LM2904, LM2904A - STMicroelectronics - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

[TXT]

 Analog-Devices-ADC-S..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-ADMC2..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-ADMC4..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Analog-Devices-AN300..> 08-Sep-2014 17:42  2.0M  

[TXT]

 Analog-Devices-ANF32..> 09-Sep-2014 08:18  2.6M  

[TXT]

 Analog-Devices-Basic..> 08-Sep-2014 17:49  1.9M  

[TXT]

 Analog-Devices-Compl..> 08-Sep-2014 17:38  2.0M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:26  2.1M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:02  2.1M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:03  2.0M  

[TXT]

 Analog-Devices-Gloss..> 08-Sep-2014 17:36  2.0M  

[TXT]

 Analog-Devices-Intro..> 08-Sep-2014 17:39  1.9M  

[TXT]

 Analog-Devices-The-C..> 08-Sep-2014 17:41  1.9M  

[TXT]

 Analog-Devices-Visua..> 09-Sep-2014 08:18  2.5M  

[TXT]

 Analog-Devices-Wi-Fi..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Electronique-Basic-o..> 08-Sep-2014 17:43  1.8M  

[TXT]

 Farnell-0050375063-D..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-0433751001-D..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42  2.7M  

[TXT]

 Farnell-2N3906-Fairc..> 08-Sep-2014 07:22  2.1M  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-270-Series-O..> 08-Jul-2014 18:49  2.3M  

[TXT]

 Farnell-760G-French-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-851-Series-P..> 08-Jul-2014 18:47  3.0M  

[TXT]

 Farnell-900-Series-B..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-1734-ARALDIT..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-2020-Manuel-..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-3367-ARALDIT..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-43031-0002-M..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-A-4-Hardener..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-AC-DC-Power-..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20  2.2M  

[TXT]

 Farnell-AD586BRZ-Ana..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-AD620-Rev-H-..> 09-Sep-2014 08:13  2.6M  

[TXT]

 Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31  1.3M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-AD7719-Low-V..> 18-Jul-2014 16:59  1.4M  

[TXT]

 Farnell-AD8300-Data-..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-AD8307-Data-..> 08-Sep-2014 07:30  1.3M  

[TXT]

 Farnell-AD8310-Analo..> 08-Sep-2014 07:24  2.1M  

[TXT]

 Farnell-AD8313-Analo..> 08-Sep-2014 07:26  2.0M  

[TXT]

 Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23  2.1M  

[TXT]

 Farnell-AD9833-Rev-E..> 08-Sep-2014 17:49  1.8M  

[TXT]

 Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32  1.2M  

[TXT]

 Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20  2.3M  

[TXT]

 Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28  1.7M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ADuM1200-ADu..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-ADuM1300-ADu..> 08-Sep-2014 08:11  1.7M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-AT90USBKey-H..> 29-Jul-2014 10:31  902K  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00  2.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Alimentation..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Araldite-Fus..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Arithmetic-L..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-BA-Series-Oh..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-BD6xxx-PDF.htm  22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BGA7124-400-..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-BK889B-PONT-..> 07-Jul-2014 19:42  1.8M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CC-Debugger-..> 07-Jul-2014 19:44  1.5M  

[TXT]

 Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-CC2531-USB-H..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30  4.7M  

[TXT]

 Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-Circuit-Impr..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-Clipper-Seri..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-DAC8143-Data..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-DC-DC-Conver..> 15-Jul-2014 16:48  781K  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-DG411-DG412-..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-DP83846A-DsP..> 18-Jul-2014 16:55  1.5M  

[TXT]

 Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-Data-Sheet-K..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Data-Sheet-M..> 09-Sep-2014 08:05  2.8M  

[TXT]

 Farnell-Data-Sheet-S..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-Datasheet-FT..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-Datasheet-Fa..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-Datasheet-NX..> 15-Jul-2014 17:06  1.0M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Decapant-KF-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Download-dat..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Dremel-Exper..> 22-Jul-2014 12:34  1.6M  

[TXT]

 Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41  2.8M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06  969K  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Encodeur-USB..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-Evaluating-t..> 22-Jul-2014 12:28  4.9M  

[TXT]

 Farnell-Everything-Y..> 11-Oct-2014 12:05  1.5M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Explorer-16-..> 29-Jul-2014 10:31  1.3M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-Fast-Charge-..> 28-Jul-2014 17:12  6.4M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 17:08  951K  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 16:47  803K  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Gertboard-Us..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-HIP4081A-Int..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-Hex-Inverter..> 29-Jul-2014 10:31  875K  

[TXT]

 Farnell-High-precisi..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-ICM7228-Inte..> 07-Jul-2014 19:46  1.1M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47  1.1M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Jeu-multi-la..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-Keyboard-Mou..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-L78S-STMicro..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-L293d-Texas-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-LD-WSECO16-P..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-LM19-Texas-I..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LM324-Texas-..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM555-Timer-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LM7805-Fairc..> 09-Sep-2014 08:13  2.7M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LMH6518-Texa..> 18-Jul-2014 16:59  1.3M  

[TXT]

 Farnell-LMP91051-Use..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01  2.4M  

[TXT]

 Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02  2.0M  

[TXT]

 Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03  1.6M  

[TXT]

 Farnell-LPC1769-68-6..> 16-Jul-2014 09:02  1.9M  

[TXT]

 Farnell-LPC3220-30-4..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-LT1961-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT3757-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT6233-Linea..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31  3.6M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-MAX232-MAX23..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28  1.8M  

[TXT]

 Farnell-MAX4661-MAX4..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04  1.0M  

[TXT]

 Farnell-MCP3421-Micr..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-MICROCHIP-PI..> 25-Jul-2014 12:34  6.7M  

[TXT]

 Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-MSP430-Hardw..> 29-Jul-2014 10:36  1.1M  

[TXT]

 Farnell-MSP430F15x-M..> 08-Sep-2014 07:32  1.3M  

[TXT]

 Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MTX-Compact-..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:57  5.9M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-NA555-NE555-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-NA555-NE555-..> 08-Sep-2014 07:51  1.5M  

[TXT]

 Farnell-NE5532-Texas..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NVE-datashee..> 28-Jul-2014 17:12  6.5M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:31  6.9M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:32  6.9M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-OPA627-Texas..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Octal-Genera..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03  1.7M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PIC18F2420-2..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PN512-Full-N..> 16-Jul-2014 09:03  1.4M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-PiFace-Digit..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-PicoScope-42..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-PicoScope-se..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-Power-suppli..> 25-Jul-2014 12:29  7.0M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-Quadruple-2-..> 08-Sep-2014 07:29  1.5M  

[TXT]

 Farnell-Quick-Start-..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-RDS-80-PDF.htm  18-Jul-2014 16:57  1.3M  

[TXT]

 Farnell-REF19x-Serie..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-REF102-10V-P..> 28-Jul-2014 17:09  2.4M  

[TXT]

 Farnell-RF-short-tra..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SB520-SB5100..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58  1.5M  

[TXT]

 Farnell-SL3ICS1002-1..> 16-Jul-2014 09:05  2.5M  

[TXT]

 Farnell-SL3S1203_121..> 16-Jul-2014 09:04  1.1M  

[TXT]

 Farnell-SL3S4011_402..> 16-Jul-2014 09:03  1.1M  

[TXT]

 Farnell-SL59830-Inte..> 06-Jul-2014 10:11  1.0M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-SMU-Instrume..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-SN54HC164-SN..> 08-Sep-2014 07:25  2.0M  

[TXT]

 Farnell-SN54HC244-SN..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-SN54LV4053A-..> 28-Jul-2014 17:20  5.9M  

[TXT]

 Farnell-SO967460-PDF..> 11-Oct-2014 12:05  2.9M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SOURIAU-Cont..> 08-Jul-2014 19:04  3.0M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-STM32F103x8-..> 22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-STM32F405xxS..> 27-Aug-2014 18:27  1.8M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-Schroff-A108..> 25-Jul-2014 12:27  2.8M  

[TXT]

 Farnell-Schroff-Main..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Schroff-mult..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Silica-Gel-M..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Single-Chip-..> 08-Sep-2014 07:30  1.5M  

[TXT]

 Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43  1.6M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-Synchronous-..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-T672-3000-Se..> 08-Jul-2014 18:59  2.0M  

[TXT]

 Farnell-TAS1020B-USB..> 28-Jul-2014 17:19  6.2M  

[TXT]

 Farnell-TCL-DC-traco..> 15-Jul-2014 16:46  858K  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-TEL-5-Series..> 15-Jul-2014 16:47  814K  

[TXT]

 Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47  837K  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29  4.8M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31  2.4M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30  4.6M  

[TXT]

 Farnell-TIS-Instruct..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TIS-series-t..> 15-Jul-2014 16:46  875K  

[TXT]

 Farnell-TKC2-Dusters..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-TL082-Wide-B..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-TLV320AIC23B..> 08-Sep-2014 07:18  2.4M  

[TXT]

 Farnell-TLV320AIC325..> 28-Jul-2014 17:45  2.9M  

[TXT]

 Farnell-TMLM-Series-..> 15-Jul-2014 16:47  810K  

[TXT]

 Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30  1.3M  

[TXT]

 Farnell-TMR-2-Series..> 15-Jul-2014 16:46  897K  

[TXT]

 Farnell-TMR-2-series..> 15-Jul-2014 16:48  787K  

[TXT]

 Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TMS320F28055..> 28-Jul-2014 17:09  2.7M  

[TXT]

 Farnell-TOS-tracopow..> 15-Jul-2014 16:47  852K  

[TXT]

 Farnell-TPS40060-Wid..> 28-Jul-2014 17:19  6.3M  

[TXT]

 Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-TXL-series-t..> 15-Jul-2014 16:47  829K  

[TXT]

 Farnell-TYCO-ELECTRO..> 25-Jul-2014 12:30  6.9M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-The-Discrete..> 08-Sep-2014 17:44  1.8M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Thermometre-..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49  2.6M  

[TXT]

 Farnell-Trust-Digita..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-ULINKpro-Deb..> 25-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-ULN2803A-Rev..> 09-Sep-2014 19:26  2.9M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB-to-Seria..> 08-Sep-2014 07:27  2.0M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-UTO-Souriau-..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.8M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.5M  

[TXT]

 Farnell-User-Guide-M..> 07-Jul-2014 19:41  2.0M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-WIRE-WRAP-50..> 25-Jul-2014 12:34  5.9M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-fiche-de-don..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-fx-3650P-fx-..> 29-Jul-2014 10:42  1.5M  

[TXT]

