURRENT
Difet fabrication of the OPA627/637 provides very low
input bias current. Since the gate current of a FET doubles
approximately every 10°C, to achieve lowest input bias
current, the die temperature should be kept as low as possible.
The high speed and therefore higher quiescent current
of the OPA627/637 can lead to higher chip temperature. A
simple press-on heat sink such as the Burr-Brown model
807HS (TO-99 metal package) can reduce chip temperature
by approximately 15°C, lowering the IB to one-third its
warmed-up value. The 807HS heat sink can also reduce lowfrequency
voltage noise caused by air currents and thermoelectric
effects. See the data sheet on the 807HS for details.
Temperature rise in the plastic DIP and SOIC packages can
be minimized by soldering the device to the circuit board.
Wide copper traces will also help dissipate heat.
The OPA627/637 may also be operated at reduced power
supply voltage to minimize power dissipation and temperature
rise. Using ±5V power supplies reduces power dissipation
to one-third of that at ±15V. This reduces the IB of TO-
99 metal package devices to approximately one-fourth the
value at ±15V.
Leakage currents between printed circuit board traces can
easily exceed the input bias current of the OPA627/637. A
circuit board “guard” pattern (Figure 4) reduces leakage
effects. By surrounding critical high impedance input circuitry
with a low impedance circuit connection at the same
potential, leakage current will flow harmlessly to the lowimpedance
node. The case (TO-99 metal package only) is
internally connected to –VS.
Input bias current may also be degraded by improper handling
or cleaning. Contamination from handling parts and
circuit boards may be removed with cleaning solvents and
deionized water. Each rinsing operation should be followed
by a 30-minute bake at 85°C.
Many FET-input op amps exhibit large changes in input
bias current with changes in input voltage. Input stage
cascode circuitry makes the input bias current of the
OPA627/637 virtually constant with wide common-mode
voltage changes. This is ideal for accurate high inputimpedance
buffer applications.
PHASE-REVERSAL PROTECTION
The OPA627/637 has internal phase-reversal protection.
Many FET-input op amps exhibit a phase reversal when the
input is driven beyond its linear common-mode range. This
is most often encountered in non-inverting circuits when the
input is driven below –12V, causing the output to reverse
into the positive rail. The input circuitry of the OPA627/637
does not induce phase reversal with excessive commonmode
voltage, so the output limits into the appropriate rail.
OUTPUT OVERLOAD
When the inputs to the OPA627/637 are overdriven, the
output voltage of the OPA627/637 smoothly limits at approximately
2.5V from the positive and negative power
supplies. If driven to the negative swing limit, recovery
+VS
5kW
(2)
HP 5082-2811
1kW
5kW
–VS
VO
Diode Bridge
BB: PWS740-3
ZD1 : 10V IN961
Clamps output
at VO = ±11.5V
RI
VI –
+
RF
ZD1
OPA627
FIGURE 5. Clamp Circuit for Improved Overload Recovery.
CAPACITIVE LOADS
As with any high-speed op amp, best dynamic performance
can be achieved by minimizing the capacitive load. Since a
load capacitance presents a decreasing impedance at higher
frequency, a load capacitance which is easily driven by a
slow op amp can cause a high-speed op amp to perform
poorly. See the typical curves showing settling times as a
function of capacitive load. The lower bandwidth of the
OPA627 makes it the better choice for driving large capacitive
loads. Figure 6 shows a circuit for driving very large
load capacitance. This circuit’s two-pole response can also
be used to sharply limit system bandwidth. This is often
useful in reducing the noise of systems which do not require
the full bandwidth of the OPA627.
FIGURE 6. Driving Large Capacitive Loads.
R1
–
+
RF
1kW
OPA627
CF
G = +1
BW 1MHz
200pF
For Approximate Butterworth Response:
CF =
2 RO CL
RF
RF >> RO
G = 1+
RF
R1
³
Optional Gain
Gain > 1
f–3dB =
1
2p Ö RF RO CF CL
CL
5nF
RO
20W
11
®
OPA627, 637
INPUT PROTECTION
The inputs of the OPA627/637 are protected for voltages
between +VS + 2V and –VS – 2V. If the input voltage can
exceed these limits, the amplifier should be protected. The
diode clamps shown in Figure 7a will prevent the input
voltage from exceeding one forward diode voltage drop
beyond the power supplies—well within the safe limits. If
the input source can deliver current in excess of the maximum
forward current of the protection diodes, use a series
resistor, RS, to limit the current. Be aware that adding
resistance to the input will increase noise. The 4nV/ÖHz
theoretical thermal noise of a 1kW resistor will add to the
4.5nV/ÖHz noise of the OPA627/637 (by the square-root of
the sum of the squares), producing a total noise of 6nV/ÖHz.
Resistors below 100W add negligible noise.
Leakage current in the protection diodes can increase the
total input bias current of the circuit. The specified maximum
leakage current for commonly used diodes such as the
1N4148 is approximately 25nA—more than a thousand
times larger than the input bias current of the OPA627/637.
Leakage current of these diodes is typically much lower and
may be adequate in many applications. Light falling on the
junction of the protection diodes can dramatically increase
leakage current, so common glass-packaged diodes should
be shielded from ambient light. Very low leakage can be
achieved by using a diode-connected FET as shown. The
2N4117A is specified at 1pA and its metal case shields the
junction from light.
Sometimes input protection is required on I/V converters of
inverting amplifiers (Figure 7b). Although in normal operation,
the voltage at the summing junction will be near zero
(equal to the offset voltage of the amplifier), large input
transients may cause this node to exceed 2V beyond the
power supplies. In this case, the summing junction should
be protected with diode clamps connected to ground. Even
with the low voltage present at the summing junction,
common signal diodes may have excessive leakage current.
Since the reverse voltage on these diodes is clamped, a
diode-connected signal transistor can be used as an inexpensive
low leakage diode (Figure 7b).
FIGURE 7. Input Protection Circuits.
–
+
–VS
+VS
Optional RS
VO
D: IN4148 — 25nA Leakage
2N4117A — 1pA Leakage
(a)
=
–
+
IIN
VO
D
D
D
(b)
D
D: 2N3904
=
NC
Siliconix
OPA627
OPA627
FPO
When used as a unity-gain buffer, large common-mode input voltage steps
produce transient variations in input-stage currents. This causes the rising
edge to be slower and falling edges to be faster than nominal slew rates
observed in higher-gain circuits.
(A) (B)
LARGE SIGNAL RESPONSE SMALL SIGNAL RESPONSE
FIGURE 8. OPA627 Dynamic Performance, G = +1.
–
+
OPA627
G = 1
12
®
OPA627, 637
When driven with a very fast input step (left), common-mode
transients cause a slight variation in input stage currents which
will reduce output slew rate. If the input step slew rate is reduced
(right), output slew rate will increase slightly.
FIGURE 9. OPA627 Dynamic Performance, G = –1.
NOTE: (1) Optimum value will
depend on circuit board layout
and stray capacitance at
the inverting input.
LARGE SIGNAL RESPONSE
+10
0
–10
VOUT (V)
+10
0
–10
(C) (D)
OPA637
LARGE SIGNAL RESPONSE
OPA637
SMALL SIGNAL RESPONSE
FPO
FIGURE 10. OPA637 Dynamic Response, G = 5.
–10
0
+10
–100
0
+100
(E) (F)
VOUT (V)
–
+
OPA627
G = –1
2kW
2kW
6pF(1)
VOUT
–
+
OPA637
G = 5
2kW
500W
4pF(1)
VOUT
NOTE: (1) Optimum value will depend on circuit
board layout and capacitance at inverting input.
VOUT (V)
VOUT (mV)
13
®
OPA627, 637
OPA627 OPA637
RI, R1 2kW 500W
CF 6pF 4pF
Error Band ±0.5mV ±0.2mV
(0.01%)
NOTE: CF is selected for best settling time performance
depending on test fixture layout. Once optimum value is
determined, a fixed capacitor may be used.
FIGURE 12. High Speed Instrumentation Amplifier, Gain = 100.
–In
+In
+
–
OPA637
Differential Voltage Gain = 1 + 2RF/RG
2
3
–
+
–
+
INA105
Differential
Amplifier
1
6
5
Output
Gain = 100
CMRR 116dB
Bandwidth 1MHz
OPA637
25kW
25kW
25kW
25kW
Input Common-Mode
Range = ±5V
»
»
3pF
RF
5kW
RF
5kW
RG
101W
–
+
±5V
Out
+15V
2kW
CF
2kW
Error Out
RI
RI
51W
–15V
HP-
5082-
2835
High Quality
Pulse Generator
/
FIGURE 11. Settling Time and Slew Rate Test Circuit.
FIGURE 14. Composite Amplifier for Wide Bandwidth.
This composite amplifier uses the OPA603 current-feedback op amp to
provide extended bandwidth and slew rate at high closed-loop gain. The
feedback loop is closed around the composite amp, preserving the
precision input characteristics of the OPA627/637. Use separate power
supply bypass capacitors for each op amp.
GAIN A1 R1 R2 R3 R4 –3dB SLEW RATE
(V/V) OP AMP (W) (kW) (W) (kW) (MHz) (V/ms)
100 OPA627 50.5(1) 4.99 20 1 15 700
1000 OPA637 49.9 4.99 12 1 11 500
NOTE: (1) Closest 1/2% value.
*Minimize capacitance at this node.
FIGURE 13. High Speed Instrumentation Amplifier, Gain = 1000.
+
–
OPA603
–
+
A1
R3
R1
R4
R2
VI VO
*
RL ³ 150W
for ±10V Out
–In
+In
+
–
OPA637
Differential Voltage Gain = (1 + 2RF/RG) • 10
2
3
–
+
–
+
INA106
Differential
Amplifier
1
6
5
Output
Gain = 1000
CMRR 116dB
Bandwidth 400kHz
OPA637
10kW
10kW
100kW
100kW
Input Common-Mode
Range = ±10V
»
»
3pF
RF
5kW
RF
5kW
RG
101W
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
OPA627AM NRND TO-99 LMC 8 20 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA627AM
OPA627AP ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA627AP
OPA627APG4 ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA627AP
OPA627AU ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
627AU
OPA627AU/2K5 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
627AU
OPA627AU/2K5E4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
627AU
OPA627AUE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
627AU
OPA627AUG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
627AU
OPA627BM NRND TO-99 LMC 8 1 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA627BM
OPA627BP ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA627BP
OPA627BPG4 ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA627BP
OPA627SM NRND TO-99 LMC 8 20 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA627SM
OPA637AM NRND TO-99 LMC 8 20 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA637AM
OPA637AM2 OBSOLETE TO-99 LMC 8 TBD Call TI Call TI
OPA637AP ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA637AP
OPA637APG4 ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA637AP
OPA637AU ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
637AU
OPA637AU/2K5 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
637AU
OPA637AUE4 OBSOLETE SOIC D 8 TBD Call TI Call TI -25 to 85
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
OPA637AUG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -25 to 85 OPA
637AU
OPA637BM NRND TO-99 LMC 8 20 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA637BM
OPA637BM1 OBSOLETE TO-99 LMC 8 TBD Call TI Call TI
OPA637BP ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA637BP
OPA637BPG4 ACTIVE PDIP P 8 50 TBD Call TI Call TI OPA637BP
OPA637SM NRND TO-99 LMC 8 20 Green (RoHS
& no Sb/Br)
AU N / A for Pkg Type OPA637SM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 3
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type
Package
Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
(mm)
Pin1
Quadrant
OPA627AU/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
OPA637AU/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 26-Jan-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
OPA627AU/2K5 SOIC D 8 2500 367.0 367.0 35.0
OPA637AU/2K5 SOIC D 8 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 26-Jan-2013
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
General Description
The MAX4661/MAX4662/MAX4663 quad analog switches
feature low on-resistance of 2.5½ max. On-resistance is
matched between switches to 0.5W max and is flat
(0.5W max) over the specified signal range. Each
switch can handle Rail-to-Rail® analog signals. Offleakage
current is only 5nA max at TA = +85°C. These
analog switches are ideal in low-distortion applications
and are the preferred solution over mechanical relays in
automatic test equipment or applications where current
switching is required. They have lower power requirements,
use less board space, and are more reliable
than mechanical relays.
The MAX4661 has four normally closed (NC) switches,
and the MAX4662 has four normally open (NO) switches.
The MAX4663 has two NC and two NO switches, and features
guaranteed break-before-make switching.
These devices operate from a single +4.5V to +36V supply
or from dual ±4.5V to ±20V supplies. A separate logic
supply pin guarantees TTL/CMOS-logic compatibility
when operating across the entire supply voltage range.
Applications
Reed Relay Replacement Avionics
Test Equipment ADC Systems
Communication Systems Sample-and-Hold Circuits
PBX, PABX Systems Data Acquisition Systems
Audio-Signal Routing
Features
© Low On-Resistance (2.5W max)
© Guaranteed RON Match Between Channels
(0.5W max)
© Guaranteed RON Flatness over Specified Signal
Range (0.5W max)
© Rail-to-Rail Signal Handling
© Guaranteed Break-Before-Make (MAX4663)
© > 2kV ESD Protection per Method 3015.7
© +4.5V to +36V Single-Supply Operation
±4.5V to ±20V Dual-Supply Operation
© TTL/CMOS-Compatible Control Inputs
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
________________________________________________________________ Maxim Integrated Products 1
19-1516; Rev 0; 7/99
PART
MAX4661CAE
MAX4661CWE
MAX4661CPE 0°C to +70°C
0°C to +70°C
0°C to +70°C
TEMP. RANGE PIN-PACKAGE
16 SSOP
16 Wide SO
16 Plastic DIP
Ordering Information continued at end of data sheet.
Ordering Information
MAX4661EAE -40°C to +85°C 16 SSOP
MAX4661EWE -40°C to +85°C 16 Wide SO
MAX4661EPE -40°C to +85°C 16 Plastic DIP
SWITCHES SHOWN FOR LOGIC “0” INPUT
SSOP/SO/DIP
MAX4662
LOGIC SWITCH
0
1
OFF
ON
TOP VIEW
SSOP/SO/DIP
MAX4661
LOGIC SWITCH
0
1
ON
OFF
SSOP/SO/DIP
MAX4663
LOGIC SWITCHES
1, 4
0
1
OFF
ON
SWITCHES
2, 3
ON
OFF
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
IN2
COM2
NC2
V- V+
NO1
COM1
IN1
MAX4663 VL
NC3
COM3
IN4 IN3
COM4
NO4
GND
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
IN2
COM2
NC2
V- V+
NC1
COM1
IN1
MAX4661 VL
NC3
COM3
IN4 IN3
COM4
NC4
GND
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
IN2
COM2
NO2
V- V+
NO1
COM1
IN1
MAX4662 VL
NO3
COM3
IN4 IN3
COM4
NO4
GND
Pin Configurations/Functional Diagrams/Truth Tables
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
V+ to GND ..............................................................-0.3V to +44V
V- to GND ..............................................................+0.3V to -44V
V+ to V-...................................................................-0.3V to +44V
VL to GND .......................................(GND - 0.3V) to (V+ + 0.3V)
All Other Pins to GND (Note 1) .............(V- - 0.3V) to (V+ + 0.3V)
Continuous Current (COM_, NO_, NC_) ........................±200mA
Peak Current (COM_, NO_, NC_)
(pulsed at 1ms, 10% duty cycle)................................ ±300mA
Continuous Power Dissipation (TA = +70°C)
SSOP (derate 7.1mW/°C above +70°C) .......................571mW
Wide SO (derate 9.52mW/°C above +70°C).................762mW
Plastic DIP (derate 10.53mW/°C above +70°C) ...........842mW
Operating Temperature Ranges
MAX466_C_E ......................................................0°C to +70°C
MAX466_E_E ....................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
-5 5
-5 5
-20 20
TA = TMIN to TMAX
V
TA = +25°C
V- V+
VCOM_,
VNO_, VNC_
Input Voltage Range (Note 3)
IN_ = 0.8V, all others = 2.4V
IN_ = 2.4V, all others = 0.8V
ICOM_ = 10mA,
VNO_ or VNC_ = ±10V
TA = +25°C
TA = +25°C
TA = +25°C
CONDITIONS
Logic Input Voltage Low VIN_L 0.8
½
0.1 0.5
ÆRON
COM_ to NO_ or NC_
On-Resistance Match Between
Channels (Notes 3, 4)
½
1.7 2.5
RON
COM_ to NO or NC_
On-Resistance
Logic Input Voltage High VIN_H 2.4 V
IIN_L -0.5 0.001 0.5
Input Current with Input Voltage
Low
IIN_H -0.5 0.001 0.5 μA
Input Current with Input Voltage
High
½
0.1 0.5
RFLAT(ON)
COM_ to NO_ or NC_
On-Resistance Flatness
(Notes 3, 5)
nA
-0.5 0.01 0.5
INO_, INC_
Off-Leakage Current
(NO_ or NC_) (Note 6)
nA
-0.5 0.01 0.5
ICOM_(OFF)
COM Off-Leakage Current
(Note 6)
nA
-1 0.01 1
ICOM_(ON)
COM On-Leakage Current
(Note 6)
PARAMETER SYMBOL MIN TYP MAX UNITS
ICOM_ = 10mA,
VNO_ or VNC_= ±10V
ICOM_ = 10mA; VNO_
or VNC_ = -5V, 0, 5V
TA = +25°C
VCOM_ = ±10V,
VNO_ or VNC_= –+
10V
VCOM_ = ±10V,
VNO_ or VNC_ = –+
10V
VCOM_ = ±10V,
VNO_ or VNC_= ±10V
or floating
TA = +25°C
TA = TMIN to TMAX
2.7
0.6
TA = TMIN to TMAX 0.6
TA = TMIN to TMAX
TA = TMIN to TMAX
TA = TMIN to TMAX
ELECTRICAL CHARACTERISTICS—Dual Supplies
(V+ = +15V, V- = -15V, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
μA
V
ANALOG SWITCH
LOGIC INPUT
Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum
current rating.
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
_______________________________________________________________________________________ 3
VIN = 0 or 5V μA
TA = +25°C
-0.5 0.001 0.5
Positive Supply Current I+
TA = +25°C
f = 1MHz, Figure 7
RL = 50½, CL = 5pF, f = 1MHz,
Figure 6
TA = TMIN to TMAX -5 5
RL = 50½, CL = 5pF, f = 1MHz,
Figure 5
VCOM_ = ±10V, Figure 3, TA = +25°C
VIN = 0 or 5V
TA = +25°C
f = 1MHz, Figure 7
CONDITIONS
Power-Supply Range ±4.5 ±20.0 V
pF
dB
On-Capacitance CCOM f = 1MHz, Figure 8 250 pF
COM_ Off-Capacitance CCOM 55
-0.5 0.001 0.5
Logic Supply Current IL
-0.5 0.001 0.5
Negative Supply Current INC_
or NO_ Capacitance COFF pF
Crosstalk (Note 8) VCT -59
Off-Isolation (Note 7) VISO -56 dB
tOPEN 5 30 ns
Break-Before-Make Time
(MAX4663 only)
-0.5 0.001 0.5
Ground Current IGND
130 275
100 175
PARAMETER SYMBOL MIN TYP MAX UNITS
VIN = 0 or 5V
VIN = 0 or 5V
TA = +25°C
TA = TMIN to TMAX
-5 5
-5 5
TA = TMIN to TMAX -5 5
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
(V+ = +15V, V- = -15V, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
μA
μA
μA
TA = TMIN to TMAX
55
ns
400
Turn-On Time tON
VCOM_ = ±10V,
Figure 2
ns
300
Turn-Off Time tOFF
VCOM_ = ±10V,
Figure 2
CL = 1.0nF, VGEN = 0, RGEN = 0,
Figure 4
Charge Injection Q 300 pC
POWER SUPPLY
SWITCH DYNAMIC CHARACTERISTICS
TA = +25°C
TA = TMIN to TMAX
TA = +25°C
TA = TMIN to TMAX
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
4 _______________________________________________________________________________________
-5 5
-5 5
-20 20
TA = TMIN to TMAX
V
TA = +25°C
GND V+
VCOM_, VNO_,
VNC_
Input Voltage Range (Note 3)
IN_ = 0.8V, all others = 2.4V
+4.5 +36.0
IN_ = 2.4V, all others = 0.8V
ICOM_ = 10mA,
VNO_ or VNC_ = 10V
TA = +25°C
TA = +25°C
TA = +25°C
CONDITIONS
Power-Supply Range
VIN = 0 or 5V
VIN = 0 or 5V
-0.5 0.001 0.5
Logic Supply Current IL
μA
-0.5 0.001 0.5
Positive Supply Current I+
V
μA
VIN = 0 or 5V
-0.5 0.001 0.5
Ground Current IGND μA
TA = +25°C
TA = +25°C
TA = TMIN to TMAX
TA = +25°C
TA = TMIN to TMAX
TA = TMIN to TMAX
-5 5
-5 5
-5 5
Logic Input Voltage Low VIN_L 0.8
½
0.03 0.4
ÆRON
COM_ to NO_ or NC_
On-Resistance Match Between
Channels (Notes 3, 4)
½
3 4
RON
COM_ to NO or NC_
On-Resistance
Logic Input Voltage High VIN_H 2.4 V
IIN_L -0.5 0.001 0.5
Input Current with Input Voltage
Low
IIN_H -0.5 0.001 0.5 μA
Input Current with Input Voltage
High
½
0.1 0.7
RFLAT(ON)
COM_ to NO_ or NC_
On-Resistance Flatness
(Notes 3, 5)
nA
I -0.5 0.01 0.5 NO_
INC_
Off-Leakage Current
(NO_ or NC_) (Notes 6, 9)
nA
-0.5 0.01 0.5
ICOM_(OFF)
COM Off-Leakage Current
(Notes 6, 9)
nA
-1 0.01 1
ICOM_(ON)
COM On-Leakage Current
(Notes 6, 9)
PARAMETER SYMBOL MIN TYP MAX UNITS
ICOM_ = 10mA,
VNO_ or = VNC_= 10V
ICOM_ = 10mA; VNO_
or VNC_ = 3V, 6V, 9V
TA = +25°C
VCOM_ = 1V, 10V;
VNO_ or VNC_ = 10V,
1V
VNO_ or VNC_ = 10V,
1V; VCOM_ = 1V, 10V
VCOM_ = 1V ,10V;
VNO_ or VNC_ = 1V,
10V, or floating
TA = +25°C
TA = TMIN to TMAX
5
0.5
TA = TMIN to TMAX 0.8
TA = TMIN to TMAX
TA = TMIN to TMAX
TA = TMIN to TMAX
ELECTRICAL CHARACTERISTICS—Single Supply
(V+ = +12V, V- = 0, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
μA
V
ANALOG SWITCH
LOGIC INPUT
POWER SUPPLY
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS—Single Supply (continued)
(V+ = +12V, V- = 0, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in
this data sheet.
Note 3: Guaranteed by design.
Note 4: DRON = RON(MAX) - RON(MIN).
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the
specified analog signal range.
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.
Note 7: Off-isolation = 20log10 [VCOM / (VNC or VNO)], VCOM = output, VNC or VNO = input to off switch.
Note 8: Between any two switches.
Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.
200 400
On-Capacitance CCOM f = 1MHz, Figure 8 140 pF
COM Off-Capacitance CCOM f = 1MHz, Figure 7 85 pF
NC_ or NO_ Capacitance COFF f = 1MHz, Figure 7 85 pF
RL = 50½, CL = 5pF, f = 1MHz,
Figure 6
VCOM_ = 10V, Figure 3, TA = +25°C
PARAMETER SYMBOL MIN TYP MAX UNITS
Crosstalk (Note 8) VCT -60 dB
Break-Before-Make Time
(MAX4663 only) (Note 3)
tOPEN 5 125 ns
100 250
CONDITIONS
Turn-On Time (Note 3) tON 500
ns
VCOM_ = 10V,
Figure 2
VCOM_ = 10V,
Figure 2
Turn-Off Time (Note 3) tOFF 350
ns
TA = +25°C
TA = TMIN to TMAX
TA = +25°C
TA = TMIN to TMAX
CL = 1.0nF, VGEN = 0, RGEN = 0,
Figure 4
Charge Injection Q 20 pC
SWITCH DYNAMIC CHARACTERISTICS
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
6 _______________________________________________________________________________________
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
0
1.0
0.5
2.0
1.5
3.0
2.5
3.5
4.5
4.0
5.0
-20 -15 -10 -5 0 5 10 15 20
ON-RESISTANCE vs. VCOM
(DUAL SUPPLIES)
MAX4661/2/3-01
VCOM (V)
RON (W)
V+, V- = ±5V
V+, V- = ±15V
V+, V- = ±20V
0
0.50
0.25
1.00
0.75
1.50
1.25
1.75
2.25
2.00
2.50
-15 -10 -5 0 5 10 15
ON-RESISTANCE vs. VCOM AND
TEMPERATURE (DUAL SUPPLIES)
MAX4661/2/3-02
VCOM (V)
RON (W)
TA = +85°C
TA = +25°C
V+, V- = ±15V
TA = -40°C
0
3
2
1
4
5
6
7
8
9
10
0 2 4 6 8 10 12 14 16 18 20 22 24
ON-RESISTANCE vs. VCOM
(SINGLE SUPPLY)
MAX4661/2/3-03
VCOM (V)
RON (W)
V+ = 5V
V+ = 12V
V+ = 24V
0
1.50
1.00
0.50
2.00
2.50
3.50
3.00
4.00
0 1 2 3 4 5 6 7 8 9 10 11 12
ON-RESISTANCE vs. VCOM AND
TEMPERATURE (SINGLE SUPPLY)
MAX4661/2/3-04
VCOM (V)
RON (W)
TA = +85°C
TA = +25°C
TA = -40°C
V+ = +12V
V- = GND
0.1m
0.01
1m
10
1
0.1
1k
10k
100
100k
-40 -20 0 20 40 60 80 100
ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE
MAX4661/2/3-05
TEMPERATURE (°C)
LEAKAGE (pA)
ON-LEAKAGE
OFF-LEAKAGE
V+ = +15V
V- = -15V
-200
0
-100
200
100
300
400
-20 -15 -10 -5 0 5 10 15 20
CHARGE INJECTION
vs. VCOM
MAX4661/2/3-06
VCOM (V)
Q (pC)
V- = -15V
V+ = +15V
V- = GND
V+ = 12V
0.1
I+
I-
0.01
0.001
100
10
1
10k
100k
1k
-40 -20 0 20 40 60 80 100
POWER-SUPPLY CURRENT
vs. TEMPERATURE
MAX4661/2/3-07
TEMPERATURE (°C)
I+, I- (nA)
V+ = +15V
V- = -15V -10
-100
0.1 1 10 100
FREQUENCY RESPONSE
-70
-90
-30
-50
0
-60
-80
-20
-40
MAX4661/2/3-08
FREQUENCY (MHz)
LOSS (dB)
90
180
-720
-450
-630
-90
-270
-360
-540
-0
-180
PHASE (degrees)
OFF-ISOLATION
ON-PHASE
ON-RESPONSE
V+ = +15V
V- = -15V
INPUT = OdBm
50W IN AND OUT
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
_______________________________________________________________________________________ 7
NAME FUNCTION
MAX4661
1, 16, 9, 8
IN1, IN2,
IN3, IN4
Logic-Control Digital Inputs
2, 15,
10, 7
COM1, COM2,
COM3, COM4
Analog Switch Common Terminals
3, 14, 11, 6
NC1, NC2,
NC3, NC4
Analog Switch Normally Closed Terminals
4 VNegative
Analog Supply-Voltage Input. Connect to GND for singlesupply
operation.
— NC2, NC3 Analog Switch Normally Closed Terminals
— NO1, NO4 Analog Switch Normally Open Terminals
—
NO1, NO2,
NO3, NO4
Analog Switch Normally Open Terminals
13 V+ Positive Analog Supply Input
12 VL Logic-Supply Input
5 GND Ground
Pin Description
MAX4662
1, 16, 9, 8
2, 15,
10, 7
—
4
—
—
3, 14, 11, 6
13
12
5
MAX4663
1, 16, 9, 8
PIN
2, 15,
10, 7
—
4
14, 11
3, 6
—
13
12
5
Applications Information
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maximum
ratings because stresses beyond the listed ratings
can cause permanent damage to the devices.
Always sequence V+ on first, then V-, followed by the
logic inputs, NO, or COM. If power-supply sequencing
is not possible, add two small-signal diodes (D1, D2)
in series with the supply pins and a Schottky diode
between V+ and VL for overvoltage protection (Figure
1). Adding diodes reduces the analog signal range to
one diode drop below V+ and one diode drop above V-,
but does not affect the devices’ low switch resistance
and low leakage characteristics. Device operation is
unchanged, and the difference between V+ and Vshould
not exceed 44V.
Off-Isolation at High Frequencies
In 50½ systems, the high-frequency on-response of
these parts extends from DC to above 100MHz with a
typical loss of -2dB. When the switch is turned off, however,
it behaves like a capacitor and off-isolation
decreases with increasing frequency. (Above 300MHz,
the switch actually passes more signal turned off than
turned on.) This effect is more pronounced with higher
source and load impedances.
Above 5MHz, circuit board layout becomes critical and
it becomes difficult to characterize the response of the
switch independent of the circuit. The graphs shown in
the Typical Operating Characteristics were taken using
a 50½ source and load connected with BNC connectors
to a circuit board deemed “average”; that is,
designed with isolation in mind, but not using stripline
or other special RF circuit techniques. For critical applications
above 5MHz, use the MAX440, MAX441, and
MAX442, which are fully characterized up to 160MHz.
COM_
VV+
VL
NO_
* INTERNAL PROTECTION DIODES
D2
D1
-15V
+15V
MAX4661
MAX4662
MAX4663
*
*
*
*
Figure 1. Overvoltage Protection Using External Blocking
Diodes
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
8 _______________________________________________________________________________________
50%
0.9 · V0UT1
+3V
0V
0V
LOGIC
INPUT
SWITCH
OUTPUT 2
(VOUT2)
0V
0.9 · VOUT2
tD tD
LOGIC
INPUT
V-
-15V
RL2
GND
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
COM2
IN1, 2
COM1
VOUT2
V+
+15V
CL2
VCOM1
RL1
VOUT1
CL1
RL = 100W
CL = 35pF
NO
NC SWITCH
OUTPUT 1
(VOUT1)
MAX4663
VCOM2
Figure 3. Break-Before-Make Interval (MAX4663 only)
tr < 20ns
tf < 20ns
50%
0
LOGIC
INPUT
V-
-15V
RL
100W
NO_
OR NC_
GND
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
VO = VCOM ( RL RL + RON)
SWITCH
INPUT
IN_
+3V
tOFF
0
COM_
SWITCH
OUTPUT
0.9V0 0.9V0
tON
VO
SWITCH
OUTPUT
LOGIC
INPUT
LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES
THAT HAVE THE OPPOSITE LOGIC SENSE.
VL V+
CL
35pF
+5V +15V
VCOM_ VO
0
REPEAT TEST FOR EACH SWITCH. FOR LOAD
CONDITIONS, SEE Electrical Characteristics.
MAX4661
MAX4662
MAX4663
Figure 2. Switching-Time Test Circuit
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
_______________________________________________________________________________________ 9
VGEN
GND
NC OR
NO
CL
VO
-15V
VV+
VO
VIN
OFF
ON
OFF
DVO
Q = (DVO)(CL)
COM
+5V
VIN DEPENDS ON SWITCH CONFIGURATION;
INPUT POLARITY DETERMINED BY SENSE OF SWITCH.
OFF
ON
OFF
VIN
VIN = +3V
+15V
RGEN
IN
VL
MAX4661
MAX4662
MAX4663
Figure 4. Charge-Injection Test Circuit
IN
0 OR 3.0V
SIGNAL
GENERATOR 0dBm
+15V
VL
ANALYZER NC OR NO
RL
GND
COM
-15V
V-
+5V
COM
V+
MAX4661
MAX4662
MAX4663
Figure 5. Off-Isolation Test Circuit
SIGNAL
GENERATOR 0dBm
+15V
ANALYZER N_2
RL
GND
COM1
V-
-15V
3.0V
IN1
N_1 VL 50W
COM2
+5V
IN2
0 OR 3.0V
N.C.
V+
MAX4661
MAX4662
MAX4663
Figure 6. Crosstalk Test Circuit
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
10 ______________________________________________________________________________________
CAPACITANCE
METER
NC OR NO
COM
GND V-
-15V
IN 0 OR
3.0V
+15V
VL
+5V
f = 1MHz
V+
MAX4661
MAX4662
MAX4663
Figure 7. Switch Off-Capacitance Test Circuit
CAPACITANCE
METER
NC OR NO
COM
GND V-
-15V
IN 0 OR
3.0V
+15V
VL
+5V
f = 1MHz
V+
MAX4661
MAX4662
MAX4663
Figure 8. Switch On-Capacitance Test Circuit
Chip Information
TRANSISTOR COUNT: 108
Ordering Information (continued)
PART TEMP. RANGE PIN-PACKAGE
MAX4662CAE 0°C to +70°C 16 SSOP
MAX4662CWE 0°C to +70°C 16 Wide SO
MAX4662CPE 0°C to +70°C 16 Plastic DIP
MAX4662EAE -40°C to +85°C 16 SSOP
MAX4662EWE -40°C to +85°C 16 Wide SO
MAX4662EPE -40°C to +85°C 16 Plastic DIP
MAX4663CAE 0°C to +70°C 16 SSOP
MAX4663CWE 0°C to +70°C 16 Wide SO
MAX4663CPE 0°C to +70°C 16 Plastic DIP
MAX4663EAE -40°C to +85°C 16 SSOP
MAX4663EWE -40°C to +85°C 16 Wide SO
MAX4663EPE -40°C to +85°C 16 Plastic DIP
MAX4661/MAX4662/MAX4663
2.5W, Quad, SPST,
CMOS Analog Switches
______________________________________________________________________________________ 11
Package Information
SSOP.EPS
MAX4661/MAX4662/MAX46663
2.5W, Quad, SPST,
CMOS Analog Switches
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
SOICW.EPS
Copyright © 2010 Future Technology Devices International Limited 1
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Future Technology Devices International Ltd.
FT232R USB UART IC
The FT232R is a USB to serial UART interface with the following advanced features: Single chip USB to asynchronous serial data transfer interface. Entire USB protocol handled on the chip. No USB specific firmware programming required. Fully integrated 1024 bit EEPROM storing device descriptors and CBUS I/O configuration. Fully integrated USB termination resistors. Fully integrated clock generation with no external crystal required plus optional clock output selection enabling a glue-less interface to external MCU or FPGA. Data transfer rates from 300 baud to 3 Mbaud (RS422, RS485, RS232 ) at TTL levels. 128 byte receive buffer and 256 byte transmit buffer utilising buffer smoothing technology to allow for high data throughput. FTDI‟s royalty-free Virtual Com Port (VCP) and Direct (D2XX) drivers eliminate the requirement for USB driver development in most cases. Unique USB FTDIChip-ID™ feature. Configurable CBUS I/O pins. Transmit and receive LED drive signals. UART interface support for 7 or 8 data bits, 1 or 2 stop bits and odd / even / mark / space / no parity FIFO receive and transmit buffers for high data throughput. Synchronous and asynchronous bit bang interface options with RD# and WR# strobes. Device supplied pre-programmed with unique USB serial number. Supports bus powered, self powered and high-power bus powered USB configurations. Integrated +3.3V level converter for USB I/O. Integrated level converter on UART and CBUS for interfacing to between +1.8V and +5V logic. True 5V/3.3V/2.8V/1.8V CMOS drive output and TTL input. Configurable I/O pin output drive strength. Integrated power-on-reset circuit. Fully integrated AVCC supply filtering - no external filtering required. UART signal inversion option. +3.3V (using external oscillator) to +5.25V (internal oscillator) Single Supply Operation. Low operating and USB suspend current. Low USB bandwidth consumption. UHCI/OHCI/EHCI host controller compatible. USB 2.0 Full Speed compatible. -40°C to 85°C extended operating temperature range. Available in compact Pb-free 28 Pin SSOP and QFN-32 packages (both RoHS compliant).
Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Company Number: SC136640
Copyright © 2010 Future Technology Devices International Limited 2
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
1 Typical Applications USB to RS232/RS422/RS485 Converters Upgrading Legacy Peripherals to USB Cellular and Cordless Phone USB data transfer cables and interfaces Interfacing MCU/PLD/FPGA based designs to USB USB Audio and Low Bandwidth Video data transfer PDA to USB data transfer USB Smart Card Readers USB Instrumentation USB Industrial Control USB MP3 Player Interface USB FLASH Card Reader and Writers Set Top Box PC - USB interface USB Digital Camera Interface USB Hardware Modems USB Wireless Modems USB Bar Code Readers USB Software and Hardware Encryption Dongles
1.1 Driver Support
Royalty free VIRTUAL COM PORT
(VCP) DRIVERS for... Windows 98, 98SE, ME, 2000, Server 2003, XP and Server 2008 Windows 7 32,64-bit Windows XP and XP 64-bit Windows Vista and Vista 64-bit Windows XP Embedded Windows CE 4.2, 5.0 and 6.0 Mac OS 8/9, OS-X Linux 2.4 and greater
Royalty free D2XX Direct Drivers
(USB Drivers + DLL S/W Interface) Windows 98, 98SE, ME, 2000, Server 2003, XP and Server 2008 Windows 7 32,64-bit Windows XP and XP 64-bit Windows Vista and Vista 64-bit Windows XP Embedded Windows CE 4.2, 5.0 and 6.0 Linux 2.4 and greater
The drivers listed above are all available to download for free from FTDI website (www.ftdichip.com). Various 3rd party drivers are also available for other operating systems - see FTDI website (www.ftdichip.com) for details.
For driver installation, please refer to http://www.ftdichip.com/Documents/InstallGuides.htm
1.2 Part Numbers Part Number Package
FT232RQ-xxxx
32 Pin QFN
FT232RL-xxxx
28 Pin SSOP
Note: Packing codes for xxxx is:
- Reel: Taped and Reel, (SSOP is 2,000pcs per reel, QFN is 6,000pcs per reel).
- Tube: Tube packing, 47pcs per tube (SSOP only)
- Tray: Tray packing, 490pcs per tray (QFN only)
For example: FT232RQ-Reel is 6,000pcs taped and reel packing
Copyright © 2010 Future Technology Devices International Limited 3
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
1.3 USB Compliant
The FT232R is fully compliant with the USB 2.0 specification and has been given the USB-IF Test-ID (TID) 40680004 (Rev B) and 40770018 (Rev C).
Copyright © 2010 Future Technology Devices International Limited 4
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
2 FT232R Block Diagram
Figure 2.1 FT232R Block Diagram
For a description of each function please refer to Section 4.
x4 ClockMultiplierUARTFIFO ControllerSerial InterfaceEngine( SIE )USBProtocol EngineBaud RateGeneratorUART ControllerwithProgrammableSignal Inversion3.3 VoltLDORegulatorUSBTransceiverwithIntegratedSeriesResistorsand 1.5KPull-upUSB DPLLInternal12MHzOscillator48MHz48MHzOCSI(optional)OSCO(optional)USBDPUSBDM3V3OUTVCCDBUS0DBUS1DBUS2DBUS3DBUS4DBUS5DBUS6DBUS7CBUS0CBUS2CBUS3SLEEP#RESET#TESTGNDResetGenerator3V3OUTCBUS1FIFO RX BufferFIFO TX BufferInternalEEPROMTo USB Transeiver CellCBUS4
Copyright © 2010 Future Technology Devices International Limited 5
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Table of Contents
1 Typical Applications ........................................................................ 2
1.1 Driver Support .................................................................................... 2
1.2 Part Numbers...................................................................................... 2
Note: Packing codes for xxxx is: .................................................................. 2
1.3 USB Compliant .................................................................................... 3
2 FT232R Block Diagram .................................................................... 4
3 Device Pin Out and Signal Description ............................................ 7
3.1 28-LD SSOP Package .......................................................................... 7
3.2 SSOP Package Pin Out Description ...................................................... 7
3.3 QFN-32 Package ............................................................................... 10
3.4 QFN-32 Package Signal Description .................................................. 10
3.5 CBUS Signal Options ......................................................................... 13
4 Function Description ..................................................................... 14
4.1 Key Features ..................................................................................... 14
4.2 Functional Block Descriptions ........................................................... 15
5 Devices Characteristics and Ratings .............................................. 17
5.1 Absolute Maximum Ratings............................................................... 17
5.2 DC Characteristics............................................................................. 18
5.3 EEPROM Reliability Characteristics ................................................... 21
5.4 Internal Clock Characteristics ........................................................... 21
6 USB Power Configurations ............................................................ 23
6.1 USB Bus Powered Configuration ...................................................... 23
6.2 Self Powered Configuration .............................................................. 24
6.3 USB Bus Powered with Power Switching Configuration .................... 25
6.4 USB Bus Powered with Selectable External Logic Supply .................. 26
7 Application Examples .................................................................... 27
7.1 USB to RS232 Converter ................................................................... 27
7.2 USB to RS485 Coverter ..................................................................... 28
7.3 USB to RS422 Converter ................................................................... 29
7.4 USB to MCU UART Interface .............................................................. 30
7.5 LED Interface .................................................................................... 31
7.6 Using the External Oscillator ............................................................ 32
8 Internal EEPROM Configuration .................................................... 33
9 Package Parameters ..................................................................... 35
9.1 SSOP-28 Package Dimensions .......................................................... 35
Copyright © 2010 Future Technology Devices International Limited 6
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
9.2 QFN-32 Package Dimensions ............................................................ 36
9.3 QFN-32 Package Typical Pad Layout ................................................. 37
9.4 QFN-32 Package Typical Solder Paste Diagram ................................. 37
9.5 Solder Reflow Profile ........................................................................ 38
10 Contact Information ................................................................... 39
Appendix A – References ........................................................................... 40
Appendix B - List of Figures and Tables ..................................................... 41
Appendix C - Revision History .................................................................... 43
Copyright © 2010 Future Technology Devices International Limited 7
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
3 Device Pin Out and Signal Description
3.1 28-LD SSOP Package
Figure 3.1 SSOP Package Pin Out and Schematic Symbol
3.2 SSOP Package Pin Out Description
Note: The convention used throughout this document for active low signals is the signal name followed by a # Pin No. Name Type Description
15
USBDP
I/O
USB Data Signal Plus, incorporating internal series resistor and 1.5kΩ pull up resistor to 3.3V.
16
USBDM
I/O
USB Data Signal Minus, incorporating internal series resistor.
Table 3.1 USB Interface Group
Pin No. Name Type Description
4
VCCIO
PWR
+1.8V to +5.25V supply to the UART Interface and CBUS group pins (1...3, 5, 6, 9...14, 22, 23). In USB bus powered designs connect this pin to 3V3OUT pin to drive out at +3.3V levels, or connect to VCC to drive out at 5V CMOS level. This pin can also be supplied with an external +1.8V to +2.8V supply in order to drive outputs at lower levels. It should be noted that in this case this supply should originate from the same source as the supply to VCC. This means that in bus powered designs a regulator which is supplied by the +5V on the USB bus should be used.
7, 18, 21
GND
PWR
Device ground supply pins
USBDPUSBDM3V3OUTGNDRESET#VCCGNDNCAGNDTESTOSCIOSCOCBUS1CBUS0TXDRTS#RXDDTR#VCCIORI#GNDNCDSR#DCD#CTS#CBUS4CBUS2CBUS31141528FT232RLAGNDGNDGNDGNDTEST2571821263V3OUTVCCIO417NCRESET#NC24198TXDRXDRTS#CTS#DTR#DSR#DCD#RI#1531129106CBUS0CBUS3CBUS2CBUS123221314201615USBDPUSBDMVCCOSCI27OSCO28CBUS412FTDIFT232RLYYXX-AXXXXXXXXXXXX
Copyright © 2010 Future Technology Devices International Limited 8
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Pin No. Name Type Description
17
3V3OUT
Output
+3.3V output from integrated LDO regulator. This pin should be decoupled to ground using a 100nF capacitor. The main use of this pin is to provide the internal +3.3V supply to the USB transceiver cell and the internal 1.5kΩ pull up resistor on USBDP. Up to 50mA can be drawn from this pin to power external logic if required. This pin can also be used to supply the VCCIO pin.
20
VCC
PWR
+3.3V to +5.25V supply to the device core. (see Note 1)
25
AGND
PWR
Device analogue ground supply for internal clock multiplier
Table 3.2 Power and Ground Group
Pin No. Name Type Description
8, 24
NC
NC
No internal connection
19
RESET#
Input
Active low reset pin. This can be used by an external device to reset the FT232R. If not required can be left unconnected, or pulled up to VCC.
26
TEST
Input
Puts the device into IC test mode. Must be tied to GND for normal operation, otherwise the device will appear to fail.
27
OSCI
Input
Input 12MHz Oscillator Cell. Optional – Can be left unconnected for normal operation. (see Note 2)
28
OSCO
Output
Output from 12MHZ Oscillator Cell. Optional – Can be left unconnected for normal operation if internal Oscillator is used. (see Note 2)
Table 3.3 Miscellaneous Signal Group
Pin No. Name Type Description
1
TXD
Output
Transmit Asynchronous Data Output.
2
DTR#
Output
Data Terminal Ready Control Output / Handshake Signal.
3
RTS#
Output
Request to Send Control Output / Handshake Signal.
5
RXD
Input
Receiving Asynchronous Data Input.
6
RI#
Input
Ring Indicator Control Input. When remote wake up is enabled in the internal EEPROM taking RI# low (20ms active low pulse) can be used to resume the PC USB host controller from suspend.
9
DSR#
Input
Data Set Ready Control Input / Handshake Signal.
10
DCD#
Input
Data Carrier Detect Control Input.
11
CTS#
Input
Clear To Send Control Input / Handshake Signal.
12
CBUS4
I/O
Configurable CBUS output only Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is SLEEP#. See CBUS Signal Options, Table 3.9.
13
CBUS2
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXDEN. See CBUS Signal Options, Table 3.9.
Copyright © 2010 Future Technology Devices International Limited 9
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Pin No. Name Type Description
14
CBUS3
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is PWREN#. See CBUS Signal Options, Table 3.9. PWREN# should be used with a 10kΩ resistor pull up.
22
CBUS1
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is RXLED#. See CBUS Signal Options, Table 3.9.
23
CBUS0
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXLED#. See CBUS Signal Options, Table 3.9.
Table 3.4 UART Interface and CUSB Group (see note 3)
Notes:
1. The minimum operating voltage VCC must be +4.0V (could use VBUS=+5V) when using the internal clock generator. Operation at +3.3V is possible using an external crystal oscillator.
2. For details on how to use an external crystal, ceramic resonator, or oscillator with the FT232R, please refer Section 7.6
3. When used in Input Mode, the input pins are pulled to VCCIO via internal 200kΩ resistors. These pins can be programmed to gently pull low during USB suspend (PWREN# = “1”) by setting an option in the internal EEPROM.
Copyright © 2010 Future Technology Devices International Limited 10
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
3.3 QFN-32 Package
Figure 3.2 QFN-32 Package Pin Out and schematic symbol
3.4 QFN-32 Package Signal Description Pin No. Name Type Description
14
USBDP
I/O
USB Data Signal Plus, incorporating internal series resistor and 1.5kΩ pull up resistor to +3.3V.
15
USBDM
I/O
USB Data Signal Minus, incorporating internal series resistor.
Table 3.5 USB Interface Group
Pin No. Name Type Description
1
VCCIO
PWR
+1.8V to +5.25V supply for the UART Interface and CBUS group pins (2, 3, 6,7,8,9,10 11, 21, 22, 30,31,32). In USB bus powered designs connect this pin to 3V3OUT to drive out at +3.3V levels, or connect to VCC to drive out at +5V CMOS level. This pin can also be supplied with an external +1.8V to +2.8V supply in order to drive out at lower levels. It should be noted that in this case this supply should originate from the same source as the supply to VCC. This means that in bus powered designs a regulator which is supplied by the +5V on the USB bus should be used.
4, 17, 20
GND
PWR
Device ground supply pins.
FT232RQ3225241716981YYXX-A1891234567810111213141516171920212223242526272829303132USBDPUSBDM3V3OUTRESET#VCCNCAGNDTESTOSCIOSCOCBUS1CBUS0TXDRTS#RXDDTR#VCCIORI#GNDNCDSR#DCD#CTS#CBUS4CBUS2CBUS3GNDGNDNCNCNCNCIFT232RQAGNDGNDGNDGNDTEST2441720263V3OUTVCCIO116NCRESET#NC231813TXDRXDRTS#CTS#DTR#DSR#DCD#RI#30232831673CBUS0CBUS3CBUS2CBUS122211011191514USBDPUSBDMVCCOSCI27OSCO28CBUS49NC12NC5NC29NC25FTDXXXXXXX
Copyright © 2010 Future Technology Devices International Limited 11
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Pin No. Name Type Description
16
3V3OUT
Output
+3.3V output from integrated LDO regulator. This pin should be decoupled to ground using a 100nF capacitor. The purpose of this output is to provide the internal +3.3V supply to the USB transceiver cell and the internal 1.5kΩ pull up resistor on USBDP. Up to 50mA can be drawn from this pin to power external logic if required. This pin can also be used to supply the VCCIO pin.
19
VCC
PWR
+3.3V to +5.25V supply to the device core. (See Note 1).
24
AGND
PWR
Device analogue ground supply for internal clock multiplier.
Table 3.6 Power and Ground Group
Pin No. Name Type Description
5, 12, 13, 23, 25, 29
NC
NC
No internal connection. Do not connect.
18
RESET#
Input
Active low reset. Can be used by an external device to reset the FT232R. If not required can be left unconnected, or pulled up to VCC.
26
TEST
Input
Puts the device into IC test mode. Must be tied to GND for normal operation, otherwise the device will appear to fail.
27
OSCI
Input
Input 12MHz Oscillator Cell. Optional – Can be left unconnected for normal operation. (See Note 2).
28
OSCO
Output
Output from 12MHZ Oscillator Cell. Optional – Can be left unconnected for normal operation if internal Oscillator is used. (See Note 2).
Table 3.7 Miscellaneous Signal Group
Pin No. Name Type Description
30
TXD
Output
Transmit Asynchronous Data Output.
31
DTR#
Output
Data Terminal Ready Control Output / Handshake Signal.
32
RTS#
Output
Request to Send Control Output / Handshake Signal.
2
RXD
Input
Receiving Asynchronous Data Input.
3
RI#
Input
Ring Indicator Control Input. When remote wake up is enabled in the internal EEPROM taking RI# low (20ms active low pulse) can be used to resume the PC USB host controller from suspend.
6
DSR#
Input
Data Set Ready Control Input / Handshake Signal.
7
DCD#
Input
Data Carrier Detect Control Input.
8
CTS#
Input
Clear To Send Control Input / Handshake Signal.
9
CBUS4
I/O
Configurable CBUS output only Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is SLEEP#. See CBUS Signal Options, Table 3.9.
10
CBUS2
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXDEN. See CBUS Signal Options, Table 3.9.
Copyright © 2010 Future Technology Devices International Limited 12
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Pin No. Name Type Description
11
CBUS3
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is PWREN#. See CBUS Signal Options, Table 3.9. PWREN# should be used with a 10kΩ resistor pull up.
21
CBUS1
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is RXLED#. See CBUS Signal Options, Table 3.9.
22
CBUS0
I/O
Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXLED#. See CBUS Signal Options, Table 3.9.
Table 3.8 UART Interface and CBUS Group (see note 3)
Notes:
1. The minimum operating voltage VCC must be +4.0V (could use VBUS=+5V) when using the internal clock generator. Operation at +3.3V is possible using an external crystal oscillator.
2. For details on how to use an external crystal, ceramic resonator, or oscillator with the FT232R, please refer to Section 7.6.
3. When used in Input Mode, the input pins are pulled to VCCIO via internal 200kΩ resistors. These pins can be programmed to gently pull low during USB suspend (PWREN# = “1”) by setting an option in the internal EEPROM.
Copyright © 2010 Future Technology Devices International Limited 13
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
3.5 CBUS Signal Options
The following options can be configured on the CBUS I/O pins. CBUS signal options are common to both package versions of the FT232R. These options can be configured in the internal EEPROM using the software utility FT_PPROG or MPROG, which can be downloaded from the FTDI Utilities (www.ftdichip.com). The default configuration is described in Section 8. CBUS Signal Option Available On CBUS Pin Description
TXDEN
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
Enable transmit data for RS485
PWREN#
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
Output is low after the device has been configured by USB, then high during USB suspend mode. This output can be used to control power to external logic P-Channel logic level MOSFET switch. Enable the interface pull-down option when using the PWREN# in this way.*
TXLED#
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
Transmit data LED drive: Data from USB Host to FT232R. Pulses low when transmitting data via USB. See Section 7.5 for more details.
RXLED#
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
Receive data LED drive: Data from FT232R to USB Host. Pulses low when receiving data via USB. See Section 7.5 for more details.
TX&RXLED#
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
LED drive – pulses low when transmitting or receiving data via USB. See Section 7.5 for more details.
SLEEP#
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
Goes low during USB suspend mode. Typically used to power down an external TTL to RS232 level converter IC in USB to RS232 converter designs.
CLK48
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
48MHz ±0.7% Clock output. **
CLK24
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
24 MHz Clock output.**
CLK12
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
12 MHz Clock output.**
CLK6
CBUS0, CBUS1, CBUS2, CBUS3, CBUS4
6 MHz ±0.7% Clock output. **
CBitBangI/O
CBUS0, CBUS1, CBUS2, CBUS3
CBUS bit bang mode option. Allows up to 4 of the CBUS pins to be used as general purpose I/O. Configured individually for CBUS0, CBUS1, CBUS2 and CBUS3 in the internal EEPROM. A separate application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes in more detail how to use CBUS bit bang mode.
BitBangWRn
CBUS0, CBUS1, CBUS2, CBUS3
Synchronous and asynchronous bit bang mode WR# strobe output.
BitBangRDn
CBUS0, CBUS1, CBUS2, CBUS3
Synchronous and asynchronous bit bang mode RD# strobe output.
Table 3.9 CBUS Configuration Control
* PWREN# must be used with a 10kΩ resistor pull up.
**When in USB suspend mode the outputs clocks are also suspended.
Copyright © 2010 Future Technology Devices International Limited 14
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
4 Function Description
The FT232R is a USB to serial UART interface device which simplifies USB to serial designs and reduces external component count by fully integrating an external EEPROM, USB termination resistors and an integrated clock circuit which requires no external crystal, into the device. It has been designed to operate efficiently with a USB host controller by using as little as possible of the total USB bandwidth available.
4.1 Key Features
Functional Integration. Fully integrated EEPROM, USB termination resistors, clock generation, AVCC filtering, POR and LDO regulator.
Configurable CBUS I/O Pin Options. The fully integrated EEPROM allows configuration of the Control Bus (CBUS) functionality, signal inversion and drive strength selection. There are 5 configurable CBUS I/O pins. These configurable options are
1. TXDEN - transmit enable for RS485 designs.
2. PWREN# - Power control for high power, bus powered designs.
3. TXLED# - for pulsing an LED upon transmission of data.
4. RXLED# - for pulsing an LED upon receiving data.
5. TX&RXLED# - which will pulse an LED upon transmission OR reception of data.
6. SLEEP# - indicates that the device going into USB suspend mode.
7. CLK48 / CLK24 / CLK12 / CLK6 - 48MHz, 24MHz, 12MHz, and 6MHz clock output signal options.
The CBUS pins can also be individually configured as GPIO pins, similar to asynchronous bit bang mode. It is possible to use this mode while the UART interface is being used, thus providing up to 4 general purpose I/O pins which are available during normal operation. An application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes this feature.
The CBUS lines can be configured with any one of these output options by setting bits in the internal EEPROM. The device is supplied with the most commonly used pin definitions pre-programmed - see Section 8 for details.
Asynchronous Bit Bang Mode with RD# and WR# Strobes. The FT232R supports FTDI‟s previous chip generation bit-bang mode. In bit-bang mode, the eight UART lines can be switched from the regular interface mode to an 8-bit general purpose I/O port. Data packets can be sent to the device and they will be sequentially sent to the interface at a rate controlled by an internal timer (equivalent to the baud rate pre-scaler). With the FT232R device this mode has been enhanced by outputting the internal RD# and WR# strobes signals which can be used to allow external logic to be clocked by accesses to the bit-bang I/O bus. This option will be described more fully in a separate application note available from FTDI website (www.ftdichip.com).
Synchronous Bit Bang Mode. The FT232R supports synchronous bit bang mode. This mode differs from asynchronous bit bang mode in that the interface pins are only read when the device is written to. This makes it easier for the controlling program to measure the response to an output stimulus as the data returned is synchronous to the output data. An application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes this feature.
FTDIChip-ID™. The FT232R also includes the new FTDIChip-ID™ security dongle feature. This FTDIChip-ID™ feature allows a unique number to be burnt into each device during manufacture. This number cannot be reprogrammed. This number is only readable over USB and forms a basis of a security dongle which can be used to protect any customer application software being copied. This allows the possibility of using the FT232R in a dongle for software licensing. Further to this, a renewable license scheme can be implemented based on the FTDIChip-ID™ number when encrypted with other information. This encrypted number can be stored in the user area of the FT232R internal EEPROM, and can be decrypted, then compared with the protected FTDIChip-ID™ to verify that a license is valid. Web based applications can be used to maintain product licensing this way. An application note, AN232R-02, available from FTDI website (www.ftdichip.com) describes this feature.
The FT232R is capable of operating at a voltage supply between +3.3V and +5V with a nominal operational mode current of 15mA and a nominal USB suspend mode current of 70μA. This allows greater margin for peripheral designs to meet the USB suspend mode current limit of 2.5mA. An integrated level converter within the UART interface allows the FT232R to interface to UART logic running at +1.8V, 2.5V, +3.3V or +5V.
Copyright © 2010 Future Technology Devices International Limited 15
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
4.2 Functional Block Descriptions
The following paragraphs detail each function within the FT232R. Please refer to the block diagram shown in Figure 2.1
Internal EEPROM. The internal EEPROM in the FT232R is used to store USB Vendor ID (VID), Product ID (PID), device serial number, product description string and various other USB configuration descriptors. The internal EEPROM is also used to configure the CBUS pin functions. The FT232R is supplied with the internal EEPROM pre-programmed as described in Section 8. A user area of the internal EEPROM is available to system designers to allow storing additional data. The internal EEPROM descriptors can be programmed in circuit, over USB without any additional voltage requirement. It can be programmed using the FTDI utility software called MPROG, which can be downloaded from FTDI Utilities on the FTDI website (www.ftdichip.com).
+3.3V LDO Regulator. The +3.3V LDO regulator generates the +3.3V reference voltage for driving the USB transceiver cell output buffers. It requires an external decoupling capacitor to be attached to the 3V3OUT regulator output pin. It also provides +3.3V power to the 1.5kΩ internal pull up resistor on USBDP. The main function of the LDO is to power the USB Transceiver and the Reset Generator Cells rather than to power external logic. However, it can be used to supply external circuitry requiring a +3.3V nominal supply with a maximum current of 50mA.
USB Transceiver. The USB Transceiver Cell provides the USB 1.1 / USB 2.0 full-speed physical interface to the USB cable. The output drivers provide +3.3V level slew rate control signalling, whilst a differential input receiver and two single ended input receivers provide USB data in, Single-Ended-0 (SE0) and USB reset detection conditions respectfully. This function also incorporates the internal USB series termination resistors on the USB data lines and a 1.5kΩ pull up resistor on USBDP.
USB DPLL. The USB DPLL cell locks on to the incoming NRZI USB data and generates recovered clock and data signals for the Serial Interface Engine (SIE) block.
Internal 12MHz Oscillator - The Internal 12MHz Oscillator cell generates a 12MHz reference clock. This provides an input to the x4 Clock Multiplier function. The 12MHz Oscillator is also used as the reference clock for the SIE, USB Protocol Engine and UART FIFO controller blocks.
Clock Multiplier / Divider. The Clock Multiplier / Divider takes the 12MHz input from the Internal Oscillator function and generates the 48MHz, 24MHz, 12MHz and 6MHz reference clock signals. The 48Mz clock reference is used by the USB DPLL and the Baud Rate Generator blocks.
Serial Interface Engine (SIE). The Serial Interface Engine (SIE) block performs the parallel to serial and serial to parallel conversion of the USB data. In accordance with the USB 2.0 specification, it performs bit stuffing/un-stuffing and CRC5/CRC16 generation. It also checks the CRC on the USB data stream.
USB Protocol Engine. The USB Protocol Engine manages the data stream from the device USB control endpoint. It handles the low level USB protocol requests generated by the USB host controller and the commands for controlling the functional parameters of the UART in accordance with the USB 2.0 specification chapter 9.
FIFO RX Buffer (128 bytes). Data sent from the USB host controller to the UART via the USB data OUT endpoint is stored in the FIFO RX (receive) buffer. Data is removed from the buffer to the UART transmit register under control of the UART FIFO controller. (Rx relative to the USB interface).
FIFO TX Buffer (256 bytes). Data from the UART receive register is stored in the TX buffer. The USB host controller removes data from the FIFO TX Buffer by sending a USB request for data from the device data IN endpoint. (Tx relative to the USB interface).
UART FIFO Controller. The UART FIFO controller handles the transfer of data between the FIFO RX and TX buffers and the UART transmit and receive registers.
UART Controller with Programmable Signal Inversion and High Drive. Together with the UART FIFO Controller the UART Controller handles the transfer of data between the FIFO RX and FIFO TX buffers and the UART transmit and receive registers. It performs asynchronous 7 or 8 bit parallel to serial and serial to parallel conversion of the data on the RS232 (or RS422 or RS485) interface.
Control signals supported by UART mode include RTS, CTS, DSR, DTR, DCD and RI. The UART Controller also provides a transmitter enable control signal pin option (TXDEN) to assist with interfacing to RS485 transceivers. RTS/CTS, DSR/DTR and XON / XOFF handshaking options are also supported. Handshaking is handled in hardware to ensure fast response times. The UART interface also supports the RS232 BREAK setting and detection conditions.
Copyright © 2010 Future Technology Devices International Limited 16
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Additionally, the UART signals can each be individually inverted and have a configurable high drive strength capability. Both these features are configurable in the EEPROM.