 Farnell-iServer-Micr..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-maxim-integr..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06  959K  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-safety-data-..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-tesa®pack63..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-user-manuel-..> 29-Jul-2014 10:29  1.5M  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K
LM2904, LM2904A Low-power dual operational amplifier Datasheet - production data Features  Internally frequency-compensated  Large DC voltage gain: 100 dB  Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)  Very low supply current/amplifier, essentially independent of supply voltage  Low input bias current: 20 nA (temperature compensated)  Low input offset current: 2 nA  Input common-mode voltage range includes negative rail  Differential input voltage range equal to the power supply voltage  Large output voltage swing 0 V to (VCC+ -1.5 V) Related products:  See LM2904W for enhanced ESD performances Description This circuit consists of two independent, high gain, internally frequency-compensated operational amplifiers designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5 V which is used in logic systems and easily provides the required interface electronics without requiring any additional power supply. In the linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply. D P S MiniSO-8 Q2 DFN8 2 x 2 mm (Plastic micropackage) SO-8 (Plastic micropackage) TSSOP8 (Thin shrink small outline package) www.st.com Contents LM2904, LM2904A 2/24 DocID2471 Rev 15 Contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1 Typical single-supply applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 DFN8 2 x 2 mm package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID2471 Rev 15 3/24 LM2904, LM2904A Schematic diagram 24 1 Schematic diagram Figure 1. Schematic diagram (1/2 LM2904) 6 􀁍A 4 􀁍A 100􀁍A Q2 Q3 Q1 Q4 Inverting input Non-inverting input Q8 Q9 Q10 Q11 Q12 50 mA Q13 Output Q7 Q6 Q5 RSC VCC CC GND Package pin connections LM2904, LM2904A 4/24 DocID2471 Rev 15 2 Package pin connections Figure 2. DFN8 pin connections (top view) 1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating. Figure 3. MiniSO8, TSSOP8 and SO8 package pin connections (top view) 􀀹􀀦􀀦􀀎 􀀹􀀦􀀦􀀐 􀀲􀀸􀀷􀀔 􀀬􀀱􀀔􀀐 􀀬􀀱􀀔􀀎 􀀲􀀸􀀷􀀕 􀀬􀀱􀀕􀀐 􀀬􀀱􀀕􀀎 􀀔 􀀕 􀀖 􀀗 􀀘 􀀙 􀀚 􀀛 􀀱􀀦􀀋􀀔􀀌 􀀹􀀦􀀦􀀎 􀀹􀀦􀀦􀀐 􀀲􀀸􀀷􀀔 􀀬􀀱􀀔􀀐 􀀬􀀱􀀔􀀎 􀀲􀀸􀀷􀀕 􀀬􀀱􀀕􀀐 􀀬􀀱􀀕􀀎 DocID2471 Rev 15 5/24 LM2904, LM2904A Absolute maximum ratings and operating conditions 24 3 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage (1) 1. All voltage values, except differential voltage are with respect to network ground terminal. ±16 or 32 V Vid Differential input voltage(2) 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. ±32 V Vin Input voltage -0.3 to 32 V Output short-circuit duration (3) 3. Short-circuits from the output to VCC can cause excessive heating if Vcc+ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. Infinite s Iin Input current (4): Vin driven negative Input current (5): Vin driven positive above AMR value 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Opamps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 5. The junction base/substrate of the input PNP transistor polarized in reverse must be protected by a resistor in series with the inputs to limit the input current to 400 μA max (R = (Vin-32 V)/400 μA). 5 mA in DC or 50 mA in AC (duty cycle = 10%, T = 1s) 0.4 mA Toper Operating free-air temperature range -40 to +125 °C Tstg Storage temperature range -65 to +150 °C Tj Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient(6) SO-8 TSSOP8 MiniSO-8 DFN8 2x2 6. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 125 120 190 57 °C/W Rthjc Thermal resistance junction to case(6) SO-8 TSSOP8 MiniSO-8 40 37 39 °C/W ESD HBM: human body model(7) 7. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kW resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 300 V MM: machine model(8) 8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 W). This is done for all couples of connected pin combinations while the other pins are floating. 200 V CDM: charged device model(9) 9. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 1.5 kV Absolute maximum ratings and operating conditions LM2904, LM2904A 6/24 DocID2471 Rev 15 Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage 3 to 30 V Vicm Common mode input voltage range 0 to VCC+ - 1.5 V Toper Operating free-air temperature range -40 to +125 °C DocID2471 Rev 15 7/24 LM2904, LM2904A Electrical characteristics 24 4 Electrical characteristics Table 3. VCC+ = 5 V, VCC- = ground, VO = 1.4 V, Tamb = 25° C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input offset voltage (1) Tamb = 25° C LM2904 Tamb = 25° C LM2904A Tmin  Tamb  Tmax LM2904 Tmin  Tamb  Tmax LM2904A 2 1 7 29 4 mV Vio/T Input offset voltage drift 7 30 μV/°C Iio Input offset current Tamb = 25° C Tmin  Tamb  Tmax 2 30 40 nA IioT Input offset current drift 10 300 pA/°C Iib Input bias current (2) Tamb = 25° C Tmin  Tamb  Tmax 20 150 200 nA Avd Large signal voltage gain VCC+ = +15 V, RL = 2 k, Vo = 1.4 V to 11.4 V Tamb = 25° C Tmin  Tamb  Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio (RS 10 k) Tamb = 25° C Tmin  Tamb  Tmax 65 65 100 dB ICC Supply current, all amp, no load Tamb = 25°C, VCC+ = +5 V Tmin  Tamb  Tmax, VCC+ = +30 V 0.7 1.2 2 mA Vicm Input common mode voltage range (VCC+= +30 V) (3) Tamb = 25° C Tmin  Tamb  Tmax 00 VCC+ -1.5 VCC+ -2 V CMR Common-mode rejection ratio (RS 10 k) Tamb = 25° C Tmin  Tamb  Tmax 70 60 85 dB Isource Output short-circuit current VCC+ = +15 V, Vo = +2 V, Vid = +1 V 20 40 60 mA Isink Output sink current VO = 2 V, VCC+ = +5 V VO = +0.2 V, VCC+ = +15 V 10 12 20 50 mA μA VOH High level output voltage (VCC+ = + 30 V) Tamb = +25° C, RL 2 k Tmin  Tamb  Tmax Tamb = +25° C, RL 10 k Tmin  Tamb  Tmax 26 26 27 27 27 28 V Electrical characteristics LM2904, LM2904A 8/24 DocID2471 Rev 15 VOL Low level output voltage (RL 10 k) Tamb = +25° C Tmin  Tamb  Tmax 5 20 20 SR Slew rate VCC+ = 15 V, Vin = 0.5 to 3 V, RL 2 k, CL =100 pF, unity gain Tmin  Tamb  Tmax 0.3 0.2 0.6 GBP Gain bandwidth product f = 100 kHz VCC+ = 30 V, Vin = 10 mV, RL 2 k, CL = 100 pF 0.7 1.1 MHz THD Total harmonic distortion f = 1 kHz, AV = 20 dB, RL = 2 k, Vo = 2 Vpp, CL = 100 pF, VCC+ = 30 V 0.02 % en Equivalent input noise voltage f = 1 kHz, RS = 100 , VCC+ = 30 V 55 nV/Hz VO1/VO2 Channel separation (4) 1 kHz  f  20 kHz 120 dB 1. VO = 1.4 V, RS = 0 W, 5 V < VCC+ < 30 V, 0 V < Vic < VCC+ - 1.5 V. 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC+ –1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components, ensure that the stray capacitance does not cause coupling between these external parts. This can typically be detected at higher frequencies because this type of capacitance increases. Table 3. VCC+ = 5 V, VCC- = ground, VO = 1.4 V, Tamb = 25° C (unless otherwise specified) (continued) Symbol Parameter Min. Typ. Max. Unit DocID2471 Rev 15 9/24 LM2904, LM2904A Electrical characteristics 24 Figure 4. Open-loop frequency response Figure 5. Large signal frequency response VOLTAGE GAIN (dB) 1.0 10 100 1k 10k 100k 1M 10M VCC = +10 to + 15V & FREQUENCY (Hz) 10MΩ VI VCC/2 VCC = 30V & 0.1μF VCC VO - + -55°C Tamb +125°C 140 120 100 80 60 40 20 0 -55°C Tamb +125°C FREQUENCY (Hz) 1k 10k 100k 1M OUTPUT SWING (Vpp) +7V 2kΩ 1kΩ 100kΩ +15V VO - + VI 20 15 10 5 0 Figure 6. Voltage follower large signal response Figure 7. Current sinking output characteristics INPUT VOLTAGE (V) OUTPUT VOLTAGE (V) VOLAGE FOLLOWER PULSE RESPONSE 0 10 20 30 40 TIME (μ s) RL 2 kΩ VCC = +15V 4 3 2 1 0 3 2 1 OUTPUT CHARACTERISTICS OUTPUT SINK CURRENT (mA) 0,001 0,01 0,1 1 10 100 OUTPUT VOLTAGE(V) VCC = +5V VCC = +15V VCC = +30V - IO VO Tamb = +25°C vcc/2 vcc + 10 1 0.1 0.01 Figure 8. Voltage follower small signal response Figure 9. Current sourcing output characteristics Electrical characteristics LM2904, LM2904A 10/24 DocID2471 Rev 15 Figure 10. Input current versus temperature Figure 11. Current limiting Figure 12. Input voltage range Figure 13. Supply current Figure 14. Voltage gain Figure 15. Input current versus supply voltage 0 10 20 30 40 POSITIVE SUPPLY VOLTAGE (V) VOLTAGE GAIN (dB) 160 120 80 40 R L = 20kΩ R L = 2kΩ DocID2471 Rev 15 11/24 LM2904, LM2904A Electrical characteristics 24 Figure 16. Gain bandwidth product Figure 17. Power supply rejection ratio Figure 18. Common-mode rejection ratio Figure 19. Phase margin vs capacitive load Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value Electrical characteristics LM2904, LM2904A 12/24 DocID2471 Rev 15 4.1 Typical single-supply applications Figure 20. AC coupled inverting amplifier Figure 21. AC coupled non-inverting amplifier 1/2 LM2904 ~ 0 2VPP R 10 kΩ L Co eo R 6.2 kΩ B R 100 kΩ f R1 CI 10 kΩ eI VCC R2 100 kΩ C1 10 μF R3 100 kΩ A =- R V R1 f (as shown AV = -10) 1/2 LM2904 ~ 0 2VPP R 10 kΩ L Co eo R 6.2 kΩ B C1 0.1 μF eI VCC (as shown AV = 11) A =1+R2 V R1 R1 100 kΩ R2 1 MΩ CI R3 1 MΩ R4 100 kΩ R5 100 kΩ C2 10 μF Figure 22. Non-inverting DC gain Figure 23. DC summing amplifier R1 10 kΩ R2 1 MΩ 1/2 LM2904 10 kΩ eI eO +5V eO (V) (mV) 0 AV= 1 + R2 R1 (As shown AV = 101) 1/2 LM2904 eO e 4 e 3 e 2 e 1 100 kΩ 100 kΩ 100 kΩ 100 kΩ 100 kΩ 100 kΩ eo = e1 + e2 - e3 - e4 where (e1 + e2) (e3 + e4) to keep eo 0V ≥ ≥ Figure 24. High input Z, DC differential amplifier Figure 25. Using symmetrical amplifiers to reduce input current + 1/2 LM2904 R1 100 kΩ R2 100 kΩ R4 100 kΩ R3 100 kΩ +V2 V1 Vo 1/2 LM2904 If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + ] (e2 - e1) As shown eo = 101 (e2 - e1) 2R1 R2 IB 2N 929 0.001 μF IB 3 MΩ IB I eo I e I IB IB Input current compensation 1.5 MΩ 1/2 LM2904 1/2 LM2904 DocID2471 Rev 15 13/24 LM2904, LM2904A Electrical characteristics 24 Table 4. Low drift peak detector Table 5. Active bandpass filter 1/2 LM2904 IB 2N 929 0.001 μF IB 3R 3 MΩ IB Input current compensation eo IB e I Zo ZI C 1 μF 2IB R 1 MΩ 2IB 1/2 LM2904 1/2 LM2904 1/2 LM2904 R8 100 kΩ C3 10 μF R7 100 kΩ R5 470 kΩ C1 330 pF Vo VCC R6 470 kΩ C2 330 pF R4 10 MΩ R1 100 kΩ R2 100 kΩ +V1 R3 100 kΩ 1/2 LM2904 1/2 LM2904 Fo = 1 kHz Q = 50 Av = 100 (40 dB) Macromodel LM2904, LM2904A 14/24 DocID2471 Rev 15 5 Macromodel An accurate macromodel of the LM2904 is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the LM2904 operational amplifier. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements. DocID2471 Rev 15 15/24 LM2904, LM2904A Package information 24 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package information LM2904, LM2904A 16/24 DocID2471 Rev 15 6.1 SO-8 package information Figure 26. SO-8 package mechanical drawing Table 6. SO-8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 A1 0.10 0.25 0.004 0.010 A2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 1.04 0.040 k 1° 8° 1° 8° ccc 0.10 0.004 DocID2471 Rev 15 17/24 LM2904, LM2904A Package information 24 6.2 DFN8 2 x 2 mm package mechanical data Figure 27. DFN8 2 x 2 mm package mechanical drawing Table 7. DFN8 2 x 2 mm package mechanical data (pitch 0.5 mm) Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 0.002 A3 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.50 0.020 L 0.50 0.020 ddd 0.08 0.003 Package information LM2904, LM2904A 18/24 DocID2471 Rev 15 Figure 28. DFN8 2 x 2 mm footprint recommendation 2.80 mm 0.30 mm 0.50 mm 0.45 mm 1.60 mm 0.75 mm DocID2471 Rev 15 19/24 LM2904, LM2904A Package information 24 6.3 TSSOP8 package information Figure 29. TSSOP8 package mechanical drawing Figure 30. TSSOP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.20 0.047 A1 0.05 0.15 0.002 0.006 A2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k 0° 8° 0° 8° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1 0.039 aaa 0.10 0.004 Package information LM2904, LM2904A 20/24 DocID2471 Rev 15 6.4 MiniSO-8 package information Figure 31. MiniSO-8 package mechanical drawing Table 8. MiniSO-8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.1 0.043 A1 0 0.15 0 0.006 A2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 L 0.40 0.60 0.80 0.016 0.024 0.031 L1 0.95 0.037 L2 0.25 0.010 k 0° 8° 0° 8° ccc 0.10 0.004 DocID2471 Rev 15 21/24 LM2904, LM2904A Ordering information 24 7 Ordering information Table 9. Order codes Order code Temperature range Package Packing Marking LM2904D/DT -40° C to +125° C SO-8 Tube or tape & reel 2904 LM2904PT TSSOP8 (thin shrink outline package) Tape & reel LM2904ST MiniSO-8 Tape & reel K403 LM2904Q2T DFN8 2 x 2 Tape & reel K1Y LM2904YDT(1) SO-8 (automotive grade level) Tape & reel 2904Y LM2904AYDT(1) 2904AY LM2904YPT(2) TSSOP8 (automotive grade level) Tape & reel 2904Y LM2904AYPT(2) 904AY LM2904YST(1) MiniSO-8 (automotive grade level) Tape & reel K409 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. Revision history LM2904, LM2904A 22/24 DocID2471 Rev 15 8 Revision history Table 10. Document revision history Date Revision Changes 02-Jan-2002 1 Initial release. 20-Jun-2005 2 PPAP references inserted in the datasheet, see Table 9 on page 21. ESD protection inserted in Table 1 on page 5. 10-Oct-2005 3 PPAP part numbers added in table Table 9 on page 21. 12-Dec-2005 4 Pin connections identification added on cover page figure. Thermal resistance junction to case information added see Table 1 on page 5. 01-Feb-2006 5 Maximum junction temperature parameter added in Table 1 on page 5. 02-May-2006 6 Minimum slew rate parameter in temperature Table 3 on page 7. 13-Jul-2006 7 Modified ESD values and added explanation on VCC, Vid in Table 1 on page 5. Added macromodel information. 28-Feb-2007 8 Modified ESD/HBM values in Table 1 on page 5. Updated MiniSO-8 package information. Added note relative to automotive grade level part numbers in Table 9 on page 21. 18-Jun-2007 9 Power dissipation value corrected in Table 1: Absolute maximum ratings. Table 2: Operating conditions added. Equivalent input noise voltage parameter added in Table 3. Electrical characteristics curves updated. Figure 19: Phase margin vs capacitive load added. Section 6: Package information updated. 18-Dec-2007 10 Removed power dissipation parameter from Table 1: Absolute maximum ratings. Removed Vopp from electrical characteristics in Table 3. Corrected MiniSO-8 package mechanical data in Section 6.4: MiniSO-8 package information. 08-Apr-2008 11 Added table of contents. Corrected the scale of Figure 7 (mA not μA). Corrected SO-8 package information. 02-Jun-2009 12 Added input current information in Table 1: Absolute maximum ratings. Added L1 parameters in Table 6: SO-8 package mechanical data. Added new order codes, LM2904AYD/DT, LM2904AYPT and LM2904AYST in Table 9: Order codes. 13-Apr-2010 13 Added LM2904A on cover page. Corrected footnote (5) in Table 1: Absolute maximum ratings. Removed order code LM2904AYST from Table 9: Order codes. DocID2471 Rev 15 23/24 LM2904, LM2904A Revision history 24 24-Jan-2012 14 Removed macromodel from Chapter 5 (now available on www.st.com). Added DFN8 2 x 2 mm package information in Chapter 6 and related order codes in Chapter 7. Removed LM2904YD and LM2904AYD order codes from Table 9. Changed note for LM2904YST order code in Table 9. 24-Jan-2014 15 Updated: marking info for LM2904AYPT, package silhouette drawings in the cover page, Vio/T and IioT symbols in Table 3 on page 7 Added: ESD info in Features section and Section 2: Package pin connections Removed: LM2904N from Table 9: Order codes. Table 10. Document revision history (continued) Date Revision Changes LM2904, LM2904A 24/24 DocID2471 Rev 15 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com LM217, LM317 1.2 V to 37 V adjustable voltage regulators Datasheet - production data Features • Output voltage range: 1.2 to 37 V • Output current in excess of 1.5 A • 0.1 % line and load regulation • Floating operation for high voltages • Complete series of protections: current limiting, thermal shutdown and SOA control Description The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for use as positive adjustable voltage regulators. They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range. The nominal output voltage is selected by means of a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators. TO-220 TO-220FP D²PAK Table 1. Device summary Order codes TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP LM217T LM217T-DG LM217D2T-TR LM317T LM317T-DG LM317D2T-TR LM317P LM317BT www.st.com Contents LM217, LM317 2/25 DocID2154 Rev 19 Contents 1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8 Packaging mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DocID2154 Rev 19 3/25 LM217, LM317 Pin configuration 25 1 Pin configuration Figure 1. Pin connections (top view) 􀀷􀀲􀀐􀀕􀀕􀀓 􀀷􀀲􀀐􀀕􀀕􀀓􀀩􀀳 􀀧􀃰􀀳􀀤􀀮􀀃 Maximum ratings LM217, LM317 4/25 DocID2154 Rev 19 2 Maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Table 2. Absolute maximum ratings Symbol Parameter Value Unit VI - VO Input-reference differential voltage 40 V IO Output current Internally limited A TOP Operating junction temperature for: LM217 - 25 to 150 °C LM317 0 to 125 LM317B -40 to 125 PD Power dissipation Internally limited TSTG Storage temperature - 65 to 150 °C Table 3. Thermal data Symbol Parameter D²PAK TO-220 TO-220FP Unit RthJC Thermal resistance junction-case 3 5 5 °C/W RthJA Thermal resistance junction-ambient 62.5 50 60 °C/W DocID2154 Rev 19 5/25 LM217, LM317 Diagram 25 3 Diagram Figure 2. Schematic diagram Electrical characteristics LM217, LM317 6/25 DocID2154 Rev 19 4 Electrical characteristics VI - VO = 5 V, IO = 500 mA, IMAX = 1.5 A and PMAX = 20 W, TJ = - 55 to 150 °C, unless otherwise specified. Table 4. Electrical characteristics for LM217 Symbol Parameter Test conditions Min. Typ. Max. Unit ΔVO Line regulation VI - VO = 3 to 40 V TJ = 25°C 0.01 0.02 %/V 0.02 0.05 ΔVO Load regulation VO ≤5 V IO = 10 mA to IMAX TJ = 25°C 5 15 mV 20 50 VO ≥5 V, IO = 10 mA to IMAX TJ = 25°C 0.1 0.3 % 0.3 1 IADJ Adjustment pin current 50 100 μA ΔIADJ Adjustment pin current VI - VO = 2.5 to 40V IO = 10 mA to IMAX 0.2 5 μA VREF Reference voltage VI - VO = 2.5 to 40V IO= 10 mA to IMAX PD ≤ PMAX 1.2 1.25 1.3 V ΔVO/VO Output voltage temperature stability 1 % IO(min) Minimum load current VI - VO = 40 V 3.5 5 mA IO(max) Maximum load current VI - VO ≤ 15 V, PD < PMAX 1.5 2.2 A VI - VO = 40 V, PD < PMAX, TJ = 25°C 0.4 eN Output noise voltage (percentage of VO) B = 10Hz to 100kHz, TJ = 25°C 0.003 % SVR Supply voltage rejection (1) TJ = 25°C, f = 120Hz CADJ=0 65 dB CADJ=10μF 66 80 1. CADJ is connected between adjust pin and ground. DocID2154 Rev 19 7/25 LM217, LM317 Electrical characteristics 25 VI - VO = 5 V, IO = 500 mA, IMAX = 1.5 A and PMAX = 20 W, TJ = 0 to 125 °C, unless otherwise specified. Table 5. Electrical characteristics for LM317 Symbol Parameter Test conditions Min. Typ. Max. Unit ΔVO Line regulation VI - VO = 3 to 40 V TJ = 25°C 0.01 0.04 %/V 0.02 0.07 ΔVO Load regulation VO ≤ 5 V IO = 10 mA to IMAX TJ = 25°C 5 25 mV 20 70 VO ≥5 V, IO = 10 mA to IMAX TJ = 25°C 0.1 0.5 % 0.3 1.5 IADJ Adjustment pin current 50 100 μA ΔIADJ Adjustment pin current VI - VO = 2.5 to 40V, IO = 10 mA to 500mA 0.2 5 μA VREF Reference voltage (between pin 3 and pin 1) VI - VO = 2.5 to 40V IO = 10 mA to 500mA PD ≤ PMAX 1.2 1.25 1.3 V ΔVO/VO Output voltage temperature stability 1 % IO(min) Minimum load current VI - VO = 40 V 3.5 10 mA IO(max) Maximum load current VI - VO ≤ 15 V, PD < PMAX 1.5 2.2 A VI - VO = 40 V, PD < PMAX, TJ = 25°C 0.4 eN Output noise voltage (percentage of VO) B = 10Hz to 100kHz, TJ = 25°C 0.003 % SVR Supply voltage rejection (1) TJ = 25°C, f = 120Hz CADJ=0 65 dB CADJ=10μF 66 80 1. CADJ is connected between adjust pin and ground. Electrical characteristics LM217, LM317 8/25 DocID2154 Rev 19 VI - VO = 5 V, IO = 500 mA, IMAX = 1.5 A and PMAX = 20 W, TJ = - 40 to 125 °C, unless otherwise specified. Table 6. Electrical characteristics for LM317B Symbol Parameter Test conditions Min. Typ. Max. Unit ΔVO Line regulation VI - VO = 3 to 40 V TJ = 25°C 0.01 0.04 %/V 0.02 0.07 ΔVO Load regulation VO ≤ 5 V IO = 10 mA to IMAX TJ = 25°C 5 25 mV 20 70 VO ≥5 V, IO = 10 mA to IMAX TJ = 25°C 0.1 0.5 % 0.3 1.5 IADJ Adjustment pin current 50 100 μA ΔIADJ Adjustment pin current VI - VO = 2.5 to 40V, IO = 10 mA to 500mA 0.2 5 μA VREF Reference voltage (between pin 3 and pin 1) VI - VO = 2.5 to 40V IO = 10 mA to 500mA PD ≤ PMAX 1.2 1.25 1.3 V ΔVO/VO Output voltage temperature stability 1 % IO(min) Minimum load current VI - VO = 40 V 3.5 10 mA IO(max) Maximum load current VI - VO ≤ 15 V, PD < PMAX 1.5 2.2 A VI - VO = 40 V, PD < PMAX, TJ = 25°C 0.4 eN Output noise voltage (percentage of VO) B = 10Hz to 100kHz, TJ = 25°C 0.003 % SVR Supply voltage rejection (1) TJ = 25°C, f = 120Hz CADJ=0 65 dB CADJ=10μF 66 80 1. CADJ is connected between adjust pin and ground. DocID2154 Rev 19 9/25 LM217, LM317 Typical characteristics 25 5 Typical characteristics Figure 3. Output current vs. input-output differential voltage Figure 4. Dropout voltage vs. junction temperature Figure 5. Reference voltage vs. junction Figure 6. Basic adjustable regulator 􀀬􀀬􀁑􀁑􀁓􀁓􀁘􀁘􀁗􀁗 􀀲􀀲􀁘􀁘􀁗􀁗􀁓􀁓􀁘􀁘􀁗􀁗 􀀤􀀤􀁇􀁇􀁍􀁍 Application information LM217, LM317 10/25 DocID2154 Rev 19 6 Application information The LM217, LM317 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see Figure 6), giving an output voltage VO of: VO = VREF (1 + R2/R1) + IADJ R2 The device was designed to minimize the term IADJ (100 μA max) and to maintain it very constant with line and load changes. Usually, the error term IADJ × R2 can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM217, LM317 is a floating regulator and "sees" only the input-tooutput differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulators are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R1 (see Figure 6) should be tied as close as possible to the regulator, while the ground terminal of R2 should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow: • An input bypass capacitor of 0.1 μF • An adjustment terminal to ground 10 μF capacitor to improve the ripple rejection of about 15 dB (CADJ). • An 1 μF tantalum (or 25 μF Aluminium electrolytic) capacitor on the output to improve transient response. In addition to external capacitors, it is good practice to add protection diodes, as shown in Figure 7 D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging. Note: D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging. Figure 7. Voltage regulator with protection diodes 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 DocID2154 Rev 19 11/25 LM217, LM317 Application information 25 IO = (VREF / R1) + IADJ = 1.25 V / R1 Figure 8. Slow turn-on 15 V regulator 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 Figure 9. Current regulator 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 Figure 10. 5 V electronic shut-down regulator 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 Application information LM217, LM317 12/25 DocID2154 Rev 19 (R2 sets maximum VO) * RS sets output impedance of charger ZO = RS (1 + R2/R1). Use of RS allows low charging rates whit fully charged battery. Figure 11. Digitally selected outputs 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 Figure 12. Battery charger (12 V) 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 DocID2154 Rev 19 13/25 LM217, LM317 Application information 25 * R3 sets peak current (0.6 A for 1 0). ** C1 recommended to filter out input transients. Figure 13. Current limited 6 V charger 􀀪􀀪􀁏􀁏􀁑􀁑􀁖􀁖􀁕􀁕 􀀰􀁖􀁖􀁕􀁕􀁑􀁑􀁖􀁖􀁕􀁕 􀀢􀁅􀁅􀁋􀁋􀁖􀁖􀁔􀁔􀁕􀁕 Package mechanical data LM217, LM317 14/25 DocID2154 Rev 19 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 14. TO-220 (single gauge) drawing 􀀛􀀔􀀚􀀗􀀙􀀕􀀚􀁂􀁕􀁈􀁙􀀧 DocID2154 Rev 19 15/25 LM217, LM317 Package mechanical data 25 Table 7. TO-220 (single gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 0.51 0.60 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data LM217, LM317 16/25 DocID2154 Rev 19 Figure 15. TO-220 (dual gauge) drawing 􀀓􀀓􀀔􀀘􀀜􀀛􀀛􀁂􀁗􀁜􀁓􀁈􀀤􀁂􀀵􀁈􀁙􀁂􀀷 DocID2154 Rev 19 17/25 LM217, LM317 Package mechanical data 25 Table 8. TO-220 (dual gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 D1 1.27 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 1.23 1.32 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data LM217, LM317 18/25 DocID2154 Rev 19 Figure 16. TO-220FP drawing 7012510_Rev_K A B H Dia L7 D E L6 L5 L2 L3 L4 F1 F2 F G G1 DocID2154 Rev 19 19/25 LM217, LM317 Package mechanical data 25 Table 9. TO-220FP mechanical data Dim. mm Min. Typ. Max. A 4.4 4.6 B 2.5 2.7 D 2.5 2.75 E 0.45 0.7 F 0.75 1 F1 1.15 1.70 F2 1.15 1.70 G 4.95 5.2 G1 2.4 2.7 H 10 10.4 L2 16 L3 28.6 30.6 L4 9.8 10.6 L5 2.9 3.6 L6 15.9 16.4 L7 9 9.3 Dia 3 3.2 Package mechanical data LM217, LM317 20/25 DocID2154 Rev 19 Figure 17. D²PAK drawing 0079457_T DocID2154 Rev 19 21/25 LM217, LM317 Package mechanical data 25 Table 10. D²PAK mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 A1 0.03 0.23 b 0.70 0.93 b2 1.14 1.70 c 0.45 0.60 c2 1.23 1.36 D 8.95 9.35 D1 7.50 E 10 10.40 E1 8.50 e 2.54 e1 4.88 5.28 H 15 15.85 J1 2.49 2.69 L 2.29 2.79 L1 1.27 1.40 L2 1.30 1.75 R 0.4 V2 0° 8° Packaging mechanical data LM217, LM317 22/25 DocID2154 Rev 19 8 Packaging mechanical data Figure 18. Tape for D²PAK A0 P1 D1 P0 F W E D B0 K0 T User direction of feed P2 10 pitches cumulative tolerance on tape +/- 0.2 mm User direction of feed R Bending radius B1 For machine ref. only including draft and radii concentric around B0 AM08852v1 Top cover tape DocID2154 Rev 19 23/25 LM217, LM317 Packaging mechanical data 25 Figure 19. Reel for D²PAK Table 11. D²PAK tape and reel mechanical data Tape Reel Dim. mm Dim. mm Min. Max. Min. Max. A0 10.5 10.7 A 330 B0 15.7 15.9 B 1.5 D 1.5 1.6 C 12.8 13.2 D1 1.59 1.61 D 20.2 E 1.65 1.85 G 24.4 26.4 F 11.4 11.6 N 100 K0 4.8 5.0 T 30.4 P0 3.9 4.1 P1 11.9 12.1 Base qty 1000 P2 1.9 2.1 Bulk qty 1000 R 50 T 0.25 0.35 W 23.7 24.3 A D B Full radius G measured at hub C N REEL DIMENSIONS 40mm min. Access hole At sl ot location T Tape slot in core for tape start 25 mm min. width AM08851v2 Revision history LM217, LM317 24/25 DocID2154 Rev 19 9 Revision history Table 12. Document revision history Date Revision Changes 01-Sep-2004 10 Mistake VREF ==> VO, tables 1, 4 and 5. 19-Jan-2007 11 D²PAK mechanical data has been updated, add footprint data and the document has been reformatted. 13-Jun-2007 12 Change values ΔIADJ and VREF test condition of IO = 10 mA to IMAX ==> IO = 10 mA to 500 mA on Table 5. 23-Nov-2007 13 Added Table 1. 06-Feb-2008 14 Added: TO-220 mechanical data Figure 14 on page 14 and Table 6 on page 13. 02-Mar-2010 15 Added: notes Figure 14 on page 14, Figure 15 on page 15, Figure 16 and Figure 17 on page 16. 17-Nov-2010 16 Modified: RthJC value for TO-220 Table 3 on page 4. 18-Nov-2011 17 Added: order code LM317T-DG Table 1 on page 1. 13-Feb-2012 18 Added: order code LM217T-DG Table 1 on page 1. 12-Mar-2014 19 The part number LM117 has been moved to a separate datasheet. Removed TO-3 package. Updated the description in cover page Modified Table 1: Device summary, Table 3: Thermal data, Figure 1: Pin connections (top view), Section 4: Electrical characteristics, Section 5: Typical characteristics, Section 6: Application information, Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes. DocID2154 Rev 19 25/25 LM217, LM317 25 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com STP80NF55L-08 STB80NF55L-08 - STB80NF55L-08-1 N-CHANNEL 55V - 0.0065Ω - 80A - TO-220/D2PAK/I2PAK STripFET™ II POWER MOSFET (1) Current Limited by Package (2) ISD ≤ 80A, di/dt ≤ 500A/μs, VDD= 40V Tj ≤ TJMAX. (3) Starting Tj= 25°C, ID= 40A, VDD= 40V  TYPICAL RDS(on) = 0.0065Ω  LOW THRESHOLD DRIVE  LOGIC LEVEL DEVICE DESCRIPTION This Power Mosfet is the latest development of STMicroelectronics unique “Single Feature Size™” strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility. APPLICATIONS  HIGH CURRENT SWITCHING APPLICATION ABSOLUTE MAXIMUM RATINGS () Pulse width limited by safe operating area TYPE VDSS RDS(on) ID STP80NF55L-08 STB80NF55L-08 STB80NF55L-08-1 55 V 55 V 55 V 0.008Ω 0.008Ω 0.008Ω 80 A 80 A 80 A Symbol Parameter Value Unit VDS Drain-source Voltage (VGS = 0) 55 V VDGR Drain-gate Voltage (RGS = 20 kΩ) 55 V VGS Gate- source Voltage ± 16 V ID (1) Drain Current (continuous) at TC = 25°C 80 A ID (1) Drain Current (continuous) at TC = 100°C 80 A IDM () Drain Current (pulsed) 320 A PTOT Total Dissipation at TC = 25°C 300 W Derating Factor 2 W/°C dv/dt (2) Peak Diode Recovery voltage slope 15 V/ns EAS(3) Single Pulse Avalanche Energy 870 mJ Tstg Storage Temperature –55 to 175 °C Tj Max. Operating Junction Temperature 175 °C TO-220 1 2 3 1 3 D2PAK 1 2 3 I2PAK INTERNAL SCHEMATIC DIAGRAM STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 2/9 THERMAL DATA ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF ON (1) DYNAMIC Rthj-case Thermal Resistance Junction-case Max 0.5 °C/W Rthj-amb Thermal Resistance Junction-ambient Max 62.5 °C/W Tl Maximum Lead Temperature For Soldering Purpose 300 °C Symbol Parameter Test Conditions Min. Typ. Max. Unit V(BR)DSS Drain-source Breakdown Voltage ID = 250 μA, VGS = 0 55 V IDSS Zero Gate Voltage Drain Current (VGS = 0) VDS = Max Rating 1 μA VDS = Max Rating, TC = 125 °C 10 μA IGSS Gate-body Leakage Current (VDS = 0) VGS = ± 16V ±100 nA Symbol Parameter Test Conditions Min. Typ. Max. Unit VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250μA 1 1.6 2.5 V RDS(on) Static Drain-source On Resistance VGS = 10 V, ID = 40 A VGS = 5 V, ID = 40 A 0.0065 0.008 0.008 0.01 ΩΩ Symbol Parameter Test Conditions Min. Typ. Max. Unit gfs Forward Transconductance VDS =15V , ID =40 A 150 S Ciss Input Capacitance VDS = 25V, f = 1 MHz, VGS = 0 4350 pF Coss Output Capacitance 800 pF Crss Reverse Transfer Capacitance 260 pF 3/9 STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 ELECTRICAL CHARACTERISTICS (CONTINUED) SWITCHING ON SWITCHING OFF SOURCE DRAIN DIODE Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. 2. Pulse width limited by safe operating area. Symbol Parameter Test Conditions Min. Typ. Max. Unit td(on) Turn-on Delay Time VDD = 27V, ID = 40A RG = 4.7Ω VGS = 4.5V (see test circuit, Figure 3) 35 ns tr Rise Time 145 ns Qg Qgs Qgd Total Gate Charge Gate-Source Charge Gate-Drain Charge VDD = 27.5 V, ID = 80A, VGS = 4.5V 75 20 30 100 nC nC nC Symbol Parameter Test Conditions Min. Typ. Max. Unit td(off) tf Turn-off-Delay Time Fall Time VDD = 27V, ID = 40A, RG = 4.7Ω, VGS = 4.5V (see test circuit, Figure 3) 85 65 ns ns Symbol Parameter Test Conditions Min. Typ. Max. Unit ISD Source-drain Current 80 A ISDM (2) Source-drain Current (pulsed) 320 A VSD (2) Forward On Voltage ISD = 80A, VGS = 0 1.5 V trr Qrr IRRM Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current ISD = 80A, di/dt = 100A/μs, VDD = 20V, Tj = 150°C (see test circuit, Figure 5) 85 280 6.5 ns nC A STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 4/9 Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times Fig. 4: Gate Charge test Circuit Fig. Fig. 1: Unclamped Inductive Load Test Circuit 2: Unclamped Inductive Waveform Fig. 3: Switching Times Test Circuit For Resistive Load 5/9 STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 DIM. mm. inch MIN. TYP MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 b 0.61 0.88 0.024 0.034 b1 1.15 1.70 0.045 0.066 c 0.49 0.70 0.019 0.027 D 15.25 15.75 0.60 0.620 E 10 10.40 0.393 0.409 e 2.40 2.70 0.094 0.106 e1 4.95 5.15 0.194 0.202 F 1.23 1.32 0.048 0.052 H1 6.20 6.60 0.244 0.256 J1 2.40 2.72 0.094 0.107 L 13 14 0.511 0.551 L1 3.50 3.93 0.137 0.154 L20 16.40 0.645 L30 28.90 1.137 øP 3.75 3.85 0.147 0.151 Q 2.65 2.95 0.104 0.116 TO-220 MECHANICAL DATA STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 6/9 1 DIM. mm. inch MIN. TYP MAX. MIN. TYP. MAX. A 4.4 4.6 0.173 0.181 A1 2.49 2.69 0.098 0.106 A2 0.03 0.23 0.001 0.009 B 0.7 0.93 0.027 0.036 B2 1.14 1.7 0.044 0.067 C 0.45 0.6 0.017 0.023 C2 1.23 1.36 0.048 0.053 D 8.95 9.35 0.352 0.368 D1 8 0.315 E 10 10.4 0.393 E1 8.5 0.334 G 4.88 5.28 0.192 0.208 L 15 15.85 0.590 0.625 L2 1.27 1.4 0.050 0.055 L3 1.4 1.75 0.055 0.068 M 2.4 3.2 0.094 0.126 R 0.4 0.015 V2 0º 4º D2PAK MECHANICAL DATA 3 7/9 STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 DIM. mm. inch MIN. TYP MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 A1 2.40 2.72 0.094 0.107 b 0.61 0.88 0.024 0.034 b1 1.14 1.70 0.044 0.066 c 0.49 0.70 0.019 0.027 c2 1.23 1.32 0.048 0.052 D 8.95 9.35 0.352 0.368 e 2.40 2.70 0.094 0.106 e1 4.95 5.15 0.194 0.202 E 10 10.40 0.393 0.410 L 13 14 0.511 0.551 L1 3.50 3.93 0.137 0.154 L2 1.27 1.40 0.050 0.055 TO-262 (I2PAK) MECHANICAL DATA STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 8/9 TAPE AND REEL SHIPMENT (suffix ”T4”)* D2PAK FOOTPRINT TUBE SHIPMENT (no suffix)* * on sales type DIM. mm inch MIN. MAX. MIN. MAX. A 330 12.992 B 1.5 0.059 C 12.8 13.2 0.504 0.520 D 20.2 0795 G 24.4 26.4 0.960 1.039 N 100 3.937 T 30.4 1.197 BASE QTY BULK QTY 1000 1000 REEL MECHANICAL DATA DIM. mm inch MIN. MAX. MIN. MAX. A0 10.5 10.7 0.413 0.421 B0 15.7 15.9 0.618 0.626 D 1.5 1.6 0.059 0.063 D1 1.59 1.61 0.062 0.063 E 1.65 1.85 0.065 0.073 F 11.4 11.6 0.449 0.456 K0 4.8 5.0 0.189 0.197 P0 3.9 4.1 0.153 0.161 P1 11.9 12.1 0.468 0.476 P2 1.9 2.1 0.075 0.082 R 50 1.574 T 0.25 0.35 0.0098 0.0137 W 23.7 24.3 0.933 0.956 TAPE MECHANICAL DATA 9/9 STP80NF55L-08 - STB80NF55L-08 - STB80NF55L-08-1 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland STP16NF06L STP16NF06LFP N-CHANNEL 60V - 0.07 Ω - 16A TO-220/TO-220FP STripFET™ II POWER MOSFET ■ TYPICAL RDS(on) = 0.07Ω ■ EXCEPTIONAL dv/dt CAPABILITY ■ LOW GATE CHARGE AT 100 oC ■ LOW THRESHOLD DRIVE DESCRIPTION This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" stripbased process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility. APPLICATIONS ■ MOTOR CONTROL, AUDIO AMPLIFIERS ■ HIGH CURRENT, HIGH SPEED SWITCHING ■ SOLENOID AND RELAY DRIVERS ■ DC-DC & DC-AC CONVERTERS ■ AUTOMOTIVE ENVIRONMENT TYPE VDSS RDS(on) ID STP16NF06L STP60NF06LFP 60 V 60 V <0.09 Ω <0.09 Ω 16 A 11 A 1 2 3 1 2 3 TO-220 TO-220FP INTERNAL SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS (•) Pulse width limited by safe operating area. (*) Current Limited by package’s thermal resistance (1) ISD ≤ 16A, di/dt ≤ 210A/μs, VDD ≤ V(BR)DSS, Tj ≤ TJMAX. (2) Starting Tj = 25 oC, ID = 8A, VDD = 30V Symbol Parameter Value Unit STP16NF06L STP16NF06LFP VDS Drain-source Voltage (VGS = 0) 60 V VDGR Drain-gate Voltage (RGS = 20 kΩ) 60 V VGS Gate- source Voltage ± 16 V ID Drain Current (continuous) at TC = 25°C 16 11(*) A ID Drain Current (continuous) at TC = 100°C 11 7.5(*) A IDM(•) Drain Current (pulsed) 64 44(*) A Ptot Total Dissipation at TC = 25°C 45 25 W Derating Factor 0.3 0.17 W/°C dv/dt (1) Peak Diode Recovery voltage slope 23 V/ns EAS (2) Single Pulse Avalanche Energy 127 mJ VISO Insulation Withstand Voltage (DC) -------- 2500 V Tstg Storage Temperature -55 to 175 °C Tj Operating Junction Temperature STP16NF06L/FP 2/9 THERMAL DATA ELECTRICAL CHARACTERISTICS (Tcase = 25 °C unless otherwise specified) OFF ON (1) DYNAMIC TO-220 TO-220FP Rthj-case Thermal Resistance Junction-case Max 3.33 6 °C/W Rthj-amb Tl Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose Max 62.5 300 °C/W °C Symbol Parameter Test Conditions Min. Typ. Max. Unit V(BR)DSS Drain-source Breakdown Voltage ID = 250 μA, VGS = 0 60 V IDSS Zero Gate Voltage Drain Current (VGS = 0) VDS = Max Rating VDS = Max Rating TC = 125°C 1 10 μA μA IGSS Gate-body Leakage Current (VDS = 0) VGS = ± 16V ±100 nA Symbol Parameter Test Conditions Min. Typ. Max. Unit VGS(th) Gate Threshold Voltage VDS = VGS ID = 250 μA 1 2.5 V RDS(on) Static Drain-source On Resistance VGS = 5 V ID = 8 A VGS = 10 V ID = 8 A 0.08 0.07 0.10 0.09 ΩΩ Symbol Parameter Test Conditions Min. Typ. Max. Unit gfs (*) Forward Transconductance VDS > ID(on) x RDS(on)max, ID = 8 A 17 S Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance VDS = 25V, f = 1 MHz, VGS = 0 345 72 29 pF pF pF 3/9 STP16NF06L/FP SWITCHING ON SWITCHING OFF SOURCE DRAIN DIODE (*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. (•)Pulse width limited by safe operating area. Symbol Parameter Test Conditions Min. Typ. Max. Unit td(on) tr Turn-on Delay Time Rise Time VDD = 30 V ID = 8 A RG = 4.7 Ω VGS = 4.5 V (Resistive Load, Figure 3) 10 37 ns ns Qg Qgs Qgd Total Gate Charge Gate-Source Charge Gate-Drain Charge VDD = 48 V ID = 16 A VGS= 5V 7.3 2.1 3.1 10 nC nC nC Symbol Parameter Test Conditions Min. Typ. Max. Unit td(off) tf Turn-off Delay Time Fall Time VDD = 30 V ID = 8 A RG = 4.7Ω, VGS = 4.5 V (Resistive Load, Figure 3) 20 12.5 ns ns Symbol Parameter Test Conditions Min. Typ. Max. Unit ISD ISDM (•) Source-drain Current Source-drain Current (pulsed) 16 64 AA VSD (*) Forward On Voltage ISD = 16 A VGS = 0 1.3 V trr Qrr IRRM Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current ISD = 16 A di/dt = 100A/μs VDD = 16 V Tj = 150°C (see test circuit, Figure 5) 50 67.5 2.7 ns nC A ELECTRICAL CHARACTERISTICS (continued) Safe Operating Area for TO-220 Safe Operating Area for TO-220FP STP16NF06L/FP 4/9 Thermal Impedance Thermal Impedance for TO-220FP Output Characteristics Transfer Characteristics Transconductance Static Drain-source On Resistance 5/9 STP16NF06L/FP Gate Charge vs Gate-source Voltage Capacitance Variations Normalized Gate Threshold Voltage vs Temperature Normalized on Resistance vs Temperature Source-drain Diode Forward Characteristics STP16NF06L/FP 6/9 Fig. 1: Unclamped Inductive Load Test Circuit Fig. 2: Unclamped Inductive Waveform Fig. 3: Switching Times Test Circuits For Resistive Load Fig. 4: Gate Charge test Circuit Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times 7/9 STP16NF06L/FP DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 0.107 D1 1.27 0.050 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.203 G1 2.4 2.7 0.094 0.106 H2 10.0 10.40 0.393 0.409 L2 16.4 0.645 L4 13.0 14.0 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.2 6.6 0.244 0.260 L9 3.5 3.93 0.137 0.154 DIA. 3.75 3.85 0.147 0.151 L6 A C D E D1 F G L7 L2 Dia. F1 L5 L4 H2 L9 F2 G1 TO-220 MECHANICAL DATA P011C STP16NF06L/FP 8/9 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 4.4 4.6 0.173 0.181 B 2.5 2.7 0.098 0.106 D 2.5 2.75 0.098 0.108 E 0.45 0.7 0.017 0.027 F 0.75 1 0.030 0.039 F1 1.15 1.7 0.045 0.067 F2 1.15 1.7 0.045 0.067 G 4.95 5.2 0.195 0.204 G1 2.4 2.7 0.094 0.106 H 10 10.4 0.393 0.409 L2 16 0.630 L3 28.6 30.6 1.126 1.204 L4 9.8 10.6 0.385 0.417 L6 15.9 16.4 0.626 0.645 L7 9 9.3 0.354 0.366 Ø 3 3.2 0.118 0.126 L2 A B D E H G L6 ¯ F L3 G1 1 2 3 F2 F1 L7 L4 TO-220FP MECHANICAL DATA 9/9 STP16NF06L/FP Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners. © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. www.st.com STM32F205xx STM32F207xx ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Datasheet - production data Features • Core: ARM 32-bit Cortex™-M3 CPU (120 MHz max) with Adaptive real-time accelerator (ART Accelerator™ allowing 0-wait state execution performance from Flash memory, MPU, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1) • Memories – Up to 1 Mbyte of Flash memory – 512 bytes of OTP memory – Up to 128 + 4 Kbytes of SRAM – Flexible static memory controller that supports Compact Flash, SRAM, PSRAM, NOR and NAND memories – LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – From 1.8 to 3.6 V application supply+I/Os – POR, PDR, PVD and BOR – 4 to 26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM • 3 × 12-bit, 0.5 μs ADCs with up to 24 channels and up to 6 MSPS in triple interleaved mode • 2 × 12-bit D/A converters • General-purpose DMA: 16-stream controller with centralized FIFOs and burst support • Up to 17 timers – Up to twelve 16-bit and two 32-bit timers, up to 120 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input • Debug mode: Serial wire debug (SWD), JTAG, and Cortex-M3 Embedded Trace Macrocell™ • Up to 140 I/O ports with interrupt capability: – Up to 136 fast I/Os up to 60 MHz – Up to 138 5 V-tolerant I/Os • Up to 15 communication interfaces – Up to 3 × I2C interfaces (SMBus/PMBus) – Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem ctrl) – Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S to achieve audio class accuracy via audio PLL or external PLL – 2 × CAN interfaces (2.0B Active) – SDIO interface • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII • 8- to 14-bit parallel camera interface (48 Mbyte/s max.) – • CRC calculation unit • 96-bit unique ID Table 1. Device summary Reference Part number STM32F205xx STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG STM32F207xx STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) LQFP176 (24 × 24 mm) UFBGA176 (10 × 10 mm) WLCSP64+2 (0.400 mm pitch) 􀀦􀀢􀀧􀀡 www.st.com Contents STM32F20xxx 2/178 DocID15818 Rev 11 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . . 18 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 19 3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 21 3.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28 3.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 28 3.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.20.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.20.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.20.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID15818 Rev 11 3/178 STM32F20xxx Contents 5 3.20.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.20.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.22 Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.25 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 34 3.27 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.28 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 35 3.29 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 35 3.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.32 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.33 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.34 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.35 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Contents STM32F20xxx 4/178 DocID15818 Rev 11 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 73 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 73 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 74 6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 95 6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 100 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 148 6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 148 6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 DocID15818 Rev 11 5/178 STM32F20xxx Contents 5 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 List of tables STM32F20xxx 6/178 DocID15818 Rev 11 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F205xx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 3. STM32F207xx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 8. STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 9. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 10. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 71 Table 16. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 73 Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 73 Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 76 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 83 Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 83 Table 26. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 28. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 29. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 30. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 32. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 33. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 34. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 35. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 36. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 37. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 38. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 39. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID15818 Rev 11 7/178 STM32F20xxx List of tables 7 Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 50. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 51. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 52. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 55. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 56. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 57. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 58. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 59. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 60. Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Table 61. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 62. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 63. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 64. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 119 Table 65. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 120 Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Table 67. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Table 68. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 69. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 70. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 71. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 130 Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 131 Table 74. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 75. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 76. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 77. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 78. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 138 Table 79. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 80. Switching characteristics for PC Card/CF read and write cycles in attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 145 Table 82. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 83. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 84. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 85. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 86. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 151 Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . 153 Table 89. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 155 Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. . . . . . . . 157 Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Table 92. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 162 Table 93. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Table 94. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 95. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 List of figures STM32F20xxx 8/178 DocID15818 Rev 11 List of figures Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 2. Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 4. STM32F20x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 6. Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 7. Regulator OFF/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 8. Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 9. Startup in regulator OFF: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 27 Figure 10. STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 11. STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 12. STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 13. STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 14. STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 15. STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 16. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 17. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 18. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 19. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 20. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 21. Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 22. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 23. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 24. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 25. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON. . . . . . . . . . . . . . . 79 Figure 26. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 79 Figure 27. Typical current consumption vs temperature in Sleep mode, peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 28. Typical current consumption vs temperature in Sleep mode, peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 29. Typical current consumption vs temperature in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 34. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 35. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 36. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 37. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DocID15818 Rev 11 9/178 STM32F20xxx List of figures 9 Figure 38. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Figure 39. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Figure 40. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure 41. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 42. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Figure 43. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 44. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 45. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure 46. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 117 Figure 47. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Figure 48. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Figure 49. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Figure 50. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 51. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 52. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 53. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 125 Figure 54. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 125 Figure 55. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 130 Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 131 Figure 58. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 132 Figure 59. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 60. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Figure 61. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Figure 62. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 138 Figure 63. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Figure 64. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 141 Figure 65. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 141 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Figure 67. PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 68. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 143 Figure 69. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 144 Figure 70. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 71. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 72. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 147 Figure 73. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 147 Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Figure 75. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 151 Figure 77. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Figure 78. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 153 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 155 Figure 80. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 82. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 83. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 159 Figure 84. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 85. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Introduction STM32F20xxx 10/178 DocID15818 Rev 11 1 Introduction This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family. The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document. For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059). The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/. DocID15818 Rev 11 11/178 STM32F20xxx Description 177 2 Description The STM32F20x family is based on the high-performance ARM® Cortex™-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. The devices also feature an adaptive real-time memory accelerator (ART Accelerator™) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors. The devices also feature standard peripherals. • Up to three I2Cs • Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization. • 4 USARTs and 2 UARTs • A USB OTG high-speed with full-speed capability (with the ULPI) • A second USB OTG (full-speed) • Two CANs • An SDIO interface • Ethernet and camera interface available on STM32F207xx devices only. Note: The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). A comprehensive set of power-saving modes allow the design of low-power applications. STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances Figure 4 shows the general block diagram of the device family. Description STM32F20xxx 12/178 DocID15818 Rev 11 Table 2. STM32F205xx features and peripheral counts Peripherals STM32F205Rx STM32F205Vx STM32F205Zx Flash memory in Kbytes 128 256 512 768 1024 128 256 512 768 1024 256 512 768 1024 SRAM in Kbytes System (SRAM1+SRAM2) 64 (48+16) 96 (80+16) 128 (112+16) 64 (48+16) 96 (80+16) 128 (112+16) 96 (80+16) 128 (112+16) Backup 4 4 4 FSMC memory controller No Yes(1) Ethernet No Timers General-purpose 10 Advanced-control 2 Basic 2 IWDG Yes WWDG Yes RTC Yes Random number generator Yes Comm. interfaces SPI/(I2S) 3 (2)(2) I2C 3 USART UART 42 USB OTG FS Yes USB OTG HS Yes CAN 2 Camera interface No GPIOs 51 82 114 SDIO Yes 12-bit ADC Number of channels 3 16 16 24 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 120 MHz Operating voltage 1.8 V to 3.6 V(3) STM32F20xxx Description DocID15818 Rev 11 13/178 Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to + 125 °C Package LQFP64 LQFP64 WLCSP64 +2 LQFP6 4 LQFP64 WLCSP6 4+2 LQFP100 LQFP144 1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). Table 2. STM32F205xx features and peripheral counts (continued) Peripherals STM32F205Rx STM32F205Vx STM32F205Zx Table 3. STM32F207xx features and peripheral counts Peripherals STM32F207Vx STM32F207Zx STM32F207Ix Flash memory in Kbytes 256 512 768 1024 256 512 768 1024 256 512 768 1024 SRAM in Kbytes System (SRAM1+SRAM2) 128 (112+16) Backup 4 FSMC memory controller Yes(1) Ethernet Yes Timers General-purpose 10 Advanced-control 2 Basic 2 IWDG Yes WWDG Yes RTC Yes Random number generator Yes Description STM32F20xxx 14/178 DocID15818 Rev 11 Comm. interfaces SPI/(I2S) 3 (2)(2) I2C 3 USART UART 42 USB OTG FS Yes USB OTG HS Yes CAN 2 Camera interface Yes GPIOs 82 114 140 SDIO Yes 12-bit ADC Number of channels 3 16 24 24 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 120 MHz Operating voltage 1.8 V to 3.6 V(3) Operating temperatures Ambient temperatures: –40 to +85 °C/–40 to +105 °C Junction temperature: –40 to + 125 °C Package LQFP100 LQFP144 LQFP176/ UFBGA176 1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). Table 3. STM32F207xx features and peripheral counts (continued) Peripherals STM32F207Vx STM32F207Zx STM32F207Ix DocID15818 Rev 11 15/178 STM32F20xxx Description 177 2.1 Full compatibility throughout the family The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle. The STM32F205xx and STM32F207xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F205xx and STM32F207xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x family remains simple as only a few pins are impacted. Figure 3 and Figure 1 provide compatible board designs between the STM32F20x and the STM32F10xxx family. Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package 31 1 16 17 32 48 33 64 49 47 VSS VSS VSS VSS 0  resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F2xx configuration ai15962b Description STM32F20xxx 16/178 DocID15818 Rev 11 Figure 2. Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package 1. RFU = reserved for future use. ai15961c 20 49 1 25 26 50 75 51 100 76 73 19 VSS VSS VDD VSS VSS VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the 99 (RFU) STM32F2xx configuration VDD VSS VSS for STM32F10xx VDD for STM32F2xx Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VDD, VSS, or NC for the STM32F2xx ai15960c 31 71 1 36 37 72 108 73 144 109 VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F2xx configuration 106 VSS 30 Two 0 Ω resistors connected to: VDD VSS VSS VSS 143 (RFU) VDD VSS - VSS for the STM32F10xx - VDD, VSS, or NC for the STM32F2xx DocID15818 Rev 11 17/178 STM32F20xxx Description 177 Figure 4. STM32F20x block diagram 1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz. 2. The camera interface and Ethernet are available only in STM32F207xx devices. GPIO PORT A AHB/APB2 140 AF EXT IT. WKUP PA[15:0] PB[15:0] GPIO PORT B TIM1 / PWM 4 compl. channels (TIM1_CH[1:4]N) 4 channels (TIM1_CH[1:4]), ETR, BKIN as AF TIM8 / PWM PC[15:0] GPIO PORT C RX, TX, CK, USART 1 CTS, RTS as AF PD[15:0] GPIO PORT D PE[15:0] GPIO PORT E GPIO PORT F PF[15:0] GPIO PORT G PG[15:0] MOSI, MISO SPI1 SCK, NSS as AF APB2 60MHz APB1 30MHz 8 analog inputs common to the 3 ADCs 8 analog inputs common to the ADC1 & 2 VDDREF_ADC 8 analog inputs to ADC3 4 channels, ETR as AF 4 channels, ETR as AF 4 channels, ETR as AF 4 channels USART2 RX, TX, CK, USART3 RX, TX, CK UART4 RX, TX as AF UART5 RX, TX as AF SPI2/I2S2 MOSI/DOUT, MISO/DIN, SCK/CK NSS/WS, MCK as AF SPI3/I2S3 MOSI/DOUT, MISO/DIN, SCK/CK NSS/WS, MCK as AF I2C1/SMBUS SCL, SDA, SMBA as AF I2C2/SMBUS SCL, SDA, SMBA as AF bxCAN1 TX, RX bxCAN2 TX, RX DAC1_OUT as AF DAC2_OUT as AF ITF WWDG 4 KB BKSPRAM RTC_AF1 OSC32_IN OSC_IN OSC_OUT OSC32_OUT NRST VDDA, VSSA VCAP1, VCAP2 RX, TX, CK, USART 6 CTS, RTS as AF smcard irDA smcard irDA smcard irDA smcard irDA 16b 16b 32b 16b 16b 32b 16b 16b CTS, RTS as AF CTS, RTS as AF SDIO / MMC D[7:0] CMD, CK as AF VBAT = 1.65 to 3.6 V DMA1 AHB/APB1 DMA2 I2C3/SMBUS SCL, SDA, SMBA as AF PH[15:0] GPIO PORT H PI[11:0] GPIO PORT I JTAG & SW D-BUS S-BUS I-BUS ETM NVIC MPU NJTRST, JTDI, JTDO/SWD JTDO/TRACESWO TRACECLK TRACED[3:0] JTCK/SWCLK MII or RMII as AF Ethernet MAC DMA/ MDIO as AF 10/100 FIFO USB DMA/ OTG HS FIFO DP, DM ULPI: CK, D(7:0), DIR, STP, NXT DMA2 8 Streams FIFO DMA1 8 Streams FIFO ACCEL/ CACHE SRAM 112 KB SRAM 16 KB CLK, NE [3:0], A[23:0] D[31:0], OEN, WEN, NBL[3:0], NL, NREG NWAIT/IORDY, CD NIORD, IOWR, INT[2:3] INTN, NIIS16 as AF SCL, SDA, INTN, ID, VBUS, SOF Camera interface HSYNC, VSYNC PIXCLK, D[13:0] USB PHY OTG FS DP DM FIFO FIFO AHB1 120 MHz PHY FIFO TUeSmApReTra 2tuMreB pssensor ADC1 ADC2 ADC 3 IIFF @VDDA @VDDA POR/PDR/ Supply @VDDA supervision PVD Reset Int POR XTAL OSC 4-26 MHz XTAL 32 kHz HCLKx MANAGT RTC RC HS FCLK RC LS PWR IWDG @VBAT @VDDA @VDD AWU Reset & clock control PLL1&2 PCLKx interface VDD = 1.8 to 3.6 V VSS Voltage regulator 3.3 V to 1.2 V VDD12 Power managmt @VDD Backup register RTC_AF1 SCL/SDA, INTN, ID, VBUS, SOF AHB bus-matrix 8S7M APB2 60MHz AHB2 120 MHz LS LS 2 channels as AF 1 channel as AF TIM14 1 channel as AF 16b 16b 16b 2 channels as AF TIM9 1 channel as AF TIM10 16b 16b 1 channel as AF TIM11 16b BOR DAC1 DAC2 Flash 1 Mbyte SRAM, PSRAM, NOR Flash, PC Card (ATA), NAND Flash External memory controller (FSMC) TIM6 TIM7 TIM2 TIM3 TIM4 TIM5 TIM12 TIM13 ai17614c 4 compl. channels (TIM1_CH[1:4]N) 4 channels (TIM1_CH[1:4]), ETR, BKIN as AF FIFO RNG ARM Cortex-M3 120 MHz ART accelerator APB1 30MHz AHB3 Functional overview STM32F20xxx 18/178 DocID15818 Rev 11 3 Functional overview 3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. With its embedded ARM core, the STM32F20x family is compatible with all ARM tools and software. Figure 4 shows the general block diagram of the STM32F20x family. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M3 processors. It balances the inherent performance advantage of the ARM Cortex-M3 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher operating frequencies. To release the processor full 150 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DocID15818 Rev 11 19/178 STM32F20xxx Functional overview 177 3.4 Embedded Flash memory The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data. The devices also feature 512 bytes of OTP memory that can be used to store critical user data such as Ethernet MAC addresses or cryptographic keys. 3.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 3.6 Embedded SRAM All STM32F20x products embed: • Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states • 4 Kbytes of backup SRAM. The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 3.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Functional overview STM32F20xxx 20/178 DocID15818 Rev 11 Figure 5. Multi-AHB matrix 3.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. ARM Cortex-M3 GP DMA1 GP DMA2 MAC Ethernet USB OTG HS Bus matrix-S S0 S1 S2 S3 S4 S5 S6 S7 ICODE DCODE ART ACCEL. Flash memory SRAM 112 Kbyte SRAM 16 Kbyte AHB1 periph AHB2 periph FSMC Static MemCtl M0 M1 M2 M3 M4 M5 M6 I-bus D-bus S-bus DMA_P1 DMA_MEM1 DMA_MEM2 DMA_P2 ETHERNET_M USB_HS_M ai15963c APB1 APB2 DocID15818 Rev 11 21/178 STM32F20xxx Functional overview 177 The DMA can be used with the main peripherals: • SPI and I2S • I2C • USART and UART • General-purpose, basic and advanced-control timers TIMx • DAC • SDIO • Camera interface (DCMI) • ADC. 3.9 Flexible static memory controller (FSMC) The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash. Functionality overview: • Write FIFO • Code execution from external memory except for NAND Flash and PC Card • Maximum frequency (fHCLK) for external access is 60 MHz LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 3.10 Nested vectored interrupt controller (NVIC) The STM32F20x devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M3. The NVIC main features are the following: • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. Functional overview STM32F20xxx 22/178 DocID15818 Rev 11 3.11 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines. 3.12 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock. Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz. The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 3.13 Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade). 3.14 Power supply schemes • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates DocID15818 Rev 11 23/178 STM32F20xxx Functional overview 177 in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). • VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 19: Power supply scheme for more details. 3.15 Power supply supervisor The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. On devices in WLCSP64+2 package, the BOR, POR and PDR features can be disabled by setting IRROFF pin to VDD. In this mode an external power supply supervisor is required (see Section 3.16). The devices also feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.16 Voltage regulator The regulator has five operating modes: • Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down • Regulator OFF – Regulator OFF/internal reset ON – Regulator OFF/internal reset OFF 3.16.1 Regulator ON The regulator ON modes are activated by default on LQFP packages.On WLCSP64+2 package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available). VDD minimum value is 1.8 V. Functional overview STM32F20xxx 24/178 DocID15818 Rev 11 There are three power modes configured by software when the regulator is ON: • MR is used in the nominal regulation mode • LPR is used in Stop modes The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost). Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. Refer to Figure 19: Power supply scheme and Table 16: VCAP1/VCAP2 operating conditions. All packages have the regulator ON feature. 3.16.2 Regulator OFF This feature is available only on packages featuring the REGOFF pin. The regulator is disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to Figure 19: Power supply scheme. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: • PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection at reset or pre-reset is required. Regulator OFF/internal reset ON On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to VDD and IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD (IRROFF not available). In this mode, VDD/VDDA minimum value is 1.8 V. The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD. DocID15818 Rev 11 25/178 STM32F20xxx Functional overview 177 Figure 6. Regulator OFF/internal reset ON The following conditions must be respected: • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. • If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V and until VDD reaches 1.8 V (see Figure 8). • Otherwise, If the time for VCAP_1 and VCAP_2 to reach 1.08 V is slower than the time for VDD to reach 1.8 V, then PA0 should be asserted low externally (see Figure 9). • If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.8 V, then a reset must be asserted on PA0 pin. Regulator OFF/internal reset OFF On WLCSP64+2 package, this mode activated by connecting REGOFF to VSS and IRROFF to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins. In this mode, the integrated power-on reset (POR)/ powerdown reset (PDR) circuitry is disabled. An external power supply supervisor should monitor both the external 1.2 V and the external VDD supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The VDD specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications. ai18476b REGOFF VCAP_1 VCAP_2 PA0 1.2 V VDD (1.8 to 3.6 V) Power-down reset risen before VCAP_1/VCAP_2 stabilization NRST IRROFF VDD Application reset signal (optional) External VCAP_1/2 power supply supervisor Ext. reset controller active when VCAP_1/2 < 1.08 V Functional overview STM32F20xxx 26/178 DocID15818 Rev 11 Figure 7. Regulator OFF/internal reset OFF The following conditions must be respected: • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains (see Figure 8). • PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V, and until VDD reaches 1.7 V. • NRST should be controlled by an external reset controller to keep the device under reset when VDD is below 1.7 V (see Figure 9). In this mode, when the internal reset is OFF, the following integrated features are no more supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. • The brownout reset (BOR) circuitry is disabled. • The embedded programmable voltage detector (PVD) is disabled. • VBAT functionality is no more available and VBAT pin should be connected to VDD. REGOFF VCAP_1 ai18477b VCAP_2 NRST 1.2 V IRROFF VDD VDD 1.2 V External VDD/VCAP_1/2 power supply supervisor Ext. reset controller active when VDD<1.7V and VCAP_1/2 < 1.08 V PA0 DocID15818 Rev 11 27/178 STM32F20xxx Functional overview 177 Figure 8. Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (ON or OFF). Figure 9. Startup in regulator OFF: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization VDD time 1.08 V PDR=1.8 V VCAP_1/V 1.2 V CAP_2 time PA0 tied to NRST NRST VDD time 1.08 V PDR=1.8 V VCAP_1/VCAP_2 1.2 V time PA0 asserted externally NRST Functional overview STM32F20xxx 28/178 DocID15818 Rev 11 3.16.3 Regulator ON/OFF and internal reset ON/OFF availability 3.17 Real-time clock (RTC), backup SRAM and backup registers The backup domain of the STM32F20x devices includes: • The real-time clock (RTC) • 4 Kbytes of backup SRAM • 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Its main features are the following: • Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 day of the month. • Programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. • It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal lowpower RC oscillator or the high-speed external clock divided by 128. The internal lowspeed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. • Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 μs to every 36 hours. • A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which need to be retained in VBAT and standby mode.This memory area is disabled to minimize power consumption (see Section 3.18: Low-power modes). It can be enabled by software. Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package Regulator ON/internal reset ON Regulator OFF/internal reset ON Regulator OFF/internal reset OFF LQFP64 LQFP100 LQFP144 LQFP176 Yes No No WLCSP 64+2 Yes REGOFF and IRROFF set to VSS Yes REGOFF set to VDD and IRROFF set to VSS Yes REGOFF set to VSS and IRROFF set to VDD UFBGA176 Yes REGOFF set to VSS Yes REGOFF set to VDD No DocID15818 Rev 11 29/178 STM32F20xxx Functional overview 177 The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.18: Low-power modes). Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or the VBAT pin. 3.18 Low-power modes The STM32F20x family supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device enters the Stop or Standby mode. 3.19 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery or an external supercapacitor. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When using WLCSP64+2 package, if IRROFF pin is connected to VDD, the VBAT functionality is no more available and VBAT pin should be connected to VDD. Functional overview STM32F20xxx 30/178 DocID15818 Rev 11 3.20 Timers and watchdogs The STM32F20x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 5 compares the features of the advanced-control, general-purpose and basic timers. 3.20.1 Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge- or center-aligned modes) • One-pulse mode output Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary output Max interface clock Max timer clock Advancedcontrol TIM1, TIM8 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 Yes 60 MHz 120 MHz General purpose TIM2, TIM5 32-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 30 MHz 60 MHz TIM3, TIM4 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 30 MHz 60 MHz Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 30 MHz 60 MHz General purpose TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 60 MHz 120 MHz TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 60 MHz 120 MHz TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 30 MHz 60 MHz TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 30 MHz 60 MHz DocID15818 Rev 11 31/178 STM32F20xxx Functional overview 177 If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%). The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. 3.20.2 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see Table 5 for differences). TIM2, TIM3, TIM4, TIM5 The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32- bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 halleffect sensors. TIM10, TIM11 and TIM9 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. TIM12, TIM13 and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. 3.20.3 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. Functional overview STM32F20xxx 32/178 DocID15818 Rev 11 3.20.4 Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.20.5 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.20.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source 3.21 Inter-integrated circuit interface (I²C) Up to three I2C bus interfaces can operate in multimaster and slave modes. They can support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 3.22 Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs) The STM32F20x devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. DocID15818 Rev 11 33/178 STM32F20xxx Functional overview 177 3.23 Serial peripheral interface (SPI) The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 3.24 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx interfaces can be served by the DMA controller. 3.25 SDIO An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. Table 6. USART feature comparison USART name Standard features Modem (RTS/CTS) LIN SPI master irDA Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversampling by 16) Max. baud rate in Mbit/s (oversampling by 8) APB mapping USART1 X X X X X X 1.87 7.5 APB2 (max. 60 MHz) USART2 X X X X X X 1.87 3.75 APB1 (max. 30 MHz) USART3 X X X X X X 1.87 3.75 APB1 (max. 30 MHz) UART4 X - X - X - 1.87 3.75 APB1 (max. 30 MHz) UART5 X - X - X - 3.75 3.75 APB1 (max. 30 MHz) USART6 X X X X X X 3.75 7.5 APB2 (max. 60 MHz) Functional overview STM32F20xxx 34/178 DocID15818 Rev 11 The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support Peripheral available only on the STM32F207xx devices. The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F207xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F207xx. The STM32F207xx includes the following features: • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details) • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time 3.27 Controller area network (CAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one DocID15818 Rev 11 35/178 STM32F20xxx Functional overview 177 CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared with any other peripheral. 3.28 Universal serial bus on-the-go full-speed (OTG_FS) The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 4 bidirectional endpoints • 8 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected • Internal FS OTG PHY support 3.29 Universal serial bus on-the-go high-speed (OTG_HS) The STM32F20x devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 6 bidirectional endpoints • 12 host channels with periodic OUT support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Functional overview STM32F20xxx 36/178 DocID15818 Rev 11 3.30 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output). 3.31 Digital camera interface (DCMI) The camera interface is not available in STM32F205xx devices. STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image 3.32 True random number generator (RNG) All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit. 3.33 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz. DocID15818 Rev 11 37/178 STM32F20xxx Functional overview 177 3.34 ADCs (analog-to-digital converters) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.35 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 3.36 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. Functional overview STM32F20xxx 38/178 DocID15818 Rev 11 3.37 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.38 Embedded Trace Macrocell™ The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F20x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. DocID15818 Rev 11 39/178 STM32F20xxx Pinouts and pin description 177 4 Pinouts and pin description Figure 10. STM32F20x LQFP64 pinout 1. The above figure shows the package top view. Figure 11. STM32F20x WLCSP64+2 ballout 1. The above figure shows the package top view. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VBAT PC14-OSC32_IN PC15-OSC32_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 VDD VCAP_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VCAP_1 VDD LQFP64 ai15969c PC13-RTC_AF1 PH0-OSC_IN PH1-OSC_OUT VDD VSS 1 2 3 8 A PA14 PA15 PC12 PB3 PB5 PB7 PB9 VDD B PA13 PC10 PB4 PB6 BOOT0 PB8 PC13 C PA12 VCAP_2 PC11 PD2 IRROFF D PC9 PA11 PA10 PC2 E PA8 PA9 F PC7 PC8 G PB15 PC6 PC5 PA3 PC3 H PB14 PB13 PB10 PC4 J PB12 PB1 1 VCAP_1 PB2 PB0 PA7 PA4 ai18470c 4 5 6 7 9 VBAT VSS PC14 PC15 VSS VDD VDD PA0 NRST PH0- OSC_IN VSS VREF+ PC1 PH1- OSC_OUT PC0 PA6 PA5 REGOFF PA1 VSS_5 PB1 PA2 Pinouts and pin description STM32F20xxx 40/178 DocID15818 Rev 11 Figure 12. STM32F20x LQFP100 pinout 1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected. 2. The above figure shows the package top view. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 PE3 PE4 PE5 PE6 VBAT PC14-OSC32_IN PC15-OSC32_OUT VSS VDD PH0-OSC_IN NRST PC0 PC1 PC2 PC3 VDD VSSA VREF+ VDDA PA0-WKUP PA1 PA2 VDD VSS VCAP_2 PA13 PA 12 PA11 PA10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD RFU VDD PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ai15970e LQFP100 PC13-RTC_AF1 PH1-OSC_OUT DocID15818 Rev 11 41/178 STM32F20xxx Pinouts and pin description 177 Figure 13. STM32F20x LQFP144 pinout 1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected. 2. The above figure shows the package top view. RFU VDD PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PE2 VDD PE3 VSS PE4 PE5 PA13 PE6 PA12 VBAT PA11 PC13-RTC_AF1 PA10 PC14-OSC32_IN PA9 PC15-OSC32_OUT PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 VDD PF5 VSS VSS PG8 VDD PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0-OSC_IN PD15 PH1-OSC_OUT PD14 NRST VDD PC0 VSS PC1 PD13 PC2 PD12 PC3 PD11 VSSA VDD PD10 PD9 VREF+ PD8 VDDA PB15 PA0-WKUP PB14 PA1 PB13 PA2 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 109 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 LQFP144 120 119 118 117 116 115 114 113 112 111 110 61 62 63 64 65 66 67 68 69 70 71 26 27 28 29 30 31 32 33 34 35 36 83 82 81 80 79 78 77 76 75 74 73 ai15971e VCAP_2 Pinouts and pin description STM32F20xxx 42/178 DocID15818 Rev 11 Figure 14. STM32F20x LQFP176 pinout 1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected. 2. The above figure shows the package top view. PDR_ON VDD PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PI7 PI6 PE2 VDD PE3 VSS PE4 PE5 PA13 PE6 PA12 VBAT PA11 PI8-RTC_AF2 PA10 PC14-OSC32_IN PA9 PC15-OSC32_OUT PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 VDD PF5 VSS VSS PG8 VDD PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0-OSC_IN PD15 PH1-OSC_OUT PD14 NRST VDD PC0 VSS PC1 PD13 PC2 PD12 PC3 PD11 VSSA PD10 VDD PD9 VREF+ PD8 VDDA PB15 PA0-WKUP PB14 PA1 PB13 PA2 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 141 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 80 LQFP176 152 151 150 149 148 147 146 145 144 143 142 69 70 71 72 73 74 75 76 77 78 79 26 27 28 29 30 31 32 33 34 35 36 107 106 105 104 103 102 101 100 99 98 89 ai15972e VCAP_2 PI4 PA15 PA14 VDD VSS PI3 PI2 PI5 140 139 138 137 136 135 134 133 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 88 81 82 83 84 85 86 87 PI1 PI0 PH15 PH14 PH13 VDD VSS PH12 96 95 94 93 92 91 90 97 37 38 39 40 41 42 43 44 PC13-RTC_AF1 PI9 PI10 PI11 VSS VDD PH2 PH3 DocID15818 Rev 11 43/178 STM32F20xxx Pinouts and pin description 177 Figure 15. STM32F20x UFBGA176 ballout 1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected. 2. The above figure shows the package top view. 1 2 9 10 11 12 13 14 15 A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13 B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12 C VBAT PI7 PI6 PI5 VDD RFU VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11 D PC13- TAMP1 PI8- TAMP2 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10 E PC14- OSC32_IN PF0 PI10 PI11 PH13 PH14 PI0 PA9 F PC15- OSC32_OUT VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8 G PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7 H PH1- OSC_OUT PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6 J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6 K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3 L PF10 PF9 PF8 REGOFF PH11 PH10 PD15 PG2 M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13 N VREF- PA1 PA0- WKUP PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10 P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8 R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15 ai17293c VSS 3 4 5 6 7 8 Table 7. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input/ output pin I/O structure FT 5 V tolerant I/O TTa 3.3 V tolerant I/O B Dedicated BOOT0 pin NRST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Pinouts and pin description STM32F20xxx 44/178 DocID15818 Rev 11 Table 8. STM32F20x pin and ball definitions Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 - - 1 1 1 A2 PE2 I/O FT TRACECLK, FSMC_A23, ETH_MII_TXD3, EVENTOUT - - 2 2 2 A1 PE3 I/O FT TRACED0,FSMC_A19, EVENTOUT - - 3 3 3 B1 PE4 I/O FT TRACED1,FSMC_A20, DCMI_D4, EVENTOUT - - 4 4 4 B2 PE5 I/O FT TRACED2, FSMC_A21, TIM9_CH1, DCMI_D6, EVENTOUT - - 5 5 5 B3 PE6 I/O FT TRACED3, FSMC_A22, TIM9_CH2, DCMI_D7, EVENTOUT 1 A9 6 6 6 C1 VBAT S - - - - 7 D2 PI8 I/O FT (2)(3) EVENTOUT RTC_AF2 2 B8 7 7 8 D1 PC13 I/O FT (2)(3) EVENTOUT RTC_AF1 3 B9 8 8 9 E1 PC14/OSC32_IN (PC14) I/O FT (2)(3) EVENTOUT OSC32_IN(4) 4 C9 9 9 10 F1 PC15-OSC32_OUT (PC15) I/O FT (2)(3) EVENTOUT OSC32_OUT(4) - - - - 11 D3 PI9 I/O FT CAN1_RX,EVENTOUT - - - - 12 E3 PI10 I/O FT ETH_MII_RX_ER, EVENTOUT - - - - 13 E4 PI11 I/O FT OTG_HS_ULPI_DIR, EVENTOUT - - - - 14 F2 VSS S - - - - 15 F3 VDD S - - - 10 16 E2 PF0 I/O FT FSMC_A0, I2C2_SDA, EVENTOUT - - - 11 17 H3 PF1 I/O FT FSMC_A1, I2C2_SCL, EVENTOUT - - - 12 18 H2 PF2 I/O FT FSMC_A2, I2C2_SMBA, EVENTOUT - - - 13 19 J2 PF3 I/O FT (4) FSMC_A3, EVENTOUT ADC3_IN9 DocID15818 Rev 11 45/178 STM32F20xxx Pinouts and pin description 177 - - - 14 20 J3 PF4 I/O FT (4) FSMC_A4, EVENTOUT ADC3_IN14 - - - 15 21 K3 PF5 I/O FT (4) FSMC_A5, EVENTOUT ADC3_IN15 - H9 10 16 22 G2 VSS S - - 11 17 23 G3 VDD S - - - 18 24 K2 PF6 I/O FT (4) TIM10_CH1, FSMC_NIORD, EVENTOUT ADC3_IN4 - - - 19 25 K1 PF7 I/O FT (4) TIM11_CH1,FSMC_NREG, EVENTOUT ADC3_IN5 - - - 20 26 L3 PF8 I/O FT (4) TIM13_CH1, FSMC_NIOWR, EVENTOUT ADC3_IN6 - - - 21 27 L2 PF9 I/O FT (4) TIM14_CH1, FSMC_CD, EVENTOUT ADC3_IN7 - - - 22 28 L1 PF10 I/O FT (4) FSMC_INTR, EVENTOUT ADC3_IN8 5 E9 12 23 29 G1 PH0/OSC_IN (PH0) I/O FT EVENTOUT OSC_IN(4) 6 F9 13 24 30 H1 PH1/OSC_OUT (PH1) I/O FT EVENTOUT OSC_OUT(4) 7 E8 14 25 31 J1 NRST I/O 8 G9 15 26 32 M2 PC0 I/O FT (4) OTG_HS_ULPI_STP, EVENTOUT ADC123_ IN10 9 F8 16 27 33 M3 PC1 I/O FT (4) ETH_MDC, EVENTOUT ADC123_ IN11 10 D7 17 28 34 M4 PC2 I/O FT (4) SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, EVENTOUT ADC123_ IN12 11 G8 18 29 35 M5 PC3 I/O FT (4) SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT ADC123_ IN13 - - 19 30 36 - VDD S 12 - 20 31 37 M1 VSSA S - - - - - N1 VREF- S - F7 21 32 38 P1 VREF+ S Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Pinouts and pin description STM32F20xxx 46/178 DocID15818 Rev 11 13 - 22 33 39 R1 VDDA S 14 E7 23 34 40 N3 PA0-WKUP (PA0) I/O FT (4)(5) USART2_CTS, UART4_TX, ETH_MII_CRS, TIM2_CH1_ETR, TIM5_CH1, TIM8_ETR, EVENTOUT ADC123_IN0, WKUP 15 H8 24 35 41 N2 PA1 I/O FT (4) USART2_RTS, UART4_RX, ETH_RMII_REF_CLK, ETH_MII_RX_CLK, TIM5_CH2, TIM2_CH2, EVENTOUT ADC123_IN1 16 J9 25 36 42 P2 PA2 I/O FT (4) USART2_TX,TIM5_CH3, TIM9_CH1, TIM2_CH3, ETH_MDIO, EVENTOUT ADC123_IN2 - - - - 43 F4 PH2 I/O FT ETH_MII_CRS, EVENTOUT - - - - 44 G4 PH3 I/O FT ETH_MII_COL, EVENTOUT - - - - 45 H4 PH4 I/O FT I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT - - - - 46 J4 PH5 I/O FT I2C2_SDA, EVENTOUT 17 G7 26 37 47 R2 PA3 I/O FT (4) USART2_RX, TIM5_CH4, TIM9_CH2, TIM2_CH4, OTG_HS_ULPI_D0, ETH_MII_COL, EVENTOUT ADC123_IN3 18 F1 27 38 48 - VSS S H7 L4 REGOFF I/O 19 E1 28 39 49 K4 VDD S 20 J8 29 40 50 N4 PA4 I/O TTa (4) SPI1_NSS, SPI3_NSS, USART2_CK, DCMI_HSYNC, OTG_HS_SOF, I2S3_WS, EVENTOUT ADC12_IN4, DAC_OUT1 21 H6 30 41 51 P4 PA5 I/O TTa (4) SPI1_SCK, OTG_HS_ULPI_CK, TIM2_CH1_ETR, TIM8_CH1N, EVENTOUT ADC12_IN5, DAC_OUT2 Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 DocID15818 Rev 11 47/178 STM32F20xxx Pinouts and pin description 177 22 H5 31 42 52 P3 PA6 I/O FT (4) SPI1_MISO, TIM8_BKIN, TIM13_CH1, DCMI_PIXCLK, TIM3_CH1, TIM1_BKIN, EVENTOUT ADC12_IN6 23 J7 32 43 53 R3 PA7 I/O FT (4) SPI1_MOSI, TIM8_CH1N, TIM14_CH1, TIM3_CH2, ETH_MII_RX_DV, TIM1_CH1N, ETH_RMII_CRS_DV, EVENTOUT ADC12_IN7 24 H4 33 44 54 N5 PC4 I/O FT (4) ETH_RMII_RXD0, ETH_MII_RXD0, EVENTOUT ADC12_IN14 25 G3 34 45 55 P5 PC5 I/O FT (4) ETH_RMII_RXD1, ETH_MII_RXD1, EVENTOUT ADC12_IN15 26 J6 35 46 56 R5 PB0 I/O FT (4) TIM3_CH3, TIM8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TIM1_CH2N, EVENTOUT ADC12_IN8 27 J5 36 47 57 R4 PB1 I/O FT (4) TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TIM1_CH3N, EVENTOUT ADC12_IN9 28 J4 37 48 58 M6 PB2/BOOT1 (PB2) I/O FT EVENTOUT - - - 49 59 R6 PF11 I/O FT DCMI_D12, EVENTOUT - - - 50 60 P6 PF12 I/O FT FSMC_A6, EVENTOUT - - - 51 61 M8 VSS S - - - 52 62 N8 VDD S - - - 53 63 N6 PF13 I/O FT FSMC_A7, EVENTOUT - - - 54 64 R7 PF14 I/O FT FSMC_A8, EVENTOUT - - - 55 65 P7 PF15 I/O FT FSMC_A9, EVENTOUT - - - 56 66 N7 PG0 I/O FT FSMC_A10, EVENTOUT - - - 57 67 M7 PG1 I/O FT FSMC_A11, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Pinouts and pin description STM32F20xxx 48/178 DocID15818 Rev 11 - - 38 58 68 R8 PE7 I/O FT FSMC_D4,TIM1_ETR, EVENTOUT - - 39 59 69 P8 PE8 I/O FT FSMC_D5,TIM1_CH1N, EVENTOUT - - 40 60 70 P9 PE9 I/O FT FSMC_D6,TIM1_CH1, EVENTOUT - - - 61 71 M9 VSS S - - - 62 72 N9 VDD S - - 41 63 73 R9 PE10 I/O FT FSMC_D7,TIM1_CH2N, EVENTOUT - - 42 64 74 P10 PE11 I/O FT FSMC_D8,TIM1_CH2, EVENTOUT - - 43 65 75 R10 PE12 I/O FT FSMC_D9,TIM1_CH3N, EVENTOUT - - 44 66 76 N11 PE13 I/O FT FSMC_D10,TIM1_CH3, EVENTOUT - - 45 67 77 P11 PE14 I/O FT FSMC_D11,TIM1_CH4, EVENTOUT - - 46 68 78 R11 PE15 I/O FT FSMC_D12,TIM1_BKIN, EVENTOUT 29 H3 47 69 79 R12 PB10 I/O FT SPI2_SCK, I2S2_SCK, I2C2_SCL,USART3_TX,OT G_HS_ULPI_D3,ETH_MII_R X_ER,TIM2_CH3, EVENTOUT 30 J2 48 70 80 R13 PB11 I/O FT I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_RMII_TX_EN, ETH_MII_TX_EN, TIM2_CH4, EVENTOUT 31 J3 49 71 81 M10 VCAP_1 S 32 - 50 72 82 N10 VDD S - - - - 83 M11 PH6 I/O FT I2C2_SMBA, TIM12_CH1, ETH_MII_RXD2, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 DocID15818 Rev 11 49/178 STM32F20xxx Pinouts and pin description 177 - - - - 84 N12 PH7 I/O FT I2C3_SCL, ETH_MII_RXD3, EVENTOUT - - - - 85 M12 PH8 I/O FT I2C3_SDA, DCMI_HSYNC, EVENTOUT - - - - 86 M13 PH9 I/O FT I2C3_SMBA, TIM12_CH2, DCMI_D0, EVENTOUT - - - - 87 L13 PH10 I/O FT TIM5_CH1, DCMI_D1, EVENTOUT - - - - 88 L12 PH11 I/O FT TIM5_CH2, DCMI_D2, EVENTOUT - - - - 89 K12 PH12 I/O FT TIM5_CH3, DCMI_D3, EVENTOUT - - - - 90 H12 VSS S - - - - 91 J12 VDD S 33 J1 51 73 92 P12 PB12 I/O FT SPI2_NSS, I2S2_WS, I2C2_SMBA, USART3_CK, TIM1_BKIN, CAN2_RX, OTG_HS_ULPI_D5, ETH_RMII_TXD0, ETH_MII_TXD0, OTG_HS_ID, EVENTOUT 34 H2 52 74 93 P13 PB13 I/O FT SPI2_SCK, I2S2_SCK, USART3_CTS, TIM1_CH1N, CAN2_TX, OTG_HS_ULPI_D6, ETH_RMII_TXD1, ETH_MII_TXD1, EVENTOUT OTG_HS_ VBUS 35 H1 53 75 94 R14 PB14 I/O FT SPI2_MISO, TIM1_CH2N, TIM12_CH1, OTG_HS_DM USART3_RTS, TIM8_CH2N, EVENTOUT 36 G1 54 76 95 R15 PB15 I/O FT SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM8_CH3N, TIM12_CH2, OTG_HS_DP, RTC_50Hz, EVENTOUT - - 55 77 96 P15 PD8 I/O FT FSMC_D13, USART3_TX, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Pinouts and pin description STM32F20xxx 50/178 DocID15818 Rev 11 - - 56 78 97 P14 PD9 I/O FT FSMC_D14, USART3_RX, EVENTOUT - - 57 79 98 N15 PD10 I/O FT FSMC_D15, USART3_CK, EVENTOUT - - 58 80 99 N14 PD11 I/O FT FSMC_A16,USART3_CTS, EVENTOUT - - 59 81 100 N13 PD12 I/O FT FSMC_A17,TIM4_CH1, USART3_RTS, EVENTOUT - - 60 82 101 M15 PD13 I/O FT FSMC_A18,TIM4_CH2, EVENTOUT - - - 83102 - VSS S - - - 84103J13 VDD S - - 61 85 104 M14 PD14 I/O FT FSMC_D0,TIM4_CH3, EVENTOUT - - 62 86 105 L14 PD15 I/O FT FSMC_D1,TIM4_CH4, EVENTOUT - - - 87 106 L15 PG2 I/O FT FSMC_A12, EVENTOUT - - - 88 107 K15 PG3 I/O FT FSMC_A13, EVENTOUT - - - 89 108 K14 PG4 I/O FT FSMC_A14, EVENTOUT - - - 90 109 K13 PG5 I/O FT FSMC_A15, EVENTOUT - - - 91 110 J15 PG6 I/O FT FSMC_INT2, EVENTOUT - - - 92 111 J14 PG7 I/O FT FSMC_INT3 ,USART6_CK, EVENTOUT - - - 93 112 H14 PG8 I/O FT USART6_RTS, ETH_PPS_OUT, EVENTOUT - - - 94 113G12 VSS S - - - 95 114H13 VDD S 37 G2 63 96 115 H15 PC6 I/O FT I2S2_MCK, TIM8_CH1, SDIO_D6, USART6_TX, DCMI_D0, TIM3_CH1, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 DocID15818 Rev 11 51/178 STM32F20xxx Pinouts and pin description 177 38 F2 64 97 116 G15 PC7 I/O FT I2S3_MCK, TIM8_CH2, SDIO_D7, USART6_RX, DCMI_D1, TIM3_CH2, EVENTOUT 39 F3 65 98 117 G14 PC8 I/O FT TIM8_CH3,SDIO_D0, TIM3_CH3, USART6_CK, DCMI_D2, EVENTOUT 40 D1 66 99 118 F14 PC9 I/O FT I2S2_CKIN, I2S3_CKIN, MCO2, TIM8_CH4, SDIO_D1, I2C3_SDA, DCMI_D3, TIM3_CH4, EVENTOUT 41 E2 67 100 119 F15 PA8 I/O FT MCO1, USART1_CK, TIM1_CH1, I2C3_SCL, OTG_FS_SOF, EVENTOUT 42 E3 68 101 120 E15 PA9 I/O FT USART1_TX, TIM1_CH2, I2C3_SMBA, DCMI_D0, EVENTOUT OTG_FS_ VBUS 43 D3 69 102 121 D15 PA10 I/O FT USART1_RX, TIM1_CH3, OTG_FS_ID,DCMI_D1, EVENTOUT 44 D2 70 103 122 C15 PA11 I/O FT USART1_CTS, CAN1_RX, TIM1_CH4,OTG_FS_DM, EVENTOUT 45 C1 71 104 123 B15 PA12 I/O FT USART1_RTS, CAN1_TX, TIM1_ETR, OTG_FS_DP, EVENTOUT 46 B2 72 105 124 A15 PA13 (JTMS-SWDIO) I/O FT JTMS-SWDIO, EVENTOUT 47 C2 73 106 125 F13 VCAP_2 S - B1 74 107 126 F12 VSS S 48 A8 75 108 127 G13 VDD S - - - - 128 E12 PH13 I/O FT TIM8_CH1N, CAN1_TX, EVENTOUT - - - - 129 E13 PH14 I/O FT TIM8_CH2N, DCMI_D4, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Pinouts and pin description STM32F20xxx 52/178 DocID15818 Rev 11 - - - - 130 D13 PH15 I/O FT TIM8_CH3N, DCMI_D11, EVENTOUT - - - - 131E14 PI0 I/O FT TIM5_CH4, SPI2_NSS, I2S2_WS, DCMI_D13, EVENTOUT - - - - 132D14 PI1 I/O FT SPI2_SCK, I2S2_SCK, DCMI_D8, EVENTOUT - - - - 133C14 PI2 I/O FT TIM8_CH4 ,SPI2_MISO, DCMI_D9, EVENTOUT - - - - 134C13 PI3 I/O FT TIM8_ETR, SPI2_MOSI, I2S2_SD, DCMI_D10, EVENTOUT - - - - 135 D9 VSS S - - - - 136 C9 VDD S 49 A1 76 109 137 A14 PA14 (JTCK-SWCLK) I/O FT JTCK-SWCLK, EVENTOUT 50 A2 77 110 138 A13 PA15 (JTDI) I/O FT JTDI, SPI3_NSS, I2S3_WS,TIM2_CH1_ETR, SPI1_NSS, EVENTOUT 51 B3 78 111 139 B14 PC10 I/O FT SPI3_SCK, I2S3_SCK, UART4_TX, SDIO_D2, DCMI_D8, USART3_TX, EVENTOUT 52 C3 79 112 140 B13 PC11 I/O FT UART4_RX, SPI3_MISO, SDIO_D3, DCMI_D4,USART3_RX, EVENTOUT 53 A3 80 113 141 A12 PC12 I/O FT UART5_TX, SDIO_CK, DCMI_D9, SPI3_MOSI, I2S3_SD, USART3_CK, EVENTOUT - - 81 114142B12 PD0 I/O FT FSMC_D2,CAN1_RX, EVENTOUT - - 82 115 143 C12 PD1 I/O FT FSMC_D3, CAN1_TX, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 DocID15818 Rev 11 53/178 STM32F20xxx Pinouts and pin description 177 54 C7 83 116 144 D12 PD2 I/O FT TIM3_ETR,UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT - - 84 117 145 D11 PD3 I/O FT FSMC_CLK,USART2_CTS, EVENTOUT - - 85 118 146 D10 PD4 I/O FT FSMC_NOE, USART2_RTS, EVENTOUT - - 86 119 147 C11 PD5 I/O FT FSMC_NWE,USART2_TX, EVENTOUT - - - 120 148 D8 VSS S - - - 121 149 C8 VDD S - - 87 122 150 B11 PD6 I/O FT FSMC_NWAIT, USART2_RX, EVENTOUT - - 88 123 151 A11 PD7 I/O FT USART2_CK,FSMC_NE1, FSMC_NCE2, EVENTOUT - - - 124 152 C10 PG9 I/O FT USART6_RX, FSMC_NE2,FSMC_NCE3, EVENTOUT - - - 125 153 B10 PG10 I/O FT FSMC_NCE4_1, FSMC_NE3, EVENTOUT - - - 126 154 B9 PG11 I/O FT FSMC_NCE4_2, ETH_MII_TX_EN , ETH _RMII_TX_EN, EVENTOUT - - - 127 155 B8 PG12 I/O FT FSMC_NE4, USART6_RTS, EVENTOUT - - - 128 156 A8 PG13 I/O FT FSMC_A24, USART6_CTS, ETH_MII_TXD0, ETH_RMII_TXD0, EVENTOUT - - - 129 157 A7 PG14 I/O FT FSMC_A25, USART6_TX, ETH_MII_TXD1, ETH_RMII_TXD1, EVENTOUT - - - 130 158 D7 VSS S Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Pinouts and pin description STM32F20xxx 54/178 DocID15818 Rev 11 - - - 131 159 C7 VDD S - - - 132 160 B7 PG15 I/O FT USART6_CTS, DCMI_D13, EVENTOUT 55 A4 89 133 161 A10 PB3 (JTDO/TRACESWO) I/O FT JTDO/ TRACESWO, SPI3_SCK, I2S3_SCK, TIM2_CH2, SPI1_SCK, EVENTOUT 56 B4 90 134 162 A9 PB4 I/O FT NJTRST, SPI3_MISO, TIM3_CH1, SPI1_MISO, EVENTOUT 57 A5 91 135 163 A6 PB5 I/O FT I2C1_SMBA, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, TIM3_CH2, SPI1_MOSI, SPI3_MOSI, DCMI_D10, I2S3_SD, EVENTOUT 58 B5 92 136 164 B6 PB6 I/O FT I2C1_SCL,, TIM4_CH1, CAN2_TX, DCMI_D5,USART1_TX, EVENTOUT 59 A6 93 137 165 B5 PB7 I/O FT I2C1_SDA, FSMC_NL(6), DCMI_VSYNC, USART1_RX, TIM4_CH2, EVENTOUT 60 B6 94 138 166 D6 BOOT0 I B VPP 61 B7 95 139 167 A5 PB8 I/O FT TIM4_CH3,SDIO_D4, TIM10_CH1, DCMI_D6, ETH_MII_TXD3, I2C1_SCL, CAN1_RX, EVENTOUT 62 A7 96 140 168 B4 PB9 I/O FT SPI2_NSS, I2S2_WS, TIM4_CH4, TIM11_CH1, SDIO_D5, DCMI_D7, I2C1_SDA, CAN1_TX, EVENTOUT - - 97 141 169 A4 PE0 I/O FT TIM4_ETR, FSMC_NBL0, DCMI_D2, EVENTOUT Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 DocID15818 Rev 11 55/178 STM32F20xxx Pinouts and pin description 177 - - 98 142 170 A3 PE1 I/O FT FSMC_NBL1, DCMI_D3, EVENTOUT - - - - - D5 VSS S 63 D8 - - - - VSS S - - 99 143 171 C6 RFU (7) 64 D9 100 144 172 C5 VDD S - - - - 173 D4 PI4 I/O FT TIM8_BKIN, DCMI_D5, EVENTOUT - - - - 174 C4 PI5 I/O FT TIM8_CH1, DCMI_VSYNC, EVENTOUT - - - - 175 C3 PI6 I/O FT TIM8_CH2, DCMI_D6, EVENTOUT - - - - 176 C2 PI7 I/O FT TIM8_CH3, DCMI_D7, EVENTOUT - C8 - - - - IRROFF I/O 1. Function availability depends on the chosen device. 2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). 3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com. 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator OFF), then PA0 is used as an internal Reset (active low). 6. FSMC_NL pin is also named FSMC_NADV on memory devices. 7. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected. Table 8. STM32F20x pin and ball definitions (continued) Pins Pin name (function after reset)(1) Pin type I/O structure Note Alternate functions Additional functions LQFP64 WLCSP64+2 LQFP100 LQFP144 LQFP176 UFBGA176 Table 9. FSMC pin definition Pins FSMC LQFP100 CF NOR/PSRAM/S RAM NOR/PSRAM Mux NAND 16 bit PE2 A23 A23 Yes PE3 A19 A19 Yes Pinouts and pin description STM32F20xxx 56/178 DocID15818 Rev 11 PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 A0 - PF1 A1 A1 - PF2 A2 A2 - PF3 A3 A3 - PF4 A4 A4 - PF5 A5 A5 - PF6 NIORD - PF7 NREG - PF8 NIOWR - PF9 CD - PF10 INTR - PF12 A6 A6 - PF13 A7 A7 - PF14 A8 A8 - PF15 A9 A9 - PG0 A10 A10 - PG1 A11 - PE7 D4 D4 DA4 D4 Yes PE8 D5 D5 DA5 D5 Yes PE9 D6 D6 DA6 D6 Yes PE10 D7 D7 DA7 D7 Yes PE11 D8 D8 DA8 D8 Yes PE12 D9 D9 DA9 D9 Yes PE13 D10 D10 DA10 D10 Yes PE14 D11 D11 DA11 D11 Yes PE15 D12 D12 DA12 D12 Yes PD8 D13 D13 DA13 D13 Yes PD9 D14 D14 DA14 D14 Yes PD10 D15 D15 DA15 D15 Yes PD11 A16 A16 CLE Yes Table 9. FSMC pin definition (continued) Pins FSMC LQFP100 CF NOR/PSRAM/S RAM NOR/PSRAM Mux NAND 16 bit DocID15818 Rev 11 57/178 STM32F20xxx Pinouts and pin description 177 PD12 A17 A17 ALE Yes PD13 A18 A18 Yes PD14 D0 D0 DA0 D0 Yes PD15 D1 D1 DA1 D1 Yes PG2 A12 - PG3 A13 - PG4 A14 - PG5 A15 - PG6 INT2 - PG7 INT3 - PD0 D2 D2 DA2 D2 Yes PD1 D3 D3 DA3 D3 Yes PD3 CLK CLK Yes PD4 NOE NOE NOE NOE Yes PD5 NWE NWE NWE NWE Yes PD6 NWAIT NWAIT NWAIT NWAIT Yes PD7 NE1 NE1 NCE2 Yes PG9 NE2 NE2 NCE3 - PG10 NCE4_1 NE3 NE3 - PG11 NCE4_2 - PG12 NE4 NE4 - PG13 A24 A24 - PG14 A25 A25 - PB7 NADV NADV Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes Table 9. FSMC pin definition (continued) Pins FSMC LQFP100 CF NOR/PSRAM/S RAM NOR/PSRAM Mux NAND 16 bit Pinouts and pin description STM32F20xxx 58/178 DocID15818 Rev 11 Table 10. Alternate function mapping Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI Port A PA0-WKUP TIM2_CH1_ETR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK ETH_RMII _REF_CLK EVENTOUT PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_D0 ETH _MII_COL EVENTOUT PA4 SPI1_NSS SPI3_NSS I2S3_WS USART2_CK OTG_HS_SOF DCMI_HSYNC EVENTOUT PA5 TIM2_CH1_ETR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_C K EVENTOUT PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV ETH_RMII _CRS_DV EVENTOUT PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT PA9 TIM1_CH2 I2C3_SMBA USART1_TX DCMI_D0 EVENTOUT PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT PA13 JTMSSWDIO EVENTOUT PA14 JTCKSWCLK EVENTOUT PA15 JTDI TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI3_NSS I2S3_WS EVENTOUT STM32F20xxx Pinouts and pin description DocID15818 Rev 11 59/178 Port B PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_D1 ETH _MII_RXD2 EVENTOUT PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_D2 ETH _MII_RXD3 EVENTOUT PB2 EVENTOUT PB3 JTDO/ TRACESWO TIM2_CH2 SPI1_SCK SPI3_SCK I2S3_SCK EVENTOUT PB4 JTRST TIM3_CH1 SPI1_MISO SPI3_MISO EVENTOUT PB5 TIM3_CH2 I2C1_SMBA SPI1_MOSI SPI3_MOSI I2S3_SD CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT DCMI_D10 EVENTOUT PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYNC EVENTOUT PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS I2S2_WS CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT PB10 TIM2_CH3 I2C2_SCL SPI2_SCK I2S2_SCK USART3_TX OTG_HS_ULPI_D3 ETH_ MII_RX_ER EVENTOUT PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_D4 ETH _MII_TX_EN ETH _RMII_TX_EN EVENTOUT PB12 TIM1_BKIN I2C2_SMBA SPI2_NSS I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_D5 ETH _MII_TXD0 ETH _RMII_TXD0 OTG_HS_ID EVENTOUT PB13 TIM1_CH1N SPI2_SCK I2S2_SCK USART3_CTS CAN2_TX OTG_HS_ULPI_D6 ETH _MII_TXD1 ETH _RMII_TXD1 EVENTOUT PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT PB15 RTC_50Hz TIM1_CH3N TIM8_CH3N SPI2_MOSI I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT Table 10. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI Pinouts and pin description STM32F20xxx 60/178 DocID15818 Rev 11 Port C PC0 OTG_HS_ULPI_ STP EVENTOUT PC1 ETH_MDC EVENTOUT PC2 SPI2_MISO OTG_HS_ULPI_ DIR ETH _MII_TXD2 EVENTOUT PC3 SPI2_MOSI OTG_HS_ULPI_ NXT ETH _MII_TX_CLK EVENTOUT PC4 ETH_MII_RXD0 ETH_RMII_RXD0 EVENTOUT PC5 ETH _MII_RXD1 ETH _RMII_RXD1 EVENTOUT PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S2_CKIN I2S3_CKIN SDIO_D1 DCMI_D3 EVENTOUT PC10 SPI3_SCK I2S3_SCK USART3_TX UART4_TX SDIO_D2 DCMI_D8 EVENTOUT PC11 SPI3_MISO USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT PC12 SPI3_MOSI I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT PC13 EVENTOUT PC14- OSC32_IN EVENTOUT PC15- OSC32_OU T EVENTOUT Table 10. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI STM32F20xxx Pinouts and pin description DocID15818 Rev 11 61/178 Port D PD0 CAN1_RX FSMC_D2 EVENTOUT PD1 CAN1_TX FSMC_D3 EVENTOUT PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT PD3 USART2_CTS FSMC_CLK EVENTOUT PD4 USART2_RTS FSMC_NOE EVENTOUT PD5 USART2_TX FSMC_NWE EVENTOUT PD6 USART2_RX FSMC_NWAIT EVENTOUT PD7 USART2_CK FSMC_NE1/ FSMC_NCE2 EVENTOUT PD8 USART3_TX FSMC_D13 EVENTOUT PD9 USART3_RX FSMC_D14 EVENTOUT PD10 USART3_CK FSMC_D15 EVENTOUT PD11 USART3_CTS FSMC_A16 EVENTOUT PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT PD13 TIM4_CH2 FSMC_A18 EVENTOUT PD14 TIM4_CH3 FSMC_D0 EVENTOUT PD15 TIM4_CH4 FSMC_D1 EVENTOUT Port E PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT PE1 FSMC_NBL1 DCMI_D3 EVENTOUT PE2 TRACECLK ETH _MII_TXD3 FSMC_A23 EVENTOUT PE3 TRACED0 FSMC_A19 EVENTOUT PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT PE7 TIM1_ETR FSMC_D4 EVENTOUT PE8 TIM1_CH1N FSMC_D5 EVENTOUT PE9 TIM1_CH1 FSMC_D6 EVENTOUT PE10 TIM1_CH2N FSMC_D7 EVENTOUT PE11 TIM1_CH2 FSMC_D8 EVENTOUT PE12 TIM1_CH3N FSMC_D9 EVENTOUT PE13 TIM1_CH3 FSMC_D10 EVENTOUT PE14 TIM1_CH4 FSMC_D11 EVENTOUT PE15 TIM1_BKIN FSMC_D12 EVENTOUT Table 10. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI Pinouts and pin description STM32F20xxx 62/178 DocID15818 Rev 11 Port F PF0 I2C2_SDA FSMC_A0 EVENTOUT PF1 I2C2_SCL FSMC_A1 EVENTOUT PF2 I2C2_SMBA FSMC_A2 EVENTOUT PF3 FSMC_A3 EVENTOUT PF4 FSMC_A4 EVENTOUT PF5 FSMC_A5 EVENTOUT PF6 TIM10_CH1 FSMC_NIORD EVENTOUT PF7 TIM11_CH1 FSMC_NREG EVENTOUT PF8 TIM13_CH1 FSMC_NIOWR EVENTOUT PF9 TIM14_CH1 FSMC_CD EVENTOUT PF10 FSMC_INTR EVENTOUT PF11 DCMI_D12 EVENTOUT PF12 FSMC_A6 EVENTOUT PF13 FSMC_A7 EVENTOUT PF14 FSMC_A8 EVENTOUT PF15 FSMC_A9 EVENTOUT Port G PG0 FSMC_A10 EVENTOUT PG1 FSMC_A11 EVENTOUT PG2 FSMC_A12 EVENTOUT PG3 FSMC_A13 EVENTOUT PG4 FSMC_A14 EVENTOUT PG5 FSMC_A15 EVENTOUT PG6 FSMC_INT2 EVENTOUT PG7 USART6_CK FSMC_INT3 EVENTOUT PG8 USART6_RTS ETH _PPS_OUT EVENTOUT PG9 USART6_RX FSMC_NE2/ FSMC_NCE3 EVENTOUT PG10 FSMC_NCE4_1/ FSMC_NE3 EVENTOUT PG11 ETH _MII_TX_EN ETH _RMII_TX_EN FSMC_NCE4_2 EVENTOUT PG12 USART6_RTS FSMC_NE4 EVENTOUT PG13 UART6_CTS ETH _MII_TXD0 ETH _RMII_TXD0 FSMC_A24 EVENTOUT PG14 USART6_TX ETH _MII_TXD1 ETH _RMII_TXD1 FSMC_A25 EVENTOUT PG15 USART6_CTS DCMI_D13 EVENTOUT Table 10. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI STM32F20xxx Pinouts and pin description DocID15818 Rev 11 63/178 Port H PH0 - OSC_IN EVENTOUT PH1 - OSC_OUT EVENTOUT PH2 ETH _MII_CRS EVENTOUT PH3 ETH _MII_COL EVENTOUT PH4 I2C2_SCL OTG_HS_ULPI_N XT EVENTOUT PH5 I2C2_SDA EVENTOUT PH6 I2C2_SMBA TIM12_CH1 ETH _MII_RXD2 EVENTOUT PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT PH8 I2C3_SDA DCMI_HSYNC EVENTOUT PH9 I2C3_SMBA TIM12_CH2 DCMI_D0 EVENTOUT PH10 TIM5_CH1 DCMI_D1 EVENTOUT PH11 TIM5_CH2 DCMI_D2 EVENTOUT PH12 TIM5_CH3 DCMI_D3 EVENTOUT PH13 TIM8_CH1N CAN1_TX EVENTOUT PH14 TIM8_CH2N DCMI_D4 EVENTOUT PH15 TIM8_CH3N DCMI_D11 EVENTOUT Port I PI0 TIM5_CH4 SPI2_NSS I2S2_WS DCMI_D13 EVENTOUT PI1 SPI2_SCK I2S2_SCK DCMI_D8 EVENTOUT PI2 TIM8_CH4 SPI2_MISO DCMI_D9 EVENTOUT PI3 TIM8_ETR SPI2_MOSI I2S2_SD DCMI_D10 EVENTOUT PI4 TIM8_BKIN DCMI_D5 EVENTOUT PI5 TIM8_CH1 DCMI_VSYNC EVENTOUT PI6 TIM8_CH2 DCMI_D6 EVENTOUT PI7 TIM8_CH3 DCMI_D7 EVENTOUT PI8 EVENTOUT PI9 CAN1_RX EVENTOUT PI10 ETH _MII_RX_ER EVENTOUT PI11 OTG_HS_ULPI_ DIR EVENTOUT Table 10. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF014 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_HS DCMI Memory mapping STM32F20xxx 64/178 DocID15818 Rev 11 5 Memory mapping The memory map is shown in Figure 16. DocID15818 Rev 11 65/178 STM32F20xxx Memory mapping 177 Figure 16. Memory map 512-Mbyte block 7 Cortex-M3's internal peripherals 512-Mbyte block 6 Not used 512-Mbyte block 5 FSMC registers 512-Mbyte block 4 FSMC bank 3 & bank4 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 2 Peripherals 512-Mbyte block 1 SRAM 0x0000 0000 0x1FFF FFFF 0x2000 0000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 0x6000 0000 0x7FFF FFFF 0x8000 0000 0x9FFF FFFF 0xA000 0000 0xBFFF FFFF 0xC000 0000 0xDFFF FFFF 0xE000 0000 0xFFFF FFFF 512-Mbyte block 0 Code Flash 0x0810 0000 - 0x0FFF FFFF 0x1FFF 0000 - 0x1FFF 7A0F 0x1FFF C000 - 0x1FFF C007 0x0800 0000 - 0x080F FFFF 0x0001 C000 - 0x07FF FFFF 0x0000 0000 - 0x000F FFFF System memory + OTP Reserved Reserved Aliased to Flash, system memory or SRAM depending on the BOOT pins SRAM (16 KB aliased by bit-banding) Reserved 0x2000 0000 - 0x2001 BFFF 0x2001 C000 - 0x2001 FFFF 0x2002 0000 - 0x3FFF FFFF TIM2 TIM3 0x4000 0000 - 0x4000 03FF TIM4 TIM5 TIM6 TIM7 Reserved 0x4000 0400 - 0x4000 07FF 0x4000 0800 - 0x4000 0BFF 0x4000 0C00 - 0x4000 0FFF 0x4000 1000 - 0x4000 13FF 0x4000 2000 - 0x4000 23FF 0x4000 2400 - 0x4000 27FF RTC & BKP registers 0x4000 2800 - 0x4000 2BFF WWDG 0x4000 2C00 - 0x4000 2FFF IWDG 0x4000 3000 - 0x4000 33FF Reserved 0x4000 3400 - 0x4000 37FF SPI2/I2S2 0x4000 3800 - 0x4000 3BFF SPI3/I2S3 0x4000 3C00 - 0x4000 3FFF Reserved 0x4000 4000 - 0x4000 43FF USART2 0x4000 4400 - 0x4000 47FF USART3 0x4000 4800 - 0x4000 4BFF UART4 0x4000 4C00 - 0x4000 4FFF UART5 0x4000 5000 - 0x4000 53FF I2C1 0x4000 5400 - 0x4000 57FF I2C2 0x4000 5800 - 0x4000 5BFF Reserved 0x4000 6C00 - 0x4000 6FFF PWR 0x4000 7000 - 0x4000 73FF DAC1/DAC2 0x4000 7400 - 0x4000 77FF 0x4000 7800 - 0x4000 FFFF TIM1 / PWM1 0x4001 0000 - 0x4001 03FF TIM8 / PWM2 0x4001 0400 - 0x4001 07FF Port A USART1 0x4001 1000 - 0x4001 13FF 0x4001 1400 - 0x4001 17FF Port B 0x4001 1800 - 0x4001 1FFF Port C 0x4001 2000 - 0x4001 23FF Port D 0x4001 2400 - 0x4001 27FF Port E 0x4001 2800 - 0x4001 2BFF Port F 0x4001 2C00 - 0x4001 2FFF Port G 0x4001 3000 - 0x4001 33FF Reserved 0x4001 3400 - 0x4001 37FF 0x4001 3800 - 0x4001 3BFF 0x4001 4000 - 0x4001 43FF 0x4001 4400 - 0x4001 47FF USART6 0x4001 4800 - 0x4001 4BFF 0x4002 0000 - 0x4002 03FF 0x4002 0C00 - 0x4002 0FFF 0x4002 1000 - 0x4002 13FF 0x4002 1400 - 0x4002 17FF Reset clock controller (RCC) 0x4002 1800 - 0x4002 1BFF Port H 0x4002 1C00 - 0x4002 1FFF Flash interface 0x4002 2000 - 0x4002 23FF Reserved 0x4002 2400 - 0x4002 2FFF CRC 0x4002 3000 - 0x4002 33FF FSMC bank1 NOR/PSRAM 1 0x6000 0000 - 0x63FF FFFF FSMC bank1 NOR/PSRAM 2 0x6400 0000 - 0x67FF FFFF FSMC bank1 NOR/PSRAM 3 0x6800 0000 - 0x6BFF FFFF FSMC bank1 NOR/PSRAM 4 0x6C00 0000 - 0x6FFF FFFF FSMC bank2 NAND (NAND1) 0x7000 0000 - 0x7FFF FFFF FSMC bank3 NAND (NAND2) 0x8000 0000 - 0x8FFF FFFF FSMC bank4 PC Card 0x9000 0000 - 0x9FFF FFFF FSMC control register 0xA000 0000 - 0xA000 0FFF 0xA000 1000 - 0xBFFF FFFF ai17615c Option Bytes TIM10 SYSCFG 0x4002 0400 - 0x4002 07FF 0x4002 0800 - 0x4002 0BFF SDIO Reserved Reserved 0x4001 4C00 - 0x4001 FFFF EXTI 0x4001 3C00 - 0x4001 3FFF Reserved BxCAN2 0x4000 6000 - 0x4000 63FF 0x4000 6400 - 0x4000 67FF 0x4000 6800 - 0x4000 6BFF Reserved 0x5006 1000 - 0x5FFF FFFF DCMI 0x5005 0000 - 0x5005 03FF Reserved 0x5004 0000 - 0x5004 0FFF USB OTG FS 0x5000 0000 - 0x5003 FFFF Reserved 0x4002 9400 - 0x4FFF FFFF USB OTG HS 0x4004 0000 - 0x4007 FFFF Reserved 0x4002 9400 - 0x4003 FFFF ETHERNET 0x4002 8000 - 0x4002 93FF Reserved 0x4002 6800 - 0x4002 7FFF 0x4002 6400 - 0x4002 67FF 0x4002 6000 - 0x4002 63FF DMA2 DMA1 Reserved 0x4002 5000 - 0x4002 5FFF BKPSRAM 0x4002 4000 - 0x4002 4FFF 0x4002 3C00 - 0x4002 3FFF 0x4002 3800 - 0x4002 3BFF Reserved 0x4002 3400 - 0x4002 37FF Port I TIM11 TIM9 SPI1 ADC1 - ADC2 - ADC3 Reserved BxCAN1 I2C3 0x4000 5C00 - 0x4000 5FFF Reserved TIM12 TIM13 TIM14 0x4000 1C00 - 0x4000 1FFF 0x4000 1800 - 0x4000 1BFF 0x4000 1400 - 0x4000 17FF SRAM (112 KB aliased by bit-banding) Reserved 0x1FFF C008 - 0x1FFF FFFF Reserved 0x1FFF 7A10 - 0x1FFF 7FFF Reserved RNG 0x5006 0800 - 0x5006 0FFF Reserved 0x5005 0400 - 0x5006 7FFF 0x4001 0800 - 0x4001 0FFF Reserved Reserved Electrical characteristics STM32F20xxx 66/178 DocID15818 Rev 11 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 17. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 18. Figure 17. Pin loading conditions Figure 18. Pin input voltage MS19011V2 C = 50 pF MCU pin MS19010V2 MCU pin VIN DocID15818 Rev 11 67/178 STM32F20xxx Electrical characteristics 177 6.1.6 Power supply scheme Figure 19. Power supply scheme 1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 2. To connect REGOFF and IRROFF pins, refer to Section 3.16: Voltage regulator. 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF. 4. The 4.7 μF ceramic capacitor must be connected to one of the VDD pin. ai17527e VDD 1/2/...14/15 VBAT GP I/Os OUT IN Kernel logic (CPU, digital & RAM) Backup circuitry (OSC32K,RTC, Backup registers, backup RAM) Wakeup logic 15 × 100 nF + 1 × 4.7 μF 1.8-3.6 V VSS 1/2/...14/15 VDDA VREF+ VREFVSSA ADC Level shifter IO Logic VDD 100 nF + 1 μF VREF 100 nF + 1 μF VDD Flash memory VVCAP_1 2 × 2.2 μF CAP_2 REGOFF IRROFF Power switch Analog RCs, PLL, ... Voltage regulator Electrical characteristics STM32F20xxx 68/178 DocID15818 Rev 11 6.1.7 Current consumption measurement Figure 20. Current consumption measurement scheme 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics, Table 12: Current characteristics, and Table 13: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ai14126 VBAT VDD VDDA IDD_VBAT IDD Table 11. Voltage characteristics Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA, VDD)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. –0.3 4.0 V VIN Input voltage on five-volt tolerant pin(2) 2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed injected current. VSS–0.3 VDD+4 Input voltage on any other pin VSS–0.3 4.0 |ΔVDDx| Variations between different VDD power pins - 50 mV |VSSX − VSS| Variations between all the different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) see Section 6.3.14: Absolute maximum ratings (electrical sensitivity) DocID15818 Rev 11 69/178 STM32F20xxx Electrical characteristics 177 6.3 Operating conditions 6.3.1 General operating conditions Table 12. Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD power lines (source)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 120 mA IVSS Total current out of VSS ground lines (sink)(1) 120 IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin 25 IINJ(PIN) (2) 2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics. Injected current on five-volt tolerant I/O(3) 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz. 4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. In this case HCLK = system clock/2. DocID15818 Rev 11 77/178 STM32F20xxx Electrical characteristics 177 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) Symbol Parameter Conditions fHCLK Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled(3) 120 MHz 61 81 93 mA 90 MHz 48 68 80 60 MHz 33 53 65 30 MHz 18 38 50 25 MHz 14 34 46 16 MHz(4) 10 30 42 8 MHz 6 26 38 4 MHz 4 24 36 2 MHz 3 23 35 External clock(2), all peripherals disabled 120 MHz 33 54 66 90 MHz 27 47 59 60 MHz 19 39 51 30 MHz 11 31 43 25 MHz 8 28 41 16 MHz(4) 6 26 38 8 MHz 4 24 36 4 MHz 3 23 35 2 MHz 2 23 34 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 4. In this case HCLK = system clock/2. Electrical characteristics STM32F20xxx 78/178 DocID15818 Rev 11 Figure 23. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals ON Figure 24. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals OFF MS19014V1 0 10 20 30 40 50 60 0 20 40 60 80 100 120 CPU frequnecy (MHz) 105°C 85°C 70°C 55°C 30°C 0°C -45°C IDD(RUN) (mA) MS19015V1 0 5 10 15 20 25 30 0 20 40 60 80 100 120 CPU Frequency (MHz) 105°C 85°C 70°C 55°C 30°C 0°C -45°C IDD(RUN) (mA) DocID15818 Rev 11 79/178 STM32F20xxx Electrical characteristics 177 Figure 25. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON Figure 26. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals OFF MS19016V1 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 0 20 40 60 80 100 120 105 85 30°C -45°C IDD(RUN) (mA) CPU frequnecy (MHz) MS19017V1 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 CPU Frequency (MHz) 105 85 30°C -45°C I DD(RUN) (mA) Electrical characteristics STM32F20xxx 80/178 DocID15818 Rev 11 Table 22. Typical and maximum current consumption in Sleep mode Symbol Parameter Conditions fHCLK Typ Max(1) T Unit A = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled(3) 120 MHz 38 51 61 mA 90 MHz 30 43 53 60 MHz 20 33 43 30 MHz 11 25 35 25 MHz 8 21 31 16 MHz 6 19 29 8 MHz 3.6 17.0 27.0 4 MHz 2.4 15.4 25.3 2 MHz 1.9 14.9 24.7 External clock(2), all peripherals disabled 120 MHz 8 21 31 90 MHz 7 20 30 60 MHz 5 18 28 30 MHz 3.5 16.0 26.0 25 MHz 2.5 16.0 25.0 16 MHz 2.1 15.1 25.0 8 MHz 1.7 15.0 25.0 4 MHz 1.5 14.6 24.6 2 MHz 1.4 14.2 24.3 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). DocID15818 Rev 11 81/178 STM32F20xxx Electrical characteristics 177 Figure 27. Typical current consumption vs temperature in Sleep mode, peripherals ON Figure 28. Typical current consumption vs temperature in Sleep mode, peripherals OFF MS19018V1 0 5 10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 105°C 85°C 70°C 55°C 30°C 0°C -45°C IDD(SLEEP) (mA) CPU Frequency (MHz) MS19019V1 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 105°C 85°C 70°C 55°C 30°C 0°C -45°C CPU Frequency (MHz) IDD(SLEEP) (mA) Electrical characteristics STM32F20xxx 82/178 DocID15818 Rev 11 Figure 29. Typical current consumption vs temperature in Stop mode 1. All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect these changes Table 23. Typical and maximum current consumptions in Stop mode(1) Symbol Parameter Conditions Typ Max T Unit A = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C IDD_STOP Supply current in Stop mode with main regulator in Run mode Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.55 1.2 11.00 20.00 mA Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.50 1.2 11.00 20.00 Supply current in Stop mode with main regulator in Low Power mode Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.35 1.1 8.00 15.00 Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.30 1.1 8.00 15.00 1. All typical and maximum values will be further reduced by up to 50% as part of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect these changes. MS19020V1 0.01 0.1 1 10 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 Temperature (°C) Idd_stop_mr_flhstop Idd_stop_mr_flhdeep Idd_stop_lp_flhstop Idd_stop_lp_flhdeep IDD(STOP) (mA) DocID15818 Rev 11 83/178 STM32F20xxx Electrical characteristics 177 Table 24. Typical and maximum current consumptions in Standby mode Symbol Parameter Conditions Typ Max(1) TA = 25 °C TA = 85 °C TA = 105 °C Unit VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V VDD = 3.6 V IDD_STBY Supply current in Standby mode Backup SRAM ON, low-speed oscillator and RTC ON 3.0 3.4 4.0 15.1 25.8 μA Backup SRAM OFF, lowspeed oscillator and RTC ON 2.4 2.7 3.3 12.4 20.5 Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8 Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2 1. Based on characterization, not tested in production. Table 25. Typical and maximum current consumptions in VBAT mode Symbol Parameter Conditions Typ Max(1) TA = 25 °C TA = 85 °C Unit TA = 105 °C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V VDD = 3.6 V IDD_VBAT Backup domain supply current Backup SRAM ON, low-speed oscillator and RTC ON 1.29 1.42 1.68 12 19 μA Backup SRAM OFF, low-speed oscillator and RTC ON 0.62 0.73 0.96 8 10 Backup SRAM ON, RTC OFF 0.79 0.81 0.86 9 16 Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 5 7 1. Based on characterization, not tested in production. Electrical characteristics STM32F20xxx 84/178 DocID15818 Rev 11 On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 26. The MCU is placed under the following conditions: • At startup, all I/O pins are configured as analog inputs by firmware. • All peripherals are disabled unless otherwise mentioned • The given value is calculated by measuring the current consumption – with all peripherals clocked off – with one peripheral clocked on (with only the clock applied) • The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz • Prefetch and Cache ON • When the peripherals are enabled, HCLK = 120MHz, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2 • The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise specified. Table 26. Peripheral current consumption Peripheral(1) Typical consumption at 25 °C Unit AHB1 GPIO A 0.45 mA GPIO B 0.43 GPIO C 0.46 GPIO D 0.44 GPIO E 0.44 GPIO F 0.42 GPIO G 0.44 GPIO H 0.42 GPIO I 0.43 OTG_HS + ULPI 3.64 CRC 1.17 BKPSRAM 0.21 DMA1 2.76 DMA2 2.85 ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP 2.99 AHB2 OTG_FS 3.16 DCMI 0.60 AHB3 FSMC 1.74 DocID15818 Rev 11 85/178 STM32F20xxx Electrical characteristics 177 APB1 TIM2 0.61 mA TIM3 0.49 TIM4 0.54 TIM5 0.62 TIM6 0.20 TIM7 0.20 TIM12 0.36 TIM13 0.28 TIM14 0.25 USART2 0.25 USART3 0.25 UART4 0.25 UART5 0.26 I2C1 0.25 I2C2 0.25 I2C3 0.25 SPI2 0.20/0.10 SPI3 0.18/0.09 CAN1 0.31 CAN2 0.30 DAC channel 1(2) 1.11 DAC channel 1(3) 1.11 PWR 0.15 WWDG 0.15 Table 26. Peripheral current consumption (continued) Peripheral(1) Typical consumption at 25 °C Unit Electrical characteristics STM32F20xxx 86/178 DocID15818 Rev 11 6.3.7 Wakeup time from low-power mode The wakeup times given in Table 27 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. APB2 SDIO 0.69 mA TIM1 1.06 TIM8 1.03 TIM9 0.58 TIM10 0.37 TIM11 0.39 ADC1(4) 2.13 ADC2(4) 2.04 ADC3(4) 2.12 SPI1 1.20 USART1 0.38 USART6 0.37 1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on. 2. EN1 bit is set in DAC_CR register. 3. EN2 bit is set in DAC_CR register. 4. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register. Table 26. Peripheral current consumption (continued) Peripheral(1) Typical consumption at 25 °C Unit Table 27. Low-power mode wakeup timings Symbol Parameter Min(1) Typ(1) Max(1) Unit tWUSLEEP (2) Wakeup from Sleep mode - 1 - μs tWUSTOP (2) Wakeup from Stop mode (regulator in Run mode) - 13 - Wakeup from Stop mode (regulator in low power mode) - 17 40 μs Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode) - 110 - tWUSTDBY (2)(3) Wakeup from Standby mode 260 375 480 μs 1. Based on characterization, not tested in production. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively. DocID15818 Rev 11 87/178 STM32F20xxx Electrical characteristics 177 6.3.8 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 28 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Low-speed external user clock generated from an external source The characteristics given in Table 29 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Table 28. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext External user clock source frequency(1) 1 - 26 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA Table 29. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) 1. Guaranteed by design, not tested in production. - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA Electrical characteristics STM32F20xxx 88/178 DocID15818 Rev 11 Figure 30. High-speed external clock source AC timing diagram Figure 31. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 30. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai17528 OSC_IN External STM32F clock source VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE tr(HSE) tW(HSE) t fHSE_ext VHSEL ai17529 External OSC32_IN STM32F clock source VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE tr(LSE) tW(LSE) t fLSE_ext VLSEL DocID15818 Rev 11 89/178 STM32F20xxx Electrical characteristics 177 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 32. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 31. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 30. HSE 4-26 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 - 26 MHz RF Feedback resistor - 200 - kΩ IDD HSE current consumption VDD=3.3 V, ESR= 30 Ω, CL=5 pF@25 MHz - 449 - μA VDD=3.3 V, ESR= 30 Ω, CL=10 pF@25 MHz - 532 - gm Oscillator transconductance Startup 5 - - mA/V tSU(HSE (3) 3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized - 2 - ms ai17530 OSC_OUT OSC_IN fHSE CL1 RF STM32F 8 MHz resonator Resonator with integrated capacitors Bias controlled gain CL2 REXT(1) Electrical characteristics STM32F20xxx 90/178 DocID15818 Rev 11 Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 33. Typical application with a 32.768 kHz crystal 6.3.9 Internal clock source characteristics The parameters given in Table 32 and Table 33 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. High-speed internal (HSI) RC oscillator Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 18.4 - MΩ IDD LSE current consumption - - 1 μA gm Oscillator Transconductance 2.8 - - μA/V tSU(LSE) (2) 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - s ai17531 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F 32.768 kHz resonator Resonator with integrated capacitors Bias controlled gain CL2 Table 32. HSI oscillator characteristics (1) 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 16 - MHz ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register(2) - - 1 % Factorycalibrated TA = –40 to 105 °C –8 - 4.5 % TA = –10 to 85 °C –4 - 4 % TA = 25 °C –1 - 1 % tsu(HSI) (3) HSI oscillator startup time - 2.2 4 μs IDD(HSI) HSI oscillator power consumption - 60 80 μA DocID15818 Rev 11 91/178 STM32F20xxx Electrical characteristics 177 Figure 34. ACCHSI versus temperature Low-speed internal (LSI) RC oscillator 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. Table 33. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 17 32 47 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - 15 40 μs IDD(LSI) (3) LSI oscillator power consumption - 0.4 0.6 μA MS19012V2 -8 -6 -4 -2 0 2 4 6 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125 Normalized deviation (%) Temperature (°C) max avg min Electrical characteristics STM32F20xxx 92/178 DocID15818 Rev 11 Figure 35. ACCLSI versus temperature 6.3.10 PLL characteristics The parameters given in Table 34 and Table 35 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 14. MS19013V1 -40 -30 -20 -10 0 10 20 30 40 50 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 Normalized deviati on (%) Temperature (°C) max avg min Table 34. Main PLL characteristics Symbol Parameter Conditions Min Typ Max Unit fPLL_IN PLL input clock(1) 0.95 (2) 1 2.10(2) MHz fPLL_OUT PLL multiplier output clock 24 - 120 MHz fPLL48_OUT 48 MHz PLL multiplier output clock - - 48 MHz fVCO_OUT PLL VCO output 192 - 432 MHz tLOCK PLL lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 DocID15818 Rev 11 93/178 STM32F20xxx Electrical characteristics 177 Jitter(3) Cycle-to-cycle jitter System clock 120 MHz RMS - 25 - ps peak to peak - ±150 - Period Jitter RMS - 15 - peak to peak - ±200 - Main clock output (MCO) for RMII Ethernet Cycle to cycle at 50 MHz on 1000 samples - 32 - Main clock output (MCO) for MII Ethernet Cycle to cycle at 25 MHz on 1000 samples - 40 - Bit Time CAN jitter Cycle to cycle at 1 MHz on 1000 samples - 330 - IDD(PLL) (4) PLL power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLL) (4) PLL power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design, not tested in production. 3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 4. Based on characterization, not tested in production. Table 34. Main PLL characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Table 35. PLLI2S (audio PLL) characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10(2) MHz fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz fVCO_OUT PLLI2S VCO output 192 - 432 MHz tLOCK PLLI2S lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Electrical characteristics STM32F20xxx 94/178 DocID15818 Rev 11 Jitter(3) Master I2S clock jitter Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 RMS - 90 - peak to peak - ±280 - ps Average frequency of 12.288 MHz N=432, R=5 on 1000 samples - 90 - ps WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLI2S) (4) PLLI2S power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLI2S) (4) PLLI2S power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design, not tested in production. 3. Value given with main PLL running. 4. Based on characterization, not tested in production. Table 35. PLLI2S (audio PLL) characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit DocID15818 Rev 11 95/178 STM32F20xxx Electrical characteristics 177 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 42: EMI characteristics). It is available only on the main PLL. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): fVCO_OUT must be expressed in MHz. With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz): An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: As a result: Table 36. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % MODEPER * INCSTEP - - 215−1 - 1. Guaranteed by design, not tested in production. MODEPER = round[fPLL_IN ⁄ (4 × fMod)] MODEPER round 106 4 10 3 = [ ⁄ ( × )] = 250 INCSTEP = round[((215 – 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)] INCSTEP = round[((215 – 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)% mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 – 1) × PLLN) mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 – 1) × 240) = 2.0002%(peak) Electrical characteristics STM32F20xxx 96/178 DocID15818 Rev 11 Figure 36 and Figure 37 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. Figure 36. PLL output clock waveforms in center spread mode Figure 37. PLL output clock waveforms in down spread mode 6.3.12 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Frequency (PLL_OUT) Time F0 tmode 2xtmode md ai17291 md Frequency (PLL_OUT) Time F0 tmode 2xtmode 2xmd ai17292 DocID15818 Rev 11 97/178 STM32F20xxx Electrical characteristics 177 Table 37. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit IDD Supply current Write / Erase 8-bit mode VDD = 1.8 V - 5 - Write / Erase 16-bit mode mA VDD = 2.1 V - 8 - Write / Erase 32-bit mode VDD = 3.3 V - 12 - Table 38. Flash memory programming Symbol Parameter Conditions Min(1) Typ Max(1) 1. Based on characterization, not tested in production. Unit tprog Word programming time Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(2) 2. The maximum programming time is measured after 100K erase operations. μs tERASE16KB Sector (16 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism ms (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 tERASE64KB Sector (64 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism ms (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 tERASE128KB Sector (128 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism s (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 tME Mass erase time Program/erase parallelism (PSIZE) = x 8 - 16 32 Program/erase parallelism s (PSIZE) = x 16 - 11 22 Program/erase parallelism (PSIZE) = x 32 - 8 16 Vprog Programming voltage 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.8 - 3.6 V Electrical characteristics STM32F20xxx 98/178 DocID15818 Rev 11 Table 40. Flash memory endurance and data retention 6.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. Table 39. Flash memory programming with VPP Symbol Parameter Conditions Min(1) Typ Max(1) 1. Guaranteed by design, not tested in production. Unit tprog Double word programming TA = 0 to +40 °C VDD = 3.3 V VPP = 8.5 V - 16 100(2) 2. The maximum programming time is measured after 100K erase operations. μs tERASE16KB Sector (16 KB) erase time - 230 - tERASE64KB Sector (64 KB) erase time - 490 - ms tERASE128KB Sector (128 KB) erase time - 875 - tME Mass erase time - 6.9 - s Vprog Programming voltage 2.7 - 3.6 V VPP VPP voltage range 7 - 9 V IPP Minimum current sunk on the VPP pin 10 - - mA tVPP (3) 3. VPP should only be connected during programming/erasing. Cumulative time during which VPP is applied - - 1 hour Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 1 kcycle(2) at TA = 105 °C 10 Years 10 kcycles(2) at TA = 55 °C 20 DocID15818 Rev 11 99/178 STM32F20xxx Electrical characteristics 177 The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 41. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 120 MHz, conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 120 MHz, conforms to IEC 61000-4-2 4A Electrical characteristics STM32F20xxx 100/178 DocID15818 Rev 11 Electromagnetic Interference (EMI)g The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. 6.3.14 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 42. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fCPU] Unit 25/120 MHz SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled, peripheral clock disabled 0.1 to 30 MHz 30 to 130 MHz 25 dBμV 130 MHz to 1GHz SAE EMI Level 4 - VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled, PLL spread spectrum enabled, peripheral clock disabled 0.1 to 30 MHz 28 30 to 130 MHz 26 dBμV 130 MHz to 1GHz 22 SAE EMI level 4 - Table 43. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C conforming to JESD22-A114 2 2000(2) V VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C conforming to JESD22-C101 II 500 1. Based on characterization results, not tested in production. 2. On VBAT pin, VESD(HBM) is limited to 1000 V. DocID15818 Rev 11 101/178 STM32F20xxx Electrical characteristics 177 Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. 6.3.15 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 45. Table 44. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA = +105 °C conforming to JESD78A II level A Table 45. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ Injected current on all FT pins –5 +0 mA Injected current on any other pin –5 +5 Electrical characteristics STM32F20xxx 102/178 DocID15818 Rev 11 6.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the conditions summarized in Table 14: General operating conditions. All I/Os are CMOS and TTL compliant except for BOOT0 and BOOT1. Table 46. I/O static characteristics(1) Symbol Parameter Conditions Min Typ Max Unit VIL Low level input voltage TTa, FT and NRST I/Os 1.6 V ≤ VDD ≤ 3.6 V - - 0.35VDD–0.04(2) V BOOT0 - - TBD(2) I/O input low level voltage except BOOT0 - - 0.3VDD (3) VIH High level input voltage TTa, FT and NRST I/Os(4) 0.45VDD+0.3(2) - - BOOT0 TBD(2) - - I/O input low level voltage except BOOT0 0.7VDD (3) - - Vhys Schmitt trigger hysteresis TTa, FT and NRST I/Os 10% VDDIO (2)(5) - - mV BOOT0 TBD(2) - - Ilkg I/O input leakage current (6) VSS ≤ VIN ≤ VDD - - ±1 μA I/O FT input leakage current (5) VIN = 5 V - - 3 RPU Weak pull-up equivalent resistor(7) All pins except for PA10 and PB12 VIN = VSS 30 40 50 kΩ PA10 and PB12 8 11 15 RPD Weak pulldown equivalent resistor All pins except for PA10 and PB12 VIN = VDD 30 40 50 PA10 and PB12 8 11 15 CIO (2) I/O pin capacitance 5 pF 1. TBD stands for “to be defined”. 2. Data based on design simulation only. Not tested in production. 3. Tested in production. 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. 5. With a minimum of 200 mV. 6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). DocID15818 Rev 11 103/178 STM32F20xxx Electrical characteristics 177 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 12). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 12). Output voltage levels Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Table 47. Output voltage characteristics(1) 1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). Symbol Parameter Conditions Min Max Unit VOL (2) 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS ports IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (2) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL ports IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (2)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - Electrical characteristics STM32F20xxx 104/178 DocID15818 Rev 11 Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 38 and Table 48, respectively. Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 48. I/O AC characteristics(1) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit 00 fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD > 2.70 V - - 4 MHz CL = 50 pF, VDD > 1.8 V - - 2 CL = 10 pF, VDD > 2.70 V - - 8 CL = 10 pF, VDD > 1.8 V - - 4 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time CL = 50 pF, VDD = 1.8 V to 3.6 V - - 100 ns 01 fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD > 2.70 V - - 25 MHz CL = 50 pF, VDD > 1.8 V - - 12.5 CL = 10 pF, VDD > 2.70 V - - 50(3) CL = 10 pF, VDD > 1.8 V - - 20 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time CL = 50 pF, VDD >2.7 V - - 10 ns CL = 50 pF, VDD > 1.8 V - - 20 CL = 10 pF, VDD > 2.70 V - - 6 CL = 10 pF, VDD > 1.8 V - - 10 10 fmax(IO)out Maximum frequency(2) CL = 40 pF, VDD > 2.70 V - - 25 MHz CL = 40 pF, VDD > 1.8 V - - 20 CL = 10 pF, VDD > 2.70 V - - 100(3) CL = 10 pF, VDD > 1.8 V - - 50(3) tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time CL = 40 pF, VDD > 2.70 V - - 6 ns CL = 40 pF, VDD > 1.8 V - - 10 CL = 10 pF, VDD > 2.70 V - 4 CL = 10 pF, VDD > 1.8 V - 6 DocID15818 Rev 11 105/178 STM32F20xxx Electrical characteristics 177 Figure 38. I/O AC characteristics definition 11 fmax(IO)out Maximum frequency(2) CL = 30 pF, VDD > 2.70 V - - 100(3) MHz CL = 30 pF, VDD > 1.8 V - - 50(3) CL = 10 pF, VDD > 2.70 V - - 180(3) CL = 10 pF, VDD > 1.8 V - - 100(3) tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time CL = 30 pF, VDD > 2.70 V - - 4 ns CL = 30 pF, VDD > 1.8 V - - 6 CL = 10 pF, VDD > 2.70 V - - 2.5 CL = 10 pF, VDD > 1.8 V - - 4 - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - - ns 1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 2. The maximum frequency is defined in Figure 38. 3. For maximum frequencies above 50 MHz, the compensation cell should be used. Table 48. I/O AC characteristics(1) (continued) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit ai14131c 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tf(IO)out Electrical characteristics STM32F20xxx 106/178 DocID15818 Rev 11 6.3.17 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 49). Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Figure 39. Recommended NRST pin protection 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 49. Otherwise the reset is not taken into account by the device. Table 49. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) NRST input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8V VIH(NRST) (1) NRST input high level voltage 2 - - VIL(NRST) (1) NRST input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - - 0.3VDD V VIH(NRST) (1) NRST input high level voltage 0.7VDD - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) VIN = VSS 30 40 50 kΩ VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - μs 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). ai14132c STM32Fxxx NRST(2) RPU VDD Filter Internal Reset 0.1 μF External reset circuit(1) DocID15818 Rev 11 107/178 STM32F20xxx Electrical characteristics 177 6.3.18 TIM timer characteristics The parameters given in Table 50 and Table 51 are guaranteed by design. Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 50. Characteristics of TIMx connected to the APB1 domain(1) 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB1 prescaler distinct from 1, fTIMxCLK = 60 MHz 1 - tTIMxCLK 16.7 - ns AHB/APB1 prescaler = 1, fTIMxCLK = 30 MHz 1 - tTIMxCLK 33.3 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 60 MHz APB1= 30 MHz 0 fTIMxCLK/2 MHz 0 30 MHz ResTIM Timer resolution - 16/32 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK 0.0167 1092 μs 32-bit counter clock period when internal clock is selected 1 - tTIMxCLK 0.0167 71582788 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK - 71.6 s Electrical characteristics STM32F20xxx 108/178 DocID15818 Rev 11 6.3.19 Communications interfaces I2C interface characteristics STM32F205xx and STM32F207xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 52. Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 51. Characteristics of TIMx connected to the APB2 domain(1) 1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB2 prescaler distinct from 1, fTIMxCLK = 120 MHz 1 - tTIMxCLK 8.3 - ns AHB/APB2 prescaler = 1, fTIMxCLK = 60 MHz 1 - tTIMxCLK 16.7 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 120 MHz APB2 = 60 MHz 0 fTIMxCLK/2 MHz 0 60 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK 0.0083 546 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK - 35.79 s DocID15818 Rev 11 109/178 STM32F20xxx Electrical characteristics 177 Table 52. I2C characteristics Symbol Parameter Standard mode I2C(1)(2) 1. Guaranteed by design, not tested in production. Fast mode I2C(1)(2) 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time - 3450(3) - 900(3) 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL signal. tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF tSP Pulse width of the spikes that are suppressed by the analog filter 0 50(4) 4. The minimum width of the spikes filtered by the analog filter is above tSP(max). 0 50 ns Electrical characteristics STM32F20xxx 110/178 DocID15818 Rev 11 Figure 40. I2C bus AC waveforms and measurement circuit 1. RS= series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 kΩ 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE ai14979c S TAR T SD A RP I²C bus VDD_I2C STM32Fxx SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) S TAR T REPEATED t S TAR T su(STA) tsu(STO) S TOP tw(STO:STA) VDD_I2C RP RS RS DocID15818 Rev 11 111/178 STM32F20xxx Electrical characteristics 177 I2S - SPI interface characteristics Unless otherwise specified, the parameters given in Table 54 for SPI or in Table 55 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14. Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 54. SPI characteristics Symbol Parameter Conditions Min Max Unit fSCK 1/tc(SCK) SPI clock frequency SPI1 master/slave mode - 30 MHz SPI2/SPI3 master/slave mode - 15 tr(SCL) tf(SCL) SPI clock rise and fall time Capacitive load: C = 30 pF, fPCLK = 30 MHz - 8 ns DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 % tsu(NSS) (1) 1. Based on characterization, not tested in production. NSS setup time Slave mode 4tPCLK - ns th(NSS) (1) NSS hold time Slave mode 2tPCLK - tw(SCLH) (1) tw(SCLL) (1) SCK high and low time Master mode, fPCLK = 30 MHz, presc = 2 tPCLK-3 tPCLK+3 tsu(MI) (1) tsu(SI) (1) Data input setup time Master mode 5 - Slave mode 5 - th(MI) (1) th(SI) (1) Data input hold time Master mode 5 - Slave mode 4 - ta(SO) (1)(2) 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. Data output access time Slave mode, fPCLK = 30 MHz 0 3tPCLK tdis(SO) (1)(3) 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Data output disable time Slave mode 2 10 tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25 tv(MO) (1) Data output valid time Master mode (after enable edge) - 5 th(SO) (1) Data output hold time Slave mode (after enable edge) 15 - th(MO) (1) Master mode (after enable edge) 2 - Electrical characteristics STM32F20xxx 112/178 DocID15818 Rev 11 Figure 41. SPI timing diagram - slave mode and CPHA = 0 Figure 42. SPI timing diagram - slave mode and CPHA = 1 ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input DocID15818 Rev 11 113/178 STM32F20xxx Electrical characteristics 177 Figure 43. SPI timing diagram - master mode ai14136V2 SCK Output CPHA=0 MOSI OUTPUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Output CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) Electrical characteristics STM32F20xxx 114/178 DocID15818 Rev 11 Table 55. I2S characteristics Symbol Parameter Conditions Min Max Unit fCK 1/tc(CK) I2S clock frequency Master, 16-bit data, audio frequency = 48 kHz, main clock disabled 1.23 1.24 MHz Slave 0 64FS (1) tr(CK) tf(CK) I2S clock rise and fall time capacitive load CL = 50 pF - (2) ns tv(WS) (3) WS valid time Master 0.3 - th(WS) (3) WS hold time Master 0 - tsu(WS) (3) WS setup time Slave 3 - th(WS) (3) WS hold time Slave 0 - tw(CKH) (3) tw(CKL) (3) CK high and low time Master fPCLK= 30 MHz 396 - tsu(SD_MR) (3) tsu(SD_SR) (3) Data input setup time Master receiver Slave receiver 45 0 - th(SD_MR) (3)(4) th(SD_SR) (3)(4) Data input hold time Master receiver: fPCLK= 30 MHz, Slave receiver: fPCLK= 30 MHz 13 0 - tv(SD_ST) (3)(4) Data output valid time Slave transmitter (after enable edge) - 30 th(SD_ST) (3) Data output hold time Slave transmitter (after enable edge) 10 - tv(SD_MT) (3)(4) Data output valid time Master transmitter (after enable edge) - 6 th(SD_MT) (3) Data output hold time Master transmitter (after enable edge) 0 - 1. FS is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. fCK values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and FS maximum values for each mode/condition. 2. Refer to Table 48: I/O AC characteristics. 3. Based on design simulation and/or characterization results, not tested in production. 4. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns. DocID15818 Rev 11 115/178 STM32F20xxx Electrical characteristics 177 Figure 44. I2S slave timing diagram (Philips protocol)(1) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 45. I2S master timing diagram (Philips protocol)(1) 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. CK Input CPOL = 0 CPOL = 1 tc(CK) WS input SDtransmit SDreceive tw(CKH) tw(CKL) tsu(WS) tv(SD_ST) th(SD_ST) th(WS) tsu(SD_SR) th(SD_SR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14881b LSB receive(2) LSB transmit(2) CK output CPOL = 0 CPOL = 1 tc(CK) WS output SDreceive SDtransmit tw(CKH) tw(CKL) tsu(SD_MR) tv(SD_MT) th(SD_MT) th(WS) th(SD_MR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14884b tf(CK) tr(CK) tv(WS) LSB receive(2) LSB transmit(2) Electrical characteristics STM32F20xxx 116/178 DocID15818 Rev 11 USB OTG FS characteristics The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers. Table 56. USB OTG FS startup time Symbol Parameter Max Unit tSTARTUP (1) 1. Guaranteed by design, not tested in production. USB OTG FS transceiver startup time 1 μs Table 57. USB OTG FS DC electrical characteristics Symbol Parameter Conditions Min.(1) 1. All the voltages are measured from the local ground potential. Typ. Max.(1) Unit Input levels VDD USB OTG FS operating voltage 3.0(2) 2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. - 3.6 V VDI (3) 3. Guaranteed by design, not tested in production. Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM V (3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE (3) Single ended receiver threshold 1.3 - 2.0 Output levels VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) 4. RL is the load connected on the USB OTG FS drivers - - 0.3 V VOH Static output level high RL of 15 kΩ to VSS (4) 2.8 - 3.6 RPD PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) VIN = VDD 17 21 24 kΩ PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) 0.65 1.1 2.0 RPU PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 2.1 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 DocID15818 Rev 11 117/178 STM32F20xxx Electrical characteristics 177 Figure 46. USB OTG FS timings: definition of data signal rise and fall time USB HS characteristics Table 59 shows the USB HS operating voltage. Table 58. USB OTG FS electrical characteristics(1) 1. Guaranteed by design, not tested in production. Driver characteristics Symbol Parameter Conditions Min Max Unit tr Rise time(2) 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns trfm Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage 1.3 2.0 V Table 59. USB HS DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD USB OTG HS operating voltage 2.7 3.6 V Table 60. Clock timing parameters Parameter(1) 1. Guaranteed by design, not tested in production. Symbol Min Nominal Max Unit Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 % Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 % Time to reach the steady state frequency and duty cycle after the first transition TSTEADY - - 1.4 ms Clock startup time after the de-assertion of SuspendM Peripheral TSTART_DEV - - 5.6 ms Host TSTART_HOST - - - PHY preparation time after the first transition of the input clock TPREP - - - μs ai14137 tf Differen tial Data L ines VSS VCRS tr Crossover points Electrical characteristics STM32F20xxx 118/178 DocID15818 Rev 11 Figure 47. ULPI timing diagram Ethernet characteristics Table 62 shows the Ethernet operating voltage. Table 63 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 48 shows the corresponding timing diagram. Table 61. ULPI timing Symbol Parameter Value(1) 1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C. Unit Min. Max. tSC Control in (ULPI_DIR) setup time - 2.0 ns Control in (ULPI_NXT) setup time - 1.5 tHC Control in (ULPI_DIR, ULPI_NXT) hold time 0 - tSD Data in setup time - 2.0 tHD Data in hold time 0 - tDC Control out (ULPI_STP) setup time and hold time - 9.2 tDD Data out available from clock rising edge - 10.7 Table 62. Ethernet DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD Ethernet operating voltage 2.7 3.6 V Clock Control In (ULPI_DIR, ULPI_NXT) data In (8-bit) Control out (ULPI_STP) data out (8-bit) tDD tDC tSD tHD tSC tHC ai17361c tDC DocID15818 Rev 11 119/178 STM32F20xxx Electrical characteristics 177 Figure 48. Ethernet SMI timing diagram Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 49 shows the corresponding timing diagram. Figure 49. Ethernet RMII timing diagram Table 63. Dynamics characteristics: Ethernet MAC signals for SMI Symbol Rating Min Typ Max Unit tMDC MDC cycle time (2.38 MHz) 411 420 425 ns td(MDIO) MDIO write data valid time 6 10 13 ns tsu(MDIO) Read data setup time 12 - - ns th(MDIO) Read data hold time 0 - - ns Table 64. Dynamics characteristics: Ethernet MAC signals for RMII Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time 1 - - ns tih(RXD) Receive data hold time 1.5 - - tsu(CRS) Carrier sense set-up time 0 - - tih(CRS) Carrier sense hold time 2 - - td(TXEN) Transmit enable valid delay time 9 11 13 td(TXD) Transmit data valid delay time 9 11.5 14 ETH_MDC ETH_MDIO(O) ETH_MDIO(I) tMDC td(MDIO) tsu(MDIO) th(MDIO) ai15666d RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] RMII_RXD[1:0] RMII_CRS_DV td(TXEN) td(TXD) tsu(RXD) tsu(CRS) tih(RXD) tih(CRS) ai15667 Electrical characteristics STM32F20xxx 120/178 DocID15818 Rev 11 Table 65 gives the list of Ethernet MAC signals for MII and Figure 49 shows the corresponding timing diagram. Figure 50. Ethernet MII timing diagram CAN (controller area network) interface Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX). Table 65. Dynamics characteristics: Ethernet MAC signals for MII Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time 7.5 - - ns tih(RXD) Receive data hold time 1 - - ns tsu(DV) Data valid setup time 4 - - ns tih(DV) Data valid hold time 0 - - ns tsu(ER) Error setup time 3.5 - - ns tih(ER) Error hold time 0 - - ns td(TXEN) Transmit enable valid delay time - 11 14 ns td(TXD) Transmit data valid delay time - 11 14 ns MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER td(TXEN) td(TXD) tsu(RXD) tsu(ER) tsu(DV) tih(RXD) tih(ER) tih(DV) ai15668 MII_TX_CLK MII_TX_EN MII_TXD[3:0] DocID15818 Rev 11 121/178 STM32F20xxx Electrical characteristics 177 6.3.20 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 66 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 14. Table 66. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 1.8(1) - 3.6 V VREF+ Positive reference voltage 1.8(1)(2) - VDDA V fADC ADC clock frequency VDDA = 1.8(1) to 2.4 V 0.6 - 15 MHz VDDA = 2.4 to 3.6 V 0.6 - 30 MHz fTRIG (3) External trigger frequency fADC = 30 MHz with 12-bit resolution - - 1764 kHz - - 17 1/fADC VAIN Conversion voltage range(4) 0 (VSSA or VREFtied to ground) - VREF+ V RAIN (3) External input impedance See Equation 1 for details - - 50 kΩ RADC (3)(5) Sampling switch resistance 1.5 - 6 kΩ CADC (3) Internal sample and hold capacitor - 4 - pF tlat (3) Injection trigger conversion latency fADC = 30 MHz - - 0.100 μs - - 3(6) 1/fADC tlatr (3) Regular trigger conversion latency fADC = 30 MHz - - 0.067 μs - - 2(6) 1/fADC tS (3) Sampling time fADC = 30 MHz 0.100 - 16 μs 3 - 480 1/fADC tSTAB (3) Power-up time - 2 3 μs tCONV (3) Total conversion time (including sampling time) fADC = 30 MHz 12-bit resolution 0.5 - 16.40 μs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 μs fADC = 30 MHz 8-bit resolution 0.37 - 16.27 μs fADC = 30 MHz 6-bit resolution 0.3 - 16.20 μs 9 to 492 (tS for sampling +n-bit resolution for successive approximation) 1/fADC Electrical characteristics STM32F20xxx 122/178 DocID15818 Rev 11 Equation 1: RAIN max formula The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. a Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion fS (3) Sampling rate (fADC = 30 MHz) 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps IVREF+ (3) ADC VREF DC current consumption in conversion mode - 300 500 μA IVDDA (3) ADC VDDA DC current consumption in conversion mode - 1.6 1.8 mA 1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). 2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V. 3. Based on characterization, not tested in production. 4. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 5. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V. 6. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66. Table 66. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Table 67. ADC accuracy (1) 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. Symbol Parameter Test conditions Typ Max(2) 2. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 60 MHz, fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8(3) to 3.6 V 3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). ±2 ±5 LSB EO Offset error ±1.5 ±2.5 EG Gain error ±1.5 ±3 ED Differential linearity error ±1 ±2 EL Integral linearity error ±1.5 ±3 RAIN (k – 0.5) fADC CADC 2N + 2 × × ln( ) = -------------------------------------------------------------- – RADC DocID15818 Rev 11 123/178 STM32F20xxx Electrical characteristics 177 being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.16 does not affect the ADC accuracy. Figure 51. ADC accuracy characteristics 1. Example of an actual transfer curve. 2. Ideal transfer curve. 3. End point correlation line. 4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 52. Typical connection diagram using the ADC 1. Refer to Table 66 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the ai14395c EO EG 1L SBIDEAL 4095 4094 4093 5 4 3 2 1 0 7 6 1 2 3 456 7 4093 4094 4095 4096 (1) (2) ET ED EL (3) VSSA VDDA VREF+ 4096 (or depending on package)] VDDA 4096 [1LSB IDEAL = ai17534 VDD STM32F AINx IL±1 μA 0.6 V VT RAIN (1) Cparasitic VAIN 0.6 V VT RADC (1) CADC(1) 12-bit converter Sample and hold ADC converter Electrical characteristics STM32F20xxx 124/178 DocID15818 Rev 11 pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. DocID15818 Rev 11 125/178 STM32F20xxx Electrical characteristics 177 General PCB design guidelines Power supply decoupling should be performed as shown in Figure 53 or Figure 54, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 53. Power supply and reference decoupling (VREF+ not connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. Figure 54. Power supply and reference decoupling (VREF+ connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. VREF+ STM32F VDDA VSSA/V REF- 1 μF // 10 nF 1 μF // 10 nF ai17535 (See note 1) (See note 1) VREF+/VDDA STM32F 1 μF // 10 nF VREF–/VSSA ai17536 (See note 1) (See note 1) Electrical characteristics STM32F20xxx 126/178 DocID15818 Rev 11 6.3.21 DAC electrical characteristics Table 68. DAC characteristics Symbol Parameter Min Typ Max Unit Comments VDDA Analog supply voltage 1.8(1) - 3.6 V VREF+ Reference supply voltage 1.8(1) - 3.6 V VREF+ ≤ VDDA VSSA Ground 0 - 0 V RLOAD (2) Resistive load with buffer ON 5 - - kΩ RO (2) Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ CLOAD (2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT min(2) Lower DAC_OUT voltage with buffer ON 0.2 - - V It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.8 V DAC_OUT max(2) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V DAC_OUT min(2) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV It gives the maximum output DAC_OUT excursion of the DAC. max(2) Higher DAC_OUT voltage with buffer OFF - - VREF+ – 1LSB V IVREF+ (4) DAC DC VREF current consumption in quiescent mode (Standby mode) - 170 240 μA With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs - 50 75 With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs IDDA (4) DAC DC VDDA current consumption in quiescent mode(3) - 280 380 μA With no load, middle code (0x800) on the inputs - 475 625 μA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs DNL(4) Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSBGiven for the DAC in 10-bit configuration. - - ±2 LSBGiven for the DAC in 12-bit configuration. DocID15818 Rev 11 127/178 STM32F20xxx Electrical characteristics 177 INL(4) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±1 LSBGiven for the DAC in 10-bit configuration. - - ±4 LSBGiven for the DAC in 12-bit configuration. Offset(4) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±10 mV - - ±3 LSBGiven for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSBGiven for the DAC in 12-bit at VREF+ = 3.6 V Gain error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration tSETTLING (4) Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB - 3 6 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ THD(4) Total Harmonic Distortion Buffer ON - - - dB CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ tWAKEUP (4) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (2) Power supply rejection ratio (to VDDA) (static DC measurement) - –67 –40 dB No RLOAD, CLOAD = 50 pF 1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16). 2. Guaranteed by design, not tested in production. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed by characterization, not tested in production. Table 68. DAC characteristics (continued) Symbol Parameter Min Typ Max Unit Comments Electrical characteristics STM32F20xxx 128/178 DocID15818 Rev 11 Figure 55. 12-bit buffered /non-buffered DAC 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 6.3.22 Temperature sensor characteristics 6.3.23 VBAT monitoring characteristics RLOAD CLOAD Buffered/Non-buffered DAC DAC_OUTx Buffer(1) 12-bit digital to analog converter ai17157V2 Table 69. TS characteristics Symbol Parameter Min Typ Max Unit TL (1) 1. Based on characterization, not tested in production. VSENSE linearity with temperature - ±1 ±2 °C Avg_Slope(1) Average slope - 2.5 mV/°C V25 (1) Voltage at 25 °C - 0.76 V tSTART (2) 2. Guaranteed by design, not tested in production. Startup time - 6 10 μs TS_temp (3)(2) 3. Shortest sampling time can be determined in the application by multiple iterations. ADC sampling time when reading the temperature 1°C accuracy 10 - - μs Table 70. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 2 - Er(1) 1. Guaranteed by design, not tested in production. Error on Q –1 - +1 % TS_vbat (2)(2) 2. Shortest sampling time can be determined in the application by multiple iterations. ADC sampling time when reading the VBAT 1mV accuracy 5 - - μs DocID15818 Rev 11 129/178 STM32F20xxx Electrical characteristics 177 6.3.24 Embedded reference voltage The parameters given in Table 71 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. 6.3.25 FSMC characteristics Asynchronous waveforms and timings Figure 56 through Figure 59 represent asynchronous waveforms and Table 72 through Table 75 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • AddressSetupTime = 1 • AddressHoldTime = 1 • DataSetupTime = 1 • BusTurnAroundDuration = 0x0 In all timing tables, the THCLK is the HCLK clock period. Table 71. Embedded internal reference voltage Symbol Parameter Conditions Min Typ Max Unit VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V TS_vrefint (1) 1. Shortest sampling time can be determined in the application by multiple iterations. ADC sampling time when reading the internal reference voltage 10 - - μs VRERINT_s (2) 2. Guaranteed by design, not tested in production. Internal reference voltage spread over the temperature range VDD = 3 V - 3 5 mV TCoeff (2) Temperature coefficient - 30 50 ppm/°C tSTART (2) Startup time - 6 10 μs Electrical characteristics STM32F20xxx 130/178 DocID15818 Rev 11 Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 2THCLK– 0.5 2THCLK+0.5 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 2.5 ns tw(NOE) FSMC_NOE low time 2THCLK- 1 2THCLK+ 0.5 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 4 ns th(A_NOE) Address hold time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 0.5 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+ 2.5 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2.5 ns tw(NADV) FSMC_NADV low time - THCLK– 0.5 ns Data FSMC_NE FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) t h(Data_NE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) FSMC_NWE tsu(Data_NE) tw(NE) ai14991c tv(NOE_NE) t w(NOE) t h(NE_NOE) th(Data_NOE) t h(A_NOE) t h(BL_NOE) tsu(Data_NOE) FSMC_NADV(1) t v(NADV_NE) tw(NADV) DocID15818 Rev 11 131/178 STM32F20xxx Electrical characteristics 177 Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK– 0.5 THCLK+ 0.5 ns tw(NWE) FSMC_NWE low time THCLK– 0.5 THCLK+ 3 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns th(A_NWE) Address hold time after FSMC_NWE high THCLK- 3 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+ 5 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK+0.5 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns tw(NADV) FSMC_NADV low time - THCLK+ 1.5 ns NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) tv(Data_NE) tw(NE) ai14990 FSMC_NADV(1) t v(NADV_NE) tw(NADV) Electrical characteristics STM32F20xxx 132/178 DocID15818 Rev 11 Figure 58. Asynchronous multiplexed PSRAM/NOR read waveforms 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK-1 3THCLK+1 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK 2THCLK+0.5 ns tw(NOE) FSMC_NOE low time THCLK-1 THCLK+1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 2 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2.5 ns tw(NADV) FSMC_NADV low time THCLK– 1.5 THCLK ns th(AD_NADV) FSMC_AD(adress) valid hold time after FSMC_NADV high) THCLK - ns th(A_NOE) Address hold time after FSMC_NOE high THCLK - ns th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1 ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 2 - ns NBL Data FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NE) FSMC_A[25:16] Address tv(A_NE) FSMC_NWE t v(A_NE) ai14892b Address FSMC_NADV t v(NADV_NE) tw(NADV) tsu(Data_NE) th(AD_NADV) FSMC_NE FSMC_NOE tw(NE) t w(NOE) tv(NOE_NE) t h(NE_NOE) th(A_NOE) th(BL_NOE) tsu(Data_NOE) th(Data_NOE) DocID15818 Rev 11 133/178 STM32F20xxx Electrical characteristics 177 tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+ 3 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued) Symbol Parameter Min Max Unit Electrical characteristics STM32F20xxx 134/178 DocID15818 Rev 11 Figure 59. Asynchronous multiplexed PSRAM/NOR write waveforms Table 75. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 4THCLK-1 4THCLK+1 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK- 1 THCLK ns tw(NWE) FSMC_NWE low tim e 2THCLK 2THCLK+1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK- 1 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 2 ns th(AD_NADV) FSMC_AD(adress) valid hold time after FSMC_NADV high) THCLK - ns th(A_NWE) Address hold time after FSMC_NWE high THCLK– 0.5 - ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK- 1 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns tv(Data_NADV) FSMC_NADV high to Data valid - THCLK+2 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK– 0.5 - ns NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:16] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) t v(A_NE) tw(NE) ai14891B Address FSMC_NADV t v(NADV_NE) tw(NADV) t v(Data_NADV) th(AD_NADV) DocID15818 Rev 11 135/178 STM32F20xxx Electrical characteristics 177 Synchronous waveforms and timings Figure 60 through Figure 63 represent synchronous waveforms and Table 77 through Table 79 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the THCLK is the HCLK clock period. Figure 60. Synchronous multiplexed NOR/PSRAM read timings FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NOE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKH-NOEL) td(CLKL-NOEH) td(CLKL-ADV) td(CLKL-ADIV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14893h Electrical characteristics STM32F20xxx 136/178 DocID15818 Rev 11 Table 76. Synchronous multiplexed NOR/PSRAM read timings(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1.5 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 5 - ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns DocID15818 Rev 11 137/178 STM32F20xxx Electrical characteristics 177 Figure 61. Synchronous multiplexed PSRAM write timings Table 77. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK- 1 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 7 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 2 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NWE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-NBLH) td(CLKL-ADV) td(CLKL-ADIV) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14992g td(CLKL-Data) FSMC_NBL Electrical characteristics STM32F20xxx 138/178 DocID15818 Rev 11 Figure 62. Synchronous non-multiplexed NOR/PSRAM read timings 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 78. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2.5 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 4 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 3 - ns td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 8 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NOE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKH-NOEL) td(CLKL-NOEH) tsu(DV-CLKH) th(CLKH-DV) tsu(DV-CLKH) th(CLKH-DV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) t h(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14894g FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) DocID15818 Rev 11 139/178 STM32F20xxx Electrical characteristics 177 Figure 63. Synchronous non-multiplexed PSRAM write timings 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 79. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK- 1 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKLNADVL) FSMC_CLK low to FSMC_NADV low - 5 ns td(CLKLNADVH) FSMC_CLK low to FSMC_NADV high 6 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NWE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14993g FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-Data) FSMC_NBL td(CLKL-NBLH) Electrical characteristics STM32F20xxx 140/178 DocID15818 Rev 11 PC Card/CompactFlash controller waveforms and timings Figure 64 through Figure 69 represent synchronous waveforms together with Table 80 and Table 81 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x04; • COM.FSMC_WaitSetupTime = 0x07; • COM.FSMC_HoldSetupTime = 0x04; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x04; • ATT.FSMC_WaitSetupTime = 0x07; • ATT.FSMC_HoldSetupTime = 0x04; • ATT.FSMC_HiZSetupTime = 0x00; • IO.FSMC_SetupTime = 0x04; • IO.FSMC_WaitSetupTime = 0x07; • IO.FSMC_HoldSetupTime = 0x04; • IO.FSMC_HiZSetupTime = 0x00; • TCLRSetupTime = 0; • TARSetupTime = 0; In all timing tables, the THCLK is the HCLK clock period. td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 2 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 79. Synchronous non-multiplexed PSRAM write timings(1)(2) (continued) Symbol Parameter Min Max Unit DocID15818 Rev 11 141/178 STM32F20xxx Electrical characteristics 177 Figure 64. PC Card/CompactFlash controller waveforms for common memory read access 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. Figure 65. PC Card/CompactFlash controller waveforms for common memory write access FSMC_NWE tw(NOE) FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2(1) FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NOE) tsu(D-NOE) th(NOE-D) tv(NCEx-A) td(NREG-NCEx) td(NIORD-NCEx) th(NCEx-AI) th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) ai14895b td(NCE4_1-NWE) tw(NWE) th(NWE-D) tv(NCE4_1-A) td(NREG-NCE4_1) td(NIORD-NCE4_1) th(NCE4_1-AI) MEMxHIZ =1 tv(NWE-D) th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) ai14896b FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) td(D-NWE) FSMC_NCE4_2 High Electrical characteristics STM32F20xxx 142/178 DocID15818 Rev 11 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory read access 1. Only data bits 0...7 are read (bits 8...15 are disregarded). td(NCE4_1-NOE) tw(NOE) tsu(D-NOE) th(NOE-D) tv(NCE4_1-A) th(NCE4_1-AI) td(NREG-NCE4_1) th(NCE4_1-NREG) ai14897b FSMC_NWE FSMC_NOE FSMC_D[15:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NOE-NCE4_1) High DocID15818 Rev 11 143/178 STM32F20xxx Electrical characteristics 177 Figure 67. PC Card/CompactFlash controller waveforms for attribute memory write access 1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z). Figure 68. PC Card/CompactFlash controller waveforms for I/O space read access tw(NWE) tv(NCE4_1-A) td(NREG-NCE4_1) th(NCE4_1-AI) th(NCE4_1-NREG) tv(NWE-D) ai14898b FSMC_NWE FSMC_NOE FSMC_D[7:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) High td(NCE4_1-NWE) td(NIORD-NCE4_1) tw(NIORD) tsu(D-NIORD) td(NIORD-D) tv(NCEx-A) th(NCE4_1-AI) ai14899B FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD Electrical characteristics STM32F20xxx 144/178 DocID15818 Rev 11 Figure 69. PC Card/CompactFlash controller waveforms for I/O space write access td(NCE4_1-NIOWR) tw(NIOWR) tv(NCEx-A) th(NCE4_1-AI) th(NIOWR-D) ATTxHIZ =1 tv(NIOWR-D) ai14900c FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD Table 80. Switching characteristics for PC Card/CF read and write cycles in attribute/common space(1)(2) Symbol Parameter Min Max Unit tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+ 4 - ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK ns tw(NOE) FSMC_NOE low width 8THCLK– 0.5 8THCLK+ 1 ns td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+ 2.5 - ns tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4 - ns th (N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 2 - ns tw(NWE) FSMC_NWE low width 8THCLK- 1 8THCLK+ 4 ns td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK+ 1.5 ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5HCLK+ 1 ns tv (NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8 THCLK - ns td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID15818 Rev 11 145/178 STM32F20xxx Electrical characteristics 177 NAND controller waveforms and timings Figure 70 through Figure 73 represent synchronous waveforms, together with Table 82 and Table 83 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x01; • COM.FSMC_WaitSetupTime = 0x03; • COM.FSMC_HoldSetupTime = 0x02; • COM.FSMC_HiZSetupTime = 0x01; • ATT.FSMC_SetupTime = 0x01; • ATT.FSMC_WaitSetupTime = 0x03; • ATT.FSMC_HoldSetupTime = 0x02; • ATT.FSMC_HiZSetupTime = 0x01; • Bank = FSMC_Bank_NAND; • MemoryDataWidth = FSMC_MemoryDataWidth_16b; • ECC = FSMC_ECC_Enable; • ECCPageSize = FSMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0; In all timing tables, the THCLK is the HCLK clock period. Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2) Symbol Parameter Min Max Unit tw(NIOWR) FSMC_NIOWR low width 8THCLK - 0.5 - ns tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK- 1 ns th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK- 3 - ns td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 1.5 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 1 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 0.5 - ns tw(NIORD) FSMC_NIORD low width 8THCLK+ 1 - ns tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9.5 ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Electrical characteristics STM32F20xxx 146/178 DocID15818 Rev 11 Figure 70. NAND controller waveforms for read access Figure 71. NAND controller waveforms for write access FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] tsu(D-NOE) th(NOE-D) ai14901c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tv(NWE-D) th(NWE-D) ai14902c FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NWE) th(NWE-ALE) DocID15818 Rev 11 147/178 STM32F20xxx Electrical characteristics 177 Figure 72. NAND controller waveforms for common memory read access Figure 73. NAND controller waveforms for common memory write access Table 82. Switching characteristics for NAND Flash read cycles(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(N0E) FSMC_NOE low width 4THCLK- 1 4THCLK+ 2 ns tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 9 - ns th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 3 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK+ 2 - ns FSMC_NWE FSMC_NOE FSMC_D[15:0] tw(NOE) tsu(D-NOE) th(NOE-D) ai14912c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tw(NWE) tv(NWE-D) th(NWE-D) ai14913c FSMC_NWE FSMC_NOE FSMC_D[15:0] td(D-NWE) ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) Electrical characteristics STM32F20xxx 148/178 DocID15818 Rev 11 6.3.26 Camera interface (DCMI) timing specifications 6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 85 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14. Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK). Figure 74. SDIO high-speed mode Table 83. Switching characteristics for NAND Flash write cycles(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(NWE) FSMC_NWE low width 4THCLK- 1 4THCLK+ 3 ns tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK - ns td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK+ 2 ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK- 2 - ns Table 84. DCMI characteristics Symbol Parameter Conditions Min Max - Frequency ratio DCMI_PIXCLK/fHCLK DCMI_PIXCLK= 48 MHz 0.4 tW(CKH) CK D, CMD (output) D, CMD (input) tC tW(CKL) tOV tOH tISU tIH tf tr ai14887 DocID15818 Rev 11 149/178 STM32F20xxx Electrical characteristics 177 Figure 75. SD default mode 6.3.28 RTC characteristics Table 85. SD / MMC characteristics Symbol Parameter Conditions Min Max Unit fPP Clock frequency in data transfer mode CL ≤ 30 pF 0 48 MHz - SDIO_CK/fPCLK2 frequency ratio - - 8/3 - tW(CKL) Clock low time, fPP = 16 MHz CL ≤ 30 pF 32 ns tW(CKH) Clock high time, fPP = 16 MHz CL ≤ 30 pF 31 tr Clock rise time CL ≤ 30 pF 3.5 tf Clock fall time CL ≤ 30 pF 5 CMD, D inputs (referenced to CK) tISU Input setup time CL ≤ 30 pF 2 ns tIH Input hold time CL ≤ 30 pF 0 CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time CL ≤ 30 pF 6 ns tOH Output hold time CL ≤ 30 pF 0.3 CMD, D outputs (referenced to CK) in SD default mode(1) 1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output. tOVD Output valid default time CL ≤ 30 pF 7 ns tOHD Output hold default time CL ≤ 30 pF 0.5 ai14888 CK D, CMD (output) tOVD tOHD Table 86. RTC characteristics Symbol Parameter Conditions Min Max - fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register 4 - Package characteristics STM32F20xxx 150/178 DocID15818 Rev 11 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID15818 Rev 11 151/178 STM32F20xxx Package characteristics 177 Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline 1. Drawing is not to scale. A1 A2 A SEATING PLANE ccc C b C c A1 L L1 K GAUGE PLANE 0.25 mm IDENTIFICATION PIN 1 D D1 D3 e 1 16 17 32 48 33 49 64 E3 E1 E 5W_ME_V2 Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3937 0.3937 0.4016 D3 - 7.500 - - 0.2953 - Package characteristics STM32F20xxx 152/178 DocID15818 Rev 11 Figure 77. Recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3937 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 87. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data (continued) Symbol millimeters inches(1) Min Typ Max Min Typ Max 48 49 32 64 17 1 16 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909c DocID15818 Rev 11 153/178 STM32F20xxx Package characteristics 177 Figure 78. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline 1. Drawing is not to scale. Side view Bump side Detail A Wafer back side A1 ball location A1 Detail A rotated by 90 °C eee D A0FX_ME Seating plane A2 A b E e e1 e G F e1 Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data Symbol millimeters inches Min Typ Max Min Typ Max A 0.520 0.570 0.600 0.0205 0.0224 0.0236 A1 0.170 0.190 0.210 0.0067 0.0075 0.0083 A2 0.350 0.380 0.410 0.0138 0.0150 0.0161 b 0.245 0.270 0.295 0.0096 0.0106 0.0116 D 3.619 3.639 3.659 0.1425 0.1433 0.1441 E 3.951 3.971 3.991 0.1556 0.1563 0.1571 e - 0.400 - - 0.0157 - e1 - 3.218 - - 0.1267 - F - 0.220 - - 0.0087 - Package characteristics STM32F20xxx 154/178 DocID15818 Rev 11 G - 0.386 - - 0.0152 - eee - - 0.050 - - 0.0020 Table 88. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data (continued) Symbol millimeters inches Min Typ Max Min Typ Max DocID15818 Rev 11 155/178 STM32F20xxx Package characteristics 177 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline 1. Drawing is not to scale. IDENTIFICATION e PIN 1 GAUGE PLANE 0.25 mm SEATING PLANE D D1 D3 E3 E1 E K ccc C C 1 25 100 26 76 75 51 50 1L_ME_V4 A2 A A1 L1 L c b A1 Table 89. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 Package characteristics STM32F20xxx 156/178 DocID15818 Rev 11 Figure 80. Recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 89. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max 75 51 76 50 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 DocID15818 Rev 11 157/178 STM32F20xxx Package characteristics 177 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline 1. Drawing is not to scale. e IDENTIFICATION PIN 1 GAUGE PLANE 0.25 mm SEATING PLANE D D1 D3 E3 E1 E K ccc C C 1 36 37 144 109 108 73 72 1A_ME_V3 A2 A A1 L1 L c b A1 Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.689 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 Package characteristics STM32F20xxx 158/178 DocID15818 Rev 11 Figure 82. Recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 90. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data (continued) Symbol millimeters inches(1) Min Typ Max Min Typ Max ai14905c 0.5 0.35 19.9 17.85 22.6 1.35 22.6 19.9 1 36 37 72 108 73 109 144 DocID15818 Rev 11 159/178 STM32F20xxx Package characteristics 177 Figure 83. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline 1. Drawing is not to scale. Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 - 1.450 0.0531 - 0.0571 b 0.170 - 0.270 0.0067 - 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 23.900 - 24.100 0.9409 - 0.9488 E 23.900 - 24.100 0.9409 - 0.9488 e - 0.500 - - 0.0197 - HD 25.900 - 26.100 1.0197 - 1.0276 1T_ME_V2 A2 A e E HE D HD ZD ZE b 0.25 mm gauge plane A1 L L1 k c IDENTIFICATION PIN 1 C Seating plane A1 Package characteristics STM32F20xxx 160/178 DocID15818 Rev 11 HE 25.900 26.100 1.0197 1.0276 L(2) 0.450 0.750 0.0177 0.0295 L1 1.000 0.0394 ZD 1.250 0.0492 ZE 1.250 0.0492 k 0° 7° 0° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. L dimension is measured at gauge plane at 0.25 mm above the seating plane. Table 91. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data (continued) Symbol millimeters inches(1) Min Typ Max Min Typ Max DocID15818 Rev 11 161/178 STM32F20xxx Package characteristics 177 Figure 84. LQFP176 recommended footprint 1. Dimensions are expressed in millimeters. 1T_FP_V1 133 132 1.2 0.3 0.5 89 88 1.2 44 45 21.8 26.7 1 176 26.7 21.8 Package characteristics STM32F20xxx 162/178 DocID15818 Rev 11 Figure 85. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline 1. Drawing is not to scale. A0E7_ME_V5 Seating plane A2 ddd C A1 A e F F e R A 15 1 BOTTOM VIEW E D TOP VIEW Øb (176 + 25 balls) B A Ø eee M B Ø fff M C C A C A1 ball identifier A1 ball index area b Table 92. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.002 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 9.950 10.000 10.050 0.3917 0.3937 0.3957 E 9.950 10.000 10.050 0.3917 0.3937 0.3957 e - 0.650 - - 0.0256 - F 0.400 0.450 0.500 0.0157 0.0177 0.0197 ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID15818 Rev 11 163/178 STM32F20xxx Package characteristics 177 7.2 Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Table 93. Package thermal characteristics Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch 45 °C/W Thermal resistance junction-ambient WLCSP64+2 - 0.400 mm pitch 51 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch 38 Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.5 mm pitch 39 Part numbering STM32F20xxx 164/178 DocID15818 Rev 11 8 Part numbering For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 94. Ordering information scheme Example: STM32 F 205 R E T 6 Vxxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 205 = STM32F20x, connectivity 207= STM32F20x, connectivity, camera interface, Ethernet Pin count R = 64 pins or 66 pins(1) V = 100 pins Z = 144 pins I = 176 pins Flash memory size B = 128 Kbytes of Flash memory C = 256 Kbytes of Flash memory E = 512 Kbytes of Flash memory F = 768 Kbytes of Flash memory G = 1024 Kbytes of Flash memory Package T = LQFP H = UFBGA Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Software option Internal code or Blank Options xxx = programmed parts TR = tape and reel 1. The 66 pins is available on WLCSP package only. DocID15818 Rev 11 165/178 STM32F20xxx Revision history 177 9 Revision history Table 95. Document revision history Date Revision Changes 05-Jun-2009 1 Initial release. 09-Oct-2009 2 Document status promoted from Target specification to Preliminary data. In Table 8: STM32F20x pin and ball definitions: – Note 4 updated – VDD_SA and VDD_3 pins inverted (Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout and Figure 14: STM32F20x LQFP176 pinout corrected accordingly). Section 7.1: Package mechanical data changed to LQFP with no exposed pad. 01-Feb-2010 3 LFBGA144 package removed. STM32F203xx part numbers removed. Part numbers with 128 and 256 Kbyte Flash densities added. Encryption features removed. PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPERRTC renamed to PI8-RTC_AF2. 13-Jul-2010 4 Renamed high-speed SRAM, system SRAM. Removed combination: 128 KBytes Flash memory in LQFP144. Added UFBGA176 package. Added note 1 related to LQFP176 package in Table 2, Figure 14, and Table 94. Added information on ART accelerator and audio PLL (PLLI2S). Added Table 6: USART feature comparison. Several updates on Table 8: STM32F20x pin and ball definitions and Table 10: Alternate function mapping. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and moved to the “other functions” column in Table 8: STM32F20x pin and ball definitions. TRACESWO added in Figure 4: STM32F20x block diagram, Table 8: STM32F20x pin and ball definitions, and Table 10: Alternate function mapping. XTAL oscillator frequency updated on cover page, in Figure 4: STM32F20x block diagram and in Section 3.11: External interrupt/event controller (EXTI). Updated list of peripherals used for boot mode in Section 3.13: Boot modes. Added Regulator bypass mode in Section 3.16: Voltage regulator, and Section 6.3.4: Operating conditions at power-up / power-down (regulator OFF). Updated Section 3.17: Real-time clock (RTC), backup SRAM and backup registers. Added Note Note: in Section 3.18: Low-power modes. Added SPI TI protocol in Section 3.23: Serial peripheral interface (SPI). Revision history STM32F20xxx 166/178 DocID15818 Rev 11 13-Jul-2010 4 (continued) Added USB OTG_FS features in Section 3.28: Universal serial bus onthe- go full-speed (OTG_FS). Updated VCAP_1 and VCAP_2 capacitor value to 2.2 μF in Figure 19: Power supply scheme. Removed DAC, modified ADC limitations, and updated I/O compensation for 1.8 to 2.1 V range in Table 15: Limitations depending on the operating power supply range. Added VBORL, VBORM, VBORH and IRUSH in Table 19: Embedded reset and power control block characteristics. Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption sections and added Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, Table 22: Typical and maximum current consumption in Sleep mode, Table 23: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Standby mode, and Table 25: Typical and maximum current consumptions in VBAT mode. Update Table 34: Main PLL characteristics and added Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Added Note 8 for CIO in Table 48: I/O AC characteristics. Updated Section 6.3.18: TIM timer characteristics. Added TNRST_OUT in Table 49: NRST pin characteristics. Updated Table 52: I2C characteristics. Removed 8-bit data in and data out waveforms from Figure 47: ULPI timing diagram. Removed note related to ADC calibration in Table 67. Section 6.3.20: 12-bit ADC characteristics: ADC characteristics tables merged into one single table; tables ADC conversion time and ADC accuracy removed. Updated Table 68: DAC characteristics. Updated Section 6.3.22: Temperature sensor characteristics and Section 6.3.23: VBAT monitoring characteristics. Update Section 6.3.26: Camera interface (DCMI) timing specifications. Added Section 6.3.27: SD/SDIO MMC card host interface (SDIO) characteristics, and Section 6.3.28: RTC characteristics. Added Section 7.2: Thermal characteristics. Updated Table 91: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure 83: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Changed tape and reel code to TX in Table 94: Ordering information scheme. Added Table 101: Main applications versus package for STM32F2xxx microcontrollers. Updated figures in Appendix A.2: USB OTG full speed (FS) interface solutions and A.3: USB OTG high speed (HS) interface solutions. Updated Figure 94: Audio player solution using PLL, PLLI2S, USB and 1 crystal and Figure 95: Audio PLL (PLLI2S) providing accurate I2S clock. Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 167/178 STM32F20xxx Revision history 177 25-Nov-2010 5 Update I/Os in Section : Features. Added WLCSP64+2 package. Added note 1 related to LQFP176 on cover page. Added trademark for ART accelerator. Updated Section 3.2: Adaptive real-time memory accelerator (ART Accelerator™). Updated Figure 5: Multi-AHB matrix. Added case of BOR inactivation using IRROFF on WLCSP devices in Section 3.15: Power supply supervisor. Reworked Section 3.16: Voltage regulator to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document. Added Section 3.19: VBAT operation. Updated LIN and IrDA features for UART4/5 in Table 6: USART feature comparison. Table 8: STM32F20x pin and ball definitions: Modified VDD_3 pin, and added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4. Changed VSS_SA to VSS, and VDD_SA pin reserved for future use. Updated maximum HSE crystal frequency to 26 MHz. Section 6.2: Absolute maximum ratings: Updated VIN minimum and maximum values and note related to five-volt tolerant inputs in Table 11: Voltage characteristics. Updated IINJ(PIN) maximum values and related notes in Table 12: Current characteristics. Updated VDDA minimum value in Table 14: General operating conditions. Added Note 2 and updated Maximum CPU frequency in Table 15: Limitations depending on the operating power supply range, and added Figure 21: Number of wait states versus fCPU and VDD range. Added brownout level 1, 2, and 3 thresholds in Table 19: Embedded reset and power control block characteristics. Changed fOSC_IN maximum value in Table 30: HSE 4-26 MHz oscillator characteristics. Changed fPLL_IN maximum value in Table 34: Main PLL characteristics, and updated jitter parameters in Table 35: PLLI2S (audio PLL) characteristics. Section 6.3.16: I/O port characteristics: updated VIH and VIL in Table 48: I/O AC characteristics. Added Note 1 below Table 47: Output voltage characteristics. Updated RPD and RPU parameter description in Table 57: USB OTG FS DC electrical characteristics. Updated VREF+ minimum value in Table 66: ADC characteristics. Updated Table 71: Embedded internal reference voltage. Removed Ethernet and USB2 for 64-pin devices in Table 101: Main applications versus package for STM32F2xxx microcontrollers. Added A.2: USB OTG full speed (FS) interface solutions, removed “OTG FS connection with external PHY” figure, updated Figure 87, Figure 88, and Figure 90 to add STULPI01B. Table 95. Document revision history (continued) Date Revision Changes Revision history STM32F20xxx 168/178 DocID15818 Rev 11 22-Apr-2011 6 Changed datasheet status to “Full Datasheet”. Introduced concept of SRAM1 and SRAM2. LQFP176 package now in production and offered only for 256 Kbyte and 1 Mbyte devices. Availability of WLCSP64+2 package limited to 512 Kbyte and 1 Mbyte devices. Updated Figure 3: Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package and Figure 2: Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package. Added camera interface for STM32F207Vx devices in Table 2: STM32F205xx features and peripheral counts. Removed 16 MHz internal RC oscillator accuracy in Section 3.12: Clocks and startup. Updated Section 3.16: Voltage regulator. Modified I2S sampling frequency range in Section 3.12: Clocks and startup, Section 3.24: Inter-integrated sound (I2S), and Section 3.30: Audio PLL (PLLI2S). Updated Section 3.17: Real-time clock (RTC), backup SRAM and backup registers and description of TIM2 and TIM5 in Section 3.20.2: General-purpose timers (TIMx). Modified maximum baud rate (oversampling by 16) for USART1 in Table 6: USART feature comparison. Updated note related to RFU pin below Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, Figure 14: STM32F20x LQFP176 pinout, Figure 15: STM32F20x UFBGA176 ballout, and Table 8: STM32F20x pin and ball definitions. In Table 8: STM32F20x pin and ball definitions,:changed I2S2_CK and I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and TT (3.6 V tolerant I/O). Added RTC_50Hz as PB15 alternate function in Table 8: STM32F20x pin and ball definitions and Table 10: Alternate function mapping. Removed ETH _RMII_TX_CLK for PC3/AF11 in Table 10: Alternate function mapping. Updated Table 11: Voltage characteristics and Table 12: Current characteristics. TSTG updated to –65 to +150 in Table 13: Thermal characteristics. Added CEXT, ESL, and ESR in Table 14: General operating conditions as well as Section 6.3.2: VCAP1/VCAP2 external capacitor. Modified Note 4 in Table 15: Limitations depending on the operating power supply range. Updated Table 17: Operating conditions at power-up / power-down (regulator ON), and Table 18: Operating conditions at power-up / power-down (regulator OFF). Added OSC_OUT pin in Figure 17: Pin loading conditions. and Figure 18: Pin input voltage. Updated Figure 19: Power supply scheme to add IRROFF and REGOFF pins and modified notes. Updated VPVD, VBOR1, VBOR2, VBOR3, TRSTTEMPO typical value, and IRUSH, added ERUSH and Note 2 in Table 19: Embedded reset and power control block characteristics. Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 169/178 STM32F20xxx Revision history 177 22-Apr-2011 6 (continued) Updated Typical and maximum current consumption conditions, as well as Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure 23, Figure 24, Figure 25, and Figure 26. Updated Table 22: Typical and maximum current consumption in Sleep mode, and added Figure 27 and Figure 28. Updated Table 23: Typical and maximum current consumptions in Stop mode. Added Figure 29: Typical current consumption vs temperature in Stop mode. Updated Table 24: Typical and maximum current consumptions in Standby mode and Table 25: Typical and maximum current consumptions in VBAT mode. Updated On-chip peripheral current consumption conditions and Table 26: Peripheral current consumption. Updated tWUSTDBY and tWUSTOP, and added Note 3 in Table 27: Lowpower mode wakeup timings. Maximum fHSE_ext and minimum tw(HSE) values updated in Table 28: High-speed external user clock characteristics. Updated C and gm in Table 30: HSE 4-26 MHz oscillator characteristics. Updated RF, I2, gm, and tsu(LSE) in Table 31: LSE oscillator characteristics (fLSE = 32.768 kHz). Added Note 1 and updated ACCHSI, IDD(HSI, and tsu(HSI) in Table 32: HSI oscillator characteristics. Added Figure 34: ACCHSI versus temperature. Updated fLSI, tsu(LSI) and IDD(LSI) in Table 33: LSI oscillator characteristics. Added Figure 35: ACCLSI versus temperature Table 34: Main PLL characteristics: removed note 1, updated tLOCK, jitter, IDD(PLL) and IDDA(PLL), added Note 2 for fPLL_IN minimum and maximum values. Table 35: PLLI2S (audio PLL) characteristics: removed note 1, updated tLOCK, jitter, IDD(PLLI2S) and IDDA(PLLI2S), added Note 2 for fPLLI2S_IN minimum and maximum values. Added Note 1 in Table 36: SSCG parameters constraint. Updated Table 37: Flash memory characteristics. Modified Table 38: Flash memory programming and added Note 2 for tprog. Updated tprog and added Note 1 in Table 39: Flash memory programming with VPP. Modified Figure 39: Recommended NRST pin protection. Updated Table 42: EMI characteristics and EMI monitoring conditions in Section : Electromagnetic Interference (EMI)g. Added Note 2 related to VESD(HBM)in Table 43: ESD absolute maximum ratings. Updated Table 48: I/O AC characteristics. Added Section 6.3.15: I/O current injection characteristics. Modified maximum frequency values and conditions in Table 48: I/O AC characteristics. Updated tres(TIM) in Table 50: Characteristics of TIMx connected to the APB1 domain. Modified tres(TIM) and fEXT Table 51: Characteristics of TIMx connected to the APB2 domain. Table 95. Document revision history (continued) Date Revision Changes Revision history STM32F20xxx 170/178 DocID15818 Rev 11 22-Apr-2011 6 (continued) Changed tw(SCKH) to tw(SCLH), tw(SCKL) to tw(SCLL), tr(SCK) to tr(SCL), and tf(SCK) to tf(SCL) in Table 52: I2C characteristics and in Figure 40: I2C bus AC waveforms and measurement circuit. Added Table 57: USB OTG FS DC electrical characteristics and updated Table 58: USB OTG FS electrical characteristics. Updated VDD minimum value in Table 62: Ethernet DC electrical characteristics. Updated Table 66: ADC characteristics and RAIN equation. Updated RAIN equation. Updated Table 68: DAC characteristics. Updated tSTART in Table 69: TS characteristics. Updated R typical value in Table 70: VBAT monitoring characteristics. Updated Table 71: Embedded internal reference voltage. Modified FSMC_NOE waveform in Figure 56: Asynchronous nonmultiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK period, changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKLAIV), td(CLKH-NOEH) to td(CLKL-NOEH), and td(CLKH-NWEH) to td(CLKLNWEH), and updated data latency from 1 to 0 in Figure 60: Synchronous multiplexed NOR/PSRAM read timings, Figure 61: Synchronous multiplexed PSRAM write timings, Figure 62: Synchronous non-multiplexed NOR/PSRAM read timings, and Figure 63: Synchronous non-multiplexed PSRAM write timings, Changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-AIV), td(CLKH-NOEH) to td(CLKL-NOEH), td(CLKH-NWEH) to td(CLKL-NWEH), and modified tw(CLK) minimum value in Table 76, Table 77, Table 78, and Table 79. Updated note 2 in Table 72, Table 73, Table 74, Table 75, Table 76, Table 77, Table 78, and Table 79. Modified th(NIOWR-D) in Figure 69: PC Card/CompactFlash controller waveforms for I/O space write access. Modified FSMC_NCEx signal in Figure 70: NAND controller waveforms for read access, Figure 71: NAND controller waveforms for write access, Figure 72: NAND controller waveforms for common memory read access, and Figure 73: NAND controller waveforms for common memory write access Specified Full speed (FS) mode for Figure 89: USB OTG HS peripheral-only connection in FS mode and Figure 90: USB OTG HS host-only connection in FS mode. Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 171/178 STM32F20xxx Revision history 177 14-Jun-2011 7 Added SDIO in Table 2: STM32F205xx features and peripheral counts. Updated VIN for 5V tolerant pins in Table 11: Voltage characteristics. Updated jitter parameters description in Table 34: Main PLL characteristics. Remove jitter values for system clock in Table 35: PLLI2S (audio PLL) characteristics. Updated Table 42: EMI characteristics. Update Note 2 in Table 52: I2C characteristics. Updated Avg_Slope typical value and TS_temp minimum value in Table 69: TS characteristics. Updated TS_vbat minimum value in Table 70: VBAT monitoring characteristics. Updated TS_vrefint mimimum value in Table 71: Embedded internal reference voltage. Added Software option in Section 8: Part numbering. In Table 101: Main applications versus package for STM32F2xxx microcontrollers, renamed USB1 and USB2, USB OTG FS and USB OTG HS, respectively; and removed USB OTG FS and camera interface for 64-pin package; added USB OTG HS on 64-pin package; added Note 1 and Note 2. 20-Dec-2011 8 Updated SDIO register addresses in Figure 16: Memory map. Updated Figure 3: Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package, Figure 2: Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package, Figure 1: Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package, and added Figure 4: Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package. Updated Section 3.3: Memory protection unit. Updated Section 3.6: Embedded SRAM. Updated Section 3.28: Universal serial bus on-the-go full-speed (OTG_FS) to remove external FS OTG PHY support. In Table 8: STM32F20x pin and ball definitions: changed SPI2_MCK and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added ETH _RMII_TX_EN atlternate function to PG11. Added EVENTOUT in the list of alternate functions for I/O pin/balls. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. In Table 10: Alternate function mapping: changed I2S3_SCK to I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3 for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals corresponding to AF12. Removed CEXT and ESR from Table 14: General operating conditions. Table 95. Document revision history (continued) Date Revision Changes Revision history STM32F20xxx 172/178 DocID15818 Rev 11 20-Dec-2011 8 (continued) Added maximum power consumption at TA=25 °C in Table 23: Typical and maximum current consumptions in Stop mode. Updated md minimum value in Table 36: SSCG parameters constraint. Added examples in Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated Table 54: SPI characteristics and Table 55: I2S characteristics. Updated Figure 47: ULPI timing diagram and Table 61: ULPI timing. Updated Table 63: Dynamics characteristics: Ethernet MAC signals for SMI, Table 64: Dynamics characteristics: Ethernet MAC signals for RMII, and Table 65: Dynamics characteristics: Ethernet MAC signals for MII. Section 6.3.25: FSMC characteristics: updated Table 72 toTable 83, changed CL value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 61: Synchronous multiplexed PSRAM write timings. UpdatedTable 84: DCMI characteristics. Updated Table 92: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data. Updated Table 94: Ordering information scheme. Appendix A.2: USB OTG full speed (FS) interface solutions: updated Figure 87: USB OTG FS (full speed) host-only connection and added Note 2, updated Figure 88: OTG FS (full speed) connection dual-role with internal PHY and added Note 3 and Note 4, modified Figure 89: OTG HS (high speed) device connection, host and dual-role in highspeed mode with external PHY and added Note 2. Appendix A.3: USB OTG high speed (HS) interface solutions: removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode,updated Figure 89: OTG HS (high speed) device connection, host and dual-role in highspeed mode with external PHY. Added Appendix A.4: Ethernet interface solutions. Updated disclaimer on last page. 24-Apr-2012 9 Updated VDD minimum value in Section 2: Description. Updated number of USB OTG HS and FS, modified packages for STM32F207Ix part numbers, added Note 1 related to FSMC and Note 2 related to SPI/I2S, and updated Note 3 in Table 2: STM32F205xx features and peripheral counts and Table 3: STM32F207xx features and peripheral counts. Added Note 2 and update TIM5 in Figure 4: STM32F20x block diagram. Updated maximum number of maskable interrupts in Section 3.10: Nested vectored interrupt controller (NVIC). Updated VDD minimum value in Section 3.14: Power supply schemes. Updated Note a in Section 3.16.1: Regulator ON. Removed STM32F205xx in Section 3.28: Universal serial bus on-thego full-speed (OTG_FS). Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 173/178 STM32F20xxx Revision history 177 24-Apr-2012 9 (continued) Removed support of I2C for OTG PHY in Section 3.29: Universal serial bus on-the-go high-speed (OTG_HS). Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 8: STM32F20x pin and ball definitions and Table 10: Alternate function mapping. Renamed PH10 alternate function into TIM5_CH1 in Table 10: Alternate function mapping. Added Table 9: FSMC pin definition. Updated Note 2 in Table 14: General operating conditions, Note 2 in Table 15: Limitations depending on the operating power supply range, and Note 1 below Figure 21: Number of wait states versus fCPU and VDD range. Updated VPOR/PDR in Table 19: Embedded reset and power control block characteristics. Updated typical values in Table 24: Typical and maximum current consumptions in Standby mode and Table 25: Typical and maximum current consumptions in VBAT mode. Updated Table 30: HSE 4-26 MHz oscillator characteristics and Table 31: LSE oscillator characteristics (fLSE = 32.768 kHz). Updated Table 37: Flash memory characteristics, Table 38: Flash memory programming, and Table 39: Flash memory programming with VPP. Updated Section : Output driving current. Updated Note 3 and removed note related to minimum hold time value in Table 52: I2C characteristics. Updated Table 64: Dynamics characteristics: Ethernet MAC signals for RMII. Updated Note 1, CADC, IVREF+, and IVDDA in Table 66: ADC characteristics. Updated Note 3 and note concerning ADC accuracy vs. negative injection current in Table 67: ADC accuracy. Updated Note 1 in Table 68: DAC characteristics. Updated Section Figure 85.: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. Appendix A.1: Main applications versus package: removed number of address lines for FSMC/NAND in Table 101: Main applications versus package for STM32F2xxx microcontrollers. Appendix A.4: Ethernet interface solutions: updated Figure 92: Complete audio player solution 1 and Figure 93: Complete audio player solution 2. Table 95. Document revision history (continued) Date Revision Changes Revision history STM32F20xxx 174/178 DocID15818 Rev 11 29-Oct-2012 10 Changed minimum supply voltage from 1.65 to 1.8 V. Updated number of AHB buses in Section 2: Description and Section 3.12: Clocks and startup. Removed Figure 4. Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package. Updated Note 2 below Figure 4: STM32F20x block diagram. Changed System memory to System memory + OTP in Figure 16: Memory map. Added Note 1 below Table 16: VCAP1/VCAP2 operating conditions. Updated VDDA and VREF+ decouping capacitor in Figure 19: Power supply scheme and updated Note 3. Changed simplex mode into half-duplex mode in Section 3.24: Interintegrated sound (I2S). Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into TIM2_CH1_ETR for PA0 and PA5 in Table 10: Alternate function mapping. Updated note applying to IDD (external clock and all peripheral disabled) in Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled). Updated Note 3 below Table 22: Typical and maximum current consumption in Sleep mode. Removed fHSE_ext typical value in Table 28: High-speed external user clock characteristics. Updated master I2S clock jitter conditions and vlaues in Table 35: PLLI2S (audio PLL) characteristics. Updated equations in Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Swapped TTL and CMOS port conditions for VOL and VOH in Table 47: Output voltage characteristics. Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin characteristics. Updated Table 54: SPI characteristics and Table 55: I2S characteristics. Removed note 1 related to measurement points below Figure 42: SPI timing diagram - slave mode and CPHA = 1, Figure 43: SPI timing diagram - master mode, and Figure 44: I2S slave timing diagram (Philips protocol)(1). Updated tHC in Table 61: ULPI timing. Updated Figure 48: Ethernet SMI timing diagram, Table 63: Dynamics characteristics: Ethernet MAC signals for SMI and Table 65: Dynamics characteristics: Ethernet MAC signals for MII. Update fTRIG in Table 66: ADC characteristics. Updated IDDA description in Table 68: DAC characteristics. Updated note below Figure 53: Power supply and reference decoupling (VREF+ not connected to VDDA) and Figure 54: Power supply and reference decoupling (VREF+ connected to VDDA). Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 175/178 STM32F20xxx Revision history 177 29-Oct-2012 10 (continued) Replaced td(CLKL-NOEL) by td(CLKH-NOEL) in Table 76: Synchronous multiplexed NOR/PSRAM read timings, Table 78: Synchronous nonmultiplexed NOR/PSRAM read timings, Figure 60: Synchronous multiplexed NOR/PSRAM read timings and Figure 62: Synchronous non-multiplexed NOR/PSRAM read timings. Added Figure 84: LQFP176 recommended footprint. Added Note 2 below Figure 86: Regulator OFF/internal reset ON. Updated device subfamily in Table 94: Ordering information scheme. Remove reference to note 2 for USB IOTG FS in Table 101: Main applications versus package for STM32F2xxx microcontrollers. Table 95. Document revision history (continued) Date Revision Changes Revision history STM32F20xxx 176/178 DocID15818 Rev 11 04-Nov-2013 11 In the whole document, updated notes related to WLCSP64+2 usage with IRROFF set to VDD. Updated Section 3.14: Power supply schemes, Section 3.15: Power supply supervisor, Section 3.16.1: Regulator ON and Section 3.16.2: Regulator OFF. Added Section 3.16.3: Regulator ON/OFF and internal reset ON/OFF availability. Added note related to WLCSP64+2 package. Restructured RTC features and added reference clock detection in Section 3.17: Real-time clock (RTC), backup SRAM and backup registers. Added note indicating the package view below Figure 10: STM32F20x LQFP64 pinout, Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, and Figure 14: STM32F20x LQFP176 pinout. Added Table 7: Legend/abbreviations used in the pinout table. Table 8: STM32F20x pin and ball definitions: content reformatted; removed indeces on VSS and VDD; updated PA4, PA5, PA6, PC4, BOOT0; replaced DCMI_12 by DCMI_D12, TIM8_CHIN by TIM8_CH1N, ETH_MII_RX_D0 by ETH_MII_RXD0, ETH_MII_RX_D1 by ETH_MII_RXD1, ETH_RMII_RX_D0 by ETH_RMII_RXD0, ETH_RMII_RX_D1 by ETH_RMII_RXD1, and RMII_CRS_DV by ETH_RMII_CRS_DV. Table 10: Alternate function mapping: replaced FSMC_BLN1 by FSMC_NBL1, added EVENTOUT as AF15 alternated fucntion for PC13, PC14, PC15, PH0, PH1, and PI8. Updated Figure 17: Pin loading conditions and Figure 18: Pin input voltage. Added VIN in Table 14: General operating conditions. Removed note applying to VPOR/PDR minimum value in Table 19: Embedded reset and power control block characteristics. Updated notes related to CL1 and CL2 in Section : Low-speed external clock generated from a crystal/ceramic resonator. Updated conditions in Table 41: EMS characteristics. Updated Table 42: EMI characteristics. Updated VIL, VIH and VHys in Table 46: I/O static characteristics. Added Figure : Output driving current and updated Figure 38: I/O AC characteristics definition. Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin characteristics, updated Figure 38: I/O AC characteristics definition. Removed tests conditions in Section : I2C interface characteristics. Updated Table 52: I2C characteristics and Figure 40: I2C bus AC waveforms and measurement circuit. Updated IVREF+ and IVDDA in Table 66: ADC characteristics. Updated Offset comments in Table 68: DAC characteristics. Updated minimum th(CLKH-DV) value in Table 78: Synchronous nonmultiplexed NOR/PSRAM read timings. Table 95. Document revision history (continued) Date Revision Changes DocID15818 Rev 11 177/178 STM32F20xxx Revision history 177 04-Nov-2013 11 (continued) Removed Appendix A Application block diagrams. Updated Figure 76: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin lowprofile quad flat package mechanical data. Updated Figure 79: LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline, Figure 81: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline, Figure 83: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Updated Figure 85: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Figure 85: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. Table 95. Document revision history (continued) Date Revision Changes STM32F20xxx 178/178 DocID15818 Rev 11 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com STM32F405xx STM32F407xx ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Datasheet - production data Features • Core: ARM 32-bit Cortex™-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – Up to 1 Mbyte of Flash memory – Up to 192+4 Kbytes of SRAM including 64- Kbyte of CCM (core coupled memory) data RAM – Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.8 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1% accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM • 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode • 2×12-bit D/A converters • General-purpose DMA: 16-stream DMA controller with FIFOs and burst support • Up to 17 timers: up to twelve 16-bit and two 32- bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input • Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex-M4 Embedded Trace Macrocell™ • Up to 140 I/O ports with interrupt capability – Up to 136 fast I/Os up to 84 MHz – Up to 138 5 V-tolerant I/Os • Up to 15 communication interfaces – Up to 3 × I2C interfaces (SMBus/PMBus) – Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control) – Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock – 2 × CAN interfaces (2.0B Active) – SDIO interface • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII • 8- to 14-bit parallel camera interface up to 54 Mbytes/s • True random number generator • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) FBGA UFBGA176 (10 × 10 mm) LQFP176 (24 × 24 mm) WLCSP90 Table 1. Device summary Reference Part number STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG, STM32F405OG, STM32F405OE STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE www.st.com Contents STM32F405xx, STM32F407xx 2/185 DocID022152 Rev 4 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19 2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20 2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22 2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28 2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 28 2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 33 2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35 2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID022152 Rev 4 3/185 STM32F405xx, STM32F407xx Contents 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36 2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.35 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.37 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.38 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.39 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 80 5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 80 5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 80 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 102 Contents STM32F405xx, STM32F407xx 4/185 DocID022152 Rev 4 5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 108 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 155 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 156 5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 171 A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 173 A.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 DocID022152 Rev 4 5/185 STM32F405xx, STM32F407xx List of tables List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13 Table 3. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 7. STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 8. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 10. STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 79 Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 80 Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80 Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 83 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 88 Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 89 Table 26. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 27. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 31. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 33. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 35. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 36. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 37. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 38. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 39. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 40. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 41. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 42. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 43. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 44. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 45. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 46. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 List of tables STM32F405xx, STM32F407xx 6/185 DocID022152 Rev 4 Table 47. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 48. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 49. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 50. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 51. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 52. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 53. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 55. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 56. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Table 57. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 58. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 59. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 60. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 61. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 62. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 63. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 64. Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 65. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 66. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 70. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 71. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 72. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 73. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 74. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 138 Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 139 Table 77. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 78. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 79. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Table 80. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 81. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Table 82. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 85. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 86. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 87. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 88. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 89. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 159 Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 160 Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 162 Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 164 Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 167 DocID022152 Rev 4 7/185 STM32F405xx, STM32F407xx List of tables Table 96. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 97. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 98. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 List of figures STM32F405xx, STM32F407xx 8/185 DocID022152 Rev 4 List of figures Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64. . . . . . . . . . . . 15 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. STM32F40x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24 Figure 8. PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 9. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28 Figure 12. STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 13. STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 14. STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 15. STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 16. STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 17. STM32F40x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 18. STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 85 Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 85 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 86 Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 86 Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 89 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 90 Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 34. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 39. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID022152 Rev 4 9/185 STM32F405xx, STM32F407xx List of figures Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 44. I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 124 Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 133 Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 133 Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 138 Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 139 Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 140 Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 148 Figure 64. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 148 Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 150 Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 151 Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 154 Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154 Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 75. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 159 Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 160 Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 162 Figure 80. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 164 Figure 82. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 167 Figure 85. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 86. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 87. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 171 List of figures STM32F405xx, STM32F407xx 10/185 DocID022152 Rev 4 Figure 88. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 172 Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Figure 90. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 91. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 92. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 DocID022152 Rev 4 11/185 STM32F405xx, STM32F407xx Introduction 1 Introduction This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family. The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming manual (PM0214) available from www.st.com. Description STM32F405xx, STM32F407xx 12/185 DocID022152 Rev 4 2 Description The STM32F405xx and STM32F407xx family is based on the high-performance ARM® Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document. The STM32F405xx and STM32F407xx family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true random number generator (RNG). They also feature standard and advanced communication interfaces. • Up to three I2Cs • Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. • Four USARTs plus two UARTs • An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), • Two CANs • An SDIO/MMC interface • Ethernet and the camera interface available on STM32F407xx devices only. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and peripheral counts for the list of peripherals available on each part number. The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F405xx and STM32F407xx family offers devices in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F405xx and STM32F407xx microcontroller family suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances STM32F405xx, STM32F407xx Description DocID022152 Rev 4 13/185 Figure 5 shows the general block diagram of the device family. Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix Flash memory in Kbytes 1024 512 512 1024 512 1024 512 1024 SRAM in Kbytes System 192(112+16+64) Backup 4 FSMC memory controller No Yes(1) Ethernet No Yes Timers Generalpurpose 10 Advanced -control 2 Basic 2 IWDG Yes WWDG Yes RTC Yes Random number generator Yes Description STM32F405xx, STM32F407xx 14/185 DocID022152 Rev 4 Communi cation interfaces SPI / I2S 3/2 (full duplex)(2) I2C 3 USART/ UART 4/2 USB OTG FS Yes USB OTG HS Yes CAN 2 SDIO Yes Camera interface No Yes GPIOs 51 72 82 114 72 82 114 140 12-bit ADC Number of channels 3 16 13 16 24 13 16 24 24 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 168 MHz Operating voltage 1.8 to 3.6 V(3) Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to + 125 °C Package LQFP64 WLCSP90 LQFP100 LQFP144 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix DocID022152 Rev 4 15/185 STM32F405xx, STM32F407xx Description 2.1 Full compatibility throughout the family The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto- pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle. The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F405xx and STM32F407xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x family remains simple as only a few pins are impacted. Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the STM32F40x, STM32F2xxx, and STM32F10xxx families. Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64 31 1 16 17 32 48 33 64 49 47 VSS VSS VSS VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration ai18489 Description STM32F405xx, STM32F407xx 16/185 DocID022152 Rev 4 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package 20 49 1 25 26 50 75 51 100 76 73 19 VSS VSS VDD VSS VSS VSS 0 ΩΩ resistor or soldering bridge present for the STM32F10xxx configuration, not present in the STM32F4xx configuration ai18488c 99 (VSS) VDD VSS Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VSS for the STM32F4xx VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx ai18487d 31 71 1 36 37 72 108 73 144 109 VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration 106 VSS 30 Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VDD or signal from external power supply supervisor for the STM32F4xx VDD VSS VSS VSS 143 (PDR_ON) VDD VSS VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx Signal from external power supply supervisor DocID022152 Rev 4 17/185 STM32F405xx, STM32F407xx Description Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages MS19919V3 1 44 45 88 132 89 176 133 Two 0 Ω resistors connected to: - VSS, VDD or NC for the STM32F2xx - VDD or signal from external power supply supervisor for the STM32F4xx 171 (PDR_ON) VDDVSS Signal from external power supply supervisor Description STM32F405xx, STM32F407xx 18/185 DocID022152 Rev 4 2.2 Device overview Figure 5. STM32F40x block diagram 1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration in the RCC_DCKCFGR register. 2. The camera interface and ethernet are available only on STM32F407xx devices. MS19920V3 GPIO PORT A AHB/APB2 140 AF PA[15:0] TIM1 / PWM 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF RX, TX, CK, CTS, RTS as AF MOSI, MISO, SCK, NSS as AF APB 1 30M Hz 8 analog inputs common to the 3 ADCs VDDREF_ADC MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX DAC1_OUT as AF ITF WWDG 4 KB BKPSRAM RTC_AF1 OSC32_IN OSC32_OUT VDDA, VSSA NRST 16b SDIO / MMC D[7:0] CMD, CK as AF VBAT = 1.65 to 3.6 V DMA2 SCL, SDA, SMBA as AF JTAG & SW ARM Cortex-M4 168 MHz ETM NVIC MPU TRACECLK TRACED[3:0] Ethernet MAC 10/100 DMA/ FIFO MII or RMII as AF MDIO as AF USB OTG HS DP, DM ULPI:CK, D[7:0], DIR, STP, NXT ID, VBUS, SOF DMA2 8 Streams FIFO ART ACCEL/ CACHE SRAM 112 KB CLK, NE [3:0], A[23:0], D[31:0], OEN, WEN, NBL[3:0], NL, NREG, NWAIT/IORDY, CD INTN, NIIS16 as AF RNG Camera interface HSYNC, VSYNC PUIXCLK, D[13:0] PHY USB OTG FS DP DM ID, VBUS, SOF FIFO AHB1 168 MHz PHY FIFO @VDDA @VDDA POR/PDR BOR Supply supervision @VDDA PVD Int POR reset XTAL 32 kHz MAN AGT RTC RC HS FCLK RC LS PWR interface IWDG @VBAT AWU Reset & clock control P L L1&2 PCLKx VDD = 1.8 to 3.6 V VSS VCAP1, VCPA2 Voltage regulator 3.3 to 1.2 V VDD Power managmt Backup register RTC_AF1 AHB bus-matrix 8S7M LS 2 channels as AF DAC1 DAC2 Flash up to 1 MB SRAM, PSRAM, NOR Flash, PC Card (ATA), NAND Flash External memory controller (FSMC) TIM6 TIM7 TIM2 TIM3 TIM4 TIM5 TIM12 TIM13 TIM14 USART2 USART3 UART4 UART5 SP3/I2S3 I2C1/SMBUS I2C2/SMBUS I2C3/SMBUS bxCAN1 bxCAN2 SPI1 EXT IT. WKUP D-BUS FIFO FPU APB142 MHz (max) SRAM 16 KB CCM data RAM 64 KB AHB3 AHB2 168 MHz NJTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO I-BUS S-BUS DMA/ FIFO DMA1 8 Streams FIFO PB[15:0] PC[15:0] PD[15:0] PE[15:0] PF[15:0] PG[15:0] PH[15:0] PI[11:0] GPIO PORT B GPIO PORT C GPIO PORT D GPIO PORT E GPIO PORT F GPIO PORT G GPIO PORT H GPIO PORT I TIM8 / PWM 16b 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF 1 channel as AF 1 channel as AF RX, TX, CK, CTS, RTS as AF 8 analog inputs common to the ADC1 & 2 8 analog inputs for ADC3 DAC2_OUT as AF 16b 16b SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX RX, TX as AF RX, TX as AF RX, TX as AF CTS, RTS as AF RX, TX as AF CTS, RTS as AF 1 channel as AF smcard irDA smcard irDA 16b 16b 16b 1 channel as AF 2 channels as AF 32b 16b 16b 32b 4 channels 4 channels, ETR as AF 4 channels, ETR as AF 4 channels, ETR as AF DMA1 AHB/APB1 LS OSC_IN OSC_OUT HCLKx XTAL OSC 4- 16MHz FIFO SP2/I2S2 NIORD, IOWR, INT[2:3] ADC3 ADC2 ADC1 Temperature sensor IF TIM9 16b TIM10 16b TIM11 16b smcard irDA USART1 irDA smcard USART6 APB2 84 MHz @VDD @VDD @VDDA DocID022152 Rev 4 19/185 STM32F405xx, STM32F407xx Description 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software. Figure 5 shows the general block diagram of the STM32F40x family. Note: Cortex-M4F is binary compatible with Cortex-M3. 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4F processors. It balances the inherent performance advantage of the ARM Cortex-M4F over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz. 2.2.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.2.4 Embedded Flash memory The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data. Description STM32F405xx, STM32F407xx 20/185 DocID022152 Rev 4 2.2.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 2.2.6 Embedded SRAM All STM32F40x products embed: • Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. • 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 2.2.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. DocID022152 Rev 4 21/185 STM32F405xx, STM32F407xx Description Figure 6. Multi-AHB matrix 2.2.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • DAC • SDIO • Camera interface (DCMI) • ADC. ARM Cortex-M4 GP DMA1 GP DMA2 MAC Ethernet USB OTG HS Bus matrix-S S0 S1 S2 S3 S4 S5 S6 S7 ICODE DCODE ACCEL Flash memory SRAM1 112 Kbyte SRAM2 16 Kbyte AHB1 peripherals AHB2 FSMC Static MemCtl M0 M1 M2 M3 M4 M5 M6 I-bus D-bus S-bus DMA_PI DMA_MEM1 DMA_MEM2 DMA_P2 ETHERNET_M USB_HS_M ai18490c CCM data RAM 64-Kbyte APB1 APB2 peripherals Description STM32F405xx, STM32F407xx 22/185 DocID022152 Rev 4 2.2.9 Flexible static memory controller (FSMC) The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash. Functionality overview: • Write FIFO • Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 2.2.10 Nested vectored interrupt controller (NVIC) The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M4F. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 2.2.11 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines. 2.2.12 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL DocID022152 Rev 4 23/185 STM32F405xx, STM32F407xx Description clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 2.2.13 Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade). 2.2.14 Power supply schemes • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 21: Power supply scheme for more details. Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Refer to Table 2 in order to identify the packages supporting this option. 2.2.15 Power supply supervisor Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On all other packages, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. Description STM32F405xx, STM32F407xx 24/185 DocID022152 Rev 4 The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. Figure 7. Power supply supervisor interconnection with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. The VDD specified threshold, below which the device must be maintained under reset, is 1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled • The brownout reset (BOR) circuitry is disabled • The embedded programmable voltage detector (PVD) is disabled • VBAT functionality is no more available and VBAT pin should be connected to VDD All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset through the PDR_ON signal. MS31383V3 NRST VDD PDR_ON External VDD power supply supervisor Ext. reset controller active when VDD < 1.7 V or 1.8 V (1) VDD Application reset signal (optional) DocID022152 Rev 4 25/185 STM32F405xx, STM32F407xx Description Figure 8. PDR_ON and NRST control with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. 2.2.16 Voltage regulator The regulator has four operating modes: • Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down • Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to Table 14: General operating conditions. • LPR is used in the Stop modes The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost) MS19009V6 VDD time PDR = 1.7 V or 1.8 V (1) time NRST PDR_ON PDR_ON Reset by other source than power supply supervisor Description STM32F405xx, STM32F407xx 26/185 DocID022152 Rev 4 Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions. All packages have regulator ON feature. Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not manage internally, the external voltage value must be aligned with the targetted maximum frequency. Refer to Table 14: General operating conditions. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to Figure 21: Power supply scheme When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode the following features are no more supported: • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. Figure 9. Regulator OFF ai18498V4 External VCAP_1/2 power supply supervisor Ext. reset controller active when VCAP_1/2 < Min V12 V12 VCAP_1 VCAP_2 BYPASS_REG VDD PA0 NRST Application reset signal (optional) VDD V12 DocID022152 Rev 4 27/185 STM32F405xx, STM32F407xx Description The following conditions must be respected: • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. • If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10). • Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see Figure 11). • If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then a reset must be asserted on PA0 pin. Note: The minimum value of V12 depends on the maximum frequency targeted in the application (see Table 14: General operating conditions). Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or OFFoff). 2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges. ai18491e VDD time Min V12 PDR = 1.7 V or 1.8 V (2) VCAP_1/VCAP_2 V12 NRST time Description STM32F405xx, STM32F407xx 28/185 DocID022152 Rev 4 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or offOFF). 2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges. 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability 2.2.18 Real-time clock (RTC), backup SRAM and backup registers The backup domain of the STM32F405xx and STM32F407xx includes: • The real-time clock (RTC) • 4 Kbytes of backup SRAM • 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC VDD time Min V12 VCAP_1/VCAP_2 V12 PA0 asserted externally NRST time ai18492d PDR = 1.7 V or 1.8 V (2) Table 3. Regulator ON/OFF and internal reset ON/OFF availability Regulator ON Regulator OFF Internal reset ON Internal reset OFF LQFP64 LQFP100 Yes No Yes No LQFP144 LQFP176 Yes PDR_ON set to VDD Yes PDR_ON connected to an external power supply supervisor WLCSP90 UFBGA176 Yes BYPASS_REG set to VSS Yes BYPASS_REG set to VDD DocID022152 Rev 4 29/185 STM32F405xx, STM32F407xx Description has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 μs to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 2.2.19 Low-power modes The STM32F405xx and STM32F407xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup). • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V12 domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Description STM32F405xx, STM32F407xx 30/185 DocID022152 Rev 4 Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. The standby mode is not supported when the embedded voltage regulator is bypassed and the V12 domain is controlled by an external power. 2.2.20 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 2.2.21 Timers and watchdogs The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. Timer feature comparison Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Advanced -control TIM1, TIM8 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 Yes 84 168 DocID022152 Rev 4 31/185 STM32F405xx, STM32F407xx Description Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge- or center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. General purpose TIM2, TIM5 32-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM3, TIM4 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 84 168 TIM10 , TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 84 168 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 42 84 TIM13 , TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 42 84 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 42 84 Table 4. Timer feature comparison (continued) Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Description STM32F405xx, STM32F407xx 32/185 DocID022152 Rev 4 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F40x devices (see Table 4 for differences). • TIM2, TIM3, TIM4, TIM5 The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16- bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. DocID022152 Rev 4 33/185 STM32F405xx, STM32F407xx Description SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. 2.2.22 Inter-integrated circuit interface (I²C) Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 Mbit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Description STM32F405xx, STM32F407xx 34/185 DocID022152 Rev 4 2.2.24 Serial peripheral interface (SPI) The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 2.2.25 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 2.2.26 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. Table 5. USART feature comparison USART name Standard features Modem (RTS/ CTS) LIN SPI master irDA Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversampling by 16) Max. baud rate in Mbit/s (oversampling by 8) APB mapping USART1 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) USART2 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) USART3 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) UART4 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) UART5 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) USART6 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) DocID022152 Rev 4 35/185 STM32F405xx, STM32F407xx Description The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output). 2.2.27 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support Peripheral available only on the STM32F407xx devices. The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the STM32F407xx. The STM32F407xx includes the following features: • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F40x reference manual for details) • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time Description STM32F405xx, STM32F407xx 36/185 DocID022152 Rev 4 2.2.29 Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 4 bidirectional endpoints • 8 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 6 bidirectional endpoints • 12 host channels with periodic OUT support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • for OTG/Host modes, a power switch is needed in case bus-powered devices are connected DocID022152 Rev 4 37/185 STM32F405xx, STM32F407xx Description 2.2.32 Digital camera interface (DCMI) The camera interface is not available in STM32F405xx devices. STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image 2.2.33 Random number generator (RNG) All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 2.2.34 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 84 MHz. 2.2.35 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 2.2.36 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally Description STM32F405xx, STM32F407xx 38/185 DocID022152 Rev 4 connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 2.2.37 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 2.2.38 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.2.39 Embedded Trace Macrocell™ The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F40x through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. DocID022152 Rev 4 39/185 STM32F405xx, STM32F407xx Pinouts and pin description 3 Pinouts and pin description Figure 12. STM32F40x LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VBAT PC14 PC15 NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0_WKUP PA1 PA2 VDD PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 VDD VCAP_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VCAP_1 VDD LQFP64 ai18493b PC13 PH0 PH1 VSS Pinouts and pin description STM32F405xx, STM32F407xx 40/185 DocID022152 Rev 4 Figure 13. STM32F40x LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 PE3 PE4 PE5 PE6 VBAT PC14 PC15 VSS VDD PH0 NRST PC0 PC1 PC2 PC3 VDD VSSA VREF+ VDDA PA0 PA1 PA2 VDD VSS VCAP_2 PA13 PA12 PA 11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD VDD VSS PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ai18495c LQFP100 PC13 PH1 DocID022152 Rev 4 41/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 14. STM32F40x LQFP144 pinout VDD PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PE2 VDD PE3 VSS PE4 PE5 PA13 PE6 PA12 VBAT PA11 PC13 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 VDD PF5 VSS VSS PG8 VDD PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST VDD PC0 VSS PC1 PD13 PC2 PD12 PC3 PD11 VSSA VDD PD10 PD9 VREF+ PD8 VDDA PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 109 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 LQFP144 120 119 118 117 116 115 114 113 112 111 110 61 62 63 64 65 66 67 68 69 70 71 26 27 28 29 30 31 32 33 34 35 36 83 82 81 80 79 78 77 76 75 74 73 ai18496b VCAP_2 VSS Pinouts and pin description STM32F405xx, STM32F407xx 42/185 DocID022152 Rev 4 Figure 15. STM32F40x LQFP176 pinout MS19916V3 PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PI7 PI6 PE2 PE3 PE4 PE5 PA13 PE6 PA12 VBAT PA11 PI8 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 PF5 PG8 PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST V PC0 V PC1 PD13 PC2 PD12 PC3 PD11 PD10 PD9 VREF+ PD8 PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 141 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 80 LQFP176 152 151 150 149 148 147 146 145 144 143 142 69 70 71 72 73 74 75 76 77 78 79 26 27 28 29 30 31 32 33 34 35 36 107 106 105 104 103 102 101 100 99 98 89 PI4 PA15 PA14 PI3 PI2 PI5 140 139 138 137 136 135 134 133 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 88 81 82 83 84 85 86 87 PI1 PI0 PH15 PH14 PH13 PH12 96 95 94 93 92 91 90 97 37 38 39 40 41 42 43 44 PC13 PI9 PI10 PI11 VSS PH2 PH3 VDD VSS VDD VDDA VSSA VDDA BYPASS_REG VDD VDD VSS VDD VCAP_1 VDD VSS VDD VCAP_2 VSS VDD VSS VDD VSS VDD VSS VDD VDD VSS VDD VSS VDD DocID022152 Rev 4 43/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 16. STM32F40x UFBGA176 ballout 1. This figure shows the package top view. ai18497b 1 2 3 9 10 11 12 13 14 15 A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13 B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12 C VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11 D PC13 PI8 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10 E PC14 PF0 PI10 PI11 PH13 PH14 PI0 PA9 F PC15 VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8 G PH0 VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7 H PH1 PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6 J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6 K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3 L PF10 PF9 PF8 BYPASS_ REG PH11 PH10 PD15 PG2 M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13 N VREF- PA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10 P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8 R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15 VSS 4 5 6 7 8 Pinouts and pin description STM32F405xx, STM32F407xx 44/185 DocID022152 Rev 4 Figure 17. STM32F40x WLCSP90 ballout 1. This figure shows the package bump view. A VBAT PC13 PDR_ON PB4 PD7 PD4 PC12 B PC15 VDD PB7 PB3 PD6 PD2 PA15 C PA0 VSS PB6 PD5 PD1 PC11 PI0 D PC2 PB8 PA13 E PC3 VSS F PH1 PA1 G NRST H VSSA J PA2 PA 4 PA7 PB2 PE11 PB11 PB12 MS30402V1 1 PA14 PI1 PA12 PA10 PA9 PC0 PC9 PC8 PH0 PB13 PC6 PD14 PD12 PE8 PE12 BYPASS_ REG PD9 PD8 PE9 PB14 10 9 8 7 6 5 4 3 2 VDD PC14 VCAP_2 PA11 PB5 PD0 PC10 PA8 VSS VDD VSS VDD PC7 VDD PE10 PE14 VCAP_1 PD15 PE13 PE15 PD10 PD11 PA3 PA6 PB1 PB10 PB15 PB9 BOOT0 VDDA PA5 PB0 PE7 Table 6. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin I/O structure FT 5 V tolerant I/O TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID022152 Rev 4 45/185 STM32F405xx, STM32F407xx Pinouts and pin description Table 7. STM32F40x pin and ball definitions Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 - - 1 1 A2 1 PE2 I/O FT TRACECLK/ FSMC_A23 / ETH_MII_TXD3 / EVENTOUT - - 2 2 A1 2 PE3 I/O FT TRACED0/FSMC_A19 / EVENTOUT - - 3 3 B1 3 PE4 I/O FT TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT - - 4 4 B2 4 PE5 I/O FT TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 / EVENTOUT - - 5 5 B3 5 PE6 I/O FT TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 / EVENTOUT 1 A10 6 6 C1 6 VBAT S - - - - D2 7 PI8 I/O FT (2)( 3) EVENTOUT RTC_TAMP1, RTC_TAMP2, RTC_TS 2 A9 7 7 D1 8 PC13 I/O FT (2) (3) EVENTOUT RTC_OUT, RTC_TAMP1, RTC_TS 3 B10 8 8 E1 9 PC14/OSC32_IN (PC14) I/O FT (2)( 3) EVENTOUT OSC32_IN(4) 4 B9 9 9 F1 10 PC15/ OSC32_OUT (PC15) I/O FT (2)( 3) EVENTOUT OSC32_OUT(4) - - - - D3 11 PI9 I/O FT CAN1_RX / EVENTOUT - - - - E3 12 PI10 I/O FT ETH_MII_RX_ER / EVENTOUT - - - - E4 13 PI11 I/O FT OTG_HS_ULPI_DIR / EVENTOUT - - - - F2 14 VSS S - - - - F3 15 VDD S - - - 10 E2 16 PF0 I/O FT FSMC_A0 / I2C2_SDA / EVENTOUT Pinouts and pin description STM32F405xx, STM32F407xx 46/185 DocID022152 Rev 4 - - - 11 H3 17 PF1 I/O FT FSMC_A1 / I2C2_SCL / EVENTOUT - - - 12 H2 18 PF2 I/O FT FSMC_A2 / I2C2_SMBA / EVENTOUT - - - 13 J2 19 PF3 I/O FT (4) FSMC_A3/EVENTOUT ADC3_IN9 - - - 14 J3 20 PF4 I/O FT (4) FSMC_A4/EVENTOUT ADC3_IN14 - - - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15 - C9 10 16 G2 22 VSS S - B8 11 17 G3 23 VDD S - - - 18 K2 24 PF6 I/O FT (4) TIM10_CH1 / FSMC_NIORD/ EVENTOUT ADC3_IN4 - - - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG / EVENTOUT ADC3_IN5 - - - 20 L3 26 PF8 I/O FT (4) TIM13_CH1 / FSMC_NIOWR/ EVENTOUT ADC3_IN6 - - - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/ EVENTOUT ADC3_IN7 - - - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8 5 F10 12 23 G1 29 PH0/OSC_IN (PH0) I/O FT EVENTOUT OSC_IN(4) 6 F9 13 24 H1 30 PH1/OSC_OUT (PH1) I/O FT EVENTOUT OSC_OUT(4) 7 G10 14 25 J1 31 NRST I/O RS T 8 E10 15 26 M2 32 PC0 I/O FT (4) OTG_HS_ULPI_STP/ EVENTOUT ADC123_IN10 9 - 16 27 M3 33 PC1 I/O FT (4) ETH_MDC/ EVENTOUT ADC123_IN11 10 D10 17 28 M4 34 PC2 I/O FT (4) SPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2 /I2S2ext_SD/ EVENTOUT ADC123_IN12 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 47/185 STM32F405xx, STM32F407xx Pinouts and pin description 11 E9 18 29 M5 35 PC3 I/O FT (4) SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK/ EVENTOUT ADC123_IN13 - - 19 30 G3 36 VDD S 12 H10 20 31 M1 37 VSSA S - - - - N1 - VREF– S - - 21 32 P1 38 VREF+ S 13 G9 22 33 R1 39 VDDA S 14 C10 23 34 N3 40 PA0/WKUP (PA0) I/O FT (5) USART2_CTS/ UART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR/ EVENTOUT ADC123_IN0/WKUP(4 ) 15 F8 24 35 N2 41 PA1 I/O FT (4) USART2_RTS / UART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2/ EVENTOUT ADC123_IN1 16 J10 25 36 P2 42 PA2 I/O FT (4) USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ EVENTOUT ADC123_IN2 - - - - F4 43 PH2 I/O FT ETH_MII_CRS/EVENTOU T - - - - G4 44 PH3 I/O FT ETH_MII_COL/EVENTOU T - - - - H4 45 PH4 I/O FT I2C2_SCL / OTG_HS_ULPI_NXT/ EVENTOUT - - - - J4 46 PH5 I/O FT I2C2_SDA/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 48/185 DocID022152 Rev 4 17 H9 26 37 R2 47 PA3 I/O FT (4) USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 / OTG_HS_ULPI_D0 / ETH_MII_COL/ EVENTOUT ADC123_IN3 18 E5 27 38 - - VSS S D9 L4 48 BYPASS_REG I FT 19 E4 28 39 K4 49 VDD S 20 J9 29 40 N4 50 PA4 I/O TTa (4) SPI1_NSS / SPI3_NSS / USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS/ EVENTOUT ADC12_IN4 /DAC_OUT1 21 G8 30 41 P4 51 PA5 I/O TTa (4) SPI1_SCK/ OTG_HS_ULPI_CK / TIM2_CH1_ETR/ TIM8_CH1N/ EVENTOUT ADC12_IN5/DAC_OU T2 22 H8 31 42 P3 52 PA6 I/O FT (4) SPI1_MISO / TIM8_BKIN/TIM13_CH1 / DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN/ EVENTOUT ADC12_IN6 23 J8 32 43 R3 53 PA7 I/O FT (4) SPI1_MOSI/ TIM8_CH1N / TIM14_CH1/TIM3_CH2/ ETH_MII_RX_DV / TIM1_CH1N / ETH_RMII_CRS_DV/ EVENTOUT ADC12_IN7 24 - 33 44 N5 54 PC4 I/O FT (4) ETH_RMII_RX_D0 / ETH_MII_RX_D0/ EVENTOUT ADC12_IN14 25 - 34 45 P5 55 PC5 I/O FT (4) ETH_RMII_RX_D1 / ETH_MII_RX_D1/ EVENTOUT ADC12_IN15 26 G7 35 46 R5 56 PB0 I/O FT (4) TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/ ETH_MII_RXD2 / TIM1_CH2N/ EVENTOUT ADC12_IN8 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 49/185 STM32F405xx, STM32F407xx Pinouts and pin description 27 H7 36 47 R4 57 PB1 I/O FT (4) TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / TIM1_CH3N/ EVENTOUT ADC12_IN9 28 J7 37 48 M6 58 PB2/BOOT1 (PB2) I/O FT EVENTOUT - - - 49 R6 59 PF11 I/O FT DCMI_D12/ EVENTOUT - - - 50 P6 60 PF12 I/O FT FSMC_A6/ EVENTOUT - - - 51 M8 61 VSS S - - - 52 N8 62 VDD S - - - 53 N6 63 PF13 I/O FT FSMC_A7/ EVENTOUT - - - 54 R7 64 PF14 I/O FT FSMC_A8/ EVENTOUT - - - 55 P7 65 PF15 I/O FT FSMC_A9/ EVENTOUT - - - 56 N7 66 PG0 I/O FT FSMC_A10/ EVENTOUT - - - 57 M7 67 PG1 I/O FT FSMC_A11/ EVENTOUT - G6 38 58 R8 68 PE7 I/O FT FSMC_D4/TIM1_ETR/ EVENTOUT - H6 39 59 P8 69 PE8 I/O FT FSMC_D5/ TIM1_CH1N/ EVENTOUT - J6 40 60 P9 70 PE9 I/O FT FSMC_D6/TIM1_CH1/ EVENTOUT - - - 61 M9 71 VSS S - - - 62 N9 72 VDD S - F6 41 63 R9 73 PE10 I/O FT FSMC_D7/TIM1_CH2N/ EVENTOUT - J5 42 64 P10 74 PE11 I/O FT FSMC_D8/TIM1_CH2/ EVENTOUT - H5 43 65 R10 75 PE12 I/O FT FSMC_D9/TIM1_CH3N/ EVENTOUT - G5 44 66 N11 76 PE13 I/O FT FSMC_D10/TIM1_CH3/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 50/185 DocID022152 Rev 4 - F5 45 67 P11 77 PE14 I/O FT FSMC_D11/TIM1_CH4/ EVENTOUT - G4 46 68 R11 78 PE15 I/O FT FSMC_D12/TIM1_BKIN/ EVENTOUT 29 H4 47 69 R12 79 PB10 I/O FT SPI2_SCK / I2S2_CK / I2C2_SCL/ USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / TIM2_CH3/ EVENTOUT 30 J4 48 70 R13 80 PB11 I/O FT I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / TIM2_CH4/ EVENTOUT 31 F4 49 71 M10 81 VCAP_1 S 32 - 50 72 N10 82 VDD S - - - - M11 83 PH6 I/O FT I2C2_SMBA / TIM12_CH1 / ETH_MII_RXD2/ EVENTOUT - - - - N12 84 PH7 I/O FT I2C3_SCL / ETH_MII_RXD3/ EVENTOUT - - - - M12 85 PH8 I/O FT I2C3_SDA / DCMI_HSYNC/ EVENTOUT - - - - M13 86 PH9 I/O FT I2C3_SMBA / TIM12_CH2/ DCMI_D0/ EVENTOUT - - - - L13 87 PH10 I/O FT TIM5_CH1 / DCMI_D1/ EVENTOUT - - - - L12 88 PH11 I/O FT TIM5_CH2 / DCMI_D2/ EVENTOUT - - - - K12 89 PH12 I/O FT TIM5_CH3 / DCMI_D3/ EVENTOUT - - - - H12 90 VSS S - - - - J12 91 VDD S Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 51/185 STM32F405xx, STM32F407xx Pinouts and pin description 33 J3 51 73 P12 92 PB12 I/O FT SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID/ EVENTOUT 34 J1 52 74 P13 93 PB13 I/O FT SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ EVENTOUT OTG_HS_VBUS 35 J2 53 75 R14 94 PB14 I/O FT SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM/ USART3_RTS / TIM8_CH2N/I2S2ext_SD/ EVENTOUT 36 H1 54 76 R15 95 PB15 I/O FT SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP/ EVENTOUT RTC_REFIN - H2 55 77 P15 96 PD8 I/O FT FSMC_D13 / USART3_TX/ EVENTOUT - H3 56 78 P14 97 PD9 I/O FT FSMC_D14 / USART3_RX/ EVENTOUT - G3 57 79 N15 98 PD10 I/O FT FSMC_D15 / USART3_CK/ EVENTOUT - G1 58 80 N14 99 PD11 I/O FT FSMC_CLE / FSMC_A16/USART3_CT S/ EVENTOUT - G2 59 81 N13 100 PD12 I/O FT FSMC_ALE/ FSMC_A17/TIM4_CH1 / USART3_RTS/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 52/185 DocID022152 Rev 4 - - 60 82 M15 101 PD13 I/O FT FSMC_A18/TIM4_CH2/ EVENTOUT - - - 83 - 102 VSS S - - - 84 J13 103 VDD S - F2 61 85 M14 104 PD14 I/O FT FSMC_D0/TIM4_CH3/ EVENTOUT/ EVENTOUT - F1 62 86 L14 105 PD15 I/O FT FSMC_D1/TIM4_CH4/ EVENTOUT - - - 87 L15 106 PG2 I/O FT FSMC_A12/ EVENTOUT - - - 88 K15 107 PG3 I/O FT FSMC_A13/ EVENTOUT - - - 89 K14 108 PG4 I/O FT FSMC_A14/ EVENTOUT - - - 90 K13 109 PG5 I/O FT FSMC_A15/ EVENTOUT - - - 91 J15 110 PG6 I/O FT FSMC_INT2/ EVENTOUT - - - 92 J14 111 PG7 I/O FT FSMC_INT3 /USART6_CK/ EVENTOUT - - - 93 H14 112 PG8 I/O FT USART6_RTS / ETH_PPS_OUT/ EVENTOUT - - - 94 G12 113 VSS S - - - 95 H13 114 VDD S 37 F3 63 96 H15 115 PC6 I/O FT I2S2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1/ EVENTOUT 38 E1 64 97 G15 116 PC7 I/O FT I2S3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2/ EVENTOUT 39 E2 65 98 G14 117 PC8 I/O FT TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 53/185 STM32F405xx, STM32F407xx Pinouts and pin description 40 E3 66 99 F14 118 PC9 I/O FT I2S_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4/ EVENTOUT 41 D1 67 100 F15 119 PA8 I/O FT MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF/ EVENTOUT 42 D2 68 101 E15 120 PA9 I/O FT USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/ EVENTOUT OTG_FS_VBUS 43 D3 69 102 D15 121 PA10 I/O FT USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1/ EVENTOUT 44 C1 70 103 C15 122 PA11 I/O FT USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM/ EVENTOUT 45 C2 71 104 B15 123 PA12 I/O FT USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP/ EVENTOUT 46 D4 72 105 A15 124 PA13 (JTMS-SWDIO) I/O FT JTMS-SWDIO/ EVENTOUT 47 B1 73 106 F13 125 VCAP_2 S - E7 74 107 F12 126 VSS S 48 E6 75 108 G13 127 VDD S - - - - E12 128 PH13 I/O FT TIM8_CH1N / CAN1_TX/ EVENTOUT - - - - E13 129 PH14 I/O FT TIM8_CH2N / DCMI_D4/ EVENTOUT - - - - D13 130 PH15 I/O FT TIM8_CH3N / DCMI_D11/ EVENTOUT - C3 - - E14 131 PI0 I/O FT TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 54/185 DocID022152 Rev 4 - B2 - - D14 132 PI1 I/O FT SPI2_SCK / I2S2_CK / DCMI_D8/ EVENTOUT - - - - C14 133 PI2 I/O FT TIM8_CH4 /SPI2_MISO / DCMI_D9 / I2S2ext_SD/ EVENTOUT - - - - C13 134 PI3 I/O FT TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10/ EVENTOUT - - - - D9 135 VSS S - - - - C9 136 VDD S 49 A2 76 109 A14 137 PA14 (JTCK/SWCLK) I/O FT JTCK-SWCLK/ EVENTOUT 50 B3 77 110 A13 138 PA15 (JTDI) I/O FT JTDI/ SPI3_NSS/ I2S3_WS/TIM2_CH1_ET R / SPI1_NSS / EVENTOUT 51 D5 78 111 B14 139 PC10 I/O FT SPI3_SCK / I2S3_CK/ UART4_TX/SDIO_D2 / DCMI_D8 / USART3_TX/ EVENTOUT 52 C4 79 112 B13 140 PC11 I/O FT UART4_RX/ SPI3_MISO / SDIO_D3 / DCMI_D4/USART3_RX / I2S3ext_SD/ EVENTOUT 53 A3 80 113 A12 141 PC12 I/O FT UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI /I2S3_SD / USART3_CK/ EVENTOUT - D6 81 114 B12 142 PD0 I/O FT FSMC_D2/CAN1_RX/ EVENTOUT - C5 82 115 C12 143 PD1 I/O FT FSMC_D3 / CAN1_TX/ EVENTOUT 54 B4 83 116 D12 144 PD2 I/O FT TIM3_ETR/UART5_RX/ SDIO_CMD / DCMI_D11/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 55/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 84 117 D11 145 PD3 I/O FT FSMC_CLK/ USART2_CTS/ EVENTOUT - A4 85 118 D10 146 PD4 I/O FT FSMC_NOE/ USART2_RTS/ EVENTOUT - C6 86 119 C11 147 PD5 I/O FT FSMC_NWE/USART2_TX / EVENTOUT - - - 120 D8 148 VSS S - - - 121 C8 149 VDD S - B5 87 122 B11 150 PD6 I/O FT FSMC_NWAIT/ USART2_RX/ EVENTOUT - A5 88 123 A11 151 PD7 I/O FT USART2_CK/FSMC_NE1/ FSMC_NCE2/ EVENTOUT - - - 124 C10 152 PG9 I/O FT USART6_RX / FSMC_NE2/FSMC_NCE3 / EVENTOUT - - - 125 B10 153 PG10 I/O FT FSMC_NCE4_1/ FSMC_NE3/ EVENTOUT - - - 126 B9 154 PG11 I/O FT FSMC_NCE4_2 / ETH_MII_TX_EN/ ETH _RMII_TX_EN/ EVENTOUT - - - 127 B8 155 PG12 I/O FT FSMC_NE4 / USART6_RTS/ EVENTOUT - - - 128 A8 156 PG13 I/O FT FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ ETH_RMII_TXD0/ EVENTOUT - - - 129 A7 157 PG14 I/O FT FSMC_A25 / USART6_TX /ETH_MII_TXD1/ ETH_RMII_TXD1/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 56/185 DocID022152 Rev 4 - E8 - 130 D7 158 VSS S - F7 - 131 C7 159 VDD S - - - 132 B7 160 PG15 I/O FT USART6_CTS / DCMI_D13/ EVENTOUT 55 B6 89 133 A10 161 PB3 (JTDO/ TRACESWO) I/O FT JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCK/ EVENTOUT 56 A6 90 134 A9 162 PB4 (NJTRST) I/O FT NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO / I2S3ext_SD/ EVENTOUT 57 D7 91 135 A6 163 PB5 I/O FT I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / ETH_PPS_OUT/TIM3_CH 2 / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SD/ EVENTOUT 58 C7 92 136 B6 164 PB6 I/O FT I2C1_SCL/ TIM4_CH1 / CAN2_TX / DCMI_D5/USART1_TX/ EVENTOUT 59 B7 93 137 B5 165 PB7 I/O FT I2C1_SDA / FSMC_NL / DCMI_VSYNC / USART1_RX/ TIM4_CH2/ EVENTOUT 60 A7 94 138 D6 166 BOOT0 I B VPP 61 D8 95 139 A5 167 PB8 I/O FT TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 / ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX/ EVENTOUT 62 C8 96 140 B4 168 PB9 I/O FT SPI2_NSS/ I2S2_WS / TIM4_CH4/ TIM11_CH1/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 57/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 97 141 A4 169 PE0 I/O FT TIM4_ETR / FSMC_NBL0 / DCMI_D2/ EVENTOUT - - 98 142 A3 170 PE1 I/O FT FSMC_NBL1 / DCMI_D3/ EVENTOUT 63 - 99 - D5 - VSS S - A8 - 143 C6 171 PDR_ON I FT 64 A1 10 0 144 C5 172 VDD S - - - - D4 173 PI4 I/O FT TIM8_BKIN / DCMI_D5/ EVENTOUT - - - - C4 174 PI5 I/O FT TIM8_CH1 / DCMI_VSYNC/ EVENTOUT - - - - C3 175 PI6 I/O FT TIM8_CH2 / DCMI_D6/ EVENTOUT - - - - C2 176 PI7 I/O FT TIM8_CH3 / DCMI_D7/ EVENTOUT 1. Function availability depends on the chosen device. 2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os must not be used as a current source (e.g. to drive an LED). 3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com. 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low). Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Table 8. FSMC pin definition Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit PE2 A23 A23 Yes PE3 A19 A19 Yes Pinouts and pin description STM32F405xx, STM32F407xx 58/185 DocID022152 Rev 4 PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 A0 - - PF1 A1 A1 - - PF2 A2 A2 - - PF3 A3 A3 - - PF4 A4 A4 - - PF5 A5 A5 - - PF6 NIORD - - PF7 NREG - - PF8 NIOWR - - PF9 CD - - PF10 INTR - - PF12 A6 A6 - - PF13 A7 A7 - - PF14 A8 A8 - - PF15 A9 A9 - - PG0 A10 A10 - - PG1 A11 - - PE7 D4 D4 DA4 D4 Yes Yes PE8 D5 D5 DA5 D5 Yes Yes PE9 D6 D6 DA6 D6 Yes Yes PE10 D7 D7 DA7 D7 Yes Yes PE11 D8 D8 DA8 D8 Yes Yes PE12 D9 D9 DA9 D9 Yes Yes PE13 D10 D10 DA10 D10 Yes Yes PE14 D11 D11 DA11 D11 Yes Yes PE15 D12 D12 DA12 D12 Yes Yes PD8 D13 D13 DA13 D13 Yes Yes PD9 D14 D14 DA14 D14 Yes Yes PD10 D15 D15 DA15 D15 Yes Yes PD11 A16 A16 CLE Yes Yes Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit DocID022152 Rev 4 59/185 STM32F405xx, STM32F407xx Pinouts and pin description PD12 A17 A17 ALE Yes Yes PD13 A18 A18 Yes PD14 D0 D0 DA0 D0 Yes Yes PD15 D1 D1 DA1 D1 Yes Yes PG2 A12 - - PG3 A13 - - PG4 A14 - - PG5 A15 - - PG6 INT2 - - PG7 INT3 - - PD0 D2 D2 DA2 D2 Yes Yes PD1 D3 D3 DA3 D3 Yes Yes PD3 CLK CLK Yes PD4 NOE NOE NOE NOE Yes Yes PD5 NWE NWE NWE NWE Yes Yes PD6 NWAIT NWAIT NWAIT NWAIT Yes Yes PD7 NE1 NE1 NCE2 Yes Yes PG9 NE2 NE2 NCE3 - - PG10 NCE4_1 NE3 NE3 - - PG11 NCE4_2 - - PG12 NE4 NE4 - - PG13 A24 A24 - - PG14 A25 A25 - - PB7 NADV NADV Yes Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes 1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column. 2. Ports F and G are not available in devices delivered in 100-pin packages. Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit Pinouts and pin description STM32F405xx, STM32F407xx 60/185 DocID022152 Rev 4 Table 9. Alternate function mapping Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Port A PA0 TIM2_CH1_E TR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK ETH_RMII__REF _CLK EVENTOUT PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_ D0 ETH _MII_COL EVENTOUT PA4 SPI1_NSS SPI3_NSS I2S3_WS USART2_CK OTG_HS_SO F DCMI_HSYN C EVENTOUT PA5 TIM2_CH1_E TR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_ CK EVENTOUT PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV ETH_RMII _CRS_DV EVENTOUT PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT PA9 TIM1_CH2 I2C3_SMB A USART1_TX DCMI_D0 EVENTOUT PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT PA13 JTMSSWDIO EVENTOUT PA14 JTCKSWCLK EVENTOUT PA15 JTDI TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI3_NSS/ I2S3_WS EVENTOUT STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 61/185 Port B PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_ D1 ETH _MII_RXD2 EVENTOUT PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_ D2 ETH _MII_RXD3 EVENTOUT PB2 EVENTOUT PB3 JTDO/ TRACES WO TIM2_CH2 SPI1_SCK SPI3_SCK I2S3_CK EVENTOUT PB4 NJTRST TIM3_CH1 SPI1_MISO SPI3_MISO I2S3ext_SD EVENTOUT PB5 TIM3_CH2 I2C1_SMB A SPI1_MOSI SPI3_MOSI I2S3_SD CAN2_RX OTG_HS_ULPI_ D7 ETH _PPS_OUT DCMI_D10 EVENTOUT PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYN C EVENTOUT PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS I2S2_WS CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT PB10 TIM2_CH3 I2C2_SCL SPI2_SCK I2S2_CK USART3_TX OTG_HS_ULPI_ D3 ETH_ MII_RX_ER EVENTOUT PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_ D4 ETH _MII_TX_EN ETH _RMII_TX_EN EVENTOUT PB12 TIM1_BKIN I2C2_SMB A SPI2_NSS I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_ D5 ETH _MII_TXD0 ETH _RMII_TXD0 OTG_HS_ID EVENTOUT PB13 TIM1_CH1N SPI2_SCK I2S2_CK USART3_CTS CAN2_TX OTG_HS_ULPI_ D6 ETH _MII_TXD1 ETH _RMII_TXD1 EVENTOUT PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT PB15 RTC_ REFIN TIM1_CH3N TIM8_CH3N SPI2_MOSI I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 62/185 DocID022152 Rev 4 Port C PC0 OTG_HS_ULPI_ STP EVENTOUT PC1 ETH_MDC EVENTOUT PC2 SPI2_MISO I2S2ext_SD OTG_HS_ULPI_ DIR ETH _MII_TXD2 EVENTOUT PC3 SPI2_MOSI I2S2_SD OTG_HS_ULPI_ NXT ETH _MII_TX_CLK EVENTOUT PC4 ETH_MII_RXD0 ETH_RMII_RXD0 EVENTOUT PC5 ETH _MII_RXD1 ETH _RMII_RXD1 EVENTOUT PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN SDIO_D1 DCMI_D3 EVENTOUT PC10 SPI3_SCK/ I2S3_CK USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT PC11 I2S3ext_SD SPI3_MISO/ USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT PC12 SPI3_MOSI I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT PC13 EVENTOUT PC14 EVENTOUT PC15 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 63/185 Port D PD0 CAN1_RX FSMC_D2 EVENTOUT PD1 CAN1_TX FSMC_D3 EVENTOUT PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT PD3 USART2_CTS FSMC_CLK EVENTOUT PD4 USART2_RTS FSMC_NOE EVENTOUT PD5 USART2_TX FSMC_NWE EVENTOUT PD6 USART2_RX FSMC_NWAIT EVENTOUT PD7 USART2_CK FSMC_NE1/ FSMC_NCE2 EVENTOUT PD8 USART3_TX FSMC_D13 EVENTOUT PD9 USART3_RX FSMC_D14 EVENTOUT PD10 USART3_CK FSMC_D15 EVENTOUT PD11 USART3_CTS FSMC_A16 EVENTOUT PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT PD13 TIM4_CH2 FSMC_A18 EVENTOUT PD14 TIM4_CH3 FSMC_D0 EVENTOUT PD15 TIM4_CH4 FSMC_D1 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 64/185 DocID022152 Rev 4 Port E PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT PE1 FSMC_NBL1 DCMI_D3 EVENTOUT PE2 TRACECL K ETH _MII_TXD3 FSMC_A23 EVENTOUT PE3 TRACED0 FSMC_A19 EVENTOUT PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT PE7 TIM1_ETR FSMC_D4 EVENTOUT PE8 TIM1_CH1N FSMC_D5 EVENTOUT PE9 TIM1_CH1 FSMC_D6 EVENTOUT PE10 TIM1_CH2N FSMC_D7 EVENTOUT PE11 TIM1_CH2 FSMC_D8 EVENTOUT PE12 TIM1_CH3N FSMC_D9 EVENTOUT PE13 TIM1_CH3 FSMC_D10 EVENTOUT PE14 TIM1_CH4 FSMC_D11 EVENTOUT PE15 TIM1_BKIN FSMC_D12 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 65/185 Port F PF0 I2C2_SDA FSMC_A0 EVENTOUT PF1 I2C2_SCL FSMC_A1 EVENTOUT PF2 I2C2_ SMBA FSMC_A2 EVENTOUT PF3 FSMC_A3 EVENTOUT PF4 FSMC_A4 EVENTOUT PF5 FSMC_A5 EVENTOUT PF6 TIM10_CH1 FSMC_NIORD EVENTOUT PF7 TIM11_CH1 FSMC_NREG EVENTOUT PF8 TIM13_CH1 FSMC_ NIOWR EVENTOUT PF9 TIM14_CH1 FSMC_CD EVENTOUT PF10 FSMC_INTR EVENTOUT PF11 DCMI_D12 EVENTOUT PF12 FSMC_A6 EVENTOUT PF13 FSMC_A7 EVENTOUT PF14 FSMC_A8 EVENTOUT PF15 FSMC_A9 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 66/185 DocID022152 Rev 4 Port G PG0 FSMC_A10 EVENTOUT PG1 FSMC_A11 EVENTOUT PG2 FSMC_A12 EVENTOUT PG3 FSMC_A13 EVENTOUT PG4 FSMC_A14 EVENTOUT PG5 FSMC_A15 EVENTOUT PG6 FSMC_INT2 EVENTOUT PG7 USART6_CK FSMC_INT3 EVENTOUT PG8 USART6_ RTS ETH _PPS_OUT EVENTOUT PG9 USART6_RX FSMC_NE2/ FSMC_NCE3 EVENTOUT PG10 FSMC_ NCE4_1/ FSMC_NE3 EVENTOUT PG11 ETH _MII_TX_EN ETH _RMII_ TX_EN FSMC_NCE4_ 2 EVENTOUT PG12 USART6_ RTS FSMC_NE4 EVENTOUT PG13 UART6_CTS ETH _MII_TXD0 ETH _RMII_TXD0 FSMC_A24 EVENTOUT PG14 USART6_TX ETH _MII_TXD1 ETH _RMII_TXD1 FSMC_A25 EVENTOUT PG15 USART6_ CTS DCMI_D13 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 67/185 Port H PH0 EVENTOUT PH1 EVENTOUT PH2 ETH _MII_CRS EVENTOUT PH3 ETH _MII_COL EVENTOUT PH4 I2C2_SCL OTG_HS_ULPI_ NXT EVENTOUT PH5 I2C2_SDA EVENTOUT PH6 I2C2_SMB A TIM12_CH1 ETH _MII_RXD2 EVENTOUT PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT PH8 I2C3_SDA DCMI_HSYN C EVENTOUT PH9 I2C3_SMB A TIM12_CH2 DCMI_D0 EVENTOUT PH10 TIM5_CH1 DCMI_D1 EVENTOUT PH11 TIM5_CH2 DCMI_D2 EVENTOUT PH12 TIM5_CH3 DCMI_D3 EVENTOUT PH13 TIM8_CH1N CAN1_TX EVENTOUT PH14 TIM8_CH2N DCMI_D4 EVENTOUT PH15 TIM8_CH3N DCMI_D11 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 68/185 DocID022152 Rev 4 Port I PI0 TIM5_CH4 SPI2_NSS I2S2_WS DCMI_D13 EVENTOUT PI1 SPI2_SCK I2S2_CK DCMI_D8 EVENTOUT PI2 TIM8_CH4 SPI2_MISO I2S2ext_SD DCMI_D9 EVENTOUT PI3 TIM8_ETR SPI2_MOSI I2S2_SD DCMI_D10 EVENTOUT PI4 TIM8_BKIN DCMI_D5 EVENTOUT PI5 TIM8_CH1 DCMI_ VSYNC EVENTOUT PI6 TIM8_CH2 DCMI_D6 EVENTOUT PI7 TIM8_CH3 DCMI_D7 EVENTOUT PI8 EVENTOUT PI9 CAN1_RX EVENTOUT PI10 ETH _MII_RX_ER EVENTOUT PI11 OTG_HS_ULPI_ DIR EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI DocID022152 Rev 4 69/185 STM32F405xx, STM32F407xx Memory mapping 4 Memory mapping The memory map is shown in Figure 18. Figure 18. STM32F40x memory map 512-Mbyte block 7 Cortex-M4's internal peripherals 512-Mbyte block 6 Not used 512-Mbyte block 5 FSMC registers 512-Mbyte block 4 FSMC bank 3 & bank4 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 2 Peripherals 512-Mbyte block 1 SRAM 0x0000 0000 0x1FFF FFFF 0x2000 0000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 0x6000 0000 0x7FFF FFFF 0x8000 0000 0x9FFF FFFF 0xA000 0000 0xBFFF FFFF 0xC000 0000 0xDFFF FFFF 0xE000 0000 0xFFFF FFFF 512-Mbyte block 0 Code Flash 0x0810 0000 - 0x0FFF FFFF 0x1FFF 0000 - 0x1FFF 7A0F 0x1FFF C000 - 0x1FFF C007 0x0800 0000 - 0x080F FFFF 0x0010 0000 - 0x07FF FFFF 0x0000 0000 - 0x000F FFFF System memory + OTP Reserved Reserved Aliased to Flash, system memory or SRAM depending on the BOOT pins SRAM (16 KB aliased by bit-banding) Reserved 0x2000 0000 - 0x2001 BFFF 0x2001 C000 - 0x2001 FFFF 0x2002 0000 - 0x3FFF FFFF 0x4000 0000 Reserved 0x4000 7FFF 0x4000 7800 - 0x4000 FFFF 0x4001 0000 0x4001 57FF 0x4002 000 Reserved 0x5006 0C00 - 0x5FFF FFFF 0x6000 0000 AHB3 0xA000 0FFF 0xA000 1000 - 0xDFFF FFFF ai18513f Option Bytes Reserved 0x4001 5800 - 0x4001 FFFF 0x5006 0BFF AHB2 0x5000 0000 Reserved 0x4008 0000 - 0x4FFF FFFF AHB1 SRAM (112 KB aliased by bit-banding) Reserved 0x1FFF C008 - 0x1FFF FFFF Reserved 0x1FFF 7A10 - 0x1FFF 7FFF CCM data RAM (64 KB data SRAM) 0x1000 0000 - 0x1000 FFFF Reserved 0x1001 0000 - 0x1FFE FFFF Reserved APB2 0x4007 FFFF APB1 CORTEX-M4 internal peripherals 0xE000 0000 - 0xE00F FFFF Reserved 0xE010 0000 - 0xFFFF FFFF Memory mapping STM32F405xx, STM32F407xx 70/185 DocID022152 Rev 4 Table 10. STM32F40x register boundary addresses Bus Boundary address Peripheral 0xE00F FFFF - 0xFFFF FFFF Reserved Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xA000 1000 - 0xDFFF FFFF Reserved AHB3 0xA000 0000 - 0xA000 0FFF FSMC control register 0x9000 0000 - 0x9FFF FFFF FSMC bank 4 0x8000 0000 - 0x8FFF FFFF FSMC bank 3 0x7000 0000 - 0x7FFF FFFF FSMC bank 2 0x6000 0000 - 0x6FFF FFFF FSMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved AHB2 0x5006 0800 - 0x5006 0BFF RNG 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4008 0000- 0x4FFF FFFF Reserved DocID022152 Rev 4 71/185 STM32F405xx, STM32F407xx Memory mapping AHB1 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 9400 - 0x4003 FFFF Reserved 0x4002 9000 - 0x4002 93FF ETHERNET MAC 0x4002 8C00 - 0x4002 8FFF 0x4002 8800 - 0x4002 8BFF 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF GPIOI 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA 0x4001 5800- 0x4001 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Memory mapping STM32F405xx, STM32F407xx 72/185 DocID022152 Rev 4 APB2 0x4001 4C00 - 0x4001 57FF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 0x4000 7800- 0x4000 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral DocID022152 Rev 4 73/185 STM32F405xx, STM32F407xx Memory mapping APB1 0x4000 7800 - 0x4000 7FFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF Reserved 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF Reserved 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF I2S2ext 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Electrical characteristics STM32F405xx, STM32F407xx 74/185 DocID022152 Rev 4 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 19. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 20. Figure 19. Pin loading conditions Figure 20. Pin input voltage MS19011V1 C = 50 pF STM32F pin OSC_OUT (Hi-Z when using HSE or LSE) MS19010V1 STM32F pin VIN OSC_OUT (Hi-Z when using HSE or LSE) DocID022152 Rev 4 75/185 STM32F405xx, STM32F407xx Electrical characteristics 5.1.6 Power supply scheme Figure 21. Power supply scheme 1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply supervisor. 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF. 4. The 4.7 μF ceramic capacitor must be connected to one of the VDD pin. 5. VDDA=VDD and VSSA=VSS. MS19911V2 Backup circuitry (OSC32K,RTC, Wakeup logic Backup registers, backup RAM) Kernel logic (CPU, digital & RAM) Analog: RCs, PLL,.. Power switch VBAT GPIOs OUT IN 15 × 100 nF + 1 × 4.7 μF VBAT = 1.65 to 3.6V Voltage regulator VDDA ADC Level shifter IO Logic VDD 100 nF + 1 μF Flash memory VCAP_1 2 × 2.2 μF VCAP_2 BYPASS_REG PDR_ON Reset controller VDD 1/2/...14/15 VSS 1/2/...14/15 VDD VREF+ VREFVSSA VREF 100 nF + 1 μF Electrical characteristics STM32F405xx, STM32F407xx 76/185 DocID022152 Rev 4 5.1.7 Current consumption measurement Figure 22. Current consumption measurement scheme 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics, Table 12: Current characteristics, and Table 13: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ai14126 VBAT VDD VDDA IDD_VBAT IDD Table 11. Voltage characteristics Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA, VDD)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. –0.3 4.0 V VIN Input voltage on five-volt tolerant pin(2) 2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed injected current. VSS–0.3 VDD+4 Input voltage on any other pin VSS–0.3 4.0 |ΔVDDx| Variations between different VDD power pins - 50 mV |VSSX − VSS| Variations between all the different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) see Section 5.3.14: Absolute maximum ratings (electrical sensitivity) DocID022152 Rev 4 77/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3 Operating conditions 5.3.1 General operating conditions Table 12. Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD power lines (source)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 150 mA IVSS Total current out of VSS ground lines (sink)(1) 150 IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin 25 IINJ(PIN) (2) 2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC characteristics. Injected current on five-volt tolerant I/O(3) 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 6. In this case HCLK = system clock/2. Electrical characteristics STM32F405xx, STM32F407xx 84/185 DocID022152 Rev 4 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) Symbol Parameter Conditions fHCLK Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled(3)(4) 168 MHz 93 109 117 mA 144 MHz 76 89 96 120 MHz 67 79 86 90 MHz 53 65 73 60 MHz 37 49 56 30 MHz 20 32 39 25 MHz 16 27 35 16 MHz 11 23 30 8 MHz 6 18 25 4 MHz 4 16 23 2 MHz 3 15 22 External clock(2), all peripherals disabled(3)(4) 168 MHz 46 61 69 144 MHz 40 52 60 120 MHz 37 48 56 90 MHz 30 42 50 60 MHz 22 33 41 30 MHz 12 24 31 25 MHz 10 21 29 16 MHz 7 19 26 8 MHz 4 16 23 4 MHz 3 15 22 2 MHz 2 14 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. DocID022152 Rev 4 85/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON MS19974V1 0 5 10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45 °C 0 °C 25 °C 55 °C 85 °C 105 °C MS19975V1 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C Electrical characteristics STM32F405xx, STM32F407xx 86/185 DocID022152 Rev 4 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON MS19976V1 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C MS19977V1 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C DocID022152 Rev 4 87/185 STM32F405xx, STM32F407xx Electrical characteristics Table 22. Typical and maximum current consumption in Sleep mode Symbol Parameter Conditions fHCLK Typ Max(1) T Unit A = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled(3) 168 MHz 59 77 84 mA 144 MHz 46 61 67 120 MHz 38 53 60 90 MHz 30 44 51 60 MHz 20 34 41 30 MHz 11 24 31 25 MHz 8 21 28 16 MHz 6 18 25 8 MHz 3 16 23 4 MHz 2 15 22 2 MHz 2 14 21 External clock(2), all peripherals disabled 168 MHz 12 27 35 144 MHz 9 22 29 120 MHz 8 20 28 90 MHz 7 19 26 60 MHz 5 17 24 30 MHz 3 16 23 25 MHz 2 15 22 16 MHz 2 14 21 8 MHz 1 14 21 4 MHz 1 13 21 2 MHz 1 13 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register). Electrical characteristics STM32F405xx, STM32F407xx 88/185 DocID022152 Rev 4 Table 23. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions Typ Max T Unit A = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C IDD_STOP Supply current in Stop mode with main regulator in Run mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.45 1.5 11.00 20.00 mA Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.40 1.5 11.00 20.00 Supply current in Stop mode with main regulator in Low Power mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.31 1.1 8.00 15.00 Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.28 1.1 8.00 15.00 Table 24. Typical and maximum current consumptions in Standby mode Symbol Parameter Conditions Typ Max(1) TA = 25 °C Unit TA = 85 °C TA = 105 °C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V VDD = 3.6 V IDD_STBY Supply current in Standby mode Backup SRAM ON, lowspeed oscillator and RTC ON 3.0 3.4 4.0 20 36 μA Backup SRAM OFF, lowspeed oscillator and RTC ON 2.4 2.7 3.3 16 32 Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8 Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2 1. Based on characterization, not tested in production. DocID022152 Rev 4 89/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) Table 25. Typical and maximum current consumptions in VBAT mode Symbol Parameter Conditions Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C VBAT = 1.8 V VBAT= 2.4 V VBAT = 3.3 V VBAT = 3.6 V IDD_VBA T Backup domain supply current Backup SRAM ON, low-speed oscillator and RTC ON 1.29 1.42 1.68 6 11 μA Backup SRAM OFF, low-speed oscillator and RTC ON 0.62 0.73 0.96 3 5 Backup SRAM ON, RTC OFF 0.79 0.81 0.86 5 10 Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 2 4 1. Based on characterization, not tested in production. MS19990V1 0 0.5 1 1.5 2 2.5 3 3.5 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V Electrical characteristics STM32F405xx, STM32F407xx 90/185 DocID022152 Rev 4 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 47: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 27: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU MS19991V1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V DocID022152 Rev 4 91/185 STM32F405xx, STM32F407xx Electrical characteristics supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. ISW = VDD × fSW × C Electrical characteristics STM32F405xx, STM32F407xx 92/185 DocID022152 Rev 4 Table 26. Switching output I/O current consumption Symbol Parameter Conditions(1) I/O toggling frequency (fSW) Typ Unit IDDIO I/O switching current VDD = 3.3 V(2) C = CINT 2 MHz 0.02 mA 8 MHz 0.14 25 MHz 0.51 50 MHz 0.86 60 MHz 1.30 VDD = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS 2 MHz 0.10 8 MHz 0.38 25 MHz 1.18 50 MHz 2.47 60 MHz 2.86 VDD = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS 2 MHz 0.17 8 MHz 0.66 25 MHz 1.70 50 MHz 2.65 60 MHz 3.48 VDD = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS 2 MHz 0.23 8 MHz 0.95 25 MHz 3.20 50 MHz 4.69 60 MHz 8.06 VDD = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS 2 MHz 0.30 8 MHz 1.22 25 MHz 3.90 50 MHz 8.82 60 MHz -(3) 1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value). 2. This test is performed by cutting the LQFP package pin (pad removal). 3. At 60 MHz, C maximum load is specified 30 pF. DocID022152 Rev 4 93/185 STM32F405xx, STM32F407xx Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed under the following conditions: • At startup, all I/O pins are configured as analog pins by firmware. • All peripherals are disabled unless otherwise mentioned • The code is running from Flash memory and the Flash memory access time is equal to 5 wait states at 168 MHz. • The code is running from Flash memory and the Flash memory access time is equal to 4 wait states at 144 MHz, and the power scale mode is set to 2. • ART accelerator and Cache off. • The given value is calculated by measuring the difference of current consumption – with all peripherals clocked off – with one peripheral clocked on (with only the clock applied) • When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. • The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise specified. Table 27. Peripheral current consumption Peripheral(1) 168 MHz 144 MHz Unit AHB1 GPIO A 0.49 0.36 mA GPIO B 0.45 0.33 GPIO C 0.45 0.34 GPIO D 0.45 0.34 GPIO E 0.47 0.35 GPIO F 0.45 0.33 GPIO G 0.44 0.33 GPIO H 0.45 0.34 GPIO I 0.44 0.33 OTG_HS + ULPI 4.57 3.55 CRC 0.07 0.06 BKPSRAM 0.11 0.08 DMA1 6.15 4.75 DMA2 6.24 4.8 ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP 3.28 2.54 AHB2 OTG_FS 4.59 3.69 mA DCMI 1.04 0.80 Electrical characteristics STM32F405xx, STM32F407xx 94/185 DocID022152 Rev 4 AHB3 FSMC 2.18 1.67 mA APB1 TIM2 0.80 0.61 TIM3 0.58 0.44 TIM4 0.62 0.48 TIM5 0.79 0.61 TIM6 0.15 0.11 TIM7 0.16 0.12 TIM12 0.33 0.26 TIM13 0.27 0.21 TIM14 0.27 0.21 PWR 0.04 0.03 USART2 0.17 0.13 USART3 0.17 0.13 UART4 0.17 0.13 UART5 0.17 0.13 I2C1 0.17 0.13 I2C2 0.18 0.13 I2C3 0.18 0.13 SPI2/I2S2(2) 0.17/0.16 0.13/0.12 SPI3/I2S3(2) 0.16/0.14 0.12/0.12 CAN1 0.27 0.21 CAN2 0.26 0.20 DAC 0.14 0.10 DAC channel 1(3) 0.91 0.89 DAC channel 2(4) 0.91 0.89 DAC channel 1 and 2(3)(4) 1.69 1.68 WWDG 0.04 0.04 Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit DocID022152 Rev 4 95/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.7 Wakeup time from low-power mode The wakeup times given in Table 28 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. APB2 SDIO 0.64 0.54 mA TIM1 1.47 1.14 TIM8 1.58 1.22 TIM9 0.68 0.54 TIM10 0.45 0.36 TIM11 0.47 0.38 ADC1(5) 2.20 2.10 ADC2(5) 2.04 1.93 ADC3(5) 2.10 2.00 SPI1 0.14 0.12 USART1 0.34 0.27 USART6 0.34 0.28 1. HSE oscillator with 4 MHz crystal and PLL are ON. 2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral. 3. EN1 bit is set in DAC_CR register. 4. EN2 bit is set in DAC_CR register. 5. ADON bit set in ADC_CR2 register. Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit Table 28. Low-power mode wakeup timings Symbol Parameter Min(1) Typ(1) Max(1) Unit tWUSLEEP (2) Wakeup from Sleep mode - 1 - μs tWUSTOP (2) Wakeup from Stop mode (regulator in Run mode) - 13 - Wakeup from Stop mode (regulator in low power mode) - 17 40 μs Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode) - 110 - tWUSTDBY (2)(3) Wakeup from Standby mode 260 375 480 μs 1. Based on characterization, not tested in production. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively. Electrical characteristics STM32F405xx, STM32F407xx 96/185 DocID022152 Rev 4 5.3.8 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 29 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Low-speed external user clock generated from an external source The characteristics given in Table 30 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Table 29. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext External user clock source frequency(1) 1 - 50 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 10 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA Table 30. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA 1. Guaranteed by design, not tested in production. DocID022152 Rev 4 97/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 30. High-speed external clock source AC timing diagram Figure 31. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 31. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai17528 OSC_IN External STM32F clock source VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE tr(HSE) tW(HSE) t fHSE_ext VHSEL ai17529 External OSC32_IN STM32F clock source VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE tr(LSE) tW(LSE) t fLSE_ext VLSEL Electrical characteristics STM32F405xx, STM32F407xx 98/185 DocID022152 Rev 4 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 32. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 32. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 31. HSE 4-26 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 - 26 MHz RF Feedback resistor - 200 - kΩ IDD HSE current consumption VDD=3.3 V, ESR= 30 Ω, CL=5 pF@25 MHz - 449 - μA VDD=3.3 V, ESR= 30 Ω, CL=10 pF@25 MHz - 532 - gm Oscillator transconductance Startup 5 - - mA/V tSU(HSE (3) 3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized - 2 - ms ai17530 OSC_OUT OSC_IN fHSE CL1 RF STM32F 8 MHz resonator Resonator with integrated capacitors Bias controlled gain CL2 REXT(1) DocID022152 Rev 4 99/185 STM32F405xx, STM32F407xx Electrical characteristics Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 33. Typical application with a 32.768 kHz crystal 5.3.9 Internal clock source characteristics The parameters given in Table 33 and Table 34 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. High-speed internal (HSI) RC oscillator Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 18.4 - MΩ IDD LSE current consumption - - 1 μA gm Oscillator Transconductance 2.8 - - μA/V tSU(LSE) (2) 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - s ai17531 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F 32.768 kHz resonator Resonator with integrated capacitors Bias controlled gain CL2 Table 33. HSI oscillator characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 16 - MHz ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register - - 1 % Factorycalibrated TA = –40 to 105 °C(2) –8 - 4.5 % TA = –10 to 85 °C(2) –4 - 4 % TA = 25 °C –1 - 1 % tsu(HSI) (3) HSI oscillator startup time - 2.2 4 μs IDD(HSI) HSI oscillator power consumption - 60 80 μA Electrical characteristics STM32F405xx, STM32F407xx 100/185 DocID022152 Rev 4 Low-speed internal (LSI) RC oscillator Figure 34. ACCLSI versus temperature 5.3.10 PLL characteristics The parameters given in Table 35 and Table 36 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 14. 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Table 34. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 17 32 47 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - 15 40 μs IDD(LSI) (3) LSI oscillator power consumption - 0.4 0.6 μA MS19013V1 -40 -30 -20 -10 0 10 20 30 40 50 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 Normalized deviati on (%) Temperature (°C) max avg min DocID022152 Rev 4 101/185 STM32F405xx, STM32F407xx Electrical characteristics Table 35. Main PLL characteristics Symbol Parameter Conditions Min Typ Max Unit fPLL_IN PLL input clock(1) 0.95(2) 1 2.10 MHz fPLL_OUT PLL multiplier output clock 24 - 168 MHz fPLL48_OUT 48 MHz PLL multiplier output clock - 48 75 MHz fVCO_OUT PLL VCO output 192 - 432 MHz tLOCK PLL lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Jitter(3) Cycle-to-cycle jitter System clock 120 MHz RMS - 25 - ps peak to peak - ±150 - Period Jitter RMS - 15 - peak to peak - ±200 - Main clock output (MCO) for RMII Ethernet Cycle to cycle at 50 MHz on 1000 samples - 32 - Main clock output (MCO) for MII Ethernet Cycle to cycle at 25 MHz on 1000 samples - 40 - Bit Time CAN jitter Cycle to cycle at 1 MHz on 1000 samples - 330 - IDD(PLL) (4) PLL power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLL) (4) PLL power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design, not tested in production. 3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10 MHz fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz fVCO_OUT PLLI2S VCO output 192 - 432 MHz tLOCK PLLI2S lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Electrical characteristics STM32F405xx, STM32F407xx 102/185 DocID022152 Rev 4 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 43: EMI characteristics). It is available only on the main PLL. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: Jitter(3) Master I2S clock jitter Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 RMS - 90 - peak to peak - ±280 - ps Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples - 90 - ps WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLI2S) (4) PLLI2S power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLI2S) (4) PLLI2S power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design, not tested in production. 3. Value given with main PLL running. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Table 37. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % MODEPER * INCSTEP - - 215−1 - 1. Guaranteed by design, not tested in production. MODEPER = round[fPLL_IN ⁄ (4 × fMod)] MODEPER round 106 4 10 3 = [ ⁄ ( × )] = 250 DocID022152 Rev 4 103/185 STM32F405xx, STM32F407xx Electrical characteristics Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): fVCO_OUT must be expressed in MHz. With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz): An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: As a result: Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. Figure 35. PLL output clock waveforms in center spread mode INCSTEP = round[((215 – 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)] INCSTEP = round[((215 – 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)% mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 – 1) × PLLN) mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 – 1) × 240) = 2.002%(peak) Frequency (PLL_OUT) Time F0 tmode md ai17291 md 2 x tmode Electrical characteristics STM32F405xx, STM32F407xx 104/185 DocID022152 Rev 4 Figure 36. PLL output clock waveforms in down spread mode 5.3.12 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased. Time ai17292 Frequency (PLL_OUT) F0 2 x md tmode 2 x tmode Table 38. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit IDD Supply current Write / Erase 8-bit mode, VDD = 1.8 V - 5 - Write / Erase 16-bit mode, VDD = 2.1 V - 8 - mA Write / Erase 32-bit mode, VDD = 3.3 V - 12 - Table 39. Flash memory programming Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog Word programming time Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(2) μs tERASE16KB Sector (16 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism ms (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 DocID022152 Rev 4 105/185 STM32F405xx, STM32F407xx Electrical characteristics tERASE64KB Sector (64 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism ms (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 tERASE128KB Sector (128 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism s (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 tME Mass erase time Program/erase parallelism (PSIZE) = x 8 - 16 32 Program/erase parallelism s (PSIZE) = x 16 - 11 22 Program/erase parallelism (PSIZE) = x 32 - 8 16 Vprog Programming voltage 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.8 - 3.6 V 1. Based on characterization, not tested in production. 2. The maximum programming time is measured after 100K erase operations. Table 39. Flash memory programming (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit Electrical characteristics STM32F405xx, STM32F407xx 106/185 DocID022152 Rev 4 5.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. Table 40. Flash memory programming with VPP Symbol Parameter Conditions Min(1) Typ Max(1) 1. Guaranteed by design, not tested in production. Unit tprog Double word programming TA = 0 to +40 °C VDD = 3.3 V VPP = 8.5 V - 16 100(2) 2. The maximum programming time is measured after 100K erase operations. μs tERASE16KB Sector (16 KB) erase time - 230 - tERASE64KB Sector (64 KB) erase time - 490 - ms tERASE128KB Sector (128 KB) erase time - 875 - tME Mass erase time - 6.9 - s Vprog Programming voltage 2.7 - 3.6 V VPP VPP voltage range 7 - 9 V IPP Minimum current sunk on the VPP pin 10 - - mA tVPP (3) 3. VPP should only be connected during programming/erasing. Cumulative time during which VPP is applied - - 1 hour Table 41. Flash memory endurance and data retention Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 1 kcycle(2) at TA = 105 °C 10 Years 10 kcycles(2) at TA = 55 °C 20 DocID022152 Rev 4 107/185 STM32F405xx, STM32F407xx Electrical characteristics A device reset allows normal operations to be resumed. The test results are given in Table 42. They are based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. Table 42. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 4A Electrical characteristics STM32F405xx, STM32F407xx 108/185 DocID022152 Rev 4 5.3.14 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latchup Two complementary static tests are required on six parts to assess the latchup performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latchup standard. Table 43. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fCPU] Unit 25/168 MHz SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator enabled 0.1 to 30 MHz 32 30 to 130 MHz 25 dBμV 130 MHz to 1GHz 29 SAE EMI Level 4 - VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator and PLL spread spectrum enabled 0.1 to 30 MHz 19 30 to 130 MHz 16 dBμV 130 MHz to 1GHz 18 SAE EMI level 3.5 - Table 44. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C conforming to JESD22-A114 2 2000(2) V VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C conforming to JESD22-C101 II 500 1. Based on characterization results, not tested in production. 2. On VBAT pin, VESD(HBM) is limited to 1000 V. DocID022152 Rev 4 109/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.15 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 46. 5.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Table 45. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA = +105 °C conforming to JESD78A II level A Table 46. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ (1) 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Injected current on all FT pins –5 +0 mA Injected current on any other pin –5 +5 Electrical characteristics STM32F405xx, STM32F407xx 110/185 DocID022152 Rev 4 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. Table 47. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH (1) Input high level voltage 2.0 - - VIL Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - - 0.3VDD VIH (1) Input high level voltage 0.7VDD - - - - Vhys I/O Schmitt trigger voltage hysteresis(2) - 200 - IO FT Schmitt trigger voltage mV hysteresis(2) 5% VDD (3) - - Ilkg I/O input leakage current (4) VSS ≤ VIN ≤ VDD - - ±1 μA I/O FT input leakage current (4) VIN = 5 V - - 3 RPU Weak pull-up equivalent resistor(5) All pins except for PA10 and PB12 VIN = VSS 30 40 50 kΩ PA10 and PB12 8 11 15 RPD Weak pull-down equivalent resistor All pins except for PA10 and PB12 VIN = VDD 30 40 50 PA10 and PB12 8 11 15 CIO (6) I/O pin capacitance 5 pF 1. Tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 6. Guaranteed by design, not tested in production. DocID022152 Rev 4 111/185 STM32F405xx, STM32F407xx Electrical characteristics In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 12). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 12). Output voltage levels Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 37 and Table 49, respectively. Table 48. Output voltage characteristics(1) 1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). Symbol Parameter Conditions Min Max Unit VOL (2) 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (2) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (2)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - Electrical characteristics STM32F405xx, STM32F407xx 112/185 DocID022152 Rev 4 Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 49. I/O AC characteristics(1)(2)(3) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit 00 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 2 MHz CL = 50 pF, VDD > 1.8 V - - 2 CL = 10 pF, VDD > 2.70 V - - TBD CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.8 V to 3.6 V - - TBD ns tr(IO)out Output low to high level rise time - - TBD 01 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 25 MHz CL = 50 pF, VDD > 1.8 V - - 12.5(5) CL = 10 pF, VDD > 2.70 V - - 50(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 50 pF, VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD 10 fmax(IO)out Maximum frequency(4) CL = 40 pF, VDD > 2.70 V - - 50(5) MHz CL = 40 pF, VDD > 1.8 V - - 25 CL = 10 pF, VDD > 2.70 V - - 100(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD ns tr(IO)out Output low to high level rise time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD DocID022152 Rev 4 113/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 37. I/O AC characteristics definition 5.3.17 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 47). Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. 11 Fmax(IO)ou t Maximum frequency(4) CL = 30 pF, VDD > 2.70 V - - 100(5) MHz CL = 30 pF, VDD > 1.8 V - - 50(5) CL = 10 pF, VDD > 2.70 V - - 200(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - - ns 1. Based on characterization data, not tested in production. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. TBD stands for “to be defined”. 4. The maximum frequency is defined in Figure 37. 5. For maximum frequencies above 50 MHz, the compensation cell should be used. Table 49. I/O AC characteristics(1)(2)(3) (continued) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit ai14131 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tr(IO)out Electrical characteristics STM32F405xx, STM32F407xx 114/185 DocID022152 Rev 4 Figure 38. Recommended NRST pin protection 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 50. Otherwise the reset is not taken into account by the device. 5.3.18 TIM timer characteristics The parameters given in Table 51 and Table 52 are guaranteed by design. Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 50. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH(NRST) (1) NRST Input high level voltage 2 - - VIL(NRST) (1) NRST Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - 0.3VDD VIH(NRST) (1) NRST Input high level voltage 0.7VDD - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN = VSS 30 40 50 kΩ VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - μs ai14132c STM32Fxxx NRST(2) RPU VDD Filter Internal Reset 0.1 μF External reset circuit(1) DocID022152 Rev 4 115/185 STM32F405xx, STM32F407xx Electrical characteristics Table 51. Characteristics of TIMx connected to the APB1 domain(1) 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB1 prescaler distinct from 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns AHB/APB1 prescaler = 1, fTIMxCLK = 42 MHz 1 - tTIMxCLK 23.8 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 84 MHz APB1= 42 MHz 0 fTIMxCLK/2 MHz 0 42 MHz ResTIM Timer resolution - 16/32 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK 0.0119 780 μs 32-bit counter clock period when internal clock is selected 1 - tTIMxCLK 0.0119 51130563 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK - 51.1 s Electrical characteristics STM32F405xx, STM32F407xx 116/185 DocID022152 Rev 4 5.3.19 Communications interfaces I2C interface characteristics The STM32F405xx and STM32F407xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 53. Refer also to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 52. Characteristics of TIMx connected to the APB2 domain(1) 1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB2 prescaler distinct from 1, fTIMxCLK = 168 MHz 1 - tTIMxCLK 5.95 - ns AHB/APB2 prescaler = 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 168 MHz APB2 = 84 MHz 0 fTIMxCLK/2 MHz 0 84 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK tMAX_COUNT Maximum possible count - 32768 tTIMxCLK Table 53. I2C characteristics Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time 0(3) - 0 900(4) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 DocID022152 Rev 4 117/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 39. I2C bus AC waveforms and measurement circuit 1. Rs= series protection resistor. 2. Rp = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. Table 53. I2C characteristics (continued) Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max ai14979c S TAR T SD A RP I²C bus VDD_I2C STM32Fxx SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) S TAR T REPEATED t S TAR T su(STA) tsu(STO) S TOP tw(STO:STA) VDD_I2C RP RS RS Electrical characteristics STM32F405xx, STM32F407xx 118/185 DocID022152 Rev 4 SPI interface characteristics Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14 with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 kΩ 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE Table 55. SPI dynamic characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SPI clock frequency Master mode, SPI1, 2.7V < VDD < 3.6V - - 42 MHz Slave mode, SPI1, 2.7V < VDD < 3.6V 42 1/tc(SCK) Master mode, SPI1/2/3, 1.7V < VDD < 3.6V - - 21 Slave mode, SPI1/2/3, 1.7V < VDD < 3.6V 21 Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 % DocID022152 Rev 4 119/185 STM32F405xx, STM32F407xx Electrical characteristics tw(SCKH) SCK high and low time Master mode, SPI presc = 2, 2.7V < VDD < 3.6V TPCLK-0.5 TPCLK TPCLK+0.5 ns tw(SCKL) Master mode, SPI presc = 2, 1.7V < VDD < 3.6V TPCLK-2 TPCLK TPCLK+2 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 x TPCLK - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2 x TPCLK tsu(MI) Data input setup time Master mode 6.5 - - tsu(SI) Slave mode 2.5 - - th(MI) Data input hold time Master mode 2.5 - - th(SI) Slave mode 4 - - ta(SO) (2) Data output access time Slave mode, SPI presc = 2 0 - 4 x TPCLK tdis(SO) (3) Data output disable time Slave mode, SPI1, 2.7V < VDD < 3.6V 0 - 7.5 Slave mode, SPI1/2/3 1.7V < VDD < 3.6V 0 - 16.5 tv(SO) th(SO) Data output valid/hold time Slave mode (after enable edge), SPI1, 2.7V < VDD < 3.6V - 11 13 Slave mode (after enable edge), SPI2/3, 2.7V < VDD < 3.6V - 12 16.5 Slave mode (after enable edge), SPI1, 1.7V < VDD < 3.6V - 15.5 19 Slave mode (after enable edge), SPI2/3, 1.7V < VDD < 3.6V - 18 20.5 tv(MO) Data output valid time Master mode (after enable edge), SPI1 , 2.7V < VDD < 3.6V - - 2.5 Master mode (after enable edge), SPI1/2/3 , 1.7V < VDD < 3.6V - - 4.5 th(MO) Data output hold time Master mode (after enable edge) 0 - - 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. Table 55. SPI dynamic characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Electrical characteristics STM32F405xx, STM32F407xx 120/185 DocID022152 Rev 4 Figure 40. SPI timing diagram - slave mode and CPHA = 0 Figure 41. SPI timing diagram - slave mode and CPHA = 1 ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input DocID022152 Rev 4 121/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 42. SPI timing diagram - master mode ai14136 SCK Input CPHA=0 MOSI OUTUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Input CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) Electrical characteristics STM32F405xx, STM32F407xx 122/185 DocID022152 Rev 4 I2S interface characteristics Unless otherwise specified, the parameters given in Table 56 for the i2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV + ODD). FS maximum value is supported for each mode/condition. Table 56. I2S dynamic characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S main clock output - 256 x 8K 256 x FS (2) MHz fCK I2S clock frequency Master data: 32 bits - 64 x FS MHz Slave data: 32 bits - 64 x FS DCK I2S clock frequency duty cycle Slave receiver 30 70 % tv(WS) WS valid time Master mode 0 6 ns th(WS) WS hold time Master mode 0 - tsu(WS) WS setup time Slave mode 1 - th(WS) WS hold time Slave mode 0 - tsu(SD_MR) Data input setup time Master receiver 7.5 - tsu(SD_SR) Slave receiver 2 - th(SD_MR) Data input hold time Master receiver 0 - th(SD_SR) Slave receiver 0 - tv(SD_ST) th(SD_ST) Data output valid time Slave transmitter (after enable edge) - 27 tv(SD_MT) Master transmitter (after enable edge) - 20 th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 - 1. Data based on characterization results, not tested in production. 2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency). DocID022152 Rev 4 123/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 43. I2S slave timing diagram (Philips protocol) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 44. I2S master timing diagram (Philips protocol)(1) 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. USB OTG FS characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. CK Input CPOL = 0 CPOL = 1 tc(CK) WS input SDtransmit SDreceive tw(CKH) tw(CKL) tsu(WS) tv(SD_ST) th(SD_ST) th(WS) tsu(SD_SR) th(SD_SR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14881b LSB receive(2) LSB transmit(2) CK output CPOL = 0 CPOL = 1 tc(CK) WS output SDreceive SDtransmit tw(CKH) tw(CKL) tsu(SD_MR) tv(SD_MT) th(SD_MT) th(WS) th(SD_MR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14884b tf(CK) tr(CK) tv(WS) LSB receive(2) LSB transmit(2) Electrical characteristics STM32F405xx, STM32F407xx 124/185 DocID022152 Rev 4 Figure 45. USB OTG FS timings: definition of data signal rise and fall time Table 57. USB OTG FS startup time Symbol Parameter Max Unit tSTARTUP (1) 1. Guaranteed by design, not tested in production. USB OTG FS transceiver startup time 1 μs Table 58. USB OTG FS DC electrical characteristics Symbol Parameter Conditions Min.(1) 1. All the voltages are measured from the local ground potential. Typ. Max.(1) Unit Input levels VDD USB OTG FS operating voltage 3.0(2) 2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. - 3.6 V VDI (3) 3. Guaranteed by design, not tested in production. Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM V (3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE (3) Single ended receiver threshold 1.3 - 2.0 Output levels VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) 4. RL is the load connected on the USB OTG FS drivers - - 0.3 V VOH Static output level high RL of 15 kΩ to VSS (4) 2.8 - 3.6 RPD PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) VIN = VDD 17 21 24 kΩ PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) 0.65 1.1 2.0 RPU PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 2.1 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 ai14137 tf Differen tial Data L ines VSS VCRS tr Crossover points DocID022152 Rev 4 125/185 STM32F405xx, STM32F407xx Electrical characteristics USB HS characteristics Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 61 and VDD supply voltage conditions summarized in Table 60, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/outputcharacteristics. Table 59. USB OTG FS electrical characteristics(1) 1. Guaranteed by design, not tested in production. Driver characteristics Symbol Parameter Conditions Min Max Unit tr Rise time(2) 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns trfm Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage 1.3 2.0 V Table 60. USB HS DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD USB OTG HS operating voltage 2.7 3.6 V Table 61. USB HS clock timing parameters(1) Parameter Symbol Min Nominal Max Unit fHCLK value to guarantee proper operation of USB HS interface 30 MHz Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 % Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 % Time to reach the steady state frequency and duty cycle after the first transition TSTEADY - - 1.4 ms Clock startup time after the de-assertion of SuspendM Peripheral TSTART_DEV - - 5.6 ms Host TSTART_HOST - - - PHY preparation time after the first transition of the input clock TPREP - - - μs Electrical characteristics STM32F405xx, STM32F407xx 126/185 DocID022152 Rev 4 Figure 46. ULPI timing diagram Ethernet characteristics Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 14 and VDD supply voltage conditions summarized in Table 63, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. 1. Guaranteed by design, not tested in production. Table 62. ULPI timing Parameter Symbol Value(1) 1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C. Unit Min. Max. Control in (ULPI_DIR) setup time tSC - 2.0 ns Control in (ULPI_NXT) setup time - 1.5 Control in (ULPI_DIR, ULPI_NXT) hold time tHC 0 - Data in setup time tSD - 2.0 Data in hold time tHD 0 - Control out (ULPI_STP) setup time and hold time tDC - 9.2 Data out available from clock rising edge tDD - 10.7 Clock Control In (ULPI_DIR, ULPI_NXT) data In (8-bit) Control out (ULPI_STP) data out (8-bit) tDD tDC tSD tHD tSC tHC ai17361c tDC DocID022152 Rev 4 127/185 STM32F405xx, STM32F407xx Electrical characteristics Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 47 shows the corresponding timing diagram. Figure 47. Ethernet SMI timing diagram Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the corresponding timing diagram. Figure 48. Ethernet RMII timing diagram Table 63. Ethernet DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD Ethernet operating voltage 2.7 3.6 V Table 64. Dynamic characteristics: Ehternet MAC signals for SMI(1) 1. Data based on characterization results, not tested in production. Symbol Parameter Min Typ Max Unit tMDC MDC cycle time( 2.38 MHz) 411 420 425 ns Td(MDIO) Write data valid time 6 10 13 tsu(MDIO) Read data setup time 12 - - th(MDIO) Read data hold time 0 - - MS31384V1 ETH_MDC ETH_MDIO(O) ETH_MDIO(I) tMDC td(MDIO) tsu(MDIO) th(MDIO) RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] RMII_RXD[1:0] RMII_CRS_DV td(TXEN) td(TXD) tsu(RXD) tsu(CRS) tih(RXD) tih(CRS) ai15667 Electrical characteristics STM32F405xx, STM32F407xx 128/185 DocID022152 Rev 4 Table 66 gives the list of Ethernet MAC signals for MII and Figure 48 shows the corresponding timing diagram. Figure 49. Ethernet MII timing diagram Table 65. Dynamic characteristics: Ethernet MAC signals for RMII Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time 2 - - ns tih(RXD) Receive data hold time 1 - - ns tsu(CRS) Carrier sense set-up time 0.5 - - ns tih(CRS) Carrier sense hold time 2 - - ns td(TXEN) Transmit enable valid delay time 8 9.5 11 ns td(TXD) Transmit data valid delay time 8.5 10 11.5 ns Table 66. Dynamic characteristics: Ethernet MAC signals for MII(1) 1. Data based on characterization results, not tested in production. Symbol Parameter Min Typ Max Unit tsu(RXD) Receive data setup time 9 - ns tih(RXD) Receive data hold time 10 - tsu(DV) Data valid setup time 9 - tih(DV) Data valid hold time 8 - tsu(ER) Error setup time 6 - tih(ER) Error hold time 8 - td(TXEN) Transmit enable valid delay time 0 10 14 td(TXD) Transmit data valid delay time 0 10 15 MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER td(TXEN) td(TXD) tsu(RXD) tsu(ER) tsu(DV) tih(RXD) tih(ER) tih(DV) ai15668 MII_TX_CLK MII_TX_EN MII_TXD[3:0] DocID022152 Rev 4 129/185 STM32F405xx, STM32F407xx Electrical characteristics CAN (controller area network) interface Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX). 5.3.20 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 67 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 14. Table 67. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 1.8(1) - 3.6 V VREF+ Positive reference voltage 1.8(1)(2)(3) - VDDA V fADC ADC clock frequency VDDA = 1.8(1)(3) to 2.4 V 0.6 15 18 MHz VDDA = 2.4 to 3.6 V(3) 0.6 30 36 MHz fTRIG (4) External trigger frequency fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - 17 1/fADC VAIN Conversion voltage range(5) 0 (VSSA or VREFtied to ground) - VREF+ V RAIN (4) External input impedance See Equation 1 for details - - 50 κΩ RADC (4)(6) Sampling switch resistance - - 6 κΩ CADC (4) Internal sample and hold capacitor - 4 - pF tlat (4) Injection trigger conversion latency fADC = 30 MHz - - 0.100 μs - - 3(7) 1/fADC tlatr (4) Regular trigger conversion latency fADC = 30 MHz - - 0.067 μs - - 2(7) 1/fADC tS (4) Sampling time fADC = 30 MHz 0.100 - 16 μs 3 - 480 1/fADC tSTAB (4) Power-up time - 2 3 μs Electrical characteristics STM32F405xx, STM32F407xx 130/185 DocID022152 Rev 4 Equation 1: RAIN max formula The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. tCONV (4) Total conversion time (including sampling time) fADC = 30 MHz 12-bit resolution 0.50 - 16.40 μs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 μs fADC = 30 MHz 8-bit resolution 0.37 - 16.27 μs fADC = 30 MHz 6-bit resolution 0.30 - 16.20 μs 9 to 492 (tS for sampling +n-bit resolution for successive approximation) 1/fADC fS (4) Sampling rate (fADC = 30 MHz, and tS = 3 ADC cycles) 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps IVREF+ (4) ADC VREF DC current consumption in conversion mode - 300 500 μA IVDDA (4) ADC VDDA DC current consumption in conversion mode - 1.6 1.8 mA 1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V. 3. VDDA -VREF+ < 1.2 V. 4. Based on characterization, not tested in production. 5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V. 7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67. Table 67. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit RAIN (k – 0.5) fADC CADC 2N + 2 × × ln( ) = -------------------------------------------------------------- – RADC DocID022152 Rev 4 131/185 STM32F405xx, STM32F407xx Electrical characteristics a Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.16 does not affect the ADC accuracy. Figure 50. ADC accuracy characteristics 1. See also Table 68. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. Table 68. ADC accuracy at fADC = 30 MHz(1) 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. Symbol Parameter Test conditions Typ Max(2) 2. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 60 MHz, fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8(3) to 3.6 V 3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). ±2 ±5 LSB EO Offset error ±1.5 ±2.5 EG Gain error ±1.5 ±3 ED Differential linearity error ±1 ±2 EL Integral linearity error ±1.5 ±3 ai14395c EO EG 1L SBIDEAL 4095 4094 4093 5 4 3 2 1 0 7 6 1 2 3 456 7 4093 4094 4095 4096 (1) (2) ET ED EL (3) VSSA VDDA VREF+ 4096 (or depending on package)] VDDA 4096 [1LSB IDEAL = Electrical characteristics STM32F405xx, STM32F407xx 132/185 DocID022152 Rev 4 EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 51. Typical connection diagram using the ADC 1. Refer to Table 67 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. ai17534 VDD STM32F AINx IL±1 μA 0.6 V VT RAIN (1) Cparasitic VAIN 0.6 V VT RADC (1) CADC(1) 12-bit converter Sample and hold ADC converter DocID022152 Rev 4 133/185 STM32F405xx, STM32F407xx Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 52 or Figure 53, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. VREF+ STM32F VDDA VSSA/V REF- 1 μF // 10 nF 1 μF // 10 nF ai17535 (See note 1) (See note 1) VREF+/VDDA STM32F 1 μF // 10 nF VREF–/VSSA ai17536 (See note 1) (See note 1) Electrical characteristics STM32F405xx, STM32F407xx 134/185 DocID022152 Rev 4 5.3.21 Temperature sensor characteristics 5.3.22 VBAT monitoring characteristics Table 69. Temperature sensor characteristics Symbol Parameter Min Typ Max Unit TL (1) VSENSE linearity with temperature - ±1 ±2 °C Avg_Slope(1) Average slope - 2.5 mV/°C V25 (1) Voltage at 25 °C - 0.76 V tSTART (2) Startup time - 6 10 μs TS_temp (3)(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - μs 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. Table 70. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F Table 71. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 2 - Er(1) Error on Q –1 - +1 % TS_vbat (2)(2) ADC sampling time when reading the VBAT 1 mV accuracy 5 - - μs 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. DocID022152 Rev 4 135/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.23 Embedded reference voltage The parameters given in Table 72 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. 5.3.24 DAC electrical characteristics Table 72. Embedded internal reference voltage Symbol Parameter Conditions Min Typ Max Unit VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V TS_vrefint (1) ADC sampling time when reading the internal reference voltage 10 - - μs VRERINT_s (2) Internal reference voltage spread over the temperature range VDD = 3 V - 3 5 mV TCoeff (2) Temperature coefficient - 30 50 ppm/°C tSTART (2) Startup time - 6 10 μs 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production. Table 73. Internal reference voltage calibration values Symbol Parameter Memory address VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B Table 74. DAC characteristics Symbol Parameter Min Typ Max Unit Comments VDDA Analog supply voltage 1.8(1) - 3.6 V VREF+ Reference supply voltage 1.8(1) - 3.6 V VREF+ ≤ VDDA VSSA Ground 0 - 0 V RLOAD (2) Resistive load with buffer ON 5 - - kΩ RO (2) Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ CLOAD (2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT min(2) Lower DAC_OUT voltage with buffer ON 0.2 - - V It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.8 V DAC_OUT max(2) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V Electrical characteristics STM32F405xx, STM32F407xx 136/185 DocID022152 Rev 4 DAC_OUT min(2) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV It gives the maximum output DAC_OUT excursion of the DAC. max(2) Higher DAC_OUT voltage with buffer OFF - - VREF+ – 1LSB V IVREF+ (4) DAC DC VREF current consumption in quiescent mode (Standby mode) - 170 240 μA With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs - 50 75 With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs IDDA (4) DAC DC VDDA current consumption in quiescent mode(3) - 280 380 μA With no load, middle code (0x800) on the inputs - 475 625 μA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs DNL(4) Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration. - - ±2 LSB Given for the DAC in 12-bit configuration. INL(4) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±1 LSB Given for the DAC in 10-bit configuration. - - ±4 LSB Given for the DAC in 12-bit configuration. Offset(4) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±10 mV Given for the DAC in 12-bit configuration - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration tSETTLING (4) Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB - 3 6 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ THD(4) Total Harmonic Distortion Buffer ON - - - dB CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Table 74. DAC characteristics (continued) Symbol Parameter Min Typ Max Unit Comments DocID022152 Rev 4 137/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 54. 12-bit buffered /non-buffered DAC 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 5.3.25 FSMC characteristics Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ tWAKEUP (4) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (2) Power supply rejection ratio (to VDDA) (static DC measurement) - –67 –40 dB No RLOAD, CLOAD = 50 pF 1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 2. Guaranteed by design, not tested in production. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed by characterization, not tested in production. Table 74. DAC characteristics (continued) Symbol Parameter Min Typ Max Unit Comments RLOAD CLOAD Buffered/Non-buffered DAC DACx_OUT Buffer(1) 12-bit digital to analog converter ai17157 Electrical characteristics STM32F405xx, STM32F407xx 138/185 DocID022152 Rev 4 Asynchronous waveforms and timings Figure 55 through Figure 58 represent asynchronous waveforms and Table 75 through Table 78 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • AddressSetupTime = 1 • AddressHoldTime = 0x1 • DataSetupTime = 0x1 • BusTurnAroundDuration = 0x0 In all timing tables, the THCLK is the HCLK clock period. Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 2THCLK–0.5 2 THCLK+1 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 3 ns tw(NOE) FSMC_NOE low time 2THCLK–2 2THCLK+ 2 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 4.5 ns th(A_NOE) Address hold time after FSMC_NOE high 4 - ns Data FSMC_NE FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) t h(Data_NE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) FSMC_NWE tsu(Data_NE) tw(NE) ai14991c tv(NOE_NE) t w(NOE) t h(NE_NOE) th(Data_NOE) t h(A_NOE) t h(BL_NOE) tsu(Data_NOE) FSMC_NADV(1) t v(NADV_NE) tw(NADV) DocID022152 Rev 4 139/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+4 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns tw(NADV) FSMC_NADV low time - THCLK ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK+0.5 ns tw(NWE) FSMC_NWE low time THCLK–1 THCLK+2 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK–1 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) tv(Data_NE) tw(NE) ai14990 FSMC_NADV(1) t v(NADV_NE) tw(NADV) Electrical characteristics STM32F405xx, STM32F407xx 140/185 DocID022152 Rev 4 Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms th(A_NWE) Address hold time after FSMC_NWE high THCLK– 2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+3 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK–1 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns tw(NADV) FSMC_NADV low time - THCLK+0.5 ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK–1 3THCLK+1 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK–0.5 2THCLK+0.5 ns tw(NOE) FSMC_NOE low time THCLK–1 THCLK+1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) NBL Data FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NE) FSMC_A[25:16] Address tv(A_NE) FSMC_NWE t v(A_NE) ai14892b Address FSMC_NADV t v(NADV_NE) tw(NADV) tsu(Data_NE) th(AD_NADV) FSMC_NE FSMC_NOE tw(NE) t w(NOE) tv(NOE_NE) t h(NE_NOE) th(A_NOE) th(BL_NOE) tsu(Data_NOE) th(Data_NOE) DocID022152 Rev 4 141/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+1 ns th(AD_NADV) FSMC_AD(adress) valid hold time after FSMC_NADV high) THCLK - ns th(A_NOE) Address hold time after FSMC_NOE high THCLK–1 - ns th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 2 ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+4 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 4THCLK–0.5 4THCLK+3 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK -0.5 ns tw(NWE) FSMC_NWE low tim e 2THCLK–0.5 2THCLK+3 ns Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued) NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:16] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) t v(A_NE) tw(NE) ai14891B Address FSMC_NADV t v(NADV_NE) tw(NADV) t v(Data_NADV) th(AD_NADV) Electrical characteristics STM32F405xx, STM32F407xx 142/185 DocID022152 Rev 4 Synchronous waveforms and timings Figure 59 through Figure 62 represent synchronous waveforms and Table 80 through Table 82 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the THCLK is the HCLK clock period (with maximum FSMC_CLK = 60 MHz). th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 1 ns th(AD_NADV) FSMC_AD(address) valid hold time after FSMC_NADV high) THCLK–2 - ns th(A_NWE) Address hold time after FSMC_NWE high THCLK - ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK–2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns tv(Data_NADV) FSMC_NADV high to Data valid - THCLK–0.5 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) DocID022152 Rev 4 143/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 59. Synchronous multiplexed NOR/PSRAM read timings Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 2 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 4.5 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 - ns FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NOE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKL-NOEL) td(CLKL-NOEH) td(CLKL-ADV) td(CLKL-ADIV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14893g Electrical characteristics STM32F405xx, STM32F407xx 144/185 DocID022152 Rev 4 Figure 60. Synchronous multiplexed PSRAM write timings th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 80. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued) FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NWE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-NBLH) td(CLKL-ADV) td(CLKL-ADIV) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14992g td(CLKL-Data) FSMC_NBL DocID022152 Rev 4 145/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 0.5 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 3 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK –0.5 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0.5 ns Table 80. Synchronous multiplexed PSRAM write timings(1)(2) FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NOE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKL-NOEL) td(CLKL-NOEH) tsu(DV-CLKH) th(CLKH-DV) tsu(DV-CLKH) th(CLKH-DV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) t h(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14894f FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) Electrical characteristics STM32F405xx, STM32F407xx 146/185 DocID022152 Rev 4 Figure 62. Synchronous non-multiplexed PSRAM write timings td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 2 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0.5 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued) FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NWE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14993g FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-Data) FSMC_NBL td(CLKL-NBLH) DocID022152 Rev 4 147/185 STM32F405xx, STM32F407xx Electrical characteristics PC Card/CompactFlash controller waveforms and timings Figure 63 through Figure 68 represent synchronous waveforms, and Table 83 and Table 84 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x04; • COM.FSMC_WaitSetupTime = 0x07; • COM.FSMC_HoldSetupTime = 0x04; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x04; • ATT.FSMC_WaitSetupTime = 0x07; • ATT.FSMC_HoldSetupTime = 0x04; • ATT.FSMC_HiZSetupTime = 0x00; • IO.FSMC_SetupTime = 0x04; • IO.FSMC_WaitSetupTime = 0x07; • IO.FSMC_HoldSetupTime = 0x04; • IO.FSMC_HiZSetupTime = 0x00; • TCLRSetupTime = 0; • TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. Table 82. Synchronous non-multiplexed PSRAM write timings(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 7 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 6 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 6 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 2 - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 3 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 3 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns Electrical characteristics STM32F405xx, STM32F407xx 148/185 DocID022152 Rev 4 Figure 63. PC Card/CompactFlash controller waveforms for common memory read access 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. Figure 64. PC Card/CompactFlash controller waveforms for common memory write access FSMC_NWE tw(NOE) FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2(1) FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NOE) tsu(D-NOE) th(NOE-D) tv(NCEx-A) td(NREG-NCEx) td(NIORD-NCEx) th(NCEx-AI) th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) ai14895b td(NCE4_1-NWE) tw(NWE) th(NWE-D) tv(NCE4_1-A) td(NREG-NCE4_1) td(NIORD-NCE4_1) th(NCE4_1-AI) MEMxHIZ =1 tv(NWE-D) th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) ai14896b FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) td(D-NWE) FSMC_NCE4_2 High DocID022152 Rev 4 149/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access 1. Only data bits 0...7 are read (bits 8...15 are disregarded). td(NCE4_1-NOE) tw(NOE) tsu(D-NOE) th(NOE-D) tv(NCE4_1-A) th(NCE4_1-AI) td(NREG-NCE4_1) th(NCE4_1-NREG) ai14897b FSMC_NWE FSMC_NOE FSMC_D[15:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NOE-NCE4_1) High Electrical characteristics STM32F405xx, STM32F407xx 150/185 DocID022152 Rev 4 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access 1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z). Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access tw(NWE) tv(NCE4_1-A) td(NREG-NCE4_1) th(NCE4_1-AI) th(NCE4_1-NREG) tv(NWE-D) ai14898b FSMC_NWE FSMC_NOE FSMC_D[7:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) High td(NCE4_1-NWE) td(NIORD-NCE4_1) tw(NIORD) tsu(D-NIORD) td(NIORD-D) tv(NCEx-A) th(NCE4_1-AI) ai14899B FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD DocID022152 Rev 4 151/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access td(NCE4_1-NIOWR) tw(NIOWR) tv(NCEx-A) th(NCE4_1-AI) th(NIOWR-D) ATTxHIZ =1 tv(NIOWR-D) ai14900c FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space(1)(2) Symbol Parameter Min Max Unit tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+4 - ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+0.5 ns td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK +0.5 ns tw(NOE) FSMC_NOE low width 8THCLK–1 8THCLK+1 ns td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+2.5 - ns tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4.5 - ns th(N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 3 - ns tw(NWE) FSMC_NWE low width 8THCLK–0.5 8THCLK+ 3 ns td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK–1 - ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK –1 - ns td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK –1 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Electrical characteristics STM32F405xx, STM32F407xx 152/185 DocID022152 Rev 4 NAND controller waveforms and timings Figure 69 through Figure 72 represent synchronous waveforms, and Table 85 and Table 86 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x01; • COM.FSMC_WaitSetupTime = 0x03; • COM.FSMC_HoldSetupTime = 0x02; • COM.FSMC_HiZSetupTime = 0x01; • ATT.FSMC_SetupTime = 0x01; • ATT.FSMC_WaitSetupTime = 0x03; • ATT.FSMC_HoldSetupTime = 0x02; • ATT.FSMC_HiZSetupTime = 0x01; • Bank = FSMC_Bank_NAND; • MemoryDataWidth = FSMC_MemoryDataWidth_16b; • ECC = FSMC_ECC_Enable; • ECCPageSize = FSMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2) Symbol Parameter Min Max Unit tw(NIOWR) FSMC_NIOWR low width 8THCLK –1 - ns tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK– 1 ns th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK– 2 - ns td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 2.5 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK–1.5 - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 2 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 1.5 - ns tw(NIORD) FSMC_NIORD low width 8THCLK–0.5 - ns tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9 - ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID022152 Rev 4 153/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 69. NAND controller waveforms for read access Figure 70. NAND controller waveforms for write access FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] tsu(D-NOE) th(NOE-D) ai14901c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tv(NWE-D) th(NWE-D) ai14902c FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NWE) th(NWE-ALE) Electrical characteristics STM32F405xx, STM32F407xx 154/185 DocID022152 Rev 4 Figure 71. NAND controller waveforms for common memory read access Figure 72. NAND controller waveforms for common memory write access Table 85. Switching characteristics for NAND Flash read cycles(1) 1. CL = 30 pF. Symbol Parameter Min Max Unit tw(N0E) FSMC_NOE low width 4THCLK– 0.5 4THCLK+ 3 ns tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 10 - ns th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 0 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK– 2 - ns FSMC_NWE FSMC_NOE FSMC_D[15:0] tw(NOE) tsu(D-NOE) th(NOE-D) ai14912c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tw(NWE) tv(NWE-D) th(NWE-D) ai14913c FSMC_NWE FSMC_NOE FSMC_D[15:0] td(D-NWE) ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) DocID022152 Rev 4 155/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.26 Camera interface (DCMI) timing specifications Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 13, with the following configuration: • PCK polarity: falling • VSYNC and HSYNC polarity: high • Data format: 14 bits Figure 73. DCMI timing diagram Table 86. Switching characteristics for NAND Flash write cycles(1) 1. CL = 30 pF. Symbol Parameter Min Max Unit tw(NWE) FSMC_NWE low width 4THCLK–1 4THCLK+ 3 ns tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK –2 - ns td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK–3 - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK–2 - ns Table 87. DCMI characteristics(1) Symbol Parameter Min Max Unit Frequency ratio DCMI_PIXCLK/fHCLK - 0.4 DCMI_PIXCLK Pixel clock input - 54 MHz Dpixel Pixel clock input duty cycle 30 70 % MS32414V1 Pixel clock tsu(VSYNC) tsu(HSYNC) HSYNC VSYNC DATA[0:13] 1/DCMI_PIXCLK th(HSYNC) th(HSYNC) tsu(DATA) th(DATA) Electrical characteristics STM32F405xx, STM32F407xx 156/185 DocID022152 Rev 4 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 88 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14 with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. Figure 74. SDIO high-speed mode tsu(DATA) Data input setup time 2.5 - ns th(DATA) Data hold time 1 - tsu(HSYNC), tsu(VSYNC) HSYNC/VSYNC input setup time 2 - th(HSYNC), th(VSYNC) HSYNC/VSYNC input hold time 0.5 - 1. Data based on characterization results, not tested in production. Table 87. DCMI characteristics(1) (continued) Symbol Parameter Min Max Unit tW(CKH) CK D, CMD (output) D, CMD (input) tC tW(CKL) tOV tOH tISU tIH tf tr ai14887 DocID022152 Rev 4 157/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 75. SD default mode 5.3.28 RTC characteristics CK D, CMD (output) tOVD tOHD ai14888 Table 88. Dynamic characteristics: SD / MMC characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode 0 48 MHz SDIO_CK/fPCLK2 frequency ratio - - 8/3 - tW(CKL) Clock low time fpp = 48 MHz 8.5 9 - ns tW(CKH) Clock high time fpp = 48 MHz 8.3 10 - CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp = 48 MHz 3 - - ns tIH Input hold time HS fpp = 48 MHz 0 - - CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp = 48 MHz - 4.5 6 ns tOH Output hold time HS fpp = 48 MHz 1 - - CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp = 24 MHz 1.5 - - ns tIHD Input hold time SD fpp = 24 MHz 0.5 - - CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp = 24 MHz - 4.5 7 ns tOHD Output hold default time SD fpp = 24 MHz 0.5 - - 1. Data based on characterization results, not tested in production. Table 89. RTC characteristics Symbol Parameter Conditions Min Max - fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register 4 - Package characteristics STM32F405xx, STM32F407xx 158/185 DocID022152 Rev 4 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID022152 Rev 4 159/185 STM32F405xx, STM32F407xx Package characteristics Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline Bump side Side view Detail A Wafer back side A1 ball location A1 Detail A rotated by 90 °C eee D A0JW_ME Seating plane A2 A b E e e1 e G F e2 Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.520 0.570 0.620 0.0205 0.0224 0.0244 A1 0.165 0.190 0.215 0.0065 0.0075 0.0085 A2 0.350 0.380 0.410 0.0138 0.015 0.0161 b 0.240 0.270 0.300 0.0094 0.0106 0.0118 D 4.178 4.218 4.258 0.1645 0.1661 0.1676 E 3.964 3.969 4.004 0.1561 0.1563 0.1576 e 0.400 0.0157 e1 3.600 0.1417 e2 3.200 0.126 F 0.312 0.0123 G 0.385 0.0152 eee 0.050 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F405xx, STM32F407xx 160/185 DocID022152 Rev 4 Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline 1. Drawing is not to scale. ai14398b A A2 A1 c L1 L E E1 D D1 e b Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 12.000 0.4724 D1 10.000 0.3937 E 12.000 0.4724 E1 10.000 0.3937 e 0.500 0.0197 θ 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 N Number of pins 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID022152 Rev 4 161/185 STM32F405xx, STM32F407xx Package characteristics Figure 78. LQFP64 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. 48 49 32 64 17 1 16 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909 Package characteristics STM32F405xx, STM32F407xx 162/185 DocID022152 Rev 4 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline 1. Drawing is not to scale. IDENTIFICATION e PIN 1 GAUGE PLANE 0.25 mm SEATING PLANE D D1 D3 E3 E1 E K ccc C C 1 25 100 26 76 75 51 50 1L_ME_V4 A2 A A1 L1 L c b A1 Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data(1) Symbol millimeters inches Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 12.000 0.4724 E 15.80v 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 12.000 0.4724 e 0.500 0.0197 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID022152 Rev 4 163/185 STM32F405xx, STM32F407xx Package characteristics Figure 80. LQFP100 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. 75 51 76 50 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 Package characteristics STM32F405xx, STM32F407xx 164/185 DocID022152 Rev 4 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline 1. Drawing is not to scale. D1 D3 D E3 E1 E e Pin 1 identification 73 72 37 36 109 144 108 1 A A2A1 b c A1 L L1 k Seating plane C ccc C 0.25 mm gage plane ME_1A Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 17.500 0.689 E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 17.500 0.6890 e 0.500 0.0197 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 DocID022152 Rev 4 165/185 STM32F405xx, STM32F407xx Package characteristics Figure 82. LQFP144 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max ai14905c 0.5 0.35 19.9 17.85 22.6 1.35 22.6 19.9 1 36 37 72 108 73 109 144 Package characteristics STM32F405xx, STM32F407xx 166/185 DocID022152 Rev 4 Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline 1. Drawing is not to scale. Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data Symbol millimeters inches(1) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.002 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 9.900 10.000 10.100 0.3898 0.3937 0.3976 E 9.900 10.000 10.100 0.3898 0.3937 0.3976 e 0.650 0.0256 F 0.425 0.450 0.475 0.0167 0.0177 0.0187 ddd 0.080 0.0031 eee 0.150 0.0059 fff 0.080 0.0031 A0E7_ME_V4 Seating plane A2 ddd C A1 A e F F e R A 15 1 BOTTOM VIEW E D TOP VIEW Øb (176 + 25 balls) B A Ø eee M B Ø fff M C C A C A1 ball identifier A1 ball index area DocID022152 Rev 4 167/185 STM32F405xx, STM32F407xx Package characteristics Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline 1. Drawing is not to scale. ccc C C Seating plane A A2 A1 c 0.25 mm gauge plane HD D A1 L L1 k 89 88 E HE 45 44 e 1 176 Pin 1 identification b 133 132 1T_ME ZD ZE Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 A2 1.350 1.450 0.0531 0.0060 b 0.170 0.270 0.0067 0.0106 C 0.090 0.200 0.0035 0.0079 D 23.900 24.100 0.9409 0.9488 E 23.900 24.100 0.9409 0.9488 e 0.500 0.0197 HD 25.900 26.100 1.0200 1.0276 HE 25.900 26.100 1.0200 1.0276 L 0.450 0.750 0.0177 0.0295 L1 1.000 0.0394 ZD 1.250 0.0492 ZE 1.250 0.0492 Package characteristics STM32F405xx, STM32F407xx 168/185 DocID022152 Rev 4 Figure 85. LQFP176 recommended footprint 1. Dimensions are expressed in millimeters. ccc 0.080 0.0031 k 0 ° 7 ° 0 ° 7 ° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max 1T_FP_V1 133 132 1.2 0.3 0.5 89 88 1.2 44 45 21.8 26.7 1 176 26.7 21.8 DocID022152 Rev 4 169/185 STM32F405xx, STM32F407xx Package characteristics 6.2 Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Table 96. Package thermal characteristics Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 46 °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 43 Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch 38 Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.65 mm pitch 39 Thermal resistance junction-ambient WLCSP90 - 0.400 mm pitch 38.1 Part numbering STM32F405xx, STM32F407xx 170/185 DocID022152 Rev 4 7 Part numbering For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 97. Ordering information scheme Example: STM32 F 405 R E T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 405 = STM32F40x, connectivity 407= STM32F40x, connectivity, camera interface, Ethernet Pin count R = 64 pins O = 90 pins V = 100 pins Z = 144 pins I = 176 pins Flash memory size E = 512 Kbytes of Flash memory G = 1024 Kbytes of Flash memory Package T = LQFP H = UFBGA Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and reel DocID022152 Rev 4 171/185 STM32F405xx, STM32F407xx Application block diagrams Appendix A Application block diagrams A.1 USB OTG full speed (FS) interface solutions Figure 86. USB controller configured as peripheral-only and used in Full speed mode 1. External voltage regulator only needed when building a VBUS powered device. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. Figure 87. USB controller configured as host-only and used in full speed mode 1. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. STM32F4xx 5V to VDD Volatge regulator (1) VDD VBUS DP VSS PA12/PB15 PA11//PB14 USB Std-B connector DM OSC_IN OSC_OUT MS19000V5 STM32F4xx VDD VBUS DP VSS USB Std-A connector DM GPIO+IRQ GPIO EN Overcurrent 5 V Pwr OSC_IN OSC_OUT MS19001V4 Current limiter power switch(1) PA12/PB15 PA11//PB14 Application block diagrams STM32F405xx, STM32F407xx 172/185 DocID022152 Rev 4 Figure 88. USB controller configured in dual mode and used in full speed mode 1. External voltage regulator only needed when building a VBUS powered device. 2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 3. The ID pin is required in dual role only. 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. STM32F4xx VDD VBUS DP VSS PA9/PB13 PA12/PB15 PA11/PB14 USB micro-AB connector DM GPIO+IRQ GPIO EN Overcurrent 5 V Pwr 5 V to VDD voltage regulator (1) VDD ID(3) PA10/PB12 OSC_IN OSC_OUT MS19002V3 Current limiter power switch(2) DocID022152 Rev 4 173/185 STM32F405xx, STM32F407xx Application block diagrams A.2 USB OTG high speed (HS) interface solutions Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode 1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection. 2. The ID pin is required in dual role only. DP STM32F4xx DM VBUS VSS DM DP ID(2) USB USB HS OTG Ctrl FS PHY ULPI High speed OTG PHY ULPI_CLK ULPI_D[7:0] ULPI_DIR ULPI_STP ULPI_NXT not connected connector MCO1 or MCO2 24 or 26 MHz XT(1) PLL XT1 XI MS19005V2 Application block diagrams STM32F405xx, STM32F407xx 174/185 DocID022152 Rev 4 A.3 Ethernet interface solutions Figure 90. MII mode using a 25 MHz crystal 1. fHCLK must be greater than 25 MHz. 2. Pulse per second when using IEEE1588 PTP optional signal. Figure 91. RMII with a 50 MHz oscillator 1. fHCLK must be greater than 25 MHz. MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK XT1 PHY_CLK 25 MHz MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER MII_TX_CLK MII_TX_EN MII_TXD[3:0] MII_CRS MII_COL MDIO MDC HCLK(1) PPS_OUT(2) XTAL 25 MHz STM32 OSC TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP MII = 15 pins MII + MDC = 17 pins MS19968V1 MCO1/MCO2 MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK PHY_CLK 50 MHz XT1 RMII_RXD[1:0] RMII_CRX_DV RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] MDIO MDC HCLK(1) STM32 OSC 50 MHz TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP RMII = 7 pins RMII + MDC = 9 pins MS19969V1 /2 or /20 2.5 or 25 MHz synchronous 50 MHz 50 MHz DocID022152 Rev 4 175/185 STM32F405xx, STM32F407xx Application block diagrams Figure 92. RMII with a 25 MHz crystal and PHY with PLL 1. fHCLK must be greater than 25 MHz. 2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block. MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK PHY_CLK 25 MHz XT1 RMII_RXD[1:0] RMII_CRX_DV RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] MDIO MDC HCLK(1) STM32F TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP RMII = 7 pins RMII + MDC = 9 pins MS19970V1 /2 or /20 2.5 or 25 MHz synchronous 50 MHz XTAL 25 MHz OSC PLL REF_CLK MCO1/MCO2 Revision history STM32F405xx, STM32F407xx 176/185 DocID022152 Rev 4 8 Revision history Table 98. Document revision history Date Revision Changes 15-Sep-2011 1 Initial release. 24-Jan-2012 2 Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Figure 3: Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and Figure 4: Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages, and removed note 1 and 2. Updated Section 2.2.9: Flexible static memory controller (FSMC). Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in Section 2.2.13: Boot modes. Updated note in Section 2.2.14: Power supply schemes. PDR_ON no more available on LQFP100 package. Updated Section 2.2.16: Voltage regulator. Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in Table 5: USART feature comparison. Removed support of I2C for OTG PHY in Section 2.2.30: Universal serial bus on-the-go full-speed (OTG_FS). Added Table 6: Legend/abbreviations used in the pinout table. Table 7: STM32F40x pin and ball definitions: replaced VSS_3, VSS_4, and VSS_8 by VSS; reformatted Table 7: STM32F40x pin and ball definitions to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to VSS; EVENTOUT added in the list of alternate functions for all I/Os; ADC3_IN8 added as alternate function for PF10; FSMC_CLE and FSMC_ALE added as alternate functions for PD11 and PD12, respectively; PH10 alternate function TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7: STM32F40x pin and ball definitions and Table 9: Alternate function mapping. Changed TCM data RAM to CCM data RAM in Figure 18: STM32F40x memory map. Added IVDD and IVSS maximum values in Table 12: Current characteristics. Added Note 1 related to fHCLK, updated Note 2 in Table 14: General operating conditions, and added maximum power dissipation values. Updated Table 15: Limitations depending on the operating power supply range. DocID022152 Rev 4 177/185 STM32F405xx, STM32F407xx Revision history 24-Jan-2012 2 (continued) Added V12 in Table 19: Embedded reset and power control block characteristics. Updated Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure , Figure 25, Figure 26, and Figure 27. Updated Table 22: Typical and maximum current consumption in Sleep mode and removed Note 1. Updated Table 23: Typical and maximum current consumptions in Stop mode and Table 24: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in VBAT mode, and Table 26: Switching output I/O current consumption. Section : On-chip peripheral current consumption: modified conditions, and updated Table 27: Peripheral current consumption and Note 2. Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in Table 29: High-speed external user clock characteristics. Added Cin(LSE) in Table 30: Low-speed external user clock characteristics. Updated maximum PLL input clock frequency, removed related note, and deleted jitter for MCO for RMII Ethernet typical value in Table 35: Main PLL characteristics. Updated maximum PLLI2S input clock frequency and removed related note in Table 36: PLLI2S (audio PLL) characteristics. Updated Section : Flash memory to specify that the devices are shipped to customers with the Flash memory erased. Updated Table 38: Flash memory characteristics, and added tME in Table 39: Flash memory programming. Updated Table 42: EMS characteristics, and Table 43: EMI characteristics. Updated Table 56: I2S dynamic characteristics Updated Figure 46: ULPI timing diagram and Table 62: ULPI timing. Added tCOUNTER and tMAX_COUNT in Table 51: Characteristics of TIMx connected to the APB1 domain and Table 52: Characteristics of TIMx connected to the APB2 domain. Updated Table 65: Dynamic characteristics: Ethernet MAC signals for RMII. Removed USB-IF certification in Section : USB OTG FS characteristics. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 178/185 DocID022152 Rev 4 24-Jan-2012 2 (continued) Updated Table 61: USB HS clock timing parameters Updated Table 67: ADC characteristics. Updated Table 68: ADC accuracy at fADC = 30 MHz. Updated Note 1 in Table 74: DAC characteristics. Section 5.3.25: FSMC characteristics: updated Table 75 toTable 86, changed CL value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 60: Synchronous multiplexed PSRAM write timings. Updated Table 96: Package thermal characteristics. Appendix A.1: USB OTG full speed (FS) interface solutions: modified Figure 86: USB controller configured as peripheral-only and used in Full speed mode added Note 2, updated Figure 87: USB controller configured as host-only and used in full speed mode and added Note 2, changed Figure 88: USB controller configured in dual mode and used in full speed mode and added Note 3. Appendix A.2: USB OTG high speed (HS) interface solutions: removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode, and updated Figure 89: USB controller configured as peripheral, host, or dual-mode and used in high speed mode and added Note 2. Added Appendix A.3: Ethernet interface solutions. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 179/185 STM32F405xx, STM32F407xx Revision history 31-May-2012 3 Updated Figure 5: STM32F40x block diagram and Figure 7: Power supply supervisor interconnection with internal reset OFF Added SDIO, added notes related to FSMC and SPI/I2S in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Starting from Silicon revision Z, USB OTG full-speed interface is now available for all STM32F405xx devices. Added full information on WLCSP90 package together with corresponding part numbers. Changed number of AHB buses to 3. Modified available Flash memory sizes in Section 2.2.4: Embedded Flash memory. Modified number of maskable interrupt channels in Section 2.2.10: Nested vectored interrupt controller (NVIC). Updated case of Regulator ON/internal reset ON, Regulator ON/internal reset OFF, and Regulator OFF/internal reset ON in Section 2.2.16: Voltage regulator. Updated standby mode description in Section 2.2.19: Low-power modes. Added Note 1 below Figure 16: STM32F40x UFBGA176 ballout. Added Note 1 below Figure 17: STM32F40x WLCSP90 ballout. Updated Table 7: STM32F40x pin and ball definitions. Added Table 8: FSMC pin definition. Removed OTG_HS_INTN alternate function in Table 7: STM32F40x pin and ball definitions and Table 9: Alternate function mapping. Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function mapping. Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping. Added Table 10: STM32F40x register boundary addresses. Updated Figure 18: STM32F40x memory map. Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power supply scheme. Added power dissipation maximum value for WLCSP90 in Table 14: General operating conditions. Updated VPOR/PDR in Table 19: Embedded reset and power control block characteristics. Updated notes in Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, and Table 22: Typical and maximum current consumption in Sleep mode. Updated maximum current consumption at TA = 25 °n Table 23: Typical and maximum current consumptions in Stop mode. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 180/185 DocID022152 Rev 4 31-May-2012 3 (continued) Removed fHSE_ext typical value in Table 29: High-speed external user clock characteristics. Updated Table 31: HSE 4-26 MHz oscillator characteristics and Table 32: LSE oscillator characteristics (fLSE = 32.768 kHz). Added fPLL48_OUT maximum value in Table 35: Main PLL characteristics. Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated Table 38: Flash memory characteristics, Table 39: Flash memory programming, and Table 40: Flash memory programming with VPP. Updated Section : Output driving current. Table 53: I2C characteristics: Note 4 updated and applied to th(SDA) in Fast mode, and removed note 4 related to th(SDA) minimum value. Updated Table 67: ADC characteristics. Updated note concerning ADC accuracy vs. negative injection current below Table 68: ADC accuracy at fADC = 30 MHz. Added WLCSP90 thermal resistance in Table 96: Package thermal characteristics. Updated Table 90: WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data. Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data. Added Figure 85: LQFP176 recommended footprint. Removed 256 and 768 Kbyte Flash memory density from Table 97: Ordering information scheme. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 181/185 STM32F405xx, STM32F407xx Revision history 04-Jun-2013 4 Modified Note 1 below Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Figure 4 title. Updated Note 3 below Figure 21: Power supply scheme. Changed simplex mode into half-duplex mode in Section 2.2.25: Interintegrated sound (I2S). Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively. Updated pin 36 signal in Figure 15: STM32F40x LQFP176 pinout. Changed pin number from F8 to D4 for PA13 pin in Table 7: STM32F40x pin and ball definitions. Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5 pins in Table 9: Alternate function mapping. Changed system memory into System memory + OTP in Figure 18: STM32F40x memory map. Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions. Updated IDDA description in Table 74: DAC characteristics. Removed PA9/PB13 connection to VBUS in Figure 86: USB controller configured as peripheral-only and used in Full speed mode and Figure 87: USB controller configured as host-only and used in full speed mode. Updated SPI throughput on front page and Section 2.2.24: Serial peripheral interface (SPI) Updated operating voltages in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts Updated note in Section 2.2.14: Power supply schemes Updated Section 2.2.15: Power supply supervisor Updated “Regulator ON” paragraph in Section 2.2.16: Voltage regulator Removed note in Section 2.2.19: Low-power modes Corrected wrong reference manual in Section 2.2.28: Ethernet MAC interface with dedicated DMA and IEEE 1588 support Updated Table 15: Limitations depending on the operating power supply range Updated Table 24: Typical and maximum current consumptions in Standby mode Updated Table 25: Typical and maximum current consumptions in VBAT mode Updated Table 36: PLLI2S (audio PLL) characteristics Updated Table 43: EMI characteristics Updated Table 48: Output voltage characteristics Updated Table 50: NRST pin characteristics Updated Table 55: SPI dynamic characteristics Updated Table 56: I2S dynamic characteristics Deleted Table 59 Updated Table 62: ULPI timing Updated Figure 47: Ethernet SMI timing diagram Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 182/185 DocID022152 Rev 4 04-Jun-2013 4 (continued) Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline Updated Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data Updated Figure 5: STM32F40x block diagram Updated Section 2: Description Updated footnote (3) in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts Updated Figure 3: Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package Updated Figure 4: Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages Updated Section 2.2.14: Power supply schemes Updated Section 2.2.15: Power supply supervisor Updated Section 2.2.16: Voltage regulator, including figures. Updated Table 14: General operating conditions, including footnote (2). Updated Table 15: Limitations depending on the operating power supply range, including footnote (3). Updated footnote (1) in Table 67: ADC characteristics. Updated footnote (3) in Table 68: ADC accuracy at fADC = 30 MHz. Updated footnote (1) in Table 74: DAC characteristics. Updated Figure 9: Regulator OFF. Updated Figure 7: Power supply supervisor interconnection with internal reset OFF. Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF availability. Updated footnote (2) of Figure 21: Power supply scheme. Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by “I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate function mapping. Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14, PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F40x pin and ball definitions. Removed the following sentence from Section : I2C interface characteristics: ”Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 14.”. In Table 7: STM32F40x pin and ball definitions on page 45: – For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1, RTC_TS” – for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2, RTC_TS”. – for pin PB15, added RTC_REFIN in Alternate functions column. In Table 9: Alternate function mapping on page 60, for port PB15, replaced “RTC_50Hz” by “RTC_REFIN”. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 183/185 STM32F405xx, STM32F407xx Revision history 04-Jun-2013 4 (continued) Updated Figure 6: Multi-AHB matrix. Updated Figure 7: Power supply supervisor interconnection with internal reset OFF Changed 1.2 V to V12 in Section : Regulator OFF Updated LQFP176 pin 48. Updated Section 1: Introduction. Updated Section 2: Description. Updated operating voltage in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Note 1. Updated Section 2.2.15: Power supply supervisor. Updated Section 2.2.16: Voltage regulator. Updated Figure 9: Regulator OFF. Updated Table 3: Regulator ON/OFF and internal reset ON/OFF availability. Updated Section 2.2.19: Low-power modes. Updated Section 2.2.20: VBAT operation. Updated Section 2.2.22: Inter-integrated circuit interface (I²C) . Updated pin 48 in Figure 15: STM32F40x LQFP176 pinout. Updated Table 6: Legend/abbreviations used in the pinout table. Updated Table 7: STM32F40x pin and ball definitions. Updated Table 14: General operating conditions. Updated Table 15: Limitations depending on the operating power supply range. Updated Section 5.3.7: Wakeup time from low-power mode. Updated Table 33: HSI oscillator characteristics. Updated Section 5.3.15: I/O current injection characteristics. Updated Table 47: I/O static characteristics. Updated Table 50: NRST pin characteristics. Updated Table 53: I2C characteristics. Updated Figure 39: I2C bus AC waveforms and measurement circuit. Updated Section 5.3.19: Communications interfaces. Updated Table 67: ADC characteristics. Added Table 70: Temperature sensor calibration values. Added Table 73: Internal reference voltage calibration values. Updated Section 5.3.25: FSMC characteristics. Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics. Updated Table 23: Typical and maximum current consumptions in Stop mode. Updated Section : SPI interface characteristics included Table 55. Updated Section : I2S interface characteristics included Table 56. Updated Table 64: Dynamic characteristics: Ehternet MAC signals for SMI. Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 184/185 DocID022152 Rev 4 04-Jun-2013 4 (continued) Updated Table 64: Dynamic characteristics: Ehternet MAC signals for SMI. Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII. Updated Table 79: Synchronous multiplexed NOR/PSRAM read timings. Updated Table 80: Synchronous multiplexed PSRAM write timings. Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read timings. Updated Table 82: Synchronous non-multiplexed PSRAM write timings. Updated Section 5.3.26: Camera interface (DCMI) timing specifications including Table 87: DCMI characteristics and addition of Figure 73: DCMI timing diagram. Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics including Table 88. Updated Chapter Figure 9. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 185/185 STM32F405xx, STM32F407xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com STM32F030x4 STM32F030x6 STM32F030x8 Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation Datasheet target specification Features  Core: ARM® 32-bit Cortex™-M0 CPU, frequency up to 48 MHz  Memories – 16 to 64 Kbytes of Flash memory – 4 to 8 Kbytes of SRAM with HW parity checking  CRC calculation unit  Reset and power management – Voltage range: 2.4 V to 3.6 V – Power-on/Power down reset (POR/PDR) – Low power modes: Sleep, Stop, Standby  Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator  Up to 55 fast I/Os – All mappable on external interrupt vectors – Up to 36 I/Os with 5 V tolerant capability  5-channel DMA controller  1 x 12-bit, 1.0 μs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply from 2.4 up to 3.6 V  Up to 10 timers – One 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop – One 16-bit timer, with up to 4 IC/OC, usable for IR control decoding – One 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop – Two 16-bit timers, each with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control – One 16-bit timer with 1 IC/OC – One 16-bit basic timer – Independent and system watchdog timers – SysTick timer: 24-bit downcounter  Calendar RTC with alarm and periodic wakeup from Stop/Standby  Communication interfaces – Up to two I2C interfaces: one supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink – Up to two USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection – Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frame  Serial wire debug (SWD) Table 1. Device summary Reference Part number STM32F030x4 STM32F030F4 STM32F030x6 STM32F030C6, STM32F030K6 STM32F030x8 STM32F030C8, STM32F030R8 LQFP48 7x7 mm LQFP64 10x10 mm LQFP32 7x7 mm TSSOP20 www.st.com Contents STM32F030x4 STM32F030x6 STM32F030x8 2/88 DocID024849 Rev 1 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19 3.11.3 Basic timer TIM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver transmitters (USART) . . 22 DocID024849 Rev 1 3/88 STM32F030x4 STM32F030x6 STM32F030x8 Contents 4 3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 41 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Contents STM32F030x4 STM32F030x6 STM32F030x8 4/88 DocID024849 Rev 1 7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 83 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID024849 Rev 1 5/88 STM32F030x4 STM32F030x6 STM32F030x8 List of tables 6 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F030x device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7. STM32F030x I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 8. STM32F030x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 9. STM32F030x SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 11. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 12. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31 Table 13. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32 Table 14. STM32F030x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 17. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 19. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 20. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 22. Typical and maximum current consumption from VDD supply at VDD = 3.6 . . . . . . . . . . . 43 Table 23. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 43 Table 24. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 44 Table 25. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 44 Table 26. Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 27. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 31. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 33. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 34. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 35. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 36. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 37. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 38. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 39. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 40. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 41. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 42. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 43. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 44. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 45. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 46. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 47. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 List of tables STM32F030x4 STM32F030x6 STM32F030x8 6/88 DocID024849 Rev 1 Table 48. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 49. RAIN max for fADC = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 50. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 51. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 52. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 53. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 54. WWDG min-max timeout value @48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 55. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 56. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 57. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 58. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . . 75 Table 59. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 77 Table 60. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 79 Table 61. TSSOP20 – 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 81 Table 62. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 63. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 64. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID024849 Rev 1 7/88 STM32F030x4 STM32F030x6 STM32F030x8 List of figures 7 List of figures Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 3. LQFP64 64-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5. LQFP32 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 6. TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 7. STM32F030x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 12. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 13. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 14. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 15. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 16. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 17. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 18. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 19. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 20. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 21. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 22. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 23. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 24. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 25. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 26. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75 Figure 27. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 28. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 77 Figure 29. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 30. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 79 Figure 31. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 32. TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 33. TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 34. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Introduction STM32F030x4 STM32F030x6 STM32F030x8 8/88 DocID024849 Rev 1 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F030x microcontrollers. This STM32F030x4, STM32F030x6, and STM32F030x8 datasheet should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM Cortex™-M0 core, please refer to the Cortex™-M0 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html. DocID024849 Rev 1 9/88 STM32F030x4 STM32F030x6 STM32F030x8 Description 11 2 Description The STM32F030x microcontroller incorporates the high-performance ARM Cortex™-M0 32- bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 64 Kbytes of Flash memory and up to 8 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs, up to two SPIs, and up to two USARTs), one 12-bit ADC, up to 6 general-purpose 16-bit timers and an advanced-control PWM timer. The STM32F030x microcontroller operates in the -40 to +85 °C temperature range, from a 2.4 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F030x microcontroller includes devices in four different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F030x peripherals proposed. These features make the STM32F030x microcontroller suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming platforms, e-bikes, consumer appliances, printers, scanners, alarm systems, video intercoms, and HVACs. Description STM32F030x4 STM32F030x6 STM32F030x8 10/88 DocID024849 Rev 1 Table 2. STM32F030x device features and peripheral counts Peripheral STM32F030F4 STM32F030K6 STM32F030C6/C8 STM32F030R8 Flash (Kbytes) 16 32 32 64 64 SRAM (Kbytes) 4 4 4 8 8 Timers Advanced control 1 (16-bit) General purpose 4 (16-bit)(1) 4 (16-bit)(1) 4 (16-bit)(1) 5 (16-bit) 5 (16-bit) Basic - - - 1 (16-bit) 1 (16-bit) Comm. interfaces SPI 1(2) 1(2) 1(2) 2 2 I2C 1(3) 1(3) 1(3) 2 2 USART 1(4) 1(4) 1(4) 2 2 12-bit synchronized ADC (number of channels) 1 (11 channels) 1 (12 channels) 1 (12 channels) 1 (18 channels) GPIOs 15 26 39 55 Max. CPU frequency 48 MHz Operating voltage 2.4 to 3.6 V Operating temperature Ambient operating temperature: -40 °C to 85 °C Packages TSSOP20 LQFP32 LQFP48 LQFP64 1. TIM15 is not present. 2. SPI2 is not present. 3. I2C2 is not present. 4. USART2 is not present. DocID024849 Rev 1 11/88 STM32F030x4 STM32F030x6 STM32F030x8 Description 11 Figure 1. Block diagram 1. TIMER6, TIMER15, SPI2, USART2 and I2C2 are available on STM32F030x8 devices only. MSv32137V1 4 channels 3 compl. channels BRK, ETR input as AF 4 ch., ETR as AF 1 channel as AF 2 channels 1 compl, BRK as AF 1 channel 1 compl, BRK as AF 1 channel 1 compl, BRK as AF IR_OUT as AF RX, TX,CTS, RTS, CK as AF RX, TX,CTS, RTS, CK as AF SCL, SDA, SMBA (20 mA for FM+) as AF SCL, SDA as AF @ VDD @ VDDA AHBPCLK APBPCLK ADCCLK USARTCLK HCLK PA[15:0] FCLK PB[15:0] PC[15:0] PD2 PF[1:0] PF[7:4] @ VDDA 55 AF MOSI, MISO, SCK, NSS as AF VDDA VSSA GP DMA 5 channels CORTEX-M0 CPU fHCLK = 48 MHz Serial Wire Debug NVIC GPIO port A GPIO port B GPIO port C GPIO port D GPIO port F EXT. IT WKUP SPI1 SPI2 SYSCFG IF TIMER 6 DBGMCU WWDG APB AHB CRC RESET & CLOCK CONTROL TIMER 1 TIMER 3 TIMER 14 TIMER 15 TIMER 16 TIMER 17 USART1 USART2 I2C 1 I2C2 Power Controller XTAL OSC 4-32 MHz IWDG SUPPLY SUPERVISION POR/PDR POWER VOLT.REG 3.3 V TO 1.8 V RC HS 14 MHz RC HS 8 MHz RC LS PLL Flash interface Flash up to 64 KB, 32 bits Obl SRAM 4 / 8 KB Temp. sensor 12-bit IF ADC1 SWCLK SWDIO as AF MOSI/MISO, SCK/NSS, as AF 16 AD inputs Bus matrix @ VDDA @ VDD VDD18 POR Reset Int VDD = 2.4 to 3.6 V VSS NRST VDDA VDD OSC_IN (PF0) OSC_OUT (PF1) OSC32_IN (PC14) OSC32_OUT (PC15) TAMPER-RTC (ALARM OUT) RTC RTC interface XTAL32 kHz @ VDD SRAM controller AHB decoder Functional overview STM32F030x4 STM32F030x6 STM32F030x8 12/88 DocID024849 Rev 1 3 Functional overview 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM The ARM Cortex™-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features:  Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications.  The non-volatile memory is divided into two arrays: – 16 to 64 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot in RAM selection disabled 3.3 Boot modes At startup, the boot pin and boot selector option bit are used to select one of three boot options:  Boot from User Flash  Boot from System Memory  Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10. DocID024849 Rev 1 13/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.4 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes  VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VDDA = 2.4 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.  The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD.  The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. 3.5.3 Voltage regulator The regulator has three operating modes: main (MR), low power (LPR) and power down.  MR is used in normal operating mode (Run)  LPR can be used in Stop mode where the power demand is reduced  Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. Functional overview STM32F030x4 STM32F030x6 STM32F030x8 14/88 DocID024849 Rev 1 3.5.4 Low-power modes The STM32F030x microcontroller supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:  Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.  Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines or the RTC alarm.  Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for the Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. DocID024849 Rev 1 15/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 Figure 2. Clock tree 1. LSI/LSE is not available on STM32F030x8 devices. /32 4-32 MHz HSE OSC OSC_IN OSC_OUT OSC32_IN OSC32_OUT 8 MHz HSI RC to IWDG PLL x2,x3,.. x16 PLLMUL MCO Main clock output AHB /2 PLLCLK HSI HSE APB prescaler /1,2,4,8,16 ADC Prescaler /2,4 HCLK PLLCLK to AHB bus, core, memory and DMA to ADC 14 MHz max LSE LSI HSI HSI HSE to RTC PLLSRC SW MCO /8 SYSCLK RTCCLK RTCSEL[1:0] SYSCLK to TIM1,3,6, 14,15,16,17 If (APB1 prescaler =1) x1 else x2 FLITFCLK to Flash programming interface HSI14 14 MHz HSI14 RC HSI14 /244 LSE to I2C1 to USART1 LSE HSI SYSCLK /2 PCLK SYSCLK HSI PCLK MS32138V1 to cortex System timer FHCLK Cortex free running clock to APB peripherals AHB prescaler /1,2,..512 /1,2, CSS 3,..16 LSE OSC 32.768kHz LSI RC 40kHz LSI LSE (1) (1) Functional overview STM32F030x4 STM32F030x6 STM32F030x8 16/88 DocID024849 Rev 1 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M0) and 4 priority levels.  Closely coupled NVIC gives low latency interrupt processing  Interrupt entry vector table address passed directly to the core  Closely coupled NVIC core interface  Allows early processing of interrupts  Processing of late arriving higher priority interrupts  Support for tail-chaining  Processor state automatically saved  Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines. DocID024849 Rev 1 17/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.10 Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and 2 internal (temperature sensor/voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. 3.10.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 Table 4. Internal voltage reference calibration values Calibration value name Description Memory address VREFINT_CAL Raw data acquired at temperature of 30 °C VDDA= 3.3 V 0x1FFF F7BA - 0x1FFF F7BB Functional overview STM32F030x4 STM32F030x6 STM32F030x8 18/88 DocID024849 Rev 1 3.11 Timers and watchdogs Devices of the STM32F0xx family include up to six general-purpose timers, one basic timer and an advanced control timer. Table 5 compares the features of the advanced-control, general-purpose and basic timers. 3.11.1 Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:  Input capture  Output compare  PWM generation (edge or center-aligned modes)  One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes General purpose TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM15(1) 16-bit Up Any integer between 1 and 65536 Yes 2 Yes TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes Basic TIM6(1) 16-bit Up Any integer between 1 and 65536 Yes 0 No 1. Available on STM32F030x8 devices only. DocID024849 Rev 1 19/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.11.2 General-purpose timers (TIM3, TIM14..17) There are five synchronizable general-purpose timers embedded in the STM32F030x devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM3 STM32F030x devices feature a synchronizable 4-channel general-purpose timer based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 features 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. It provides independent DMA request generation. The TIM3 timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Its counter can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.11.3 Basic timer TIM6 This timer is mainly used as a generic 16-bit time base. 3.11.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free Functional overview STM32F030x4 STM32F030x6 STM32F030x8 20/88 DocID024849 Rev 1 running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.11.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:  A 24-bit down counter  Autoreload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source (HCLK or HCLK/8) 3.12 Real-time clock (RTC) The RTC is an independent BCD timer/counter. Its main features are the following:  Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format  Automatically correction for 28, 29 (leap year), 30, and 31 day of the month  Programmable alarm with wake up from Stop and Standby mode capability  On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.  Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy  2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.  Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.  Periodic wakeup from Stop/Standby  Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be:  A 32.768 kHz external crystal  A resonator or oscillator  The internal low-power RC oscillator (typical frequency of 40 kHz)  The high-speed external clock divided by 32 DocID024849 Rev 1 21/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.13 Inter-integrated circuit interfaces (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. The I2C interfaces can be served by the DMA controller. Refer to Table 7 for the differences between I2C1 and I2C2. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes  50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. Table 7. STM32F030x I2C implementation I2C features(1) 1. X = supported. I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X - SMBus X - Functional overview STM32F030x4 STM32F030x6 STM32F030x8 22/88 DocID024849 Rev 1 3.14 Universal synchronous/asynchronous receiver transmitters (USART) The device embeds up to two universal synchronous/asynchronous receiver transmitters (USART1 and USART2), which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS and RTS signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. The USART1 supports also auto baud rate feature. The USART interfaces can be served by the DMA controller. Refer to Table 8 for the differences between USART1 and USART2. 3.15 Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Refer to Table 9 for the differences between SPI1 and SPI2. 3.16 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. Table 8. STM32F030x USART implementation USART modes/features(1) 1. X = supported. USART1 USART2 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Single-wire half-duplex communication X X Receiver timeout interrupt X - Auto baud rate detection X - Table 9. STM32F030x SPI implementation SPI features(1) 1. X = supported. SPI1 SPI2 Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X TI mode X X DocID024849 Rev 1 23/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 4 Pinouts and pin descriptions Figure 3. LQFP64 64-pin package pinout 1. The above figure shows the package top view. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD PC14/OSC32_IN PF0/OSC_IN NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 VDD PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 PF4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 LQFP64 PC13 MS32729V1 PF5 VSS VDD VSS PF1/OSC_OUT PC15/OSC32_OUT Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 24/88 DocID024849 Rev 1 Figure 4. LQFP48 48-pin package pinout 1. The above figure shows the package top view. Figure 5. LQFP32 32-pin package pinout 1. The above figure shows the package top view. 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 23 24 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 48 47 46 45 LQFP48 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 VDD NRST VSSA VDDA PA0 PA1 PA2 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 MS32730V1 PC13 PC14/OSC32_IN PF0/OSC_IN PF1/OSC_OUT PC15/OSC32_OUT MS32144V1 32 31 30 29 28 27 26 25 24 23 22 20 19 18 8 17 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 LQFP32 PA3 PA4 PA5 PA6 PA7 PB0 PB1 VSS PA14 PA13 PA12 PA11 PA10 PA9 PA8 VDD NRST VDDA PA0 PA1 PA2 VSS BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PF0/OSC_IN PF1/OSC_OUT VDD 21 DocID024849 Rev 1 25/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 Figure 6. TSSOP20 package pinout 1. The above figure shows the package top view. MS32731V1 1 20 10 11 19 18 17 16 15 12 13 14 2 3 4 5 6 7 8 9 PF0/OSC_IN BOOT0 PF1/OSC_OUT NRST VDDA PA0 PA9 VDD PA14 PA6 PA7 PB1 VSS PA1 PA2 PA3 PA4 PA5 PA13 PA10 Table 10. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin I/O structure FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Pin functions Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 26/88 DocID024849 Rev 1 Table 11. Pin definitions Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions 1 1 - - VDD S Complementary power supply 2 2 - - PC13 I/O TC (1) - RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2 3 3 - - PC14-OSC32_IN (PC14) I/O TC (1) - OSC32_IN 4 4 - - PC15-OSC32_OUT (PC15) I/O TC (1) - OSC32_OUT 5 5 2 2 PF0-OSC_IN (PF0) I/O FT - OSC_IN 6 6 3 3 PF1-OSC_OUT (PF1) I/O FT - OSC_OUT 7 7 4 4 NRST I/O RST Device reset input / internal reset output (active low) 8 - - - PC0 I/O TTa EVENTOUT ADC_IN10 9 - - - PC1 I/O TTa EVENTOUT ADC_IN11 10 - - - PC2 I/O TTa EVENTOUT ADC_IN12 11 - - - PC3 I/O TTa EVENTOUT ADC_IN13 12 8 - - VSSA S Analog ground 13 9 5 5 VDDA S Analog power supply 14 10 6 6 PA0 I/O TTa USART1_CTS(2), USART2_CTS(3) ADC_IN0, RTC_TAMP2, WKUP1 15 11 7 7 PA1 I/O TTa USART1_RTS(2), USART2_RTS(3), EVENTOUT ADC_IN1 16 12 8 8 PA2 I/O TTa USART1_TX(2), USART2_TX(3), TIM15_CH1(3) ADC_IN2 17 13 9 9 PA3 I/O TTa USART1_RX(2), USART2_RX(3), TIM15_CH2(3) ADC_IN3 18 - - - PF4 I/O FT EVENTOUT - 19 - - - PF5 I/O FT EVENTOUT - DocID024849 Rev 1 27/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 20 14 10 10 PA4 I/O TTa SPI1_NSS, USART1_CK(2) USART2_CK(3), TIM14_CH1 ADC_IN4 21 15 11 11 PA5 I/O TTa SPI1_SCK ADC_IN5 22 16 12 12 PA6 I/O TTa SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT ADC_IN6 23 17 13 13 PA7 I/O TTa SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT ADC_IN7 24 - - - PC4 I/O TTa EVENTOUT ADC_IN14 25 - - - PC5 I/O TTa - ADC_IN15 26 18 14 - PB0 I/O TTa TIM3_CH3, TIM1_CH2N, EVENTOUT ADC_IN8 27 19 15 14 PB1 I/O TTa TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9 28 20 - - PB2 I/O FT (4) - - 29 21 - - PB10 I/O FT I2C1_SCL(2), I2C2_SCL(3) - 30 22 - - PB11 I/O FT I2C1_SDA(2), I2C2_SDA(3), EVENTOUT - 31 23 16 - VSS S Ground 32 24 17 16 VDD S Digital power supply 33 25 - - PB12 I/O FT SPI1_NSS(2), SPI2_NSS(3), TIM1_BKIN, EVENTOUT - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 28/88 DocID024849 Rev 1 34 26 - - PB13 I/O FT SPI1_SCK(2), SPI2_SCK(3), TIM1_CH1N - 35 27 - - PB14 I/O FT SPI1_MISO(2), SPI2_MISO(3), TIM1_CH2N, TIM15_CH1(3) - 36 28 - - PB15 I/O FT SPI1_MOSI(2), SPI2_MOSI(3), TIM1_CH3N, TIM15_CH1N(3), TIM15_CH2(3) RTC_REFIN 37 - - - PC6 I/O FT TIM3_CH1 - 38 - - - PC7 I/O FT TIM3_CH2 - 39 - - - PC8 I/O FT TIM3_CH3 - 40 - - - PC9 I/O FT TIM3_CH4 - 41 29 18 - PA8 I/O FT USART1_CK, TIM1_CH1, EVENTOUT, MCO - 42 30 19 17 PA9 I/O FT USART1_TX, TIM1_CH2, TIM15_BKIN(3) I2C1_SCL(2) - 43 31 20 18 PA10 I/O FT USART1_RX, TIM1_CH3, TIM17_BKIN I2C1_SDA(2) - 44 32 21 - PA11 I/O FT USART1_CTS, TIM1_CH4, EVENTOUT - 45 33 22 - PA12 I/O FT USART1_RTS, TIM1_ETR, EVENTOUT - 46 34 23 19 PA13 (SWDIO) I/O FT (5) IR_OUT, SWDIO - 47 35 - - PF6 I/O FT I2C1_SCL(2), I2C2_SCL(3) - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions DocID024849 Rev 1 29/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 48 36 - - PF7 I/O FT I2C1_SDA(2), I2C2_SDA(3) - 49 37 24 20 PA14 (SWCLK) I/O FT (5) USART1_TX(2), USART2_TX(3), SWCLK - 50 38 25 - PA15 I/O FT SPI1_NSS, USART1_RX(2), USART2_RX(3), EVENTOUT - 51 - - - PC10 I/O FT - - 52 - - - PC11 I/O FT - - 53 - - - PC12 I/O FT - - 54 - - - PD2 I/O FT TIM3_ETR - 55 39 26 - PB3 I/O FT SPI1_SCK, EVENTOUT - 56 40 27 - PB4 I/O FT SPI1_MISO, TIM3_CH1, EVENTOUT - 57 41 28 - PB5 I/O FT SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 - 58 42 29 - PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N - 59 43 30 - PB7 I/O FTf I2C1_SDA, USART1_RX, TIM17_CH1N - 60 44 31 1 BOOT0 I B Boot memory selection 61 45 - - PB8 I/O FTf (5) I2C1_SCL, TIM16_CH1 - 62 46 - - PB9 I/O FTf I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 30/88 DocID024849 Rev 1 63 47 32 15 VSS S Ground 64 48 1 16 VDD S Digital power supply 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. This feature is available on STM32F030x6 and STM32F030x4 devices only. 3. This feature is available on STM32F030x8 devices only. 4. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware). 5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated. Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions DocID024849 Rev 1 31/88 Table 12. Alternate functions selected through GPIOA_AFR registers for port A Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 PA0 - USART1_CTS(1) 1. This feature is available on STM32F030x6 and STM32F030x4 devices only. - - - - - USART2_CTS(2) 2. This feature is available on STM32F030x8 devices only. PA1 EVENTOUT USART1_RTS(1) - - - - - USART2_RTS(2) PA2 TIM15_CH1(2) USART1_TX(1) - - - - - USART2_TX(2) PA3 TIM15_CH2(2) USART1_RX(1) - - - - - USART2_RX(2) PA4 SPI1_NSS USART1_CK(1) - - TIM14_CH1 - - USART2_CK(2) PA5 SPI1_SCK - - - - - - PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - - TIM16_CH1 EVENTOUT PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - PA9 TIM15_BKIN(2) USART1_TX TIM1_CH2 - I2C1_SCL(1) - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA(1) - - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - PA13 SWDIO IR_OUT - - - - - PA14 SWCLK USART1_TX(1) - - - - - USART2_TX(2) PA15 SPI1_NSS USART1_RX(1) - EVENTOUT - - - USART2_RX(2) Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 32/88 DocID024849 Rev 1 Table 13. Alternate functions selected through GPIOB_AFR registers for port B Pin name AF0 AF1 AF2 AF3 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - PB2 - - - - PB3 SPI1_SCK EVENTOUT - - PB4 SPI1_MISO TIM3_CH1 EVENTOUT - PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA PB6 USART1_TX I2C1_SCL TIM16_CH1N - PB7 USART1_RX I2C1_SDA TIM17_CH1N - PB8 - I2C1_SCL TIM16_CH1 - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT PB10 - I2C1_SCL(1) 1. This feature is available on STM32F030x6 and STM32F030x4 devices only. - - I2C2_SCL(2) 2. This feature is available on STM32F030x8 devices only. PB11 EVENTOUT I2C1_SDA(1) - - I2C2_SDA(2) PB12 SPI1_NSS(1) EVENTOUT TIM1_BKIN - SPI2_NSS(2) PB13 SPI1_SCK(1) - TIM1_CH1N - SPI2_SCK(2) PB14 SPI1_MISO(1) TIM15_CH1(2) TIM1_CH2N - SPI2_MISO(2) PB15 SPI1_MOSI(1) TIM15_CH2(2) TIM1_CH3N TIM15_CH1N(2) SPI2_MOSI(2) DocID024849 Rev 1 33/88 STM32F030x4 STM32F030x6 STM32F030x8 Memory mapping 35 5 Memory mapping Figure 7. STM32F030x memory map Reserved AHB2 0 1 2 3 4 5 6 7 0xFFFF FFFF Peripherals SRAM Flash memory reserved reserved System memory Option Bytes Cortex-M􀀑 Internal Peripherals 0xE010 0000 MS19840V1 􀀧􀁍􀁂􀁔􀁉􀀍􀀁􀁔􀁚􀁔􀁕􀁆􀁎􀀁􀁎􀁆􀁎􀁐􀁓􀁚 􀁐􀁓􀀁􀀴􀀳􀀢􀀮􀀍􀀁􀁅􀁆􀁑􀁆􀁏􀁅􀁊􀁏􀁈􀀁􀁐􀁏 􀀣􀀰􀀰􀀵􀀁􀁄􀁐􀁏􀁇􀁊􀁈􀁖􀁓􀁂􀁕􀁊􀁐􀁏 0x0000 0000 0xE000 0000 0xC000 0000 0xA000 0000 0x8000 0000 0x6000 0000 0x4000 0000 0x2000 0000 0x0000 0000 􀀑􀁙􀀑􀀙􀀑􀀑􀀁􀀑􀀑􀀑􀀑 0x0801 0000 0x1FFF EC00 0x1FFF F800 0x1FFF FC00 0x1FFF FFFF 0x0001 0000 reserved CODE 􀀢􀀱􀀣 􀀢􀀱􀀣 reserved 0x4000 0000 0x4000 8000 0x4001 0000 0x4001 8000 reserved 0x4002 0000 􀀢􀀩􀀣􀀒 0x4800 0000 reserved 0x4800 17FF 0x4002 43FF Memory mapping STM32F030x4 STM32F030x6 STM32F030x8 34/88 DocID024849 Rev 1 Table 14. STM32F030x peripheral register boundary addresses Bus Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved AHB2 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB Reserved 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved AHB1 0x4002 3400 - 0x4002 43FF 4 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved APB 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15(1) 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32 KB Reserved DocID024849 Rev 1 35/88 STM32F030x4 STM32F030x6 STM32F030x8 Memory mapping 35 APB 0x4000 7400 - 0x4000 7FFF 3 KB Reserved 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 5C00 - 0x4000 6FFF 5 KB Reserved 0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1) 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 4800 - 0x4000 53FF 3 KB Reserved 0x4000 4400 - 0x4000 47FF 1 KB USART2(1) 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1) 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1400 - 0x4000 1FFF 3 KB Reserved 0x4000 1000 - 0x4000 13FF 1 KB TIM6(1) 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB Reserved 1. This feature is available on STM32F030x8 devices only. For STM32F030x6 and STM32F060x4, the area is Reserved. Table 14. STM32F030x peripheral register boundary addresses (continued) Bus Boundary address Size Peripheral Electrical characteristics STM32F030x4 STM32F030x6 STM32F030x8 36/88 DocID024849 Rev 1 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage MS19210V1 C = 50 pF MCU pin MS19211V1 MCU pin VIN DocID024849 Rev 1 37/88 STM32F030x4 STM32F030x6 STM32F030x8 Electrical characteristics 73 6.1.6 Power supply scheme Figure 10. Power supply scheme Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. MS32141V1 Analog: RCs, PLL, ... GP I/Os OUT IN Kernel logic (CPU, Digital & Memories) LSE, RTC, Wake-up logic 2 × 100 nF + 1 × 4.7 μF Regulator VDDA VSSA ADC Level shifter IO Logic VDD 10 nF + 1 μF VDDA VREF+ VREFVDD VSS 2 × 2 × Electrical characteristics STM32F030x4 STM32F030x6 STM32F030x8 38/88 DocID024849 Rev 1 6.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics, and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. MS32142V1 VDD VDDA IDD IDDA Table 15. Voltage characteristics(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA and VDD) –0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 V VIN (2) 2. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed injected current values. Input voltage on FT and FTf pins VSS  0.3 VDD + 4.0 V Input voltage on TTa pins VSS  0.3 4.0 V Input voltage on any other pin VSS 0.3 4.0 V |VDDx| Variations between different VDD power pins - 50 mV |VSSX VSS| Variations between all the different ground pins - 50 mV VESD(HBM) Electrostatic discharge voltage (human body model) see Section 6.3.12: Electrical sensitivity characteristics DocID024849 Rev 1 39/88 STM32F030x4 STM32F030x6 STM32F030x8 Electrical characteristics 73 Table 16. Current characteristics Symbol Ratings Max. Unit IVDD Total current into sum of all VDD_x and VDDSDx power lines (source)(1) 120 mA IVSS Total current out of sum of all VSS_x and VSSSD ground lines (sink)(1) -120 IVDD(PIN) Maximum current into each VDD_x or VDDSDx power pin (source)(1) 100 IVSS(PIN) Maximum current out of each VSS_x or VSSSD ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 IIO(PIN) Total output current sunk by sum of all IOs and control pins(2) 80 Total output current sourced by sum of all IOs and control pins(2) -80 IINJ(PIN) Injected current on FT, FTf and B pins(3) -5/+0 Injected current on TC and RST pin(4) ± 5 Injected current on TTa pins(5) ± 5 IINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VINVDDA while a negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz. 72 MHz 50 50.3 mA 48 MHz 36.1 36.2 36 MHz 28.6 28.7 24 MHz 19.9 20.1 16 MHz 14.7 14.9 8 MHz 8.6 8.9 External clock(2), all peripherals disabled 72 MHz 32.8 32.9 48 MHz 24.4 24.5 36 MHz 19.8 19.9 24 MHz 13.9 14.2 16 MHz 10.7 11 8 MHz 6.8 7.1 Table 14. Maximum current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions fHCLK Max(1) 1. Based on characterization, tested in production at VDD max, fHCLK max. Unit TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 48 50 mA 48 MHz 31.5 32 36 MHz 24 25.5 24 MHz 17.5 18 16 MHz 12.5 13 8 MHz 7.5 8 External clock(2), all peripherals disabled 72 MHz 29 29.5 48 MHz 20.5 21 36 MHz 16 16.5 24 MHz 11.5 12 16 MHz 8.5 9 8 MHz 5.5 6 DocID13587 Rev 16 43/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 16. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Figure 17. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled 0 5 10 15 20 25 30 35 40 45 -40 0 25 70 85 105 Temperature (°C) Consumption (mA) 72 MHz 36 MHz 16 MHz 8 MHz 0 5 10 15 20 25 30 -40 0 25 70 85 105 Temperature (°C) Consumption (mA) 72 MHz 36 MHz 16 MHz 8 MHz Electrical characteristics STM32F103x8, STM32F103xB 44/105 DocID13587 Rev 16 Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Max(1) 1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled. Unit TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 30 32 mA 48 MHz 20 20.5 36 MHz 15.5 16 24 MHz 11.5 12 16 MHz 8.5 9 8 MHz 5.5 6 External clock(2), all peripherals disabled 72 MHz 7.5 8 48 MHz 6 6.5 36 MHz 5 5.5 24 MHz 4.5 5 16 MHz 4 4.5 8 MHz 3 4 DocID13587 Rev 16 45/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 18. Typical current consumption on VBAT with RTC on versus temperature at different VBAT values Table 16. Typical and maximum current consumptions in Stop and Standby modes Symbol Parameter Conditions Typ(1) Max V Unit DD/VBAT = 2.0 V VDD/VBAT = 2.4 V VDD/VBAT = 3.3 V TA = 85 °C TA = 105 °C IDD Supply current in Stop mode Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 23.5 24 200 370 μA Regulator in Low Power mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 13.5 14 180 340 Supply current in Standby mode Low-speed internal RC oscillator and independent watchdog ON - 2.6 3.4 - - Low-speed internal RC oscillator ON, independent watchdog OFF - 2.4 3.2 - - Low-speed internal RC oscillator and independent watchdog OFF, lowspeed oscillator and RTC OFF - 1.7 2 4 5 IDD_VBAT Backup domain supply current Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9(2) 2.2 1. Typical values are measured at TA = 25 °C. 2. Based on characterization, not tested in production. 0 0.5 1 1.5 2 2.5 –40 °C 25 °C 70 °C 85 °C 105 °C Temperature (°C) Consumption ( μA ) 2 V 2.4 V 3 V 3.6 V ai17351 Electrical characteristics STM32F103x8, STM32F103xB 46/105 DocID13587 Rev 16 Figure 19. Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 20. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V 0 50 100 150 200 250 300 -45 25 70 90 110 Temperature (°C) Consumption (μA) 3.3 V 3.6 V 0 50 100 150 200 250 300 -40 0 25 70 85 105 Temperature (°C) Consumption (μA) 3.3 V 3.6 V DocID13587 Rev 16 47/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 21. Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V Typical current consumption The MCU is placed under the following conditions:  All I/O pins are in input mode with a static value at VDD or VSS (no load).  All peripherals are disabled except if it is explicitly mentioned.  The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).  Ambient temperature and VDD supply voltage conditions summarized in Table 9.  Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 –45 °C 25 °C 85 °C 105 °C Temperature (°C) Consumption (μA) 3.3 V 3.6 V Electrical characteristics STM32F103x8, STM32F103xB 48/105 DocID13587 Rev 16 Table 17. Typical current consumption in Run mode, code with data processing running from Flash Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. All peripherals Unit enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Run mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 36 27 mA 48 MHz 24.2 18.6 36 MHz 19 14.8 24 MHz 12.9 10.1 16 MHz 9.3 7.4 8 MHz 5.5 4.6 4 MHz 3.3 2.8 2 MHz 2.2 1.9 1 MHz 1.6 1.45 500 kHz 1.3 1.25 125 kHz 1.08 1.06 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 31.4 23.9 mA 48 MHz 23.5 17.9 36 MHz 18.3 14.1 24 MHz 12.2 9.5 16 MHz 8.5 6.8 8 MHz 4.9 4 4 MHz 2.7 2.2 2 MHz 1.6 1.4 1 MHz 1.02 0.9 500 kHz 0.73 0.67 125 kHz 0.5 0.48 DocID13587 Rev 16 49/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. All peripherals Unit enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Sleep mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 14.4 5.5 mA 48 MHz 9.9 3.9 36 MHz 7.6 3.1 24 MHz 5.3 2.3 16 MHz 3.8 1.8 8 MHz 2.1 1.2 4 MHz 1.6 1.1 2 MHz 1.3 1 1 MHz 1.11 0.98 500 kHz 1.04 0.96 125 kHz 0.98 0.95 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 12.3 4.4 48 MHz 9.3 3.3 36 MHz 7 2.5 24 MHz 4.8 1.8 16 MHz 3.2 1.2 8 MHz 1.6 0.6 4 MHz 1 0.5 2 MHz 0.72 0.47 1 MHz 0.56 0.44 500 kHz 0.49 0.42 125 kHz 0.43 0.41 Electrical characteristics STM32F103x8, STM32F103xB 50/105 DocID13587 Rev 16 On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed under the following conditions:  all I/O pins are in input mode with a static value at VDD or VSS (no load)  all peripherals are disabled unless otherwise mentioned  the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on  ambient operating temperature and VDD supply voltage conditions summarized in Table 6 Table 19. Peripheral current consumption(1) 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. Peripheral Typical consumption at 25 °C Unit APB1 TIM2 1.2 mA TIM3 1.2 TIM4 0.9 SPI2 0.2 USART2 0.35 USART3 0.35 I2C1 0.39 I2C2 0.39 USB 0.65 CAN 0.72 APB2 GPIO A 0.47 mA GPIO B 0.47 GPIO C 0.47 GPIO D 0.47 GPIO E 0.47 ADC1(2) 2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit in the ADC_CR2 register is set to 1. 1.81 ADC2 1.78 TIM1 1.6 SPI1 0.43 USART1 0.85 DocID13587 Rev 16 51/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 20 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 9. Low-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 9. Table 20. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext User external clock source frequency(1) 1 8 25 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS  VIN  VDD - - ±1 μA Table 21. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) 1. Guaranteed by design, not tested in production. 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS  VIN  VDD - - ±1 μA Electrical characteristics STM32F103x8, STM32F103xB 52/105 DocID13587 Rev 16 Figure 22. High-speed external clock source AC timing diagram Figure 23. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai14143 OSC_IN EXTERNAL STM32F103xx CLOCK SOURCE VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE t t r(HSE) tW(HSE) fHSE_ext VHSEL ai14144b OSC32_IN EXTERNAL STM32F103xx CLOCK SOURCE VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE t t r(LSE) tW(LSE) fLSE_ext VLSEL DocID13587 Rev 16 53/105 STM32F103x8, STM32F103xB Electrical characteristics 104 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 24. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 22. HSE 4-16 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 8 16 MHz RF Feedback resistor - 200 - k C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. RS = 30 - 30 - pF i2 HSE driving current VDD = 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 25 - - mA/V tSU(HSE (4) 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - ms ai14145 OSC_OUT OSC_IN fHSE CL1 RF STM32F103xx 8 MHz resonator REXT (1) C L2 Resonator with integrated capacitors Bias controlled gain Electrical characteristics STM32F103x8, STM32F103xB 54/105 DocID13587 Rev 16 Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL  7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2) Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 5 - M C Recommended load capacitance versus equivalent serial resistance of the crystal (RS) RS = 30 K - - 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS - - 1.4 μA gm Oscillator transconductance 5 - - μA/V tSU(LSE) (3) Startup time VDD is stabilized TA = 50 °C - 1.5 - s TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - 1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer DocID13587 Rev 16 55/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 25. Typical application with a 32.768 kHz crystal 5.3.7 Internal clock source characteristics The parameters given in Table 24 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. High-speed internal (HSI) RC oscillator ai14146 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F103xx 32.768 kHz resonator CL2 Resonator with integrated capacitors Bias controlled gain Table 24. HSI oscillator characteristics(1) 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 8 - MHz DuCy(HSI) Duty cycle 45 - 55 % ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register(2) 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. - - 1(3) 3. Guaranteed by design, not tested in production. Factorycalibrated (4)(5) 4. Based on characterization, not tested in production. 5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range. TA = –40 to 105 °C –2 - 2.5 TA = –10 to 85 °C –1.5 - 2.2 TA = 0 to 70 °C –1.3 - 2 TA = 25 °C –1.1 - 1.8 tsu(HSI) (4) HSI oscillator startup time 1 - 2 μs IDD(HSI) (4) HSI oscillator power consumption - 80 100 μA Electrical characteristics STM32F103x8, STM32F103xB 56/105 DocID13587 Rev 16 Low-speed internal (LSI) RC oscillator Wakeup time from low-power mode The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:  Stop or Standby mode: the clock source is the RC oscillator  Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 25. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 30 40 60 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - - 85 μs IDD(LSI) (3) LSI oscillator power consumption - 0.65 1.2 μA DocID13587 Rev 16 57/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.8 PLL characteristics The parameters given in Table 27 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 26. Low-power mode wakeup timings Symbol Parameter Typ Unit tWUSLEEP (1) 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. Wakeup from Sleep mode 1.8 tWUSTOP μs (1) Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low power mode) 5.4 tWUSTDBY (1) Wakeup from Standby mode 50 Table 27. PLL characteristics Symbol Parameter Value Unit Min(1) 1. Based on characterization, not tested in production. Typ Max(1) fPLL_IN PLL input clock(2) 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % fPLL_OUT PLL multiplier output clock 16 - 72 MHz tLOCK PLL lock time - - 200 μs Jitter Cycle-to-cycle jitter - - 300 ps Table 28. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog 16-bit programming time TA–40 to +105 °C 40 52.5 70 μs tERASE Page (1 KB) erase time TA –40 to +105 °C 20 - 40 ms tME Mass erase time TA –40 to +105 °C 20 - 40 Electrical characteristics STM32F103x8, STM32F103xB 58/105 DocID13587 Rev 16 Table 29. Flash memory endurance and data retention 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:  Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 30. They are based on the EMS levels and classes defined in application note AN1709. IDD Supply current Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V - - 20 mA Write / Erase modes fHCLK = 72 MHz, VDD = 3.3 V - - 5 Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 μA Vprog Programming voltage 2 - 3.6 V 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. Typ Max NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 - - kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 - - 1 kcycle(2) at TA = 105 °C 10 - - Years 10 kcycles(2) at TA = 55 °C 20 - - Table 28. Flash memory characteristics (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit DocID13587 Rev 16 59/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as:  Corrupted program counter  Unexpected reset  Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 30. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD 3.3 V, TA +25 °C, fHCLK 72 MHz conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD3.3 V, TA +25 °C, fHCLK 72 MHz conforms to IEC 61000-4-4 4A Table 31. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/48 MHz 8/72 MHz SEMI Peak level VDD 3.3 V, TA 25 °C, LQFP100 package compliant with IEC 61967-2 0.1 to 30 MHz 12 12 30 to 130 MHz 22 19 dBμV 130 MHz to 1GHz 23 29 SAE EMI Level 4 4 - Electrical characteristics STM32F103x8, STM32F103xB 60/105 DocID13587 Rev 16 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance:  A supply overvoltage is applied to each power supply pin  A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 32. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) 1. Based on characterization results, not tested in production. Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA +25 °C conforming to JESD22-A114 2 2000 V VESD(CDM) Electrostatic discharge voltage (charge device model) TA +25 °C conforming to ANSI/ESD STM5.3.1 II 500 Table 33. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA +105 °C conforming to JESD78A II level A DocID13587 Rev 16 61/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.12 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 34 Table 34. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 mA Injected current on any other pin -5 +5 Electrical characteristics STM32F103x8, STM32F103xB 62/105 DocID13587 Rev 16 5.3.13 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 35. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Low level input voltage Standard IO input low level voltage - - 0.28*(VDD-2 V)+0.8 V(1) V IO FT(3) input low level voltage - - 0.32*(VDD-2V)+0.75 V(1) All I/Os except BOOT0 - - 0.35VDD (2) VIH High level input voltage Standard IO input high level voltage 0.41*(VDD-2 V)+1.3 V(1) - - IO FT(3) input high level voltage 0.42*(VDD-2 V)+1 V(1) - - All I/Os except BOOT0 0.65VDD (2) - - Vhys Standard IO Schmitt trigger voltage hysteresis(4) 200 - - mV IO FT Schmitt trigger voltage hysteresis(4) 5% VDD (5) - - Ilkg Input leakage current (6) VSS  VIN  VDD Standard I/Os - - 1 μA VIN = 5 V I/O FT - - 3 RPU Weak pull-up equivalent resistor(7) VIN VSS 30 40 50 k RPD Weak pull-down equivalent resistor(7) VIN VDD 30 40 50 CIO I/O pin capacitance - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 4. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 5. With a minimum of 100 mV. 6. Leakage could be higher than max. if negative current is injected on adjacent pins. DocID13587 Rev 16 63/105 STM32F103x8, STM32F103xB Electrical characteristics 104 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). Electrical characteristics STM32F103x8, STM32F103xB 64/105 DocID13587 Rev 16 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 26 and Figure 27 for standard I/Os, and in Figure 28 and Figure 29 for 5 V tolerant I/Os. Figure 26. Standard I/O input characteristics - CMOS port Figure 27. Standard I/O input characteristics - TTL port ai17277c VDD (V) 1.3 0.8 2 2.7 3 3.6 0.7 CMOS standard requirement VIH=0.65VDD 3.3 VIH/VIL (V) 􀀒􀀏􀀓􀀖 􀀒􀀏􀀚􀀗 􀀒􀀏􀀘􀀒 􀀒􀀏􀀘􀀒 􀀒􀀏􀀖􀀚 􀀒 􀀒􀀏􀀑􀀙 􀀒􀀏􀀑􀀙 􀀷ILmax 􀀷IHmin Tested in production V DD -2)+0.8 =0.28(VIL CMOS standard requirement VIL=0.35VDD VIH=0.41(VDD-2)+1.3 Tested in production Based on design simulations Based on design simulations Area not determined ai17278b 2 3.6 VIH/VIL (V) 1.3 2.0 0.8 2.16 TTL requirements VIH=2V VIH=0.41(VDD-2)+1.3 VIL=0.28(VDD-2)+0.8 TTL requirements VIL=0.8V 1.96 1.25 VDD (V) 􀀷ILmax 􀀷IHmin Based on design simulations Based on design simulations Area not determined DocID13587 Rev 16 65/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 28. 5 V tolerant I/O input characteristics - CMOS port Figure 29. 5 V tolerant I/O input characteristics - TTL port VDD 1.3 2 3.6 CMOS standard requirements VIH=0.65V DD CMOS standard requirment V IL =0.35VDD 1.67 1 2.7 0.7 3 3.3 1 0.75 1.295 0.975 1.42 1.07 1.55 1.16 VIH/VIL (V) VDD (V) ai17279c VIH=0.42(VDD-2)+1 VIL=0.32(VDD-2)+0.75 Based on design simulations Based on design simulations Tested in production Tested in production Area not determined 2.0 0.8 2 2.16 3.6 1.67 1 0.75 TTL requirement VIH=2V TTL requirements VIL=0.8V VIH/VIL (V) VDD (V) 􀀷ILmax 􀀷IHmin ai17280b VIH=0.42*(VDD-2)+1 VIL=0.32*(VDD-2)+0.75 Based on design simulations Based on design simulations Area not determined Electrical characteristics STM32F103x8, STM32F103xB 66/105 DocID13587 Rev 16 Output driving current The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:  The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 7).  The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 7). Output voltage levels Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 36. Output voltage characteristics Symbol Parameter Conditions Min Max Unit VOL (1) 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port(2), IIO = +8 mA 2.7 V < VDD < 3.6 V 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (1) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port(2) IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (1)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - DocID13587 Rev 16 67/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 30 and Table 37, respectively. Unless otherwise specified, the parameters given in Table 37 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 37. I/O AC characteristics(1) 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. MODEx[1:0] bit value(1) Symbol Parameter Conditions Min Max Unit 10 fmax(IO)out Maximum frequency(2) 2. The maximum frequency is defined in Figure 30. CL = 50 pF, VDD = 2 V to 3.6 V - 2 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 125(3) 3. Guaranteed by design, not tested in production. ns tr(IO)out Output low to high level rise time - 125(3) 01 fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 25(3) ns tr(IO)out Output low to high level rise time - 25(3) 11 Fmax(IO)out Maximum frequency(2) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20 tf(IO)out Output high to low level fall time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) ns CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) tr(IO)out Output low to high level rise time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - ns Electrical characteristics STM32F103x8, STM32F103xB 68/105 DocID13587 Rev 16 Figure 30. I/O AC characteristics definition 5.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 35). Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. ai14131c 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tf(IO)out Table 38. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage –0.5 - 0.8 V VIH(NRST) (1) NRST Input high level voltage 2 - VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN VSS 30 40 50 k VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse 300 - - ns DocID13587 Rev 16 69/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 31. Recommended NRST pin protection 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 38. Otherwise the reset will not be taken into account by the device. 5.3.15 TIM timer characteristics The parameters given in Table 39 are guaranteed by design. Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). ai14132d STM32F10x R NRST(2) PU VDD Filter Internal reset 0.1 μF External reset circuit(1) Table 39. TIMx(1) characteristics 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fEXT Timer external clock frequency on CH1 to CH4 0 fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.6 s Electrical characteristics STM32F103x8, STM32F103xB 70/105 DocID13587 Rev 16 5.3.16 Communications interfaces I2C interface characteristics The STM32F103xx performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 40. Refer also to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 40. I2C characteristics Symbol Parameter Standard mode I2C(1) 1. Guaranteed by design, not tested in production. Fast mode I2C(1)(2) 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time 0 - 0 900(3) 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - s tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - s Cb Capacitive load for each bus line - 400 - 400 pF DocID13587 Rev 16 71/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 32. I2C bus AC waveforms and measurement circuit 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply. Table 41. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 k 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 ai14133e Start SDA I²C bus VDD_I2C VDD_I2C STM32F10x SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) Start repeated Start tsu(STA) tsu(STO) Stop tsu(STO:STA) Rp Rp Rs Rs Electrical characteristics STM32F103x8, STM32F103xB 72/105 DocID13587 Rev 16 SPI interface characteristics Unless otherwise specified, the parameters given in Table 42 are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 9. Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 42. SPI characteristics Symbol Parameter Conditions Min Max Unit fSCK 1/tc(SCK) SPI clock frequency Master mode - 18 MHz Slave mode - 18 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 30 pF - 8 ns DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 % tsu(NSS) (1) 1. Based on characterization, not tested in production. NSS setup time Slave mode 4tPCLK - ns th(NSS) (1) NSS hold time Slave mode 2tPCLK - tw(SCKH) (1) tw(SCKL) (1) SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 tsu(MI) (1) tsu(SI) (1) Data input setup time Master mode 5 - Slave mode 5 - th(MI) (1) Data input hold time Master mode 5 - th(SI) (1) Slave mode 4 - ta(SO) (1)(2) 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. Data output access time Slave mode, fPCLK = 20 MHz 0 3tPCLK tdis(SO) (1)(3) 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Data output disable time Slave mode 2 10 tv(SO) (1) Data output valid time Slave mode (after enable edge) 25 tv(MO) (1) Data output valid time Master mode (after enable edge) 5 th(SO) (1) Data output hold time Slave mode (after enable edge) 15 - th(MO) (1) Master mode (after enable edge) 2 - DocID13587 Rev 16 73/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 33. SPI timing diagram - slave mode and CPHA = 0 Figure 34. SPI timing diagram - slave mode and CPHA = 1(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB OUT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB OUT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input Electrical characteristics STM32F103x8, STM32F103xB 74/105 DocID13587 Rev 16 Figure 35. SPI timing diagram - master mode(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. USB characteristics The USB interface is USB-IF certified (Full Speed). Table 43. USB startup time Symbol Parameter Max Unit tSTARTUP (1) 1. Guaranteed by design, not tested in production. USB transceiver startup time 1 μs ai14136 SCK Input CPHA=0 MOSI OUTUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Input CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) DocID13587 Rev 16 75/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 36. USB timings: definition of data signal rise and fall time 5.3.17 CAN (controller area network) interface Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). Table 44. USB DC electrical characteristics Symbol Parameter Conditions Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input levels VDD USB operating voltage(2) 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k resistor to a 3.0-to-3.6 V voltage range. 3.0(3) 3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 3.6 V VDI (4) 4. Guaranteed by design, not tested in production. Differential input sensitivity I(USBDP, USBDM) 0.2 - VCM V (4) Differential common mode range Includes VDI range 0.8 2.5 VSE (4) Single ended receiver threshold 1.3 2.0 Output levels VOL Static output level low RL of 1.5 k to 3.6 V(5) 5. RL is the load connected on the USB drivers - 0.3 V VOH Static output level high RL of 15 k to VSS (5) 2.8 3.6 Table 45. USB: Full-speed electrical characteristics(1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Max Unit Driver characteristics tr Rise time(2) 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns trfm Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage 1.3 2.0 V ai14137 tf Differen tial data lines VSS VCRS tr Crossover points Electrical characteristics STM32F103x8, STM32F103xB 76/105 DocID13587 Rev 16 5.3.18 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 9. Note: It is recommended to perform a calibration after each power-up. Table 46. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 2.4 - 3.6 V VREF+ Positive reference voltage 2.4 - VDDA V IVREF Current on the VREF input pin 160(1) 220(1) μA fADC ADC clock frequency 0.6 - 14 MHz fS (2) Sampling rate 0.05 - 1 MHz fTRIG (2) External trigger frequency fADC = 14 MHz - - 823 kHz - - 17 1/fADC VAIN (3) Conversion voltage range 0 (VSSA or VREFtied to ground) - VREF+ V RAIN (2) External input impedance See Equation 1 and Table 47 for details - - 50 k RADC (2) Sampling switch resistance - - 1 k CADC (2) Internal sample and hold capacitor - - 8 pF tCAL (2) Calibration time fADC = 14 MHz 5.9 μs 83 1/fADC tlat (2) Injection trigger conversion latency fADC = 14 MHz - - 0.214 μs - - 3(4) 1/fADC tlatr (2) Regular trigger conversion latency fADC = 14 MHz - - 0.143 μs - - 2(4) 1/fADC tS (2) Sampling time fADC = 14 MHz 0.107 - 17.1 μs 1.5 - 239.5 1/fADC tSTAB (2) Power-up time 0 0 1 μs tCONV (2) Total conversion time (including sampling time) fADC = 14 MHz 1 - 18 μs 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. In devices delivered in VFQFPN and LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. Devices that come in the TFBGA64 package have a VREF+ pin but no VREF- pin (VREF- is internally connected to VSSA), see Table 5 and Figure 7. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 46. DocID13587 Rev 16 77/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Equation 1: RAIN max formula: The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 47. RAIN max for fADC = 14 MHz(1) 1. Based on characterization, not tested in production. Ts (cycles) tS (μs) RAIN max (k) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA Table 48. ADC accuracy - limited test conditions(1) (2) 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Symbol Parameter Test conditions Typ Max(3) 3. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 3 V to 3.6 V TA = 25 °C Measurements made after ADC calibration ±1.3 ±2 LSB EO Offset error ±1 ±1.5 EG Gain error ±0.5 ±1.5 ED Differential linearity error ±0.7 ±1 EL Integral linearity error ±0.8 ±1.5 RAIN TS fADC CADC 2N + 2   ln   ------------------------------------------------------------- – RADC Electrical characteristics STM32F103x8, STM32F103xB 78/105 DocID13587 Rev 16 Figure 37. ADC accuracy characteristics Table 49. ADC accuracy(1) (2) (3) 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Symbol Parameter Test conditions Typ Max(4) 4. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration ±2 ±5 LSB EO Offset error ±1.5 ±2.5 EG Gain error ±1.5 ±3 ED Differential linearity error ±1 ±2 EL Integral linearity error ±1.5 ±3 EO EG 1 LSBIDEAL (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 4095 4094 4093 5 4 3 2 1 0 7 6 1 2 3 4 5 6 7 4093 4094 4095 4096 (1) (2) ET ED EL (3) VSSA VDDA ai14395b VREF+ 4096 (or depending on package)] VDDA 4096 [1LSBIDEAL = DocID13587 Rev 16 79/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 38. Typical connection diagram using the ADC 1. Refer to Table 46 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 39. Power supply and reference decoupling (VREF+ not connected to VDDA) 1. VREF+ and VREF– inputs are available only on 100-pin packages. ai14150c VDD STM32F103xx AINx IL±1 μA 0.6 V VT RAIN (1) Cparasitic VAIN 0.6 V VT RADC (1) 12-bit converter CADC(1) Sample and hold ADC converter VREF+ (see note 1) STM32F103xx VDDA VSSA /VREF– (see note 1) 1 μF // 10 nF 1 μF // 10 nF ai14388b Electrical characteristics STM32F103x8, STM32F103xB 80/105 DocID13587 Rev 16 Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA) 1. VREF+ and VREF– inputs are available only on 100-pin packages. 5.3.19 Temperature sensor characteristics VREF+/VDDA STM32F103xx 1 μF // 10 nF VREF–/VSSA ai14389 (See note 1) (See note 1) Table 50. TS characteristics Symbol Parameter Min Typ Max Unit TL (1) 1. Based on characterization, not tested in production. VSENSE linearity with temperature - 1 2 °C Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C V25 (1) Voltage at 25 °C 1.34 1.43 1.52 V tSTART (2) 2. Guaranteed by design, not tested in production. Startup time 4 - 10 μs TS_temp (3)(2) 3. Shortest sampling time can be determined in the application by multiple iterations. ADC sampling time when reading the temperature - - 17.1 μs DocID13587 Rev 16 81/105 STM32F103x8, STM32F103xB Package characteristics 104 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package characteristics STM32F103x8, STM32F103xB 82/105 DocID13587 Rev 16 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life. Figure 41. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline(1) Figure 42. VFQFPN36 recommended footprint (dimensions in mm)(1)(2) Seating plane C ddd C A3 A1 A2 A Pin # 1 ID R = 0.20 ZR_ME E2 b 1 9 10 18 27 28 36 19 D2 E D e L 0.30 6.30 0.50 4.30 1.00 4.30 4.80 4.80 4.10 4.10 1 28 9 19 ai14870b 36 27 18 10 0.75 Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 - 0.020 0.050 - 0.0008 0.0020 A2 - 0.650 1.000 - 0.0256 0.0394 A3 - 0.250 - - 0.0098 - b 0.180 0.230 0.300 0.0071 0.0091 0.0118 D 5.875 6.000 6.125 0.2313 0.2362 0.2411 D2 1.750 3.700 4.250 0.0689 0.1457 0.1673 E 5.875 6.000 6.125 0.2313 0.2362 0.2411 E2 1.750 3.700 4.250 0.0689 0.1457 0.1673 e 0.450 0.500 0.550 0.0177 0.0197 0.0217 L 0.350 0.550 0.750 0.0138 0.0217 0.0295 ddd 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 83/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline 1. Drawing is not to scale. 2. There is an exposed die pad on the underside of the QFPN package, this pad is not internally connected to the VSS or VDD power pads. It is recommended to connect it to VSS. 3. All leads/pads should also be soldered to the PCB to improve the lead solder joint life. A0B9_ME_V3 D Pin 1 indentifier laser marking area E E D Y D2 E2 Exposed pad area Z 1 48 Detail Z R 0.125 typ. 1 48 L C 0.500x45° pin1 corner A Seating plane A1 e b ddd Detail Y T Table 52. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - Package characteristics STM32F103x8, STM32F103xB 84/105 DocID13587 Rev 16 Figure 44. UFQFPN48 recommended footprint b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 52. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued) Symbol millimeters inches(1) Min Typ Max Min Typ Max 7.30 7.30 0.20 0.30 0.55 0.50 5.80 6.20 6.20 5.60 5.60 5.80 0.75 A0B9_FP_V2 48 1 12 13 24 25 36 37 DocID13587 Rev 16 85/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 45. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline 1. Drawing is not to scale. Table 53. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.700 0.0669 A1 0.270 0.0106 A2 0.300 0.0118 A4 0.800 0.0315 b 0.450 0.500 0.550 0.0177 0.0197 0.0217 D 9.850 10.000 10.150 0.3878 0.3937 0.3996 D1 7.200 0.2835 E 9.850 10.000 10.150 0.3878 0.3937 0.3996 E1 7.200 0.2835 e 0.800 0.0315 F 1.400 0.0551 ddd 0.120 0.0047 eee 0.150 0.0059 fff 0.080 0.0031 N (number of balls) 100 H0_ME_V2 Seating plane A4 A1 e F F D K eee Z Y X fff Øb (100 balls) ØØ A MM E BOTTOM VIEW TOP VIEW 10 1 e A2 A Z Y X Z ddd Z D1 E1 A1 ball identifier A1 ball index area Package characteristics STM32F103x8, STM32F103xB 86/105 DocID13587 Rev 16 Figure 46. Recommended PCB design rules (0.80/0.75 mm pitch BGA) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Dpad Dsm Dpad 0.37 mm Dsm 0.52 mm typ. (depends on solder mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended – 4 to 6 mils screen print 􀀮􀀴􀀔􀀓􀀗􀀓􀀗􀀷􀀒 DocID13587 Rev 16 87/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 47. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline(1) Figure 48. LQFP100 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. D D1 D3 75 51 76 50 100 26 1 25 E3 E1 E e b Pin 1 identification SEATING PLANE GAGE PLANE C A A2 A1 C ccc 0.25 mm 0.10 inch L L1 k C 1L_ME 75 51 76 50 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 Table 54. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.6 0.063 A1 0.05 0.15 0.002 0.0059 A2 1.35 1.4 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 0.2 0.0035 0.0079 D 15.8 16 16.2 0.622 0.6299 0.6378 D1 13.8 14 14.2 0.5433 0.5512 0.5591 D3 12 0.4724 E 15.8 16 16.2 0.622 0.6299 0.6378 E1 13.8 14 14.2 0.5433 0.5512 0.5591 E3 12 0.4724 e 0.5 0.0197 L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 1 0.0394 k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F103x8, STM32F103xB 88/105 DocID13587 Rev 16 Figure 49. UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline 1. Drawing is not to scale. A0C2_ME_V2 Seating plane A1 e F F D M Øb (100 balls) A E BOTTOM VIEW TOP VIEW 12 1 A1 ball identifier e A2 A Y X Z ddd Z D1 E1 eee Z Y X fff ØØ MM Z A4 A3 A1 ball index area Table 55. UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 0.080 0.130 0.180 0.0031 0.0051 0.0071 A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e 0.500 0.0197 F 0.700 0.750 0.800 0.0276 0.0295 0.0315 ddd 0.100 0.0039 eee 0.150 0.0059 fff 0.050 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 89/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 50. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline(1) Figure 51. LQFP64 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. 5W_ME A1 L K L1 􀁄 􀀢 􀀢􀀓 ccc 􀀤 D D1 D3 E3 E1 E 32 48 33 49 b 64 1 Pin 1 identification 16 17 48 49 32 64 17 1 16 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909 Table 56. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 - 0.0079 D - 12.00 - - 0.4724 - D1 - 10.00 - - 0.3937 - E - 12.00 - - 0.4724 - E1 - 10.00 - - 0.3937 - e - 0.50 - - 0.0197 -  0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - N Number of pins 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F103x8, STM32F103xB 90/105 DocID13587 Rev 16 Figure 52. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline 1. Drawing is not to scale. Table 57. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Min Typ Max Min Typ Max A - - 1.200 - - 0.0472 A1 0.150 - - 0.0059 - - A2 - 0.200 - - 0.0079 - A4 - - 0.600 - - 0.0236 b 0.250 0.300 0.350 0.0098 0.0118 0.0138 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D1 - 3.500 - - 0.1378 - E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E1 - 3.500 - - 0.1378 - e - 0.500 - - 0.0197 - F - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 R8_ME_V3 Seating plane A1 e F F D H Øb (64 balls) A E BOTTOM VIEW TOP VIEW 8 1 e A Y X Z ddd Z D1 E1 eee Z Y X fff ØØ MM Z A4 A2 A1 ball identifier A1 ball index area DocID13587 Rev 16 91/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 53. Recommended PCB design rules for pads (0.5 mm pitch BGA) 1. Non solder mask defined (NSMD) pads are recommended 2. 4 to 6 mils solder paste screen printing process Pitch 0.5 mm D pad 0.27 mm Dsm 0.35 mm typ (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter Dpad Dsm ai15495 Package characteristics STM32F103x8, STM32F103xB 92/105 DocID13587 Rev 16 Figure 54. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline(1) Figure 55. LQFP48 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. D D1 D3 A1 L1 L k b c ccc C A1 A A2 C Seating plane 0.25 mm Gage plane E3 E1 E 12 13 24 25 48 1 36 37 Pin 1 identification 5B_ME 9.70 5.80 7.30 12 24 0.20 7.30 1 37 36 1.20 5.80 9.70 25 0.30 1.20 0.50 48 13 Table 58. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 93/105 STM32F103x8, STM32F103xB Package characteristics 104 6.2 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 9: General operating conditions on page 38. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × JA) Where:  TA max is the maximum ambient temperature in C,  JA is the package junction-to-ambient thermal resistance, in C/W,  PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),  PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. 6.2.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Table 59. Package thermal characteristics Symbol Parameter Value Unit JA Thermal resistance junction-ambient LFBGA100 - 10 × 10 mm / 0.8 mm pitch 44 °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm /0.5 mm pitch 59 Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch 65 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient UFQFPN 48 - 7 × 7 mm / 0.5 mm pitch 32 Thermal resistance junction-ambient VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch 18 Package characteristics STM32F103x8, STM32F103xB 94/105 DocID13587 Rev 16 6.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 60: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 59 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 60: Ordering information scheme). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW DocID13587 Rev 16 95/105 STM32F103x8, STM32F103xB Package characteristics 104 Using the values obtained in Table 59 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 60: Ordering information scheme). Figure 56. LQFP100 PD max vs. TA 0 100 200 300 400 500 600 700 65 75 85 95 105 115 125 135 TA (°C) PD (mW) Suffix 6 Suffix 7 Ordering information scheme STM32F103x8, STM32F103xB 96/105 DocID13587 Rev 16 7 Ordering information scheme For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 60. Ordering information scheme Example: STM32 F 103 C 8 T 7 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 103 = performance line Pin count T = 36 pins C = 48 pins R = 64 pins V = 100 pins Flash memory size(1) 1. Although STM32F103x6 devices are not described in this datasheet, orderable part numbers that do not show the A internal code after temperature range code 6 or 7 should be referred to this datasheet for the electrical characteristics. The low-density datasheet only covers STM32F103x6 devices that feature the A code. 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory Package H = BGA I = UFBGA T = LQFP U = VFQFPN or UFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and real DocID13587 Rev 16 97/105 STM32F103x8, STM32F103xB Revision history 104 8 Revision history Table 61. Document revision history Date Revision Changes 01-jun-2007 1 Initial release. 20-Jul-2007 2 Flash memory size modified in Note 9, Note 5, Note 7, Note 7 and BGA100 pins added to Table 5: Medium-density STM32F103xx pin definitions. Figure 3: STM32F103xx performance line LFBGA100 ballout added. THSE changed to TLSE in Figure 23: Low-speed external clock source AC timing diagram. VBAT ranged modified in Power supply schemes. tSU(LSE) changed to tSU(HSE) in Table 22: HSE 4-16 MHz oscillator characteristics. IDD(HSI) max value added to Table 24: HSI oscillator characteristics. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latch-up. 25 °C and 85 °C conditions removed and class name modified in Table 33: Electrical sensitivities. RPU and RPD min and max values added to Table 35: I/O static characteristics. RPU min and max values added to Table 38: NRST pin characteristics. Figure 32: I2C bus AC waveforms and measurement circuit and Figure 31: Recommended NRST pin protection corrected. Notes removed below Table 9, Table 38, Table 44. IDD typical values changed in Table 11: Maximum current consumption in Run and Sleep modes. Table 39: TIMx characteristics modified. tSTAB, VREF+ value, tlat and fTRIG added to Table 46: ADC characteristics. In Table 29: Flash memory endurance and data retention, typical endurance and data retention for TA = 85 °C added, data retention for TA = 25 °C removed. VBG changed to VREFINT in Table 12: Embedded internal reference voltage. Document title changed. Controller area network (CAN) section modified. Figure 14: Power supply scheme modified. Features on page 1 list optimized. Small text changes. Revision history STM32F103x8, STM32F103xB 98/105 DocID13587 Rev 16 18-Oct-2007 3 STM32F103CBT6, STM32F103T6 and STM32F103T8 root part numbers added (see Table 2: STM32F103xx medium-density device features and peripheral counts) VFQFPN36 package added (see Section 6: Package characteristics). All packages are ECOPACK® compliant. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see Section 6: Package characteristics). Table 5: Medium-density STM32F103xx pin definitions updated and clarified. Table 26: Low-power mode wakeup timings updated. TA min corrected in Table 12: Embedded internal reference voltage. Note 2 added below Table 22: HSE 4-16 MHz oscillator characteristics. VESD(CDM) value added to Table 32: ESD absolute maximum ratings. Note 4 added and VOH parameter description modified in Table 36: Output voltage characteristics. Note 1 modified under Table 37: I/O AC characteristics. Equation 1 and Table 47: RAIN max for fADC = 14 MHz added to Section 5.3.18: 12-bit ADC characteristics. VAIN, tS max, tCONV, VREF+ min and tlat max modified, notes modified and tlatr added in Table 46: ADC characteristics. Figure 37: ADC accuracy characteristics updated. Note 1 modified below Figure 38: Typical connection diagram using the ADC. Electrostatic discharge (ESD) on page 60 modified. Number of TIM4 channels modified in Figure 1: STM32F103xx performance line block diagram. Maximum current consumption Table 13, Table 14 and Table 15 updated. Vhysmodified in Table 35: I/O static characteristics. Table 49: ADC accuracy updated. tVDD modified in Table 10: Operating conditions at power-up / power-down. VFESD value added in Table 30: EMS characteristics. Values corrected, note 2 modified and note 3 removed in Table 26: Lowpower mode wakeup timings. Table 16: Typical and maximum current consumptions in Stop and Standby modes: Typical values added for VDD/VBAT = 2.4 V, Note 2 modified, Note 2 added. Table 21: Typical current consumption in Standby mode added. On-chip peripheral current consumption on page 50 added. ACCHSI values updated in Table 24: HSI oscillator characteristics. Vprog added to Table 28: Flash memory characteristics. Upper option byte address modified in Figure 11: Memory map. Typical fLSI value added in Table 25: LSI oscillator characteristics and internal RC value corrected from 32 to 40 kHz in entire document. TS_temp added to Table 50: TS characteristics. NEND modified in Table 29: Flash memory endurance and data retention. TS_vrefint added to Table 12: Embedded internal reference voltage. Handling of unused pins specified in General input/output characteristics on page 62. All I/Os are CMOS and TTL compliant. Figure 39: Power supply and reference decoupling (VREF+ not connected to VDDA) modified. tJITTER and fVCO removed from Table 27: PLL characteristics. Appendix A: Important notes on page 81 added. Added Figure 16, Figure 17, Figure 19 and Figure 21. Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 99/105 STM32F103x8, STM32F103xB Revision history 104 22-Nov-2007 4 Document status promoted from preliminary data to datasheet. The STM32F103xx is USB certified. Small text changes. Power supply schemes on page 15 modified. Number of communication peripherals corrected for STM32F103Tx and number of GPIOs corrected for LQFP package in Table 2: STM32F103xx medium-density device features and peripheral counts. Main function and default alternate function modified for PC14 and PC15 in, Note 6 added and Remap column added in Table 5: Medium-density STM32F103xx pin definitions. VDD–VSS ratings and Note 1 modified in Table 6: Voltage characteristics, Note 1 modified in Table 7: Current characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. IDD value at 72 MHz with peripherals enabled modified in Table 14: Maximum current consumption in Run mode, code with data processing running from RAM. IDD value at 72 MHz with peripherals enabled modified in Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM on page 44. IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum values added in Table 16: Typical and maximum current consumptions in Stop and Standby modes. Note added in Table 17 on page 48 and Table 18 on page 49. ADC1 and ADC2 consumption and notes modified in Table 19: Peripheral current consumption. tSU(HSE) and tSU(LSE) conditions modified in Table 22 and Table 23, respectively. Maximum values removed from Table 26: Low-power mode wakeup timings. tRET conditions modified in Table 29: Flash memory endurance and data retention. Figure 14: Power supply scheme corrected. Figure 20: Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V added. Note removed below Figure 33: SPI timing diagram - slave mode and CPHA = 0. Note added below Figure 34: SPI timing diagram - slave mode and CPHA = 1(1). Details on unused pins removed from General input/output characteristics on page 62. Table 42: SPI characteristics updated. Table 43: USB startup time added. VAIN, tlat and tlatr modified, note added and Ilkg removed in Table 46: ADC characteristics. Test conditions modified and note added in Table 49: ADC accuracy. Note added below Table 47 and Table 50. Inch values corrected in Table 54: LQPF100, 14 x 14 mm 100-pin lowprofile quad flat package mechanical data, Table 56: LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data and Table 58: LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. JAvalue for VFQFPN36 package added in Table 59: Package thermal characteristics Order codes replaced by Section 7: Ordering information scheme. MCU ‘s operating conditions modified in Typical current consumption on page 47. Avg_Slope and V25 modified in Table 50: TS characteristics. I2C interface characteristics on page 70 modified. Impedance size specified in A.4: Voltage glitch on ADC input 0 on page 81. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 100/105 DocID13587 Rev 16 14-Mar-2008 5 Figure 2: Clock tree on page 12 added. Maximum TJ value given in Table 8: Thermal characteristics on page 38. CRC feature added (see CRC (cyclic redundancy check) calculation unit on page 9 and Figure 11: Memory map on page 34 for address). IDD modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes. ACCHSI modified in Table 24: HSI oscillator characteristics on page 55, note 2 removed. PD, TA and TJ added, tprog values modified and tprog description clarified in Table 28: Flash memory characteristics on page 57. tRET modified in Table 29: Flash memory endurance and data retention. VNF(NRST) unit corrected in Table 38: NRST pin characteristics on page 68. Table 42: SPI characteristics on page 72 modified. IVREF added to Table 46: ADC characteristics on page 76. Table 48: ADC accuracy - limited test conditions added. Table 49: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 81). Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36 footprints added (see Figure 48, Figure 51, Figure 55 and Figure 42). Section 6.2: Thermal characteristics on page 93 modified, Section 6.2.1 and Section 6.2.2 added. Appendix A: Important notes on page 81 removed. 21-Mar-2008 6 Small text changes. Figure 11: Memory map clarified. In Table 29: Flash memory endurance and data retention: – NEND tested over the whole temperature range – cycling conditions specified for tRET – tRET min modified at TA = 55 °C V25, Avg_Slope and TL modified in Table 50: TS characteristics. CRC feature removed. 22-May-2008 7 CRC feature added back. Small text changes. Section 1: Introduction modified. Section 2.2: Full compatibility throughout the family added. IDD at TA max = 105 °C added to Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 45. IDD_VBAT removed from Table 21: Typical current consumption in Standby mode on page 47. Values added to Table 41: SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) on page 71. Figure 33: SPI timing diagram - slave mode and CPHA = 0 on page 73 modified. Equation 1 corrected. tRET at TA = 105 °C modified in Table 29: Flash memory endurance and data retention on page 58. VUSB added to Table 44: USB DC electrical characteristics on page 75. Figure 56: LQFP100 PD max vs. TA on page 95 modified. Axx option added to Table 60: Ordering information scheme on page 96. Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 101/105 STM32F103x8, STM32F103xB Revision history 104 21-Jul-2008 8 Power supply supervisor updated and VDDA added to Table 9: General operating conditions. Capacitance modified in Figure 14: Power supply scheme on page 36. Table notes revised in Section 5: Electrical characteristics. Table 16: Typical and maximum current consumptions in Stop and Standby modes modified. Data added to Table 16: Typical and maximum current consumptions in Stop and Standby modes and Table 21: Typical current consumption in Standby mode removed. fHSE_ext modified in Table 20: High-speed external user clock characteristics on page 51. fPLL_IN modified in Table 27: PLL characteristics on page 57. Minimum SDA and SCL fall time value for Fast mode removed from Table 40: I2C characteristics on page 70, note 1 modified. th(NSS) modified in Table 42: SPI characteristics on page 72 and Figure 33: SPI timing diagram - slave mode and CPHA = 0 on page 73. CADC modified in Table 46: ADC characteristics on page 76 and Figure 38: Typical connection diagram using the ADC modified. Typical TS_temp value removed from Table 50: TS characteristics on page 80. LQFP48 package specifications updated (see Table 58 and Table 55), Section 6: Package characteristics revised. Axx option removed from Table 60: Ordering information scheme on page 96. Small text changes. 22-Sep-2008 9 STM32F103x6 part numbers removed (see Table 60: Ordering information scheme). Small text changes. General-purpose timers (TIMx) and Advanced-control timer (TIM1) on page 18 updated. Notes updated in Table 5: Medium-density STM32F103xx pin definitions on page 28. Note 2 modified below Table 6: Voltage characteristics on page 37, |VDDx| min and |VDDx| min removed. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 41. IDD in standby mode at 85 °C modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 45. General input/output characteristics on page 62 modified. fHCLK conditions modified in Table 30: EMS characteristics on page 59. JA and pitch value modified for LFBGA100 package in Table 59: Package thermal characteristics. Small text changes. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 102/105 DocID13587 Rev 16 23-Apr-2009 10 I/O information clarified on page 1. Figure 3: STM32F103xx performance line LFBGA100 ballout modified. Figure 11: Memory map modified. Table 4: Timer feature comparison added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in Table 5: Medium-density STM32F103xx pin definitions. PD for LFBGA100 corrected in Table 9: General operating conditions. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Table 20: High-speed external user clock characteristics and Table 21: Low-speed external user clock characteristics modified. Figure 20 shows a typical curve (title modified). ACCHSI max values modified in Table 24: HSI oscillator characteristics. TFBGA64 package added (see Table 57 and Table 52). Small text changes. 22-Sep-2009 11 Note 5 updated and Note 4 added in Table 5: Medium-density STM32F103xx pin definitions. VRERINT and TCoeff added to Table 12: Embedded internal reference voltage. IDD_VBAT value added to Table 16: Typical and maximum current consumptions in Stop and Standby modes. Figure 18: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added. fHSE_ext min modified in Table 20: High-speed external user clock characteristics. CL1 and CL2 replaced by C in Table 22: HSE 4-16 MHz oscillator characteristics and Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Table 24: HSI oscillator characteristics modified. Conditions removed from Table 26: Low-power mode wakeup timings. Note 1 modified below Figure 24: Typical application with an 8 MHz crystal. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 58. Jitter added to Table 27: PLL characteristics. Table 42: SPI characteristics modified. CADC and RAIN parameters modified in Table 46: ADC characteristics. RAIN max values modified in Table 47: RAIN max for fADC = 14 MHz. Figure 45: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline updated. 03-Jun-2010 12 Added STM32F103TB devices. Added VFQFPN48 package. Updated note 2 below Table 40: I2C characteristics Updated Figure 32: I2C bus AC waveforms and measurement circuit Updated Figure 31: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 103/105 STM32F103x8, STM32F103xB Revision history 104 19-Apr-2011 13 Updated footnotes below Table 6: Voltage characteristics on page 37 and Table 7: Current characteristics on page 38 Updated tw min in Table 20: High-speed external user clock characteristics on page 51 Updated startup time in Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 54 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics 07-Dec-2012 14 Added UFBGA100 7 x 7 mm. Updated Figure 50: LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline to add pin 1 identification. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 104/105 DocID13587 Rev 16 14-May-2013 15 Replaced VQFN48 package with UQFN48 in cover page packages, Table 2: STM32F103xx medium-density device features and peripheral counts, Figure 9: STM32F103xx performance line UFQFPN48 pinout, Table 2: STM32F103xx medium-density device features and peripheral counts, Table 55: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data, Table 60: Ordering information scheme and updated Table 59: Package thermal characteristics Added footnote for TFBGA ADC channels in Table 2: STM32F103xx medium-density device features and peripheral counts Updated ‘All GPIOs are high current...’ in Section 2.3.21: GPIOs (general-purpose inputs/outputs) Updated Table 5: Medium-density STM32F103xx pin definitions Corrected Sigma letter in Section 5.1.1: Minimum and maximum values Removed the first sentence in Section 5.3.16: Communications interfaces Added ‘VIN’ in Table 9: General operating conditions Updated first sentence in Output driving current Added note 5. in Table 24: HSI oscillator characteristics Updated ‘VIL’ and ‘VIH’ in Table 35: I/O static characteristics Added notes to Figure 26: Standard I/O input characteristics - CMOS port, Figure 27: Standard I/O input characteristics - TTL port, Figure 28: 5 V tolerant I/O input characteristics - CMOS port and Figure 29: 5 V tolerant I/O input characteristics - TTL port Updated Figure 32: I2C bus AC waveforms and measurement circuit Updated note 2. and 3.,removed note “the device must internally...” in Table 40: I2C characteristics Updated title of Table 41: SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) Updated note 2. in Table 49: ADC accuracy Updated Figure 49: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline and Table 55: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data Updated Figure 45: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline and Table 53: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data Updated Figure 52: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline and Table 57: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data 05-Aug-2013 16 Updated the reference for ‘VESD(CDM)’ in Table 32: ESD absolute maximum ratings Corrected ‘tf(IO)out’ in Figure 30: I/O AC characteristics definition Updated Table 52: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 105/105 STM32F103x8, STM32F103xB 105 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com ST3232B ST3232C 3 to 5.5 V, low power, up to 400 kbps RS-232 drivers and receivers Features ■ 300 μA supply current ■ 300 kbps minimum guaranteed data rate ■ 6 V/μs minimum guaranteed slew rate ■ Meet EIA/TIA-232 specifications down to 3 V ■ Available in SO-16, SO-16 large and TSSOP16 Description The ST3232 is a 3 V powered EIA/TIA-232 and V.28/V.24 communication interface with low power requirements, high data-rate capabilities. ST3232 has a proprietary low dropout transmitter output stage providing true RS-232 performance from 3 to 5.5 V supplies. The device requires only four small 0.1 mF standard external capacitors for operations from 3 V supply. The ST3232 has two receivers and two drivers. The device is guaranteed to run at data rates of 250 kbps while maintaining RS-232 output levels. Typical applications are Notebook, Subnotebook and Palmtop Computers, Battery Powered Equipment, Hand-Held Equipment, Peripherals and Printers. SO-16 Large TSSOP16 SO-16 Table 1. Device summary Order codes Temp. range Package Packaging ST3232CDR 0 to 70 °C SO-16 (tape and reel) 2500 parts per reel ST3232BDR -40 to 85 °C SO-16 (tape and reel) 2500 parts per reel ST3232CWR 0 to 70 °C SO-16 Large (tape and reel) 1000 parts per reel ST3232BWR -40 to 85 °C SO-16 Large (tape and reel) 1000 parts per reel ST3232CTR 0 to 70 °C TSSOP16 (tape and reel) 2500 parts per reel ST3232BTR -40 to 85 °C TSSOP16 (tape and reel) 2500 parts per reel www.st.com Contents ST3232B - ST3232C 2/18 Contents 1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ST3232B - ST3232C Pin configuration 3/18 1 Pin configuration Figure 1. Pin connection Table 2. Pin description Pin n° Symbol Name and function 1 C1+ Positive terminal for the first charge pump capacitor 2 V+ Doubled voltage terminal 3 C1- Negative terminal for the first charge pump capacitor 4 C2+ Positive terminal for the second charge pump capacitor 5 C2- Negative terminal for the second charge pump capacitor 6 V- Inverted voltage terminal 7 T2OUT Second transmitter output voltage 8 R2IN Second receiver input voltage 9 R2OUT Second receiver output voltage 10 T2IN Second transmitter input voltage 11 T1IN First transmitter input voltage 12 R1OUT First receiver output voltage 13 R1IN First receiver input voltage 14 T1OUT First transmitter output voltage 15 GND Ground 16 VCC Supply voltage Absolute maximum ratings ST3232B - ST3232C 4/18 2 Absolute maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Externally applied V+ and V- can have a maximum magnitude of +7 V, but their absolute addition can not exceed 13 V. Running on internal charge pump, intrinsic self limitation allows exceeding those values without any damage. Startup voltage sequence (VCC, then V+, then V-) is critical, therefore it is not recommended to use this device using externally applied voltage to V+ and V-. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage -0.3 to 6 V V+ Doubled voltage terminal (VCC - 0.3) to 7 V V- Inverted voltage terminal 0.3 to -7 V V+ +|V-| 13 V TIN Transmitter input voltage range -0.3 to 6 V RIN Receiver input voltage range ± 25 V TOUT Transmitter output voltage range ± 13.2 V ROUT Receiver output voltage range -0.3 to (VCC + 0.3) V tSHORT Transmitter output short to gnd time Continuous ST3232B - ST3232C Electrical characteristics 5/18 3 Electrical characteristics Table 4. Electrical characteristics (C1 - C4 = 0.1 μF, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit ISUPPLY VCC Power supply current No Load, VCC = 3V ± 10%, TA = 25°C 0.3 1 mA No Load, VCC = 5V ± 10%, TA = 25°C 1 2 mA Table 5. Logic input (C1 - C4 = 0.1 μF, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VTIL Input logic threshold low T-IN (1) 0.8 V VTIH Input logic threshold high VCC = 3.3V 2 V VCC = 5V 2.4 IIL Input leakage current T-IN ± 0.01 ± 1 μA 1. Transmitter input hysteresis is typically 250mV. Table 6. Transmitter (C1 - C4 = 0.1 μF tested at 3.3 V ± 10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VTOUT Output voltage swing All transmitter outputs are loaded with 3kΩ to GND ± 5 ± 5.4 V RTOUT Transmitter output resistance VCC = V+ = V- = 0V, VOUT = ± 2V 300 10M Ω ITSC Output short circuit current VCC = 3V or 5V, VOUT = ± 12 ± 60 mA Table 7. Receiver (C1 - C4 = 0.1 μF tested at 3.3 V ±10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VRIN Receiver input voltage operating range -25 25 V VRIL RS-232 Input threshold low TA = 25°C, VCC = 3.3V 0.6 1.1 V TA = 25°C, VCC = 5V 0.8 1.5 VRIH RS-232 Input threshold high TA = 25°C, VCC = 3.3V 1.5 2.4 V TA = 25°C, VCC = 5V 1.8 2.4 VRIHYS Input hysteresis 0.3 V RRIN Input resistance TA = 25°C 3 5 7 kΩ VROL TTL/CMOS Output voltage low IOUT = 1.6mA 0.4 V VROH TTL/CMOS Output voltage high IOUT = -1mA VCC-0.6 VCC-0.1 V Electrical characteristics ST3232B - ST3232C 6/18 Note: 1 Transmitter skew is measured at the transmitter zero cross points. Table 8. Timing characteristics (C1 - C4 = 0.1 μF tested at 3.3 V ± 10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit DR Data transfer rate RL = 3kΩ, CL2= 1000pF one transmitter switching 300 400 kbps tPHLR tPLHR Propagation delay input to output RXIN = RXOUT, CL = 150pF 0.2 μs |tPHLT - tTHL| Transmitter propagation delay difference (Note 1) 100 ns |tPHLR - tTHR| Receiver propagation delay difference 50 ns SRT Transition slew rate TA = 25°C RL = 3kΩ to 7kΩ VCC = 3.3V measured from +3V to -3V or -3V to +3V CL = 150pF to 1000pF CL = 150pF to 2500pF 6 4 30 30 V/μs V/μs ST3232B - ST3232C Application 7/18 4 Application Figure 2. Application circuits Table 9. Capacitance value (μF) VCC C1 C2 C3 C4 Cbypass 3.0 to 3.6 0.1 0.1 0.1 0.1 0.1 4.5 to 5.5 0.047 0.33 0.33 0.33 0.33 Typical performance characteristics ST3232B - ST3232C 8/18 5 Typical performance characteristics (unless otherwise specified TJ = 25 °C) Figure 3. Driver voltage transfer characteristics for transmitter input Figure 4. Driver voltage transfer characteristics for receiver inputs Figure 5. Output current vs output low voltage Figure 6. Output current vs output low voltage ST3232B - ST3232C Typical performance characteristics 9/18 Figure 7. Output current vs output high voltage Figure 8. Output current vs output high voltage Figure 9. Receiver input resistance Package mechanical data ST3232B - ST3232C 10/18 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. ST3232B - ST3232C Package mechanical data 11/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.75 0.068 a1 0.1 0.25 0.004 0.010 a2 1.64 0.063 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45° (typ.) D 9.8 10 0.385 0.393 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M 0.62 0.024 S 8° (max.) SO-16 mechanical data 0016020D Package mechanical data ST3232B - ST3232C 12/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 2.65 0.104 a1 0.1 0.2 0.004 0.008 a2 2.45 0.096 b 0.35 0.49 0.014 0.019 b1 0.23 0.32 0.009 0.012 C 0.5 0.020 c1 45° (typ.) D 10.1 10.5 0.397 0.413 E 10.0 10.65 0.393 0.419 e 1.27 0.050 e3 8.89 0.350 F 7.4 7.6 0.291 0.300 G L 0.5 1.27 0.020 0.050 M 0.75 0.029 S 8° (max.) SO-16L mechanical data PO13I ST3232B - ST3232C Package mechanical data 13/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.004 0.006 A2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 BSC 0.0256 BSC K 0° 8° 0° 8° L 0.45 0.60 0.75 0.018 0.024 0.030 TSSOP16 mechanical data b c E A A2 E1 D 1 PIN 1 IDENTIFICATION A1 K L e 0080338D Package mechanical data ST3232B - ST3232C 14/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 6.45 6.65 0.254 0.262 Bo 10.3 10.5 0.406 0.414 Ko 2.1 2.3 0.082 0.090 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel SO-16 mechanical data ST3232B - ST3232C Package mechanical data 15/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 10.8 11.0 0.425 0.433 Bo 10.7 10.9 0.421 0.429 Ko 2.9 3.1 0.114 0.122 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 Tape & reel SO-16L mechanical data Package mechanical data ST3232B - ST3232C 16/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 6.7 6.9 0.264 0.272 Bo 5.3 5.5 0.209 0.217 Ko 1.6 1.8 0.063 0.071 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel TSSOP16 mechanical data ST3232B - ST3232C Revision history 17/18 7 Revision history Table 10. Document revision history Date Revision Changes 06-Sep-2006 8 Order codes has been updated and new template. 25-Oct-2006 9 Order codes has been updated. 21-Jan-2008 10 Added note on Table 3. 08-Feb-2008 11 Modified: Table 1 on page 1. ST3232B - ST3232C 18/18 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com TIP102 TIP107 COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS n STMicroelectronics PREFERRED SALESTYPES n COMPLEMENTARY PNP - NPN DEVICES n INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE APPLICATIONS n LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT n AUDIO POWER AMPLIFIER n GENERAL POWER SWITCHING n DC-AC CONVERTER n EASY DRIVER FOR LOW VOLTAGE DC MOTOR DESCRIPTION The TIP102 is a silicon Epitaxial-Base NPN power transistor in monolithic Darlington configuration mounted in TO-220 plastic package. It is intented for use in power linear and switching applications. The complementary PNP type is TIP107. ® INTERNAL SCHEMATIC DIAGRAM April 2003 ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit NPN TIP102 PNP TIP107 VCBO Collector-Base Voltage (IE = 0) 100 V VCEO Collector-Emitter Voltage (IB = 0) 100 V VEBO Emitter-Base Voltage (IC = 0) 5 V IC Collector Current 8 A ICM Collector Peak Current 15 A IB Base Current 1 A Ptot Total Dissipation at Tcase £ 25 oC Tamb £ 25 oC 80 2 W W Tstg Storage Temperature -65 to 150 oC Tj Max. Operating Junction Temperature 150 oC * For PNP types voltage and current values are negative. 1 2 3 TO-220 R1 Typ. = 5 KW R2 Typ. = 150 W 1/4 THERMAL DATA Rthj-case Rthj-amb Thermal Resistance Junction-case Max Thermal Resistance Junction-ambient Max 1.56 62.5 oC/W oC/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit ICEO Collector Cut-off Current (IB = 0) VCE = 50 V 50 mA ICBO Collector Cut-off Current (IE = 0) VCB = 100 V 50 mA IEBO Emitter Cut-off Current (IC = 0) VEB = 5 V 8 mA VCEO(sus)* Collector-Emitter Sustaining Voltage (IB = 0) IC = 30 mA 100 V VCE(sat)* Collector-Emitter Saturation Voltage IC = 3 A IB = 6 mA IC = 8 A IB = 80 mA 2 2.5 V V VBE* Base-Emitter Voltage IC = 8 A VCE = 4 V 2.8 V hFE* DC Current Gain IC = 3 A VCE = 4 V IC = 8 A VCE = 4 V 1000 200 20000 VF* Forward Voltage of Commutation Diode (IB = 0) IF = - IC = 10 A 2.8 V * Pulsed: Pulse duration = 300 ms, duty cycle 1.5 % For PNP types voltage and current values are negative. Safe Operating Area TIP102 / TIP107 2/4 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.052 D 2.40 2.72 0.094 0.107 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.202 G1 2.40 2.70 0.094 0.106 H2 10.00 10.40 0.394 0.409 L2 16.40 0.645 L4 13.00 14.00 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.260 L9 3.50 3.93 0.137 0.154 M 2.60 0.102 DIA. 3.75 3.85 0.147 0.151 P011CI TO-220 MECHANICAL DATA TIP102 / TIP107 3/4 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics © 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com ESM6045DV NPN DARLINGTON POWER MODULE n HIGH CURRENT POWER BIPOLAR MODULE n VERY LOW Rth JUNCTION CASE n SPECIFIED ACCIDENTAL OVERLOAD AREAS n ULTRAFAST FREEWHEELING DIODE n FULLY INSULATED PACKAGE (UL COMPLIANT) n EASY TO MOUNT n LOW INTERNAL PARASITIC INDUCTANCE INDUSTRIAL APPLICATIONS: n MOTOR CONTROL n SMPS & UPS n DC/DC & DC/AC CONVERTERS n WELDING EQUIPMENT INTERNAL SCHEMATIC DIAGRAM September 2003 ISOTOP ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VCEV Collector-Emitter Voltage (VBE = -5 V) 600 V VCEO(sus) Collector-Emitter Voltage (IB = 0) 450 V VEBO Emitter-Base Voltage (IC = 0) 7 V IC Collector Current 84 A ICM Collector Peak Current (tp = 10 ms) 126 A IB Base Current 8 A IBM Base Peak Current (tp = 10 ms) 16 A Ptot Total Dissipation at Tc = 25 oC 250 W Visol Insulation Withstand Voltage (RMS) from All Four Terminals to Exernal Heatsink 2500 V Tstg Storage Temperature -55 to 150 oC Tj Max. Operating Junction Temperature 150 oC ® 1/8 THERMAL DATA Rthj-case Rthj-case Rthc-h Thermal Resistance Junction-case (transistor) Max Thermal Resistance Junction-case (diode) Max Thermal Resistance Case-heatsink With Conductive Grease Applied Max 0.5 1.2 0.05 oC/W oC/W oC/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit ICER # Collector Cut-off Current (RBE = 5 W) VCE = VCEV VCE = VCEV Tj = 100 oC 1.5 22 mA mA ICEV # Collector Cut-off Current (VBE = -5) VCE = VCEV VCE = VCEV Tj = 100 oC 1 15 mA mA IEBO # Emitter Cut-off Current (IC = 0) VEB = 5 V 1 mA VCEO(SUS)* Collector-Emitter Sustaining Voltage (IB = 0) IC = 0.2 A L = 25 mH Vclamp = 450 V 450 V hFE* DC Current Gain IC = 70 A VCE = 5 V 120 VCE(sat)* Collector-Emitter Saturation Voltage IC = 50 A IB = 1 A IC = 50 A IB = 1 A Tj = 100 oC IC = 70 A IB = 4 A IC = 70 A IB = 4 A Tj = 100 oC 1.2 1.6 1.35 1.7 2 2 V V V V VBE(sat)* Base-Emitter Saturation Voltage IC = 70 A IB = 4 A IC = 70 A IB = 4 A Tj = 100 oC 2.3 2.4 3 V V diC/dt Rate of Rise of On-state Collector VCC = 300 V RC = 0 tp = 3 ms IB1 = 1.5 A Tj = 100 oC 375 450 A/ms VCE(3 ms)•• Collector-Emitter Dynamic Voltage VCC = 300 V RC = 6 W IB1 = 1.5 A Tj = 100 oC 6 9 V VCE(5 ms)•• Collector-Emitter Dynamic Voltage VCC = 300 V RC = 6 W IB1 = 1.5 A Tj = 100 oC 3 4.5 V ts tf tc Storage Time Fall Time Cross-over Time IC = 50 A VCC = 50 V VBB = -5 V RBB = 0.3 W Vclamp = 450 V IB1 = 1 A L = 0.05 mH Tj = 100 oC 3.5 0.3 0.8 5.5 0.5 1.7 ms ms ms VCEW Maximum Collector Emitter Voltage Without Snubber ICWoff = 84 A IB1 = 4 A VBB = -5 V VCC = 50 V L = 0.03 mH RBB = 0.3 W Tj = 125 oC 450 V VF* Diode Forward Voltage IF = 70 A Tj = 100 oC 1.6 1.9 V IRM Reverse Recovery Current VCC = 200 V IF = 70 A diF/dt = -375 A/ms L < 0.05 mH Tj = 100 oC 38 45 A * Pulsed: Pulse duration = 300 ms, duty cycle 1.5 % # See test circuits in databook introduction To evaluate the conduction losses of the diode use the following equations: VF = 1.5 + 0.0055 IF P = 1.5 IF(AV) + 0.0055 I2 F(RMS) ESM6045DV 2/8 Safe Operating Areas Derating Curve Collector Emitter Saturation Voltage Thermal Impedance Collector-emitter Voltage Versus base-emitter Resistance Base-Emitter Saturation Voltage ESM6045DV 3/8 Reverse Biased SOA Reverse Biased AOA Switching Times Inductive Load Foward Biased SOA Forward Biased AOA Switching Times Inductive Load Versus Temperature ESM6045DV 4/8 Turn-on Switching Waveforms Dc Current Gain Typical VF Versus IF Peak Reverse Current Versus diF/dt Turn-on Switching Test Circuit ESM6045DV 5/8 Turn-on Switching Test Circuit Turn-off Switching Waveforms Turn-off Switching Test Circuit of Diode Turn-off Switching Waveform of Diode ESM6045DV 6/8 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 11.8 12.2 0.465 0.480 A1 8.9 9.1 0.350 0.358 B 7.8 8.2 0.307 0.322 C 0.75 0.85 0.029 0.033 C2 1.95 2.05 0.076 0.080 D 37.8 38.2 1.488 1.503 D1 31.5 31.7 1.240 1.248 E 25.15 25.5 0.990 1.003 E1 23.85 24.15 0.938 0.950 E2 24.8 0.976 G 14.9 15.1 0.586 0.594 G1 12.6 12.8 0.496 0.503 G2 3.5 4.3 0.137 1.169 F 4.1 4.3 0.161 0.169 F1 4.6 5 0.181 0.196 P 4 4.3 0.157 0.169 P1 4 4.4 0.157 0.173 S 30.1 30.3 1.185 1.193 P093A ISOTOP MECHANICAL DATA ESM6045DV 7/8 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners. © 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com MC34063AB, MC34063AC, MC34063EB, MC34063EC DC-DC converter control circuits Datasheet - production data Features  Output switch current in excess of 1.5 A  2 % reference accuracy  Low quiescent current: 2.5 mA (typ.)  Operating from 3 V to 40 V  Frequency operation to 100 kHz  Active current limiting Description The MC34063A/E series is a monolithic control circuit which delivers the main functions for DCDC voltage converting. The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit, driver and high current output switch. Output voltage is adjustable through two external resistors with a 2% reference accuracy. Employing a minimum number of external components, the MC34063A/E device series is designed for step-down, step-up and voltageinverting applications. DIP-8 SO-8 Table 1. Device summary Order codes DIP-8 SO-8 MC34063ABN MC34063ABD-TR MC34063ACN MC34063ACD-TR MC34063EBN MC34063EBD-TR MC34063ECN MC34063ECD-TR www.st.com Contents MC34063AB, MC34063AC, MC34063EB, MC34063EC 2/23 DocID5257 Rev 11 Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID5257 Rev 11 3/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Diagram 1 Diagram Figure 1. Block diagram Pin configuration MC34063AB, MC34063AC, MC34063EB, MC34063EC 4/23 DocID5257 Rev 11 2 Pin configuration Figure 2. Pin connections Table 2. Pin description Pin n° Symbol Name and function 1 SWC Switch collector 2 SWE Switch emitter 3 TC Timing capacitor 4 GND Ground 5 CII Comparator inverting input 6 VCC Voltage supply 7 IPK IPK sense 8 DRC Voltage driver collector DocID5257 Rev 11 5/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Maximum ratings 3 Maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC Power supply voltage 50 V VIR Comparator input voltage range -0.3 to 40 V VSWC Switch collector voltage 40 V VSWE Switch emitter voltage (VSWC = 40V) 40 V VCE Switch collector to emitter voltage 40 V VDC Driver collector voltage 40 V IDC Driver collector current 100 mA ISW Switch current 1.5 A PTOT Power dissipation at TA = 25°C for DIP-8 1.25 W for SO-8 0.625 TJ Operating junction temperature 150 °C TSTG Storage temperature range -40 to 150 °C TOP Operating ambient temperature range for AC and EC series 0 to 70 for AB series -40 to 85 °C for EB series -40 to 125 Table 4. Thermal data Symbol Parameter DIP-8 SO-8 Unit RthJA Thermal resistance junction-ambient (1) 1. This value depends from thermal design of PCB on which the device is mounted. 100 160 °C/W RthJC Thermal resistance junction-case 42 20 °C/W Electrical characteristics MC34063AB, MC34063AC, MC34063EB, MC34063EC 6/23 DocID5257 Rev 11 4 Electrical characteristics Refer to the test circuits, VCC = 5 V, TA = TLOW to THIGH, unless otherwise specified. (a) a. TLOW = 0 °C, THIGH = 70 °C (AC and EC series); TLOW = -40 °C, THIGH = 85 °C (AB series); TLOW = -40 °C, THIGH = 125 °C (EB series) Table 5. Oscillator Symbol Parameter Test conditions Min. Typ. Max. Unit fOSC Frequency VPIN5 = 0V, CT = 1 nF, TA = 25°C 24 33 42 kHz ICHG Charge current VCC = 5 to 40V, TA = 25°C 24 33 42 μA IDISCHG Discharge current VCC = 5 to 40V, TA = 25°C 140 200 260 μA IDISCHG/ICHG Discharge to charge current ratio PIN 7 = VCC, TA = 25°C 5.2 6.2 7.5 μA VIPK(sense) Current limit sense voltage ICHG = IDISCHG, TA = 25°C 250 300 350 mV Table 6. Output switch Symbol Parameter Test conditions Min. Typ. Max. Unit VCE(sat) Saturation voltage, Darlington connection ISW = 1 A, PIN 1, 8 connected 1 1.3 V VCE(sat) Saturation voltage ISW = 1 A, RPIN8 = 82  to VCC Forced  ~ 20 0.45 0.7 V hFE DC current gain ISW = 1 A,VCE = 5 V, TA = 25°C 50 120 IC(off) Collector off-state current VCE = 40 V 0.01 100 μA Table 7. Comparator Symbol Parameter Test conditions Min. Typ. Max. Unit VTH Threshold voltage TA = 25°C 1.225 1.25 1.275 V TA = TLOW to THIGH 1.21 1.29 Regline Threshold voltage line regulation VCC = 3 to 40 V 1 5 mV IIB Input bias current VIN = 0 V -5 -400 nA DocID5257 Rev 11 7/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Electrical characteristics Note: Maximum package power dissipation limit must be observed. If Darlington configuration is not used, care must be taken to avoid deep saturation of output switch. The resulting switch-off time may be adversely affected. In a Darlington configuration the following output driver condition is suggested: Forced  of output current switch = ICOUTPUT/(ICDRIVER - 1 mA)  10 Table 8. Total device Symbol Parameter Test conditions Min. Typ. Max. Unit ICC Supply current VCC = 5 to 40 V CT = 1 nF PIN 7 = VCC VPIN5 >VTH PIN 2 = GND Remaining pins open for MC34063A 2.5 4 mA for MC34063E 1.5 4 VSTART-UP Start-up voltage (1) TA = 25°C CT = 1 μF, PIN 5 = 0 for MC34063A 2.1 V for MC34063E 1.5 1. Start-up voltage is the minimum power supply voltage at which the internal oscillator begins to work. Typical performance characteristics MC34063AB, MC34063AC, MC34063EB, MC34063EC 8/23 DocID5257 Rev 11 5 Typical performance characteristics Figure 3. Emitter follower configuration output saturation voltage vs. emitter current Figure 4. Output switch ON-OFF time vs. oscillator timing capacitor Figure 5. Common emitter configuration output switch saturation voltage vs. collector current Figure 6. Darlington configuration collector emitter saturation voltage (VCEsat) vs. temperature DocID5257 Rev 11 9/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical performance characteristics Figure 7. Power collector emitter saturation voltage (VCEsat) vs. temperature Figure 8. Current limit sense voltage (VIPK) vs. temperature Figure 9. Reference voltage vs. temperature Figure 10. Bias current vs. temperature Figure 11. Supply current vs. temperature Figure 12. Supply current vs. input voltage Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 10/23 DocID5257 Rev 11 6 Typical application circuit Figure 13. Step-up converter Figure 14. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 9. Test condition (VOUT = 28 V) Test Conditions Value (Typ.) Unit Line Regulation VIN = 8 to 16 V, IO = 175 mA 30 mV Load Regulation VIN = 12 V, IO = 75 to 175 mA 10 mV Output Ripple VIN = 12 V, IO = 175 mA 300 mV Efficiency VIN = 12 V, IO = 175 mA 89 % DocID5257 Rev 11 11/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 15. Step-down converter Figure 16. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 10. Test condition (VOUT = 5 V) Test Conditions Value (typ.) Unit Line regulation VIN = 15 to 25 V, IO = 500 mA 5 mV Load regulation VIN = 25 V, IO = 50 to 500 mA 30 mV Output ripple VIN = 25 V, IO = 500 mA 100 mV Efficiency VIN = 25 V, IO = 500 mA 80 % ISC VIN = 25 V, RLOAD = 0.1  1.2 A Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 12/23 DocID5257 Rev 11 Figure 17. Voltage inverting converter Figure 18. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 11. Test condition (VOUT = 12 V) Test Conditions Value (typ.) Unit Line regulation VIN = 4.5 to 6 V, IO = 100 mA 15 mV Load regulation VIN = 5 V, IO = 10 to 100 mA 20 mV Output ripple VIN = 5 V, IO = 100 mA 230 mV Efficiency VIN = 5 V, IO = 100 mA 58 % ISC VIN = 5 V, RLOAD = 0.1  0.9 A DocID5257 Rev 11 13/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Note: VSAT = Saturation voltage of the output switch VF = Forward voltage drop of the output rectifier The following power supply characteristics must be chosen: VIN = Nominal input voltage VOUT = Desired output voltage, |VOUT| = 1.25 (1 + R2/R1) IOUT = Desired output current fMIN = Minimum desired output switching frequency at the selected values of VIN and IO VRIPPLE = Desired peak to peak output ripple voltage. In practice, the calculated capacitor value will and to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. Table 12. Calculation Parameter Step-Up (Discontinuous mode) Step-Down (Continuous mode) Voltage Inverting (Discontinuous mode) ton/toff (ton + toff) max 1/fmin 1/fmin 1/fmin CT 4.5x10-5ton 4.5x10-5ton 4.5x10-5ton IPK(switch) 2Iout(max)[(ton/toff)+1] 2Iout(max) 2Iout(max)[(ton/toff)+1] RSC 0.3/IPK(switch) 0.3/IPK(switch) 0.3/IPK(switch) CO L(min) VOUT + VF – VINmin ---------V----I--N------m----i-n------–-----V----s---a---t-------- VOUT + VF -V----I-N------m----i--n------–----V----s---a---t---–----V-----O----U---T-- VOUT + VF ---V----I--N-----–----V----s---a---t-- Ioutton Vripplep – p ------------------------------- IPKswitchton + toff 8Vripplep – p ----------------------------------------------------- Ioutton Vripplep – p ------------------------------- VINmin – Vsat IPKswitch --------------------------------------  tonmin VINmin – Vsat – Vout IPKswitch ------------------------------------------------------  tonmin VINmin – Vsat IPKswitch --------------------------------------  tonmin Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 14/23 DocID5257 Rev 11 Figure 19. Step-up with external NPN switch Figure 20. Step-down with external NPN switch DocID5257 Rev 11 15/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 21. Step-down with external PNP switch Figure 22. Voltage inverting with external NPN switch Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 16/23 DocID5257 Rev 11 Figure 23. Voltage inverting with external PNP saturated switch Figure 24. Dual output voltage DocID5257 Rev 11 17/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 25. Higher output power, higher input voltage Package mechanical data MC34063AB, MC34063AC, MC34063EB, MC34063EC 18/23 DocID5257 Rev 11 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID5257 Rev 11 19/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Package mechanical data Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 3.3 0.130 a1 0.7 0.028 B 1.39 1.65 0.055 0.065 B1 0.91 1.04 0.036 0.041 b 0.5 0.020 b1 0.38 0.5 0.015 0.020 D 9.8 0.386 E 8.8 0.346 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 7.1 0.280 I 4.8 0.189 L 3.3 0.130 Z 0.44 1.6 0.017 0.063 Plastic DIP-8 mechanical data P001F Package mechanical data MC34063AB, MC34063AC, MC34063EB, MC34063EC 20/23 DocID5257 Rev 11 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 8° (max.) ddd 0.1 0.04 SO-8 mechanical data 0016023/C DocID5257 Rev 11 21/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Package mechanical data Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 8.1 8.5 0.319 0.335 Bo 5.5 5.9 0.216 0.232 Ko 2.1 2.3 0.082 0.090 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel SO-8 mechanical data Revision history MC34063AB, MC34063AC, MC34063EB, MC34063EC 22/23 DocID5257 Rev 11 8 Revision history Table 13. Document revision history Date Revision Changes 20-Nov-2007 10 Added Table 1. 24-Apr-2013 11 Removed note Table 1 on page 1. DocID5257 Rev 11 23/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com TIP41C TIP42C Complementary power transistors Features ■ Complementary PNP-NPN devices ■ New enhanced series ■ High switching speed ■ hFE grouping ■ hFE improved linearity Applications ■ General purpose circuits ■ Audio amplifier ■ Power linear and switching Description The TIP41C is a base island technology NPN power transistor in TO-220 plastic package that make this device suitable for audio, power linear and switching applications. The complementary PNP type is TIP42C . Figure 1. Internal schematic diagram TO-220 1 2 3 Table 1. Device summary Order code Marking Package Packaging TIP41C (Note 1 on page 4) TIP41C R TIP41C O TIP41C Y TO-220 Tube TIP42C (Note 1 on page 4) TIP42C R TIP42C O TIP42C Y TO-220 Tube www.st.com Contents TIP41C - TIP42C 2/12 Contents 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Typical characteristic (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TIP41C - TIP42C Absolute maximum ratings 3/12 1 Absolute maximum ratings Note: For PNP types voltage and current values are negative Table 2. Absolute maximum ratings Symbol Parameter Value Unit VCBO Collector-base voltage (IE = 0) 100 V VCEO Collector-emitter voltage (IB = 0) 100 V VEBO Emitte-base voltage (IC = 0) 5 V IC Collector current 6 A ICM Collector peak current (tP < 5ms) 10 A IB Base current 3 A PTOT Total dissipation at Tcase = 25°C 65 W Tstg Storage temperature -65 to 150 °C TJ Max. operating junction temperature 150 °C Electrical characteristics TIP41C - TIP42C 4/12 2 Electrical characteristics (Tcase = 25°C; unless otherwise specified) Note: 1 Product is pre-selected in DC current gain (group R, group O and group Y). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details. Note: For PNP types voltage e current values are negative. Table 3. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit ICEO Collector cut-off current (IB = 0) VCE = 60 V 0.7 mA IEBO Emitter cut-off current (IC = 0) VEB = 5 V 1 mA ICES Collector cut-off current (VBE = 0) VCE = 100 V 0.4 mA VCEO(sus) (1) 1. Pulsed duration = 300 ms, duty cycle ≥1.5%. Collector-emitter sustaining voltage (IB = 0) IC = 30 mA 100 V VCE(sat) (1) Collector-emitter saturation voltage IC = 6 A __ IB = 0.6 A 1.5 V VBE(on) (1) Base-emitter voltage IC = 6 A ___ VCE = 4 V 2 V hFE (1) DC current gain IC = 0.3 A_ _ VCE = 4 V IC = 3 A ____ VCE = 4 V Group R Group O Group Y 30 15 15 24 42 75 28 44 75 TIP41C - TIP42C Electrical characteristics 5/12 2.1 Typical characteristic (curves) Figure 2. DC current gain (NPN) Figure 3. DC current gain (PNP) Figure 4. DC current gain (NPN) Figure 5. DC current gain (PNP) Figure 6. Collector-emitter saturation voltage (NPN) Figure 7. Collector-emitter saturation voltage (PNP) Electrical characteristics TIP41C - TIP42C 6/12 Figure 8. Base-emitter saturation voltage (NPN) Figure 9. Base-emitter saturation voltage (PNP) Figure 10. Base-emitter voltage (NPN) Figure 11. Base-emitter voltage (PNP) Figure 12. Resistive load switching time (NPN) Figure 13. Resistive load switching time (PNP) TIP41C - TIP42C Electrical characteristics 7/12 Figure 14. Resistive load switching time (NPN) Figure 15. Resistive load switching time (PNP) Figure 16. Collector-base and collectoremitter capacitance (NPN) Figure 17. Collector-base and collectoremitter capacitance (PNP) Electrical characteristics TIP41C - TIP42C 8/12 2.2 Test circuit Figure 18. Inductive load switching test circuit Note: For PNP types voltage e current values are negative. Figure 19. Resistive load switching test circuit 1) Fast electronic switch 3) Fast recovery rectifier 2) Non-inductive resistor 1) Fast electronic switch 2) Non-inductive resistor TIP41C - TIP42C Package mechanical data 9/12 3 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com Package mechanical data TIP41C - TIP42C 10/12 TO-220 mechanical data Dim mm inch Min Typ Max Min Typ Max A 4.40 4.60 0.173 0.181 b 0.61 0.88 0.024 0.034 b1 1.14 1.70 0.044 0.066 c 0.49 0.70 0.019 0.027 D 15.25 15.75 0.6 0.62 D1 1.27 0.050 E 10 10.40 0.393 0.409 e 2.40 2.70 0.094 0.106 e1 4.95 5.15 0.194 0.202 F 1.23 1.32 0.048 0.051 H1 6.20 6.60 0.244 0.256 J1 2.40 2.72 0.094 0.107 L 13 14 0.511 0.551 L1 3.50 3.93 0.137 0.154 L20 16.40 0.645 L30 28.90 1.137 ∅P 3.75 3.85 0.147 0.151 Q 2.65 2.95 0.104 0.116 TIP41C - TIP42C Revision history 11/12 4 Revision history Table 4. Document revision history Date Revision Changes 24-Oct-2006 1 Initial release 19-Nov-2007 2 Content reworked to improve readability, no technical changes TIP41C - TIP42C 12/12 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com ST1S10 3 A, 900 kHz, monolithic synchronous step-down regulator IC Datasheet − production data Features ■ Step-down current mode PWM regulator ■ Output voltage adjustable from 0.8 V ■ Input voltage from 2.5 V up to 18 V ■ 2% DC output voltage tolerance ■ Synchronous rectification ■ Inhibit function ■ Synchronizable switching frequency from 400 kHz up to 1.2 MHz ■ Internal soft start ■ Dynamic short circuit protection ■ Typical efficiency: 90% ■ 3 A output current capability ■ Stand-by supply current: max 6 μA over temperature range ■ Operative junction temp: from - 40 °C to 125 °C Applications ■ Consumer – STB, DVD, DVD recorders, TV, VCR, car audio, LCD monitors ■ Networking – XDSL, modems, DC-DC modules ■ Computer – Optical storage, HD drivers, printers, audio/graphic cards ■ Industrial and security – Battery chargers, DC-DC converters, PLD, PLA, FPGA, LED drivers Description The ST1S10 is a high efficiency step-down PWM current mode switching regulator capable of providing up to 3 A of output current. The device operates with an input supply range from 2.5 V to 18 V and provides an adjustable output voltage from 0.8 V (VFB) to 0.85*VIN_SW [VOUT = VFB*(1+R1/R2)]. It operates either at a 900 kHz fixed frequency or can be synchronized to an external clock (from 400 kHz to 1.2 MHz). The high switching frequency allows the use of tiny SMD external components, while the integrated synchronous rectifier eliminates the need for a Schottky diode. The ST1S10 provides excellent transient response, and is fully protected against thermal overheating, switching over-current and output short circuit. The ST1S10 is the ideal choice for point-of-load regulators or LDO pre-regulation. DFN8 (4 x 4 mm) PowerSO-8 Table 1. Device summary Part number Order codes DFN8 (4 x 4 mm) PowerSO-8 ST1S10 ST1S10PUR ST1S10PHR www.st.com Contents ST1S10 2/29 Doc ID 13844 Rev 5 Contents 1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2.1 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.3 Output capacitor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.5 Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.6 Inductor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.7 Inductor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8 Function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.1 Sync operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.2 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.3 OCP (overcurrent protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.4 SCP (short circuit protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.5 SCP and OCP operation with high capacitive load . . . . . . . . . . . . . . . . 14 6 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ST1S10 List of tables Doc ID 13844 Rev 5 3/29 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6. Power SO-8 (exposed pad) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7. Power SO-8 (exposed pad) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 8. DFN8 (4X4) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 9. DFN8 (4x4)tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 10. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 List of figures ST1S10 4/29 Doc ID 13844 Rev 5 List of figures Figure 1. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) . . . . . . . . . . . . . . . . . . . 6 Figure 3. Application schematic for heavy capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V . . . . . 15 Figure 5. Application schematic for low output voltage (VOUT < 2.5 V) and 8 V < VIN < 16 V . . . . . . 15 Figure 6. PCB layout suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7. PCB layout suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 9. Voltage feedback vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10. Oscillator frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11. Max duty cycle vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 12. Inhibit threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 13. Reference line regulation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 14. Reference load regulation vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 15. ON mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 16. Shutdown mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 17. PMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 18. NMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 19. Efficiency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 20. Efficiency vs. output current@Vout = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 21. Efficiency vs. output current@Vout = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 22. Efficiency vs. output current@Vout = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 23. Power SO-8 (exposed pad) dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 24. Power SO-8 (exposed pad) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 25. Power SO-8 (exposed pad) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 26. DFN8 (4x4) dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 27. DFN8 (4x4)tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ST1S10 Application circuit Doc ID 13844 Rev 5 5/29 1 Application circuit Figure 1. Typical application circuit ST1S10 12V L1 3.3μH C1 4.7μF SW FB C2 22μF VIN_SW SYNC EN 5V – 3A R1 R2 VIN_A AGND PGND C3 0.1μF Pin configuration ST1S10 6/29 Doc ID 13844 Rev 5 2 Pin configuration Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) DFN8 (4x4) PowerSO-8 Table 2. Pin description Pin n° Symbol Name and function 1 VIN_A Analog input supply voltage to be tied to VIN supply source 2 INH (EN) Inhibit pin active low. Connect to VIN_A if not used 3 VFB Feedback voltage for connection to external voltage divider to set the VOUT from 0.8V up to 0.85*VIN_SW. (see output voltage selection paragraph 5.5) 4 AGND Analog ground 5 SYNC Synchronization and frequency select. Connect SYNC to GND for 900 kHz operation, or to an external clock from 400 kHz to 1.2 MHz. (see Sync operation paragraph 5.8.1) 6 VIN_SW Power input supply voltage to be tied to VIN power supply source 7 SW Switching node to be connected to the inductor 8 PGND Power ground epad epad Exposed pad to be connected to ground ST1S10 Maximum ratings Doc ID 13844 Rev 5 7/29 3 Maximum ratings Note: Absolute maximum ratings are the values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VIN_SW Positive power supply voltage -0.3 to 20 V VIN_A Positive supply voltage -0.3 to 20 V VINH Inhibit voltage -0.3 to VIN_A V VSW Output switch voltage -0.3 to 20 V VFB Feedback voltage -0.3 to 2.5 V IFB FB current -1 to +1 mA Sync Synchronization -0.3 to 6 V TSTG Storage temperature range -40 to 150 °C TOP Operating junction temperature range -40 to 125 °C Table 4. Thermal data Symbol Parameter PowerSO-8 DFN8 Unit RthJA Thermal resistance junction-ambient 40 40 °C/W RthJC Thermal resistance junction-case 12 4 °C/W Electrical characteristics ST1S10 8/29 Doc ID 13844 Rev 5 4 Electrical characteristics VIN = VIN_SW = VIN_A = VINH = 12 V, VSYNC = GND, VOUT = 5 V, IOUT = 10 mA, CIN = 4.7 μF +0.1 μF, COUT = 22 μF, L1 = 3.3 μH, TJ = -40 to 125°C (Unless otherwise specified, refer to the typical application circuit. Typical values assume TJ = 25°C). Table 5. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit VFB Feedback voltage TJ = 25°C 784 800 816 mV TJ = -25°C to 125°C 776 800 824 mV IFB VFB pin bias current 600 nA IQ Quiescent current VINH > 1.2 V, not switching 1.5 2.5 mA VINH < 0.4 V 2 6 μA IOUT Output current (1) VIN = 2.5 V to 18 V VOUT = 0.8 V to 13.6 V (2) 3.0 A VINH Inhibit threshold Device ON 1.2 V Device OFF 0.4 V IINH Inhibit pin current 2 μA %VOUT/ΔVIN Reference line regulation 2.5 V < VIN < 18 V 0.4 %VOUT/ ΔVIN %VOUT/ ΔIOUT Reference load regulation 10 mA < IOUT < 3 A 0.5 %VOUT/ ΔIOUT PWM fs PWM switching frequency VFB = 0.7 V, Sync = GND TJ = 25°C 0.7 0.9 1.1 MHz DMAX Maximum duty cycle (2) 85 90 % RDSon-N NMOS switch on resistance ISW = 750 mA 0.10 Ω RDSon-P PMOS switch on resistance ISW = 750 mA 0.12 Ω ISWL Switch current limitation 5.0 A ν Efficiency IOUT = 100 mA to 300 mA 85 % IOUT = 300 mA to 3 A 90 % TSHDN Thermal shut down 150 °C THYS Thermal shut down hysteresis 15 °C VOUT/ΔIOUT Output transient response 100 mA < IOUT < 1 A, tR = tF ≥ 500 ns ±5 %VO VOUT/ΔIOUT @IO=short Short circuit removal response (overshot) 10 mA < IOUT < short ±10 %VO FSYNC SYNC frequency capture range VIN = 2.5 V to 18 V, VSYNC = 0 to 5 V 0.4 1.2 MHz SYNCWD SYNC pulse width VIN = 2.5 V to 18 V 250 ns VIL_SYNC SYNC input threshold low VIN = 2.5 V to 18 V 0.4 V ST1S10 Electrical characteristics Doc ID 13844 Rev 5 9/29 VIH_SYNC SYNC input threshold high VIN = 2.5 V to 18 V 1.6 V IIL, IIH SYNC input current VIN = 2.5 V to 18 V, VSYNC = 0 or 5 V -10 +10 μA UVLO Under voltage lock-out threshold VIN rising 2.3 V Hysteresis 200 mV 1. Guaranteed by design, but not tested in production. 2. See output voltage selection paragraph 5.5 for maximum duty cycle conditions. Table 5. Electrical characteristics (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit Application information ST1S10 10/29 Doc ID 13844 Rev 5 5 Application information 5.1 Description The ST1S10 is a high efficiency synchronous step-down DC-DC converter with inhibit function. It provides up to 3 A over an input voltage range of 2.5 V to 18 V, and the output voltage can be adjusted from 0.8 V up to 85% of the input voltage level. The synchronous rectification removes the need for an external Schottky diode and allows higher efficiency even at very low output voltages. A high internal switching frequency (0.9 MHz) allows the use of tiny surface-mount components, as well as a resistor divider to set the output voltage value. In typical application conditions, only an inductor and 3 capacitors are required for proper operation. The device can operate in PWM mode with a fixed frequency or synchronized to an external frequency through the SYNC pin. The current mode PWM architecture and stable operation with low ESR SMD ceramic capacitors results in low, predictable output ripple. No external compensation is needed. To maximize power conversion efficiency, the ST1S10 works in pulse skipping mode at light load conditions and automatically switches to PWM mode when the output current increases. The ST1S10 is equipped with thermal shut down protection activated at 150 °C (typ.). Cycle-by-cycle short circuit protection provides protection against shorted outputs for the application and the regulator. An internal soft start for start-up current limiting and power ON delay of 275 μs (typ.) helps to reduce inrush current during start-up. 5.2 External components selection 5.2.1 Input capacitor The ST1S10 features two VIN pins: VIN_SW for the power supply input voltage where the switching peak current is drawn, and VIN_A to supply the ST1S10 internal circuitry and drivers. The VIN_SW input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. A high power supply source impedance requires larger input capacitance. For the VIN_SW input capacitor the RMS current rating is a critical parameter that must be higher than the RMS input current. The maximum RMS input current can be calculated using the following equation: Equation 1 where η is the expected system efficiency, D is the duty cycle and IO is the output DC current. The duty cycle can be derived using the equation: η D η 2 D I I D - 2 2 RMS O = ⋅ ⋅ + ST1S10 Application information Doc ID 13844 Rev 5 11/29 Equation 2 D = (VOUT + VF) / (VIN-VSW) where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. The minimum duty cycle (at VIN_max) and the maximum duty cycle (at VIN_min) should be considered in order to determine the max IRMS flowing through the input capacitor. A minimum value of 4.7 μF for the VIN_SW and a 0.1 μF ceramic capacitor for the VIN_A are suitable in most application conditions. A 10 μF or higher ceramic capacitor for the VIN_SW and a 1 μF or higher for the VIN_A are recommended in cases of higher power supply source impedance or where long wires are needed between the power supply source and the VIN pins. The above higher input capacitor values are also recommended in cases where an output capacitive load is present (47 μF < CLOAD < 100 μF), which could impact the switching peak current drawn from the input capacitor during the start-up transient. In cases of very high output capacitive loads (CLOAD > 100 μF), all input/output capacitor values shall be modified as described in the OCP and SCP operation section 5.8.5 of this document. The input ceramic capacitors should have a voltage rating in the range of 1.5 times the maximum input voltage and be located as close as possible to VIN pins. 5.3 Output capacitor (VOUT > 2.5 V) The most important parameters for the output capacitor are the capacitance, the ESR and the voltage rating. The capacitance and the ESR affect the control loop stability, the output ripple voltage and transient response of the regulator. The ripple due to the capacitance can be calculated with the following equation: Equation 3 VRIPPLE(C) = (0.125 x ΔISW) / (FS x COUT) where FS is the PWM switching frequency and ΔISW is the inductor peak-to-peak switching current, which can be calculated as: Equation 4 ΔISW = [(VIN - VOUT) / (FS x L)] x D where D is the duty cycle. The ripple due to the ESR is given by: Equation 5 VRIPPLE(ESR) = ΔISW x ESR The equations above can be used to define the capacitor selection range, but final values should be verified by testing an evaluation circuit. Lower ESR ceramic capacitors are usually recommended to reduce the output ripple voltage. Capacitors with higher voltage ratings have lower ESR values, resulting in lower output ripple voltage. Application information ST1S10 12/29 Doc ID 13844 Rev 5 Also, the capacitor ESL value impacts the output ripple voltage, but ceramic capacitors usually have very low ESL, making ripple voltages due to the ESL negligible. In order to reduce ripple voltages due to the parasitic inductive effect, the output capacitor connection paths should be kept as short as possible. The ST1S10 has been designed to perform best with ceramic capacitors. Under typical application conditions a minimum ceramic capacitor value of 22 μF is recommended on the output, but higher values are suitable considering that the control loop has been designed to work properly with a natural output LC frequency provided by a 3.3 μH inductor and 22 μF output capacitor. If the high capacitive load application circuit shown in Figure 3 is used, a 47 μF (or 2 x 22 μF capacitors in parallel) could be needed as described in the OCP and SCP operation Section 5.8.5: SCP and OCP operation with high capacitive load. of this document. The use of ceramic capacitors with voltage ratings in the range of 1.5 times the maximum output voltage is recommended. 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the output capacitance and inductor values should be selected in a way that improves the DC-DC control loop behavior. In this output condition two cases must be considered: VIN > 8 V and VIN < 8 V. For VIN < 8 V the use of 2 x 22 μF capacitors in parallel to the output is recommended, as shown in Figure 4. For VIN > 8 V, a 100 μF electrolytic capacitor with ESR < 0.1 Ω should be added in parallel to the 2 x 22 μF output capacitors as shown in Figure 5. 5.5 Output voltage selection The output voltage can be adjusted from 0.8 V up to 85% of the input voltage level by connecting a resistor divider (see R1 and R2 in the typical application circuit) between the output and the VFB pin. A resistor divider with R2 in the range of 20 kΩ is a suitable compromise in terms of current consumption. Once the R2 value is selected, R1 can be calculated using the following equation: Equation 6 R1 = R2 x (VOUT - VFB) / VFB where VFB = 0.8 V (typ.). Lower values are suitable as well, but will increase current consumption. Be aware that duty cycle must be kept below 85% at all application conditions, so that: Equation 7 D = (VOUT + VF) / (VIN-VSW) < 0.85 where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. Note that once the output current is fixed, higher VOUT levels increase the power dissipation of the device leading to an increase in the operating junction temperature. It is ST1S10 Application information Doc ID 13844 Rev 5 13/29 recommended to select a VOUT level which maintains the junction temperature below the thermal shut-down protection threshold (150°C typ.) at the rated output current. The following equation can be used to calculate the junction temperature (TJ): Equation 8 TJ = {[VOUT x IOUT x RthJA x (1-η)] / η} +TAMB where RthJA is the junction-to-ambient thermal resistance, η is the efficiency at the rated IOUT current and TAMB is the ambient temperature. To ensure safe operating conditions the application should be designed to keep TJ < 140°C. 5.6 Inductor (VOUT > 2.5 V) The inductor value fixes the ripple current flowing through output capacitor and switching peak current. The ripple current should be kept in the range of 20-40% of IOUT_MAX (for example it is 0.6 - 1.2 A at IOUT = 3 A). The approximate inductor value can be obtained with the following equation: Equation 9 L = [(VIN - VOUT) / ΔISW] x TON where TON is the ON time of the internal switch, given by: TON = D/FS The inductor should be selected with saturation current (ISAT) equal to or higher than the inductor peak current, which can be calculated with the following equation: Equation 10 IPK = IO + (ΔISW/2), ISAT ≥ IPK The inductor peak current must be designed so that it does not exceed the switching current limit. 5.7 Inductor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the description in the previous section is still valid but it is recommended to keep the inductor values in a range from 1μH to 2.2 μH in order to improve the DC-DC control loop behavior, and increase the output capacitance depending on the VIN level as shown in the Figure 4 and Figure 5. In most application conditions a 2.2 μH inductor is the best compromise between DC-DC control loop behavior and output voltage ripple. 5.8 Function operation 5.8.1 Sync operation The ST1S10 operates at a fixed frequency or can be synchronized to an external frequency with the SYNC pin. The ST1S10 switches at a frequency of 900 kHz when the SYNC pin is connected to ground, and can synchronize the switching frequency between 400 kHz to 1.2 Application information ST1S10 14/29 Doc ID 13844 Rev 5 MHz from an external clock applied to the SYNC pin. When the SYNC feature is not used, this pin must be connected to ground with a path as short as possible to avoid any possible noise injected in the SYNC internal circuitry. 5.8.2 Inhibit function The inhibit pin can be used to turn OFF the regulator when pulled down, thus drastically reducing the current consumption down to less than 6 μA. When the inhibit feature is not used, this pin must be tied to VIN to keep the regulator output ON at all times. To ensure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under VINH. Any slew rate can be used to drive the inhibit pin. 5.8.3 OCP (overcurrent protection) The ST1S10 DC-DC converter is equipped with a switch overcurrent protection. In order to provide protection for the application and the internal power switches and bonding wires, the device goes into a shutdown state if the switch current limit is reached and is kept in this condition for the TOFF period (TOFF(OCP) = 135 μs typ.) and turns on again for the TON period (TON(OCP) = 22 μs typ.) under typical application conditions. This operation is repeated cycle by cycle. Normal operation is resumed when no over-current is detected. 5.8.4 SCP (short circuit protection) In order to protect the entire application and reduce the total power dissipation during an overload or an output short circuit condition, the device is equipped with dynamic short circuit protection which works by internally monitoring the VFB (feedback voltage). In the event of an overload or output short circuit, if the VOUT voltage is reduced causing the feedback voltage (VFB) to drop below 0.3 V (typ.), the device goes into shutdown for the TOFF time (TOFF(SCP) = 288 μs typ.) and turns on again for the TON period (TON(SCP) = 130 μs typ.). This operation is repeated cycle by cycle, and normal operation is resumed when no overload is detected (VFB > 0.3 V typ.) for the full TON period. This dynamic operation can greatly reduce the power dissipation in overload conditions, while still ensuring excellent power-on startup in most conditions. 5.8.5 SCP and OCP operation with high capacitive load Thanks to the OCP and SCP circuit, ST1S10 is strongly protected against damage from short circuit and overload. However, a highly capacitive load on the output may cause difficulties during start-up. This can be resolved by using the modified application circuit shown in Figure 3, in which a minimum of 10 μF for C1 and a 4.7 μF ceramic capacitor for C3 are used. Moreover, for CLOAD > 100 μF, it is necessary to add the C4 capacitor in parallel to the upper voltage divider resistor (R1) as shown in Figure 3. The recommended value for C4 is 4.7 nF. Note that C4 may impact the control loop response and should be added only when a capacitive load higher than 100 μF is continuously present. If the high capacitive load is variable or not present at all times, in addition to C4 an increase in the output ceramic capacitor C2 from 22 μF to 47 μF (or 2 x 22 μF capacitors in parallel) is recommended. Also in this case it is suggested to further increase the input capacitors to a minimum of 10 μF for C1 and a 4.7 μF ceramic capacitor for C3 as shown in Figure 3. ST1S10 Application information Doc ID 13844 Rev 5 15/29 (*) see OCP and SCP descriptions for C2 and C4 selection. Figure 3. Application schematic for heavy capacitive load ST1S10 12V L1 3.3μH C1 10μF SW FB VIN_SW SYNC EN R1 R2 VIN_A AGND PGND C3 4.7μF C2(*) 22μF 5V – 3A C4 (*) 4.7nF CLOAD LOAD Output Load Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V ST1S10 VIN<8V L1 2.2μH C1 10μF SW FB VIN_SW SYNC EN R1 R2 VIN_A AGND PGND C3 0.1μF C2 2x22μF 0.8V 0 due to a load drop, the voltage at pin INV will be kept at 2.5V by the local feedback of the error amplifier, a network connected between pins INV and COMP that introduces a long time constant to achieve high PF (this is why ΔVo can be large). As a result, the current through R2 will remain equal to 2.5/R2 but that through R1 will become: . The difference current ΔIR1=I'R1-IR2=I'R1-IR1=ΔVo/R1 will flow through the compensation network and enter the error amplifier output (pin COMP). This current is monitored inside the L6562 and if it reaches about 37 μA the output voltage of the multiplier is forced to decrease, thus smoothly reducing the energy delivered to the output. As the current exceeds 40 μA, the OVP is triggered (Dynamic OVP): the gate-drive is forced low to switch off the external power transistor and the IC put in an idle state. This condition is maintained until the current falls below approximately 10 μA, which re-enables the internal starter and allows switching to restart. The output ΔVo that is able to trigger the Dynamic OVP function is then: . An important advantage of this technique is that the OV level can be set independently of the regulated output voltage: the latter depends on the ratio of R1 to R2, the former on the individual value of R1. Another advantage is the precision: the tolerance of the detection current is 12%, that is 12% tolerance on ΔVo. Since ΔVo << Vo, the tolerance on the absolute value will be proportionally reduced. Example: Vo = 400 V, ΔVo = 40 V. Then: R1=40V/40μA=1MΩ; R2=1MΩ·2.5/(400-2.5)=6.289kΩ. The tolerance on the OVP level due to the L6562 will be 40·0.12=4.8V, that is 1.2% of the regulated value. IR2 2.5 R2 -------- IR1 Vo – 2.5 R1 = = = --------------------- I'R1 Vo – 2.5 + ΔVo R1 = --------------------------------------- ΔVo R1 40 10 –6 = ⋅ ⋅ 9/16 L6562 When the load of a PFC pre-regulator is very low, the output voltage tends to stay steadily above the nominal value, which cannot be handled by the Dynamic OVP. If this occurs, however, the error amplifier output will saturate low; hence, when this is detected, the external power transistor is switched off and the IC put in an idle state (Static OVP). Normal operation is resumed as the error amplifier goes back into its linear region. As a result, the L6562 will work in burst-mode, with a repetition rate that can be very low. When either OVP is activated the quiescent consumption of the IC is reduced to minimize the discharge of the Vcc capacitor and increase the hold-up capability of the IC supply system. 4.2 THD optimizer circuit The L6562 is equipped with a special circuit that reduces the conduction dead-angle occurring to the AC input current near the zero-crossings of the line voltage (crossover distortion). In this way the THD (Total Harmonic Distortion) of the current is considerably reduced. A major cause of this distortion is the inability of the system to transfer energy effectively when the instantaneous line voltage is very low. This effect is magnified by the high-frequency filter capacitor placed after the bridge rectifier, which retains some residual voltage that causes the diodes of the bridge rectifier to be reverse-biased and the input current flow to temporarily stop. Figure 22. THD optimization: standard TM PFC controller (left side) and L6562 (right side) To overcome this issue the circuit embedded in the L6562 forces the PFC pre-regulator to process more energy near the line voltage zero-crossings as compared to that commanded by the control loop. This will result in both minimizing the time interval where energy transfer is lacking and fully discharging the highfrequency filter capacitor after the bridge. The effect of the circuit is shown in figure 23, where the key waveforms of a standard TM PFC controller are compared to those of the L6562. Essentially, the circuit artificially increases the ON-time of the power switch with a positive offset added to Imains Vdrain Imains Vdrain Input current Input current MOSFET's drain voltage MOSFET's drain voltage Rectified mains voltage Rectified mains voltage Input current Input current L6562 10/16 the output of the multiplier in the proximity of the line voltage zero-crossings. This offset is reduced as the instantaneous line voltage increases, so that it becomes negligible as the line voltage moves toward the top of the sinusoid. To maximally benefit from the THD optimizer circuit, the high-frequency filter capacitor after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself - even with an ideal energy transfer by the PFC preregulator - thus making the action of the optimizer circuit little effective. Figure 23. Typical application circuit (250W, Wide-range mains) Figure 24. Demo board (EVAL6562-80W, Wide-range mains): Electrical schematic NTC 2.5 Ω 8 3 BRIDGE STBR606 R1 1.5 MΩ C1 1 μF 400V R3 22 kΩ C29 22 μF 25V FUSE 5A/250V R4 180 kΩ D8 1N4150 D2 1N5248B R14 100 Ω C5 12 nF R6 68 kΩ T 5 6 L6562 7 2 1 R7 10 Ω MOS STP12NM50 7 °C/W heat sink 4 R11 750 kΩ C6 100 μF 450V Vo=400V Po=250W - Vac (85V to 265V) R9 0.33Ω 1W R13 9.53 kΩ + - C4 100 nF C2 10nF D1 STTH5L06 R50 10 kΩ C3 2.2 μF R2 1.5 MΩ R5 180 kΩ R10 0.33Ω 1W R12 750 kΩ C23 680 nF Boost Inductor Spec: EB0057-C (COILCRAFT) D3 1N5406 NTC 2.5 Ω 8 3 BRIDGE DF06M R1 750 kΩ C1 0.47 μF 400V R3 10 kΩ C29 22 μF 25V FUSE 4A/250V R4 180 kΩ D8 1N4150 D2 1N5248B R14 100 Ω C5 12 nF R6 68 kΩ T 5 6 L6562 7 2 1 R7 33 Ω MOS STP8NM50 4 R11 750 kΩ C6 47 μF 450V Vo=400V Po=80W - Vac (85V to 265V) R9 0.82Ω 0.6 W R13 9.53 kΩ + - C4 100 nF C2 10nF D1 STTH1L06 R50 12 kΩ C3 680 nF R2 750 kΩ R5 180 kΩ R10 0.82Ω 0.6 W R12 750 kΩ C23 330 nF Boost Inductor Spec (ITACOIL E2543/E) E25x13x7 core, 3C85 ferrite 1.5 mm gap for 0.7 mH primary inductance Primary: 105 turns 20x0.1 mm Secondary: 11 turns 0.1 mm 11/16 L6562 Figure 25. EVAL6562-80W: PCB and component layout (Top view, real size: 57 x 108 mm) Table 6. EVAL6562N: Evaluation results at full load Table 7. EVAL6562N: Evaluation results at half load Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) η (%) PF THD (%) 85 86.4 394.79 12.8 80.16 92.8 0.998 3.6 110 84.6 394.86 12.8 80.20 94.8 0.996 4.2 135 83.8 394.86 12.8 80.20 95.7 0.991 4.9 175 83.2 394.87 15.5 80.20 96.4 0.981 6.5 220 82.9 394.87 15.7 80.20 96.7 0.956 7.8 265 82.7 394.87 15.9 80.20 97.0 0.915 9.2 Note: measurements done with the line filter shown in figure 23 Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) η (%) PF THD (%) 85 42.8 394.86 6.6 40.20 93.9 0.994 5.5 110 42.5 394.90 6.6 40.20 94.6 0.985 6.2 135 42.5 394.91 6.7 40.20 94.6 0.967 7.1 175 42.5 394.93 8.0 40.19 94.6 0.939 8.3 220 42.6 394.94 8.2 40.19 94.3 0.869 9.8 265 42.6 394.94 8.3 40.19 94.3 0.776 11.4 Note: measurements done with the line filter shown in figure 23 L6562 12/16 Table 8. EVAL6562N: No-load measurements Figure 26. Line filter (not tested for EMI compliance) used for EVAL6562N evaluation Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) 85 0.4 396.77 0.45 0 110 0.3 396.82 0.55 0 135 0.3 396.83 0.60 0 175 (*) 0.4 396.90 1.00 0 220 (*) 0.4 396.95 1.40 0 265 (*) 0.5 396.98 1.65 0 (*) Vcc = 12V supplied externally to the AC source B82732 47 mH, 1.3A EPCOS B81133 470 nF, X2 EPCOS to EVAL6562N B81133 680 nF, X2 EPCOS 13/16 L6562 5 Package Information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 27. DIP-8 Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 3.32 0.131 a1 0.51 0.020 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 D 10.92 0.430 E 7.95 9.75 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L 3.18 3.81 0.125 0.150 Z 1.52 0.060 DIP-8 L6562 14/16 Figure 28. SO-8 Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D (1) 4.80 5.00 0.189 0.197 E 3.80 4.00 0.15 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 0° (min.), 8° (max.) ddd 0.10 0.004 Note: (1) Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm (.006inch) in total (both side). SO-8 0016023 C 15/16 L6562 6 Revision History Table 9. Revision History Date Revision Description of Changes January 2004 5 First Issue June 2004 6 Modified the Style-look in compliance with the “Corporate Technical Publications Design Guide”. Changed input of the power amplifier connected to Multiplier (Fig. 2). May 2005 7 Modified Table 2: Absolute Maximim Ratings. November 2005 8 Added in Section 5 the ECOPACK® certicate of conformity. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com SMAJ Transil™ Features ■ Peak pulse power: – 400 W (10/1000 μs) – 2.3 kW (8/20 μs) ■ Stand off voltage range: from 5 V to 188 V ■ Unidirectional and bidirectional types ■ Low leakage current: – 0.2 μA at 25 °C – 1 μA at 85 °C ■ Operating Tj max: 150 °C ■ High power capability at Tj max: – 270 W (10/1000 μs) ■ JEDEC registered package outline Complies with the following standards ■ IEC 61000-4-2 level 4 – 15 kV (air discharge) – 8 kV (contact discharge) ■ IEC 61000-4-5 (see Table 3 for surge level) ■ MIL STD 883G, method 3015-7 Class 3B – 25 kV HBM (human body model) ■ Resin meets UL 94, V0 ■ MIL-STD-750, method 2026 solderability ■ EIA STD RS-481 and IEC 60286-3 packing ■ IPC 7531 footprint Description The SMAJ Transil series has been designed to protect sensitive equipment against electrostatic discharges according to IEC 61000-4-2, and MIL STD 883, method 3015, and electrical over stress according to IEC 61000-4-4 and 5. These devices are generally used against surges below 400 W (10/1000 μs). Planar technology makes these devices suitable for high-end equipment and SMPS where low leakage current and high junction temperature are required to provide reliability and stability over time. SMAJ are packaged in SMA (SMA footprint in accordance with IPC 7531 standard). TM: Transil is a trademark of STMicroelectronics K A Unidirectional Bidirectional SMA (JEDEC DO-214AC) www.st.com Characteristics SMAJ 2/10 Doc ID 5544 Rev 12 1 Characteristics Figure 1. Electrical characteristics - definitions Figure 2. Pulse definition for electrical characteristics Table 1. Absolute maximum ratings (Tamb = 25 °C) Symbol Parameter Value Unit PPP Peak pulse power dissipation (1) Tj initial = Tamb 400 W Tstg Storage temperature range -65 to +150 °C Tj Operating junction temperature range -55 to +150 °C TL Maximum lead temperature for soldering during 10 s. 260 °C 1. For a surge greater than the maximum values, the diode will fail in short-circuit. Table 2. Thermal resistances Symbol Parameter Value Unit Rth(j-l) Junction to leads 30 °C/W Rth(j-a) Junction to ambient on printed circuit on recommended pad layout 120 °C/W VCLVBR VRM IRM IR IPP V I IRM IR IPP VRMVBR VCL V CLVBR VRM IRM IR IPP V I IF VF Unidirectional Bidirectional Symbol Parameter V Stand-off voltage V Breakdown voltage V Clamping voltage I Leakage current @ V I Peak pulse current T Voltage temperature coefficient V Forward voltage drop R Dynamic resistance RM BR CL RM RM PP F D α Repetitive pulse current tr = rise time (μs) tp = pulse duration time (μs) tr tp SMAJ Characteristics Doc ID 5544 Rev 12 3/10 Table 3. Electrical characteristics - parameter values (Tamb = 25 °C) Order code IRM max@VRM VBR @IR (1) VCL @IPP 10/1000 μs RD (2) 10/1000 μs VCL @IPP 8/20 μs RD (2) 8/20 μs αT (3) 25 °C 85 °C min typ max max max μA V V mA V A(4) Ω V A(4) Ω 10-4/° C SMAJ5.0A/CA 20 50 5 6.4 6.74 10 9.2 43.5 0.049 13.4 174 0.036 5.7 SMAJ6.0A/CA 20 50 6 6.7 7.05 10 10.3 38.8 0.075 13.7 170 0.037 5.9 SMAJ6.5A/CA 20 50 6.5 7.2 7.58 10 11.2 35.7 0.091 14.5 160 0.041 6.1 SMAJ8.5A/CA 20 50 8.5 9.4 9.9 1 14.4 27.7 0.145 19.5 124 0.073 7.3 SMAJ10A/CA 0.2 1 10 11.1 11.7 1 17 23.5 0.201 21.7 106 0.089 7.8 SMAJ12A/CA 0.2 1 12 13.3 14 1 19.9 20.1 0.259 25.3 91 0.116 8.3 SMAJ13A/CA 0.2 1 13 14.4 15.2 1 21.5 18.6 0.298 27.2 85 0.132 8.4 SMAJ15A/CA 0.2 1 15 16.7 17.6 1 24.4 16.4 0.361 32.5 71 0.197 8.8 SMAJ18A/CA 0.2 1 18 20 21.1 1 29.2 13.7 0.514 39.3 59 0.291 9.2 SMAJ20A/CA 0.2 1 20 22.2 23.4 1 32.4 12.3 0.637 42.8 54 0.338 9.4 SMAJ22A/CA 0.2 1 22 24.4 25.7 1 35.5 11.2 0.760 48.3 48 0.444 9.6 SMAJ24A/CA 0.2 1 24 26.7 28.1 1 38.9 10.3 0.912 50 46 0.446 9.6 SMAJ26A/CA 0.2 1 26 28.9 30.4 1 42.1 9.5 1.07 53.5 43 0.502 9.7 SMAJ28A/CA 0.2 1 28 31.1 32.7 1 45.4 8.8 1.26 59 39 0.632 9.8 SMAJ30A/CA 0.2 1 30 33.3 35.1 1 48.4 8.3 1.39 64.3 36 0.762 9.9 SMAJ33A/CA 0.2 1 33 36.7 38.6 1 53.3 7.5 1.70 69.7 33 0.884 10 SMAJ40A/CA 0.2 1 40 44.4 46.7 1 64.5 6.2 2.49 84 27 1.30 10.1 SMAJ43A/CA 0.2 1 43 47.8 50.3 1 69.4 5.7 2.91 91 25 1.53 10.2 SMAJ48A/CA 0.2 1 48 53.3 56.1 1 77.4 5.2 3.56 100 23 1.79 10.3 SMAJ58A/CA 0.2 1 58 64.4 67.8 1 93.6 4.3 5.21 121 19 2.62 10.4 SMAJ70A/CA 0.2 1 70 77.8 81.9 1 113 3.5 7.72 146 16 3.75 10.5 SMAJ85A/CA 0.2 1 85 94 99 1 137 2.9 11.4 178 13 5.70 10.6 SMAJ100A/CA 0.2 1 100 111 117 1 162 2.5 15.7 212 11 8.10 10.7 SMAJ130A/CA 0.2 1 130 144 152 1 209 1.9 26.0 265 9 11.7 10.8 SMAJ154A/CA 0.2 1 154 171 180 1 246 1.6 35.6 317 7 18.3 10.8 SMAJ170A/CA 0.2 1 170 189 199 1 275 1.4 47.2 353 6.5 22.2 10.8 SMAJ188A/CA 0.2 1 188 209 220 1 328 1.4 69.3 388 6 26.2 10.8 1. Pulse test : tp < 50 ms 2. To calculate maximum clamping voltage at other surge level,use the following formula: VCLmax = VCL - RD x (IPP - IPPappli) where IPPappli is the surge current in the application 3. To calculate VBR or VCL versus junction temperature, use the following formulas: VBR @ TJ = VBR @ 25°C x (1 + αT x (TJ – 25)), VCL @ TJ = VCL @ 25°C x (1 + αT x (TJ – 25)) 4. Surge capability given for both directions for unidirectional and bidirectional types. Characteristics SMAJ 4/10 Doc ID 5544 Rev 12 Figure 5. Clamping voltage versus peak pulse current (exponential waveform, maximum values) Figure 3. Peak pulse power dissipation versus initial junction temperature Figure 4. Peak pulse power versus exponential pulse duration (Tj initial = 25° C) 0 100 200 300 400 500 0 25 50 75 100 125 150 175 Ppp (W) Tj(°C) 0.1 1.0 10.0 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 PPP(kW) Tj initial = 25 °C tP(ms) 0.1 1.0 10.0 100.0 1000.0 1 10 100 1000 10/1000 μs Tj initial=25 °C 8/20 μs 10 ms SMAJ5.0A SMAJ12A SMAJ24A SMAJ40A SMAJ85A SMAJ188A IPP(A) VCL(V) SMAJ Characteristics Doc ID 5544 Rev 12 5/10 Figure 6. Junction capacitance versus reverse applied voltage for unidirectional types (typical values) Figure 7. Junction capacitance versus reverse applied voltage for bidirectional types (typical values) 10 100 1000 10000 1 10 100 1000 C( pF) F=1 MHz VOSC=30 mVRMS Tj=25 °C SMAJ5.0A SMAJ12A SMAJ24A SMAJ40A SMAJ85A SMAJ188A VR(V) 10 100 1000 10000 1 10 100 1000 C(pF) F=1 MHz VOSC=30 mVRMS Tj=25 °C SMAJ5.0CA SMAJ12CA SMAJ24CA SMAJ40CA SMAJ85CA V SMAJ188CA R(V) Figure 8. Peak forward voltage drop versus peak forward current (typical values) Figure 9. Relative variation of thermal impedance, junction to ambient, versus pulse duration Figure 10. Thermal resistance, junction to ambient, versus copper surface under each lead Figure 11. Leakage current versus junction temperature (typical values) IFM(A) 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tj =25 °C Tj =125 °C VFM(V) 0.01 0.10 1.00 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 Zth(j-a) /Rth(j-a) Recommended pad layout PCB FR4, copper thickness = 35 μm tP(s) R (°C/W) th(j-a) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SCU(cm²) PCB FR4, copper thickness = 35 μm IR(nA) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 25 50 75 100 125 150 VR=VRM VRM ≥ 10 V VR=VRM VRM< 10 V Tj(°C) Ordering information scheme SMAJ 6/10 Doc ID 5544 Rev 12 2 Ordering information scheme Figure 12. Ordering information scheme SM A J 85 CA - TR Surface mount Peak pulse power A = 400 WTransil in SMA Stand off voltage 85 = 85 V Type A = Unidirectinal CA = Bidirectional Delivery mode TR = Tape and reel SMAJ Package information Doc ID 5544 Rev 12 7/10 3 Package information ● Case: JEDEC DO-214AC molded plastic over planar junction ● Terminals: solder plated, solderable per MIL-STD-750, Method 2026 ● Polarity: for unidirectional types the band indicates cathode. ● Flammability: epoxy is rated UL94V-0 ● RoHS package In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Table 4. SMA dimensions Ref. Dimensions Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.094 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.40 0.006 0.016 D 2.25 2.90 0.089 0.114 E 4.80 5.35 0.189 0.211 E1 3.95 4.60 0.156 0.181 L 0.75 1.50 0.030 0.059 Figure 13. Footprint dimensions in mm (inches) Figure 14. Marking layout(1) 1. Marking layout can vary according to assembly location. E C L E1 D A1 A2 b 2.63 (0.103) 5.43 (0.214) 1.4 1.64 (0.064) 1.4 (0.055) (0.055) y w w e z x x x e: ECOPACK compliance XXX: Marking Z: Manufacturing location Y: Year WW: week Cathode bar ( unidirectional devices only ) Package information SMAJ 8/10 Doc ID 5544 Rev 12 Table 5. Marking Order code Marking Order code Marking SMAJ5.0A-TR AE SMAJ5.0CA-TR AA SMAJ6.0A-TR DUB SMAJ6.0CA-TR DBB SMAJ6.5A-TR DUC SMAJ6.5CA-TR DBC SMAJ8.5A-TR DUH SMAJ8.5CA-TR DBH SMAJ10A-TR AX SMAJ10CA-TR AC SMAJ12A-TR DUK SMAJ12CA-TR DBK SMAJ13A-TR BG SMAJ13CA-TR BH SMAJ15A-TR BM SMAJ15CA-TR AJ SMAJ18A-TR DUQ SMAJ18CA-TR DBQ SMAJ20A-TR DUR SMAJ20CA-TR DBR SMAJ22A-TR DUS SMAJ22CA-TR DBS SMAJ24A-TR DUT SMAJ24CA-TR DBT SMAJ26A-TR DUU SMAJ26CA-TR DBU SMAJ28A-TR CG SMAJ28CA-TR CH SMAJ30A-TR CK SMAJ30CA-TR CL SMAJ33A-TR CM SMAJ33CA-TR CN SMAJ40A-TR DUZ SMAJ40CA-TR DBZ SMAJ43A-TR EUA SMAJ43CA-TR EBA SMAJ48A-TR CX SMAJ48CA-TR CY SMAJ58A-TR EUF SMAJ58CA-TR EBF SMAJ70A-TR EUI SMAJ70CA-TR EBI SMAJ85A-TR EUL SMAJ85CA-TR EBL SMAJ100A-TR EUN SMAJ100CA-TR EBN SMAJ130A-TR EUQ SMAJ130CA-TR EBQ SMAJ154A-TR EUT SMAJ154CA-TR EBT SMAJ170A-TR SR SMAJ170CA-TR SS SMAJ188A-TR EUV SMAJ188CA-TR EBV SMAJ Ordering information Doc ID 5544 Rev 12 9/10 4 Ordering information 5 Revision history Table 6. Ordering information Order code Marking Package Weight Base qty Delivery mode SMAJxxxA/CA-TR(1) 1. Where xxx is nominal value of VBR and A or CA indicates unidirectional or bidirectional version. See Table 3 for list of available devices and their order codes See Table 5 on page 8 SMA 0.071 g 5000 Tape and reel Table 7. Document revision history Date Revision Changes September-1998 5B Previous update. 02-Aug-2004 6 SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106) to 2.03mm (0.080). 10-Dec-2004 7 Template layout update. No content change. 10-Feb-2006 8 Added unidirectional marking on cover page and Figure 14. Changed Figure 13. Foot print. 14-May-2009 9 Updated ECOPACK statement. Reformatted to current standards. 17-Sep-2009 10 Document updated for low leakage current. 05-Nov-2009 11 Corrected typographical error in Package information. 09-Jul-2010 12 Changed timescale in Figure 9. SMAJ 10/10 Doc ID 5544 Rev 12 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 1/15 TDA7296 February 2005 1 FEATURES ■ MULTIPOWER BCD TECHNOLOGY ■ VERY HIGH OPERATING VOLTAGE RANGE (±35V) ■ DMOS POWER STAGE ■ HIGH OUTPUT POWER (UP TO 60W MUSIC POWER) ■ MUTING/STAND-BY FUNCTIONS ■ NO SWITCH ON/OFF NOISE ■ NO BOUCHEROT CELLS ■ VERY LOW DISTORTION ■ VERY LOW NOISE ■ SHORT CIRCUIT PROTECTION ■ THERMAL SHUTDOWN 2 DESCRIPTION The TDA7296 is a monolithic integrated circuit in Multiwatt15 package, intended for use as audio class AB amplifier in Hi-Fi field applications (Home Stereo, self powered loudspeakers, Topclass TV). Thanks to the wide voltage range and to the high out current capability it is able to supply the highest power into both 4Ω and 8Ω loads even in presence of poor supply regulation, with high Supply Voltage Rejection. The built in muting function with turn on delay simplifies the remote operation avoiding switching onoff noises. 70V - 60W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY Figure 2. Typical Application and Test Circuit IN- 2 R2 680Ω C2 22μF C1 470nF IN+ R1 22K R6 2.7Ω C10 100nF 3 R3 22K - + MUTE STBY 4 VM VSTBY 10 9 IN+MUTE MUTE STBY R4 22K THERMAL SHUTDOWN S/C PROTECTION R5 10K C3 10μF C4 10μF 1 STBY-GND C5 22μF 7 13 14 6 8 15 -Vs -PWVs BOOTSTRAP OUT +Vs +PWVs C9 100nF C8 1000μF -Vs D93AU011 C7 100nF +Vs C6 1000μF Note: The Boucherot cell R6, C10, normally not necessary for a stable operation it could be needed in presence of particular load impedances at VS <±25V. Rev. 10 Figure 1. Package Table 1. Order Codes Part Number Package TDA7296 Multiwatt15V TDA7296HS Multiwatt15H (Short Leads) Multiwatt15V Multiwatt15H (Short Leads) TDA7296 2/15 Figure 3. Pin Connection Table 2. Absolute Maximum Ratings Table 3. Thermal Data Figure 4. Block Diagram Symbol Parameter Value Unit VS Supply Voltage (No Signal) ±35 V IO Output Peak Current 5 A Ptot Power Dissipation Tcase = 70°C 50 W Top Operating Ambient Temperature Range 0 to 70 °C Tstg, Tj Storage and Junction Temperature 150 °C Symbol Parameter Typ. Max Unit Rth j-case Thermal Resistance Junction-case 1 1.5 °C/W 3/15 TDA7296 Table 4. Electrical Characteristcs (Refer to the Test Circuit VS = ±24V, RL = 8Ω, GV = 30dB; Rg = 50Ω; Tamb = 25°C, f = 1 kHz; unless otherwise specified). Note (*): MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz. Note (**): Tested with optimized Application Board (see fig.5) Symbol Parameter Test Condition Min. Typ. Max. Unit VS Supply Range ±10 ±35 V Iq Quiescent Current 20 30 65 mA Ib Input Bias Current 500 nA VOS Input Offset Voltage -10 10 mV IOS Input Offset Current -100 100 nA PO RMS Continuous Output Power d = 05% VS = ± 24V, RL = 8Ω; VS = ± 21V, RL = 6Ω; VS = ± 18V, RL = 4Ω; 27 27 27 30 30 30 WWW Music Power (RMS) Δt = 1s (*) d = 10% VS = ± 29V, RL = 8Ω; VS = ± 24V, RL = 6Ω; VS = ± 22V, RL = 4Ω; 60 60 60 WWW d Total Harmonic Distortion (**) PO = 5W; f = 1kHz PO = 0.1 to 20W; f = 20Hz to 20kHz 0.005 0.1 % VS = ± 18V, RL = 4Ω; PO = 5W; f = 1kHz PO = 0.1 to 20W; f = 20Hz to 20kHz 0.01 0.1 %% SR Slew Rate 7 10 V/μs GV Open Loop Voltage Gain 80 dB GV Closed Loop Voltage Gain (1) 24 30 40 dB eN Total Input Noise A = curve 1 μV f = 20Hz to 20kHz 2 5 μV fL ,fH frequency response (-3dB) PO =1W 20Hz to 20kHz Ri Input Resistance 100 kΩ SVR Supply Voltage Rejection f = 100Hz; Vripple = 0.5Vrms 60 75 dB TS Thermal Shutdown 145 °C STAND-BY FUNCTION (Ref: -Vs or GND) VST on Stand-by on Threshold 1.5 V VST off Stand-by off Threshold 3.5 V ATTst-by Stand-by Attenuation 70 90 dB Iq st-by Quiescent Current @ Stand-by 1 3 mA MUTE FUNCTION (Ref: -Vs ro GND) VMon Mute on Threshold 1.5 V VMoff Mute off Threshold 3.5 V ATTmute Mute AttenuatIon 60 80 dB TDA7296 4/15 Figure 5. P.C.B. and Components Layout of the Circuit of figure 2. Note: The Stand-by and Mute functions can be referred either to GND or -VS. On the P.C.B. is possible to set both the configuration through the jumper J1. 5/15 TDA7296 3 APPLICATION SUGGESTIONS (see Test and Application Circuits of the Fig. 2) The recommended values of the external components are those shown on the application circuit of Figure 2. Different values can be used; the following table can help the designer. (*) R1 = R3 for pop optimization (**) Closed Loop Gain has to be ≥ 24dB COMPONENTS SUGGESTED VALUE PURPOSE LARGER THAN SUGGESTED SMALLER THAN SUGGESTED R1 (*) 22k Input Resistance Increase Input Impedance Decrease Input Impedance R2 680Ω Closed Loop Gain Set to 30db (**) Decrease of Gain Increase of Gain R3 (*) 22k Increase of Gain Decrease of Gain R4 22k St-by Time Constant Larger St-by ON/OFF Time Smaller St-by ON/OFF Time; Pop Noise R5 10k Mute Time Constant Larger Mute ON/OFF Time Smaller Mute ON/OFF Time C1 0.47μF Input DC Decoupling Higher Low Frequency Cutoff C2 22μF Feedback DC Decoupling Higher Low Frequency Cutoff C3 10μF Mute Time Constant Larger Mute ON/OFF Time Smaller Mute ON/OFF Time C4 10μF St-by Time Constant Larger St-by ON/OFF Time Smaller St-by ON/OFF Time; Pop Noise C5 22μF Bootstrapping Signal Degradation at Low Frequency C6, C8 1000μF Supply Voltage Bypass Danger of Oscillation C7, C9 0.1μF Supply Voltage Bypass Danger of Oscillation TDA7296 6/15 4 TYPICAL CHARACTERISTICS (Application Circuit of fig 2 unless otherwise specified) Figure 6. : Output Power vs. Supply Voltage. Figure 7. Distortion vs. Output Power Figure 8. Output Power vs. Supply Voltage Figure 9. Distortion vs. Output Power Figure 10. Distortion vs. Frequency Figure 11. Distortion vs. Frequency 7/15 TDA7296 Figure 12. Quiescent Current vs. Supply Voltage Figure 13. Supply Voltage Rejection vs. Frequency Figure 14. Mute Attenuation vs. Vpin10 Figure 15. St-by Attenuation vs. Vpin9 Figure 16. Power Dissipation vs. Output Power Figure 17. Power Dissipation vs. Output Power TDA7296 8/15 5 INTRODUCTION In consumer electronics, an increasing demand has arisen for very high power monolithic audio amplifiers able to match, with a low cost the performance obtained from the best discrete designs. The task of realizing this linear integrated circuit in conventional bipolar technology is made extremely difficult by the occurence of 2nd breakdown phenomenon. It limits the safe operating area (SOA) of the power devices, and as a consequence, the maximum attainable output power, especially in presence of highly reactive loads. Moreover, full exploitation of the SOA translates into a substantial increase in circuit and layout complexity due to the need for sophisticated protection circuits. To overcome these substantial drawbacks, the use of power MOS devices, which are immune from secondary breakdown is highly desirable. The device described has therefore been developed in a mixed bipolar- MOS high voltage technology called BCD 80. 5.1 Output Stage The main design task one is confronted with while developing an integrated circuit as a power operational amplifier, independently of the technology used, is that of realising the output stage. The solution shown as a principle schematic by Fig 18 represents the DMOS unity-gain output buffer of the TDA7296. This large-signal, high-power buffer must be capable of handling extremely high current and voltage levels while maintaining acceptably low harmonic distortion and good behaviour over frequency response; moreover, an accurate control of quiescent current is required. A local linearizing feedback, provided by differential amplifier A, is used to fullfil the above requirements, allowing a simple and effective quiescent current setting. Proper biasing of the power output transistors alone is however not enough to guarantee the absence of crossover distortion. While a linearization of the DC transfer characteristic of the stage is obtained, the dynamic behaviour of the system must be taken into account. A significant aid in keeping the distortion contributed by the final stage as low as possible is provided by the compensation scheme, which exploits the direct connection of the Miller capacitor at the amplifier’s output to introduce a local AC feedback path enclosing the output stage itself. 5.2 Protections In designing a power IC, particular attention must be reserved to the circuits devoted to protection of the device from short circuit or overload conditions. Due to the absence of the 2nd breakdown phenomenon, the SOA of the power DMOS transistors is delimited only by a maximum dissipation curve dependent on the duration of the applied stimulus. In order to fully exploit the capabilities of the power transistors, the protection scheme implemented in this device combines a conventional SOA protection circuit with a novel local temperature sensing technique which " dynamically" controls the maximum dissipation. Figure 18. Principle Schematic of a DMOS Unity-gain Buffer. 9/15 TDA7296 Figure 19. Turn ON/OFF Suggested Sequence In addition to the overload protection described above, the device features a thermal shutdown circuit which initially puts the device into a muting state (@ Tj = 145°C) and then into stand-by (@ Tj = 150°C). Full protection against electrostatic discharges on every pin is included. 5.3 Other Features The device is provided with both stand-by and mute functions, independently driven by two CMOS logic compatible input pins. The circuits dedicated to the switching on and off of the amplifier have been carefully optimized to avoid any kind of uncontrolled audible transient at the output. The sequence that we recommend during the ON/OFF transients is shown by Figure 19. The application of figure 20 shows the possibility of using only one command for both st-by and mute functions. On both the pins, the maximum applicable range corresponds to the operating supply voltage. PLAY OFF ST-BY MUTE MUTE ST-BY OFF D93AU013 5V 5V +Vs (V) +35 -35 VMUTE PIN #10 (V) VST-BY PIN #9 (V) -Vs VIN (mV) IP (mA) VOUT (V) TDA7296 10/15 Figure 20. Single Signal ST-BY/MUTE Control Circuit 6 BRIDGE APPLICATION Another application suggestion is the BRIDGE configuration, where two TDA7296 are used, as shown by the schematic diagram. In this application, the value of the load must not be lower than 8 Ohm for dissipation and current capability reasons. A suitable field of application includes HI-FI/TV subwoofers realizations. The main advantages offered by this solution are: – High power performances with limited supply voltage level. – Considerably high output power even with high load values (i.e. 16 Ohm). The characteristics shown by figures 23 and 24, measured with loads respectively 8 Ohm and 16 Ohm. With Rl= 8 Ohm, Vs = ±18V the maximum output power obtainable is 60W, while with Rl=16 Ohm, Vs = ±24V the maximum Pout is 60W. Figure 21. Bridge Application Circuit 1N4148 10K 30K 20K 10μF 10μF MUTE STBY D93AU014 MUTE/ ST-BY 0.56μF 22K 0.22μF 2200μF + - 22μF 22K 680 22K 3 1 4 7 13 +Vs Vi 15 8 2 14 6 10 9 + - 3 0.56μF 22K 1 4 2 14 6 22μF 22K 680 10 9 22μF 15 8 -Vs 2200μF 0.22μF 22μF 20K 10K 30K 1N4148 ST-BY/MUTE 7 13 D93AU015A 11/15 TDA7296 Figure 22. Frequency Response of the Bridge Application Figure 23. Distortion vs. Output Power Figure 24. Distortion vs. Output Power TDA7296 12/15 Figure 25. Multiwatt15V Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA 0016036 J DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.87 0.886 L2 17.65 18.1 0.695 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114 M 4.25 4.55 4.85 0.167 0.179 0.191 M1 4.73 5.08 5.43 0.186 0.200 0.214 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 (Vertical) 13/15 TDA7296 Figure 26. Multiwatt15 Horizontal (Short leads) Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA A C B E L5 L7 L2 L1 F G1 G H2 L4 L3 S1 S H1 Diam 1 MW15HME V V V V V H2 N R1 P R R 0067558 E DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 5 0.197 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.709 H1 19.6 20.2 0.772 0.795 H2 19.6 20.2 0.772 0.795 L1 17.80 18.00 18.20 0.701 0.709 0.717 L2 2.54 0.100 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 2.70 3.00 3.30 0.106 0.118 0.130 L7 2.65 2.9 0.104 0.114 R 1.5 0.059 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 H (Short leads) TDA7296 14/15 Table 5. Revision History Date Revision Description of Changes January 2004 8 First Issue in EDOCS DMS September 2004 9 Added Package Multiwatt15 Horizontal (Short leads) February 2005 10 Corrected mistyping error in Table 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 15/15 TDA7296 TL084, TL084A, TL084B General purpose JFET quad operational amplifiers Datasheet — production data Features ■ Wide common-mode (up to VCC +) and differential voltage range ■ Low input bias and offset current ■ Output short-circuit protection ■ High input impedance JFET input stage ■ Internal frequency compensation ■ Latch up free operation ■ High slew rate: 16 V/μs (typical) Description The TL084, TL084A, and TL084B are high-speed, JFET input, quad operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. D TSSOP14(Thin shrink small outline package)NDIP14(Plastic package)DSO-14(Plastic micropackage)Pin connections(Top view)Inverting Input 2Non-inverting Input 2Non-inverting Input 1CCV -CCV1234856791011121314+Output 3Output 4Non-inverting Input 4Inverting Input 4Non-inverting Input 3Inverting Input 3-+-+-+-+Output 1Inverting Input 1Output 2 www.st.com Contents TL084, TL084A, TL084B 2/19 Doc ID 2301 Rev 5 Contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Parameter measurement information . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 DIP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 SO-14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TL084, TL084A, TL084B Schematic diagram Doc ID 2301 Rev 5 3/19 1 Schematic diagram Figure 1. Circuit schematics (for each amplifier) Output Non- inver ting input I nverting input VC C VC C 2 0 0 1 0 0Ω Ω 1 0 0Ω 1.3k 30k 1.3k 35k 35k 1 0 0Ω 8.2k Absolute maximum ratings and operating conditions TL084, TL084A, TL084B 4/19 Doc ID 2301 Rev 5 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage(1) 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. ±18 Vin Input voltage(2) V 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. ±15 Vid Differential input voltage(3) 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. ±30 Rthja Thermal resistance junction to ambient(4)(5) DIP14 TSSOP14 SO-14 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 80 100 105 °C/W Rthjc Thermal resistance junction to case(4)(5) DIP14 TSSOP14 SO-14 33 32 31 Ptot Power dissipation 680 mW Output short-circuit duration(6) 6. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. Infinite Toper Operating free-air temperature range: for TL084I/TL084AI/TL084BI -40 to +105 Operating free-air temperature range: °C for TL084C/TL084AC/TL084BC 0 to +70 Tstg Storage temperature range -65 to +150 ESD HBM: human body model(7) 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 1000 MM: machine model(8) V 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 150 CDM: charged device model(9) 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. 1500 TL084, TL084A, TL084B Absolute maximum ratings and operating conditions Doc ID 2301 Rev 5 5/19 Table 2. Operating conditions Symbol Parameter TL084I/AI/BI TL084C/AC/BC Unit VCC Supply voltage range 6 to 36 V Toper Operating free-air temperature range -40 to +105 0 to +70 °C Electrical characteristics TL084, TL084A, TL084B 6/19 Doc ID 2301 Rev 5 3 Electrical characteristics Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) Symbol Parameter TL084I/AI/AC/BI/BC TL084C Unit Min. Typ. Max. Min. Typ. Max. Vio Input offset voltage (Rs = 50 Ω) Tamb = +25 °C TL084 Tamb = +25 °C TL084A Tamb = +25 °C TL084B Tmin ≤ Tamb ≤ Tmax TL084 Tmin ≤ Tamb ≤ Tmax TL084A Tmin ≤ Tamb ≤ Tmax TL084B 331 10 63 13 75 3 10 13 mV ΔVio/ΔT Input offset voltage drift 10 10 μV/°C Iio Input offset current Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 5 100 4 5 100 4 pA nA Iib Input bias current(1) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 20 200 20 30 200 20 pA nA Avd Large signal voltage gain (RL = 2 kΩ, Vo = ±10 V) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 50 25 200 25 15 200 V/mV SVR Supply voltage rejection ratio (RS = 50 Ω) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 80 80 86 70 70 86 dB ICC Supply current, no load Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 1.4 2.5 2.5 1.4 2.5 2.5 mA Vicm Input common mode voltage range ±11 +15 -12 ±11 +15 -12 V CMR Common mode rejection ratio (RS = 50 Ω) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 80 80 86 70 70 86 dB Ios Output short-circuit current Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 10 10 40 60 60 10 10 40 60 60 mA ±Vopp Output voltage swing Tamb = +25 °C RL = 2 kΩ RL = 10 kΩ Tmin ≤ Tamb ≤ Tmax RL = 2 kΩ RL = 10 kΩ 10 12 10 12 12 13.5 10 12 10 12 12 13.5 V SR Slew rate Vin = 10 V, RL = 2 kΩ, CL = 100 pF, unity gain 8 16 8 16 V/μs TL084, TL084A, TL084B Electrical characteristics Doc ID 2301 Rev 5 7/19 tr Rise time Vin = 20 mV, RL = 2 kΩ, CL = 100 pF, unity gain 0.1 0.1 μs Kov Overshoot Vin = 20 mV, RL = 2 kΩ, CL = 100 pF, unity gain 10 10 % GBP Gain bandwidth product Vin = 10 mV, RL = 2 kΩ, CL = 100 pF, F= 100 kHz 2.5 4 2.5 4 MHz Ri Input resistance 1012 1012 Ω THD Total harmonic distortion F= 1 kHz, RL = 2 kΩ,CL = 100 pF, Av = 20 dB, Vo = 2 Vpp) 0.01 0.01 % en Equivalent input noise voltage RS = 100 Ω, F= 1 kHz 15 15 ∅m Phase margin 45 45 degree s Vo1/Vo2 Channel separation Av = 100 120 120 dB 1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) (continued) Symbol Parameter TL084I/AI/AC/BI/BC TL084C Unit Min. Typ. Max. Min. Typ. Max. nV Hz ----------- Electrical characteristics TL084, TL084A, TL084B 8/19 Doc ID 2301 Rev 5 Figure 2. Maximum peak-to-peak output voltage vs. frequency (RL = 2 kΩ) Figure 3. Maximum peak-to-peak output voltage vs. frequency (RL = 10 kΩ) Figure 4. Maximum peak-to-peak output voltage vs. frequency and temp. Figure 5. Maximum peak-to-peak output voltage vs. free air temp. Figure 6. Maximum peak-to-peak output voltage vs. load resistance Figure 7. Maximum peak-to-peak output voltage vs. supply voltage 30 25 20 15 10 5 0 2 4 6 8 10 12 14 16 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) R L = 10 kΩ Tamb = +25°C SUPPLY VOLTAGE ( V ) TL084, TL084A, TL084B Electrical characteristics Doc ID 2301 Rev 5 9/19 Figure 8. Input bias current vs. free air temp. Figure 9. Large signal differential voltage amplification vs. free air temp. 100 10 1 0.1 0.01 INPUT BIAS CUR R ENT (nA) -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) V C C = 15V 1000 400 200 100 20 40 10 4 2 1 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/mV) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) R L = 2k Ω VO = 10V VCC = 15V Figure 10. Large signal differential voltage amplification and phase shift vs. frequency Figure 11. Total power dissipation vs. free air temp. (V/mV) 250 225 200 175 150 125 100 75 50 25 0 TOTAL POWE R DIS S IPATION (mW) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) VC C = 15V No signal No load Figure 12. Supply current per amplifier vs. free air temp. Figure 13. Supply current per amplifier vs. supply voltage 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 SUPPLY CUR R ENT (mA) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) VC C = 15V No signal No load 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 SUPPLY CURRENT (mA) 2 4 6 8 10 12 14 16 No signal No load Tamb = +25°C SUPPLY VOLTAGE ( V ) Electrical characteristics TL084, TL084A, TL084B 10/19 Doc ID 2301 Rev 5 Figure 14. Common mode rejection ratio vs. free air temp. Figure 15. Voltage follower large signal pulse response 89 88 87 86 85 84 -50 -25 0 25 50 75 100 125 COMMON MODE MODE R E JE CTION RATIO (dB) TEMPERATURE (°C ) 83 -75 R L = 1 0 kΩ V = 15V C C Figure 16. Output voltage vs. elapsed time Figure 17. Equivalent input noise voltage vs. frequency Figure 18. Total harmonic distortion vs. frequency t r 28 24 20 16 12 8 4 0 -4 OUTPUT VOLTAGE (mV) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 TIME ( μs ) 10% 90% OVERSHOOT R L = 2k Ω Tamb = +25°C V C C = 15V 70 60 50 40 30 20 10 0 EQUIVALENT INPUT NOIS E VOLTAGE (nV/VHz) 10 40 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) A V = 10 R S = 100 Ω T amb = +25°C VC C = 15V 1 0.4 0.1 0.04 0.01 0.004 0.001 TOTAL HARMONIC DISTOR TION (%) 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) A V = 1 T amb = +25°C V C C = 15V V O (rms) = 6V A V = 1 T amb = +25°C V O (rms) = 6V V C C = 15V TL084, TL084A, TL084B Parameter measurement information Doc ID 2301 Rev 5 11/19 4 Parameter measurement information Figure 19. Voltage follower Figure 20. Gain-of-10 inverting amplifier eI - TL084 R L 1/4 CL= 100pF 1k Ω 10k Ω eo Typical applications TL084, TL084A, TL084B 12/19 Doc ID 2301 Rev 5 5 Typical applications Figure 21. Audio distribution amplifier Figure 22. Positive feeback bandpass filter - T L084 1 /4 - - - T L084 1 /4 TL084 1/4 T L084 1 /4 1M Ω 1μF Output A Output B Output C Input 100k Ω 100k Ω 100k Ω 100k Ω 1OO μF V C C+ fO = 1 00 kH z - T L 0 8 4 - 2 2 0pF 1/4 43k Ω Input 1 .5 k Ω 43k Ω 22 0pF 43 k Ω 16k Ω T L 08 4 1/4 30k Ω Output A - T L 08 4 1/4 1 .5 k Ω 22 0pF 43k Ω 220 pF 43 k Ω - T L 08 4 1/4 43k Ω 16k Ω 30k Ω Output B Ground TL084, TL084A, TL084B Typical applications Doc ID 2301 Rev 5 13/19 Figure 23. Output A Figure 24. Output B Second order bandpass filter fo = 100 kHz; Q = 30; Gain = 4 Cascaded bandpass filter fo = 100 kHz; Q = 69; Gain = 16 Package information TL084, TL084A, TL084B 14/19 Doc ID 2301 Rev 5 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 6.1 DIP14 package information Figure 25. DIP14 package mechanical drawing Table 4. DIP14 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. a1 0.51 0.020 B 1.39 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L 3.3 0.130 Z 1.27 2.54 0.050 0.100 TL084, TL084A, TL084B Package information Doc ID 2301 Rev 5 15/19 6.2 TSSOP14 package information Figure 26. TSSOP14 package mechanical drawing Figure 27. TSSOP14 package mechanical data Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.004 0.006 A2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 BSC 0.0256 BSC K 0° 8° 0° 8° L1 0.45 0.60 0.75 0.018 0.024 0.030 b c E A A2 E1 D 1 PIN 1 IDENTIFICATION A1 K L e Package information TL084, TL084A, TL084B 16/19 Doc ID 2301 Rev 5 6.3 SO-14 package information Figure 28. SO-14 package mechanical drawing Table 5. SO-14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.05 0.068 A1 0.10 0.25 0.004 0.009 A2 1.10 1.65 0.04 0.06 B 0.33 0.51 0.01 0.02 C 0.19 0.25 0.007 0.009 D 8.55 8.75 0.33 0.34 E 3.80 4.0 0.15 0.15 e 1.27 0.05 H 5.80 6.20 0.22 0.24 h 0.25 0.50 0.009 0.02 L 0.40 1.27 0.015 0.05 k 8° (max.) ddd 0.10 0.004 TL084, TL084A, TL084B Ordering information Doc ID 2301 Rev 5 17/19 7 Ordering information Table 6. Order codes Order code Temperature range Package Packing Marking TL084IN TL084AIN TL084BIN -40°C, +105°C DIP14 Tube TL084IN TL084AIN TL084BIN TL084ID/IDT TL084AID/AIDT TL084BID/BIDT SO-14 Tube or tape & reel 084I 084AI 084BI TL084IYDT(1) TL084AIYDT(1) TL084BIYDT(1) 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. SO-14 (Automotive grade) Tube or tape & reel 084IY 084AIY 084BIY TL084IP/IPT TL084AIP/AIPT TL084BIP/BIPT TSSOP14 Tube or tape & reel 084I 084AI 084BI TL084CN TL084ACN TL084BCN 0°C, +70°C DIP14 Tube TL084CN TL084ACN TL084BCN TL084CD/CDT TL084ACD/ACDT TL084BCD/BCDT SO-14 Tube or tape & reel 084C 084AC 084BC TL084CP/CPT TL084ACP/ACPT TL084BCP/BCPT TSSOP14 Tube or tape & reel 084C 084AC 084BC Revision history TL084, TL084A, TL084B 18/19 Doc ID 2301 Rev 5 8 Revision history Table 7. Document revision history Date Revision Changes 28-Mar-2001 1 Initial release. 30-Jul-2007 2 Added values for Rthja, Rthjc and ESD in Table 1: Absolute maximum ratings. Added Table 2: Operating conditions. Expanded Table 6: Order codes. Template update. 15-Jul-2008 3 Removed information concerning military temperature ranges (TL084Mx, TL084AMx, TL084BMx). Added automotive grade order codes in Table 6: Order codes. 05-Jul-2012 4 Removed commercial types TL084IYD, TL084AIYD and TL084BIYD. Updated Table 6: Order codes. 29-Jan-2013 5 Added part numbers TL084A and TL084B. Added SO-14 package silhouette. Updated layout of Table 1: Absolute maximum ratings. Updated of Table 3: VCC = ±15 V, Tamb = +25 °C (unless otherwise specified). Replaced SO-14 package mechanical drawing (Figure 28: SO-14 package mechanical drawing). Replaced SO-14 package mechanical data (Table 5: SO-14 package mechanical data). TL084, TL084A, TL084B Doc ID 2301 Rev 5 19/19 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com January 2009 Rev 2 1/16 16 NE556 SA556 - SE556 General-purpose dual bipolar timers Features ■ Low turn-off time ■ Maximum operating frequency greater than 500 kHz ■ Timing from microseconds to hours ■ Operates in both astable and monostable modes ■ Output can source or sink up to 200 mA ■ Adjustable duty cycle ■ TTL compatible ■ Temperature stability of 0.005% per °C Description The NE556, SA556 and SE556 dual monolithic timing circuits are highly stable controllers capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuits may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA. N DIP14 (Plastic package) D SO14 (Plastic micropackage) Pin connections (top view)                        !     "#          !  www.st.com Schematic diagrams NE556 - SA556 - SE556 2/16 1 Schematic diagrams Figure 1. Block diagram Figure 2. Schematic diagram $!%&$' () * * * !+""%! ! ,'+)-,') & . +& $/!"% 0 +#$+1+2 !%&% !%&% () & 3 #!''/"%  2#% 0)0 #!' '/"% $!%&$' ()/!/!  ! 4* !  . . . . . ! 4* ! * ! * . . . . . . . . $!%&$' !+""%! !%&% +& $/!"% "#     . . ! * ! * ! * ! * . . . ! *  !  ! 4* !  . . ! 4*  .   . . . ! 4*  !+""%! ()/!/! ,'+),') ! * 4* NE556 - SA556 - SE556 Absolute maximum ratings and operating conditions 3/16 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage 18 V IOUT Output current (sink and source) ±225 mA Rthja Thermal resistance junction to ambient(1) DIP14 SO-14 1. Short-circuits can cause excessive heating. These values are typical and valid only for a single layer PCB. 80 105 °C/W Rthjc Thermal resistance junction to case (1) DIP14 SO-14 33 31 °C/W ESD Human body model (HBM)(2) 2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 1000 Machine model (MM)(3) V 3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 150 Charged device model (CDM)(4) 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 1500 Latch-up immunity 200 mA TLEAD Lead temperature (soldering 10 seconds) 260 °C Tj Junction temperature 150 °C Tstg Storage temperature range -65 to 150 °C Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage NE556 SA556 SE556 4.5 to 16 4.5 to 16 4.5 to 18 V Vth, Vtrig, Vcl, Vreset Maximum input voltage VCC V IOUT Output current (sink and source) ±200 mA Toper Operating free air temperature range NE556 SA556 SE556 0 to 70 -40 to 105 -55 to 125 °C Electrical characteristics NE556 - SA556 - SE556 4/16 3 Electrical characteristics Table 3. Tamb = +25° C, VCC = +5 V to +15 V (unless otherwise specified) Symbol Parameter SE556 NE556 - SA556 Unit Min. Typ. Max. Min. Typ. Max. ICC Supply current (RL ∝) (2 timers) Low state VCC = +5V VCC = +15V High State VCC = +5V 6 20 4 10 24 6 20 4 12 30 mA Timing error (monostable) (RA = 2kΩ to 100kΩ, C = 0.1μF) Initial accuracy (1) Drift with temperature Drift with supply voltage 0.5 30 0.05 2 100 0.2 1 50 0.1 3 0.5 % ppm/°C %/V Timing error (astable) (RA, RB = 1kΩ to 100kΩ, C = 0.1μF, VCC= +15V) Initial accuracy (1) Drift with temperature Drift with supply voltage 1.5 90 0.15 2.25 150 0.3 % ppm/°C %/V VCL Control voltage level VCC = +15V VCC = +5V 9.6 2.9 10 3.33 10.4 3.8 9 2.6 10 3.33 11 4 V Vth Threshold voltage VCC = +15V VCC = +5V 9.4 2.7 10 3.33 10.6 4 8.8 2.4 10 3.33 11.2 4.2 V Ith Threshold current (2) 0.1 0.25 0.1 0.25 μA Vtrig Trigger voltage VCC = +15V VCC = +5V 4.8 1.45 5 1.67 5.2 1.9 4.5 1.1 5 1.67 5.6 2.2 V Itrig Trigger current (Vtrig = 0V) 0.5 0.9 0.5 2.0 μA Vreset Reset voltage (3) 0.4 0.7 1 0.4 0.7 1 V Ireset Reset current Vreset = +0.4V Vreset = 0V 0.1 0.4 0.4 1 0.1 0.4 0.4 1.5 mA VOL Low level output voltage VCC = +15V IO(sink) = 10mA IO(sink) = 50mA IO(sink) = 100mA IO(sink) = 200mA VCC = +5V IO(sink) = 8mA IO(sink) = 5mA 0.1 0.4 2 2.5 0.1 0.05 0.15 0.5 2.2 0.25 0.2 0.1 0.4 2 2.5 0.3 0.25 0.25 0.75 2.5 0.4 0.35 V VOH High level output voltage VCC = +15V IO(sink) = 200mA IO(sink) = 100mA VCC = +5V IO(sink) = 100mA 13 3 12.5 13.3 3.3 12.75 2.75 12.5 13.3 3.3 V NE556 - SA556 - SE556 Electrical characteristics 5/16 Idis(off) Discharge pin leakage current (output high) (Vdis = 10V) 20 100 20 100 nA Vdis(sat) Discharge pin saturation voltage (output low) (4) VCC = +15V, Idis = 15mA VCC = +5V, Idis = 4.5mA 180 80 480 200 180 80 480 200 mV tr tf Output rise time Output fall time 100 100 200 200 100 100 300 300 ns toff Turn-off time (5) (Vreset = VCC) 0.5 0.5 μs 1. Tested at VCC = +5 V and VCC = +15 V 2. This will determine the maximum value of RA + RB for +15V operation the max total is R = 20 MΩ and for +5 V operation the max total R = 3.5 MΩ 3. Specified with trigger input high 4. No protection against excessive pin 7 current is necessary, providing the package dissipation rating will not be exceeded 5. Time measured from a positive going input pulse from 0 to 0.8 x VCC into the threshold to the drop from high to low of the output trigger is tied to threshold. Table 3. Tamb = +25° C, VCC = +5 V to +15 V (unless otherwise specified) (continued) Symbol Parameter SE556 NE556 - SA556 Unit Min. Typ. Max. Min. Typ. Max. Electrical characteristics NE556 - SA556 - SE556 6/16 Figure 3. Minimum pulse width required for triggering Figure 4. Supply current versus supply voltage Figure 5. Delay time versus temperature Figure 6. Low output voltage versus output sink current Figure 7. Low output voltage versus output sink current Figure 8. Low output voltage versus output sink current NE556 - SA556 - SE556 Electrical characteristics 7/16 Figure 9. High output voltage drop versus output Figure 10. Delay time versus supply voltage Figure 11. Propagation delay versus voltage level of trigger value Application information NE556 - SA556 - SE556 8/16 4 Application information 4.1 Typical application Figure 12. 50% duty cycle oscillator t1 = 0.693 RA.C Figure 13. Pulse width modulator  !            / 56 56 56 56 56  * 56 * ! 4, t2 = [(RARB)/(RA+RB)]CLn RB – 2RA 2RB – RA --------------------------- f = t1 t1 + t2 ----------------- RB < 1 2 --- RA ti  !            / 56 56 56 56 56   56 (0'/+# +#0   NE556 - SA556 - SE556 Application information 9/16 Figure 14. Tone burst generator For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at pin 6. The second timer is enabled by the high output or the monostable. It is connected as an astable and determines the frequency of the tone. Figure 15. Monostable operation !/ !1  !    78 4 !/3!16 "  "  4,       2 #% &% 3            "  4, 2 #% &%        !       !  84!4    !    / 56 56 56 56  56 !' !'        ,  56  84!4 / Application information NE556 - SA556 - SE556 10/16 Figure 16. Astable operation t1 = 0.693 (RA + RB) C output high t2 = 0.693 RBC output low   !    / 56 56 56 56  56 !' !'         56 !1  9 : 4, 8 4 !/3!16   NE556 - SA556 - SE556 Package information 11/16 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package information NE556 - SA556 - SE556 12/16 5.1 DIP14 package information Figure 17. DIP14 package mechanical drawing Note: D and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm. Table 4. DIP14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.21 A1 0.38 0.015 A2 2.92 3.30 4.95 0.11 0.13 0.19 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.04 0.06 0.07 c 0.20 0.25 0.36 0.007 0.009 0.01 D 18.67 19.05 19.69 0.73 0.75 0.77 E 7.62 7.87 8.26 0.30 0.31 0.32 E1 6.10 6.35 7.11 0.24 0.25 0.28 e 2.54 0.10 e1 15.24 0.60 eA 7.62 0.30 eB 10.92 0.43 L 2.92 3.30 3.81 0.11 0.13 0.15 NE556 - SA556 - SE556 Package information 13/16 5.2 SO-14 package information Figure 18. SO-14 package mechanical drawing Note: D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must not exceed 0.15 mm. Table 5. SO-14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.05 0.068 A1 0.10 0.25 0.004 0.009 A2 1.10 1.65 0.04 0.06 B 0.33 0.51 0.01 0.02 C 0.19 0.25 0.007 0.009 D 8.55 8.75 0.33 0.34 E 3.80 4.0 0.15 0.15 e 1.27 0.05 H 5.80 6.20 0.22 0.24 h 0.25 0.50 0.009 0.02 L 0.40 1.27 0.015 0.05 k 8° (max.) ddd 0.10 0.004 Ordering information NE556 - SA556 - SE556 14/16 6 Ordering information Table 6. Order codes Part number Temperature range Package Packing Marking NE556N 0°C, +70°C DIP14 Tube NE556N NE556D/DT SO-14 Tube or tape & reel NE556 SA556N -40°C, +105°C DIP14 Tube SA556N SA556D/DT SO-14 Tube or tape & reel SA556 SE556N -55°C, + 125°C DIP14 Tube SE556N SE556D/DT SO-14 Tube or tape & reel SE556 NE556 - SA556 - SE556 Revision history 15/16 7 Revision history Table 7. Document revision history Date Revision Changes 01-Jun-2003 1 Initial release. 27-Jan-2009 2 Document reformatted. Added IOUT value in Table 1: Absolute maximum ratings and Table 2: Operating conditions. Added ESD tolerance, latch-up tolerance, Rthja and Rthjcin Table 1: Absolute maximum ratings. Updated Section 5.1: DIP14 package information and Section 5.2: SO-14 package information. NE556 - SA556 - SE556 16/16 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com L293B L293E July 2003 n OUTPUT CURRENT 1A PER CHANNEL n PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) n INHIBIT FACILITY n HIGH NOISE IMMUNITY n SEPARATE LOGIC SUPPLY n OVERTEMPERATURE PROTECTION DESCRIPTION The L293B and L293E are quad push-pull drivers capable of delivering output currents to 1A per channel. Each channel is controlled by a TTLcompatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation. Additionally, the L293E has external connection of sensing resistors, for switchmode control. The L293B and L293E are package in 16 and 20- pin plastic DIPs respectively ; both use the four center pins to conduct heat to the printed circuit board. DIP16 POWERDIP(16+2+2) ORDERING NUMBERS: L293B L293E PUSH-PULL FOUR CHANNEL DRIVERS PIN CONNECTION (Top view) DIP16 - L293B POWERDIP (16+2+2) - L293E L293E L293B 2/12 BLOCK DIAGRAMS DIP16 - L293B POWERDIP (16+2+2) - L293E 3/12 L293E L293B SCHEMATIC DIAGRAM (*) In the L293 these points are not externally available. They are internally connected to the ground (substrate). O Pins of L293 () Pins of L293E. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit Vs Supply Voltage 36 V Vss Logic Supply Voltage 36 V Vi Input Voltage 7 V Vinh Inhibit Voltage 7 V Iout Peak Output Current (non repetitive t = 5ms) 2 A Ptot Total Power Dissipation at Tground-pins = 80°C 5 W Tstg, Tj Storage and Junction Temperature –40 to +150 oC L293E L293B 4/12 THERMAL DATA ELECTRICAL CHARACTERISTCS * See figure 1 ** Referred to L293E TRUTH TABLE (*) High output impedance (**) Relative to the considerate channel Symbol Parameter Value Unit Rth j-case Thermal Resistance Junction-case Max. 14 oC/W Rth j-amb Thermal Resistance Junction-ambient Max. 80 oC/W Symbol Parameter Test Condition Min. Typ. Max. Unit Vs Supply Voltage Vss 36 V Vss Logic Supply Voltage 4.5 36 V Is Total Quiescent Supply Current Vi = L; Io = 0; Vinh = H 2 6 mA Vi = h; Io = 0; Vinh = H 16 24 mA Vinh = L 4 mA Iss Total Quiescent Logic Supply Current Vi = L; Io = 0; Vinh = H 44 60 mA Vi = h; Io = 0; Vinh = H 16 22 mA Vinh = L 16 24 mA ViL Input Low Voltage -0.3 1.5 V ViH Input High Voltage VSS £ 7V 2.3 Vss V VSS > 7V 2.3 7 V IiL Low Voltage Input Current Vil = 1.5V -10 mA IiH High Voltage Input Current 2.3V £ VIH £ VSS - 0.6V 30 100 mA VinhL Inhibit Low Voltage -0.3 1.5 V VinhH Inhibit High Voltage VSS £7V 2.3 Vss V VSS > 7V 2.3 7 V IinhL Low Voltage Inhibit Current VinhL = 1.5V -30 -100 mA IinhH High Voltage Inhibit Current 2.3V £VinhH£ Vss- 0.6V ±10 mA VCEsatH Source Output Saturation Voltage Io = -1A 1.4 1.8 V VCEsatL Sink Output Saturation Voltage Io = 1A 1.2 1.8 V VSENS Sensing Voltage (pins 4, 7, 14, 17) (**) 2 V tr Rise Time 0.1 to 0.9 Vo (*) 250 ns tf Fall Time 0.9 to 0.1 Vo (*) 250 ns ton Turn-on Delay 0.5 Vi to 0.5 Vo (*) 750 ns toff Turn-off Delay 0.5 Vi to 0.5 Vo (*) 200 ns Vi (each channel) Vo Vinh (**) H H H L L H H X (*) L L X (*) L 5/12 L293E L293B Figure 1. Switching Timers Figure 2. Saturation voltage versus Output Current Figure 3. Source Saturation Voltage versus Ambient Temperature Figure 4. Sink Saturation Voltage versus Ambient Temperature Figure 5. Quiescent Logic Supply Current versus Logic Supply Voltage L293E L293B 6/12 Figure 6. Output Voltage versus Input Voltage Figure 7. Output Voltage versus Inhibit Voltage APPLICATION INFORMATION Figure 8. DC Motor Controls (with connection to ground and to the supply voltage) L = Low H = High X = Don’t Care Figure 9. Bidirectional DC Motor Control L = Low H = High X = Don’t Care Vinh A M1 B M2 H H Fast Motor Stop H Run H L Run L Fast Motor Stop L X Free Running X Free Running Motor Stop Motor Stop Inputs Function Vinh = H C = H ; D = L Turn Right C = L ; D = H Turn Left C = D Fast Motor Stop Vinh = L C = X ; D = X Free Running Motor Stop 7/12 L293E L293B Figure 10. Bipolar Stepping Motor Control L293E L293B 8/12 Figure 11. Stepping Motor Driver with Phase Current Control and Short Circuit Protection 9/12 L293E L293B MOUNTING INSTRUCTIONS The Rth j-amb of the L293B and the L293E can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in figure 12 or to an external heatsink (figure 13). During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. Figure 12. Example of P.C. Board Copper Area which is Used as Heatsink Figure 13. External Heatsink Mounting Example (Rth = 30°C/W) L293E L293B 10/12 DIP16 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 B 0.77 1.65 0.030 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 17.78 0.700 F 7.1 0.280 I 5.1 0.201 L 3.3 0.130 Z 1.27 0.050 OUTLINE AND MECHANICAL DATA 11/12 L293E L293B DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 B 0.85 1.40 0.033 0.055 b 0.50 0.020 b1 0.38 0.50 0.015 0.020 D 24.80 0.976 E 8.80 0.346 e 2.54 0.100 e3 22.86 0.900 F 7.10 0.280 I 5.10 0.201 L 3.30 0.130 Z 1.27 0.050 Powerdip 20 OUTLINE AND MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. STMicroelectronics acknowledges the trademarks of all companies referred to in this document. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United LF351 Wide bandwidth single JFET operational amplifiers Features ■ Internally adjustable input offset voltage ■ Low power consumption ■ Wide common-mode (up to VCC +) and differential voltage range ■ Low input bias and offset current ■ Output short-circuit protection ■ High input impedance JFET input stage ■ Internal frequency compensation ■ Latch up free operation ■ High slew rate 16 V/μs (typical) Description These circuits are high speed JFET input single operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. N DIP8 (Plastic package) D SO-8 (Plastic micro package)        1 - Offset null 1 2 - Inverting input 3 - Non-inverting input 4 - VCC- 5 - Offset null 2 6 - Output 7 - VCC+ 8 - N.C. Pin connections (top view) www.st.com Schematics LF351 2/14 1 Schematics Figure 1. Schematic diagram Figure 2. Input offset voltage null circuit Output Non-inverting input Inverting input VCC VCC 100W 1.3k 30k 35k 35k 100W 1.3k 8.2k Offset Null1 Offset Null2 100W 200W LF351 Absolute maximum ratings and operating conditions 3/14 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage(1) ±18 V Vi Input voltage(2) ±15 V Vid Differential input voltage(3) ±30 V Rthja Thermal resistance junction to ambient(4) SO-8 DIP8 125 85 °C/W Rthjc Thermal resistance junction to case(4) SO-8 DIP8 40 41 °C/W Output short-circuit duration(5) Infinite Tstg Storage temperature range -65 to +150 °C ESD HBM: human body model(6) 500 V MM: machine model(7) 200 V CDM: charged device model(8) 1.5 kV 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded 6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol Parameter LF151 LF251 LF351 Unit VCC Supply voltage 6 to 32 V Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C Electrical characteristics LF351 4/14 3 Electrical characteristics Table 3. Electrical characteristics at VCC = ±15 V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input offset voltage (Rs = 10kΩ) Tmin ≤ Tamb ≤ Tmax 3 10 13 mV DVio Input offset voltage drift 10 μV/°C Iio Input offset current (1) Tmin ≤ Tamb ≤ Tmax 5 100 4 pA nA Iib Input bias current (1) Tmin ≤ Tamb ≤ Tmax 20 200 20 pA nA Avd Large signal voltage gain (RL = 2kΩ, Vo = ±10V) Tmin ≤ Tamb ≤ Tmax 50 25 200 V/mV SVR Supply voltage rejection ratio (RS = 10kΩ) Tmin ≤ Tamb ≤ Tmax 80 80 86 dB ICC Supply current, no load Tmin ≤ Tamb ≤ Tmax 1.4 3.4 3.4 mA Vicm Input common mode voltage range ±11 +15 -12 V CMR Common mode rejection ratio (RS = 10kΩ) Tmin ≤ Tamb ≤ Tmax 70 70 86 dB IOS Output short-circuit current Tmin ≤ Tamb ≤ Tmax 10 10 40 60 60 mA ±Vopp Output voltage swing RL = 2kΩ RL = 10kΩ Tmin ≤ Tamb ≤ Tmax RL = 2kΩ RL = 10kΩ 10 12 10 12 12 13.5 V SR Slew rate, Vi = 10V, RL = 2kΩ, CL = 100pF, unity gain 12 16 V/μs tr Rise time, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 0.1 μs Kov Overshoot, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 10 % GBP Gain bandwidth product, f = 100kHz, Vin = 10mV, RL = 2kΩ, CL = 100pF 2.5 4 MHz Ri Input resistance 1012 Ω THD Total harmonic distortion f= 1kHz, Av= 20dB, RL= 2kΩ, CL=100pF, Vo= 2Vpp 0.01 % en Equivalent input noise voltage RS = 100Ω, f = 1KHz 15 ∅m Phase margin 45 Degrees 1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. nV Hz ----------- LF351 Electrical characteristics 5/14 Figure 3. Maximum peak-to-peak output voltage versus frequency Figure 4. Maximum peak-to-peak output voltage versus frequency Figure 5. Maximum peak-to-peak output voltage versus frequency Figure 6. Maximum peak-to-peak output voltage versus free air temp. Figure 7. Maximum peak-to-peak output voltage versus load resistance Figure 8. Maximum peak-to-peak output voltage versus supply voltage Electrical characteristics LF351 6/14 Figure 9. Input bias current versus free air temperature Figure 10. Large signal differential voltage amplification versus free air temp. Figure 11. Large signal differential voltage amplification and phase shift versus frequency Figure 12. Total power dissipation versus free air temperature Figure 13. Supply current per amplifier versus free air temperature Figure 14. Supply current per amplifier versus supply voltage LF351 Electrical characteristics 7/14 Figure 15. Common mode rejection ratio versus free air temperature Figure 16. Voltage follower large signal pulse response Figure 17. Output voltage versus elapsed time Figure 18. Equivalent input noise voltage versus frequency Figure 19. Total harmonic distortion versus frequency Parameter measurement information LF351 8/14 4 Parameter measurement information Figure 20. Voltage follower Figure 21. Gain-of-10 inverting amplifier LF351 Typical application 9/14 5 Typical application Figure 22. Square wave oscillator (0.5 Hz) Figure 23. High Q notch filter Package information LF351 10/14 6 Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. LF351 Package information 11/14 6.1 DIP8 package information Figure 24. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB 10.92 0.430 L 2.92 3.30 3.81 0.115 0.130 0.150 Package information LF351 12/14 6.2 SO-8 package information Figure 25. SO-8 package mechanical drawing Table 5. SO-8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 A1 0.10 0.25 0.004 0.010 A2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 0.10 0.004 LF351 Ordering information 13/14 7 Ordering information 8 Revision history Table 6. Order codes Order code Temperature range Package Packing Marking LF151N -55°C, +125°C DIP8 Tape LF151N LF151D LF151DT SO-8 Tape or Tape & reel 151 LF251N -40°C, +105°C DIP8 Tape LF251N LF251D LF251DT SO-8 Tape or Tape & reel 251 LF351N 0°C, +70°C DIP8 Tape LF351N LF351D LF351DT SO-8 Tape or Tape & reel 351 Table 7. Document revision history Date Revision Changes 17-May-2001 1 Initial release. 28-April-2008 2 Updated document format. LF351 14/14 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com LM158, LM258, LM358 Low-power dual operational amplifiers Datasheet - production data Features • Internally frequency-compensated • Large DC voltage gain: 100 dB • Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) • Very low supply current per operator essentially independent of supply voltage • Low input bias current: 20 nA (temperature compensated) • Low input offset voltage: 2 mV • Low input offset current: 2 nA • Input common-mode voltage range includes negative rails • Differential input voltage range equal to the power supply voltage • Large output voltage swing 0 V to (VCC + -1.5 V) Description These circuits consist of two independent, high-gain, internally frequency-compensated op-amps, specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply. In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. DIP8 (Plastic package) SO8 and MiniSO8 (Plastic micropackage) TSSOP8 (Thin shrink small outline package) Pin connections (Top view) 1 2 3 Out1 In1- In1+ Vcc- 4 8 7 6 Vcc+ Out2 In2- 5 In2+ DFN8 2 x 2 mm (Plastic micropackage) www.st.com Contents LM158, LM258, LM358 2/22 DocID2163 Rev 11 Contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.1 DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.4 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.5 DFN8 2 x 2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID2163 Rev 11 3/22 LM158, LM258, LM358 Schematic diagram 22 1 Schematic diagram Figure 1. Schematic diagram (1/2 LM158) 6μA 4μA 100μA Q2 Q3 Q1 Q4 Inverting input Non-inverting input Q8 Q9 Q10 Q11 Q12 50μA Q13 Output Q7 Q6 Q5 R SC VCC CC GND Absolute maximum ratings LM158, LM258, LM358 4/22 DocID2163 Rev 11 2 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter LM158,A LM258,A LM358,A Unit VCC Supply voltage +/-16 or 32 V Vi Input voltage 32 V Vid Differential input voltage 32 V Output short-circuit duration (1) 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short circuits on all amplifiers. Infinite Iin Input current (2) 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 5 mA in DC or 50 mA in AC (duty cycle = 10%, T=1s) mA Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C Tstg Storage temperature range -65 to +150 °C Tj Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient(3) SO8 MiniSO8 TSSOP8 DIP8 DFN8 2x2 3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 125 190 120 85 57 °C/W Rthjc Thermal resistance junction to case (3) SO8 MiniSO8 TSSOP8 DIP8 40 39 37 41 °C/W ESD HBM: human body model(4) 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kW resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 300 V MM: machine model(5) 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 W). This is done for all couples of connected pin combinations while the other pins are floating. 200 V CDM: charged device model(6) 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 1.5 kV DocID2163 Rev 11 5/22 LM158, LM258, LM358 Operating conditions 22 3 Operating conditions Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage 3 to 30 V Vicm Common mode input voltage range(1) 1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range. VCC - -0.3 to VCC + -1.5 V Toper Operating free air temperature range LM158 LM258 LM358 -55 to +125 -40 to +105 0 to +70 °C Electrical characteristics LM158, LM258, LM358 6/22 DocID2163 Rev 11 4 Electrical characteristics Table 3. Electrical characteristics for VCC + = +5 V, VCC - = Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input offset voltage (1) LM158A LM258A, LM358A LM158, LM258 LM358 1 2 2357 mV Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258 LM358 479 DVio Input offset voltage drift LM158A, LM258A, LM358A LM158, LM258, LM358 77 15 30 μV/°C Iio Input offset current LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 22 10 30 30 40 nA DIio Input offset current drift LM158A, LM258A, LM358A LM158, LM258, LM358 10 10 200 300 pA/°C Iib Input bias current (2) LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 20 20 50 150 100 200 nA Avd Large signal voltage gain VCC += +15 V, RL = 2 kW, Vo = 1.4 V to 11.4 V Tmin £ Tamb £ Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio VCC + = 5 V to 30 V, Rs £ 10 kW Tmin £ Tamb £ Tmax 65 65 100 dB ICC Supply current, all amp, no load Tmin £ Tamb £ Tmax VCC + = +5 V Tmin £ Tamb £ Tmax VCC + = +30 V 0.7 1.2 2 mA Vicm Input common mode voltage range VCC += +30 V (3) Tmin £ Tamb £ Tmax 0 0 VCC + -1.5 VCC + -2 V DocID2163 Rev 11 7/22 LM158, LM258, LM358 Electrical characteristics 22 CMR Common mode rejection ratio Rs £ 10 kW Tmin £ Tamb £ Tmax 70 60 85 dB Isource Output current source VCC + = +15 V, Vo = +2 V, Vid = +1 V 20 40 60 mA Isink Output sink current VCC + = +15 V, Vo = +2 V, Vid = -1 V VCC + = +15 V, Vo = +0.2 V, Vid = -1 V 10 12 20 50 mA μA VOH High level output voltage RL = 2 kW, VCC + = 30 V Tmin £ Tamb £ Tmax RL = 10 kW, VCC + = 30 V Tmin £ Tamb £ Tmax 26 26 27 27 27 28 V VOL Low level output voltage RL = 10 kW Tmin £ Tamb £ Tmax 5 20 20 mV SR Slew rate VCC + = 15 V, Vi = 0.5 to 3 V, RL = 2 kW, CL = 100 pF, unity gain 0.3 0.6 V/μs GBP Gain bandwidth product VCC + = 30 V, f = 100 kHz, Vin = 10 mV, RL = 2 kW, CL = 100 pF 0.7 1.1 MHz THD Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 kW, Vo = 2 Vpp, CL = 100 pF, VO = 2 Vpp 0.02 % en Equivalent input noise voltage f = 1 kHz, Rs = 100 W, VCC + = 30 V 55 Vo1/Vo2 Channel separation(4) 1 kHz £ f £ 20 kHz 120 dB 1. Vo = 1.4 V, Rs = 0 W, 5 V < VCC + < 30 V, 0 < Vic < VCC + - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC + - 1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies. Table 3. Electrical characteristics for VCC + = +5 V, VCC - = Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) (continued) Symbol Parameter Min. Typ. Max. Unit nV Hz ----------- Electrical characteristics LM158, LM258, LM358 8/22 DocID2163 Rev 11 Figure 2. Open-loop frequency response Figure 3. Large signal frequency response VOLTAGE GAIN (dB) 1.0 10 100 1k 10k 100k 1M 10M VCC = +10 to +15 V & FREQUENCY (Hz) 10 M􀀷 VI VCC/2 VCC = 30 V & -55°C 0.1 􀁍F VCC VO - + -55°C Tamb +125°C 140 120 100 80 60 40 20 0 Tamb +125°C - + OUTPUT SWING (Vpp) 1k 10k 100k 1M FREQUENCY (Hz) 100 k􀀷 VI 1 k􀀷 VO 20 15 10 5 0 2 k􀀷 +15 V +7 V Figure 4. Voltage follower pulse response with VCC = 15 V Figure 5. Voltage follower pulse response with VCC = 30 V INPUT VOLTAGE (V) TIME (􀁍s) RL 2 k􀀷 OUTPUT VOLTAGE (V) 4 3 2 1 0 3 2 1 VCC = +15 V 0 10 20 30 40 Input Output 50 pF + - OUTPUT VOLTAGE (mV) 0 1 2 3 4 5 6 7 8 TIME (􀁍s) eI Tamb = +25°C VCC = 30 V 500 450 400 350 300 250 eO Figure 6. Input current Figure 7. Output voltage vs sink current INPUT CURRENT (mA) TEMPERATURE (°C) -55 -35 -15 5 25 45 65 85 105 125 90 80 70 60 50 40 30 20 10 0 VCC = +30 V VCC = +15 V VCC = +5 V VI = 0 V - + OUTPUT VOLTAGE (v) 0.001 0.01 0.1 1 10 100 OUTPUT SINK CURRENT (mA) VO VCC/2 VCC = +5 V VCC = +15 V VCC = +30 V VCC IO 10 1 0.1 0.01 Tamb = + 25°C DocID2163 Rev 11 9/22 LM158, LM258, LM358 Electrical characteristics 22 Figure 8. Output voltage vs source current Figure 9. Current limiting + - OUTPUT VOLTAGE REFERENCED TO VCC+ (V) 0.001 0.01 0.1 1 10 100 OUTPUT SOURCE CURRENT (mA) VO Independent of VCC VCC/2 IO 8 5 2 1 Tamb = + 25°C VCC 7 6 4 3 - + OUTPUT CURRENT (mA) -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE °C IO 90 80 50 40 30 20 10 0 70 60 Figure 10. Input voltage range Figure 11. Open-loop gain Figure 12. Supply current Figure 13. Input current Negative Positive INPUT VOLTAGE (V) 0 5 10 15 POWER SUPPLY VOLTAGE (±V) 10 5 15 VOLTAGE GAIN (dB) POSITIVE SUPPLY VOLTAGE (V) 0 10 20 30 40 120 40 160 80 RL = 20 k􀀷 RL = 2 k􀀷 - + SUPPLY CURRENT (mA) 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) mA VCC ID Tamb = 0°C to +125°C 4 3 2 1 Tamb = -55°C INPUT CURRENT (nA) 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 100 75 50 25 Tamb = +25°C Electrical characteristics LM158, LM258, LM358 10/22 DocID2163 Rev 11 Figure 14. Gain bandwidth product Figure 15. Power supply rejection ratio GAIN BANDWIDTH PRODUCT (MHz) -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) 1.05 0.45 0.3 0.15 VCC = ± 15 V 1.2 0.9 0.75 0.6 1.35 1.5 0 POWER SUPPLY REJECTION RATIO (dB) SVR -55 -35 -15 5 25 45 65 85 105 125 100 80 75 70 105 95 90 85 110 115 65 TEMPERATURE (°C) 60 Figure 16. Common-mode rejection ratio Figure 17. Phase margin vs. capacitive load COMMON MODE REJECTION RATIO (dB) -55 -35 -15 5 25 45 65 85 105 125 100 80 75 70 105 95 90 85 110 115 65 TEMPERATURE (°C) 60 Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value DocID2163 Rev 11 11/22 LM158, LM258, LM358 Typical applications 22 5 Typical applications Single supply voltage VCC = +5 VDC. Figure 18. AC-coupled inverting amplifier Figure 19. Non-inverting DC amplifier 1/2 LM158 ~ 0 2VPP R 10k L Co eo R 6.2k B R 100k f R1 CI 10k eI VCC R2 100k C1 10F R3 100k A =- R V R1 f (as shown AV = -10) R1 10k R2 1M 1/2 LM158 10k eI eO +5V e O (V) (mV) 0 AV= 1 + R2 R1 (As shown AV = 101) Figure 20. AC-coupled non-inverting amplifier Figure 21. DC summing amplifier 1/2 LM158 ~ 0 2VPP R 10k L Co eo R 6.2k B C1 0.1F eI VCC (as shown AV = 11) A = 1 +R2 V R1 R1 100k R2 1M CI R3 1M R4 100k R5 100k C2 10F 1/2 LM158 eO e 4 e 3 e 2 e 1 100k 100k 100k 100k 100k 100k eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC instrumentation amplifier R1 100k R2 100k R4 100k R3 100k +V2 +V1 Vo 1/2 LM158 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + ] ( (e2 + e1) As shown eo = 101 (e2 + e1) 2R1 R2 ----------- R3 100k eO 1/2 LM158 R1 100k e 1 R7 100k R6 100k R5 100k e 2 R2 2k Gain adjust R4 100k 1/2 LM158 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + ] ( (e2 + e1) As shown eo = 101 (e2 + e1) 2R1 R2 ----------- Typical applications LM158, LM258, LM358 12/22 DocID2163 Rev 11 Figure 24. Using symmetrical amplifiers to reduce input current Figure 25. Low drift peak detector Figure 26. Active band-pass filter 1/2 LM158 IB 2N 929 0.001F IB 3M IB I eo I e I IB IB Input current compensation 1.5M 1/2 LM158 IB 2N 929 0.001F IB 3R 3M IB Input current compensation eo IB e I 1/2 LM158 Zo ZI C 1F 2IB R 1M 2IB 1/2 LM158 1/2 LM158 1/2 LM158 R8 100k C3 10F R7 100k R5 470k C1 330pF Vo VCC R6 470k C2 330pF R4 10M R1 100k R2 100k +V1 R3 100k 1/2 LM158 1/2 LM158 DocID2163 Rev 11 13/22 LM158, LM258, LM358 Package information 22 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package information LM158, LM258, LM358 14/22 DocID2163 Rev 11 6.1 DIP8 package information Figure 27. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB 10.92 0.430 L 2.92 3.30 3.81 0.115 0.130 0.150 DocID2163 Rev 11 15/22 LM158, LM258, LM358 Package information 22 6.2 SO8 package information Figure 28. SO8 package mechanical drawing Table 5. SO8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 A1 0.10 0.25 0.004 0.010 A2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 1.04 0.040 k 1° 8° 1° 8° ccc 0.10 0.004 Package information LM158, LM258, LM358 16/22 DocID2163 Rev 11 6.3 MiniSO8 package information Figure 29. MiniSO8 package mechanical drawing Table 6. MiniSO8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.1 0.043 A1 0 0.15 0 0.006 A2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 L 0.40 0.60 0.80 0.016 0.024 0.031 L1 0.95 0.037 L2 0.25 0.010 k 0° 8° 0° 8° ccc 0.10 0.004 DocID2163 Rev 11 17/22 LM158, LM258, LM358 Package information 22 6.4 TSSOP8 package information Figure 30. TSSOP8 package mechanical drawing Table 7. TSSOP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.006 A2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k 0° 8° 0° 8° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1 0.039 aaa 0.1 0.004 Package information LM158, LM258, LM358 18/22 DocID2163 Rev 11 6.5 DFN8 2 x 2 package mechanical data Figure 31. DFN8 2 x 2 package mechanical drawing Table 8. DFN8 2 x 2 x 0.6 mm package mechanical data (pitch 0.5 mm) Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 0.002 A3 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.50 0.020 L 0.50 0.020 ddd 0.08 0.003 DocID2163 Rev 11 19/22 LM158, LM258, LM358 Package information 22 Figure 32. DFN8 2 x 2 footprint recommendation Ordering information LM158, LM258, LM358 20/22 DocID2163 Rev 11 7 Ordering information Table 9. Order codes Order code Temperature range Package Packaging Marking LM158N -55°C, +125°C DIP8 Tube LM158N LM158QT DFN8 2x2 Tape and reel K4A LM158DT SO8 158 LM258AN LM258N -40°C, +105°C DIP8 Tube LM258A LM258N LM258ADT SO8 Tape and reel 258A LM258AYDT(1) SO8 Automotive grade 258AY LM258D LM258DT SO8 Tube or tape and reel 258 Tape and reel LM258PT LM258APT TSSOP8 258 258A LM258YPT(2) LM258AYPT(2) TSSOP8 Automotive grade 258Y 258AY LM258AST LM258ST MiniSO8 K408 K416 LM258QT DFN8 2x2 K4C LM358N LM358AN 0°C, +70°C DIP8 Tube LM358N LM358AN LM358D LM358DT SO8 Tube or tape and reel 358 LM358YDT(1) SO8 Automotive grade Tape and reel 358Y LM358AD LM358ADT SO8 Tube or tape and reel 358A LM358PT LM358APT TSSOP8 Tape and reel 358 358A LM358YPT(2) LM358AYPT(2) TSSOP8 Automotive grade 358Y 358AY LM358ST LM358AST MiniSO8 K405 K404 LM358QT DFN8 2x2 K4E 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are qualified. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. DocID2163 Rev 11 21/22 LM158, LM258, LM358 Revision history 22 8 Revision history Table 10. Document revision history Date Revision Changes 01-Jul- 2003 1 First release. 02-Jan-2005 2 Rthja and Tj parameters added in AMR Table 1 on page 4. 01-Jul-2005 3 ESD protection inserted in Table 1 on page 4. 05-Oct-2006 4 Added Figure 17: Phase margin vs. capacitive load. 30-Nov-2006 5 Added missing ordering information. 25-Apr-2007 6 Removed LM158A, LM258A and LM358A from document title. Corrected error in MiniSO-8 package data. L1 is 0.004 inch. Added automotive grade order codes in Section 7 on page 20. 12-Feb-2008 7 Corrected VCC max (30 V instead of 32 V) in operating conditions. Changed presentation of electrical characteristics table. Deleted Vopp parameter in electrical characteristics table. Corrected miniSO-8 package information. Corrected temperature range for automotive grade order codes. Updated automotive grade footnotes in order codes table. 26-Aug-2008 8 Added limitations on input current in Table 1: Absolute maximum ratings. Corrected title for Figure 11. Added E and L1 parameters in Table 5: SO8 package mechanical data. Changed Figure 30. 02-Sep-2011 9 In Chapter 6: Package information, added: – DFN8 2 x 2 mm package mechanical drawing – DFN8 2 x 2 mm recommended footprint – DFN8 2 x 2 mm order codes. 06-Apr-2012 10 Removed order codes LM158YD, LM258AYD, LM258YD and LM358YD from Table 9: Order codes. 11-Jun-2013 11 Table 9: Order codes: removed order codes LM158D, LM158YDT, LM258YDT, and LM258AD; added automotive grade qualification to order codes LM258ATDT and LM358YDT; updated marking for order codes LM158DT and LM258D/LM258DT; updated temperature range, packages, and packaging for several order codes. LM158, LM258, LM358 22/22 DocID2163 Rev 11 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com L78 Positive voltage regulator ICs Datasheet - production data Features • Output current up to 1.5 A • Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V • Thermal overload protection • Short circuit protection • Output transition SOA protection • 2 % output voltage tolerance (A version) • Guaranteed in extended temperature range (A version) Description The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents. TO-220 TO-220FP DPAK D²PAK www.st.com Contents Positive voltage regulator ICs 2/58 DocID2143 Rev 32 Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Design consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9 Packaging mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 DocID2143 Rev 32 3/58 Positive voltage regulator ICs List of tables 58 List of tables Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3. Electrical characteristics of L7805A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 4. Electrical characteristics of L7806A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Electrical characteristics of L7808A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 6. Electrical characteristics of L7809A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 7. Electrical characteristics of L7812A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8. Electrical characteristics of L7815A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9. Electrical characteristics of L7824A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 10. Electrical characteristics of L7805C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 11. Electrical characteristics of L7806C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 12. Electrical characteristics of L7808C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 13. Electrical characteristics of L7885C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 14. Electrical characteristics of L7809C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 15. Electrical characteristics of L7812C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 16. Electrical characteristics of L7815C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 17. Electrical characteristics of L7818C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 18. Electrical characteristics of L7824C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 19. TO-220 (dual gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 20. TO-220 SG (single gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21. TO-220FP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 22. DPAK mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 23. D²PAK (SMD 2L STD-ST) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 25. DPAK and D²PAK tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 26. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 27. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 List of figures Positive voltage regulator ICs 4/58 DocID2143 Rev 32 List of figures Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4. Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5. DC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Ripple rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8. Fixed output regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 9. Current regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 10. Circuit for increasing output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 11. Adjustable output regulator (7 to 30 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12. 0.5 to 10 V regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 13. High current voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 14. High output current with short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 15. Tracking voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 16. Split power supply (± 15 V - 1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 17. Negative output voltage circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 18. Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 19. High input voltage circuit (configuration 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 20. High input voltage circuit (configuration 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 21. High input and output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 22. Reducing power dissipation with dropping resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 23. Remote shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 24. Power AM modulator (unity voltage gain, IO £ 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 25. Adjustable output voltage with temperature compensation . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 26. Light controllers (VO(min) = VXX + VBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 27. Protection against input short-circuit with high capacitance loads . . . . . . . . . . . . . . . . . . . 34 Figure 28. Dropout voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 29. Peak output current vs. input/output differential voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 30. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 31. Output voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 32. Output impedance vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 33. Quiescent current vs. junction temp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 34. Load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 35. Line transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 36. Quiescent current vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 37. TO-220 (dual gauge) drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 38. TO-220 SG (single gauge) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 39. TO-220FP drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 40. DPAK drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 41. DPAK footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 42. D²PAK (SMD 2L STD-ST) type A drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 45. Tube for TO-220 (dual gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 46. Tube for TO-220 (single gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 47. Tape for DPAK and D2PAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 48. Reel for DPAK and D2PAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DocID2143 Rev 32 5/58 Positive voltage regulator ICs Diagram 58 1 Diagram Figure 1. Block diagram Pin configuration Positive voltage regulator ICs 6/58 DocID2143 Rev 32 2 Pin configuration Figure 2. Pin connections (top view) Figure 3. Schematic diagram DocID2143 Rev 32 7/58 Positive voltage regulator ICs Maximum ratings 58 3 Maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Table 1. Absolute maximum ratings Symbol Parameter Value Unit VI DC input voltage for VO= 5 to 18 V 35 V for VO= 20, 24 V 40 IO Output current Internally limited PD Power dissipation Internally limited TSTG Storage temperature range -65 to 150 °C TOP Operating junction temperature range for L78xxC, L78xxAC 0 to 125 °C for L78xxAB -40 to 125 Table 2. Thermal data Symbol Parameter D²PAK DPAK TO-220 TO-220FP Unit RthJC Thermal resistance junction-case 3 8 5 5 °C/W RthJA Thermal resistance junction-ambient 62.5 100 50 60 °C/W Figure 4. Application circuits Test circuits Positive voltage regulator ICs 8/58 DocID2143 Rev 32 4 Test circuits Figure 5. DC parameter Figure 6. Load regulation Figure 7. Ripple rejection DocID2143 Rev 32 9/58 Positive voltage regulator ICs Electrical characteristics 58 5 Electrical characteristics VI = 10 V, IO = 1 A, TJ = 0 to 125 °C (L7805AC), TJ = -40 to 125 °C (L7805AB), unless otherwise specified(a). a. Minimum load current for regulation is 5 mA. Table 3. Electrical characteristics of L7805A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 4.9 5 5.1 V VO Output voltage IO = 5 mA to 1 A, VI = 7.5 to 18 V 4.8 5 5.2 V VO Output voltage IO = 1 A, VI = 18 to 20 V, TJ = 25°C 4.8 5 5.2 V ΔVO (1) Line regulation VI = 7.5 to 25 V, IO = 500 mA, TJ = 25°C 7 50 mV VI = 8 to 12 V 10 50 mV VI = 8 to 12 V, TJ = 25°C 2 25 mV VI = 7.3 to 20 V, TJ = 25°C 7 50 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 8 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 8 to 23 V, IO = 500 mA 0.8 mA VI = 7.5 to 20 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz, IO = 500 mA 68 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1.1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 10/58 DocID2143 Rev 32 VI = 11 V, IO = 1 A, TJ = 0 to 125 °C (L7806AC), TJ = -40 to 125 °C (L7806AB), unless otherwise specified(b). b. Minimum load current for regulation is 5 mA. Table 4. Electrical characteristics of L7806A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 5.88 6 6.12 V VO Output voltage IO = 5 mA to 1 A, VI = 8.6 to 19 V 5.76 6 6.24 V VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.76 6 6.24 V ΔVO (1) Line regulation VI = 8.6 to 25 V, IO = 500 mA, TJ = 25°C 9 60 mV VI = 9 to 13 V 11 60 mV VI = 9 to 13 V, TJ = 25°C 3 30 mV VI = 8.3 to 21 V, TJ = 25°C 9 60 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 9 to 24 V, IO = 500 mA 0.8 mA VI = 8.6 to 21 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz, IO = 500 mA 65 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 11/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 14 V, IO = 1 A, TJ = 0 to 125 °C (L7808AC), TJ = -40 to 125 °C (L7808AB), unless otherwise specified(c). c. Minimum load current for regulation is 5 mA. Table 5. Electrical characteristics of L7808A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 7.84 8 8.16 V VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 21 V 7.7 8 8.3 V VO Output voltage IO = 1 A, VI = 21 to 23 V, TJ = 25°C 7.7 8 8.3 V ΔVO (1) Line regulation VI = 10.6 to 25 V, IO = 500 mA, TJ = 25°C 12 80 mV VI = 11 to 17 V 15 80 mV VI = 11 to 17 V, TJ = 25°C 5 40 mV VI = 10.4 to 23 V, TJ = 25°C 12 80 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 11 to 23 V, IO = 500 mA 0.8 mA VI = 10.6 to 23 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz, IO = 500 mA 62 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 12/58 DocID2143 Rev 32 VI = 15 V, IO = 1 A, TJ = 0 to 125 °C (L7809AC), TJ = -40 to 125 °C (L7809AB), unless otherwise specified(d). d. Minimum load current for regulation is 5 mA. Table 6. Electrical characteristics of L7809A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.82 9 9.18 V VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 22 V 8.65 9 9.35 V VO Output voltage IO = 1 A, VI = 22 to 24 V, TJ = 25°C 8.65 9 9.35 V ΔVO (1) Line regulation VI = 10.6 to 25 V, IO = 500 mA, TJ = 25°C 12 90 mV VI = 11 to 17 V 15 90 mV VI = 11 to 17 V, TJ = 25°C 5 45 mV VI = 11.4 to 23 V, TJ = 25°C 12 90 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 11 to 25 V, IO = 500 mA 0.8 mA VI = 10.6 to 23 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz, IO = 500 mA 61 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 13/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 19 V, IO = 1 A, TJ = 0 to 125 °C (L7812AC), TJ = -40 to 125 °C (L7812AB), unless otherwise specified(e). e. Minimum load current for regulation is 5 mA. Table 7. Electrical characteristics of L7812A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 11.75 12 12.25 V VO Output voltage IO = 5 mA to 1 A, VI = 14.8 to 25 V 11.5 12 12.5 V VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.5 12 12.5 V ΔVO (1) Line regulation VI = 14.8 to 30 V, IO = 500 mA, TJ = 25°C 13 120 mV VI = 16 to 12 V 16 120 mV VI = 16 to 12 V, TJ = 25°C 6 60 mV VI = 14.5 to 27 V, TJ = 25°C 13 120 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.4 6 mA 6 mA ΔIq Quiescent current change VI = 15 to 30 V, IO = 500 mA 0.8 mA VI = 14.8 to 27 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz, IO = 500 mA 60 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 14/58 DocID2143 Rev 32 VI = 23 V, IO = 1 A, TJ = 0 to 125 °C (L7815AC), TJ = -40 to 125 °C (L7815AB), unless otherwise specified(f). f. Minimum load current for regulation is 5 mA. Table 8. Electrical characteristics of L7815A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 14.7 15 15.3 V VO Output voltage IO = 5 mA to 1 A, VI = 17.9 to 28 V 14.4 15 15.6 V VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.4 15 15.6 V ΔVO (1) Line regulation VI = 17.9 to 30 V, IO = 500 mA, TJ = 25°C 13 150 mV VI = 20 to 26 V 16 150 mV VI = 20 to 26 V, TJ = 25°C 6 75 mV VI = 17.5 to 30 V, TJ = 25°C 13 150 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.4 6 mA 6 mA ΔIq Quiescent current change VI = 17.5 to 30 V, IO = 500 mA 0.8 mA VI = 17.5 to 30 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 18.5 to 28.5 V, f = 120 Hz, IO = 500 mA 58 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 15/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 33 V, IO = 1 A, TJ = 0 to 125 °C (L7824AC), TJ = -40 to 125 °C (L7824AB), unless otherwise specified(g). g. Minimum load current for regulation is 5 mA. Table 9. Electrical characteristics of L7824A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 23.5 24 24.5 V VO Output voltage IO = 5 mA to 1 A, VI = 27.3 to 37 V 23 24 25 V VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 23 24 25 V ΔVO (1) Line regulation VI = 27 to 38 V, IO = 500 mA, TJ = 25°C 31 240 mV VI = 30 to 36 V 35 200 mV VI = 30 to 36 V, TJ = 25°C 14 120 mV VI = 26.7 to 38 V, TJ = 25°C 31 240 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.6 6 mA 6 mA ΔIq Quiescent current change VI = 27.3 to 38 V, IO = 500 mA 0.8 mA VI = 27.3 to 38 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz, IO = 500 mA 54 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 20 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1.5 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 16/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 10 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(h). h. Minimum load current for regulation is 5 mA. Table 10. Electrical characteristics of L7805C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 4.8 5 5.2 V VO Output voltage IO = 5 mA to 1 A, VI = 7 to 18 V 4.75 5 5.25 V VO Output voltage IO = 1 A, VI = 18 to 20V, TJ = 25°C 4.75 5 5.25 V ΔVO (1) Line regulation VI = 7 to 25 V, TJ = 25°C 3 100 mV VI = 8 to 12 V, TJ = 25°C 1 50 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 100 mV IO = 250 to 750 mA, TJ = 25°C 50 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 7 to 23 V 0.8 ΔVO/ΔT Output voltage drift IO = 5 mA -1.1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 40 μV/VO SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz 62 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.75 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 17/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 11 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(i). i. Minimum load current for regulation is 5 mA. Table 11. Electrical characteristics of L7806C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 5.75 6 6.25 V VO Output voltage IO = 5 mA to 1 A, VI = 8 to 19 V 5.7 6 6.3 V VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.7 6 6.3 V ΔVO (1) Line regulation VI = 8 to 25 V, TJ = 25°C 120 mV VI = 9 to 13 V, TJ = 25°C 60 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 120 mV IO = 250 to 750 mA, TJ = 25°C 60 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 8 to 24 V 1.3 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 45 μV/VO SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz 59 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.55 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 18/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 14 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(j). j. Minimum load current for regulation is 5 mA. Table 12. Electrical characteristics of L7808C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 7.7 8 8.3 V VO Output voltage IO = 5 mA to 1 A, VI = 10.5 to 21 V 7.6 8 8.4 V VO Output voltage IO = 1 A, VI = 21 to 25 V, TJ = 25°C 7.6 8 8.4 V ΔVO (1) Line regulation VI = 10.5 to 25 V, TJ = 25°C 160 mV VI = 11 to 17 V, TJ = 25°C 80 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 160 mV IO = 250 to 750 mA, TJ = 25°C 80 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 10.5 to 25 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 52 μV/VO SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz 56 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 16 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 19/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 14.5 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(k). k. Minimum load current for regulation is 5 mA. Table 13. Electrical characteristics of L7885C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.2 8.5 8.8 V VO Output voltage IO = 5 mA to 1 A, VI = 11 to 21.5 V 8.1 8.5 8.9 V VO Output voltage IO = 1 A, VI = 21.5 to 26 V, TJ = 25°C 8.1 8.5 8.9 V ΔVO (1) Line regulation VI = 11 to 27 V, TJ = 25°C 160 mV VI = 11.5 to 17.5 V, TJ = 25°C 80 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 160 mV IO = 250 to 750 mA, TJ = 25°C 80 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 11 to 26 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 55 μV/VO SVR Supply voltage rejection VI = 12 to 22 V, f = 120 Hz 56 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 16 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 20/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 15 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(l). l. Minimum load current for regulation is 5 mA. Table 14. Electrical characteristics of L7809C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.64 9 9.36 V VO Output voltage IO = 5 mA to 1 A, VI = 11.5 to 22 V 8.55 9 9.45 V VO Output voltage IO = 1 A, VI = 22 to 26 V, TJ = 25°C 8.55 9 9.45 V ΔVO (1) Line regulation VI = 11.5 to 26 V, TJ = 25°C 180 mV VI = 12 to 18 V, TJ = 25°C 90 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 180 mV IO = 250 to 750 mA, TJ = 25°C 90 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 11.5 to 26 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 70 μV/VO SVR Supply voltage rejection VI = 12 to 23 V, f = 120 Hz 55 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.40 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 21/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 19 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(m). m. Minimum load current for regulation is 5 mA. Table 15. Electrical characteristics of L7812C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 11.5 12 12.5 V VO Output voltage IO = 5 mA to 1 A, VI = 14.5 to 25 V 11.4 12 12.6 V VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.4 12 12.6 V ΔVO (1) Line regulation VI = 14.5 to 30 V, TJ = 25°C 240 mV VI = 16 to 22 V, TJ = 25°C 120 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 240 mV IO = 250 to 750 mA, TJ = 25°C 120 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 14.5 to 30 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 75 μV/VO SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz 55 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.35 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 22/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 23 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(n). n. Minimum load current for regulation is 5 mA. Table 16. Electrical characteristics of L7815C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 14.4 15 15.6 V VO Output voltage IO = 5 mA to 1 A, VI = 17.5 to 28 V 14.25 15 15.75 V VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.25 15 15.75 V ΔVO (1) Line regulation VI = 17.5 to 30 V, TJ = 25°C 300 mV VI = 20 to 26 V, TJ = 25°C 150 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 300 mV IO = 250 to 750 mA, TJ = 25°C 150 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1A 0.5 mA VI = 17.5 to 30 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100kHz, TJ = 25°C 90 μV/VO SVR Supply voltage rejection VI = 18.5 to 28.5 V, f = 120 Hz 54 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.23 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 23/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 26 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(o). o. Minimum load current for regulation is 5 mA. Table 17. Electrical characteristics of L7818C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 17.3 18 18.7 V VO Output voltage IO = 5 mA to 1 A, VI = 21 to 31 V 17.1 18 18.9 V VO Output voltage IO = 1 A, VI = 31 to 33 V, TJ = 25°C 17.1 18 18.9 V ΔVO (1) Line regulation VI = 21 to 33 V, TJ = 25°C 360 mV VI = 24 to 30 V, TJ = 25°C 180 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 360 mV IO = 250 to 750 mA, TJ = 25°C 180 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 21 to 33 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 110 μV/VO SVR Supply voltage rejection VI = 22 to 32 V, f = 120 Hz 53 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 22 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.20 A Iscp Short circuit peak current TJ = 25°C 2.1 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 24/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 33 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(p). p. Minimum load current for regulation is 5 mA. Table 18. Electrical characteristics of L7824C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 23 24 25 V VO Output voltage IO = 5 mA to 1 A, VI = 27 to 37 V 22.8 24 25.2 V VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 22.8 24 25.2 V ΔVO (1) Line regulation VI = 27 to 38 V, TJ = 25°C 480 mV VI = 30 to 36 V, TJ = 25°C 240 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 480 mV IO = 250 to 750 mA, TJ = 25°C 240 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 27 to 38 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1.5 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 170 μV/VO SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz 50 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 28 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.15 A Iscp Short circuit peak current TJ = 25°C 2.1 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 25/58 Positive voltage regulator ICs Application information 58 6 Application information 6.1 Design consideration The L78 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2 V greater than the regulator voltage. The circuit of Figure 13 can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified. Figure 8. Fixed output regulator 1. Although no output capacitor is need for stability, it does improve transient response. 2. Required if regulator is located an appreciable distance from power supply filter. Application information Positive voltage regulator ICs 26/58 DocID2143 Rev 32 Figure 9. Current regulator 􀀬􀀲 􀀠􀀠􀀃􀀃􀀹􀀻􀀻􀀻􀀻􀀒􀀵􀀔􀀎􀀬􀁇 Figure 10. Circuit for increasing output voltage 􀀬􀀵􀀔 􀀃􀀘􀀃􀀬􀁇 􀀹􀀲􀀃􀀃􀀠􀀠􀀃􀀹􀀻􀀻􀀻􀀻􀀋􀀋􀀔􀀔􀀎􀀎􀀵􀀵􀀕􀀒􀀵􀀔􀀌􀀌􀀎􀀎􀀬􀁇􀀵􀀕 􀅻 DocID2143 Rev 32 27/58 Positive voltage regulator ICs Application information 58 Figure 11. Adjustable output regulator (7 to 30 V) Figure 12. 0.5 to 10 V regulator VO=VXXR4/R1 Application information Positive voltage regulator ICs 28/58 DocID2143 Rev 32 Figure 13. High current voltage regulator 􀀵􀀔 􀀬􀀲􀀃􀀠􀀃􀀬􀀵􀀨􀀪􀀃􀀎􀀃􀀴􀀔􀀃􀀋􀀬􀀵􀀨􀀪􀀃􀁂􀀹􀁂􀀥􀁂􀀨􀁂􀀴􀁂􀀔􀁂􀀌 􀀹􀀥􀀨􀀴􀀔 􀀵􀀔􀀃􀀠􀀃􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂 􀀬􀀵􀀨􀀴􀀐􀀋􀀬􀀴􀀔􀀒􀁅􀀴􀀔􀀌 Figure 14. High output current with short circuit protection 􀀵􀀶􀀶􀀦􀀦􀀠􀀹􀀥􀀥􀀨􀀨􀀴􀀴􀀕􀀕􀀒􀀬􀀶􀀶􀀦􀀦 DocID2143 Rev 32 29/58 Positive voltage regulator ICs Application information 58 * Against potential latch-up problems. Figure 15. Tracking voltage regulator Figure 16. Split power supply (± 15 V - 1 A) Application information Positive voltage regulator ICs 30/58 DocID2143 Rev 32 Figure 17. Negative output voltage circuit Figure 18. Switching regulator Figure 19. High input voltage circuit (configuration 1) 􀀹􀀬􀀱􀀃􀀠􀀃􀀹􀀬􀀃􀀐􀀃􀀋􀀋􀀹􀀹􀀽􀀃􀀎􀀃􀀹􀀥􀀥􀀨􀀨􀀌 DocID2143 Rev 32 31/58 Positive voltage regulator ICs Application information 58 Figure 20. High input voltage circuit (configuration 2) Figure 21. High input and output voltage 􀀹􀀲􀀃􀀠􀀃􀀹􀀻􀀻􀀻􀀻􀀃􀀎􀀃􀀹􀀽􀀔 Figure 22. Reducing power dissipation with dropping resistor 􀀹􀀹 􀀐􀀐􀀹􀀹 􀀐􀀹 􀀵􀀃􀀠􀀃􀁂􀁂􀀬􀀬􀁂􀁂􀀋􀀋􀁐􀁐􀁂􀁂􀁂􀁌􀁌􀁑􀁑􀁂􀁂􀀌􀀌 􀁂􀁂􀁂􀁂􀀻􀀻􀁂􀀻􀀻􀁂􀁂􀁂􀁂􀁂􀀧􀁂􀁂􀀵􀁂􀁂􀀲􀁂􀁂􀀳􀁂􀀋􀀋􀁐􀁐􀁂􀁂􀁄􀁄􀁂􀁂􀁛􀁛􀁂􀀌􀀌􀁂 􀀬􀀲􀀋􀁐􀁄􀁛􀁛􀀌􀀌􀀎􀀬􀁇􀀋􀀋􀁐􀁐􀁄􀁄􀁛􀁛􀀌􀀌 Application information Positive voltage regulator ICs 32/58 DocID2143 Rev 32 Note: The circuit performs well up to 100 kHz. Figure 23. Remote shutdown Figure 24. Power AM modulator (unity voltage gain, IO ≤ 0.5) DocID2143 Rev 32 33/58 Positive voltage regulator ICs Application information 58 Note: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the temperature. C allows a slow rise time of the VO. Figure 25. Adjustable output voltage with temperature compensation 􀀹􀀲􀀃􀀠􀀃􀀹􀀻􀀻􀀃􀀋􀀔􀀎􀀵􀀕􀀒􀀵􀀔􀀌􀀃􀀎􀀃􀀹􀀥􀀨 Figure 26. Light controllers (VO(min) = VXX + VBE) 􀀹􀀲􀀃􀁉􀁄􀁏􀁏􀁖􀀃􀁚􀁋􀁈􀁑􀀃􀁗􀁋􀁈􀀃􀁏􀁌􀁊􀁋􀁗􀀃􀁊􀁒􀁈􀁖􀀃􀁘􀁓 􀀹􀀲􀀃􀁕􀁌􀁖􀁈􀁖􀀃􀁚􀁋􀁈􀁑􀀃􀁗􀁋􀁈􀀃􀁏􀁌􀁊􀁋􀁗􀀃􀁊􀁒􀁈􀁖􀀃􀁘􀁓 Application information Positive voltage regulator ICs 34/58 DocID2143 Rev 32 Note: Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 22 on page 31) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the base-emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground. Figure 27. Protection against input short-circuit with high capacitance loads DocID2143 Rev 32 35/58 Positive voltage regulator ICs Typical performance 58 7 Typical performance Figure 28. Dropout voltage vs. junction temperature Figure 29. Peak output current vs. input/output differential voltage Figure 30. Supply voltage rejection vs. frequency Figure 31. Output voltage vs. junction temperature Typical performance Positive voltage regulator ICs 36/58 DocID2143 Rev 32 Figure 32. Output impedance vs. frequency Figure 33. Quiescent current vs. junction temp. Figure 34. Load transient response Figure 35. Line transient response Figure 36. Quiescent current vs. input voltage DocID2143 Rev 32 37/58 Positive voltage regulator ICs Package mechanical data 58 8 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package mechanical data Positive voltage regulator ICs 38/58 DocID2143 Rev 32 Figure 37. TO-220 (dual gauge) drawing 􀀓􀀓􀀔􀀘􀀜􀀛􀀛􀁂􀁗􀁜􀁓􀁈􀀤􀁂􀀵􀁈􀁙􀁂􀀷 DocID2143 Rev 32 39/58 Positive voltage regulator ICs Package mechanical data 58 Table 19. TO-220 (dual gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 D1 1.27 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 1.23 1.32 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data Positive voltage regulator ICs 40/58 DocID2143 Rev 32 Figure 38. TO-220 SG (single gauge) drawing 􀀛􀀔􀀚􀀗􀀙􀀕􀀚􀁂􀁕􀁈􀁙􀀧 DocID2143 Rev 32 41/58 Positive voltage regulator ICs Package mechanical data 58 Table 20. TO-220 SG (single gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 0.51 0.60 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data Positive voltage regulator ICs 42/58 DocID2143 Rev 32 Figure 39. TO-220FP drawing 7012510A-H DocID2143 Rev 32 43/58 Positive voltage regulator ICs Package mechanical data 58 Table 21. TO-220FP mechanical data Dim. mm. Min. Typ. Max. A 4.40 4.60 B 2.5 2.7 D 2.5 2.75 E 0.45 0.70 F 0.75 1 F1 1.15 1.50 F2 1.15 1.50 G 4.95 5.2 G1 2.4 2.7 H 10.0 10.40 L2 16 L3 28.6 30.6 L4 9.8 10.6 L5 2.9 3.6 L6 15.9 16.4 L7 9 9.3 DIA. 3 3.2 Package mechanical data Positive voltage regulator ICs 44/58 DocID2143 Rev 32 Figure 40. DPAK drawing 0068772_K DocID2143 Rev 32 45/58 Positive voltage regulator ICs Package mechanical data 58 Table 22. DPAK mechanical data Dim. mm Min. Typ. Max. A 2.20 2.40 A1 0.90 1.10 A2 0.03 0.23 b 0.64 0.90 b4 5.20 5.40 c 0.45 0.60 c2 0.48 0.60 D 6.00 6.20 D1 5.10 E 6.40 6.60 E1 4.70 e 2.28 e1 4.40 4.60 H 9.35 10.10 L 1.00 1.50 (L1) 2.80 L2 0.80 L4 0.60 1.00 R 0.20 V2 0° 8° Package mechanical data Positive voltage regulator ICs 46/58 DocID2143 Rev 32 Figure 41. DPAK footprint (q) q. All dimensions are in millimeters Footprint_REV_K DocID2143 Rev 32 47/58 Positive voltage regulator ICs Package mechanical data 58 Figure 42. D²PAK (SMD 2L STD-ST) type A drawing 0079457_T Package mechanical data Positive voltage regulator ICs 48/58 DocID2143 Rev 32 Table 23. D²PAK (SMD 2L STD-ST) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 A1 0.03 0.23 b 0.70 0.93 b2 1.14 1.70 c 0.45 0.60 c2 1.23 1.36 D 8.95 9.35 D1 7.50 E 10 10.40 E1 8.50 e 2.54 e1 4.88 5.28 H 15 15.85 J1 2.49 2.69 L 2.29 2.79 L1 1.27 1.40 L2 1.30 1.75 R 0.4 V2 0° 8° DocID2143 Rev 32 49/58 Positive voltage regulator ICs Package mechanical data 58 Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing 0079457_T Package mechanical data Positive voltage regulator ICs 50/58 DocID2143 Rev 32 Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data Dim. mm Min. Typ. Max. A 4.30 4.70 A1 0 0.20 b 0.70 0.90 b2 1.17 1.37 c 0.45 0.50 0.60 c2 1.25 1.30 1.40 D 9 9.20 9.40 D1 7.50 E 10 10.40 E1 8.50 e 2.54 e1 4.88 5.08 H 15 15.30 J1 2.20 2.60 L 1.79 2.79 L1 1 1.40 L2 1.20 1.60 R 0.30 V2 0° 3° DocID2143 Rev 32 51/58 Positive voltage regulator ICs Package mechanical data 58 Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint Packaging mechanical data Positive voltage regulator ICs 52/58 DocID2143 Rev 32 9 Packaging mechanical data Figure 45. Tube for TO-220 (dual gauge) (mm.) Figure 46. Tube for TO-220 (single gauge) (mm.) DocID2143 Rev 32 53/58 Positive voltage regulator ICs Packaging mechanical data 58 Figure 47. Tape for DPAK and D2PAK Figure 48. Reel for DPAK and D2PAK A0 P1 D1 P0 F W E D B0 K0 T User direction of feed P2 10 pitches cumulative tolerance on tape +/- 0.2 mm User direction of feed R Bending radius B1 For machine ref. only including draft and radii concentric around B0 AM08852v1 Top cover tape A D B Full radius G measured at hub C N REEL DIMENSIONS 40mm min. Access hole At sl ot location T Tape slot in core for tape start 25 mm min. width AM08851v2 Packaging mechanical data Positive voltage regulator ICs 54/58 DocID2143 Rev 32 Table 25. DPAK and D²PAK tape and reel mechanical data Tape Reel Dim. mm Dim. mm Min. Max. Min. Max. A0 6.8 7 A 330 B0 10.4 10.6 B 1.5 B1 12.1 C 12.8 13.2 D 1.5 1.6 D 20.2 D1 1.5 G 16.4 18.4 E 1.65 1.85 N 50 F 7.4 7.6 T 22.4 K0 2.55 2.75 P0 3.9 4.1 Base qty. 2500 P1 7.9 8.1 Bulk qty. 2500 P2 1.9 2.1 R 40 T 0.25 0.35 W 15.7 16.3 DocID2143 Rev 32 55/58 Positive voltage regulator ICs Order codes 58 10 Order codes Table 26. Order codes Part numbers Order codes TO-220 (single gauge) TO-220 (dual gauge) DPAK D²PAK TO-220FP Output voltages L7805C L7805CV L7805CDT-TR L7805CD2T-TR L7805CP 5 V L7805CV-DG 5 V L7805AB L7805ABV L7805ABD2T-TR L7805ABP 5 V L7805ABV-DG 5 V L7805AC L7805ACV L7805ACD2T-TR L7805ACP 5 V L7805ACV-DG 5 V L7806C L7806CV L7806CD2T-TR 6 V L7806CV-DG 6 V L7806AB L7806ABV L7806ABD2T-TR 6 V L7806ABV-DG 6 V L7806AC L7806ACV 6 V L7806ACV-DG 6 V L7808C L7808CV L7808CD2T-TR 8 V L7808CV-DG 8 V L7808AB L7808ABV L7808ABD2T-TR 8 V L7808ABV-DG 8 V L7808AC L7808ACV 8 V L7808ACV-DG 8 V L7885C L7885CV 8.5 V L7809C L7809CV L7809CD2T-TR L7809CP 9 V L7809CV-DG 9 V L7809AB L7809ABV L7809ABD2T-TR 9 V L7809ABV-DG 9 V L7809AC L7809ACV 9 V L7812C L7812CV L7812CD2T-TR L7812CP 12 V L7812CV-DG 12 V L7812AB L7812ABV L7812ABD2T-TR 12 V L7812ABV-DG 12 V L7812AC L7812ACV L7812ACD2T-TR 12 V L7812ACV-DG 12 V Order codes Positive voltage regulator ICs 56/58 DocID2143 Rev 32 L7815C L7815CV L7815CD2T-TR L7815CP 15 V L7815CV-DG 15 V L7815AB L7815ABV L7815ABD2T-TR 15 V L7815ABV-DG 15 V L7815AC L7815ACV L7815ACD2T-TR 15 V L7815ACV-DG 15 V L7818C L7818CV 18 V L7818CV-DG 18 V L7824C L7824CV L7824CD2T-TR L7824CP 24 V L7824CV-DG 24 V L7824AB L7824ABV 24 V L7824ABV-DG 24 V L7824AC L7824ACV 24 V L7824ACV-DG 24 V Table 26. Order codes (continued) Part numbers Order codes TO-220 (single gauge) TO-220 (dual gauge) DPAK D²PAK TO-220FP Output voltages DocID2143 Rev 32 57/58 Positive voltage regulator ICs Revision history 58 11 Revision history Table 27. Document revision history Date Revision Changes 21-Jun-2004 12 Document updating. 03-Aug-2006 13 Order codes has been updated and new template. 19-Jan-2007 14 D²PAK mechanical data has been updated and add footprint data. 31-May-2007 15 Order codes has been updated. 29-Aug-2007 16 Added Table 1 in cover page. 11-Dec-2007 17 Modified: Table 26. 06-Feb-2008 18 Added: TO-220 mechanical data Figure 38 on page 38 , Figure 39 on page 39, and Table 23 on page 37. Modified: Table 26 on page 55. 18-Mar-2008 19 Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel DPAK mechanical data on page 52. Modified: Table 26 on page 55. 26-Jan-2010 20 Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on page 38 and Figure 39 on page 39, Figure 45 on page 52 and Figure 46 on page 52. 04-Mar-2010 21 Added notes Figure 38 on page 38. 08-Sep-2010 22 Modified Table 26 on page 55. 23-Nov-2010 23 Added: TJ = 25 °C test condition in ΔVO on Table 3, 4, 5, 6, 7, 8 and Table 9. 16-Sep-2011 24 Modified title on page 1. 30-Nov-2011 25 Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG and L7815CV-DG Table 26 on page 55. 08-Feb-2012 26 Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CVDG, L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG Table 26 on page 55. 27-Mar-2012 27 Added: order codes L7812ABV-DG, L7815ABV-DG Table 26 on page 55. 27-Apr-2012 28 Modified: VI = 10.4 to 23 V ==> VI = 11.4 to 23 V test conditon value Line regulation Table 6 on page 12. 10-May-2012 29 Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG, L7824ABV-DG and L7824ACV-DG Table 26 on page 55. 19-Sep-2012 30 Modified load regulation units from V to mV in Table 3 to Table 9. 12-Mar-2013 31 Modified: VO output voltage at 25 °C min. value 14.4 V Table 16 on page 22. 