Baud Rate Generator - The Baud Rate Generator provides a 16x clock input to the UART Controller from the 48MHz reference clock. It consists of a 14 bit pre-scaler and 3 register bits which provide fine tuning of the baud rate (used to divide by a number plus a fraction or “sub-integer”). This determines the baud rate of the UART, which is programmable from 183 baud to 3 Mbaud.
The FT232R supports all standard baud rates and non-standard baud rates from 183 Baud up to 3 Mbaud. Achievable non-standard baud rates are calculated as follows -
Baud Rate = 3000000 / (n + x)
where „n‟ can be any integer between 2 and 16,384 ( = 214 ) and „x’ can be a sub-integer of the value 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, or 0.875. When n = 1, x = 0, i.e. baud rate divisors with values between 1 and 2 are not possible.
This gives achievable baud rates in the range 183.1 baud to 3,000,000 baud. When a non-standard baud rate is required simply pass the required baud rate value to the driver as normal, and the FTDI driver will calculate the required divisor, and set the baud rate. See FTDI application note AN232B-05 on the FTDI website (www.ftdichip.com) for more details.
RESET Generator - The integrated Reset Generator Cell provides a reliable power-on reset to the device internal circuitry at power up. The RESET# input pin allows an external device to reset the FT232R.
RESET# can be tied to VCC or left unconnected if not being used.
Copyright © 2010 Future Technology Devices International Limited 17
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
5 Devices Characteristics and Ratings
5.1 Absolute Maximum Ratings
The absolute maximum ratings for the FT232R devices are as follows. These are in accordance with the Absolute Maximum Rating System (IEC 60134). Exceeding these may cause permanent damage to the device. Parameter Value Unit
Storage Temperature
-65°C to 150°C
Degrees C
Floor Life (Out of Bag) At Factory Ambient
(30°C / 60% Relative Humidity)
168 Hours
(IPC/JEDEC J-STD-033A MSL Level 3 Compliant)*
Hours
Ambient Temperature (Power Applied)
-40°C to 85°C
Degrees C
MTTF FT232RL
11162037
hours
MTTF FT232RQ
4464815
hours
VCC Supply Voltage
-0.5 to +6.00
V
DC Input Voltage – USBDP and USBDM
-0.5 to +3.8
V
DC Input Voltage – High Impedance Bidirectionals
-0.5 to + (VCC +0.5)
V
DC Input Voltage – All Other Inputs
-0.5 to + (VCC +0.5)
V
DC Output Current – Outputs
24
mA
DC Output Current – Low Impedance Bidirectionals
24
mA
Power Dissipation (VCC = 5.25V)
500
mW
Table 5.1 Absolute Maximum Ratings
* If devices are stored out of the packaging beyond this time limit the devices should be baked before use. The devices should be ramped up to a temperature of +125°C and baked for up to 17 hours.
Copyright © 2010 Future Technology Devices International Limited 18
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
5.2 DC Characteristics
DC Characteristics (Ambient Temperature = -40°C to +85°C) Parameter Description Minimum Typical Maximum Units Conditions
VCC1
VCC Operating Supply Voltage
4.0
---
5.25
V
Using Internal Oscillator
VCC1
VCC Operating Supply Voltage
3.3
---
5.25
V
Using External Crystal
VCC2
VCCIO Operating Supply Voltage
1.8
---
5.25
V
Icc1
Operating Supply Current
---
15
---
mA
Normal Operation
Icc2
Operating Supply Current
50
70
100
μA
USB Suspend
3V3
3.3v regulator output
3.0
3.3
3.6
V
Table 5.2 Operating Voltage and Current
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
3.2
4.1
4.9
V
I source = 2mA
Vol
Output Voltage Low
0.3
0.4
0.6
V
I sink = 2mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.3 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, Standard Drive Level)
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
2.2
2.7
3.2
V
I source = 1mA
Vol
Output Voltage Low
0.3
0.4
0.5
V
I sink = 2mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.4 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, Standard Drive Level)
Copyright © 2010 Future Technology Devices International Limited 19
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
2.1
2.6
2.8
V
I source = 1mA
Vol
Output Voltage Low
0.3
0.4
0.5
V
I sink = 2mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.5 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, Standard Drive Level)
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
1.32
1.62
1.8
V
I source = 0.2mA
Vol
Output Voltage Low
0.06
0.1
0.18
V
I sink = 0.5mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.6 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, Standard Drive Level)
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
3.2
4.1
4.9
V
I source = 6mA
Vol
Output Voltage Low
0.3
0.4
0.6
V
I sink = 6mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.7 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, High Drive Level)
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
2.2
2.8
3.2
V
I source = 3mA
Vol
Output Voltage Low
0.3
0.4
0.6
V
I sink = 8mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.8 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, High Drive Level)
Copyright © 2010 Future Technology Devices International Limited 20
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
2.1
2.6
2.8
V
I source = 3mA
Vol
Output Voltage Low
0.3
0.4
0.6
V
I sink = 8mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.9 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, High Drive Level)
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
1.35
1.67
1.8
V
I source = 0.4mA
Vol
Output Voltage Low
0.12
0.18
0.35
V
I sink = 3mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
**
VHys
Input Switching Hysteresis
20
25
30
mV
**
Table 5.10 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, High Drive Level)
** Only input pins have an internal 200KΩ pull-up resistor to VCCIO
Parameter Description Minimum Typical Maximum Units Conditions
Vin
Input Switching Threshold
1.3
1.6
1.9
V
VHys
Input Switching Hysteresis
50
55
60
mV
Table 5.11 RESET# and TEST Pin Characteristics
Copyright © 2010 Future Technology Devices International Limited 21
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Parameter Description Minimum Typical Maximum Units Conditions
UVoh
I/O Pins Static Output (High)
2.8
3.6
V
RI = 1.5kΩ to 3V3OUT (D+) RI = 15KΩ to GND (D-)
UVol
I/O Pins Static Output (Low)
0
0.3
V
RI = 1.5kΩ to 3V3OUT (D+) RI = 15kΩ to GND (D-)
UVse
Single Ended Rx Threshold
0.8
2.0
V
UCom
Differential Common Mode
0.8
2.5
V
UVDif
Differential Input Sensitivity
0.2
V
UDrvZ
Driver Output Impedance
26
29
44
Ohms
See Note 1
Table 5.12 USB I/O Pin (USBDP, USBDM) Characteristics
5.3 EEPROM Reliability Characteristics
The internal 1024 Bit EEPROM has the following reliability characteristics: Parameter Value Unit
Data Retention
10
Years
Read / Write Cycle
10,000
Cycles
Table 5.13 EEPROM Characteristics
5.4 Internal Clock Characteristics
The internal Clock Oscillator has the following characteristics: Parameter Value Unit Minimum Typical Maximum
Frequency of Operation (see Note 1)
11.98
12.00
12.02
MHz
Clock Period
83.19
83.33
83.47
ns
Duty Cycle
45
50
55
%
Table 5.14 Internal Clock Characteristics
Note 1: Equivalent to +/-1667ppm
Copyright © 2010 Future Technology Devices International Limited 22
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Parameter Description Minimum Typical Maximum Units Conditions
Voh
Output Voltage High
2.1
2.8
3.2
V
I source = 3mA
Vol
Output Voltage Low
0.3
0.4
0.6
V
I sink = 8mA
Vin
Input Switching Threshold
1.0
1.2
1.5
V
Table 5.15 OSCI, OSCO Pin Characteristics – see Note 1
Note1: When supplied, the FT232R is configured to use its internal clock oscillator. These characteristics only apply when an external oscillator or crystal is used.
Copyright © 2010 Future Technology Devices International Limited 23
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
6 USB Power Configurations
The following sections illustrate possible USB power configurations for the FT232R. The illustrations have omitted pin numbers for ease of understanding since the pins differ between the FT232RL and FT232RQ package options.
All USB power configurations illustrated apply to both package options for the FT232R device. Please refer to Section 3 for the package option pin-out and signal descriptions.
6.1 USB Bus Powered Configuration
Figure 6.1 Bus Powered Configuration
Figure 6.1 Illustrates the FT232R in a typical USB bus powered design configuration. A USB bus powered device gets its power from the USB bus. Basic rules for USB bus power devices are as follows –
i) On plug-in to USB, the device should draw no more current than 100mA.
ii) In USB Suspend mode the device should draw no more than 2.5mA.
iii) A bus powered high power USB device (one that draws more than 100mA) should use one of the CBUS pins configured as PWREN# and use it to keep the current below 100mA on plug-in and 2.5mA on USB suspend.
iv) A device that consumes more than 100mA cannot be plugged into a USB bus powered hub.
v) No device can draw more than 500mA from the USB bus.
The power descriptors in the internal EEPROM of the FT232R should be programmed to match the current drawn by the device.
A ferrite bead is connected in series with the USB power supply to reduce EMI noise from the FT232R and associated circuitry being radiated down the USB cable to the USB host. The value of the Ferrite Bead depends on the total current drawn by the application. A suitable range of Ferrite Beads is available from Steward (www.steward.com), for example Steward Part # MI0805K400R-10.
Note: If using PWREN# (available using the CBUS) the pin should be pulled to VCCIO using a 10kΩ resistor.
FT232RAGNDGNDGNDGNDTEST100nF3V3OUTVCCIONCRESET#NC+100nF10nFVccTXDRXDRTS#CTS#DTR#DSR#DCD#RI#CBUS0CBUS3CBUS2CBUS1USBDPUSBDMVCC12345OSCIOSCOCBUS4FerriteBead+4.7uFSHIELDGNDGNDGNDGNDVcc
Copyright © 2010 Future Technology Devices International Limited 24
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
6.2 Self Powered Configuration
Figure 6.2 Self Powered Configuration
Figure 6.2 illustrates the FT232R in a typical USB self powered configuration. A USB self powered device gets its power from its own power supply, VCC, and does not draw current from the USB bus. The basic rules for USB self powered devices are as follows –
i) A self powered device should not force current down the USB bus when the USB host or hub controller is powered down.
ii) A self powered device can use as much current as it needs during normal operation and USB suspend as it has its own power supply.
iii) A self powered device can be used with any USB host, a bus powered USB hub or a self powered USB hub.
The power descriptor in the internal EEPROM of the FT232R should be programmed to a value of zero (self powered).
In order to comply with the first requirement above, the USB bus power (pin 1) is used to control the RESET# pin of the FT232R device. When the USB host or hub is powered up an internal 1.5kΩ resistor on USBDP is pulled up to +3.3V (generated using the 4K7 and 10k resistor network), thus identifying the device as a full speed device to the USB host or hub. When the USB host or hub is powered off, RESET# will be low and the FT232R is held in reset. Since RESET# is low, the internal 1.5kΩ resistor is not pulled up to any power supply (hub or host is powered down), so no current flows down USBDP via the 1.5kΩ pull-up resistor. Failure to do this may cause some USB host or hub controllers to power up erratically.
Figure 6.2 illustrates a self powered design which has a +4V to +5.25V supply.
Note:
1. When the FT232R is in reset, the UART interface I/O pins are tri-stated. Input pins have internal 200kΩ pull-up resistors to VCCIO, so they will gently pull high unless driven by some external logic.
2. When using internal FT232R oscillator the VCC supply voltage range must be +4.0V to 5.25V.
3. When using external oscillator the VCC supply voltage range must be +3.3V to 5.25V
Any design which interfaces to +3.3 V or +1.8V would be having a +3.3V or +1.8V supply to VCCIO.
Copyright © 2010 Future Technology Devices International Limited 25
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
6.3 USB Bus Powered with Power Switching Configuration
FT232R
GND
GND
100nF
VCC
USBDM
USBDP
VCCIO
NC
RESET#
NC
OSCI
OSCO
3V3OUT
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS1
CBUS2
CBUS3
CBUS4
1
2
3
4
GND
SHIELD
GND
100nF 4.7uF +
5
10nF +
Ferrite Bead
s d
g
P-Channel Power
MOSFET
PWREN#
1K
Switched 5V Power
To External Logic
Soft Start
Circuit
0.1uF 0.1uF
5V VCC
5V VCC
5V VCC
10K
Figure 6.3 Bus Powered with Power Switching Configuration
A requirement of USB bus powered applications, is when in USB suspend mode, the application draws a
total current of less than 2.5mA. This requirement includes external logic. Some external logic has the
ability to power itself down into a low current state by monitoring the PWREN# signal. For external logic
that cannot power itself down in this way, the FT232R provides a simple but effective method of turning
off power during the USB suspend mode.
Figure 6.3 shows an example of using a discrete P-Channel MOSFET to control the power to external
logic. A suitable device to do this is an International Rectifier (www.irf.com) IRLML6402, or equivalent. It
is recommended that a “soft start” circuit consisting of a 1kΩ series resistor and a 0.1μF capacitor is used
to limit the current surge when the MOSFET turns on. Without the soft start circuit it is possible that the
transient power surge, caused when the MOSFET switches on, will reset the FT232R or the USB host/hub
controller. The soft start circuit example shown in Figure 6.3 powers up with a slew rate of
approximaely12.5V/ms. Thus supply voltage to external logic transitions from GND to +5V in
approximately 400 microseconds.
As an alternative to the MOSFET, a dedicated power switch IC with inbuilt “soft-start” can be used. A
suitable power switch IC for such an application is the Micrel (www.micrel.com) MIC2025-2BM or
equivalent.
With power switching controlled designs the following should be noted:
i) The external logic to which the power is being switched should have its own reset circuitry to
automatically reset the logic when power is re-applied when moving out of suspend mode.
ii) Set the Pull-down on Suspend option in the internal FT232R EEPROM.
iii) One of the CBUS Pins should be configured as PWREN# in the internal FT232R EEPROM, and used
to switch the power supply to the external circuitry. This should be pulled high through a 10 kΩ
resistor.
iv) For USB high-power bus powered applications (one that consumes greater than 100mA, and up
to 500mA of current from the USB bus), the power consumption of the application must be set in
the Max Power field in the internal FT232R EEPROM. A high-power bus powered application uses
the descriptor in the internal FT232R EEPROM to inform the system of its power requirements.
v) PWREN# gets its VCC from VCCIO. For designs using 3V3 logic, ensure VCCIO is not powered
down using the external logic. In this case use the +3V3OUT.
Copyright © 2010 Future Technology Devices International Limited 26
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
6.4 USB Bus Powered with Selectable External Logic Supply
FT232R
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
100nF
3V3OUT
VCCIO
NC
RESET#
NC
10nF
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS3
CBUS2
CBUS1
USBDP
USBDM
1 VCC
2
3
4
5
OSCI
OSCO
CBUS4
Ferrite
Bead
+
SHIELD
GND
GND
GND
3.3V or 5V
Supply to
External Logic
100nF
+ 100nF
Vcc
4.7uF
GND
1
Jumper
SLEEP#
PWREN#
2
3
Vcc
VCCIO
10K
VCCIO
Figure 6.4 USB Bus Powered with +3.3V or +5V External Logic Power Supply
Figure 6.4 illustrates a USB bus power application with selectable external logic supply. The external logic
can be selected between +3.3V and +5V using the jumper switch. This jumper is used to allow the
FT232R to be interfaced with a +3.3V or +5V logic devices. The VCCIO pin is either supplied with +5V
from the USB bus (jumper pins1 and 2 connected), or from the +3.3V output from the FT232R 3V3OUT
pin (jumper pins 2 and 3 connected). The supply to VCCIO is also used to supply external logic.
With bus powered applications, the following should be noted:
i) To comply with the 2.5mA current supply limit during USB suspend mode, PWREN# or
SLEEP# signals should be used to power down external logic in this mode. If this is not
possible, use the configuration shown in Section 6.3.
ii) The maximum current sourced from the USB bus during normal operation should not exceed
100mA, otherwise a bus powered design with power switching (Section 6.3) should be used.
Another possible configuration could use a discrete low dropout (LDO) regulator which is supplied by the
5V on the USB bus to supply between +1.8V and +2.8V to the VCCIO pin and to the external logic. In
this case VCC would be supplied with the +5V from the USB bus and the VCCIO would be supplied from
the output of the LDO regulator. This results in the FT232R I/O pins driving out at between +1.8V and
+2.8V logic levels.
For a USB bus powered application, it is important to consider the following when selecting the regulator:
i) The regulator must be capable of sustaining its output voltage with an input voltage of
+4.35V. An Low Drop Out (LDO) regulator should be selected.
ii) The quiescent current of the regulator must be low enough to meet the total current
requirement of <= 2.5mA during USB suspend mode.
A suitable series of LDO regulators that meets these requirements is the MicroChip/Telcom
(www.microchip.com) TC55 series of devices. These devices can supply up to 250mA current and have a
quiescent current of under 1μA.
Copyright © 2010 Future Technology Devices International Limited 27
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7 Application Examples
The following sections illustrate possible applications of the FT232R. The illustrations have omitted pin
numbers for ease of understanding since the pins differ between the FT232RL and FT232RQ package
options.
7.1 USB to RS232 Converter
FT232R
GND
GND
100nF
VCC
USBDM
USBDP
VCCIO
NC
RESET#
NC
OSCI
OSCO
3V3OUT
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS1
CBUS2
CBUS3
CBUS4
1
2
3
4
GND
SHIELD
GND
100nF 4.7uF +
5
10nF +
Ferrite Bead
VCC
VCC
SLEEP#
GPIO2
GPIO3
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
RS232 LEVEL
CONVERTER
TXDATA
RXDATA
RTS
CTS
DTR
DSR
DCD
RI
TXLED#
RXLED#
VCC VCC
270R 270R
GND
RI
DTR
CTS
TXDATA
RTS
RXDATA
DSR
DCD
DB9M
SHIELD 10
5
9
48
3
7
2
6
1
SHDN#
Figure 7.1 Application Example showing USB to RS232 Converter
An example of using the FT232R as a USB to RS232 converter is illustrated in Figure 7.1. In this
application, a TTL to RS232 Level Converter IC is used on the serial UART interface of the FT232R to
convert the TTL levels of the FT232R to RS232 levels. This level shift can be done using the popular “213”
series of TTL to RS232 level converters. These “213” devices typically have 4 transmitters and 5 receivers
in a 28-LD SSOP package and feature an in-built voltage converter to convert the +5V (nominal) VCC to
the +/- 9 volts required by RS232. A useful feature of these devices is the SHDN# pin which can be used
to power down the device to a low quiescent current during USB suspend mode.
A suitable level shifting device is the Sipex SP213EHCA which is capable of RS232 communication at up
to 500k baud. If a lower baud rate is acceptable, then several pin compatible alternatives are available
such as the Sipex SP213ECA, the Maxim MAX213CAI and the Analogue Devices ADM213E, which are all
suitable for communication at up to 115.2k baud. If a higher baud rate is required, the Maxim
MAX3245CAI device is capable of RS232 communication rates up to 1Mbaud. Note that the MAX3245 is
not pin compatible with the 213 series devices and that the SHDN pin on the MAX device is active high
and should be connect to PWREN# pin instead of SLEEP# pin.
In example shown, the CBUS0 and CBUS1 have been configured as TXLED# and RXLED# and are being
used to drive two LEDs.
Copyright © 2010 Future Technology Devices International Limited 28
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7.2 USB to RS485 Coverter
FT232R
GND
GND
100nF
VCC
USBDM
USBDP
VCCIO
NC
RESET#
NC
OSCI
OSCO
3V3OUT
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS1
CBUS2
CBUS3
CBUS4
1
2
3
4
GND
SHIELD
GND
100nF 4.7uF +
5
10nF +
Ferrite Bead
Vcc
Vcc
TXD
RXD
GND
DB9M
SHIELD 10
TXDEN
GPO
PWREN#
GPIO0
GPIO1
VCCIO
10K
RS485 LEVEL
CONVERTER
Vcc
SP481
5
1
2
3
4
Link
120R
7
6
Figure 7.2 Application Example Showing USB to RS485 Converter
An example of using the FT232R as a USB to RS485 converter is shown in Figure 7.2. In this application,
a TTL to RS485 level converter IC is used on the serial UART interface of the FT232R to convert the TTL
levels of the FT232R to RS485 levels.
This example uses the Sipex SP481 device. Equivalent devices are available from Maxim and Analogue
Devices. The SP481 is a RS485 device in a compact 8 pin SOP package. It has separate enables on both
the transmitter and receiver. With RS485, the transmitter is only enabled when a character is being
transmitted from the UART. The TXDEN signal CBUS pin option on the FT232R is provided for exactly this
purpose and so the transmitter enable is wired to CBUS2 which has been configured as TXDEN. Similarly,
CBUS3 has been configured as PWREN#. This signal is used to control the SP481‟s receiver enable. The
receiver enable is active low, so it is wired to the PWREN# pin to disable the receiver when in USB
suspend mode. CBUS2 = TXDEN and CBUS3 = PWREN# are the default device configurations of the
FT232R pins.
RS485 is a multi-drop network; so many devices can communicate with each other over a two wire cable
interface. The RS485 cable requires to be terminated at each end of the cable. A link (which provides the
120Ω termination) allows the cable to be terminated if the SP481 is physically positioned at either end of
the cable.
In this example the data transmitted by the FT232R is also present on the receive path of the SP481.This
is a common feature of RS485 and requires the application software to remove the transmitted data from
the received data stream. With the FT232R it is possible to do this entirely in hardware by modifying the
example shown in Figure 7.2 by logically OR‟ing the FT232R TXDEN and the SP481 receiver output and
connecting the output of the OR gate to the RXD of the FT232R.
Note that the TXDEN is activated 1 bit period before the start bit. TXDEN is deactivated at the same time
as the stop bit. This is not configurable.
Copyright © 2010 Future Technology Devices International Limited 29
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7.3 USB to RS422 Converter
FT232R
GND
GND
100nF
VCC
USBDM
USBDP
VCCIO
NC
RESET#
NC
OSCI
OSCO
3V3OUT
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS1
CBUS2
CBUS3
CBUS4-
1
2
3
4
GND
SHIELD
GND
100nF 4.7uF +
5
10nF +
Ferrite Bead
Vcc
Vcc
PWREN#
RS422 LEVEL
CONVERTER
Vcc
SP491
5
3
4
6 7
TXDM
TXDP
RXDP
RXDM
120R
10
9
11
12
SLEEP#
RS422 LEVEL
CONVERTER
SP491
3
4
6 7
Vcc
Vcc
10K
2
5
120R
11
12
9
10
RTSM
RTSP
CTSP
CTSM
GND
DB9M
SHIELD
TXDM
TXDP
RXDP
RXDM
RTSM
RTSP
CTSP
CTSM
2
Figure 7.3 USB to RS422 Converter Configuration
An example of using the FT232R as a USB to RS422 converter is shown in Figure 7.3. In this application,
two TTL to RS422 Level Converter ICs are used on the serial UART interface of the FT232R to convert the
TTL levels of the FT232R to RS422 levels. There are many suitable level converter devices available. This
example uses Sipex SP491 devices which have enables on both the transmitter and receiver. Since the
SP491 transmitter enable is active high, it is connected to a CBUS pin in SLEEP# configuration. The
SP491 receiver enable is active low and is therefore connected to a CBUS pin PWREN# configuration. This
ensures that when both the SP491 transmitters and receivers are enabled then the device is active, and
when the device is in USB suspend mode, the SP491 transmitters and receivers are disabled. If a similar
application is used, but the design is USB BUS powered, it may be necessary to use a P-Channel logic
level MOSFET (controlled by PWREN#) in the VCC line of the SP491 devices to ensure that the USB
standby current of 2.5mA is met.
The SP491 is specified to transmit and receive data at a rate of up to 5 Mbaud. In this example the
maximum data rate is limited to 3 Mbaud by the FT232R.
Copyright © 2010 Future Technology Devices International Limited 30
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7.4 USB to MCU UART Interface
FT232R
GND
GND
100nF
VCC
USBDM
USBDP
VCCIO
NC
RESET#
NC
OSCI
OSCO
3V3OUT
A
G
N
D
G
N
D
G
N
D
G
N
D
T
E
S
T
TXD
RXD
RTS#
CTS#
DTR#
DSR#
DCD#
RI#
CBUS0
CBUS1
CBUS2
CBUS3
CBUS4
1
2
3
4
GND
SHIELD
GND
100nF 4.7uF +
5
10nF +
Ferrite Bead
Vcc
Vcc
PWREN#
Vcc
12MHz
OUT
10K
Microcontroller
CLK_IN
I/O
RTS#
RXD
TXD
CTS#
Vcc
Figure 7.4 USB to MCU UART Interface
An example of using the FT232R as a USB to Microcontroller (MCU) UART interface is shown in Figure
7.4. In this application the FT232R uses TXD and RXD for transmission and reception of data, and RTS# /
CTS# signals for hardware handshaking. Also in this example CBUS0 has been configured as a 12MHz
output to clock the MCU.
Optionally, RI# could be connected to another I/O pin on the MCU and used to wake up the USB host
controller from suspend mode. If the MCU is handling power management functions, then a CBUS pin can
be configured as PWREN# and would also be connected to an I/O pin of the MCU.
Copyright © 2010 Future Technology Devices International Limited 31
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7.5 LED Interface
Any of the CBUS I/O pins can be configured to drive an LED. The FT232R has 3 configuration options for
driving LEDs from the CBUS. These are TXLED#, RXLED#, and TX&RXLED#. Refer to Section 3.5 for
configuration options.
FT232R
CBUS[0...4]
CBUS[0...4]
VCCIO
TX
TXLED#
RXLED#
RX
270R 270R
Figure 7.5 Dual LED Configuration
An example of using the FT232R to drive LEDs is shown in Figure 7.5. In this application one of the CBUS
pins is used to indicate transmission of data (TXLED#) and another is used to indicate receiving data
(RXLED#). When data is being transmitted or received the respective pins will drive from tri-state to low
in order to provide indication on the LEDs of data transfer. A digital one-shot is used so that even a small
percentage of data transfer is visible to the end user.
FT232R
CBUS[0...4]
TX&RXLED#
270R
VCCIO
LED
Figure 7.6 Single LED Configuration
Another example of using the FT232R to drive LEDs is shown in Figure 7.6. In this example one of the
CBUS pins is used to indicate when data is being transmitted or received by the device (TX&RXLED). In
this configuration the FT232R will drive only a single LED.
Copyright © 2010 Future Technology Devices International Limited 32
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
7.6 Using the External Oscillator
The FT232R defaults to operating using its own internal oscillator. This requires that the device is powered with VCC(min)=+4.0V. This supply voltage can be taken from the USB VBUS. Applications which require using an external oscillator, VCC= +3.3V, must do so in the following order:
1. When device powered for the very first time, it must have VCC > +4.0V. This supply is available from the USB VBUS supply = +5.0V.
2. The EEPROM must then be programmed to enable external oscillator. This EEPROM modification cannot be done using the FTDI programming utility, MPROG. The EEPROM can only be re-configured from a custom application. Please refer to the following applications note on how to do this:
http://www.ftdichip.com/Documents/AppNotes/AN_100_Using_The_FT232_245R_With_External_Osc(FT_000067).pdf
3. The FT232R can then be powered from VCC=+3.3V and an external oscillator. This can be done using a link to switch the VCC supply.
The FT232R will fail to operate when the internal oscillator has been disabled, but no external oscillator has been connected.
Copyright © 2010 Future Technology Devices International Limited 33
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
8 Internal EEPROM Configuration
Following a power-on reset or a USB reset the FT232R will scan its internal EEPROM and read the USB configuration descriptors stored there. The default factory programmed values of the internal EEPROM are shown in Table 8.1.
Parameter Value Notes
USB Vendor ID (VID)
0403h
FTDI default VID (hex)
USB Product UD (PID)
6001h
FTDI default PID (hex)
Serial Number Enabled?
Yes
Serial Number
See Note
A unique serial number is generated and programmed into the EEPROM during device final test.
Pull down I/O Pins in USB Suspend
Disabled
Enabling this option will make the device pull down on the UART interface lines when in USB suspend mode (PWREN# is high).
Manufacturer Name
FTDI
Product Description
FT232R USB UART
Max Bus Power Current
90mA
Power Source
Bus Powered
Device Type
FT232R
USB Version
0200
Returns USB 2.0 device description to the host.
Note: The device is a USB 2.0 Full Speed device (12Mb/s) as opposed to a USB 2.0 High Speed device (480Mb/s).
Remote Wake Up
Enabled
Taking RI# low will wake up the USB host controller from suspend in approximately 20 ms.
High Current I/Os
Disabled
Enables the high drive level on the UART and CBUS I/O pins.
Load VCP Driver
Enabled
Makes the device load the VCP driver interface for the device.
CBUS0
TXLED#
Default configuration of CBUS0 – Transmit LED drive.
CBUS1
RXLED#
Default configuration of CBUS1 – Receive LED drive.
CBUS2
TXDEN
Default configuration of CBUS2 – Transmit data enable for RS485
CBUS3
PWREN#
Default configuration of CBUS3 – Power enable. Low after USB enumeration, high during USB suspend mode.
Copyright © 2010 Future Technology Devices International Limited 34
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Parameter Value Notes
CBUS4
SLEEP#
Default configuration of CBUS4 – Low during USB suspend mode.
Invert TXD
Disabled
Signal on this pin becomes TXD# if enable.
Invert RXD
Disabled
Signal on this pin becomes RXD# if enable.
Invert RTS#
Disabled
Signal on this pin becomes RTS if enable.
Invert CTS#
Disabled
Signal on this pin becomes CTS if enable.
Invert DTR#
Disabled
Signal on this pin becomes DTR if enable.
Invert DSR#
Disabled
Signal on this pin becomes DSR if enable.
Invert DCD#
Disabled
Signal on this pin becomes DCD if enable.
Invert RI#
Disabled
Signal on this pin becomes RI if enable.
Table 8.1 Default Internal EEPROM Configuration
The internal EEPROM in the FT232R can be programmed over USB using the FTDI utility program MPROG. MPROG can be downloaded from FTDI Utilities on the FTDI website (www.ftdichip.com). Version 2.8a or later is required for the FT232R chip. Users who do not have their own USB Vendor ID but who would like to use a unique Product ID in their design can apply to FTDI for a free block of unique PIDs. Contact FTDI support for this service.
Copyright © 2010 Future Technology Devices International Limited 35
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
9 Package Parameters
The FT232R is available in two different packages. The FT232RL is the SSOP-28 option and the FT232RQ is the QFN-32 package option. The solder reflow profile for both packages is described in Section 9.5.
9.1 SSOP-28 Package Dimensions
Figure 9.1 SSOP-28 Package Dimensions
The FT232RL is supplied in a RoHS compliant 28 pin SSOP package. The package is lead (Pb) free and uses a „green‟ compound. The package is fully compliant with European Union directive 2002/95/EC.
This package is nominally 5.30mm x 10.20mm body (7.80mm x 10.20mm including pins). The pins are on a 0.65 mm pitch. The above mechanical drawing shows the SSOP-28 package.
All dimensions are in millimetres.
The date code format is YYXX where XX = 2 digit week number, YY = 2 digit year number. This is followed by the revision number.
The code XXXXXXXXXXXX is the manufacturing LOT code. This only applies to devices manufactured after April 2009.
12° Typ0° - 8°0.25 0.75 +/-0.200.092.00 Max1.75+/- 0.100.05 Min1.25 +/-0.12FT232RLYYXX-A1141528FTDI5.30 +/-0.307.80 +/-0.40 10.20 +/-0.301.02 Typ.0.30 +/-0.0120.65 +/-0.026XXXXXXXXXXXX
Copyright © 2010 Future Technology Devices International Limited 36
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
9.2 QFN-32 Package Dimensions
Figure 9.2 QFN-32 Package Dimensions
The FT232RQ is supplied in a RoHS compliant leadless QFN-32 package. The package is lead ( Pb ) free, and uses a „green‟ compound. The package is fully compliant with European Union directive 2002/95/EC.
This package is nominally 5.00mm x 5.00mm. The solder pads are on a 0.50mm pitch. The above mechanical drawing shows the QFN-32 package. All dimensions are in millimetres.
The centre pad on the base of the FT232RQ is not internally connected, and can be left unconnected, or connected to ground (recommended).
The date code format is YYXX where XX = 2 digit week number, YY = 2 digit year number.
The code XXXXXXX is the manufacturing LOT code. This only applies to devices manufactured after April 2009.
Indicates Pin #1 (Laser Marked)FT232RQ3225241716981YYXX-A5.000 +/-0.0755.000 +/-0.0753.200 +/-0.1003.200 +/-0.1000.5000.250 +/-0.0500.500 +/-0.0500.150 MaxPin #1 ID0.900 +/-0.1000.200 0.0502134567823242221201918172526272829303132161514131211109Note: The pin #1 ID is connected internally to the device’s central heat sink area . It is recommended to ground the central heat sink area of the device. 0.200 MinDimensions in mm.Central Heat Sink AreaFTDIXXXXXXX
Copyright © 2010 Future Technology Devices International Limited 37
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
9.3 QFN-32 Package Typical Pad Layout
Figure 9.3 Typical Pad Layout for QFN-32 Package
9.4 QFN-32 Package Typical Solder Paste Diagram
2.5 +/- 0.0375
2.5 +/- 0.0375
Figure 9.4 Typical Solder Paste Diagram for QFN-32 Package
1
17
25
0.500
0.30
0.200 Min
0.500
+/-0.050
0.150 Max
0.20
0.100
3.200 +/-0.100
3.200 +/-0.100
2.50
2.50
Optional GND
Connection
Optional GND
Connection
9
Copyright © 2010 Future Technology Devices International Limited 38
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
9.5 Solder Reflow Profile
The FT232R is supplied in Pb free 28 LD SSOP and QFN-32 packages. The recommended solder reflow profile for both package options is shown in Figure 9.5.
Figure 9.5 FT232R Solder Reflow Profile
The recommended values for the solder reflow profile are detailed in Table 9.1. Values are shown for both a completely Pb free solder process (i.e. the FT232R is used with Pb free solder), and for a non-Pb free solder process (i.e. the FT232R is used with non-Pb free solder). Profile Feature Pb Free Solder Process Non-Pb Free Solder Process
Average Ramp Up Rate (Ts to Tp)
3°C / second Max.
3°C / Second Max.
Preheat - Temperature Min (Ts Min.) - Temperature Max (Ts Max.) - Time (ts Min to ts Max)
150°C 200°C 60 to 120 seconds
100°C
150°C
60 to 120 seconds
Time Maintained Above Critical Temperature TL: - Temperature (TL) - Time (tL)
217°C 60 to 150 seconds
183°C 60 to 150 seconds
Peak Temperature (Tp)
260°C
240°C
Time within 5°C of actual Peak Temperature (tp)
20 to 40 seconds
20 to 40 seconds
Ramp Down Rate
6°C / second Max.
6°C / second Max.
Time for T= 25°C to Peak Temperature, Tp
8 minutes Max.
6 minutes Max.
Table 9.1 Reflow Profile Parameter Values
Critical Zone: whenT is in the rangeT to TTemperature, T
(
Degrees C)Time, t (seconds)25PT = 25º C to TtpTpTLtPreheatStLRamp UpLpRampDownT MaxST MinS
Copyright © 2010 Future Technology Devices International Limited 39
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
10 Contact Information
Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place
Centurion Business Park
Glasgow, G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758
E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com
Branch Office – Taipei, Taiwan
Future Technology Devices International Limited (Taiwan)
2F, No 516, Sec. 1 NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576
E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Branch Office – Hillsboro, Oregon, USA
Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987
E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com
Branch Office – Shanghai, China
Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
ChangNing District,
ShangHai, China
Tel: +86 (21) 62351596 Fax: +86(21) 62351595
E-Mail (Sales): cn.sales@ftdichip.com
E-Mail (Support): cn.support@ftdichip.com
E-Mail (General Enquiries): cn.admin1@ftdichip.com
Web Site URL: http://www.ftdichip.com
Distributor and Sales Representatives
Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.
Copyright © 2010 Future Technology Devices International Limited 40
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Appendix A – References
Useful Application Notes
http://www.ftdichip.com/Documents/AppNotes/AN232R-01_FT232RBitBangModes.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_107_AdvancedDriverOptions_AN_000073.pdf
http://www.ftdichip.com/Documents/AppNotes/AN232R-02_FT232RChipID.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_121_FTDI_Device_EEPROM_User_Area_Usage.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_120_Aliasing_VCP_Baud_Rates.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_100_Using_The_FT232_245R_With_External_Osc(FT_000067).pdf
http://www.ftdichip.com/Resources/Utilities/AN_126_User_Guide_For_FT232_Factory%20test%20utility.pdf
http://www.ftdichip.com/Documents/AppNotes/AN232B-05_BaudRates.pdf
http://www.ftdichip.com/Documents/InstallGuides.htm
Copyright © 2010 Future Technology Devices International Limited 41
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Appendix B - List of Figures and Tables
List of Figures
Figure 2.1 FT232R Block Diagram ................................................................................................... 4
Figure 3.1 SSOP Package Pin Out and Schematic Symbol .......................................................... 7
Figure 3.2 QFN-32 Package Pin Out and schematic symbol .............................................................. 10
Figure 6.1 Bus Powered Configuration ........................................................................................... 23
Figure 6.2 Self Powered Configuration ........................................................................................... 24
Figure 6.4 USB Bus Powered with +3.3V or +5V External Logic Power Supply .................................... 26
Figure 7.1 Application Example showing USB to RS232 Converter ..................................................... 27
Figure 7.2 Application Example Showing USB to RS485 Converter .................................................... 28
Figure 7.3 USB to RS422 Converter Configuration ........................................................................... 29
Figure 7.4 USB to MCU UART Interface .......................................................................................... 30
Figure 7.5 Dual LED Configuration ................................................................................................ 31
Figure 7.6 Single LED Configuration .............................................................................................. 31
Figure 9.1 SSOP-28 Package Dimensions ....................................................................................... 35
Figure 9.2 QFN-32 Package Dimensions ......................................................................................... 36
Figure 9.3 Typical Pad Layout for QFN-32 Package .......................................................................... 37
Figure 9.4 Typical Solder Paste Diagram for QFN-32 Package ........................................................... 37
Figure 9.5 FT232R Solder Reflow Profile ........................................................................................ 38
List of Tables
Table 3.1 USB Interface Group ....................................................................................................... 7
Table 3.2 Power and Ground Group ................................................................................................. 8
Table 3.3 Miscellaneous Signal Group .............................................................................................. 8
Table 3.4 UART Interface and CUSB Group (see note 3) .................................................................... 9
Table 3.5 USB Interface Group ..................................................................................................... 10
Table 3.6 Power and Ground Group ............................................................................................... 11
Table 3.7 Miscellaneous Signal Group ............................................................................................ 11
Table 3.8 UART Interface and CBUS Group (see note 3) .................................................................. 12
Table 3.9 CBUS Configuration Control ........................................................................................... 13
Table 5.1 Absolute Maximum Ratings ............................................................................................ 17
Table 5.2 Operating Voltage and Current ....................................................................................... 18
Table 5.3 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, Standard Drive Level) .................. 18
Table 5.4 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, Standard Drive Level) .................. 18
Table 5.5 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, Standard Drive Level) .................. 19
Table 5.6 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, Standard Drive Level) .................. 19
Table 5.7 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, High Drive Level) ......................... 19
Table 5.8 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, High Drive Level) ......................... 19
Table 5.9 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, High Drive Level) ......................... 20
Table 5.10 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, High Drive Level) ....................... 20
Copyright © 2010 Future Technology Devices International Limited 42
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Table 5.11 RESET# and TEST Pin Characteristics ............................................................................ 20
Table 5.12 USB I/O Pin (USBDP, USBDM) Characteristics ................................................................. 21
Table 5.13 EEPROM Characteristics ............................................................................................... 21
Table 5.14 Internal Clock Characteristics ....................................................................................... 21
Table 5.15 OSCI, OSCO Pin Characteristics – see Note 1 ................................................................. 22
Table 8.1 Default Internal EEPROM Configuration ............................................................................ 34
Table 9.1 Reflow Profile Parameter Values ..................................................................................... 38
Copyright © 2010 Future Technology Devices International Limited 43
Document No.: FT_000053
FT232R USB UART IC Datasheet Version 2.10
Clearance No.: FTDI# 38
Appendix C - Revision History
Document Title: USB UART IC FT232R
Document Reference No.: FT_000053
Clearance No.: FTDI# 38
Product Page: http://www.ftdichip.com/FTProducts.htm
Document Feedback: Send Feedback
Version 0.90 Initial Datasheet Created August 2005
Version 0.96 Revised Pre-release datasheet October 2005
Version 1.00 Full datasheet released December 2005
Version 1.02 Minor revisions to datasheet December 2005
Version 1.03 Manufacturer ID added to default EEPROM configuration; Buffer sizes added January 2006
Version 1.04 QFN-32 Pad layout and solder paste diagrams added January 2006
Version 2.00 Reformatted, updated package info, added notes for 3.3V operation; June 2008
Part numbers, TID; added UART and CBUS characteristics for +1.8V;
Corrected RESET#; Added MTTF data;
Corrected the input switching threshold and input hysteresis values for VCCIO=5V
Version 2.01 Corrected pin-out number in table3.2 for GND pin18.
Improved graphics on some Figures.
Add packing details. Changed USB suspend current spec from 500uA to 2.5mA
Corrected Figure 9.2 QFN dimensions. August 2008
Version 2.02 Corrected Tape and Reel quantities.
Added comment “PWREN# should be used with a 10kΩ resistor pull up”.
Replaced TXDEN# with TXDEN since it is active high in various places.
Added lot number to the device markings.
Added 3V3 regulator output tolerance.
Clarified VCC operation and added section headed “Using an external Oscillator”
Updated company contact information. April 2009
Version 2.03 Corrected the RX/TX buffer definitions to be relative to the USB interface June 2009
Version 2.04 Additional dimensions added to QFN solder profile June 2009
Version 2.05 Modified package dimensions to 5.0 x 5.0 +/-0.075mm. December 2009 and Solder paste diagram to 2.50 x 2.50 +/-0.0375mm Added Windows 7 32, 64 bit driver support Added FT_PROG utility references Added Appendix A-references.Figure 2.1 updated. Updated USB-IF TID for Rev B
Version 2.06 Updated section 6.2, Figure 6.2 and the note, May 2010
Updated section 5.3, Table 5.13, EEPROM data retention time
Version 2.07 Added USB Certification Logos July 2010
Version 2.08 Updated USB-IF TID for Rev C April 2011
Version 2.09 Corrected Rev C TID number April 2011
Version 2.10 Table 3.9, added clock output frequency within ±0.7% March 2012
Edited Table 3.9, TXLED# and TXLED# Description
Added feedback links
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 1
August 2013
LM78XX / LM78XXA
3-Terminal 1 A Positive Voltage Regulator
Features
• Output Current up to 1 A
• Output Voltages: 5, 6, 8, 9, 10, 12, 15, 18, 24 V
• Thermal Overload Protection
• Short-Circuit Protection
• Output Transistor Safe Operating Area Protection
Ordering Information(1)
Note:
1. Above output voltage tolerance is available at 25°C.
Product Number Output Voltage
Tolerance Package Operating
Temperature Packing Method
LM7805CT
±4%
TO-220
(Single Gauge)
-40°C to +125°C
Rail
LM7806CT
LM7808CT
LM7809CT
LM7810CT
LM7812CT
LM7815CT
LM7818CT
LM7824CT
LM7805ACT
±2% 0°C to +125°C
LM7809ACT
LM7810ACT
LM7812ACT
LM7815ACT
Description
The LM78XX series of three-terminal positive regulators
is available in the TO-220 package and with several fixed
output voltages, making them useful in a wide range of
applications. Each type employs internal current limiting,
thermal shut-down, and safe operating area protection. If
adequate heat sinking is provided, they can deliver over
1 A output current. Although designed primarily as fixedvoltage
regulators, these devices can be used with external
components for adjustable voltages and currents.
1
1. Input
2. GND
3. Output
GND
TO-220 (Single Gauge)
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 2
Block Diagram
Figure 1. Block Diagram
Absolute Maximum Ratings
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable
above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition,
extended exposure to stresses above the recommended operating conditions may affect device reliability. The
absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted.
Symbol Parameter Value Unit
VI Input Voltage
VO = 5 V to 18 V 35
V
VO = 24 V 40
RθJC Thermal Resistance, Junction-Case (TO-220) 5 °C/W
RθJA Thermal Resistance, Junction-Air (TO-220) 65 °C/W
TOPR Operating Temperature Range
LM78xx -40 to +125
°C
LM78xxA 0 to +125
TSTG Storage Temperature Range - 65 to +150 °C
Starting
Circuit
Input
1
Reference
Voltage
Current
Generator
SOA
Protection
Thermal
Protection
Series Pass
Element
Error
Amplifier
Output
3
GND
2
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 3
Electrical Characteristics (LM7805)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 10 V, CI = 0.1 μF, unless otherwise specified.
Notes:
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects
must be taken into account separately. Pulse testing with low duty is used.
3. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 4.80 5.00 5.20
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 7 V to 20 V 4.75 5.00 5.25
Regline Line Regulation(2) TJ = +25°C
VI = 7 V to 25 V 4.0 100.0
mV
VI = 8 V to 12 V 1.6 50.0
Regload Load Regulation(2) TJ = +25°C
IO = 5 mA to 1.5 A 9.0 100.0
mV
IO = 250 mA to 750 mA 4.0 50.0
IQ Quiescent Current TJ =+25°C 5.0 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.03 0.50
mA
VI = 7 V to 25 V 0.30 1.30
ΔVO/ΔT Output Voltage Drift(3) IO = 5 mA -0.8 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 42.0 μV/VO
RR Ripple Rejection(3) f = 120 Hz, VI = 8 V to 18 V 62.0 73.0 dB
VDROP Dropout Voltage TJ = +25°C, IO = 1 A 2.0 V
RO Output Resistance(3) f = 1 kHz 15.0 mΩ
ISC Short-Circuit Current TJ = +25°C, VI = 35 V 230 mA
IPK Peak Current(3) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 4
Electrical Characteristics (LM7806)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 11 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise
specified.
Notes:
4. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
5. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 5.75 6.00 6.25
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 8.0 V to 21 V 5.70 6.00 6.30
Regline Line Regulation(4) TJ = +25°C
VI = 8 V to 25 V 5.0 120
mV
VI = 9 V to 13 V 1.5 60.0
Regload Load Regulation(4) TJ = +25°C
IO = 5 mA to 1.5 A 9.0 120.0
mV
IO = 250 mA to 750 mA 3.0 60.0
IQ Quiescent Current TJ =+25°C 5.0 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
mA
VI = 8 V to 25 V 1.3
ΔVO/ΔT Output Voltage Drift(5) IO = 5 mA -0.8 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 45.0 μV/VO
RR Ripple Rejection(5) f = 120 Hz, VI = 8 V to 18 V 62.0 73.0 dB
VDROP Dropout Voltage TJ = +25°C, IO = 1 A 2.0 V
RO Output Resistance(5) f = 1 kHz 19.0 mΩ
ISC Short-Circuit Current TJ = +25°C, VI = 35 V 250 mA
IPK Peak Current(5) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 5
Electrical Characteristics (LM7808)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 14 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise
specified.
Notes:
6. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
7. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 7.7 8.0 8.3
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 10.5 V to 23 V 7.6 8.0 8.4
Regline Line Regulation(6) TJ = +25°C
VI = 10.5 V to 25 V 5.0 160.0
mV
VI = 11.5 V to 17 V 2.0 80.0
Regload Load Regulation(6) TJ = +25°C
IO = 5 mA to 1.5 A 10.0 160.0
mV
IO = 250 mA to 750 mA 5.0 80.0
IQ Quiescent Current TJ =+25°C 5.0 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.05 0.50
mA
VI = 10.5 V to 25 V 0.5 1.0
ΔVO/ΔT Output Voltage Drift(7) IO = 5 mA -0.8 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 52.0 μV/VO
RR Ripple Rejection(7) f = 120 Hz, VI = 11.5 V to 21.5 V 56.0 73.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(7) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 230 mA
IPK Peak Current(7) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 6
Electrical Characteristics (LM7809)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 15 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise
specified.
Notes:
8. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
9. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 8.65 9.00 9.35
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 11.5 V to 24 V 8.60 9.00 9.40
Regline Line Regulation(8) TJ = +25°C
VI = 11.5 V to 25 V 6.0 180.0
mV
VI = 12 V to 17 V 2.0 90.0
Regload Load Regulation(8) TJ = +25°C
IO = 5 mA to 1.5 A 12.0 180.0
mV
IO = 250 mA to 750 mA 4.0 90.0
IQ Quiescent Current TJ =+25°C 5.0 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
mA
VI = 11.5 V to 26 V 1.3
ΔVO/ΔT Output Voltage Drift(9) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 58.0 μV/VO
RR Ripple Rejection(9) f = 120 Hz, VI = 13 V to 23 V 56.0 71.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(9) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 250 mA
IPK Peak Current(9) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 7
Electrical Characteristics (LM7810)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 16 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise
specified.
Notes:
10. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
11. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 9.6 10.0 10.4
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 12.5 V to 25 V 9.5 10.0 10.5
Regline Line Regulation(10) TJ = +25°C
VI = 12.5 V to 25 V 10 200
mV
VI = 13 V to 25 V 3 100
Regload Load Regulation(10) TJ = +25°C
IO = 5 mA to 1.5 A 12 200
mV
IO = 250 mA to 750 mA 4 400
IQ Quiescent Current TJ =+25°C 5.1 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
mA
VI = 12.5 V to 29 V 1.0
ΔVO/ΔT Output Voltage Drift(11) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 58.0 μV/VO
RR Ripple Rejection(11) f = 120 Hz, VI = 13 V to 23 V 56.0 71.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(11) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 250 mA
IPK Peak Current(11) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 8
Electrical Characteristics (LM7812)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 19 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise
specified.
Notes:
12. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
13. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 11.5 12.0 12.5
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 14.5 V to 27 V 11.4 12.0 12.6
Regline Line Regulation(12) TJ = +25°C
VI = 14.5 V to 30 V 10 240
mV
VI = 16 V to 22 V 3 120
Regload Load Regulation(12) TJ = +25°C
IO = 5 mA to 1.5 A 11 240
mV
IO = 250 mA to 750 mA 5 120
IQ Quiescent Current TJ =+25°C 5.1 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.1 0.5
mA
VI = 14.5 V to 30 V 0.5 1.0
ΔVO/ΔT Output Voltage Drift(13) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 76.0 μV/VO
RR Ripple Rejection(13) f = 120 Hz, VI = 15 V to 25 V 55.0 71.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(13) f = 1 kHz 18.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 230 mA
IPK Peak Current(13) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 9
Electrical Characteristics (LM7815)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 23 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise
specified.
Notes:
14. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
15. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 14.40 15.00 15.60
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 17.5 V to 30 V 14.25 15.00 15.75
Regline Line Regulation(14) TJ = +25°C
VI = 17.5 V to 30 V 11 300
mV
VI = 20 V to 26 V 3 150
Regload Load Regulation(14) TJ = +25°C
IO = 5 mA to 1.5 A 12 300
mV
IO = 250 mA to 750 mA 4 150
IQ Quiescent Current TJ =+25°C 5.2 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
mA
VI = 17.5 V to 30 V 1.0
ΔVO/ΔT Output Voltage Drift(15) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 90.0 μV/VO
RR Ripple Rejection(15) f = 120 Hz, VI = 18.5 V to 28.5 V 54.0 70.0 dB
VDROP Dropout Voltage IO = 1 A, TJ =+25°C 2.0 V
RO Output Resistance(15) f = 1 kHz 19.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 250 mA
IPK Peak Current(15) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 10
Electrical Characteristics (LM7818)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 27 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise
specified.
Notes:
16. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
17. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 17.3 18.0 18.7
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 21 V to 33 V 17.1 18.0 18.9
Regline Line Regulation(16) TJ = +25°C
VI = 21 V to 33 V 15 360
mV
VI = 24 V to 30 V 5 180
Regload Load Regulation(16) TJ = +25°C
IO = 5 mA to 1.5 A 15 360
mV
IO = 250 mA to 750 mA 5 180
IQ Quiescent Current TJ =+25°C 5.2 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
mA
VI = 21 V to 33 V 1.0
ΔVO/ΔT Output Voltage Drift(17) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 110 μV/VO
RR Ripple Rejection(17) f = 120 Hz, VI = 22 V to 32 V 53.0 69.0 dB
VDROP Dropout Voltage IO = 1 A, TJ =+25°C 2.0 V
RO Output Resistance(17) f = 1 kHz 22.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ =+25°C 250 mA
IPK Peak Current(17) TJ =+25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 11
Electrical Characteristics (LM7824)
Refer to the test circuit, -40°C < TJ < 125°C, IO = 500 mA, VI = 33 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise
specified.
Notes:
18. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
19. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 23.00 24.00 25.00
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 27 V to 38 V 22.80 24.00 25.25
Regline Line Regulation(18) TJ = +25°C
VI = 27 V to 38 V 17 480
mV
VI = 30 V to 36 V 6 240
Regload Load Regulation(18) TJ = +25°C
IO = 5 mA to 1.5 A 15 480
mV
IO = 250 mA to 750 mA 5 240
IQ Quiescent Current TJ =+25°C 5.2 8.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.1 0.5
mA
VI = 27 V to 38 V 0.5 1.0
ΔVO/ΔT Output Voltage Drift(19) IO = 5 mA -1.5 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 6.0 μV/VO
RR Ripple Rejection(19) f = 120 Hz, VI = 28 V to 38 V 50.0 67.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(19) f = 1 kHz 28.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 230 mA
IPK Peak Current(19) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 12
Electrical Characteristics (LM7805A)
Refer to the test circuit, 0°C < TJ < 125°C, IO = 1 A, VI = 10 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise specified.
Notes:
20. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
21. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 4.9 5.0 5.1
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 7.5 V to 20 V 4.8 5.0 5.2
Regline Line Regulation(20)
VI = 7.5 V to 25 V, IO = 500 mA 5.0 50.0
mV
VI = 8 V to 12 V 3.0 50.0
TJ = +25°C
VI = 7.3 V to 20 V 5.0 50.0
VI = 8 V to 12 V 1.5 25.0
Regload Load Regulation(20)
TJ = +25°C, IO = 5 mA to 1.5 A 9.0 100.0
IO = 5 mA to 1 A 9.0 100.0 mV
IO = 250 mA to 750 mA 4.0 50.0
IQ Quiescent Current TJ =+25°C 5.0 6.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
VI = 8 V to 25 V, IO = 500 mA 0.8 mA
VI = 7.5 V to 20 V, TJ = +25°C 0.8
ΔVO/ΔT Output Voltage Drift(21) IO = 5 mA -0.8 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 10.0 μV/VO
RR Ripple Rejection(21) f = 120 Hz, VO = 500 mA,
VI =8 V to 18 V 68.0 dB
VDROP Dropout Voltage IO = 1 A, TJ =+25°C 2.0 V
RO Output Resistance(21) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ =+25°C 250 mA
IPK Peak Current(21) TJ =+25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 13
Electrical Characteristics (LM7809A)
Refer to the test circuit, 0°C < TJ < 125°C, IO = 1 A, VI = 15 V, CI = 0.33 μF,CO = 0.1 μF, unless otherwise specified.
Notes:
22. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
23. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 8.82 9.00 9.16
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 11.2 V to 24 V 8.65 9.00 9.35
Regline Line Regulation(22)
VI = 11.7 V to 25 V, IO = 500 mA 6.0 90.0
mV
VI = 12.5 V to 19 V 4.0 45.0
TJ = +25°C
VI = 11.5 V to 24 V 6.0 90.0
VI = 12.5 V to 19 V 2.0 45.0
Regload Load Regulation(22)
TJ = +25°C, IO = 5 mA to 1.5 A 12.0 100.0
IO = 5 mA to 1 A 12.0 100.0 mV
IO = 250 mA to 750 mA 5.0 50.0
IQ Quiescent Current TJ = +25°C 5.0 6.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
VI = 12 V to 25 V, IO = 500 mA 0.8 mA
VI = 11.7 V to 25 V, TJ = +25°C 0.8
ΔVO/ΔT Output Voltage Drift(23) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 10.0 μV/VO
RR Ripple Rejection(23) f = 120 Hz, VO = 500 mA,
VI =12 V to 22 V 62.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(23) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 250 mA
IPK Peak Current(23) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 14
Electrical Characteristics (LM7810A)
Refer to the test circuit, 0°C < TJ < 125°C, IO = 1 A, VI = 16 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise specified.
Notes:
24. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
25. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 9.8 10.0 10.2
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 12.8 V to 25 V 9.6 10.0 10.4
Regline Line Regulation(24)
VI = 12.8 V to 26 V, IO = 500 mA 8.0 100.0
mV
VI = 13 V to 20 V 4.0 50.0
TJ = +25°C
VI = 12.5 V to 25 V 8.0 100.0
VI = 13 V to 20 V 3.0 50.0
Regload Load Regulation(24)
TJ = +25°C, IO = 5 mA to 1.5 A 12.0 100.0
IO = 5 mA to 1 A 12.0 100.0 mV
IO = 250 mA to 750 mA 5.0 50.0
IQ Quiescent Current TJ =+25°C 5.0 6.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
VI = 12.8 V to 25 V, IO = 500 mA 0.8 mA
VI = 13 V to 26 V, TJ = +25°C 0.5
ΔVO/ΔT Output Voltage Drift(25) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 10.0 μV/VO
RR Ripple Rejection(25) f = 120 Hz, VO = 500 mA,
VI =14 V to 24 V 62.0 dB
VDROP Dropout Voltage IO = 1 A, TJ =+25°C 2.0 V
RO Output Resistance(25) f = 1 kHz 17.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ =+25°C 250 mA
IPK Peak Current(25) TJ =+25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 15
Electrical Characteristics (LM7812A)
Refer to the test circuit, 0°C < TJ < 125°C, IO = 1 A, VI = 19 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise specified.
Notes:
26. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
27. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 11.75 12.00 12.25
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 14.8 V to 27 V 11.50 12.00 12.50
Regline Line Regulation(26)
VI = 14.8 V to 30 V, IO = 500 mA 10.0 120.0
mV
VI = 16 V to 22 V 4.0 120.0
TJ = +25°C
VI = 14.5 V to 27 V 10.0 120.0
VI = 16 V to 22 V 3.0 60.0
Regload Load Regulation(26)
TJ = +25°C, IO = 5 mA to 1.5 A 12.0 100.0
IO = 5 mA to 1 A 12.0 100.0 mV
IO = 250 mA to 750 mA 5.0 50.0
IQ Quiescent Current TJ = +25°C 5.0 6.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
VI = 14 V to 27 V, IO = 500 mA 0.8 mA
VI = 15 V to 30 V, TJ = +25°C 0.8
ΔVO/ΔT Output Voltage Drift(27) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 10.0 μV/VO
RR Ripple Rejection(27) f = 120 Hz, VO = 500 mA,
VI =14 V to 24 V 60.0 dB
VDROP Dropout Voltage IO = 1 A, TJ = +25°C 2.0 V
RO Output Resistance(27) f = 1 kHz 18.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ = +25°C 250 mA
IPK Peak Current(27) TJ = +25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 16
Electrical Characteristics (LM7815A)
Refer to the test circuit, 0°C < TJ < 125°C, IO = 1 A, VI = 23 V, CI = 0.33 μF, CO = 0.1 μF, unless otherwise specified.
Notes:
28. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must
be taken into account separately. Pulse testing with low duty is used.
29. These parameters, although guaranteed, are not 100% tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
VO Output Voltage
TJ = +25°C 14.75 15.00 15.30
IO = 5 mA to 1 A, PO ≤ 15 W, V
VI = 17.7 V to 30 V 14.40 15.00 15.60
Regline Line Regulation(28)
VI = 17.4 V to 30 V, IO = 500 mA 10.0 150.0
mV
VI = 20 V to 26 V 5.0 150.0
TJ = +25°C
VI = 17.5 V to 30 V 11.0 150.0
VI = 20 V to 26 V 3.0 75.0
Regload Load Regulation(28)
TJ = +25°C, IO = 5 mA to 1.5 A 12.0 100.0
IO = 5 mA to 1 A 12.0 100.0 mV
IO = 250 mA to 750 mA 5.0 50.0
IQ Quiescent Current TJ =+25°C 5.2 6.0 mA
ΔIQ
Quiescent Current
Change
IO = 5 mA to 1 A 0.5
VI = 17.5 V to 30 V, IO = 500 mA 0.8 mA
VI = 17.5 V to 30 V, TJ = +25°C 0.8
ΔVO/ΔT Output Voltage Drift(29) IO = 5 mA -1.0 mV/°C
VN Output Noise Voltage f = 10 Hz to 100 kHz, TA = +25°C 10.0 μV/VO
RR Ripple Rejection(29) f = 120 Hz, VO = 500 mA,
VI =18.5 V to 28.5 V 58.0 dB
VDROP Dropout Voltage IO = 1 A, TJ =+25°C 2.0 V
RO Output Resistance(29) f = 1 kHz 19.0 mΩ
ISC Short-Circuit Current VI = 35 V, TJ =+25°C 250 mA
IPK Peak Current(29) TJ =+25°C 2.2 A
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 17
Typical Performance Characteristics
Figure 2. Quiescent Current Figure 3. Peak Output Current
Figure 4. Output Voltage Figure 5. Quiescent Current
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 18
Typical Applications
Figure 6. DC Parameters
Figure 7. Load Regulation
Figure 8. Ripple Rejection
CI CO 0.1μF
0.33μF
Input Output
LM78XX
1 3
2
LM78XX
3
2
1
0.33μF
270pF
100Ω 30μS
RL
2N6121
or EQ
Input Output
VO
0V
VO
LM78XX
Input Output
5.1Ω
0.33μF
2
1 3
RL
470μF
120Hz +
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 19
Figure 9. Fixed-Output Regulator
Notes:
29. To specify an output voltage, substitute voltage value for “XX”. A common ground is required between the input and
the output voltage. The input voltage must remain typically 2.0 V above the output voltage even during the low point on
the input ripple voltage.
30. CI is required if regulator is located an appreciable distance from power supply filter.
31. CO improves stability and transient response.
Figure 10.
Figure 11. Circuit for Increasing Output Voltage
CI CO 0.1μF
0.33μF
Input Output
LM78XX
1 3
2
CI CO 0.1μF
0.33μF
Output
Input
LM78XX
1 3
2 VXX
R1
RL
IQ
IO
IO = R1 +IQ
VXX
CI CO 0.1μF
0.33μF
Output
Input
LM78XX
1 3
2 VXX
R1
R2
IQ
IRI ≥ 5 IQ
VO = VXX(1 + R2 / R1) + IQR2
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 20
Figure 12. Adjustable Output Regulator (7 V to 30 V)
Figure 13. High-Current Voltage Regulator
Figure 14. High Output Current with Short-Circuit Protection
LM741
-
+
2
3
6
4
2
1 3
CI 0.33μF
Input Output
0.1μF
CO
LM7805
10kΩ
IRI ≥ 5 IQ
VO = VXX(1 + R2 / R1) + IQR2
3
2
1
LM78XX
Output
Input
R1
3Ω
0.33μF
IREG
0.1μF
IO
IQ1
IO = IREG + BQ1 (IREG–VBEQ1/R1)
Q1 BD536
R1 =
VBEQ1
IREG–IQ1/ BQ1
LM78XX
Output
0.33μF 0.1μF
R1
3Ω
3
2
1
Input Q1
Q2
Q1 = TIP42
Q2 = TIP42
RSC =
I SC
VBEQ2
RSC
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 21
Figure 15. Tracking Voltage Regulator
Figure 16. Split Power Supply (±15 V - 1 A)
LM78XX
LM741
0.33μF 0.1μF
1
2
3
7 2
6
4 3 4.7kΩ
4.7kΩ
TIP42
COMMON
COMMON
VO
-VO
VI
-VIN
_
+
1 3
2
1
2 3
0.33μF 0.1μF
2.2μF
1μF +
+
1N4001
1N4001
+15V
-15V
+20V
-20V
LM7815
MC7915
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 22
Figure 17. Negative Output Voltage Circuit
Figure 18. Switching Regulator
LM78XX
Output
Input
+
1
2
0.1μF
3
LM78XX
1mH
1 3
2
2000μF
Input Output D45H11
0.33μF
470Ω
4.7Ω
10μF
0.5Ω
Z1
+
+
LM78XX / LM78XXA — 3-Terminal 1 A Positive Voltage Regulator
© 2006 Fairchild Semiconductor Corporation www.fairchildsemi.com
LM78XX / LM78XXA Rev. 1.3.0 23
Physical Dimensions
Figure 19. TO-220, MOLDED, 3-LEAD, JEDEC VARIATION AB (ACTIVE)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the
warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/TO/TO220B03.pdf.
For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:
http://www.fairchildsemi.com/packing_dwg/PKG-TO220B03_TC.pdf.
TO-220 (SINGLE GAUGE)
© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
2Cool
AccuPower
AX-CAP®*
BitSiC
Build it Now
CorePLUS
CorePOWER
CROSSVOLT
CTL
Current Transfer Logic
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax
ESBC
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series
FACT®
FAST®
FastvCore
FETBench
FPS
F-PFS
FRFET®
Global Power ResourceSM
GreenBridge
Green FPS
Green FPS e-Series
Gmax
GTO
IntelliMAX
ISOPLANAR
Making Small Speakers Sound Louder
and Better™
MegaBuck
MICROCOUPLER
MicroFET
MicroPak
MicroPak2
MillerDrive
MotionMax
mWSaver®
OptoHiT
OPTOLOGIC®
OPTOPLANAR®
®
PowerTrench®
PowerXS™
Programmable Active Droop
QFET®
QS
Quiet Series
RapidConfigure
Saving our world, 1mW/W/kW at a time™
SignalWise
SmartMax
SMART START
Solutions for Your Success
SPM®
STEALTH
SuperFET®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS®
SyncFET
Sync-Lock™
®*
TinyBoost®
TinyBuck®
TinyCalc
TinyLogic®
TINYOPTO
TinyPower
TinyPWM
TinyWire
TranSiC
TriFault Detect
TRUECURRENT®*
SerDes
UHC®
Ultra FRFET
UniFET
VCX
VisualMax
VoltagePlus
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain
life, and (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors
are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical
and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.
Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global
problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I65
®
Low Cost Low Power
Instrumentation Amplifier
AD620
Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.326.8703© 2003–2011 Analog Devices, Inc. All rights reserved.
FEATURES
Easy to use
Gain set with one external resistor
(Gain range 1 to 10,000)
Wide power supply range (±2.3 V to ±18 V)
Higher performance than 3 op amp IA designs
Available in 8-lead DIP and SOIC packaging
Low power, 1.3 mA max supply current
Excellent dc performance (B grade)
50 μV max, input offset voltage
0.6 μV/°C max, input offset drift
1.0 nA max, input bias current
100 dB min common-mode rejection ratio (G = 10)
Low noise
9 nV/√Hz @ 1 kHz, input voltage noise
0.28 μV p-p noise (0.1 Hz to 10 Hz)
Excellent ac specifications
120 kHz bandwidth (G = 100)
15 μs settling time to 0.01%
APPLICATIONS
Weigh scales
ECG and medical instrumentation
Transducer interface
Data acquisition systems
Industrial process controls
Battery-powered and portable equipment
CONNECTION DIAGRAM
–IN
RG
–VS
+IN
RG
+VS
OUTPUT
REF
1
2
3
4
8
7
6
AD620 5
TOP VIEW
00775-0-001
Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R) Packages
PRODUCT DESCRIPTION
The AD620 is a low cost, high accuracy instrumentation
amplifier that requires only one external resistor to set gains of
1 to 10,000. Furthermore, the AD620 features 8-lead SOIC and
DIP packaging that is smaller than discrete designs and offers
lower power (only 1.3 mA max supply current), making it a
good fit for battery-powered, portable (or remote) applications.
The AD620, with its high accuracy of 40 ppm maximum
nonlinearity, low offset voltage of 50 μV max, and offset drift of
0.6 μV/°C max, is ideal for use in precision data acquisition
systems, such as weigh scales and transducer interfaces.
Furthermore, the low noise, low input bias current, and low power
of the AD620 make it well suited for medical applications, such
as ECG and noninvasive blood pressure monitors.
The low input bias current of 1.0 nA max is made possible with
the use of Superϐeta processing in the input stage. The AD620
works well as a preamplifier due to its low input voltage noise of
9 nV/√Hz at 1 kHz, 0.28 μV p-p in the 0.1 Hz to 10 Hz band,
and 0.1 pA/√Hz input current noise. Also, the AD620 is well
suited for multiplexed applications with its settling time of 15 μs
to 0.01%, and its cost is low enough to enable designs with one
in-amp per channel.
Table 1. Next Generation Upgrades for AD620
Part Comment
AD8221 Better specs at lower price
AD8222 Dual channel or differential out
AD8226 Low power, wide input range
AD8220 JFET input
AD8228 Best gain accuracy
AD8295 +2 precision op amps or differential out
AD8429 Ultra low noise
0 5 10 15 20
30,000
5,000
10,000
15,000
20,000
25,000
0
TOTAL ERROR, PPM OF FULL SCALE
SUPPLY CURRENT (mA)
AD620A
RG
3 OP AMP
IN-AMP
(3 OP-07s)
00775-0-002
Figure 2. Three Op Amp IA Designs vs. AD620
IMPORTANT LINKS for the AD620*
Last content update 01/08/2014 09:49 am
Looking for a high performance in-amp with lower noise, wider bandwidth, and fast settling time? Consider the AD8421
Looking for a high performance in-amp with lower power and a rail-to-rail output? Consider the AD8422.
DOCUMENTATION
AD620: Military Data Sheet
AN-282: Fundamentals of Sampled Data Systems
AN-244: A User's Guide to I.C. Instrumentation Amplifiers
AN-245: Instrumentation Amplifiers Solve Unusual Design Problems
AN-671: Reducing RFI Rectification Errors in In-Amp Circuits
AN-589: Ways to Optimize the Performance of a Difference Amplifier
A Designer's Guide to Instrumentation Amplifiers (3rd Edition)
UG-261: Evaluation Boards for the AD62x, AD822x and AD842x Series
ECG Front-End Design is Simplified with MicroConverter
Low-Power, Low-Voltage IC Choices for ECG System Requirements
Ask The Applications Engineer-10
Auto-Zero Amplifiers
High-performance Adder Uses Instrumentation Amplifiers
Protecting Instrumentation Amplifiers
Input Filter Prevents Instrumentation-amp RF-Rectification Errors
The AD8221 - Setting a New Industry Standard for Instrumentation
Amplifiers
ADI Warns Against Misuse of COTS Integrated Circuits
Space Qualified Parts List
Applying Instrumentation Amplifiers Effectively: The Importance of an
Input Ground Return
Leading Inside Advertorials: Applying Instrumentation Amplifiers
Effectively–The Importance of an Input Ground Return
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE
In-Amp Error Calculator
These tools will help estimate error contributions in your
instrumentation amplifier circuit. It uses input parameters such as
temperature, gain, voltage input, and source impedance to determine
the errors that can contribute to your overall design.
In-Amp Common Mode Calculator
AD620 SPICE Macro-Model
AD620A SPICE Macro-Model
AD620B SPICE Macro-Model
AD620S SPICE Macro-Model
AD620 SABER Macro-Model Conv, 10/00
EVALUATION KITS & SYMBOLS & FOOTPRINTS
View the Evaluation Boards and Kits page for documentation and
purchasing
Symbols and Footprints
PRODUCT RECOMMENDATIONS & REFERENCE DESIGNS
CN-0146: Low Cost Programmable Gain Instrumentation Amplifier
Circuit Using the ADG1611 Quad SPST Switch and AD620
Instrumentation Amplifier
DESIGN COLLABORATION COMMUNITY
Collaborate Online with the ADI support team and other designers
about select ADI products.
Follow us on Twitter: www.twitter.com/ADI_News
Like us on Facebook: www.facebook.com/AnalogDevicesInc
DESIGN SUPPORT
Submit your support request here:
Linear and Data Converters
Embedded Processing and DSP
Telephone our Customer Interaction Centers toll free:
Americas: 1-800-262-5643
Europe: 00800-266-822-82
China: 4006-100-006
India: 1800-419-0108
Russia: 8-800-555-45-90
Quality and Reliability
Lead(Pb)-Free Data
SAMPLE & BUY
AD620
View Price & Packaging
Request Evaluation Board
Request Samples Check Inventory & Purchase
Find Local Distributors
* This page was dynamically generated by Analo g Devices, Inc. and inserted into this data sheet.
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not
constitute a change to the revision number of the product data sheet.
This content may be frequently modified.
Powered by TCPDF (www.tcpdf.org)
AD620
Rev. H | Page 2 of 20
TABLE OF CONTENTS
Specifications .....................................................................................3
Absolute Maximum Ratings ............................................................5
ESD Caution ..................................................................................5
Typical Performance Characteristics..............................................6
Theory of Operation.......................................................................12
Gain Selection..............................................................................15
Input and Output Offset Voltage ..............................................15
Reference Terminal .....................................................................15
Input Protection ..........................................................................15
RF Interference............................................................................15
Common-Mode Rejection.........................................................16
Grounding....................................................................................16
Ground Returns for Input Bias Currents.................................17
AD620ACHIPS Information.........................................................18
Outline Dimensions........................................................................19
Ordering Guide ...........................................................................20
REVISION HISTORY
7/11—Rev. G to Rev. H
Deleted Figure 3.................................................................................1
Added Table 1 ....................................................................................1
Moved Figure 2 ..................................................................................1
Added ESD Input Diodes to Simplified Schematic ....................12
Changes to Input Protection Section............................................15
Added Figure 41; Renumbered Sequentially ...............................15
Changes to AD620ACHIPS Information Section ......................18
Updated Ordering Guide ...............................................................20
12/04—Rev. F to Rev. G
Updated Format..................................................................Universal
Change to Features............................................................................1
Change to Product Description.......................................................1
Changes to Specifications.................................................................3
Added Metallization Photograph....................................................4
Replaced Figure 4-Figure 6 ..............................................................6
Replaced Figure 15............................................................................7
Replaced Figure 33..........................................................................10
Replaced Figure 34 and Figure 35.................................................10
Replaced Figure 37..........................................................................10
Changes to Table 3 ..........................................................................13
Changes to Figure 41 and Figure 42 .............................................14
Changes to Figure 43 ......................................................................15
Change to Figure 44 ........................................................................17
Changes to Input Protection section ............................................15
Deleted Figure 9 ..............................................................................15
Changes to RF Interference section..............................................15
Edit to Ground Returns for Input Bias Currents section...........17
Added AD620CHIPS to Ordering Guide ....................................19
7/03—Data Sheet Changed from Rev. E to Rev. F
Edit to FEATURES............................................................................1
Changes to SPECIFICATIONS.......................................................2
Removed AD620CHIPS from ORDERING GUIDE ...................4
Removed METALLIZATION PHOTOGRAPH...........................4
Replaced TPCs 1–3 ...........................................................................5
Replaced TPC 12...............................................................................6
Replaced TPC 30...............................................................................9
Replaced TPCs 31 and 32...............................................................10
Replaced Figure 4............................................................................10
Changes to Table I...........................................................................11
Changes to Figures 6 and 7 ............................................................12
Changes to Figure 8 ........................................................................13
Edited INPUT PROTECTION section........................................13
Added new Figure 9........................................................................13
Changes to RF INTERFACE section ............................................14
Edit to GROUND RETURNS FOR INPUT BIAS CURRENTS
section...............................................................................................15
Updated OUTLINE DIMENSIONS.............................................16
AD620
Rev. H | Page 3 of 20
SPECIFICATIONS
Typical @ 25°C, VS = ±15 V, and RL = 2 kΩ, unless otherwise noted.
Table 2.
Parameter Conditions
AD620A AD620B AD620S1
Min Typ Max Min Typ Max Min Typ Max Unit
GAIN G = 1 + (49.4 kΩ/RG)
Gain Range 1 10,000 1 10,000 1 10,000
Gain Error2 VOUT = ±10 V
G = 1 0.03 0.10 0.01 0.02 0.03 0.10 %
G = 10 0.15 0.30 0.10 0.15 0.15 0.30 %
G = 100 0.15 0.30 0.10 0.15 0.15 0.30 %
G = 1000 0.40 0.70 0.35 0.50 0.40 0.70 %
Nonlinearity VOUT = −10 V to +10 V
G = 1–1000 RL = 10 kΩ 10 40 10 40 10 40 ppm
G = 1–100 RL = 2 kΩ 10 95 10 95 10 95 ppm
Gain vs. Temperature
G = 1 10 10 10 ppm/°C
Gain >12 −50 −50 −50 ppm/°C
VOLTAGE OFFSET (Total RTI Error = VOSI + VOSO/G)
Input Offset, VOSI VS = ±5 V
to ± 15 V
30 125 15 50 30 125 μV
Overtemperature VS = ±5 V
to ± 15 V
185 85 225 μV
Average TC VS = ±5 V
to ± 15 V
0.3 1.0 0.1 0.6 0.3 1.0 μV/°C
Output Offset, VOSO VS = ±15 V 400 1000 200 500 400 1000 μV
VS = ± 5 V 1500 750 1500 μV
Overtemperature VS = ±5 V
to ± 15 V
2000 1000 2000 μV
Average TC VS = ±5 V
to ± 15 V
5.0 15 2.5 7.0 5.0 15 μV/°C
Offset Referred to the
Input vs. Supply (PSR) VS = ±2.3 V
to ±18 V
G = 1 80 100 80 100 80 100 dB
G = 10 95 120 100 120 95 120 dB
G = 100 110 140 120 140 110 140 dB
G = 1000 110 140 120 140 110 140 dB
INPUT CURRENT
Input Bias Current 0.5 2.0 0.5 1.0 0.5 2 nA
Overtemperature 2.5 1.5 4 nA
Average TC 3.0 3.0 8.0 pA/°C
Input Offset Current 0.3 1.0 0.3 0.5 0.3 1.0 nA
Overtemperature 1.5 0.75 2.0 nA
Average TC 1.5 1.5 8.0 pA/°C
INPUT
Input Impedance
Differential 10||2 10||2 10||2 GΩ_pF
Common-Mode 10||2 10||2 10||2 GΩ_pF
Input Voltage Range3 VS = ±2.3 V
to ±5 V
−VS + 1.9 +VS − 1.2 −VS + 1.9 +VS − 1.2 −VS + 1.9 +VS − 1.2 V
Overtemperature −VS + 2.1 +VS − 1.3 −VS + 2.1 +VS − 1.3 −VS + 2.1 +VS − 1.3 V
VS = ± 5 V
to ±18 V
−VS + 1.9 +VS − 1.4 −VS + 1.9 +VS − 1.4 −VS + 1.9 +VS − 1.4 V
Overtemperature −VS + 2.1 +VS − 1.4 −VS + 2.1 +VS + 2.1 −VS + 2.3 +VS − 1.4 V
AD620
Rev. H | Page 4 of 20
AD620A AD620B AD620S1
Parameter Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Common-Mode Rejection
Ratio DC to 60 Hz with
1 kΩ Source Imbalance VCM = 0 V to ± 10 V
G = 1 73 90 80 90 73 90 dB
G = 10 93 110 100 110 93 110 dB
G = 100 110 130 120 130 110 130 dB
G = 1000 110 130 120 130 110 130 dB
OUTPUT
Output Swing RL = 10 kΩ
VS = ±2.3 V
to ± 5 V
−VS +
1.1
+VS − 1.2 −VS + 1.1 +VS − 1.2 −VS + 1.1 +VS − 1.2 V
Overtemperature −VS + 1.4 +VS − 1.3 −VS + 1.4 +VS − 1.3 −VS + 1.6 +VS − 1.3 V
VS = ±5 V
to ± 18 V
−VS + 1.2 +VS − 1.4 −VS + 1.2 +VS − 1.4 −VS + 1.2 +VS − 1.4 V
Overtemperature −VS + 1.6 +VS – 1.5 −VS + 1.6 +VS – 1.5 –VS + 2.3 +VS – 1.5 V
Short Circuit Current ±18 ±18 ±18 mA
DYNAMIC RESPONSE
Small Signal –3 dB Bandwidth
G = 1 1000 1000 1000 kHz
G = 10 800 800 800 kHz
G = 100 120 120 120 kHz
G = 1000 12 12 12 kHz
Slew Rate 0.75 1.2 0.75 1.2 0.75 1.2 V/μs
Settling Time to 0.01% 10 V Step
G = 1–100 15 15 15 μs
G = 1000 150 150 150 μs
NOISE
Voltage Noise, 1 kHz Total RTI Noise (e2 ) (e /G)2 = ni + no
Input, Voltage Noise, eni 9 13 9 13 9 13 nV/√Hz
Output, Voltage Noise, eno 72 100 72 100 72 100 nV/√Hz
RTI, 0.1 Hz to 10 Hz
G = 1 3.0 3.0 6.0 3.0 6.0 μV p-p
G = 10 0.55 0.55 0.8 0.55 0.8 μV p-p
G = 100–1000 0.28 0.28 0.4 0.28 0.4 μV p-p
Current Noise f = 1 kHz 100 100 100 fA/√Hz
0.1 Hz to 10 Hz 10 10 10 pA p-p
REFERENCE INPUT
RIN 20 20 20 kΩ
IIN VIN+, VREF = 0 50 60 50 60 50 60 μA
Voltage Range −VS + 1.6 +VS − 1.6 −VS + 1.6 +VS − 1.6 −VS + 1.6 +VS − 1.6 V
Gain to Output 1 ± 0.0001 1 ± 0.0001 1 ± 0.0001
POWER SUPPLY
Operating Range4 ±2.3 ±18 ±2.3 ±18 ±2.3 ±18 V
Quiescent Current VS = ±2.3 V
to ±18 V
0.9 1.3 0.9 1.3 0.9 1.3 mA
Overtemperature 1.1 1.6 1.1 1.6 1.1 1.6 mA
TEMPERATURE RANGE
For Specified Performance −40 to +85 −40 to +85 −55 to +125 °C
1 See Analog Devices military data sheet for 883B tested specifications.
2 Does not include effects of external resistor RG.
3 One input grounded. G = 1.
4 This is defined as the same supply range that is used to specify PSR.
AD620
Rev. H | Page 5 of 20
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage ±18 V
Internal Power Dissipation1 650 mW
Input Voltage (Common-Mode) ±VS
Differential Input Voltage 25 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range (Q) −65°C to +150°C
Storage Temperature Range (N, R) −65°C to +125°C
Operating Temperature Range
AD620 (A, B) −40°C to +85°C
AD620 (S) −55°C to +125°C
Lead Temperature Range
(Soldering 10 seconds) 300°C
1 Specification is for device in free air:
8-Lead Plastic Package: θJA = 95°C
8-Lead CERDIP Package: θJA = 110°C
8-Lead SOIC Package: θJA = 155°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other condition s above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
AD620
Rev. H | Page 6 of 20
TYPICAL PERFORMANCE CHARACTERISTICS
(@ 25°C, VS = ±15 V, RL = 2 kΩ, unless otherwise noted.)
INPUT OFFSET VOLTAGE (μV)
20
30
40
50
–40 0 40 80
PERCENTAGE OF UNITS
–80
SAMPLE SIZE = 360
10
0
00775-0-005
Figure 3. Typical Distribution of Input Offset Voltage
INPUT BIAS CURRENT (pA)
0
10
20
30
40
50
–600 0 600
PERCENTAGE OF UNITS
–1200 1200
SAMPLE SIZE = 850
00775-0-006
Figure 4. Typical Distribution of Input Bias Current
10
20
30
40
50
–200 0 200 400
INPUT OFFSET CURRENT (pA)
PERCENTAGE OF UNITS
–400
0
SAMPLE SIZE = 850 00775-0-007
Figure 5. Typical Distribution of Input Offset Current
TEMPERATURE (°C)
INPUT BIAS CURRENT (nA)
+IB
–IB
2.0
–2.0
175
–1.0
–1.5
–75
–0.5
0
0.5
1.0
1.5
–25 25 75 125
00775-0-008
Figure 6. Input Bias Current vs. Temperature
CHANGE IN OFFSET VOLTAGE (μV)
1.5
0.5
WARM-UP TIME (Minutes)
2.0
0
0 1
1.0
2 3 4 5
00775-0-009
Figure 7. Change in Input Offset Voltage vs. Warm-Up Time
FREQUENCY (Hz)
1000
1
1 100k
100
10
100 1k 10k
VOLTAGE NOISE (nV/ Hz)
GAIN = 1
GAIN = 10
10
GAIN = 100, 1,000
GAIN = 1000
BW LIMIT
00775-0-010
Figure 8. Voltage Noise Spectral Density vs. Frequency (G = 1−1000)
AD620
Rev. H | Page 7 of 20
FREQUENCY (Hz)
1000
100
10
1 10 100 1000
CURRENT NOISE (fA/ Hz)
00775-0-011
Figure 9. Current Noise Spectral Density vs. Frequency
RTI NOISE (2.0μV/DIV)
TIME (1 SEC/DIV)
00775-0-012
Figure 10. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)
RTI NOISE (0.1μV/DIV)
TIME (1 SEC/DIV)
00775-0-013
Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)
00775-0-014
Figure 12. 0.1 Hz to 10 Hz Current Noise, 5 pA/Div
100
1000
AD620A
FET INPUT
IN-AMP
SOURCE RESISTANCE (Ω)
TOTAL DRIFT FROM 25°C TO 85°C, RTI (μV)
100,000
10
1k 10M
10,000
10k 100k 1M
00775-0-015
Figure 13. Total Drift vs. Source Resistance
FREQUENCY (Hz)
CMR (dB)
160
0
1M
80
40
1
60
0.1
140
100
120
10 100 1k 10k 100k
G = 1000
G = 100
G = 10
G = 1
20
00775-0-016
Figure 14. Typical CMR vs. Frequency, RTI, Zero to 1 kΩ Source Imbalance
AD620
Rev. H | Page 8 of 20
FREQUENCY (Hz)
PSR (dB)
160
1M
80
40
1
60
0.1
140
100
120
10 100 1k 10k 100k
20
G = 1000
G = 100
G = 10
G = 1
180
00775-0-017
Figure 15. Positive PSR vs. Frequency, RTI (G = 1−1000)
FREQUENCY (Hz)
PSR (dB)
160
1M
80
40
1
60
0.1
140
100
120
10 100 1k 10k 100k
20
180
G = 10
G = 100
G = 1
G = 1000
00775-0-018
Figure 16. Negative PSR vs. Frequency, RTI (G = 1−1000)
1000
100 10M
100
1
1k
10
10k 100k 1M
FREQUENCY (Hz)
GAIN (V/V)
0.1
00775-0-019
Figure 17. Gain vs. Frequency
OUTPUT VOLTAGE (V p-p)
FREQUENCY (Hz)
35
0
1M
15
5
10k
10
1k
30
20
25
100k
G = 10, 100, 1000
G = 1
G = 1000 G = 100
BW LIMIT
00775-0-020
Figure 18. Large Signal Frequency Response
INPUT VOLTAGE LIMIT (V)
(REFERRED TO SUPPLY VOLTAGES) 20
+1.0
+0.5
0 5
+1.5
–1.5
–1.0
–0.5
10 15
SUPPLY VOLTAGE ± Volts
+VS –0.0
–VS +0.0
00775-0-021
Figure 19. Input Voltage Range vs. Supply Voltage, G = 1
20
+1.0
+0.5
0 5
+1.5
–1.5
–1.0
–0.5
10 15
SUPPLY VOLTAGE ± Volts
RL = 10kΩ
RL = 2kΩ
RL = 10kΩ
OUTPUT VOLTAGE SWING (V)
(REFERRED TO SUPPLY VOLTAGES)
RL = 2kΩ
+VS
–VS
00775-0-022
–0.0
+0.0
Figure 20. Output Voltage Swing vs. Supply Voltage, G = 10
AD620
Rev. H | Page 9 of 20
OUTPUT VOLTAGE SWING (V p-p)
LOAD RESISTANCE (Ω)
30
0
0 10k
20
10
100 1k
VS = ±15V
G = 10
00775-0-023
Figure 21. Output Voltage Swing vs. Load Resistance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-024
Figure 22. Large Signal Pulse Response and Settling Time
G = 1 (0.5 mV = 0.01%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00775-0-025
Figure 23. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-026
Figure 24. Large Signal Response and Settling Time, G = 10 (0.5 mV = 0.01%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-027
Figure 25. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-030
Figure 26. Large Signal Response and Settling Time, G = 100 (0.5 mV = 0.01%)
AD620
Rev. H | Page 10 of 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-029
Figure 27. Small Signal Pulse Response, G = 100, RL = 2 kΩ, CL = 100 pF
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-030
Figure 28. Large Signal Response and Settling Time,
G = 1000 (0.5 mV = 0.01% )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-031
Figure 29. Small Signal Pulse Response, G = 1000, RL = 2 kΩ, CL = 100 pF
OUTPUT STEP SIZE (V)
SETTLING TIME (μs)
TO 0.01%
TO 0.1%
20
0
0 2
15
5
5
10
10 15 0
00775-0-032
Figure 30. Settling Time vs. Step Size (G = 1)
GAIN
SETTLING TIME (μs)
1000
1
1 1000
100
10
10 100
00775-0-033
Figure 31. Settling Time to 0.01% vs. Gain, for a 10 V Step
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-034
Figure 32. Gain Nonlinearity, G = 1, RL = 10 kΩ (10 μV = 1 ppm)
AD620
Rev. H | Page 11 of 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-035
Figure 33. Gain Nonlinearity, G = 100, RL = 10 kΩ
(100 μV = 10 ppm)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
00775-0-036
Figure 34. Gain Nonlinearity, G = 1000, RL = 10 kΩ
(1 mV = 100 ppm)
AD620
VOUT
G = 1000 G = 1
49.9Ω
10kΩ *
1kΩ
10T 10kΩ
499Ω
G = 100 G = 10
5.49kΩ
+VS
11kΩ 1kΩ 100Ω
100kΩ
INPUT
10V p-p
–VS
*ALL RESISTORS 1% TOLERANCE
1 7
2
3
8
6
4
5
00775-0-037
Figure 35. Settling Time Test Circuit
AD620
Rev. H | Page 12 of 20
THEORY OF OPERATION
VB
–VS
A1 A2
A3
C2
RG
R1 R2
GAIN
SENSE
GAIN
SENSE
10kΩ
10kΩ
I1 I2
10kΩ
REF
10kΩ
+IN
– IN R4
400Ω
OUTPUT
C1
Q1 Q2
00775-0-038
R3
400Ω
+VS +VS
+VS
20μA 20μA
Figure 36. Simplified Schematic of AD620
The AD620 is a monolithic instrumentation amplifier based on
a modification of the classic three op amp approach. Absolute
value trimming allows the user to program gain accurately
(to 0.15% at G = 100) with only one resistor. Monolithic
construction and laser wafer trimming allow the tight matching
and tracking of circuit components, thus ensuring the high level
of performance inherent in this circuit.
The input transistors Q1 and Q2 provide a single differentialpair
bipolar input for high precision (Figure 36), yet offer 10×
lower input bias current thanks to Superϐeta processing.
Feedback through the Q1-A1-R1 loop and the Q2-A2-R2 loop
maintains constant collector current of the input devices Q1
and Q2, thereby impressing the input voltage across the external
gain setting resistor RG. This creates a differential gain from the
inputs to the A1/A2 outputs given by G = (R1 + R2)/RG + 1. The
unity-gain subtractor, A3, removes any common-mode signal,
yielding a single-ended output referred to the REF pin potential.
The value of RG also determines the transconductance of the
preamp stage. As RG is reduced for larger gains, the
transconductance increases asymptotically to that of the input
transistors. This has three important advantages: (a) Open-loop
gain is boosted for increasing programmed gain, thus reducing
gain related errors. (b) The gain-bandwidth product
(determined by C1 and C2 and the preamp transconductance)
increases with programmed gain, thus optimizing frequency
response. (c) The input voltage noise is reduced to a value of
9 nV/√Hz, determined mainly by the collector current and base
resistance of the input devices.
The internal gain resistors, R1 and R2, are trimmed to an
absolute value of 24.7 kΩ, allowing the gain to be programmed
accurately with a single external resistor.
The gain equation is then
1
49.4 +
Ω
=
RG
k
G
1
49.4
−
Ω
=
G
k
RG
Make vs. Buy: a Typical Bridge Application Error Budget
The AD620 offers improved performance over “homebrew”
three op amp IA designs, along with smaller size, fewer
components, and 10× lower supply current. In the typical
application, shown in Figure 37, a gain of 100 is required to
amplify a bridge output of 20 mV full-scale over the industrial
temperature range of −40°C to +85°C. Table 4 shows how to
calculate the effect various error sources have on circuit
accuracy.
AD620
Rev. H | Page 13 of 20
Regardless of the system in which it is being used, the AD620
provides greater accuracy at low power and price. In simple
systems, absolute accuracy and drift errors are by far the most
significant contributors to error. In more complex systems
with an intelligent processor, an autogain/autozero cycle
removes all absolute accuracy and drift errors, leaving only the
resolution errors of gain, nonlinearity, and noise, thus allowing
full 14-bit accuracy.
Note that for the homebrew circuit, the OP07 specifications for
input voltage offset and noise have been multiplied by √2. This
is because a three op amp type in-amp has two op amps at its
inputs, both contributing to the overall input error.
R = 350Ω
10V
PRECISION BRIDGE TRANSDUCER
R = 350Ω R = 350Ω
R = 350Ω
00775-0-039
AD620A MONOLITHIC
INSTRUMENTATION
AMPLIFIER, G = 100
SUPPLY CURRENT = 1.3mA MAX
AD620A RG
499Ω
REFERENCE
00775-0-040
Figure 37. Make vs. Buy
"HOMEBREW" IN-AMP, G = 100
*0.02% RESISTOR MATCH, 3ppm/°C TRACKING
**DISCRETE 1% RESISTOR, 100ppm/°C TRACKING
SUPPLY CURRENT = 15mA MAX
100Ω **
10kΩ *
10kΩ **
10kΩ *
10kΩ *
10kΩ **
10kΩ*
OP07D
OP07D
OP07D
00775-0-041
Table 4. Make vs. Buy Error Budget
Error, ppm of Full Scale
Error Source AD620 Circuit Calculation “Homebrew” Circuit Calculation AD620 Homebrew
ABSOLUTE ACCURACY at TA = 25°C
Input Offset Voltage, μV 125 μV/20 mV (150 μV × √2)/20 mV 6,250 10,607
Output Offset Voltage, μV 1000 μV/100 mV/20 mV ((150 μV × 2)/100)/20 mV 500 150
Input Offset Current, nA 2 nA ×350 Ω/20 mV (6 nA ×350 Ω)/20 mV 18 53
CMR, dB 110 dB(3.16 ppm) ×5 V/20 mV (0.02% Match × 5 V)/20 mV/100 791 500
Total Absolute Error 7,559 11,310
DRIFT TO 85°C
Gain Drift, ppm/°C (50 ppm + 10 ppm) ×60°C 100 ppm/°C Track × 60°C 3,600 6,000
Input Offset Voltage Drift, μV/°C 1 μV/°C × 60°C/20 mV (2.5 μV/°C × √2 × 60°C)/20 mV 3,000 10,607
Output Offset Voltage Drift, μV/°C 15 μV/°C × 60°C/100 mV/20 mV (2.5 μV/°C × 2 × 60°C)/100 mV/20 mV 450 150
Total Drift Error 7,050 16,757
RESOLUTION
Gain Nonlinearity, ppm of Full Scale 40 ppm 40 ppm 40 40
Typ 0.1 Hz to 10 Hz Voltage Noise, μV p-p 0.28 μV p-p/20 mV (0.38 μV p-p × √2)/20 mV 14 27
Total Resolution Error 54 67
Grand Total Error 14,663 28,134
G = 100, VS = ±15 V.
(All errors are min/max and referred to input.)
AD620
Rev. H | Page 14 of 20
3kΩ
5V
DIGITAL
DATA
OUTPUT
ADC
REF
IN
AGND
20kΩ
10kΩ
20kΩ
G = 100 AD620B
1.7mA 0.10mA 0.6mA
MAX
499Ω
3kΩ
3kΩ 3kΩ
2
1
8
3 7
6
5
4
1.3mA
MAX
AD705
00775-0-042
Figure 38. A Pressure Monitor Circuit that Operates on a 5 V Single Supply
Pressure Measurement
Although useful in many bridge applications, such as weigh
scales, the AD620 is especially suitable for higher resistance
pressure sensors powered at lower voltages where small size and
low power become more significant.
Figure 38 shows a 3 kΩ pressure transducer bridge powered
from 5 V. In such a circuit, the bridge consumes only 1.7 mA.
Adding the AD620 and a buffered voltage divider allows the
signal to be conditioned for only 3.8 mA of total supply current.
Small size and low cost make the AD620 especially attractive for
voltage output pressure transducers. Since it delivers low noise
and drift, it also serves applications such as diagnostic
noninvasive blood pressure measurement.
Medical ECG
The low current noise of the AD620 allows its use in ECG
monitors (Figure 39) where high source resistances of 1 MΩ or
higher are not uncommon. The AD620’s low power, low supply
voltage requirements, and space-saving 8-lead mini-DIP and
SOIC package offerings make it an excellent choice for batterypowered
data recorders.
Furthermore, the low bias currents and low current noise,
coupled with the low voltage noise of the AD620, improve the
dynamic range for better performance.
The value of capacitor C1 is chosen to maintain stability of
the right leg drive loop. Proper safeguards, such as isolation,
must be added to this circuit to protect the patient from
possible harm.
G = 7
AD620A
0.03Hz
HIGHPASS
FILTER
OUTPUT
1V/mV
+3V
–3V
RG
8.25kΩ
24.9kΩ
24.9kΩ
AD705J
G = 143
C1
1MΩ
R4
10kΩ
R1 R3
R2
OUTPUT
AMPLIFIER
PATIENT/CIRCUIT
PROTECTION/ISOLATION
00775-0-043
Figure 39. A Medical ECG Monitor Circuit
AD620
Rev. H | Page 15 of 20
Precision V-I Converter
The AD620, along with another op amp and two resistors,
makes a precision current source (Figure 40). The op amp
buffers the reference terminal to maintain good CMR. The
output voltage, VX, of the AD620 appears across R1, which
converts it to a current. This current, less only the input bias
current of the op amp, then flows out to the load.
RG AD620
–VS
VIN+
VIN–
LOAD
R1
IL
Vx I L = R1
= IN+ [(V ) – (V IN – )] G
R1
6
5
+ VX –
2 4
1
8
3 7
+VS
AD705
00775-0-044
Figure 40. Precision Voltage-to-Current Converter (Operates on 1.8 mA, ±3 V)
GAIN SELECTION
The AD620 gain is resistor-programmed by RG, or more
precisely, by whatever impedance appears between Pins 1 and 8.
The AD620 is designed to offer accurate gains using 0.1% to 1%
resistors. Table 5 shows required values of RG for various gains.
Note that for G = 1, the RG pins are unconnected (RG = ∞). For
any arbitrary gain, RG can be calculated by using the formula:
1
49.4
−
Ω
=
G
k
RG
To minimize gain error, avoid high parasitic resistance in series
with RG; to minimize gain drift, RG should have a low TC—less
than 10 ppm/°C—for the best performance.
Table 5. Required Values of Gain Resistors
1% Std Table
Value of RG(Ω)
Calculated
Gain
0.1% Std Table
Value of RG(Ω )
Calculated
Gain
49.9 k 1.990 49.3 k 2.002
12.4 k 4.984 12.4 k 4.984
5.49 k 9.998 5.49 k 9.998
2.61 k 19.93 2.61 k 19.93
1.00 k 50.40 1.01 k 49.91
499 100.0 499 100.0
249 199.4 249 199.4
100 495.0 98.8 501.0
49.9 991.0 49.3 1,003.0
INPUT AND OUTPUT OFFSET VOLTAGE
The low errors of the AD620 are attributed to two sources,
input and output errors. The output error is divided by G when
referred to the input. In practice, the input errors dominate at
high gains, and the output errors dominate at low gains. The
total VOS for a given gain is calculated as
Total Error RTI = input error + (output error/G)
Total Error RTO = (input error × G) + output error
REFERENCE TERMINAL
The reference terminal potential defines the zero output voltage
and is especially useful when the load does not share a precise
ground with the rest of the system. It provides a direct means of
injecting a precise offset to the output, with an allowable range
of 2 V within the supply voltages. Parasitic resistance should be
kept to a minimum for optimum CMR.
INPUT PROTECTION
The AD620 safely withstands an input current of ±60 mA for
several hours at room temperature. This is true for all gains and
power on and off, which is useful if the signal source and
amplifier are powered separately. For longer time periods, the
input current should not exceed 6 mA.
For input voltages beyond the supplies, a protection resistor
should be placed in series with each input to limit the current to
6 mA. These can be the same resistors as those used in the RFI
filter. High values of resistance can impact the noise and AC
CMRR performance of the system. Low leakage diodes (such as
the BAV199) can be placed at the inputs to reduce the required
protection resistance.
AD620
R
REF
R
+SUPPLY
–SUPPLY
VOUT
+IN
–IN
00775-0-052
Figure 41. Diode Protection for Voltages Beyond Supply
RF INTERFERENCE
All instrumentation amplifiers rectify small out of band signals.
The disturbance may appear as a small dc voltage offset. High
frequency signals can be filtered with a low pass R-C network
placed at the input of the instrumentation amplifier. Figure 42
demonstrates such a configuration. The filter limits the input
AD620
Rev. H | Page 16 of 20
signal according to the following relationship:
2 (2 )
1
D C
DIFF R C C
FilterFreq
π +
=
C
CM RC
FilterFreq
π
=
2
1
where CD ≥10CC.
CD affects the difference signal. CC affects the common-mode
signal. Any mismatch in R × CC degrades the AD620 CMRR. To
avoid inadvertently reducing CMRR-bandwidth performance,
make sure that CC is at least one magnitude smaller than CD.
The effect of mismatched CCs is reduced with a larger CD:CC
ratio.
499Ω AD620
+
–
VOUT
R
R
CC
CD
CC +IN
–IN REF
–15V
0.1μ F 10μ F
+15V
0.1μ F 10μ F
00775-0-045
Figure 42. Circuit to Attenuate RF Interference
COMMON-MODE REJECTION
Instrumentation amplifiers, such as the AD620, offer high
CMR, which is a measure of the change in output voltage when
both inputs are changed by equal amounts. These specifications
are usually given for a full-range input voltage change and a
specified source imbalance.
For optimal CMR, the reference terminal should be tied to a
low impedance point, and differences in capacitance and
resistance should be kept to a minimum between the two
inputs. In many applications, shielded cables are used to
minimize noise; for best CMR over frequency, the shield
should be properly driven. Figure 43 and Figure 44 show active
data guards that are configured to improve ac common-mode
rejections by “bootstrapping” the capacitances of input cable
shields, thus minimizing the capacitance mismatch between the
inputs.
REFERENCE
VOUT AD620
100Ω
100Ω
– INPUT
+ INPUT
AD648
RG
–VS
+VS
–VS
00775-0-046
Figure 43. Differential Shield Driver
100Ω
– INPUT
+ INPUT
REFERENCE
VOUT AD620
–VS
+VS
2
RG
2
RG AD548
00775-0-047
Figure 44. Common-Mode Shield Driver
GROUNDING
Since the AD620 output voltage is developed with respect to the
potential on the reference terminal, it can solve many
grounding problems by simply tying the REF pin to the
appropriate “local ground.”
To isolate low level analog signals from a noisy digital
environment, many data-acquisition components have separate
analog and digital ground pins (Figure 45). It would be
convenient to use a single ground line; however, current
through ground wires and PC runs of the circuit card can cause
hundreds of millivolts of error. Therefore, separate ground
returns should be provided to minimize the current flow from
the sensitive points to the system ground. These ground returns
must be tied together at some point, usually best at the ADC
package shown in Figure 45.
DIGITAL P.S.
C +5V
ANALOG P.S.
+15V C –15V
AD574A DIGITAL
DATA
OUTPUT
+
1μF
AD620
0.1μF
AD585
S/H ADC
0.1μF
1μF 1μF
00775-0-048
Figure 45. Basic Grounding Practice
AD620
Rev. H | Page 17 of 20
GROUND RETURNS FOR INPUT BIAS CURRENTS
VOUT
– INPUT
+ INPUT
RG
LOAD
TO POWER
SUPPLY
GROUND
REFERENCE
+VS
–VS
AD620
00775-0-050
Input bias currents are those currents necessary to bias the
input transistors of an amplifier. There must be a direct return
path for these currents. Therefore, when amplifying “floating”
input sources, such as transformers or ac-coupled sources, there
must be a dc path from each input to ground, as shown in
Figure 46, Figure 47, and Figure 48. Refer to A Designer’s Guide
to Instrumentation Amplifiers (free from Analog Devices) for
more information regarding in-amp applications.
AD620 VOUT
– INPUT
RG
TO POWER
SUPPLY
GROUND
+ INPUT REFERENCE
+VS
–VS
LOAD
00775-0-049
Figure 47. Ground Returns for Bias Currents with Thermocouple Inputs
100kΩ
AD620 VOUT
– INPUT
+ INPUT
RG
LOAD
TO POWER
SUPPLY
GROUND
REFERENCE
100kΩ –VS
+VS
00775-0-051
Figure 46. Ground Returns for Bias Currents with Transformer-Coupled Inputs
Figure 48. Ground Returns for Bias Currents with AC-Coupled Inputs
AD620
Rev. H | Page 18 of 20
AD620ACHIPS INFORMATION
Die size: 1803 μm × 3175 μm
Die thickness: 483 μm
Bond Pad Metal: 1% Copper Doped Aluminum
To minimize gain errors introduced by the bond wires, use Kelvin connections between the chip and the gain resistor, RG, by connecting
Pad 1A and Pad 1B in parallel to one end of RG and Pad 8A and Pad 8B in parallel to the other end of RG. For unity gain applications
where RG is not required, Pad 1A and Pad 1B must be bonded together as well as the Pad 8A and Pad 8B.
1A
1B
2
3
4 5
6
7
8A
8B
LOGO
00775-0-053
Figure 49. Bond Pad Diagram
Table 6. Bond Pad Information
Pad Coordinates1
Pad No. Mnemonic X (μm) Y (μm)
1A RG −623 +1424
1B RG −789 +628
2 −IN −790 +453
3 +IN −790 −294
4 −VS −788 −1419
5 REF +570 −1429
6 OUTPUT +693 −1254
7 +VS +693 +139
8A RG +505 +1423
8B RG +693 +372
1 The pad coordinates indicate the center of each pad, referenced to the center of the die. The die orientation is indicated by the logo, as shown in Figure 49.
AD620
Rev. H | Page 19 of 20
OUTLINE DIMENSIONS
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
070606-A
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
SEATING
PLANE
0.015
(0.38)
MIN
0.210 (5.33)
MAX
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
8
1 4
5 0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.100 (2.54)
BSC
0.400 (10.16)
0.365 (9.27)
0.355 (9.02)
0.060 (1.52)
MAX
0.430 (10.92)
MAX
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.005 (0.13)
MIN
Figure 50. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body (N-8).
Dimensions shown in inches and (millimeters)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.310 (7.87)
0.220 (5.59)
0.005 (0.13)
MIN
0.055 (1.40)
MAX
0.100 (2.54) BSC
15°
0°
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
SEATING 0.008 (0.20)
PLANE
0.200 (5.08)
MAX
0.405 (10.29) MAX
0.150 (3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36) 0.070 (1.78)
0.030 (0.76)
0.060 (1.52)
0.015 (0.38)
1 4
8 5
Figure 51. 8-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-8)
Dimensions shown in inches and (millimeters)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AA
012407-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
1 4
8 5
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500)
BSC
6.20 (0.2441)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
Figure 52. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
AD620
Rev. H | Page 20 of 20
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
AD620AN −40°C to +85°C 8-Lead PDIP N-8
AD620ANZ −40°C to +85°C 8-Lead PDIP N-8
AD620BN −40°C to +85°C 8-Lead PDIP N-8
AD620BNZ −40°C to +85°C 8-Lead PDIP N-8
AD620AR −40°C to +85°C 8-Lead SOIC_N R-8
AD620ARZ −40°C to +85°C 8-Lead SOIC_N R-8
AD620AR-REEL −40°C to +85°C 8-Lead SOIC_N, 13" Tape and Reel R-8
AD620ARZ-REEL −40°C to +85°C 8-Lead SOIC_N, 13" Tape and Reel R-8
AD620AR-REEL7 −40°C to +85°C 8-Lead SOIC_N, 7" Tape and Reel R-8
AD620ARZ-REEL7 −40°C to +85°C 8-Lead SOIC_N, 7" Tape and Reel R-8
AD620BR −40°C to +85°C 8-Lead SOIC_N R-8
AD620BRZ −40°C to +85°C 8-Lead SOIC_N R-8
AD620BR-REEL −40°C to +85°C 8-Lead SOIC_N, 13" Tape and Reel R-8
AD620BRZ-RL −40°C to +85°C 8-Lead SOIC_N, 13" Tape and Reel R-8
AD620BR-REEL7 −40°C to +85°C 8-Lead SOIC_N, 7" Tape and Reel R-8
AD620BRZ-R7 −40°C to +85°C 8-Lead SOIC_N, 7" Tape and Reel R-8
AD620ACHIPS −40°C to +85°C Die Form
AD620SQ/883B −55°C to +125°C 8-Lead CERDIP Q-8
1 Z = RoHS Compliant Part.
© 2003–2011 Analog Devices, Inc. All rights reserved. Trademarks
and registered trademarks are the property of their respective owners.
C00775–0–7/11(H)
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 1 of 18
a
Compensating
the dead time of
voltage inverters
with the ADMC331
AN331-50
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 2 of 18
Table of Contents
SUMMARY...................................................................................................................... 3
1 DEAD TIME EFFECTS AND THEIR COMPENSATION .......................................... 3
2 IMPLEMENTATION OF THE FEED FORWARD DEAD TIME COMPENSATION .. 5
2.1 Using the dt_comp routines ...........................................................................................................................5
2.2 Using the dt_comp routine.............................................................................................................................6
2.3 The program code...........................................................................................................................................7
3 EXAMPLE: TESTING THE VALIDITY OF THE FEED FORWARD DEAD TIME
COMPENSATION........................................................................................................... 7
3.1 The construction of an inverter .....................................................................................................................7
3.2 The software program used to test the feed forward dead time compensation.........................................8
3.3 The main include file: main.h ......................................................................................................................12
3.4 The program offset.dsp and its header offset.h..........................................................................................12
3.5 Experimental results.....................................................................................................................................16
4 REFERENCES ....................................................................................................... 18
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 3 of 18
Summary
Due to the finite switching time, in order to prevent the appearance of short circuits, the power devices of
an inverter must be commanded introducing a delay between their active times. This delay, called dead
time because in this period no power device is active, introduces small voltage errors, which are sufficient
to produce distorted motor currents, oscillations of the motor torque and therefore even the motor
controllability may be lost [1].
This paper presents one method to compensate the effects of the dead time, the experimental hardware on
which this method was tested and the assembly program associated with it.
1 Dead Time effects and their compensation
Consider a voltage inverter with a motor connected at its output terminals (Figure 1).
d V
T1
T 2
T 3
T 4
T 5
T 6
D1
D2 D4 D6
D3 D5
0 1 ≥ s i
1 v
Figure 1: Voltage source inverter
The effects of the dead time may be examined by considering only the first phase of the inverter. On this
phase it is desired to obtain the reference PWM signal *
1 v presented in Figure 2a. The signals used to
command the power devices are assumed to be active LOW, which means that when they are LOW, the
power devices conduct (Figures 2b and 2c). The output signal obtained at the motor terminal depends on
the sense of the current flowing in this phase:
In the case of the current flowing from inverter to the motor (assumed positive sense), when T2 conducts,
the phase terminal is linked to the GND and the voltage 1 v is 0. During the dead time period, when both
power devices are turned OFF, the current continues to flow into the motor using the reverse recovery
diode D2, so 1 v will continue to be 0. When the upper power device T1 conducts, the phase terminal is
connected to d V and 1 v is equal to d V . During the second half cycle, the phenomenon repeats itself
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 4 of 18
symmetrically. The final behaviour of 1 v is presented in Figure 2d. It may be observed that the average
value of 1 v is less than the reference value by an amount determined by the dead time:
d
s
V
T
DT
v = v − ⋅ *
1 1 (1)
DT DT 2 DT 2
s T
*
1 v
T1
T 2
0
1
1
≥ s i
v when
0
1
1
< s i
v when
a)
b)
c)
d)
e)
d V
d V
*
1 T
Figure 2: The influence of the dead time over the output phase voltage
In the case of the current flowing from the motor to the inverter, when T2 conducts, the phase terminal is
linked to the GND and the voltage 1 v is 0. During the dead time period, the current continues to flow from
the motor using the reverse recovery diode D1, so 1 v will become equal to d V . When the upper power
device T1 conducts, the phase terminal is connected to d V and 1 v will continue to be equal to d V . During
the second half, the phenomenon repeats itself symmetrically. The final behaviour of 1 v is presented in
Figure 2e. It may be observed that the average value of 1 v is greater than the reference value by an
amount determined by the dead time:
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 5 of 18
d
s
V
T
DT
v = v + ⋅ *
1 1 (2)
Equations (1) and (2) provide the first method to compensate for the dead time: the feed-forward
compensation. In relation of the current sense, the inverter phase will be commanded with a reference
voltage **
1 v such that the voltage 1 v at the inverter terminal will become equal with the reference voltage
*
1 v :
d
s
V
T
DT
v = v + ⋅ *
1
**
1 when i ≥ 0 (3)
d
s
V
T
DT
v = v − ⋅ *
1
**
1 when i < 0 .
These expressions mean that when the phase current is positive, the duty cycle *
1 T correspondent to *
1 v
has to be increased by the dead time and when the phase current is negative, the duty cycle has to be
decreased by the dead time. The only drawback of this method appears when the current changes its sign,
because this moment cannot be foreseen. It is easily seen that when the sign is not correctly applied, an
error of two times the dead time is introduced.
Another method to compensate the dead time is the following: The actual inverter voltages are measured
on every phase. The compensation is done adding to the reference phase voltage *
1 v a term proportional
to the voltage error on that phase:
( 1) ( 1) [ ( ) ( )] 1
*
1
*
1
**
1 v k + = v k + + K ⋅ v k − v k (4)
where:
- ** ( 1)
1 v k + is the voltage which will be commanded on the first inverter phase;
- * ( 1)
1 v k + is the reference voltage which would have been commanded if the dead time
compensation had not been considered;
-K is the gain of the compensator, usually less than or equal to 1;
- * ( )
1 v k is the reference voltage which would have been commanded during the previous PWM
cycle if the dead time compensation had not been considered;
- ( ) 1 v k is the inverter phase voltage measured during the previous PWM cycle.
The drawback of this method is that all the inverter phase voltages have to be measured. It is possible to
measure only two inverter phases if the PWM modulation is space vector type or sinusoidal.
2 Implementation of the feed forward dead time compensation
2.1 Using the dt_comp routines
The routines are developed as an easy-to-use library, which has to be linked to the user’s application. The
library consists of two files. The file “dt_comp.dsp” contains the assembly code of the subroutines. The
block has to be compiled and then linked to an application. The user has to include the header file
dt_comp.h, which provides the function-like calls to the subroutines. The example file in Section 3 will
demonstrate the usage of all the routines.
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 6 of 18
Operation Usage
Compute On-times compensating the
dead time
DeadTime_Comp(StatorCurrent_struct, Dutycycles_struct)
Table 1 Implemented routine
The input vector StatorCurrents_struct consists of three elements, the three inverter phase currents.
Because their sum is always zero, only two of them need to be measured. They have to be scaled because
the DSP uses fixed point formats. The scaling factor is 2⋅ Imax , where max I represents the maximum
current which may be placed at the input pin of the A/D converter. The 2 factor is used to prevent
overflows when the currents are used in arithmetical operations.
The vector Dutycycles_struct is an input and also an output: It represents the duty cycles for each phase,
previously computed by the PWM modulator. After the compensation, they represent the duty cycles
effectively commanded to the inverter. Their values have to be between 0 and PWMTM, the number
which controls the PWM switching frequency.
DeadTime_comp represents a macro, which must be introduced into the program code if the dead time
compensation is desired. The format of inputs and outputs are explained in more detail in the next section.
The routines do not require any configuration constants from the main include-file “main.h” that comes
with every application note. For more information about the general structure of the application notes and
including libraries into user applications refer to the Library Documentation File. Section 2.2 shows an
example of usage of this library. In the following sections each routine is explained in detail with the
relevant segments of code which is found in either “dt_comp.h” or “dt_comp.dsp”. For more information
see the comments in those files.
2.2 Using the dt_comp routine
The macro listed in the Table 1 is based on a subroutine called DeadTime_Comp_. It is described in
detail in the next section. The following table gives an overview of what DSP registers are used in this
macro:
Macro Input1 and modified DAG
registers
Output2 Modified core registers
DeadTime_Comp I1 = ^ StatorCurrents_struct;
M1, M2 = 1; L1, L2 = 0;
I2 = ^ Dutycycles_struct; M3 = 0;
N/A AX0, AY0, AY1, MR,
AR
Table2. DSP core registers used in the macro
This macro has to be placed in the main program after the PWM reference duty cycles are computed, but
prior to the program that saves them into the duty cycle registers PWMCHA, PWMCHB, PWMCHC.
1 ^vector stands for ‘address of vector’.
2 N/A: The output values are stored in the output vector in the Data memory. No DSP core register is
used.
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 7 of 18
2.3 The program code
The following code contained in the file dt_comp.dsp describes the routine DeadTime_Comp_
mentioned in the previous section.
The routine is organised as a loop managed by the loop counter cntr. At each iteration, one phase current
from the buffer StatorCurrents_struct is tested and the compensation is done function of its sign. In the end, the new
duty cycle number is tested to ensure it is positive and less than the maximum admissible value, PWMTM. The last
instruction saves the number back into the buffer Dutycycles_struct.
DeadTime_Comp_:
AY0 = DM(PWMDT); { dead time normalized }
AY1 = dm(PWMTM);
CNTR = 3;
do dead_loop until ce;
ax0 = DM(I1, M1); { ax0 = Isk, k=1,2,3 }
mr1 = DM(I2, M3); { load Ta, Tb, Tc }
AR = MR1 + AY0;
none = pass ax0; {chek sign of the currents }
IF LT AR = MR1 - AY0;
none = pass AR;
if lt AR = PASS 0; { no negative values admitted}
af = AR - AY1;
if gt ar = pass ay1; { protection against overflows}
dead_loop:
DM(I2, M2) = ar;
rts;
3 Example: Testing the validity of the feed forward dead time
compensation
3.1 The construction of the inverter
The proposed compensation method was implemented on the ADMC331 Processor Board mounted on
an ADMC Connector Board. As inverter power part was used an evaluation platform produced by
International Rectifier, IRPT2056D Driver-Plus Board. It is a three phase 230VAC 3HP board and it
integrates all the processing components needed for a 3 HP motor drive. It is equipped with an
IRPT2056A IGBT power module and an IR2133J driver. The Analog Devices’ ADMC PWM isolation
board linked the Connector Board to the Power Board. This board produces an electric isolation between
the digital part and the inverter power part and also inverts the signals used to drive the power devices
(74HC240). Because the signals used by the driver IR2133J are active LOW and because of the inverting
line driver HC240, the PWM outputs of the ADMC331 are set to be active HIGH. Therefore the jumper
JP51 is in position 1-2.
1 See the ADMC331 Processor Board manual, Motion Control Group, Analog Devices, 1998
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 8 of 18
The inverter is driving an induction motor with the following characteristics: .13HP, 230V, 60Hz,
1725rpm, produced by Baldor. Because the power part is supplied with 110V, the maximum frequency
the motor may be run in the constant torque regime is:
c f
3
110 2
60
3
230 2 ⋅
=
⋅
f Hz c 28.7
230
110 60 = ⋅ =
Because the compensation needs the value of the inverter phase currents, two of them were sensed using
current transducers HA 10-NP produced by LEM. They are capable to measure up to 20A and this value
is used to scale down the measured values: I 20A max = . Also, an operational amplifier LM348 is used to
obtain the signal into the range of A/D converter of ADMC331: 0.3V÷3.5V. On the ADMC331 Processor
Board there are 5KHz filters that have an anti-aliasing role.
A block structure of the inverter is presented in Figure 3.
ADMCConnector Board
ADMC331 Processor
Board
IRPT2056D Driver Plus Board
ADMC PWM
Isolation Board
.13HP Induction
Motor
2xHP10-NP
s1 I
s 2 I
Figure 3. Inverter Block structure
3.2 The software program used to test the feed forward dead time compensation
The purpose of this program is to demonstrate the improvement offered by the feed forward dead time
compensation. It reads two motor currents, commands the motor to run at 14Hz, half of the cut frequency
c f and compensates for the dead time.
The file main.dsp contains the root program. The batch file build.bat compiles every file of the project,
links them together and builds the executable file main.exe. It may be applied either within DOS prompt
or clicking on it from Windows Explorer. Main.exe may be run on the Motion Control Debugger.
A brief description of the program will be given in the following:
Start of code - declaring start location in program memory
.MODULE/RAM/SEG=USER_PM1/ABS=0x30 Main_Program;
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 9 of 18
Next, the general systems constants and PWM configuration constants (main.h – see the next section) are
included. Also included are the PWM library2, the DAC interface3 and the space vector modulation4 module
definitions. The header file offset.h declares some macros used to measure the offset introduced by the current
transducers and autocal.h declares the macros used to calibrate the ADMC331 A/D converter.
{***************************************************************************************
* Include General System Parameters and Libraries *
***************************************************************************************}
#include ;
#include ;
#include ;
#include ;
#include ;
#include ;
#include ;
#include ;
#include ; { Application Specific Module }
#include ;
#include ;
#include ;
Constants used in this program
{***************************************************************************************
* Constants Defined in the Module *
***************************************************************************************}
.CONST CUT_FREQ = 28; {the cutting frequency of the tested motor}
.CONST Delta = 32768*2*CUT_FREQ/PWM_freq; {the increment of the angle}
.CONST TwoPiOverThree = 0xffff / 3; { Hex equivalent of 2pi/3 }
.CONST ALLOFF = 0x3F; { Used to disable IGBTies into PWMSEG }
Here is where all the vectors for the program are declared. The buffer StatorCurrents_struct represents
the three stator currents. The PWM duty cycles are stored in the buffer Dutycycles_struct and they are initialised
with 0.It may be seen that the variables which identify the current offsets, Is1Offset and Is2Offset are declared
circular because programming becomes easier. The average of the readings is computed on 32bit precision, so
every buffer consists of 2 words.
{***************************************************************************************
* Local Variables Defined in this Module *
***************************************************************************************}
.VAR/DM/RAM/SEG=USER_DM AD_IN; { Volts/Hertz Command (0-1) }
2 see AN331-03: Three-Phase Sine-Wave Generation using the PWM Unit of the ADMC331
3 see AN331-06: Using the Serial Digital to Analog Converter of the ADMC Connector Board
4 see AN331-17: Implementing Space Vector Modulation with the ADMC331
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 10 of 18
.INIT AD_IN : 0x3A0A; { Corresponds to 0.906/2 }
.VAR/DM/RAM/SEG=USER_DM Theta; { Current angle }
.INIT Theta : 0x0000;
.VAR/DM/RAM/SEG=USER_DM Vdq_ref[2]; { rotor ref.frame }
.VAR/DM/RAM/CIRC/SEG=USER_DM Valphabeta_ref[2]; { alphabeta frame }
.VAR/RAM/DM/SEG=USER_DM OnTime_struct[1*4];
.INIT OnTime_struct: 0x0000, 0x0000, 0x0000, 0x0000;
.VAR/RAM/DM/SEG=USER_DM Dutycycles_struct[1*3];
.INIT Dutycycles_struct: 0x0000, 0x0000, 0x0000;
.VAR/DM/RAM/SEG=USER_DM VrefA; { Voltage demands }
.VAR/DM/RAM/SEG=USER_DM VrefB;
.VAR/DM/RAM/SEG=USER_DM VrefC;
.INIT VrefA : 0x0000;
.INIT VrefB : 0x0000;
.INIT VrefC : 0x0000;
.VAR/DM/RAM/SEG=USER_DM StatorCurrents_struct[1*3]; { stator currents }
.VAR/DM/RAM/SEG=USER_DM Is1Offset[1];
.VAR/DM/RAM/SEG=USER_DM Is2Offset[1];
When the program begins, the PWM output signals are disabled. Then, the power module is reset and the
PWM block is set up to generate interrupts every 100μsec (see main.h in the next section). There is initialised the
D/A serial converter1 and there is unmasked the IRQ2 interrupt (the interrupt which manages the peripheral
interrupts on ADMC331). The main loop just waits for interrupts.
{********************************************************************************************}
{ Start of program code }
{********************************************************************************************}
Startup:
Write_DM(PWMSEG, ALLOFF); { the IGBTies are disabled }
IR_reset_PIO3; { Reset PowIRTrain Module }
PWM_Init(PWMSYNC_ISR, PWMTRIP_ISR);
DAC_Init; { Initialize the DAC-Module }
IFC = 0x80; { Clear any pending IRQ2 inter. }
ay0 = 0x200; { unmask irq2 interrupts. }
ar = IMASK;
ar = ar or ay0;
1 See ADMC Connector board user’s manual for further details
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 11 of 18
IMASK = ar; { IRQ2 ints fully enabled here }
ADC_Init; { ADC Counter will Operate at the DSP CLKOUT Frequency }
AutoCal_Init; { Initialize the Auto Calibration Routine }
Offset_Init; { offset.h }
Main: { Wait for interrupt to occur }
jump Main;
During the PWM_SYNC interrupt there are executed some routines which determine the internal offset of
the A/D converter1, the external offsets introduced by the current transducers and the measurement of the currents.
The successive routines generate three PWM signals of 14Hz obtained applying a continuous space vector
modulation2. The dead time compensation is placed at the end of this block. Finally, the signals that will be provided
to the D/A converter are computed.
{********************************************************************************************}
{ PWM Interrupt Service Routine }
{********************************************************************************************}
PWMSYNC_ISR:
Auto_Calibrate; { autocal.h }
OffsetDetermination(ADC1, ADC2, Is1Offset, Is2Offset); { offset.h }
ReadCurrents(Is1Offset, Is2Offset, StatorCurrents_struct, ADC1, ADC2); { offset.h }
DAC_Pause; { Required only when I1, M1 or L1 is used}
ar = DM (AD_IN );
mr = 0; {Clear mr }
mr1 = dm(Theta); {Preload Theta}
my0 = Delta;
mr = mr + ar*my0 (SS); {Compute new angle & store}
dm(Theta) = mr1;
DM(Vdq_ref )= ar; {Set constant Vdq reference (AD_IN,0)}
ar = pass 0;
DM(Vdq_ref+1)= ar;
refframe_Set_DAG_registers_for_transformations;
refframe_Forward_Park_angle(Vdq_ref,Valphabeta_ref,mr1); {generate Vreference in alpha-beta frame}
SVPWM_Calc_Ontimes(Valphabeta_ref, OnTime_struct); { use SVPWM routines}
SVPWM_Calc_Dutycycles(OnTime_struct, Dutycycles_struct);
DeadTime_Comp(StatorCurrents_struct, Dutycycles_struct);
SVPWM_Update_DutyCycles(Dutycycles_struct);
Dac_Resume;
my0 = DM(Theta); DAC_Put(1, my0); { output on DACs, amplified by multiplication }
mx0 = 0x8;
my0 = DM(Dutycycles_struct ); mr = mx0 * my0 (SS); Dac_Put(2, mr0);
my0 = DM(Dutycycles_struct+1); mr = mx0 * my0 (SS); Dac_Put(3, mr0);
1 See AN331-05: ADC-system on the ADMC331.
2 See AN331-17: Implementing Space Vector Modulation with ADMC331
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 12 of 18
AX0 = dm(Dutycycles_struct);
AY0 = Half_PWMTM;
AR = AX0 - AY0;
MY0 = 0x6523; {2/PWMTM=2/1296*2^15/2^6*2^15}
MR = AR * MY0 (SS);
SR = ASHIFT MR1 BY 6 (HI);
SR = SR OR LSHIFT MR0 BY 6 (LO);
DAC_Put(4, SR1);
sr1 = DM(StatorCurrents_struct); sr = ASHIFT sr1 BY 5 (HI); DAC_Put(5,sr1);
sr1 = DM(StatorCurrents_struct+1); sr = ASHIFT sr1 BY 5 (HI); DAC_Put(6, sr1);
SR1 = DM(StatorCurrents_struct+2); sr = ASHIFT sr1 BY 5 (HI); DAC_Put(7, sr1);
DAC_Update;
RTI;
3.3 The main include file: main.h
This file contains the definitions of ADMC331 constants, general-purpose macros, the configuration
parameters of the system and library routines. It should be included in every application. For more
information refer to the Library Documentation File.
This file is mostly self-explaining. As already mentioned, the dt_comp library does not require any
configuration parameters. The following table presents the parameters used to initialise the PWM block .It may be
emphasized the dead time period set at 6μsec, a large value for the power devices used on the IRPT2056D.
{********************************************************************************************}
{ Library: PWM block }
{ file : PWM331.dsp }
{ Application Note: Usage of the ADMC331 Pulse Width Modulation Block }
.CONST PWM_freq = 10000; {Desired PWM switching frequency [Hz] }
.CONST PWM_deadtime = 6000; {Desired deadtime [nsec] }
.CONST PWM_minpulse = 1000; {Desired minimal pulse time [nsec] }
.CONST PWM_syncpulse = 1540; {Desired sync pulse time [nsec] }
.CONST Half_PWMTM = 1000*Cry_clock/PWM_freq/2;
{********************************************************************************************}
3.4 The program offset.dsp and its header offset.h
The current transducers introduce an offset that has to be evaluated, otherwise the sign of the currents
would be determined with large errors. For this reason, at the beginning of the program, for a certain
number of PWM cycles (in this particular case 128, but may be more or less depending on the system)
there are measured the A/D channels corresponding to the two phase currents, V1 and V2. The average of
all measurements constitutes the offset of that current. Of course, this procedure may be applied at every
channel, if the signal is zero at the beginning of the program.
The header file offset.h contains the macros that are used during this process. Generally, they call
subroutines presented in the file offset.dsp.
This file begins declaring the variables OffsetCounter, TempOffset1 and TempOffset2 used in these
routines.
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 13 of 18
{***************************************************************************************
* Global Variables Defined in this Module *
***************************************************************************************}
.VAR/DM/RAM/SEG=USER_DM OffsetCounter[1];
.GLOBAL OffsetCounter;
.VAR/DM/RAM/CIRC/SEG=USER_DM TempOffset1[2];
.GLOBAL TempOffset1;
.VAR/DM/RAM/CIRC/SEG=USER_DM TempOffset2[2];
.GLOBAL TempOffset2;
The subroutine Offset_Init_ initialises the variables used to evaluate the offsets of the current transducers.
OffsetCounter is set to 128 because the offsets are considered the average of 128 measurements.
{*************************************************************************************
* Type: Routine *
* Call: Call Offset_Init_; *
* This subroutine initializes the variables initializes variables used to *
* evaluate the offsets of the current sensors *
* Inputs : None *
* Ouputs :None *
* Modified: AR *
***************************************************************************************}
Offset_Init_:
AR = Offset_Average;
dm(OffsetCounter) = AR;
AR = 0x0;
dm(TempOffset1) = AR;
dm(TempOffset1+1) = AR;
dm(TempOffset2) = AR;
dm(TempOffset2+1) = AR;
rts;
The subroutine EvaluateIs_offset_ computes the average of the measurements of a particular A/D channel.
{***************************************************************************************
* Type: Routine *
* Call: Call EvaluateIs_offset_; *
* This subroutine computes the average of the measurements of one A/D channel *
* Inputs : AR = the lecture of the A/D channel
* I1 = placed at the begining of the buffer which is averaged *
* M1 = 0, L1 = 0 *
* Ouputs :None *
* Modified: AY1, AY0, AR, SR, AX0 *
***************************************************************************************}
EvaluateIs_offset_:
AY1 = dm(I1, M1);
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 14 of 18
AY0 = dm(I1, M1);
AR = 0x4000 - AR;
SR = ASHIFT AR BY -7 (HI);
AR = SR0 + AY0;
AX0 = AR, AR = SR1 + AY1 + C;
dm(I1, M1) = AR;
dm(I1, M1) = AX0;
RTS;
. In the file offset.h there is a macro Offset_Init that initialises the address generators at the current offsets
buffers and then calls the subroutine Offset_Init_ from offset.dsp.
{***************************************************************************************
* Type: Macro *
* Call: Offset_Init; *
* This macro initializes variables used to evaluate the offsets of the current sensors *
* Input: none *
* Output: none *
* Modified: AR *
***************************************************************************************}
.MACRO Offset_Init;
CALL Offset_Init_;
.ENDMACRO;
The macro EvaluateIs_offset reads one A/D channel and computes the average offset of that channel
calling the subroutine EvaluateIs_offset_.
{***************************************************************************************
* Type: Macro *
* Call: EvaluateIs_offset; *
* Routine to compute the offset of one phase *
* Input: %0=the targeted AD channel *
* %1=the offset structure dedicated to the phase *
* %1=most significant word *
* %1+1=less significant word *
* Output: Current Offset structure *
* Modified: *
***************************************************************************************}
.MACRO EvaluateIs_offset(%0, %1);
ADC_Read(%0);
I1 = ^%1;
M1 = 1;
L1 = %%1;
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 15 of 18
CALL EvaluateIs_offset_;
.ENDMACRO;
The macro OffsetDetermination computes the offsets of the both A/D channels that measure the phase
currents.
{***************************************************************************************
* Type: Macro *
* Call: OffsetDetermination *
* Routine to compute the offsets introduced by the current sensors *
* Input: %0=ADC1 *
* %1=ADC2 *
* %2=Is1Offset *
* %3=Is2Offset *
* Output: Current Offsets structure *
* Modified: *
***************************************************************************************}
.MACRO OffsetDetermination(%0, %1, %2, %3);
AY0 = dm(OffsetCounter);
AR = AY0 - 1;
IF LT JUMP SaveOffsets;
dm(OffsetCounter) = AR;
EvaluateIs_offset(%0, TempOffset1);
EvaluateIs_offset(%1, TempOffset2);
RTI;
SaveOffsets:
AF = AR + 1;
IF NE JUMP ExitOffsetDet;
dm(OffsetCounter) = AR;
AR = dm(TempOffset1);
dm(%2) = AR;
AR = dm(TempOffset2);
dm(%3) = AR;
ExitOffsetDet:
.ENDMACRO;
The macro ReadCurrents reads the two phase currents, corrects them with the offset and finally computes
the third phase current. It may be noted that the output of the A/D converter is always a positive number. Because of
the presence of an inverting operational amplifier in the hardware, in order to obtain values between –1/2 and +1/2
(in fixed point the currents are scaled by 2⋅ Imax ) the outputs of the A/D converter have to be offset by 1/2
(0x4000).
{***************************************************************************************
* Type: Macro *
* Call: ReadCurrents; *
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 16 of 18
* This macro reads ADC1(Is1), ADC2(Is2) and then evaluates Is1, Is2 and Is3 *
* Input: %0 = offset of the first phase current *
* %1 = offset of the second phase current *
* %2 = the buffer of the 3 phase currents *
* %3 = ADC1 *
* %4 = ADC2 *
* Output: none *
* Modified: AY0, AR, MY0, MR, SR ,AF *
***************************************************************************************}
.MACRO ReadCurrents(%0, %1, %2, %3, %4);
ADC_Read(%3); { read Is1/Imax }
AR = 0x4000 - AR;
AY0 = dm(%0);
AR = AR - AY0;
dm(%2) = AR; { Is1/2Imax }
ADC_Read(%4); { read Is2/Imax }
AR = 0x4000 - AR;
AY0 = dm(%1);
AR = AR - AY0;
dm(%2+1) = AR; { Is2/2Imax }
AR = -AR;
AY0 = dm(%2); { Is1/2Imax }
AR = AR - AY0;
dm(%2+2) = AR; { Is3/2Imax=-Is2/2Imax-Is1/2Imax}
.ENDMACRO;
3.5 Experimental results
First of all, experiments without the dead time compensation were made. Figure 4 represents the inverter
phase voltage compared to the reference voltage that is desired at the inverter terminal and the phase
current. It may be seen that the behavior presented in chapter 1 is verified in practice: When the phase
current is positive, the real inverter phase voltage is less than the commanded one by an amount
determined by the dead time and when the phase current is negative, the real inverter phase voltage is
greater than the commanded.
At last, Figure 5 displays the inverter phase voltage and the phase current obtained with the feed forward
dead time compensation. It may be observed that the voltage still presents some distortions caused by the
nature of feed forwarding: it is supposed that the current measured during the previous PWM cycle
maintains its sign into the next PWM cycle; when the current changes the sign, this moment cannot be
foreseen and the error is doubled. These voltage deformations cause also deformations in the current
behaviour, and they may be prevented only implementing current controllers in a more accurate control
strategy, like field-oriented control.
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 17 of 18
Figure 4. Reference and real inverter phase voltages and the phase current
a Compensating the dead time of voltage inverters with the ADMC331 AN331-50
© Analog Devices Inc., August 2000 Page 18 of 18
Figure 5. Inverter phase voltage and phase current after the dead time compensation
4 References
[1] Pulse dead time compensator for PWM voltage inverters, David Leggate, Russel J. Kerkman,
Industrial Electronics, Control, and Instrumentation, 1995, Proceedings of the 1995 IEEE IECON 21st
International Conference on Volume: 1, Page(s): 474 -481 vol.1.
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1
Wide Operating Voltage Range of 2 V to 6 V
Typical Switch Enable Time of 18 ns
Low Power Consumption, 20-μA Max ICC
Low Input Current of 1 μA Max
High Degree of Linearity
High On-Off Output-Voltage Ratio
Low Crosstalk Between Switches
Low On-State Impedance . . .
50-Ω TYP at VCC = 6 V
Individual Switch Controls
description/ordering information
The SN74HC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital
signals. Each switch permits signals with amplitudes of up to 6 V (peak) to be transmitted in either direction.
Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the
associated switch section.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for
analog-to-digital and digital-to-analog conversion systems.
ORDERING INFORMATION
TA PACKAGE† ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
PDIP – N Tube of 25 SN74HC4066N SN74HC4066N
Tube of 50 SN74HC4066D
SOIC – D Reel of 2500 SN74HC4066DR HC4066
Reel of 250 SN74HC4066DT
–40°C to 85°C SOP – NS Reel of 2000 SN74HC4066NSR HC4066
SSOP – DB Reel of 2000 SN74HC4066DBR HC4066
Tube of 90 SN74HC4066PW
TSSOP – PW Reel of 2000 SN74HC4066PWR HC4066
Reel of 250 SN74HC4066PWT
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
FUNCTION TABLE
(each switch)
INPUT
CONTROL
(C)
SWITCH
L OFF
H ON
PRODUCTION DATA information is current as of publication date. Copyright 2003, Texas Instruments Incorporated
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1A
1B
2B
2A
2C
3C
GND
VCC
1C
4C
4A
4B
3B
3A
D, DB, N, NS, OR PW PACKAGE
(TOP VIEW)
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
logic diagram, each switch (positive logic)
A
VCC
VCC
B
One of Four Switches
C
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Control-input diode current, II (VI < 0 or VI > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
I/O port diode current, II (VI < 0 or VI/O > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
On-state switch current (VI/O = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to ground unless otherwise specified.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3
recommended operating conditions (see Note 3)
MIN NOM MAX UNIT
VCC Supply voltage 2† 5 6 V
VI/O I/O port voltage 0 VCC V
VCC = 2 V 1.5 VCC
VIH High-level input voltage, control inputs VCC = 4.5 V 3.15 VCC V
VCC = 6 V 4.2 VCC
VCC = 2 V 0 0.3
VIL Low-level input voltage, control inputs VCC = 4.5 V 0 0.9 V
VCC = 6 V 0 1.2
VCC = 2 V 1000
Δt/Δv Input transition rise/fall time VCC = 4.5 V 500 ns
VCC = 6 V 400
TA Operating free-air temperature –40 85 °C
† With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals
be transmitted at these low supply voltages.
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER TEST CONDITIONS V
TA = 25C
VCC MIN MAX UNIT
MIN TYP MAX
I A V 0t V
2 V 150
ron On-state switch resistance
IT = –1 mA, VI = 0 to VCC,
4.5 V 50 85 106 Ω VC = VIH (see Figure 1)
6 V 30
V V GND V V
2 V 320
ron(p) Peak on-state resistance
VI = VCC or GND, VC = VIH,
( ) 4.5 V 70 170 215 Ω IT = –1 mA
6 V 50
II Control input current VC = 0 or VCC 6 V ±0.1 ±100 ±1000 nA
Isoff Off-state switch leakage current
VI = VCC or 0, VO = VCC or 0,
VC = VIL (see Figure 2)
6 V ±0.1 ±5 μA
Ison On-state switch leakage current
VI = VCC or 0, VC = VIH
(see Figure 3)
6 V ±0.1 ±5 μA
ICC Supply current VI = 0 or VCC, IO = 0 6 V 2 20 μA
Ci Input capacitance
A or B
5 V
9
pF
C
3 10 10
Cf
Feed-through
capacitance
A to B VI = 0 0.5 pF
Co Output capacitance A or B 5 V 9 pF
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range
PARAMETER
FROM TO TEST
VCC
TA = 25C
MIN MAX UNIT
(INPUT) (OUTPUT) CONDITIONS
MIN TYP MAX
t P ti C 50 F
2 V 10 60 75
tPLH,
Propagation
A or B B or A CL = pF
4.5 V 4 12 15 ns
tPHL
delay time
(see Figure 4)
6 V 3 10 13
t S it h RL = 1 kΩ,
2 V 70 180 225
tPZH,
tPZL
Switch
turn-on time
C A or B
CL = 50 pF 4.5 V 21 36 45 ns
L
(see Figure 5) 6 V 18 31 38
t S it h RL = 1 kΩ,
2 V 50 200 250
tPLZ,
Switch
C A or B
CL = 50 pF 4.5 V 25 40 50 ns
tPHZ
turn-off time
L
(see Figure 5) 6 V 22 34 43
Control
CL = 15 pF,
RL = 1 kΩ
2 V 15
fI
input
frequency
C A or B
kΩ,
VC = VCC or GND,
V V /2
4.5 V 30 MHz
VO = VCC/(see Figure 6) 6 V 30
Control
feed-through
C A or B
CL = 50 pF,
Rin = RL = 600 Ω,
VC = VCC or GND
4.5 V 15
mV
noise
GND,
fin = 1 MHz
(see Figure 7)
6 V 20
(rms)
operating characteristics, VCC = 4.5 V, TA = 25°C
PARAMETER TEST CONDITIONS TYP UNIT
Cpd Power dissipation capacitance per gate CL = 50 pF, f = 1 MHz 45 pF
Minimum through bandwidth, A to B or B to A† [20 log (VO/VI)] = –3 dB
CL = 50 pF,
VC = VCC
RL = 600 Ω,
(see Figure 8)
30 MHz
Crosstalk between any switches‡ CL = 10 pF,
fin = 1 MHz
RL = 50 Ω,
(see Figure 9)
45 dB
Feed through, switch off, A to B or B to A‡ CL = 50 pF,
fin = 1 MHz
RL = 600 Ω,
(see Figure 10)
42 dB
Amplitude distortion rate, A to B or B to A
CL = 50 pF,
fin = 1 kHz
RL = 10 kΩ,
(see Figure 11)
0.05%
† Adjust the input amplitude for output = 0 dBm at f = 1 MHz. Input signal must be a sine wave.
‡ Adjust the input amplitude for input = 0 dBm at f = 1 MHz. Input signal must be a sine wave.
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5
PARAMETER MEASUREMENT INFORMATION
VCC
VI = VCC
VC = VIH
+ 1.0 mA –
VO
ron
VI–O
10–3
VI–O
VCC
GND
(ON)
V
Figure 1. On-State Resistance Test Circuit
VCC
VC = VIL
A B
VS = VA – VB
CONDITION 1: VA = 0, VB = VCC
CONDITION 2: VA = VCC, VB = 0
VCC
GND
A (OFF)
Figure 2. Off-State Switch Leakage-Current Test Circuit
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VCC
VC = VIH
A B
VCC Open
VA = VCC TO GND
VCC
GND
A (ON)
Figure 3. On-State Leakage-Current Test Circuit
VCC
VC = VIH
VI VO
50 pF
TEST CIRCUIT
tPLH tPHL
50% 50%
VCC
0 V
50% 50%
VOH
VOL
VI
A or B
VO
B or A
VOLTAGE WAVEFORMS
50 Ω
tr
90%
10%
tf
10%
90%
VCC
GND
(ON)
Figure 4. Propagation Delay Time, Signal Input to Signal Output
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7
PARAMETER MEASUREMENT INFORMATION
CL
GND 50 pF
VCC
VI
VO
TEST CIRCUIT
tPLZ
50%
VOLTAGE WAVEFORMS
RL
1 kΩ
10%
S1
VC
50 Ω
S2
tPZH
tPHZ
50%
50%
50%
90%
tPZL
tPZH
tPLZ
tPHZ
GND
VCC
GND
VCC
TEST S1 S2
VCC
GND
VCC
GND
tPZL
50%
VCC
VO 50%
0 V
VOL
VOH
VC
(tPZL, tPZH)
(tPLZ, tPHZ)
VCC
VCC
VO
0 V
VOL
VOH
VC
VCC
0 V
VOL
VOH
VCC
0 V
VOL
VOH
Figure 5. Switching Time (tPZL, tPLZ, tPZH, tPHZ), Control to Signal Output
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VCC
GND
VO
RL
1 kΩ
CL
15 pF
VCC
VC
50 Ω
VI = VCC
VCC
VC
0 V
VCC/2
Figure 6. Control-Input Frequency
VCC
GND
VO
RL
600 Ω
CL
50 pF
VCC
VC
50 Ω
VI
VCC/2
Rin
600 Ω
VCC/2
tr tf
90%
10%
(f = 1 MHz)
tr = tf = 6 ns
90%
10%
VCC
VC
0 V
Figure 7. Control Feed-Through Noise
VO
VCC
50 Ω
fin
VCC/2
VC = VCC
0.1 μF VI VI
(VI = 0 dBm at f = 1 MHz)
VCC
GND
(ON)
RL
600 Ω
CL
50 pF
Figure 8. Minimum Through Bandwidth
SN74HC4066
QUADRUPLE BILATERAL ANALOG SWITCH
SCLS325G – MARCH 1996 – REVISED JULY 2003
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9
PARAMETER MEASUREMENT INFORMATION
VO1
RL
600 Ω
CL
50 pF
VCC
50 Ω
fin
VCC/2
VC = VCC
0.1 μF
VI
VI
(VI = 0 dBm at f = 1 MHz)
VO2
VCC
Rin
600 Ω
VCC/2
VC = GND
Rin
600 Ω
VCC
GND
(ON)
VCC
GND
(OFF)
RL
600 Ω
CL
50 pF
Figure 9. Crosstalk Between Any Two Switches
VO
VCC
50 Ω
fin
VC = GND
0.1 μF VI VI
(VI = 0 dBm at f = 1 MHz)
VCC
GND
(OFF)
Rin
600 Ω
RL
600 Ω
CL
50 pF
VCC/2 VCC/2
Figure 10. Feed Through, Switch Off
VI
(VI = 0 dBm at f = 1 kHz)
VO
RL
10 kΩ
CL
50 pF
VCC
VCC/2
VC = VCC
10 μF
VI fin
VCC
GND
(ON)
Figure 11. Amplitude-Distortion Rate
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
SN74HC4066D ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DBLE OBSOLETE SSOP DB 14 TBD Call TI Call TI -40 to 85
SN74HC4066DBR ACTIVE SSOP DB 14 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DBRE4 ACTIVE SSOP DB 14 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066DT ACTIVE SOIC D 14 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066N ACTIVE PDIP N 14 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 SN74HC4066N
SN74HC4066NE4 ACTIVE PDIP N 14 25 Pb-Free
(RoHS)
CU NIPDAU N / A for Pkg Type -40 to 85 SN74HC4066N
SN74HC4066NSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066PW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066PWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066PWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI -40 to 85
SN74HC4066PWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066PWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
SN74HC4066PWT ACTIVE TSSOP PW 14 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC4066
PACKAGE OPTION ADDENDUM
www.ti.com 10-Jun-2014
Addendum-Page 2
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type
Package
Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
(mm)
Pin1
Quadrant
SN74HC4066DBR SSOP DB 14 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
SN74HC4066DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74HC4066DT SOIC D 14 250 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74HC4066NSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1
SN74HC4066PWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
SN74HC4066PWT TSSOP PW 14 250 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
SN74HC4066DBR SSOP DB 14 2000 367.0 367.0 38.0
SN74HC4066DR SOIC D 14 2500 367.0 367.0 38.0
SN74HC4066DT SOIC D 14 250 367.0 367.0 38.0
SN74HC4066NSR SO NS 14 2000 367.0 367.0 38.0
SN74HC4066PWR TSSOP PW 14 2000 367.0 367.0 35.0
SN74HC4066PWT TSSOP PW 14 250 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE
4040065 /E 12/01
28 PINS SHOWN
Gage Plane
8,20
7,40
0,55
0,95
0,25
38
12,90
12,30
28
10,50
24
8,50
Seating Plane
7,90 9,90
30
10,50
9,90
0,38
5,60
5,00
15
0,22
14
A
28
1
16 20
6,50 6,50
14
0,05 MIN
5,90 5,90
DIM
A MAX
A MIN
PINS **
2,00 MAX
6,90
7,50
0,65 0,15 M
0°–8°
0,10
0,09
0,25
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 1 of 11
a
Using a Tracebuffer with the
ADMCF32X
ANF32X-34
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 2 of 11
Table of Contents
SUMMARY...................................................................................................................... 3
1 THE TRACEBUFFER STRUCTURE........................................................................ 3
1.1 The Tracebuffer Data-Array.........................................................................................................................4
2 IMPLEMENTATION OF THE TRACEBUFFER LIBRARY ROUTINES ................... 5
2.1 Usage of the tracebuffer routines ..................................................................................................................5
2.2 Usage of the DSP registers .............................................................................................................................5
2.3 Access to the library: the header file.............................................................................................................6
2.4 The program macro........................................................................................................................................7
3 SOFTWARE EXAMPLE: TRACEBUFFER.............................................................. 8
3.1 Usage of the Tracebuffer routine an example ..............................................................................................8
3.2 The main program: main.dsp........................................................................................................................8
4 EXPERIMENTAL RESULTS.................................................................................. 10
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 3 of 11
Summary
In many cases the plotting and processing data externally are needed to verify and debug code and
structure in a DSP. This application note describe the use of a tracebuffer structure where values treated in
the DSP can be saved in a data-array and used for internal of external modification interfaced though the
Motion Control Debugger system.
1 The Tracebuffer Structure
A data-array structure is defined to enable saving arrays of values in data-memory (DM). This array of
memory locations can be addressed by the use of the pointer-system on the 2171 core. With this structure
defined, further treating or evaluation of the internal data-calculations can be analyzed and checked for
errors.
Using the Motion Control Debugger the values can be either be plotted directly or dumped for analyzing
the data-array in other external programs
In the chosen structure any number of pointer arrays in DM can be enabled and individually initialized for
locations in DM. The structure will furthermore allow the user to under-sample the writing to the buffer.
Initialize
the Tracebuffer
Though macro
Is the Sample Ratio = Sample number?
Is Flag enabled ?
Is there still space in the Buffer Full ?
YES
No
YES
No
Update Buffer and increment
pointer and counter
End Macro;
Macro Call
YES
No
Figure 1 - Flowchart for the Buffer writing
The flow chart illustrate the structure of the trace buffer writing. Initialization is done in the startup
sequence. After this, the Flag is checked - is the flag set then the corresponding tracebuffer is enabled.
Secondly the buffer is checked for available spaces. If the DM locations defined for memory write aren't
full it is safe to go on. If the buffer is full return. Finally the sample-ratio is checked. If a sample-ratio is
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 4 of 11
declared different from zero then check if the sample-number is equal to the sample-ratio. If it is write the
chosen variable to the data-array. If not, return to the subroutine.
The structure of the buffer is circular and to optimize the flexibility the format is provided as a complete
macro setting with locked data-array format.
1.1 The Tracebuffer Data-Array
To enable the tracebuffer array in DM it is necessary to define a given circular buffer with associated
pointer. The circular buffer is structured as:
First location : Statement of flag - ON/OFF
Second location : Pointer to next free address
Third location : Sample ratio (specified by the user)
Fourth location : Sample number (used during the re-sampling of values)
Fifth location : Counter for the buffer.
Sixth to XXX locations : Placement for the values
Every time the macro is called, Ex. in the PWMSYNC_ISR, a new value is added to the buffer if there are
available space left and the sample number is equal to the under-sample ratio.
DM(Address) Flag (ON/OFF)
DM(Address+1) Pointer to next free
address
.. Sample ratio
.. Sample number
.. Counter for Buffer
.. First Data-placement
.. Value(1)
.. Value(2)
..
..
..
..
..
..
.. Value (Buffer size -2)
.. Value (Buffer size -1)
.. Value (Buffer size)
Figure 2 - Tracebuffer - locations in DM
Figure 2 illustrates how the values are placed in the allocated DM locations. Here values are stored at
specific addresses in order to analyze these off-line.
First value
Placed in the
buffer
N = numbers
in
tracebuffer
Buffer full
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 5 of 11
2 Implementation of the Tracebuffer Library Routines
2.1 Usage of the tracebuffer routines
The routines are developed as an easy-to-use library, which has to be linked to the user’s application. The
library consists of two files. The file “T_buffer.dsp” contains the assembly code for the subroutines. This
package has to be compiled and can then be linked to an application. The user has to include the header
file “T_buffer.h”, which provides the function-like macros for this routine. The following table
summarizes the set of macros that are defined in this library.
Operation Usage Input Output
Initialization Buffer_Init("name", sample ratio);
Name &
Sample
ratio
None
Activate Buffer_ON("name"); Name None
Deactivate Buffer_OFF("name"); Name None
Record Buffer_Record("name", value);
Name &
Value
None
Table 1: Implemented routines
The four-macro settings allow the user to setup any given DM-locations for trace-buffer availability.
Specifying the selected buffer and record value enables the flexibility of writing any number to a known
position in memory.
2.2 Usage of the DSP registers
Table 2 gives an overview of the DSP core registers that are modified by the four macros mentioned
above. Obviously, also the "input" values are modified.
Usage Modified registers
Buffer_Init("name", sample ratio); ax0
Buffer_OFF("name"); ax0
Buffer_ON("name"); ax0
Buffer_Record("name", value);
ax0, ax1, ay0, ar,
I5, M5
Table 2: Usage of DSP core registers for the subroutines
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 6 of 11
2.3 Access to the library: the header file
Including the header file "t_buffer.h" into the application code may access the library.
The header file is intended to provide function-like macros to the Trace buffer routines. It defines the calls
shown in Table 1. The file is mostly self-explaining but some comments have to be added. The sample ratio is
here defined as how often is a new value can be written to the buffer.
First macro is the Buffer_Init macro. This macro initializes the five first location of the circular buffer in
respect to "name of the buffer" and the sample-ratio. Furthermore the sample-number and the internal
counter is cleared.
The second and third macro Buffer_ON and Buffer_OFF just enables or disables writing to the buffers. In
this case the first location in the buffer ( the flag ) are set/or cleared.
{********************************************************************************
* *
* Type: Macro *
* *
* Call: Buffer_Init("Buffer", sampleratio) *
* Description : Initialize the tracebuffer *
* *
* Undersample ratio 0 = every time *
* 1 = every 1.time *
* 2 = every 2.time ..... *
* *
* Ouputs : none *
* *
* Modified: ax0 *
* *
********************************************************************************}
.MACRO Buffer_Init(%0,%1);
ax0 = %1; { Sample ratio }
dm(%0+2)= ax0;
ax0 =^%0+5; { Store start value }
dm(%0+1)= ax0; { first location for data }
ax0 = 0x0000;
dm(%0) = ax0; { Clear Flag - Non-Active }
dm(%0+3)= ax0; { Clear sample number }
dm(%0+4)= ax0; { Clear counter for this buffer }
.ENDMACRO;
{********************************************************************************
* *
* Type: Macro *
* *
* Call: Buffer_ON("buffer") *
* *
* Description : Enable tracebuffer "Buffer" *
* Ouputs : none *
* *
* Modified : ax0 *
* *
********************************************************************************}
.MACRO Buffer_ON(%0);
ax0 = 1;
dm(%0) = ax0;
.ENDMACRO;
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 7 of 11
{********************************************************************************
* *
* Type: Macro *
* *
* Call: Buffer_OFF("buffer") *
* *
* Description : Disable tracebuffer "Buffer" *
* Ouputs : none *
* *
* Modified : ax0 *
* *
********************************************************************************}
.MACRO Buffer_OFF(%0);
ax0 = 0;
dm(%0) = ax0;
.ENDMACRO;
2.4 The program macro
The following code contained in the file “t_buffer.h” defines the macrocode used for the Tracebuffer. In
many cases this piece of code is placed in the "t_buffer.dsp"-file but here the flexibility advances by
placing the program-code directly in the macro. It should be mentioned that this way of using the
tracebuffer enables flexibility but takes up more memory.
The following code implements the tracebuffer routines. Refer to the flowchart in section 1 for the structure
of the buffers. Input to the tracebuffer are any numbers computed in the DSP.
Underneath is the code for the Buffer_Record.. It just need to be said that since the buffer is structured as a
circular buffer the data-placement for each of the "buffer-handle" values are placed from buffer-location 1 to
5 (here %0….%0+4)
{********************************************************************************
* *
* Type: Macro *
* *
* all: Buffer_Record(buffer,data) *
* *
* Description : Place data in buffer memory *
* Ouputs : none *
* *
* Modified: M5, I5, ar, ax1, ax0, ay0 *
* *
********************************************************************************}
.MACRO Buffer_Record(%0,%1);
.Local Continue1,Continue2,Continue3,End; { Local routines in Macro }
M5 = 1; { modify factor = 1 }
ax1 = %1;
I5 = ^%0; { load start value for pointer }
ar = dm(%0); { temporary storage }
ar= tstbit 0 of ar;
if NE jump Continue1;
Jump end;
Continue1:
ax0 = %%0;
ay0 = dm(%0+4);
ar = ax0 - ay0;
if gt jump Continue2;
ax0 = 0x0000;
dm(%0) = ax0;
Jump end;
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 8 of 11
Continue2: { is sample_num equal to ratio? }
ax0 = dm(%0+3);
ay0 = dm(%0+2);
ar = ax0 - ay0;
if eq jump Continue3;
ar = ax0 + 1;
dm(%0+3) = ar;
Jump end;
Continue3: { write into buffer }
I5 = dm(%0+1); { load backup value for pointer }
dm(I5,M5) = ax1; { Value updated to Buffer }
ax0 = dm(%0+4); { increment count }
ar = ax0 + 1;
dm(%0+4) = ar;
ax0 = 0x0000; { clear sample_num }
dm(%0+3) = ax0;
dm(%0+1) = I5;
end:
.ENDMACRO;
3 Software Example: Tracebuffer
3.1 Usage of the Tracebuffer routine an example
This example demonstrates how two values are written to Buffer1 and Buffer2. In this case the memorylocations
used as buffers are set to 2*105-locations (100 location of calculated data). The values written
to these two buffer-arrays are values computed for three 120-degree phase shifted reference voltages.
3.2 The main program: main.dsp
The file “main.dsp” contains the initialisation and PWM Sync and Trip interrupt service routines. To
activate, build the executable file using the attached build.bat either within your DOS prompt or clicking
on it from Windows Explorer. This will create the object files and the main.exe example file. This file
may be run on the Motion Control Debugger. The program can be booted from Flash but in this
tracebuffer case it is not effectuated since the DM can not be read without the Motion Control Debugger.
Every module besides from the Main_program module is by default placed in either one of the three
USERFLASH memory banks.
In the following, a brief description of the code is given.
Start of code – declaring start location in program memory or FLASH memory. Comments are placed
depending on whether the program should run in PMRAM or Flash memory.
{**************************************************************************************
* Application: Starting from FLASH (out-comment the one not used)
**************************************************************************************}
!.MODULE/RAM/SEG=USERFLASH1/ABS=0x2200 Main_Program;
{**************************************************************************************
* Application: Starting from RAM (out-comment the one not used)
**************************************************************************************}
.MODULE/RAM/SEG=USER_PM1/ABS=0x30 Main_Program;
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 9 of 11
Next, the general systems constants and PWM configuration constants (main.h – see the next section) are
included. Also included are the PWM library and the T_BUFFER library definitions
{********************************************************************************
* Include General System Parameters and Libraries *
********************************************************************************}
#include ;
#include ;
#include ;
#include ;
{********************************************************************************
* Local Variables Defined in this Module *
********************************************************************************}
.VAR/DM/RAM/SEG=USER_DM AD_IN; { Volts/Hertz Command (0-1) }
.VAR/DM/RAM/SEG=USER_DM Theta; { Current angle }
.VAR/DM/RAM/SEG=USER_DM VrefA; { Voltage demands }
.VAR/DM/RAM/SEG=USER_DM VrefB;
.VAR/DM/RAM/SEG=USER_DM VrefC;
.VAR/DM/RAM/CIRC/SEG=USER_DM Buffer1[105]; { Tracebuffer }
.VAR/DM/RAM/CIRC/SEG=USER_DM Buffer2[105]; { Tracebuffer }
ar = 0x7FFF; dm(AD_IN) = ar;
ar = 0x0000; dm(Theta) = ar; dm(VrefA) = ar; dm(VrefB) = ar; dm(VrefC) = ar;
Some Variables are defined hereafter. These are used to calculate the three reference voltages. For further
information see ANF32X-3. The two circular buffers are defined - here the size is 105 locations (5 locations
are used for handling the buffer) this number is arbitrary - just depending on the memory locations occupied
by these buffers.
The first thing that is done in the initialisation block (Startup) is checking a selected PIO line for level. If the
PIO-pin is high jump to an ERASE BOOT FROM FLASH BIT routine in ROM and return. If not, just go
ahead with normal operation. This small macro is done to enable re-coding of the FLASH memory. For
further information (See Reference Manual). In this example the PIO-pin 6 is chosen as erase pin. The
initialisation of the PWM block is executed. Note how the interrupt vectors for the PWMSync and PWMTrip
service routines are passed as arguments. Then the interrupt IRQ2 is enabled by setting the corresponding
bit in the IMASK register. Two Tracebuffers are initialised with 1x under-sampling Then the Tracebuffers
are activated by setting the flag (Buffer_ON(Buffer1) & Buffer_ON(Buffer2)). After that, the program
enters a loop, which just waits for interrupts.
{********************************************************************************
* Start of program code *
********************************************************************************}
Startup:
FLASH_erase_PIO(6); { Select PIO6 as clearing PIO }
{ Remember that sport1 is muxed with the PIO-lines }
{ If the bit is high Clear Memory and Boot from }
{ Flash bit }
PWM_Init(PWMSYNC_ISR, PWMTRIP_ISR);
IFC = 0x80; { Clear any pending IRQ2 inter. }
ay0 = 0x200; { unmask irq2 interrupts. }
ar = IMASK;
ar = ar or ay0;
IMASK = ar; { IRQ2 ints fully enabled here }
Buffer_Init(Buffer1, 1); { 1x undersampling }
Buffer_Init(Buffer2, 1); { 1X undersampling }
Buffer_ON(Buffer1); { Activate the Buffer }
Buffer_ON(Buffer2); { Activate the Buffer }
Main: { Wait for interrupt to occur }
jump Main;
rts;
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 10 of 11
In the PWMSYNC_ISR the DAGS are first set up for trigonometric functionality. Three reference voltages
VrefA,B and C are calculated on base of the trigonometric functions in the Trigonometric-library ( See
ANF32X-10 ). The PWM block is update with these control signals and finally the two Tracebuffers Buffer1
and Buffer2 are updated. Here the variables VrefA and VrefB are stored in the two data-arrays.
PWMSYNC_ISR:
Set_DAG_registers_for_trigonometric;
my0 = DM(AD_IN);
mr = 0; { Clear mr }
mr1 = dm(Theta); { Preload Theta }
mx0 = Delta;
mr = mr + mx0*my0 (SS); { Compute new angle & store }
dm(Theta) = mr1;
Sin(mr1); { Result in ar register }
mr = ar*my0 (SS); { Multiply by Scale for VrefA }
dm(VrefA) = mr1;
ax1 = dm(Theta); { Compute angle of phase B }
ay1 = TwoPioverThree;
ar = ax1 - ay1;
Sin(ar); { Result in ar register }
mr = ar*my0 (SS); { Multiply by Scale for VrefB }
dm(VrefB) = mr1;
ax1 = dm(Theta); { Compute angle of phase C }
ay1 = TwoPioverThree;
ar = ax1 + ay1;
Sin(ar); { Result in ar register }
mr = ar*my0 (SS); { Multiply by Scale for VrefC }
dm(VrefC) = mr1;
ax0 = DM(VrefA); ax1 = DM(VrefB); ay0 = DM(VrefC); ay1= DM(Theta);
PWM_update_demanded_Voltage(ax0,ax1,ay0);
{*******************************************************************************
* Update tracebuffers *
*******************************************************************************}
ax0 = DM(VrefA); Buffer_Record(Buffer1,ax0);
ax0 = DM(VrefB); Buffer_Record(Buffer2,ax0);
RTI;
It has to be mentioned that the Buffer_Record macro uses some DSP registers (see T_buffer.h) for that
reason the proposed way of writing to the buffer is as defined above.
4 Experimental results
The experimental results illustrated beneath are two plots of VrefA and VrefB. These values are written
into Buffer1 and Buffer2 and then plotted though the Motion Control Debugger. As can be seen on Figure
3 the two waveforms are plotted as a function of the given number in Buffer1 and 2.
From the figures the scaling can also be seen - here the numbers are represented in decimal. Selecting
another scaling of these reference-voltages will re-scale these plots.
a Using a Tracebuffer with the ADMCF32X ANF32X-34
© Analog Devices Inc., March 2000 Page 11 of 11
Figure 3 - Plot from the Motion Control Debugger using the Internal Plot Function.
www.analog.com
Developing VisualAudio Modules
Copyright Information
© 2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc.
Printed in the USA.
Disclaimer
Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc.
Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP++, VisualAudio, SHARC, Blackfin, and EZ-KIT Lite are registered trademarks of Analog Devices, Inc.
All other brand and product names are trademarks or service marks of their respective owners.
2 of 51
Contents
Contents..............................................................................................................................................................................................................3
Preface.................................................................................................................................................................................................................4
Purpose of This Manual................................................................................................................................................................................4
Custom Audio Modules....................................................................................................................................................................................5
Overview.........................................................................................................................................................................................................5
Numerics on the Blackfin and SHARC.......................................................................................................................................................9
Example 1A – Mono Parametric Scaling....................................................................................................................................................9
Example 1B – Render Function in ASM.................................................................................................................................................19
Scratch Buffers............................................................................................................................................................................................22
Auxiliary Memory for Module Instances................................................................................................................................................22
Pointer Aliasing Rules................................................................................................................................................................................25
Meta-Variables and Expressions...............................................................................................................................................................26
Modifying Module Parameters.................................................................................................................................................................27
Expression Language Details.....................................................................................................................................................................28
Modules With Data of Varying Size.........................................................................................................................................................33
Modules With a Variable Number of Pins...............................................................................................................................................34
Frequency Domain Processing.................................................................................................................................................................36
Other Features of the XML File................................................................................................................................................................36
Custom Bypass Functions..........................................................................................................................................................................38
SHARC SIMD Considerations..................................................................................................................................................................38
Adjusting Modules from Other Modules................................................................................................................................................39
Dynamically Changing a Module’s Render Function............................................................................................................................39
Compatibility between Blackfin and SHARC Modules.........................................................................................................................39
Reference Section............................................................................................................................................................................................41
AudioProcessing.h Structures...................................................................................................................................................................41
Module Memory Sections.........................................................................................................................................................................44
Summary of Naming Conventions...........................................................................................................................................................45
Inspector Control Types............................................................................................................................................................................47
XML Format................................................................................................................................................................................................50
Index.................................................................................................................................................................................................................51
3 of 51
Preface
PURPOSE OF THIS MANUAL
The VisualAudio Designer Users’ Guide explains how to use VisualAudio to develop audio processing software for a wide variety of products. The guide describes the graphical interface, provides step-by-step procedures for completing tasks, and contains detailed technical information on how to integrate the generated code into your final product.
Intended Audience
The primary audience for this manual is a programmer who is familiar with Analog Devices, Inc. processors. This manual assumes that the audience can use the VisualDSP++ development environment to develop, build, and debug Digital Signal Processing (DSP) applications for the SHARC or Blackfin processor. 4 of 51
Custom Audio Modules
This document explains how to write an audio processing module for VisualAudio for SHARC processors in the 26x and 36x families, as well as for Blackfin processors in the 53x and 56x families.
Audio modules allow audio processing (sometimes called “post-processing”) to be implemented by making use of a number of smaller, self-contained processing blocks.
The topics are organized as follows.
• “Overview”
• “Numerics on SHARC and Blackfin”
• “Example 1A – Mono parameter scaling”
• “Example 1B – Render function in ASM”
• “Scratch Buffers”
• “Auxiliary Memory for Module Instances”
• “Pointer Aliasing Rules”
• “Meta-variables and Expressions”
• “Modifying Module Parameters”
• “Expression Language Details”
• “Modules with Data of Varying Size”
• “Modules with Variable Numbers of Pins”
• “Other Features of the XML File”
• Custom Bypass Functions”
• “SHARC SIMD Considerations”
• “Adjusting Modules from Other Modules”
• “Dynamically Changing a Module’s Render Function”
• “Compatibility between Blackfin and SHARC Modules”
OVERVIEW
This section includes a brief philosophical review of what motivated certain design decisions, a discussion about the quasi-object orientation inherent in the module concept, a description of usage scenarios and a high-level description of the parts of a module.
Design Philosophy
The module format was designed with the following goals in mind.
• Minimal run-time processor footprint
• CPU efficiency
• Straightforward to write and use
Several key features help accomplish these goals.
• VisualAudio does as much work as possible at compile and assembly time to enable the production DSP code to be lean, while still providing a flexible environment for creating and deploying modules.
• Modules process a block of samples at a time to ensure that the cost of loading and storing state and parameters is incurred only once per block instead of once per sample.
• VisualAudio supports interleaved stereo connections between modules to enable a common use of Single-Instruction, Multiple-Data (SIMD) on the SHARC DSP. This signal type is also supported on the Blackfin, primarily for compatibility with system designs originating on SHARCs.
5 of 51
• VisualAudio supports signals at both the audio sampling rate and a lower “control rate.” This allows slowly-changing control signals to use less memory and MIPS.
• VisualAudio supports a variety of frequency domain signal types, as well as a user-settable FFT size and hop factor for “overlap-add” and “overlap-save” style processing.
• Some of the spirit of object-oriented programming is borrowed, while a lean approach is maintained. Note that C++ is not used.
• To keep the CPU usage (MIPS) of a module relatively constant, a module instance should perform roughly the same operations every time it runs. Assume the module’s worst case CPU usage. The exception is when there are clear modes. In this case, the user can plan in advance the combination of module modes that will be in use at a particular time.
• In keeping with the goals of near-constant CPU usage and minimal memory usage, parameter calculation (such as filter design) is normally pushed forward to design time, and implemented outside the DSP runtime (for example within VisualAudio Designer). Therefore, modules usually do not contain design or initialization code on the DSP. Instead, module instances are normally initialized and designed via static initialization of their state structures (in code generated by VisualAudio Designer or by the user).1
Module Terminology
Each type of processing module is represented by its own module class. These are instantiable; multiple instances of each class may exist at the same time. We use the term module when the distinction between the class and the instance is clear from context. Examples of modules include “Scaler N Smoothed” and “Delay).”
The behavior of modules is adjusted via render variables. These are variables that exist on the DSP as part of the module instance structure. In addition, VisualAudio Designer presents high-level interface variables for each module. Interface variables are those exposed via module inspectors within VisualAudio Designer. An interface variable may correspond directly to a render variable. Alternatively, an interface variable may be mapped to a render variable through some function; for example, translating a delay time in milliseconds to a sample delay. Other possibilities include more complicated dependencies, where one or more interface variables touch one or more render variables.
Render variables are defined in associated .h files detailing the instance structure of each module; interface variables are defined in associated .xml files. Interface variables are sometimes referred to as high-level variables, while render variables are sometimes referred to as low-level variables.
There are three kinds of render variables, differing in restrictions on when they are set:
• Constants are typically set only at design time (i.e. their value doesn’t usually change at run time.)
• Parameters are typically set at design or tuning time from VisualAudio Designer, or by DSP control code
• States can be set by the module’s render function itself, as well as by VisualAudio Designer in tuning mode or by DSP control code.
Within VisualAudio Designer, these restrictions are enforced. On the DSP itself, it is up to the user to abide by these guidelines as appropriate.
The term render variable is used to distinguish it from a meta-variable, which exists only in VisualAudio Designer’s representation of the module, not on the DSP. Thus, the set of interface variables contains some render variables and some meta-variables.
Modules are interconnected via pins. Pins may be designated as either input or output. Either may be of type stereo_pcm, mono_pcm or control. The stereo_pcm and mono_pcm pins are collectively referred to as “audio rate pins,” or simply “audio
1 In stand-alone usage (without VisualAudio Designer) or when modules are implemented in terms of other modules, allocation can be either dynamic or static and initialization DSP code is often included.
6 of 51
pins.” Control rate pins are referred to as “control pins” and are of type control. Frequency domain pins may be of the following types: spectrum_real, spectrum_complex, spectrum_half_real and spectrum_half_complex. These are explained in more detail later.
There are two kinds of modules: those that have a fixed number of pins, and those in which the number of input and/or output pins varies from instance to instance.
A module class may have outputs, but no inputs, in which case it can be thought of as a signal generator (such as a sine wave generator). Or, it can have inputs, but no outputs, and report its results in a state variable (such as a VU meter).
Finally, a module can have neither outputs nor inputs, and can do its work entirely in terms of side effects to itself (modifying its own state) or to other modules (modifying the render variables of other modules). Such a module could be used, for example, in testing other modules, when strictly-repeatable sample-synchronous updates are needed.
Render functions must never write to their inputs. To see why this is true, consider a module whose output fans out to several other modules. If the first module wrote to its input, it would corrupt the input to the second module. However, the VisualAudio Designer routing algorithm knows the overall connection between audio modules and may reuse the same patch buffer for the input and output of a module, when it is safe. For more details, see Pointer Aliasing Rules below.
Module Usage Scenarios
There are two ways that VisualAudio modules can be used:
• In a drag-and-drop fashion from VisualAudio Designer - Memory allocation, parameter setting and calling of the render function are handled automatically.
• As C-callable functions in a stand-alone library - Memory allocation, parameter setting and calling of the render function are all handled by the user’s C or assembly code.
Even if a module is used in drag-and-drop fashion, its render variables may be modified in the DSP program’s control code (sometimes referred to as “user control code.”) Similarly, a module used in a drag-and-drop fashion may include, in its implementation, a render function that calls other render functions using the stand-alone style.
This document contains information on developing modules that may be used in either style of usage. For more information on usage, see the document VisualAudio Module Library Usage Guide. For more information on the particular modules supplied by VisualAudio, see VisualAudio Module Library Reference for Blackfin and VisualAudio Module Library Reference for SHARC.
Module Modes
When used within a layout generated by VisualAudio Designer1, a module may be in one of four modes. These can be set at runtime with the following function:
AMFSetModuleStatus(AMF_Module *module, AMF_ModuleStatus status)
The possible status values and their meanings are given below.
• AMFModuleStatus_ACTIVE. The module processes its inputs and writes its outputs via its render function each time it is run. This is the default mode. Note that a module may have several alternative render functions, but one must be specified as the default.
• AMFModuleStatus_INACTIVE. The module is not run. This implies that its outputs are not written, leaving their contents undefined.
• AMFModuleStatus_MUTED. The module's outputs are zeroed each time it is run. This behavior is provided automatically. You need not write any code to implement this mode.
1 More specifically, when used with the VisualAudio Layout Support library.
7 of 51
• AMFModuleStatus_BYPASSED. The module performs the bypass function, which means that its input(s) are copied to its output(s) each time it is run. The default algorithm copies audio inputs to audio outputs, copies signal inputs to signal outputs, and mutes unused outputs. Where there is a mono/stereo mismatch, stereo is converted to mono by adding the channels and dividing by two; mono is converted to stereo by duplicating the channel. Alternatively, the module designer may provide a custom bypass function. For more information, see How to Write a Custom Bypass Function below.
The default bypass algorithm copies the Nth input pin of a given type to the Nth output pin of the same type. For example, the 3rd control pin input is copied to the 3rd control pin output. If there are more output pins than input pins, the remainder are muted. Note that for the purposes of bypass, stereo and mono pins are considered the same type. If a mono input matches a stereo output, the mono input is duplicated on both channels. If a stereo input matches a mono output, the stereo channels are added and divided by 2.
Parts of a Module
A module consists of these parts:
• A header (.h) file that defines the run-time interface to the module, including the instance structure typedef. The name of this file must be the same as the module name with .h (for example, AMF_Scaler.h).
• The module’s run-time DSP code, in source or binary form (e.g., to protect any intellectual property). The VisualAudio Module Library is delivered in binary form as a VisualDSP++ .dlb file, and the source is also included. If delivered in source form, the module must contain the following two parts:
• The module’s render function, which implements the module’s primary function
• The module’s class object, which describes the module to the run-time system
• A .xml file that describes the module to VisualAudio Designer in detail. This file is not required if the module is never used with VisualAudio Designer. The name of this file must be the same as the module name, with .xml appended (for example, AMF_Scaler.xml where “AMF” stands for Audio Module Format). The .xml file includes information about what files constitute the module’s run-time and header files, as well as information about the module’s parameters, and may also include simple design formulas.
How to Add a Module to VisualAudio Designer
To make a custom SHARC module available to VisualAudio Designer, create a directory (we’ll call it xxx) and put the XML, include, source files and object files1 in sub-directories. For the SHARC, the subdirectories should be:
• XML files in xxx\SHARC\XML\
• Header files in xxx\SHARC\Include\
• Source files in xxx\SHARC\Source\
• Object files in xxx\SHARC\Lib
For the Blackfin, they should be:
• XML files in xxx\Blackfin\XML\
• Header files in xxx\Blackfin\Include\
• Source files in xxx\Blackfin\Source\
• Object files in xxx\Blackfin\Lib
Where xxx is your Modules directory. You must then add your Modules directory to the list of directories searched by VisualAudio Designer. See the VisualAudio Designer User's Guide for details.
1 Third parties can protect their IP by delivering it as a library (a .dlb). Alternatively, they can deliver it is as a pre-compiled or pre-assembled object file (a .doj).
8 of 51
You must add your custom module source files to the VisualDSP++ project (.dpj) file for your platform. In contrast, when a module is included in object form (.dlb or .doj), it is automatically added to the linker list via the VALinkerCmds.txt file.
NUMERICS ON THE BLACKFIN AND SHARC
The primary difference between Blackfin and SHARC modules is the use of floating point on the SHARC. On the Blackfin, floating point is not available in hardware; hence Blackfin modules typically operate in fixed point. The basic VisualAudio signal type on the Blackfin is fract32, a 32-bit 1.31 format fraction. The basic VisualAudio signal type on the SHARC is a float, a 32-bit floating point number. To ease the task of moving between SHARC and Blackfin, VisualAudio defines a type AMF_Signal, which is fract32 for Blackfin and float for SHARC.
Most SHARC modules use floating point internally. However, extended precision SHARC modules may use fixed point internally. Most Blackfin modules use fixed point internally.
A number of conventions have been established for fixed-point processing on the Blackfin. We recommend that custom modules obey these conventions for maximum compatibility:
The default format for fixed point coefficients is 1.31. Coefficients which perform a “volume scaling” can be 16 bits (typically 1.15 format), so that faster 16x32 multiplication can be used (as opposed to 32x32), since a volume-like scale tends not to need to be represented with an extremely high precision. Smoothing of 16-bit coefficients may need to be performed at 32 bits (to allow the smoothing to move at very slow smoothing rates), but the top 16 bits can still be used for doing the volume scaling cheaply.
Headroom in signals is assumed to be managed by the layout creator, not by the module or by VisualAudio. Therefore, except where noted, a Blackfin module assumes 1.31 input and output signals, and for compatibility a SHARC module assumes signals where 1.0f corresponds to maximum amplitude (though clipping to +/- 1.0 is only implemented at the output). Saturating arithmetic is used in fixed point modules.
In fixed point modules, multiplications implemented to “31-bit” precision (i.e. discarding the low order product as a speed optimization) may be used as a satisfactory substitute for full 32x32 multiplications.
16 bit types (fract16 and int16 ) as module variables are not supported on the SHARC in VisualAudio.
The module implementer is responsible for creating correct alignment in the module state structure, if necessary (via padding and/or ordering). This is an issue only with Blackfin modules. The structures allocated by VisualAudio Designer can be assumed to be aligned to 32-bit boundaries.
EXAMPLE 1A – MONO PARAMETRIC SCALING
The following example shows a parametric scaling of a mono signal, for both SHARC and Blackfin versions of VisualAudio
Example 1A Header File: AMF_Scaler.h
The example module’s header file is shown below, for the SHARC or Blackfin version of VisualAudio:
/***** Begin AMF_Scaler.h *******/
// Include header file with base class definitions:
#include "AudioProcessing.h"
// Instance structure typedef
9 of 51
typedef struct {
AMF_Module b;
// Parameters
AMF_Signal amplitude;
} AMF_Scaler;
// Class object declaration
extern const AMF_ModuleClass AMFClassScaler;
/**** End AMF_Scaler.h *****/
Notice that the instance structure begins with an embedded struct of type AMF_Module. All module instance structures must begin in this manner (this allows any module’s struct to be interpreted as an AMF_Module, hence implementing a form of inheritance). This struct is followed by a single render variable, amplitude.
The structure for the Blackfin and SHARC versions of the module are identical, except for the definition of AMF_Signal as fract32 instead of float in AudioProcessing.h.
Example 1A Code File: AMF_Scaler.c
The example module’s C code file is AMF_Scaler.c. The first half of the C file for the SHARC version of the module is listed below and analyzed in detail, with comparisons to the Blackfin version as necessary.
/****** Begin AMF_Scaler.c *********/
#include "AMF_Scaler.h" // The module's header file
#pragma optimize_for_speed // VisualDSP++ directive
SEG_MOD_FAST_CODE void
AMF_Scaler_Render(
AMF_Scaler *restrict instance,
AMF_Signal * restrict * buffers,
int tickSize)
{
int i;
AMF_Signal *in = buffers[0];
AMF_Signal *out = buffers[1];
AMF_Signal amplitude = instance->amplitude;
#pragma SIMD_for
for (i=0; iamplitude;
#pragma SIMD_for
for (i=0; iamplitude;
for (i=0; i tag with value 2.
To make it easy to supply values for the type vector, the following macros are supplied:
#define AMF_StereoPin(whichPin) \
(AMFPinType_STEREO<<(whichPin*4))
#define AMF_ControlPin(whichPin) \
(AMFPinType_CONTROL<<(whichPin*4))
#define AMF_MonoPin(whichPin) (0)
#define AMF_SpectrumRealPin(whichPin) \
(AMFPinType_SPECTRUM_REAL<<(whichPin*4))
#define AMF_SpectrumComplexPin(whichPin) \
(AMFPinType_SPECTRUM_COMPLEX<<(whichPin*4))
#define AMF_SpectrumHalfRealPin(whichPin) \
(AMFPinType_SPECTRUM_HALF_REAL<<(whichPin*4))
#define AMF_SpectrumHalfComplexPin(whichPin) \
(AMFPinType_SPECTRUM_HALF_COMPLEX<<(whichPin*4))
Type descriptors can then be assembled by bitwise OR’ing of these macros. Note that the whichPin argument is zero-based. For example, if a module has one mono input followed by one stereo input, its input type designator could be written as:
(AMF_MonoPin(0) | AMF_StereoPin(1))
Alternatively, it could be written directly as 0x10.
If there are more than eight pins, then the high order nibble is assumed to be sticky and applies to all pins beyond eight. However, there are situations where this convention is inadequate, such as when a pin greater than the 8th has a type differing from the 8th. For these situations, an indirect form is available as follows:
13 of 51
If the AMF_ModuleClass flags field includes the bit AMFModuleClassFlag_INDIRECT_INPUT_PIN_TYPE, then the input type descriptor is actually a pointer to an array of sufficient length to support bit vectors for all input pins. Similarly, if the flags include the bit AMFModuleClassFlag_INDIRECT_OUTPUT_PIN_TYPE, then the output type descriptor is actually a pointer to an array of sufficient length to support bit vectors for all input pins.
In modules with variable number of pins (described in a later section of this document), the input and output type descriptors are in the instance, rather than the class.
Example 1A XML File: AMF_Scaler.xml
The .xml file describes the module to VisualAudio Designer. In this discussion, we assume a minimal familiarity with XML. Please note that all module xml element type attributes (i.e. type = “string”, type = “float” etc.) are optional as of VisualAudio 1.6 and therefore, are not shown in the examples below.
When creating a custom module, we recommend copying the XML file from an existing module, renaming the XML file, and modifying it.
At the outermost level, the XML file looks like this:
. . .
It begins by telling the XML parser where to find the VisualAudio Designer schema, which is used to validate the file.1 Validating the file ensures that it has all the information needed by VisualAudio Designer, that it is structured correctly, that the fields are listed in the proper order, and that it contains legal values for the required fields. The actual module definition is inside the body of the tag, which includes the information detailed below.
Module Fields
A module has several different self-description tags
• The