04-Mar-2014 32 Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78. Removed TO-3 package. Updated the description in cover page, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Application information, Section 8: Package mechanical data and Table 26: Order codes. Added Section 9: Packaging mechanical data. Minor text changes. Positive voltage regulator ICs 58/58 DocID2143 Rev 32 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com STM32F405xx STM32F407xx ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Datasheet - production data Features • Core: ARM 32-bit Cortex™-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – Up to 1 Mbyte of Flash memory – Up to 192+4 Kbytes of SRAM including 64- Kbyte of CCM (core coupled memory) data RAM – Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.8 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1% accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM • 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode • 2×12-bit D/A converters • General-purpose DMA: 16-stream DMA controller with FIFOs and burst support • Up to 17 timers: up to twelve 16-bit and two 32- bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input • Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex-M4 Embedded Trace Macrocell™ • Up to 140 I/O ports with interrupt capability – Up to 136 fast I/Os up to 84 MHz – Up to 138 5 V-tolerant I/Os • Up to 15 communication interfaces – Up to 3 × I2C interfaces (SMBus/PMBus) – Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control) – Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock – 2 × CAN interfaces (2.0B Active) – SDIO interface • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII • 8- to 14-bit parallel camera interface up to 54 Mbytes/s • True random number generator • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) FBGA UFBGA176 (10 × 10 mm) LQFP176 (24 × 24 mm) WLCSP90 Table 1. Device summary Reference Part number STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG, STM32F405OG, STM32F405OE STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE www.st.com Contents STM32F405xx, STM32F407xx 2/185 DocID022152 Rev 4 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19 2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20 2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22 2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28 2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 28 2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 33 2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35 2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID022152 Rev 4 3/185 STM32F405xx, STM32F407xx Contents 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36 2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.35 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.37 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.38 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.39 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 80 5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 80 5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 80 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 102 Contents STM32F405xx, STM32F407xx 4/185 DocID022152 Rev 4 5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 108 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 155 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 156 5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 171 A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 173 A.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 DocID022152 Rev 4 5/185 STM32F405xx, STM32F407xx List of tables List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13 Table 3. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 7. STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 8. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 10. STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 79 Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 80 Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80 Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 83 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 88 Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 89 Table 26. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 27. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 31. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 33. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 35. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 36. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 37. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 38. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 39. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 40. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 41. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 42. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 43. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 44. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 45. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 46. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 List of tables STM32F405xx, STM32F407xx 6/185 DocID022152 Rev 4 Table 47. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 48. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 49. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 50. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 51. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 52. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 53. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 55. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 56. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Table 57. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 58. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 59. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 60. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 61. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 62. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 63. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 64. Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 65. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 66. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 70. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 71. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 72. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 73. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 74. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 138 Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 139 Table 77. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 78. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 79. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Table 80. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 81. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Table 82. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 85. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 86. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 87. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 88. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 89. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 159 Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 160 Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 162 Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 164 Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 167 DocID022152 Rev 4 7/185 STM32F405xx, STM32F407xx List of tables Table 96. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 97. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 98. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 List of figures STM32F405xx, STM32F407xx 8/185 DocID022152 Rev 4 List of figures Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64. . . . . . . . . . . . 15 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. STM32F40x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24 Figure 8. PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 9. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28 Figure 12. STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 13. STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 14. STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 15. STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 16. STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 17. STM32F40x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 18. STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 85 Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 85 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 86 Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 86 Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 89 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 90 Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 34. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 39. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID022152 Rev 4 9/185 STM32F405xx, STM32F407xx List of figures Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 44. I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 124 Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 133 Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 133 Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 138 Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 139 Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 140 Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 148 Figure 64. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 148 Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 150 Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 151 Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 154 Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154 Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 75. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 159 Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 160 Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 162 Figure 80. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 164 Figure 82. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 167 Figure 85. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 86. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 87. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 171 List of figures STM32F405xx, STM32F407xx 10/185 DocID022152 Rev 4 Figure 88. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 172 Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Figure 90. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 91. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 92. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 DocID022152 Rev 4 11/185 STM32F405xx, STM32F407xx Introduction 1 Introduction This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family. The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming manual (PM0214) available from www.st.com. Description STM32F405xx, STM32F407xx 12/185 DocID022152 Rev 4 2 Description The STM32F405xx and STM32F407xx family is based on the high-performance ARM® Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document. The STM32F405xx and STM32F407xx family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true random number generator (RNG). They also feature standard and advanced communication interfaces. • Up to three I2Cs • Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. • Four USARTs plus two UARTs • An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), • Two CANs • An SDIO/MMC interface • Ethernet and the camera interface available on STM32F407xx devices only. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and peripheral counts for the list of peripherals available on each part number. The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F405xx and STM32F407xx family offers devices in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F405xx and STM32F407xx microcontroller family suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances STM32F405xx, STM32F407xx Description DocID022152 Rev 4 13/185 Figure 5 shows the general block diagram of the device family. Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix Flash memory in Kbytes 1024 512 512 1024 512 1024 512 1024 SRAM in Kbytes System 192(112+16+64) Backup 4 FSMC memory controller No Yes(1) Ethernet No Yes Timers Generalpurpose 10 Advanced -control 2 Basic 2 IWDG Yes WWDG Yes RTC Yes Random number generator Yes Description STM32F405xx, STM32F407xx 14/185 DocID022152 Rev 4 Communi cation interfaces SPI / I2S 3/2 (full duplex)(2) I2C 3 USART/ UART 4/2 USB OTG FS Yes USB OTG HS Yes CAN 2 SDIO Yes Camera interface No Yes GPIOs 51 72 82 114 72 82 114 140 12-bit ADC Number of channels 3 16 13 16 24 13 16 24 24 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 168 MHz Operating voltage 1.8 to 3.6 V(3) Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to + 125 °C Package LQFP64 WLCSP90 LQFP100 LQFP144 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix DocID022152 Rev 4 15/185 STM32F405xx, STM32F407xx Description 2.1 Full compatibility throughout the family The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto- pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle. The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F405xx and STM32F407xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x family remains simple as only a few pins are impacted. Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the STM32F40x, STM32F2xxx, and STM32F10xxx families. Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64 31 1 16 17 32 48 33 64 49 47 VSS VSS VSS VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration ai18489 Description STM32F405xx, STM32F407xx 16/185 DocID022152 Rev 4 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package 20 49 1 25 26 50 75 51 100 76 73 19 VSS VSS VDD VSS VSS VSS 0 ΩΩ resistor or soldering bridge present for the STM32F10xxx configuration, not present in the STM32F4xx configuration ai18488c 99 (VSS) VDD VSS Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VSS for the STM32F4xx VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx ai18487d 31 71 1 36 37 72 108 73 144 109 VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration 106 VSS 30 Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VDD or signal from external power supply supervisor for the STM32F4xx VDD VSS VSS VSS 143 (PDR_ON) VDD VSS VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx Signal from external power supply supervisor DocID022152 Rev 4 17/185 STM32F405xx, STM32F407xx Description Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages MS19919V3 1 44 45 88 132 89 176 133 Two 0 Ω resistors connected to: - VSS, VDD or NC for the STM32F2xx - VDD or signal from external power supply supervisor for the STM32F4xx 171 (PDR_ON) VDDVSS Signal from external power supply supervisor Description STM32F405xx, STM32F407xx 18/185 DocID022152 Rev 4 2.2 Device overview Figure 5. STM32F40x block diagram 1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration in the RCC_DCKCFGR register. 2. The camera interface and ethernet are available only on STM32F407xx devices. MS19920V3 GPIO PORT A AHB/APB2 140 AF PA[15:0] TIM1 / PWM 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF RX, TX, CK, CTS, RTS as AF MOSI, MISO, SCK, NSS as AF APB 1 30M Hz 8 analog inputs common to the 3 ADCs VDDREF_ADC MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX DAC1_OUT as AF ITF WWDG 4 KB BKPSRAM RTC_AF1 OSC32_IN OSC32_OUT VDDA, VSSA NRST 16b SDIO / MMC D[7:0] CMD, CK as AF VBAT = 1.65 to 3.6 V DMA2 SCL, SDA, SMBA as AF JTAG & SW ARM Cortex-M4 168 MHz ETM NVIC MPU TRACECLK TRACED[3:0] Ethernet MAC 10/100 DMA/ FIFO MII or RMII as AF MDIO as AF USB OTG HS DP, DM ULPI:CK, D[7:0], DIR, STP, NXT ID, VBUS, SOF DMA2 8 Streams FIFO ART ACCEL/ CACHE SRAM 112 KB CLK, NE [3:0], A[23:0], D[31:0], OEN, WEN, NBL[3:0], NL, NREG, NWAIT/IORDY, CD INTN, NIIS16 as AF RNG Camera interface HSYNC, VSYNC PUIXCLK, D[13:0] PHY USB OTG FS DP DM ID, VBUS, SOF FIFO AHB1 168 MHz PHY FIFO @VDDA @VDDA POR/PDR BOR Supply supervision @VDDA PVD Int POR reset XTAL 32 kHz MAN AGT RTC RC HS FCLK RC LS PWR interface IWDG @VBAT AWU Reset & clock control P L L1&2 PCLKx VDD = 1.8 to 3.6 V VSS VCAP1, VCPA2 Voltage regulator 3.3 to 1.2 V VDD Power managmt Backup register RTC_AF1 AHB bus-matrix 8S7M LS 2 channels as AF DAC1 DAC2 Flash up to 1 MB SRAM, PSRAM, NOR Flash, PC Card (ATA), NAND Flash External memory controller (FSMC) TIM6 TIM7 TIM2 TIM3 TIM4 TIM5 TIM12 TIM13 TIM14 USART2 USART3 UART4 UART5 SP3/I2S3 I2C1/SMBUS I2C2/SMBUS I2C3/SMBUS bxCAN1 bxCAN2 SPI1 EXT IT. WKUP D-BUS FIFO FPU APB142 MHz (max) SRAM 16 KB CCM data RAM 64 KB AHB3 AHB2 168 MHz NJTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO I-BUS S-BUS DMA/ FIFO DMA1 8 Streams FIFO PB[15:0] PC[15:0] PD[15:0] PE[15:0] PF[15:0] PG[15:0] PH[15:0] PI[11:0] GPIO PORT B GPIO PORT C GPIO PORT D GPIO PORT E GPIO PORT F GPIO PORT G GPIO PORT H GPIO PORT I TIM8 / PWM 16b 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF 1 channel as AF 1 channel as AF RX, TX, CK, CTS, RTS as AF 8 analog inputs common to the ADC1 & 2 8 analog inputs for ADC3 DAC2_OUT as AF 16b 16b SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX RX, TX as AF RX, TX as AF RX, TX as AF CTS, RTS as AF RX, TX as AF CTS, RTS as AF 1 channel as AF smcard irDA smcard irDA 16b 16b 16b 1 channel as AF 2 channels as AF 32b 16b 16b 32b 4 channels 4 channels, ETR as AF 4 channels, ETR as AF 4 channels, ETR as AF DMA1 AHB/APB1 LS OSC_IN OSC_OUT HCLKx XTAL OSC 4- 16MHz FIFO SP2/I2S2 NIORD, IOWR, INT[2:3] ADC3 ADC2 ADC1 Temperature sensor IF TIM9 16b TIM10 16b TIM11 16b smcard irDA USART1 irDA smcard USART6 APB2 84 MHz @VDD @VDD @VDDA DocID022152 Rev 4 19/185 STM32F405xx, STM32F407xx Description 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software. Figure 5 shows the general block diagram of the STM32F40x family. Note: Cortex-M4F is binary compatible with Cortex-M3. 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4F processors. It balances the inherent performance advantage of the ARM Cortex-M4F over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz. 2.2.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.2.4 Embedded Flash memory The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data. Description STM32F405xx, STM32F407xx 20/185 DocID022152 Rev 4 2.2.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 2.2.6 Embedded SRAM All STM32F40x products embed: • Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. • 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 2.2.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. DocID022152 Rev 4 21/185 STM32F405xx, STM32F407xx Description Figure 6. Multi-AHB matrix 2.2.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • DAC • SDIO • Camera interface (DCMI) • ADC. ARM Cortex-M4 GP DMA1 GP DMA2 MAC Ethernet USB OTG HS Bus matrix-S S0 S1 S2 S3 S4 S5 S6 S7 ICODE DCODE ACCEL Flash memory SRAM1 112 Kbyte SRAM2 16 Kbyte AHB1 peripherals AHB2 FSMC Static MemCtl M0 M1 M2 M3 M4 M5 M6 I-bus D-bus S-bus DMA_PI DMA_MEM1 DMA_MEM2 DMA_P2 ETHERNET_M USB_HS_M ai18490c CCM data RAM 64-Kbyte APB1 APB2 peripherals Description STM32F405xx, STM32F407xx 22/185 DocID022152 Rev 4 2.2.9 Flexible static memory controller (FSMC) The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash. Functionality overview: • Write FIFO • Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 2.2.10 Nested vectored interrupt controller (NVIC) The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M4F. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 2.2.11 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines. 2.2.12 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL DocID022152 Rev 4 23/185 STM32F405xx, STM32F407xx Description clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 2.2.13 Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade). 2.2.14 Power supply schemes • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 21: Power supply scheme for more details. Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Refer to Table 2 in order to identify the packages supporting this option. 2.2.15 Power supply supervisor Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On all other packages, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. Description STM32F405xx, STM32F407xx 24/185 DocID022152 Rev 4 The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. Figure 7. Power supply supervisor interconnection with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. The VDD specified threshold, below which the device must be maintained under reset, is 1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled • The brownout reset (BOR) circuitry is disabled • The embedded programmable voltage detector (PVD) is disabled • VBAT functionality is no more available and VBAT pin should be connected to VDD All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset through the PDR_ON signal. MS31383V3 NRST VDD PDR_ON External VDD power supply supervisor Ext. reset controller active when VDD < 1.7 V or 1.8 V (1) VDD Application reset signal (optional) DocID022152 Rev 4 25/185 STM32F405xx, STM32F407xx Description Figure 8. PDR_ON and NRST control with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. 2.2.16 Voltage regulator The regulator has four operating modes: • Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down • Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to Table 14: General operating conditions. • LPR is used in the Stop modes The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost) MS19009V6 VDD time PDR = 1.7 V or 1.8 V (1) time NRST PDR_ON PDR_ON Reset by other source than power supply supervisor Description STM32F405xx, STM32F407xx 26/185 DocID022152 Rev 4 Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions. All packages have regulator ON feature. Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not manage internally, the external voltage value must be aligned with the targetted maximum frequency. Refer to Table 14: General operating conditions. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to Figure 21: Power supply scheme When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode the following features are no more supported: • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. Figure 9. Regulator OFF ai18498V4 External VCAP_1/2 power supply supervisor Ext. reset controller active when VCAP_1/2 < Min V12 V12 VCAP_1 VCAP_2 BYPASS_REG VDD PA0 NRST Application reset signal (optional) VDD V12 DocID022152 Rev 4 27/185 STM32F405xx, STM32F407xx Description The following conditions must be respected: • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. • If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10). • Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see Figure 11). • If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then a reset must be asserted on PA0 pin. Note: The minimum value of V12 depends on the maximum frequency targeted in the application (see Table 14: General operating conditions). Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or OFFoff). 2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges. ai18491e VDD time Min V12 PDR = 1.7 V or 1.8 V (2) VCAP_1/VCAP_2 V12 NRST time Description STM32F405xx, STM32F407xx 28/185 DocID022152 Rev 4 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or offOFF). 2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges. 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability 2.2.18 Real-time clock (RTC), backup SRAM and backup registers The backup domain of the STM32F405xx and STM32F407xx includes: • The real-time clock (RTC) • 4 Kbytes of backup SRAM • 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC VDD time Min V12 VCAP_1/VCAP_2 V12 PA0 asserted externally NRST time ai18492d PDR = 1.7 V or 1.8 V (2) Table 3. Regulator ON/OFF and internal reset ON/OFF availability Regulator ON Regulator OFF Internal reset ON Internal reset OFF LQFP64 LQFP100 Yes No Yes No LQFP144 LQFP176 Yes PDR_ON set to VDD Yes PDR_ON connected to an external power supply supervisor WLCSP90 UFBGA176 Yes BYPASS_REG set to VSS Yes BYPASS_REG set to VDD DocID022152 Rev 4 29/185 STM32F405xx, STM32F407xx Description has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 μs to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 2.2.19 Low-power modes The STM32F405xx and STM32F407xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup). • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V12 domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Description STM32F405xx, STM32F407xx 30/185 DocID022152 Rev 4 Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. The standby mode is not supported when the embedded voltage regulator is bypassed and the V12 domain is controlled by an external power. 2.2.20 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 2.2.21 Timers and watchdogs The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. Timer feature comparison Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Advanced -control TIM1, TIM8 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 Yes 84 168 DocID022152 Rev 4 31/185 STM32F405xx, STM32F407xx Description Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge- or center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. General purpose TIM2, TIM5 32-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM3, TIM4 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 84 168 TIM10 , TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 84 168 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 42 84 TIM13 , TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 42 84 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 42 84 Table 4. Timer feature comparison (continued) Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Description STM32F405xx, STM32F407xx 32/185 DocID022152 Rev 4 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F40x devices (see Table 4 for differences). • TIM2, TIM3, TIM4, TIM5 The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16- bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. DocID022152 Rev 4 33/185 STM32F405xx, STM32F407xx Description SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. 2.2.22 Inter-integrated circuit interface (I²C) Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 Mbit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Description STM32F405xx, STM32F407xx 34/185 DocID022152 Rev 4 2.2.24 Serial peripheral interface (SPI) The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 2.2.25 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 2.2.26 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. Table 5. USART feature comparison USART name Standard features Modem (RTS/ CTS) LIN SPI master irDA Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversampling by 16) Max. baud rate in Mbit/s (oversampling by 8) APB mapping USART1 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) USART2 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) USART3 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) UART4 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) UART5 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) USART6 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) DocID022152 Rev 4 35/185 STM32F405xx, STM32F407xx Description The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output). 2.2.27 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support Peripheral available only on the STM32F407xx devices. The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the STM32F407xx. The STM32F407xx includes the following features: • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F40x reference manual for details) • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time Description STM32F405xx, STM32F407xx 36/185 DocID022152 Rev 4 2.2.29 Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 4 bidirectional endpoints • 8 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 6 bidirectional endpoints • 12 host channels with periodic OUT support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • for OTG/Host modes, a power switch is needed in case bus-powered devices are connected DocID022152 Rev 4 37/185 STM32F405xx, STM32F407xx Description 2.2.32 Digital camera interface (DCMI) The camera interface is not available in STM32F405xx devices. STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image 2.2.33 Random number generator (RNG) All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 2.2.34 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 84 MHz. 2.2.35 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 2.2.36 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally Description STM32F405xx, STM32F407xx 38/185 DocID022152 Rev 4 connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 2.2.37 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 2.2.38 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.2.39 Embedded Trace Macrocell™ The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F40x through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. DocID022152 Rev 4 39/185 STM32F405xx, STM32F407xx Pinouts and pin description 3 Pinouts and pin description Figure 12. STM32F40x LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VBAT PC14 PC15 NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0_WKUP PA1 PA2 VDD PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 VDD VCAP_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VCAP_1 VDD LQFP64 ai18493b PC13 PH0 PH1 VSS Pinouts and pin description STM32F405xx, STM32F407xx 40/185 DocID022152 Rev 4 Figure 13. STM32F40x LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 PE3 PE4 PE5 PE6 VBAT PC14 PC15 VSS VDD PH0 NRST PC0 PC1 PC2 PC3 VDD VSSA VREF+ VDDA PA0 PA1 PA2 VDD VSS VCAP_2 PA13 PA12 PA 11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD VDD VSS PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ai18495c LQFP100 PC13 PH1 DocID022152 Rev 4 41/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 14. STM32F40x LQFP144 pinout VDD PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PE2 VDD PE3 VSS PE4 PE5 PA13 PE6 PA12 VBAT PA11 PC13 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 VDD PF5 VSS VSS PG8 VDD PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST VDD PC0 VSS PC1 PD13 PC2 PD12 PC3 PD11 VSSA VDD PD10 PD9 VREF+ PD8 VDDA PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 109 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 LQFP144 120 119 118 117 116 115 114 113 112 111 110 61 62 63 64 65 66 67 68 69 70 71 26 27 28 29 30 31 32 33 34 35 36 83 82 81 80 79 78 77 76 75 74 73 ai18496b VCAP_2 VSS Pinouts and pin description STM32F405xx, STM32F407xx 42/185 DocID022152 Rev 4 Figure 15. STM32F40x LQFP176 pinout MS19916V3 PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PI7 PI6 PE2 PE3 PE4 PE5 PA13 PE6 PA12 VBAT PA11 PI8 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 PF5 PG8 PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST V PC0 V PC1 PD13 PC2 PD12 PC3 PD11 PD10 PD9 VREF+ PD8 PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 141 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 80 LQFP176 152 151 150 149 148 147 146 145 144 143 142 69 70 71 72 73 74 75 76 77 78 79 26 27 28 29 30 31 32 33 34 35 36 107 106 105 104 103 102 101 100 99 98 89 PI4 PA15 PA14 PI3 PI2 PI5 140 139 138 137 136 135 134 133 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 88 81 82 83 84 85 86 87 PI1 PI0 PH15 PH14 PH13 PH12 96 95 94 93 92 91 90 97 37 38 39 40 41 42 43 44 PC13 PI9 PI10 PI11 VSS PH2 PH3 VDD VSS VDD VDDA VSSA VDDA BYPASS_REG VDD VDD VSS VDD VCAP_1 VDD VSS VDD VCAP_2 VSS VDD VSS VDD VSS VDD VSS VDD VDD VSS VDD VSS VDD DocID022152 Rev 4 43/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 16. STM32F40x UFBGA176 ballout 1. This figure shows the package top view. ai18497b 1 2 3 9 10 11 12 13 14 15 A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13 B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12 C VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11 D PC13 PI8 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10 E PC14 PF0 PI10 PI11 PH13 PH14 PI0 PA9 F PC15 VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8 G PH0 VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7 H PH1 PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6 J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6 K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3 L PF10 PF9 PF8 BYPASS_ REG PH11 PH10 PD15 PG2 M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13 N VREF- PA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10 P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8 R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15 VSS 4 5 6 7 8 Pinouts and pin description STM32F405xx, STM32F407xx 44/185 DocID022152 Rev 4 Figure 17. STM32F40x WLCSP90 ballout 1. This figure shows the package bump view. A VBAT PC13 PDR_ON PB4 PD7 PD4 PC12 B PC15 VDD PB7 PB3 PD6 PD2 PA15 C PA0 VSS PB6 PD5 PD1 PC11 PI0 D PC2 PB8 PA13 E PC3 VSS F PH1 PA1 G NRST H VSSA J PA2 PA 4 PA7 PB2 PE11 PB11 PB12 MS30402V1 1 PA14 PI1 PA12 PA10 PA9 PC0 PC9 PC8 PH0 PB13 PC6 PD14 PD12 PE8 PE12 BYPASS_ REG PD9 PD8 PE9 PB14 10 9 8 7 6 5 4 3 2 VDD PC14 VCAP_2 PA11 PB5 PD0 PC10 PA8 VSS VDD VSS VDD PC7 VDD PE10 PE14 VCAP_1 PD15 PE13 PE15 PD10 PD11 PA3 PA6 PB1 PB10 PB15 PB9 BOOT0 VDDA PA5 PB0 PE7 Table 6. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin I/O structure FT 5 V tolerant I/O TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID022152 Rev 4 45/185 STM32F405xx, STM32F407xx Pinouts and pin description Table 7. STM32F40x pin and ball definitions Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 - - 1 1 A2 1 PE2 I/O FT TRACECLK/ FSMC_A23 / ETH_MII_TXD3 / EVENTOUT - - 2 2 A1 2 PE3 I/O FT TRACED0/FSMC_A19 / EVENTOUT - - 3 3 B1 3 PE4 I/O FT TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT - - 4 4 B2 4 PE5 I/O FT TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 / EVENTOUT - - 5 5 B3 5 PE6 I/O FT TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 / EVENTOUT 1 A10 6 6 C1 6 VBAT S - - - - D2 7 PI8 I/O FT (2)( 3) EVENTOUT RTC_TAMP1, RTC_TAMP2, RTC_TS 2 A9 7 7 D1 8 PC13 I/O FT (2) (3) EVENTOUT RTC_OUT, RTC_TAMP1, RTC_TS 3 B10 8 8 E1 9 PC14/OSC32_IN (PC14) I/O FT (2)( 3) EVENTOUT OSC32_IN(4) 4 B9 9 9 F1 10 PC15/ OSC32_OUT (PC15) I/O FT (2)( 3) EVENTOUT OSC32_OUT(4) - - - - D3 11 PI9 I/O FT CAN1_RX / EVENTOUT - - - - E3 12 PI10 I/O FT ETH_MII_RX_ER / EVENTOUT - - - - E4 13 PI11 I/O FT OTG_HS_ULPI_DIR / EVENTOUT - - - - F2 14 VSS S - - - - F3 15 VDD S - - - 10 E2 16 PF0 I/O FT FSMC_A0 / I2C2_SDA / EVENTOUT Pinouts and pin description STM32F405xx, STM32F407xx 46/185 DocID022152 Rev 4 - - - 11 H3 17 PF1 I/O FT FSMC_A1 / I2C2_SCL / EVENTOUT - - - 12 H2 18 PF2 I/O FT FSMC_A2 / I2C2_SMBA / EVENTOUT - - - 13 J2 19 PF3 I/O FT (4) FSMC_A3/EVENTOUT ADC3_IN9 - - - 14 J3 20 PF4 I/O FT (4) FSMC_A4/EVENTOUT ADC3_IN14 - - - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15 - C9 10 16 G2 22 VSS S - B8 11 17 G3 23 VDD S - - - 18 K2 24 PF6 I/O FT (4) TIM10_CH1 / FSMC_NIORD/ EVENTOUT ADC3_IN4 - - - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG / EVENTOUT ADC3_IN5 - - - 20 L3 26 PF8 I/O FT (4) TIM13_CH1 / FSMC_NIOWR/ EVENTOUT ADC3_IN6 - - - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/ EVENTOUT ADC3_IN7 - - - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8 5 F10 12 23 G1 29 PH0/OSC_IN (PH0) I/O FT EVENTOUT OSC_IN(4) 6 F9 13 24 H1 30 PH1/OSC_OUT (PH1) I/O FT EVENTOUT OSC_OUT(4) 7 G10 14 25 J1 31 NRST I/O RS T 8 E10 15 26 M2 32 PC0 I/O FT (4) OTG_HS_ULPI_STP/ EVENTOUT ADC123_IN10 9 - 16 27 M3 33 PC1 I/O FT (4) ETH_MDC/ EVENTOUT ADC123_IN11 10 D10 17 28 M4 34 PC2 I/O FT (4) SPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2 /I2S2ext_SD/ EVENTOUT ADC123_IN12 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 47/185 STM32F405xx, STM32F407xx Pinouts and pin description 11 E9 18 29 M5 35 PC3 I/O FT (4) SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK/ EVENTOUT ADC123_IN13 - - 19 30 G3 36 VDD S 12 H10 20 31 M1 37 VSSA S - - - - N1 - VREF– S - - 21 32 P1 38 VREF+ S 13 G9 22 33 R1 39 VDDA S 14 C10 23 34 N3 40 PA0/WKUP (PA0) I/O FT (5) USART2_CTS/ UART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR/ EVENTOUT ADC123_IN0/WKUP(4 ) 15 F8 24 35 N2 41 PA1 I/O FT (4) USART2_RTS / UART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2/ EVENTOUT ADC123_IN1 16 J10 25 36 P2 42 PA2 I/O FT (4) USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ EVENTOUT ADC123_IN2 - - - - F4 43 PH2 I/O FT ETH_MII_CRS/EVENTOU T - - - - G4 44 PH3 I/O FT ETH_MII_COL/EVENTOU T - - - - H4 45 PH4 I/O FT I2C2_SCL / OTG_HS_ULPI_NXT/ EVENTOUT - - - - J4 46 PH5 I/O FT I2C2_SDA/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 48/185 DocID022152 Rev 4 17 H9 26 37 R2 47 PA3 I/O FT (4) USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 / OTG_HS_ULPI_D0 / ETH_MII_COL/ EVENTOUT ADC123_IN3 18 E5 27 38 - - VSS S D9 L4 48 BYPASS_REG I FT 19 E4 28 39 K4 49 VDD S 20 J9 29 40 N4 50 PA4 I/O TTa (4) SPI1_NSS / SPI3_NSS / USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS/ EVENTOUT ADC12_IN4 /DAC_OUT1 21 G8 30 41 P4 51 PA5 I/O TTa (4) SPI1_SCK/ OTG_HS_ULPI_CK / TIM2_CH1_ETR/ TIM8_CH1N/ EVENTOUT ADC12_IN5/DAC_OU T2 22 H8 31 42 P3 52 PA6 I/O FT (4) SPI1_MISO / TIM8_BKIN/TIM13_CH1 / DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN/ EVENTOUT ADC12_IN6 23 J8 32 43 R3 53 PA7 I/O FT (4) SPI1_MOSI/ TIM8_CH1N / TIM14_CH1/TIM3_CH2/ ETH_MII_RX_DV / TIM1_CH1N / ETH_RMII_CRS_DV/ EVENTOUT ADC12_IN7 24 - 33 44 N5 54 PC4 I/O FT (4) ETH_RMII_RX_D0 / ETH_MII_RX_D0/ EVENTOUT ADC12_IN14 25 - 34 45 P5 55 PC5 I/O FT (4) ETH_RMII_RX_D1 / ETH_MII_RX_D1/ EVENTOUT ADC12_IN15 26 G7 35 46 R5 56 PB0 I/O FT (4) TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/ ETH_MII_RXD2 / TIM1_CH2N/ EVENTOUT ADC12_IN8 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 49/185 STM32F405xx, STM32F407xx Pinouts and pin description 27 H7 36 47 R4 57 PB1 I/O FT (4) TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / TIM1_CH3N/ EVENTOUT ADC12_IN9 28 J7 37 48 M6 58 PB2/BOOT1 (PB2) I/O FT EVENTOUT - - - 49 R6 59 PF11 I/O FT DCMI_D12/ EVENTOUT - - - 50 P6 60 PF12 I/O FT FSMC_A6/ EVENTOUT - - - 51 M8 61 VSS S - - - 52 N8 62 VDD S - - - 53 N6 63 PF13 I/O FT FSMC_A7/ EVENTOUT - - - 54 R7 64 PF14 I/O FT FSMC_A8/ EVENTOUT - - - 55 P7 65 PF15 I/O FT FSMC_A9/ EVENTOUT - - - 56 N7 66 PG0 I/O FT FSMC_A10/ EVENTOUT - - - 57 M7 67 PG1 I/O FT FSMC_A11/ EVENTOUT - G6 38 58 R8 68 PE7 I/O FT FSMC_D4/TIM1_ETR/ EVENTOUT - H6 39 59 P8 69 PE8 I/O FT FSMC_D5/ TIM1_CH1N/ EVENTOUT - J6 40 60 P9 70 PE9 I/O FT FSMC_D6/TIM1_CH1/ EVENTOUT - - - 61 M9 71 VSS S - - - 62 N9 72 VDD S - F6 41 63 R9 73 PE10 I/O FT FSMC_D7/TIM1_CH2N/ EVENTOUT - J5 42 64 P10 74 PE11 I/O FT FSMC_D8/TIM1_CH2/ EVENTOUT - H5 43 65 R10 75 PE12 I/O FT FSMC_D9/TIM1_CH3N/ EVENTOUT - G5 44 66 N11 76 PE13 I/O FT FSMC_D10/TIM1_CH3/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 50/185 DocID022152 Rev 4 - F5 45 67 P11 77 PE14 I/O FT FSMC_D11/TIM1_CH4/ EVENTOUT - G4 46 68 R11 78 PE15 I/O FT FSMC_D12/TIM1_BKIN/ EVENTOUT 29 H4 47 69 R12 79 PB10 I/O FT SPI2_SCK / I2S2_CK / I2C2_SCL/ USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / TIM2_CH3/ EVENTOUT 30 J4 48 70 R13 80 PB11 I/O FT I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / TIM2_CH4/ EVENTOUT 31 F4 49 71 M10 81 VCAP_1 S 32 - 50 72 N10 82 VDD S - - - - M11 83 PH6 I/O FT I2C2_SMBA / TIM12_CH1 / ETH_MII_RXD2/ EVENTOUT - - - - N12 84 PH7 I/O FT I2C3_SCL / ETH_MII_RXD3/ EVENTOUT - - - - M12 85 PH8 I/O FT I2C3_SDA / DCMI_HSYNC/ EVENTOUT - - - - M13 86 PH9 I/O FT I2C3_SMBA / TIM12_CH2/ DCMI_D0/ EVENTOUT - - - - L13 87 PH10 I/O FT TIM5_CH1 / DCMI_D1/ EVENTOUT - - - - L12 88 PH11 I/O FT TIM5_CH2 / DCMI_D2/ EVENTOUT - - - - K12 89 PH12 I/O FT TIM5_CH3 / DCMI_D3/ EVENTOUT - - - - H12 90 VSS S - - - - J12 91 VDD S Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 51/185 STM32F405xx, STM32F407xx Pinouts and pin description 33 J3 51 73 P12 92 PB12 I/O FT SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID/ EVENTOUT 34 J1 52 74 P13 93 PB13 I/O FT SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ EVENTOUT OTG_HS_VBUS 35 J2 53 75 R14 94 PB14 I/O FT SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM/ USART3_RTS / TIM8_CH2N/I2S2ext_SD/ EVENTOUT 36 H1 54 76 R15 95 PB15 I/O FT SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP/ EVENTOUT RTC_REFIN - H2 55 77 P15 96 PD8 I/O FT FSMC_D13 / USART3_TX/ EVENTOUT - H3 56 78 P14 97 PD9 I/O FT FSMC_D14 / USART3_RX/ EVENTOUT - G3 57 79 N15 98 PD10 I/O FT FSMC_D15 / USART3_CK/ EVENTOUT - G1 58 80 N14 99 PD11 I/O FT FSMC_CLE / FSMC_A16/USART3_CT S/ EVENTOUT - G2 59 81 N13 100 PD12 I/O FT FSMC_ALE/ FSMC_A17/TIM4_CH1 / USART3_RTS/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 52/185 DocID022152 Rev 4 - - 60 82 M15 101 PD13 I/O FT FSMC_A18/TIM4_CH2/ EVENTOUT - - - 83 - 102 VSS S - - - 84 J13 103 VDD S - F2 61 85 M14 104 PD14 I/O FT FSMC_D0/TIM4_CH3/ EVENTOUT/ EVENTOUT - F1 62 86 L14 105 PD15 I/O FT FSMC_D1/TIM4_CH4/ EVENTOUT - - - 87 L15 106 PG2 I/O FT FSMC_A12/ EVENTOUT - - - 88 K15 107 PG3 I/O FT FSMC_A13/ EVENTOUT - - - 89 K14 108 PG4 I/O FT FSMC_A14/ EVENTOUT - - - 90 K13 109 PG5 I/O FT FSMC_A15/ EVENTOUT - - - 91 J15 110 PG6 I/O FT FSMC_INT2/ EVENTOUT - - - 92 J14 111 PG7 I/O FT FSMC_INT3 /USART6_CK/ EVENTOUT - - - 93 H14 112 PG8 I/O FT USART6_RTS / ETH_PPS_OUT/ EVENTOUT - - - 94 G12 113 VSS S - - - 95 H13 114 VDD S 37 F3 63 96 H15 115 PC6 I/O FT I2S2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1/ EVENTOUT 38 E1 64 97 G15 116 PC7 I/O FT I2S3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2/ EVENTOUT 39 E2 65 98 G14 117 PC8 I/O FT TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 53/185 STM32F405xx, STM32F407xx Pinouts and pin description 40 E3 66 99 F14 118 PC9 I/O FT I2S_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4/ EVENTOUT 41 D1 67 100 F15 119 PA8 I/O FT MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF/ EVENTOUT 42 D2 68 101 E15 120 PA9 I/O FT USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/ EVENTOUT OTG_FS_VBUS 43 D3 69 102 D15 121 PA10 I/O FT USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1/ EVENTOUT 44 C1 70 103 C15 122 PA11 I/O FT USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM/ EVENTOUT 45 C2 71 104 B15 123 PA12 I/O FT USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP/ EVENTOUT 46 D4 72 105 A15 124 PA13 (JTMS-SWDIO) I/O FT JTMS-SWDIO/ EVENTOUT 47 B1 73 106 F13 125 VCAP_2 S - E7 74 107 F12 126 VSS S 48 E6 75 108 G13 127 VDD S - - - - E12 128 PH13 I/O FT TIM8_CH1N / CAN1_TX/ EVENTOUT - - - - E13 129 PH14 I/O FT TIM8_CH2N / DCMI_D4/ EVENTOUT - - - - D13 130 PH15 I/O FT TIM8_CH3N / DCMI_D11/ EVENTOUT - C3 - - E14 131 PI0 I/O FT TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 54/185 DocID022152 Rev 4 - B2 - - D14 132 PI1 I/O FT SPI2_SCK / I2S2_CK / DCMI_D8/ EVENTOUT - - - - C14 133 PI2 I/O FT TIM8_CH4 /SPI2_MISO / DCMI_D9 / I2S2ext_SD/ EVENTOUT - - - - C13 134 PI3 I/O FT TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10/ EVENTOUT - - - - D9 135 VSS S - - - - C9 136 VDD S 49 A2 76 109 A14 137 PA14 (JTCK/SWCLK) I/O FT JTCK-SWCLK/ EVENTOUT 50 B3 77 110 A13 138 PA15 (JTDI) I/O FT JTDI/ SPI3_NSS/ I2S3_WS/TIM2_CH1_ET R / SPI1_NSS / EVENTOUT 51 D5 78 111 B14 139 PC10 I/O FT SPI3_SCK / I2S3_CK/ UART4_TX/SDIO_D2 / DCMI_D8 / USART3_TX/ EVENTOUT 52 C4 79 112 B13 140 PC11 I/O FT UART4_RX/ SPI3_MISO / SDIO_D3 / DCMI_D4/USART3_RX / I2S3ext_SD/ EVENTOUT 53 A3 80 113 A12 141 PC12 I/O FT UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI /I2S3_SD / USART3_CK/ EVENTOUT - D6 81 114 B12 142 PD0 I/O FT FSMC_D2/CAN1_RX/ EVENTOUT - C5 82 115 C12 143 PD1 I/O FT FSMC_D3 / CAN1_TX/ EVENTOUT 54 B4 83 116 D12 144 PD2 I/O FT TIM3_ETR/UART5_RX/ SDIO_CMD / DCMI_D11/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 55/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 84 117 D11 145 PD3 I/O FT FSMC_CLK/ USART2_CTS/ EVENTOUT - A4 85 118 D10 146 PD4 I/O FT FSMC_NOE/ USART2_RTS/ EVENTOUT - C6 86 119 C11 147 PD5 I/O FT FSMC_NWE/USART2_TX / EVENTOUT - - - 120 D8 148 VSS S - - - 121 C8 149 VDD S - B5 87 122 B11 150 PD6 I/O FT FSMC_NWAIT/ USART2_RX/ EVENTOUT - A5 88 123 A11 151 PD7 I/O FT USART2_CK/FSMC_NE1/ FSMC_NCE2/ EVENTOUT - - - 124 C10 152 PG9 I/O FT USART6_RX / FSMC_NE2/FSMC_NCE3 / EVENTOUT - - - 125 B10 153 PG10 I/O FT FSMC_NCE4_1/ FSMC_NE3/ EVENTOUT - - - 126 B9 154 PG11 I/O FT FSMC_NCE4_2 / ETH_MII_TX_EN/ ETH _RMII_TX_EN/ EVENTOUT - - - 127 B8 155 PG12 I/O FT FSMC_NE4 / USART6_RTS/ EVENTOUT - - - 128 A8 156 PG13 I/O FT FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ ETH_RMII_TXD0/ EVENTOUT - - - 129 A7 157 PG14 I/O FT FSMC_A25 / USART6_TX /ETH_MII_TXD1/ ETH_RMII_TXD1/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 56/185 DocID022152 Rev 4 - E8 - 130 D7 158 VSS S - F7 - 131 C7 159 VDD S - - - 132 B7 160 PG15 I/O FT USART6_CTS / DCMI_D13/ EVENTOUT 55 B6 89 133 A10 161 PB3 (JTDO/ TRACESWO) I/O FT JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCK/ EVENTOUT 56 A6 90 134 A9 162 PB4 (NJTRST) I/O FT NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO / I2S3ext_SD/ EVENTOUT 57 D7 91 135 A6 163 PB5 I/O FT I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / ETH_PPS_OUT/TIM3_CH 2 / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SD/ EVENTOUT 58 C7 92 136 B6 164 PB6 I/O FT I2C1_SCL/ TIM4_CH1 / CAN2_TX / DCMI_D5/USART1_TX/ EVENTOUT 59 B7 93 137 B5 165 PB7 I/O FT I2C1_SDA / FSMC_NL / DCMI_VSYNC / USART1_RX/ TIM4_CH2/ EVENTOUT 60 A7 94 138 D6 166 BOOT0 I B VPP 61 D8 95 139 A5 167 PB8 I/O FT TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 / ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX/ EVENTOUT 62 C8 96 140 B4 168 PB9 I/O FT SPI2_NSS/ I2S2_WS / TIM4_CH4/ TIM11_CH1/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 57/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 97 141 A4 169 PE0 I/O FT TIM4_ETR / FSMC_NBL0 / DCMI_D2/ EVENTOUT - - 98 142 A3 170 PE1 I/O FT FSMC_NBL1 / DCMI_D3/ EVENTOUT 63 - 99 - D5 - VSS S - A8 - 143 C6 171 PDR_ON I FT 64 A1 10 0 144 C5 172 VDD S - - - - D4 173 PI4 I/O FT TIM8_BKIN / DCMI_D5/ EVENTOUT - - - - C4 174 PI5 I/O FT TIM8_CH1 / DCMI_VSYNC/ EVENTOUT - - - - C3 175 PI6 I/O FT TIM8_CH2 / DCMI_D6/ EVENTOUT - - - - C2 176 PI7 I/O FT TIM8_CH3 / DCMI_D7/ EVENTOUT 1. Function availability depends on the chosen device. 2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os must not be used as a current source (e.g. to drive an LED). 3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com. 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low). Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Table 8. FSMC pin definition Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit PE2 A23 A23 Yes PE3 A19 A19 Yes Pinouts and pin description STM32F405xx, STM32F407xx 58/185 DocID022152 Rev 4 PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 A0 - - PF1 A1 A1 - - PF2 A2 A2 - - PF3 A3 A3 - - PF4 A4 A4 - - PF5 A5 A5 - - PF6 NIORD - - PF7 NREG - - PF8 NIOWR - - PF9 CD - - PF10 INTR - - PF12 A6 A6 - - PF13 A7 A7 - - PF14 A8 A8 - - PF15 A9 A9 - - PG0 A10 A10 - - PG1 A11 - - PE7 D4 D4 DA4 D4 Yes Yes PE8 D5 D5 DA5 D5 Yes Yes PE9 D6 D6 DA6 D6 Yes Yes PE10 D7 D7 DA7 D7 Yes Yes PE11 D8 D8 DA8 D8 Yes Yes PE12 D9 D9 DA9 D9 Yes Yes PE13 D10 D10 DA10 D10 Yes Yes PE14 D11 D11 DA11 D11 Yes Yes PE15 D12 D12 DA12 D12 Yes Yes PD8 D13 D13 DA13 D13 Yes Yes PD9 D14 D14 DA14 D14 Yes Yes PD10 D15 D15 DA15 D15 Yes Yes PD11 A16 A16 CLE Yes Yes Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit DocID022152 Rev 4 59/185 STM32F405xx, STM32F407xx Pinouts and pin description PD12 A17 A17 ALE Yes Yes PD13 A18 A18 Yes PD14 D0 D0 DA0 D0 Yes Yes PD15 D1 D1 DA1 D1 Yes Yes PG2 A12 - - PG3 A13 - - PG4 A14 - - PG5 A15 - - PG6 INT2 - - PG7 INT3 - - PD0 D2 D2 DA2 D2 Yes Yes PD1 D3 D3 DA3 D3 Yes Yes PD3 CLK CLK Yes PD4 NOE NOE NOE NOE Yes Yes PD5 NWE NWE NWE NWE Yes Yes PD6 NWAIT NWAIT NWAIT NWAIT Yes Yes PD7 NE1 NE1 NCE2 Yes Yes PG9 NE2 NE2 NCE3 - - PG10 NCE4_1 NE3 NE3 - - PG11 NCE4_2 - - PG12 NE4 NE4 - - PG13 A24 A24 - - PG14 A25 A25 - - PB7 NADV NADV Yes Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes 1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column. 2. Ports F and G are not available in devices delivered in 100-pin packages. Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit Pinouts and pin description STM32F405xx, STM32F407xx 60/185 DocID022152 Rev 4 Table 9. Alternate function mapping Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Port A PA0 TIM2_CH1_E TR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK ETH_RMII__REF _CLK EVENTOUT PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_ D0 ETH _MII_COL EVENTOUT PA4 SPI1_NSS SPI3_NSS I2S3_WS USART2_CK OTG_HS_SO F DCMI_HSYN C EVENTOUT PA5 TIM2_CH1_E TR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_ CK EVENTOUT PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV ETH_RMII _CRS_DV EVENTOUT PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT PA9 TIM1_CH2 I2C3_SMB A USART1_TX DCMI_D0 EVENTOUT PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT PA13 JTMSSWDIO EVENTOUT PA14 JTCKSWCLK EVENTOUT PA15 JTDI TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI3_NSS/ I2S3_WS EVENTOUT STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 61/185 Port B PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_ D1 ETH _MII_RXD2 EVENTOUT PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_ D2 ETH _MII_RXD3 EVENTOUT PB2 EVENTOUT PB3 JTDO/ TRACES WO TIM2_CH2 SPI1_SCK SPI3_SCK I2S3_CK EVENTOUT PB4 NJTRST TIM3_CH1 SPI1_MISO SPI3_MISO I2S3ext_SD EVENTOUT PB5 TIM3_CH2 I2C1_SMB A SPI1_MOSI SPI3_MOSI I2S3_SD CAN2_RX OTG_HS_ULPI_ D7 ETH _PPS_OUT DCMI_D10 EVENTOUT PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYN C EVENTOUT PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS I2S2_WS CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT PB10 TIM2_CH3 I2C2_SCL SPI2_SCK I2S2_CK USART3_TX OTG_HS_ULPI_ D3 ETH_ MII_RX_ER EVENTOUT PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_ D4 ETH _MII_TX_EN ETH _RMII_TX_EN EVENTOUT PB12 TIM1_BKIN I2C2_SMB A SPI2_NSS I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_ D5 ETH _MII_TXD0 ETH _RMII_TXD0 OTG_HS_ID EVENTOUT PB13 TIM1_CH1N SPI2_SCK I2S2_CK USART3_CTS CAN2_TX OTG_HS_ULPI_ D6 ETH _MII_TXD1 ETH _RMII_TXD1 EVENTOUT PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT PB15 RTC_ REFIN TIM1_CH3N TIM8_CH3N SPI2_MOSI I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 62/185 DocID022152 Rev 4 Port C PC0 OTG_HS_ULPI_ STP EVENTOUT PC1 ETH_MDC EVENTOUT PC2 SPI2_MISO I2S2ext_SD OTG_HS_ULPI_ DIR ETH _MII_TXD2 EVENTOUT PC3 SPI2_MOSI I2S2_SD OTG_HS_ULPI_ NXT ETH _MII_TX_CLK EVENTOUT PC4 ETH_MII_RXD0 ETH_RMII_RXD0 EVENTOUT PC5 ETH _MII_RXD1 ETH _RMII_RXD1 EVENTOUT PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN SDIO_D1 DCMI_D3 EVENTOUT PC10 SPI3_SCK/ I2S3_CK USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT PC11 I2S3ext_SD SPI3_MISO/ USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT PC12 SPI3_MOSI I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT PC13 EVENTOUT PC14 EVENTOUT PC15 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 63/185 Port D PD0 CAN1_RX FSMC_D2 EVENTOUT PD1 CAN1_TX FSMC_D3 EVENTOUT PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT PD3 USART2_CTS FSMC_CLK EVENTOUT PD4 USART2_RTS FSMC_NOE EVENTOUT PD5 USART2_TX FSMC_NWE EVENTOUT PD6 USART2_RX FSMC_NWAIT EVENTOUT PD7 USART2_CK FSMC_NE1/ FSMC_NCE2 EVENTOUT PD8 USART3_TX FSMC_D13 EVENTOUT PD9 USART3_RX FSMC_D14 EVENTOUT PD10 USART3_CK FSMC_D15 EVENTOUT PD11 USART3_CTS FSMC_A16 EVENTOUT PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT PD13 TIM4_CH2 FSMC_A18 EVENTOUT PD14 TIM4_CH3 FSMC_D0 EVENTOUT PD15 TIM4_CH4 FSMC_D1 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 64/185 DocID022152 Rev 4 Port E PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT PE1 FSMC_NBL1 DCMI_D3 EVENTOUT PE2 TRACECL K ETH _MII_TXD3 FSMC_A23 EVENTOUT PE3 TRACED0 FSMC_A19 EVENTOUT PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT PE7 TIM1_ETR FSMC_D4 EVENTOUT PE8 TIM1_CH1N FSMC_D5 EVENTOUT PE9 TIM1_CH1 FSMC_D6 EVENTOUT PE10 TIM1_CH2N FSMC_D7 EVENTOUT PE11 TIM1_CH2 FSMC_D8 EVENTOUT PE12 TIM1_CH3N FSMC_D9 EVENTOUT PE13 TIM1_CH3 FSMC_D10 EVENTOUT PE14 TIM1_CH4 FSMC_D11 EVENTOUT PE15 TIM1_BKIN FSMC_D12 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 65/185 Port F PF0 I2C2_SDA FSMC_A0 EVENTOUT PF1 I2C2_SCL FSMC_A1 EVENTOUT PF2 I2C2_ SMBA FSMC_A2 EVENTOUT PF3 FSMC_A3 EVENTOUT PF4 FSMC_A4 EVENTOUT PF5 FSMC_A5 EVENTOUT PF6 TIM10_CH1 FSMC_NIORD EVENTOUT PF7 TIM11_CH1 FSMC_NREG EVENTOUT PF8 TIM13_CH1 FSMC_ NIOWR EVENTOUT PF9 TIM14_CH1 FSMC_CD EVENTOUT PF10 FSMC_INTR EVENTOUT PF11 DCMI_D12 EVENTOUT PF12 FSMC_A6 EVENTOUT PF13 FSMC_A7 EVENTOUT PF14 FSMC_A8 EVENTOUT PF15 FSMC_A9 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 66/185 DocID022152 Rev 4 Port G PG0 FSMC_A10 EVENTOUT PG1 FSMC_A11 EVENTOUT PG2 FSMC_A12 EVENTOUT PG3 FSMC_A13 EVENTOUT PG4 FSMC_A14 EVENTOUT PG5 FSMC_A15 EVENTOUT PG6 FSMC_INT2 EVENTOUT PG7 USART6_CK FSMC_INT3 EVENTOUT PG8 USART6_ RTS ETH _PPS_OUT EVENTOUT PG9 USART6_RX FSMC_NE2/ FSMC_NCE3 EVENTOUT PG10 FSMC_ NCE4_1/ FSMC_NE3 EVENTOUT PG11 ETH _MII_TX_EN ETH _RMII_ TX_EN FSMC_NCE4_ 2 EVENTOUT PG12 USART6_ RTS FSMC_NE4 EVENTOUT PG13 UART6_CTS ETH _MII_TXD0 ETH _RMII_TXD0 FSMC_A24 EVENTOUT PG14 USART6_TX ETH _MII_TXD1 ETH _RMII_TXD1 FSMC_A25 EVENTOUT PG15 USART6_ CTS DCMI_D13 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 67/185 Port H PH0 EVENTOUT PH1 EVENTOUT PH2 ETH _MII_CRS EVENTOUT PH3 ETH _MII_COL EVENTOUT PH4 I2C2_SCL OTG_HS_ULPI_ NXT EVENTOUT PH5 I2C2_SDA EVENTOUT PH6 I2C2_SMB A TIM12_CH1 ETH _MII_RXD2 EVENTOUT PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT PH8 I2C3_SDA DCMI_HSYN C EVENTOUT PH9 I2C3_SMB A TIM12_CH2 DCMI_D0 EVENTOUT PH10 TIM5_CH1 DCMI_D1 EVENTOUT PH11 TIM5_CH2 DCMI_D2 EVENTOUT PH12 TIM5_CH3 DCMI_D3 EVENTOUT PH13 TIM8_CH1N CAN1_TX EVENTOUT PH14 TIM8_CH2N DCMI_D4 EVENTOUT PH15 TIM8_CH3N DCMI_D11 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 68/185 DocID022152 Rev 4 Port I PI0 TIM5_CH4 SPI2_NSS I2S2_WS DCMI_D13 EVENTOUT PI1 SPI2_SCK I2S2_CK DCMI_D8 EVENTOUT PI2 TIM8_CH4 SPI2_MISO I2S2ext_SD DCMI_D9 EVENTOUT PI3 TIM8_ETR SPI2_MOSI I2S2_SD DCMI_D10 EVENTOUT PI4 TIM8_BKIN DCMI_D5 EVENTOUT PI5 TIM8_CH1 DCMI_ VSYNC EVENTOUT PI6 TIM8_CH2 DCMI_D6 EVENTOUT PI7 TIM8_CH3 DCMI_D7 EVENTOUT PI8 EVENTOUT PI9 CAN1_RX EVENTOUT PI10 ETH _MII_RX_ER EVENTOUT PI11 OTG_HS_ULPI_ DIR EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI DocID022152 Rev 4 69/185 STM32F405xx, STM32F407xx Memory mapping 4 Memory mapping The memory map is shown in Figure 18. Figure 18. STM32F40x memory map 512-Mbyte block 7 Cortex-M4's internal peripherals 512-Mbyte block 6 Not used 512-Mbyte block 5 FSMC registers 512-Mbyte block 4 FSMC bank 3 & bank4 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 2 Peripherals 512-Mbyte block 1 SRAM 0x0000 0000 0x1FFF FFFF 0x2000 0000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 0x6000 0000 0x7FFF FFFF 0x8000 0000 0x9FFF FFFF 0xA000 0000 0xBFFF FFFF 0xC000 0000 0xDFFF FFFF 0xE000 0000 0xFFFF FFFF 512-Mbyte block 0 Code Flash 0x0810 0000 - 0x0FFF FFFF 0x1FFF 0000 - 0x1FFF 7A0F 0x1FFF C000 - 0x1FFF C007 0x0800 0000 - 0x080F FFFF 0x0010 0000 - 0x07FF FFFF 0x0000 0000 - 0x000F FFFF System memory + OTP Reserved Reserved Aliased to Flash, system memory or SRAM depending on the BOOT pins SRAM (16 KB aliased by bit-banding) Reserved 0x2000 0000 - 0x2001 BFFF 0x2001 C000 - 0x2001 FFFF 0x2002 0000 - 0x3FFF FFFF 0x4000 0000 Reserved 0x4000 7FFF 0x4000 7800 - 0x4000 FFFF 0x4001 0000 0x4001 57FF 0x4002 000 Reserved 0x5006 0C00 - 0x5FFF FFFF 0x6000 0000 AHB3 0xA000 0FFF 0xA000 1000 - 0xDFFF FFFF ai18513f Option Bytes Reserved 0x4001 5800 - 0x4001 FFFF 0x5006 0BFF AHB2 0x5000 0000 Reserved 0x4008 0000 - 0x4FFF FFFF AHB1 SRAM (112 KB aliased by bit-banding) Reserved 0x1FFF C008 - 0x1FFF FFFF Reserved 0x1FFF 7A10 - 0x1FFF 7FFF CCM data RAM (64 KB data SRAM) 0x1000 0000 - 0x1000 FFFF Reserved 0x1001 0000 - 0x1FFE FFFF Reserved APB2 0x4007 FFFF APB1 CORTEX-M4 internal peripherals 0xE000 0000 - 0xE00F FFFF Reserved 0xE010 0000 - 0xFFFF FFFF Memory mapping STM32F405xx, STM32F407xx 70/185 DocID022152 Rev 4 Table 10. STM32F40x register boundary addresses Bus Boundary address Peripheral 0xE00F FFFF - 0xFFFF FFFF Reserved Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xA000 1000 - 0xDFFF FFFF Reserved AHB3 0xA000 0000 - 0xA000 0FFF FSMC control register 0x9000 0000 - 0x9FFF FFFF FSMC bank 4 0x8000 0000 - 0x8FFF FFFF FSMC bank 3 0x7000 0000 - 0x7FFF FFFF FSMC bank 2 0x6000 0000 - 0x6FFF FFFF FSMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved AHB2 0x5006 0800 - 0x5006 0BFF RNG 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4008 0000- 0x4FFF FFFF Reserved DocID022152 Rev 4 71/185 STM32F405xx, STM32F407xx Memory mapping AHB1 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 9400 - 0x4003 FFFF Reserved 0x4002 9000 - 0x4002 93FF ETHERNET MAC 0x4002 8C00 - 0x4002 8FFF 0x4002 8800 - 0x4002 8BFF 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF GPIOI 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA 0x4001 5800- 0x4001 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Memory mapping STM32F405xx, STM32F407xx 72/185 DocID022152 Rev 4 APB2 0x4001 4C00 - 0x4001 57FF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 0x4000 7800- 0x4000 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral DocID022152 Rev 4 73/185 STM32F405xx, STM32F407xx Memory mapping APB1 0x4000 7800 - 0x4000 7FFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF Reserved 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF Reserved 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF I2S2ext 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Electrical characteristics STM32F405xx, STM32F407xx 74/185 DocID022152 Rev 4 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 19. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 20. Figure 19. Pin loading conditions Figure 20. Pin input voltage MS19011V1 C = 50 pF STM32F pin OSC_OUT (Hi-Z when using HSE or LSE) MS19010V1 STM32F pin VIN OSC_OUT (Hi-Z when using HSE or LSE) DocID022152 Rev 4 75/185 STM32F405xx, STM32F407xx Electrical characteristics 5.1.6 Power supply scheme Figure 21. Power supply scheme 1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply supervisor. 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF. 4. The 4.7 μF ceramic capacitor must be connected to one of the VDD pin. 5. VDDA=VDD and VSSA=VSS. MS19911V2 Backup circuitry (OSC32K,RTC, Wakeup logic Backup registers, backup RAM) Kernel logic (CPU, digital & RAM) Analog: RCs, PLL,.. Power switch VBAT GPIOs OUT IN 15 × 100 nF + 1 × 4.7 μF VBAT = 1.65 to 3.6V Voltage regulator VDDA ADC Level shifter IO Logic VDD 100 nF + 1 μF Flash memory VCAP_1 2 × 2.2 μF VCAP_2 BYPASS_REG PDR_ON Reset controller VDD 1/2/...14/15 VSS 1/2/...14/15 VDD VREF+ VREFVSSA VREF 100 nF + 1 μF Electrical characteristics STM32F405xx, STM32F407xx 76/185 DocID022152 Rev 4 5.1.7 Current consumption measurement Figure 22. Current consumption measurement scheme 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics, Table 12: Current characteristics, and Table 13: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ai14126 VBAT VDD VDDA IDD_VBAT IDD Table 11. Voltage characteristics Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA, VDD)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. –0.3 4.0 V VIN Input voltage on five-volt tolerant pin(2) 2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed injected current. VSS–0.3 VDD+4 Input voltage on any other pin VSS–0.3 4.0 |ΔVDDx| Variations between different VDD power pins - 50 mV |VSSX − VSS| Variations between all the different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) see Section 5.3.14: Absolute maximum ratings (electrical sensitivity) DocID022152 Rev 4 77/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3 Operating conditions 5.3.1 General operating conditions Table 12. Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD power lines (source)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 150 mA IVSS Total current out of VSS ground lines (sink)(1) 150 IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin 25 IINJ(PIN) (2) 2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC characteristics. Injected current on five-volt tolerant I/O(3) 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 6. In this case HCLK = system clock/2. Electrical characteristics STM32F405xx, STM32F407xx 84/185 DocID022152 Rev 4 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) Symbol Parameter Conditions fHCLK Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled(3)(4) 168 MHz 93 109 117 mA 144 MHz 76 89 96 120 MHz 67 79 86 90 MHz 53 65 73 60 MHz 37 49 56 30 MHz 20 32 39 25 MHz 16 27 35 16 MHz 11 23 30 8 MHz 6 18 25 4 MHz 4 16 23 2 MHz 3 15 22 External clock(2), all peripherals disabled(3)(4) 168 MHz 46 61 69 144 MHz 40 52 60 120 MHz 37 48 56 90 MHz 30 42 50 60 MHz 22 33 41 30 MHz 12 24 31 25 MHz 10 21 29 16 MHz 7 19 26 8 MHz 4 16 23 4 MHz 3 15 22 2 MHz 2 14 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. DocID022152 Rev 4 85/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON MS19974V1 0 5 10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45 °C 0 °C 25 °C 55 °C 85 °C 105 °C MS19975V1 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C Electrical characteristics STM32F405xx, STM32F407xx 86/185 DocID022152 Rev 4 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON MS19976V1 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C MS19977V1 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C DocID022152 Rev 4 87/185 STM32F405xx, STM32F407xx Electrical characteristics Table 22. Typical and maximum current consumption in Sleep mode Symbol Parameter Conditions fHCLK Typ Max(1) T Unit A = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled(3) 168 MHz 59 77 84 mA 144 MHz 46 61 67 120 MHz 38 53 60 90 MHz 30 44 51 60 MHz 20 34 41 30 MHz 11 24 31 25 MHz 8 21 28 16 MHz 6 18 25 8 MHz 3 16 23 4 MHz 2 15 22 2 MHz 2 14 21 External clock(2), all peripherals disabled 168 MHz 12 27 35 144 MHz 9 22 29 120 MHz 8 20 28 90 MHz 7 19 26 60 MHz 5 17 24 30 MHz 3 16 23 25 MHz 2 15 22 16 MHz 2 14 21 8 MHz 1 14 21 4 MHz 1 13 21 2 MHz 1 13 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register). Electrical characteristics STM32F405xx, STM32F407xx 88/185 DocID022152 Rev 4 Table 23. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions Typ Max T Unit A = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C IDD_STOP Supply current in Stop mode with main regulator in Run mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.45 1.5 11.00 20.00 mA Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.40 1.5 11.00 20.00 Supply current in Stop mode with main regulator in Low Power mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.31 1.1 8.00 15.00 Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.28 1.1 8.00 15.00 Table 24. Typical and maximum current consumptions in Standby mode Symbol Parameter Conditions Typ Max(1) TA = 25 °C Unit TA = 85 °C TA = 105 °C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V VDD = 3.6 V IDD_STBY Supply current in Standby mode Backup SRAM ON, lowspeed oscillator and RTC ON 3.0 3.4 4.0 20 36 μA Backup SRAM OFF, lowspeed oscillator and RTC ON 2.4 2.7 3.3 16 32 Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8 Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2 1. Based on characterization, not tested in production. DocID022152 Rev 4 89/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) Table 25. Typical and maximum current consumptions in VBAT mode Symbol Parameter Conditions Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C VBAT = 1.8 V VBAT= 2.4 V VBAT = 3.3 V VBAT = 3.6 V IDD_VBA T Backup domain supply current Backup SRAM ON, low-speed oscillator and RTC ON 1.29 1.42 1.68 6 11 μA Backup SRAM OFF, low-speed oscillator and RTC ON 0.62 0.73 0.96 3 5 Backup SRAM ON, RTC OFF 0.79 0.81 0.86 5 10 Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 2 4 1. Based on characterization, not tested in production. MS19990V1 0 0.5 1 1.5 2 2.5 3 3.5 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V Electrical characteristics STM32F405xx, STM32F407xx 90/185 DocID022152 Rev 4 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 47: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 27: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU MS19991V1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V DocID022152 Rev 4 91/185 STM32F405xx, STM32F407xx Electrical characteristics supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. ISW = VDD × fSW × C Electrical characteristics STM32F405xx, STM32F407xx 92/185 DocID022152 Rev 4 Table 26. Switching output I/O current consumption Symbol Parameter Conditions(1) I/O toggling frequency (fSW) Typ Unit IDDIO I/O switching current VDD = 3.3 V(2) C = CINT 2 MHz 0.02 mA 8 MHz 0.14 25 MHz 0.51 50 MHz 0.86 60 MHz 1.30 VDD = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS 2 MHz 0.10 8 MHz 0.38 25 MHz 1.18 50 MHz 2.47 60 MHz 2.86 VDD = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS 2 MHz 0.17 8 MHz 0.66 25 MHz 1.70 50 MHz 2.65 60 MHz 3.48 VDD = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS 2 MHz 0.23 8 MHz 0.95 25 MHz 3.20 50 MHz 4.69 60 MHz 8.06 VDD = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS 2 MHz 0.30 8 MHz 1.22 25 MHz 3.90 50 MHz 8.82 60 MHz -(3) 1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value). 2. This test is performed by cutting the LQFP package pin (pad removal). 3. At 60 MHz, C maximum load is specified 30 pF. DocID022152 Rev 4 93/185 STM32F405xx, STM32F407xx Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed under the following conditions: • At startup, all I/O pins are configured as analog pins by firmware. • All peripherals are disabled unless otherwise mentioned • The code is running from Flash memory and the Flash memory access time is equal to 5 wait states at 168 MHz. • The code is running from Flash memory and the Flash memory access time is equal to 4 wait states at 144 MHz, and the power scale mode is set to 2. • ART accelerator and Cache off. • The given value is calculated by measuring the difference of current consumption – with all peripherals clocked off – with one peripheral clocked on (with only the clock applied) • When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. • The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise specified. Table 27. Peripheral current consumption Peripheral(1) 168 MHz 144 MHz Unit AHB1 GPIO A 0.49 0.36 mA GPIO B 0.45 0.33 GPIO C 0.45 0.34 GPIO D 0.45 0.34 GPIO E 0.47 0.35 GPIO F 0.45 0.33 GPIO G 0.44 0.33 GPIO H 0.45 0.34 GPIO I 0.44 0.33 OTG_HS + ULPI 4.57 3.55 CRC 0.07 0.06 BKPSRAM 0.11 0.08 DMA1 6.15 4.75 DMA2 6.24 4.8 ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP 3.28 2.54 AHB2 OTG_FS 4.59 3.69 mA DCMI 1.04 0.80 Electrical characteristics STM32F405xx, STM32F407xx 94/185 DocID022152 Rev 4 AHB3 FSMC 2.18 1.67 mA APB1 TIM2 0.80 0.61 TIM3 0.58 0.44 TIM4 0.62 0.48 TIM5 0.79 0.61 TIM6 0.15 0.11 TIM7 0.16 0.12 TIM12 0.33 0.26 TIM13 0.27 0.21 TIM14 0.27 0.21 PWR 0.04 0.03 USART2 0.17 0.13 USART3 0.17 0.13 UART4 0.17 0.13 UART5 0.17 0.13 I2C1 0.17 0.13 I2C2 0.18 0.13 I2C3 0.18 0.13 SPI2/I2S2(2) 0.17/0.16 0.13/0.12 SPI3/I2S3(2) 0.16/0.14 0.12/0.12 CAN1 0.27 0.21 CAN2 0.26 0.20 DAC 0.14 0.10 DAC channel 1(3) 0.91 0.89 DAC channel 2(4) 0.91 0.89 DAC channel 1 and 2(3)(4) 1.69 1.68 WWDG 0.04 0.04 Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit DocID022152 Rev 4 95/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.7 Wakeup time from low-power mode The wakeup times given in Table 28 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. APB2 SDIO 0.64 0.54 mA TIM1 1.47 1.14 TIM8 1.58 1.22 TIM9 0.68 0.54 TIM10 0.45 0.36 TIM11 0.47 0.38 ADC1(5) 2.20 2.10 ADC2(5) 2.04 1.93 ADC3(5) 2.10 2.00 SPI1 0.14 0.12 USART1 0.34 0.27 USART6 0.34 0.28 1. HSE oscillator with 4 MHz crystal and PLL are ON. 2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral. 3. EN1 bit is set in DAC_CR register. 4. EN2 bit is set in DAC_CR register. 5. ADON bit set in ADC_CR2 register. Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit Table 28. Low-power mode wakeup timings Symbol Parameter Min(1) Typ(1) Max(1) Unit tWUSLEEP (2) Wakeup from Sleep mode - 1 - μs tWUSTOP (2) Wakeup from Stop mode (regulator in Run mode) - 13 - Wakeup from Stop mode (regulator in low power mode) - 17 40 μs Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode) - 110 - tWUSTDBY (2)(3) Wakeup from Standby mode 260 375 480 μs 1. Based on characterization, not tested in production. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively. Electrical characteristics STM32F405xx, STM32F407xx 96/185 DocID022152 Rev 4 5.3.8 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 29 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Low-speed external user clock generated from an external source The characteristics given in Table 30 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Table 29. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext External user clock source frequency(1) 1 - 50 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 10 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA Table 30. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA 1. Guaranteed by design, not tested in production. DocID022152 Rev 4 97/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 30. High-speed external clock source AC timing diagram Figure 31. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 31. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai17528 OSC_IN External STM32F clock source VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE tr(HSE) tW(HSE) t fHSE_ext VHSEL ai17529 External OSC32_IN STM32F clock source VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE tr(LSE) tW(LSE) t fLSE_ext VLSEL Electrical characteristics STM32F405xx, STM32F407xx 98/185 DocID022152 Rev 4 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 32. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 32. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 31. HSE 4-26 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 - 26 MHz RF Feedback resistor - 200 - kΩ IDD HSE current consumption VDD=3.3 V, ESR= 30 Ω, CL=5 pF@25 MHz - 449 - μA VDD=3.3 V, ESR= 30 Ω, CL=10 pF@25 MHz - 532 - gm Oscillator transconductance Startup 5 - - mA/V tSU(HSE (3) 3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized - 2 - ms ai17530 OSC_OUT OSC_IN fHSE CL1 RF STM32F 8 MHz resonator Resonator with integrated capacitors Bias controlled gain CL2 REXT(1) DocID022152 Rev 4 99/185 STM32F405xx, STM32F407xx Electrical characteristics Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 33. Typical application with a 32.768 kHz crystal 5.3.9 Internal clock source characteristics The parameters given in Table 33 and Table 34 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. High-speed internal (HSI) RC oscillator Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 18.4 - MΩ IDD LSE current consumption - - 1 μA gm Oscillator Transconductance 2.8 - - μA/V tSU(LSE) (2) 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - s ai17531 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F 32.768 kHz resonator Resonator with integrated capacitors Bias controlled gain CL2 Table 33. HSI oscillator characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 16 - MHz ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register - - 1 % Factorycalibrated TA = –40 to 105 °C(2) –8 - 4.5 % TA = –10 to 85 °C(2) –4 - 4 % TA = 25 °C –1 - 1 % tsu(HSI) (3) HSI oscillator startup time - 2.2 4 μs IDD(HSI) HSI oscillator power consumption - 60 80 μA Electrical characteristics STM32F405xx, STM32F407xx 100/185 DocID022152 Rev 4 Low-speed internal (LSI) RC oscillator Figure 34. ACCLSI versus temperature 5.3.10 PLL characteristics The parameters given in Table 35 and Table 36 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 14. 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Table 34. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 17 32 47 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - 15 40 μs IDD(LSI) (3) LSI oscillator power consumption - 0.4 0.6 μA MS19013V1 -40 -30 -20 -10 0 10 20 30 40 50 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 Normalized deviati on (%) Temperature (°C) max avg min DocID022152 Rev 4 101/185 STM32F405xx, STM32F407xx Electrical characteristics Table 35. Main PLL characteristics Symbol Parameter Conditions Min Typ Max Unit fPLL_IN PLL input clock(1) 0.95(2) 1 2.10 MHz fPLL_OUT PLL multiplier output clock 24 - 168 MHz fPLL48_OUT 48 MHz PLL multiplier output clock - 48 75 MHz fVCO_OUT PLL VCO output 192 - 432 MHz tLOCK PLL lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Jitter(3) Cycle-to-cycle jitter System clock 120 MHz RMS - 25 - ps peak to peak - ±150 - Period Jitter RMS - 15 - peak to peak - ±200 - Main clock output (MCO) for RMII Ethernet Cycle to cycle at 50 MHz on 1000 samples - 32 - Main clock output (MCO) for MII Ethernet Cycle to cycle at 25 MHz on 1000 samples - 40 - Bit Time CAN jitter Cycle to cycle at 1 MHz on 1000 samples - 330 - IDD(PLL) (4) PLL power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLL) (4) PLL power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design, not tested in production. 3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10 MHz fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz fVCO_OUT PLLI2S VCO output 192 - 432 MHz tLOCK PLLI2S lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Electrical characteristics STM32F405xx, STM32F407xx 102/185 DocID022152 Rev 4 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 43: EMI characteristics). It is available only on the main PLL. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: Jitter(3) Master I2S clock jitter Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 RMS - 90 - peak to peak - ±280 - ps Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples - 90 - ps WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLI2S) (4) PLLI2S power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLI2S) (4) PLLI2S power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design, not tested in production. 3. Value given with main PLL running. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Table 37. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % MODEPER * INCSTEP - - 215−1 - 1. Guaranteed by design, not tested in production. MODEPER = round[fPLL_IN ⁄ (4 × fMod)] MODEPER round 106 4 10 3 = [ ⁄ ( × )] = 250 DocID022152 Rev 4 103/185 STM32F405xx, STM32F407xx Electrical characteristics Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): fVCO_OUT must be expressed in MHz. With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz): An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: As a result: Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. Figure 35. PLL output clock waveforms in center spread mode INCSTEP = round[((215 – 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)] INCSTEP = round[((215 – 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)% mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 – 1) × PLLN) mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 – 1) × 240) = 2.002%(peak) Frequency (PLL_OUT) Time F0 tmode md ai17291 md 2 x tmode Electrical characteristics STM32F405xx, STM32F407xx 104/185 DocID022152 Rev 4 Figure 36. PLL output clock waveforms in down spread mode 5.3.12 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased. Time ai17292 Frequency (PLL_OUT) F0 2 x md tmode 2 x tmode Table 38. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit IDD Supply current Write / Erase 8-bit mode, VDD = 1.8 V - 5 - Write / Erase 16-bit mode, VDD = 2.1 V - 8 - mA Write / Erase 32-bit mode, VDD = 3.3 V - 12 - Table 39. Flash memory programming Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog Word programming time Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(2) μs tERASE16KB Sector (16 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism ms (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 DocID022152 Rev 4 105/185 STM32F405xx, STM32F407xx Electrical characteristics tERASE64KB Sector (64 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism ms (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 tERASE128KB Sector (128 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism s (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 tME Mass erase time Program/erase parallelism (PSIZE) = x 8 - 16 32 Program/erase parallelism s (PSIZE) = x 16 - 11 22 Program/erase parallelism (PSIZE) = x 32 - 8 16 Vprog Programming voltage 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.8 - 3.6 V 1. Based on characterization, not tested in production. 2. The maximum programming time is measured after 100K erase operations. Table 39. Flash memory programming (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit Electrical characteristics STM32F405xx, STM32F407xx 106/185 DocID022152 Rev 4 5.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. Table 40. Flash memory programming with VPP Symbol Parameter Conditions Min(1) Typ Max(1) 1. Guaranteed by design, not tested in production. Unit tprog Double word programming TA = 0 to +40 °C VDD = 3.3 V VPP = 8.5 V - 16 100(2) 2. The maximum programming time is measured after 100K erase operations. μs tERASE16KB Sector (16 KB) erase time - 230 - tERASE64KB Sector (64 KB) erase time - 490 - ms tERASE128KB Sector (128 KB) erase time - 875 - tME Mass erase time - 6.9 - s Vprog Programming voltage 2.7 - 3.6 V VPP VPP voltage range 7 - 9 V IPP Minimum current sunk on the VPP pin 10 - - mA tVPP (3) 3. VPP should only be connected during programming/erasing. Cumulative time during which VPP is applied - - 1 hour Table 41. Flash memory endurance and data retention Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 1 kcycle(2) at TA = 105 °C 10 Years 10 kcycles(2) at TA = 55 °C 20 DocID022152 Rev 4 107/185 STM32F405xx, STM32F407xx Electrical characteristics A device reset allows normal operations to be resumed. The test results are given in Table 42. They are based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. Table 42. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 4A Electrical characteristics STM32F405xx, STM32F407xx 108/185 DocID022152 Rev 4 5.3.14 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latchup Two complementary static tests are required on six parts to assess the latchup performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latchup standard. Table 43. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fCPU] Unit 25/168 MHz SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator enabled 0.1 to 30 MHz 32 30 to 130 MHz 25 dBμV 130 MHz to 1GHz 29 SAE EMI Level 4 - VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator and PLL spread spectrum enabled 0.1 to 30 MHz 19 30 to 130 MHz 16 dBμV 130 MHz to 1GHz 18 SAE EMI level 3.5 - Table 44. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C conforming to JESD22-A114 2 2000(2) V VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C conforming to JESD22-C101 II 500 1. Based on characterization results, not tested in production. 2. On VBAT pin, VESD(HBM) is limited to 1000 V. DocID022152 Rev 4 109/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.15 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 46. 5.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Table 45. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA = +105 °C conforming to JESD78A II level A Table 46. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ (1) 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Injected current on all FT pins –5 +0 mA Injected current on any other pin –5 +5 Electrical characteristics STM32F405xx, STM32F407xx 110/185 DocID022152 Rev 4 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. Table 47. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH (1) Input high level voltage 2.0 - - VIL Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - - 0.3VDD VIH (1) Input high level voltage 0.7VDD - - - - Vhys I/O Schmitt trigger voltage hysteresis(2) - 200 - IO FT Schmitt trigger voltage mV hysteresis(2) 5% VDD (3) - - Ilkg I/O input leakage current (4) VSS ≤ VIN ≤ VDD - - ±1 μA I/O FT input leakage current (4) VIN = 5 V - - 3 RPU Weak pull-up equivalent resistor(5) All pins except for PA10 and PB12 VIN = VSS 30 40 50 kΩ PA10 and PB12 8 11 15 RPD Weak pull-down equivalent resistor All pins except for PA10 and PB12 VIN = VDD 30 40 50 PA10 and PB12 8 11 15 CIO (6) I/O pin capacitance 5 pF 1. Tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 6. Guaranteed by design, not tested in production. DocID022152 Rev 4 111/185 STM32F405xx, STM32F407xx Electrical characteristics In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 12). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 12). Output voltage levels Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 37 and Table 49, respectively. Table 48. Output voltage characteristics(1) 1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). Symbol Parameter Conditions Min Max Unit VOL (2) 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (2) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (2)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - Electrical characteristics STM32F405xx, STM32F407xx 112/185 DocID022152 Rev 4 Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 49. I/O AC characteristics(1)(2)(3) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit 00 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 2 MHz CL = 50 pF, VDD > 1.8 V - - 2 CL = 10 pF, VDD > 2.70 V - - TBD CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.8 V to 3.6 V - - TBD ns tr(IO)out Output low to high level rise time - - TBD 01 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 25 MHz CL = 50 pF, VDD > 1.8 V - - 12.5(5) CL = 10 pF, VDD > 2.70 V - - 50(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 50 pF, VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD 10 fmax(IO)out Maximum frequency(4) CL = 40 pF, VDD > 2.70 V - - 50(5) MHz CL = 40 pF, VDD > 1.8 V - - 25 CL = 10 pF, VDD > 2.70 V - - 100(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD ns tr(IO)out Output low to high level rise time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD DocID022152 Rev 4 113/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 37. I/O AC characteristics definition 5.3.17 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 47). Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. 11 Fmax(IO)ou t Maximum frequency(4) CL = 30 pF, VDD > 2.70 V - - 100(5) MHz CL = 30 pF, VDD > 1.8 V - - 50(5) CL = 10 pF, VDD > 2.70 V - - 200(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - - ns 1. Based on characterization data, not tested in production. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. TBD stands for “to be defined”. 4. The maximum frequency is defined in Figure 37. 5. For maximum frequencies above 50 MHz, the compensation cell should be used. Table 49. I/O AC characteristics(1)(2)(3) (continued) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit ai14131 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tr(IO)out Electrical characteristics STM32F405xx, STM32F407xx 114/185 DocID022152 Rev 4 Figure 38. Recommended NRST pin protection 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 50. Otherwise the reset is not taken into account by the device. 5.3.18 TIM timer characteristics The parameters given in Table 51 and Table 52 are guaranteed by design. Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 50. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH(NRST) (1) NRST Input high level voltage 2 - - VIL(NRST) (1) NRST Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - 0.3VDD VIH(NRST) (1) NRST Input high level voltage 0.7VDD - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN = VSS 30 40 50 kΩ VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - μs ai14132c STM32Fxxx NRST(2) RPU VDD Filter Internal Reset 0.1 μF External reset circuit(1) DocID022152 Rev 4 115/185 STM32F405xx, STM32F407xx Electrical characteristics Table 51. Characteristics of TIMx connected to the APB1 domain(1) 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB1 prescaler distinct from 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns AHB/APB1 prescaler = 1, fTIMxCLK = 42 MHz 1 - tTIMxCLK 23.8 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 84 MHz APB1= 42 MHz 0 fTIMxCLK/2 MHz 0 42 MHz ResTIM Timer resolution - 16/32 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK 0.0119 780 μs 32-bit counter clock period when internal clock is selected 1 - tTIMxCLK 0.0119 51130563 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK - 51.1 s Electrical characteristics STM32F405xx, STM32F407xx 116/185 DocID022152 Rev 4 5.3.19 Communications interfaces I2C interface characteristics The STM32F405xx and STM32F407xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 53. Refer also to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 52. Characteristics of TIMx connected to the APB2 domain(1) 1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB2 prescaler distinct from 1, fTIMxCLK = 168 MHz 1 - tTIMxCLK 5.95 - ns AHB/APB2 prescaler = 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 168 MHz APB2 = 84 MHz 0 fTIMxCLK/2 MHz 0 84 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK tMAX_COUNT Maximum possible count - 32768 tTIMxCLK Table 53. I2C characteristics Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time 0(3) - 0 900(4) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 DocID022152 Rev 4 117/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 39. I2C bus AC waveforms and measurement circuit 1. Rs= series protection resistor. 2. Rp = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. Table 53. I2C characteristics (continued) Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max ai14979c S TAR T SD A RP I²C bus VDD_I2C STM32Fxx SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) S TAR T REPEATED t S TAR T su(STA) tsu(STO) S TOP tw(STO:STA) VDD_I2C RP RS RS Electrical characteristics STM32F405xx, STM32F407xx 118/185 DocID022152 Rev 4 SPI interface characteristics Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14 with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 kΩ 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE Table 55. SPI dynamic characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SPI clock frequency Master mode, SPI1, 2.7V < VDD < 3.6V - - 42 MHz Slave mode, SPI1, 2.7V < VDD < 3.6V 42 1/tc(SCK) Master mode, SPI1/2/3, 1.7V < VDD < 3.6V - - 21 Slave mode, SPI1/2/3, 1.7V < VDD < 3.6V 21 Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 % DocID022152 Rev 4 119/185 STM32F405xx, STM32F407xx Electrical characteristics tw(SCKH) SCK high and low time Master mode, SPI presc = 2, 2.7V < VDD < 3.6V TPCLK-0.5 TPCLK TPCLK+0.5 ns tw(SCKL) Master mode, SPI presc = 2, 1.7V < VDD < 3.6V TPCLK-2 TPCLK TPCLK+2 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 x TPCLK - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2 x TPCLK tsu(MI) Data input setup time Master mode 6.5 - - tsu(SI) Slave mode 2.5 - - th(MI) Data input hold time Master mode 2.5 - - th(SI) Slave mode 4 - - ta(SO) (2) Data output access time Slave mode, SPI presc = 2 0 - 4 x TPCLK tdis(SO) (3) Data output disable time Slave mode, SPI1, 2.7V < VDD < 3.6V 0 - 7.5 Slave mode, SPI1/2/3 1.7V < VDD < 3.6V 0 - 16.5 tv(SO) th(SO) Data output valid/hold time Slave mode (after enable edge), SPI1, 2.7V < VDD < 3.6V - 11 13 Slave mode (after enable edge), SPI2/3, 2.7V < VDD < 3.6V - 12 16.5 Slave mode (after enable edge), SPI1, 1.7V < VDD < 3.6V - 15.5 19 Slave mode (after enable edge), SPI2/3, 1.7V < VDD < 3.6V - 18 20.5 tv(MO) Data output valid time Master mode (after enable edge), SPI1 , 2.7V < VDD < 3.6V - - 2.5 Master mode (after enable edge), SPI1/2/3 , 1.7V < VDD < 3.6V - - 4.5 th(MO) Data output hold time Master mode (after enable edge) 0 - - 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. Table 55. SPI dynamic characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Electrical characteristics STM32F405xx, STM32F407xx 120/185 DocID022152 Rev 4 Figure 40. SPI timing diagram - slave mode and CPHA = 0 Figure 41. SPI timing diagram - slave mode and CPHA = 1 ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input DocID022152 Rev 4 121/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 42. SPI timing diagram - master mode ai14136 SCK Input CPHA=0 MOSI OUTUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Input CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) Electrical characteristics STM32F405xx, STM32F407xx 122/185 DocID022152 Rev 4 I2S interface characteristics Unless otherwise specified, the parameters given in Table 56 for the i2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV + ODD). FS maximum value is supported for each mode/condition. Table 56. I2S dynamic characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S main clock output - 256 x 8K 256 x FS (2) MHz fCK I2S clock frequency Master data: 32 bits - 64 x FS MHz Slave data: 32 bits - 64 x FS DCK I2S clock frequency duty cycle Slave receiver 30 70 % tv(WS) WS valid time Master mode 0 6 ns th(WS) WS hold time Master mode 0 - tsu(WS) WS setup time Slave mode 1 - th(WS) WS hold time Slave mode 0 - tsu(SD_MR) Data input setup time Master receiver 7.5 - tsu(SD_SR) Slave receiver 2 - th(SD_MR) Data input hold time Master receiver 0 - th(SD_SR) Slave receiver 0 - tv(SD_ST) th(SD_ST) Data output valid time Slave transmitter (after enable edge) - 27 tv(SD_MT) Master transmitter (after enable edge) - 20 th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 - 1. Data based on characterization results, not tested in production. 2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency). DocID022152 Rev 4 123/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 43. I2S slave timing diagram (Philips protocol) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 44. I2S master timing diagram (Philips protocol)(1) 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. USB OTG FS characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. CK Input CPOL = 0 CPOL = 1 tc(CK) WS input SDtransmit SDreceive tw(CKH) tw(CKL) tsu(WS) tv(SD_ST) th(SD_ST) th(WS) tsu(SD_SR) th(SD_SR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14881b LSB receive(2) LSB transmit(2) CK output CPOL = 0 CPOL = 1 tc(CK) WS output SDreceive SDtransmit tw(CKH) tw(CKL) tsu(SD_MR) tv(SD_MT) th(SD_MT) th(WS) th(SD_MR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14884b tf(CK) tr(CK) tv(WS) LSB receive(2) LSB transmit(2) Electrical characteristics STM32F405xx, STM32F407xx 124/185 DocID022152 Rev 4 Figure 45. USB OTG FS timings: definition of data signal rise and fall time Table 57. USB OTG FS startup time Symbol Parameter Max Unit tSTARTUP (1) 1. Guaranteed by design, not tested in production. USB OTG FS transceiver startup time 1 μs Table 58. USB OTG FS DC electrical characteristics Symbol Parameter Conditions Min.(1) 1. All the voltages are measured from the local ground potential. Typ. Max.(1) Unit Input levels VDD USB OTG FS operating voltage 3.0(2) 2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. - 3.6 V VDI (3) 3. Guaranteed by design, not tested in production. Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM V (3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE (3) Single ended receiver threshold 1.3 - 2.0 Output levels VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) 4. RL is the load connected on the USB OTG FS drivers - - 0.3 V VOH Static output level high RL of 15 kΩ to VSS (4) 2.8 - 3.6 RPD PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) VIN = VDD 17 21 24 kΩ PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) 0.65 1.1 2.0 RPU PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 2.1 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 ai14137 tf Differen tial Data L ines VSS VCRS tr Crossover points DocID022152 Rev 4 125/185 STM32F405xx, STM32F407xx Electrical characteristics USB HS characteristics Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 61 and VDD supply voltage conditions summarized in Table 60, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/outputcharacteristics. Table 59. USB OTG FS electrical characteristics(1) 1. Guaranteed by design, not tested in production. Driver characteristics Symbol Parameter Conditions Min Max Unit tr Rise time(2) 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns trfm Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage 1.3 2.0 V Table 60. USB HS DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD USB OTG HS operating voltage 2.7 3.6 V Table 61. USB HS clock timing parameters(1) Parameter Symbol Min Nominal Max Unit fHCLK value to guarantee proper operation of USB HS interface 30 MHz Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 % Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 % Time to reach the steady state frequency and duty cycle after the first transition TSTEADY - - 1.4 ms Clock startup time after the de-assertion of SuspendM Peripheral TSTART_DEV - - 5.6 ms Host TSTART_HOST - - - PHY preparation time after the first transition of the input clock TPREP - - - μs Electrical characteristics STM32F405xx, STM32F407xx 126/185 DocID022152 Rev 4 Figure 46. ULPI timing diagram Ethernet characteristics Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 14 and VDD supply voltage conditions summarized in Table 63, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. 1. Guaranteed by design, not tested in production. Table 62. ULPI timing Parameter Symbol Value(1) 1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C. Unit Min. Max. Control in (ULPI_DIR) setup time tSC - 2.0 ns Control in (ULPI_NXT) setup time - 1.5 Control in (ULPI_DIR, ULPI_NXT) hold time tHC 0 - Data in setup time tSD - 2.0 Data in hold time tHD 0 - Control out (ULPI_STP) setup time and hold time tDC - 9.2 Data out available from clock rising edge tDD - 10.7 Clock Control In (ULPI_DIR, ULPI_NXT) data In (8-bit) Control out (ULPI_STP) data out (8-bit) tDD tDC tSD tHD tSC tHC ai17361c tDC DocID022152 Rev 4 127/185 STM32F405xx, STM32F407xx Electrical characteristics Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 47 shows the corresponding timing diagram. Figure 47. Ethernet SMI timing diagram Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the corresponding timing diagram. Figure 48. Ethernet RMII timing diagram Table 63. Ethernet DC electrical characteristics Symbol Parameter Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input level VDD Ethernet operating voltage 2.7 3.6 V Table 64. Dynamic characteristics: Ehternet MAC signals for SMI(1) 1. Data based on characterization results, not tested in production. Symbol Parameter Min Typ Max Unit tMDC MDC cycle time( 2.38 MHz) 411 420 425 ns Td(MDIO) Write data valid time 6 10 13 tsu(MDIO) Read data setup time 12 - - th(MDIO) Read data hold time 0 - - MS31384V1 ETH_MDC ETH_MDIO(O) ETH_MDIO(I) tMDC td(MDIO) tsu(MDIO) th(MDIO) RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] RMII_RXD[1:0] RMII_CRS_DV td(TXEN) td(TXD) tsu(RXD) tsu(CRS) tih(RXD) tih(CRS) ai15667 Electrical characteristics STM32F405xx, STM32F407xx 128/185 DocID022152 Rev 4 Table 66 gives the list of Ethernet MAC signals for MII and Figure 48 shows the corresponding timing diagram. Figure 49. Ethernet MII timing diagram Table 65. Dynamic characteristics: Ethernet MAC signals for RMII Symbol Rating Min Typ Max Unit tsu(RXD) Receive data setup time 2 - - ns tih(RXD) Receive data hold time 1 - - ns tsu(CRS) Carrier sense set-up time 0.5 - - ns tih(CRS) Carrier sense hold time 2 - - ns td(TXEN) Transmit enable valid delay time 8 9.5 11 ns td(TXD) Transmit data valid delay time 8.5 10 11.5 ns Table 66. Dynamic characteristics: Ethernet MAC signals for MII(1) 1. Data based on characterization results, not tested in production. Symbol Parameter Min Typ Max Unit tsu(RXD) Receive data setup time 9 - ns tih(RXD) Receive data hold time 10 - tsu(DV) Data valid setup time 9 - tih(DV) Data valid hold time 8 - tsu(ER) Error setup time 6 - tih(ER) Error hold time 8 - td(TXEN) Transmit enable valid delay time 0 10 14 td(TXD) Transmit data valid delay time 0 10 15 MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER td(TXEN) td(TXD) tsu(RXD) tsu(ER) tsu(DV) tih(RXD) tih(ER) tih(DV) ai15668 MII_TX_CLK MII_TX_EN MII_TXD[3:0] DocID022152 Rev 4 129/185 STM32F405xx, STM32F407xx Electrical characteristics CAN (controller area network) interface Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX). 5.3.20 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 67 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 14. Table 67. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 1.8(1) - 3.6 V VREF+ Positive reference voltage 1.8(1)(2)(3) - VDDA V fADC ADC clock frequency VDDA = 1.8(1)(3) to 2.4 V 0.6 15 18 MHz VDDA = 2.4 to 3.6 V(3) 0.6 30 36 MHz fTRIG (4) External trigger frequency fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - 17 1/fADC VAIN Conversion voltage range(5) 0 (VSSA or VREFtied to ground) - VREF+ V RAIN (4) External input impedance See Equation 1 for details - - 50 κΩ RADC (4)(6) Sampling switch resistance - - 6 κΩ CADC (4) Internal sample and hold capacitor - 4 - pF tlat (4) Injection trigger conversion latency fADC = 30 MHz - - 0.100 μs - - 3(7) 1/fADC tlatr (4) Regular trigger conversion latency fADC = 30 MHz - - 0.067 μs - - 2(7) 1/fADC tS (4) Sampling time fADC = 30 MHz 0.100 - 16 μs 3 - 480 1/fADC tSTAB (4) Power-up time - 2 3 μs Electrical characteristics STM32F405xx, STM32F407xx 130/185 DocID022152 Rev 4 Equation 1: RAIN max formula The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. tCONV (4) Total conversion time (including sampling time) fADC = 30 MHz 12-bit resolution 0.50 - 16.40 μs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 μs fADC = 30 MHz 8-bit resolution 0.37 - 16.27 μs fADC = 30 MHz 6-bit resolution 0.30 - 16.20 μs 9 to 492 (tS for sampling +n-bit resolution for successive approximation) 1/fADC fS (4) Sampling rate (fADC = 30 MHz, and tS = 3 ADC cycles) 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps IVREF+ (4) ADC VREF DC current consumption in conversion mode - 300 500 μA IVDDA (4) ADC VDDA DC current consumption in conversion mode - 1.6 1.8 mA 1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V. 3. VDDA -VREF+ < 1.2 V. 4. Based on characterization, not tested in production. 5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V. 7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67. Table 67. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit RAIN (k – 0.5) fADC CADC 2N + 2 × × ln( ) = -------------------------------------------------------------- – RADC DocID022152 Rev 4 131/185 STM32F405xx, STM32F407xx Electrical characteristics a Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.16 does not affect the ADC accuracy. Figure 50. ADC accuracy characteristics 1. See also Table 68. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. Table 68. ADC accuracy at fADC = 30 MHz(1) 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. Symbol Parameter Test conditions Typ Max(2) 2. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 60 MHz, fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8(3) to 3.6 V 3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). ±2 ±5 LSB EO Offset error ±1.5 ±2.5 EG Gain error ±1.5 ±3 ED Differential linearity error ±1 ±2 EL Integral linearity error ±1.5 ±3 ai14395c EO EG 1L SBIDEAL 4095 4094 4093 5 4 3 2 1 0 7 6 1 2 3 456 7 4093 4094 4095 4096 (1) (2) ET ED EL (3) VSSA VDDA VREF+ 4096 (or depending on package)] VDDA 4096 [1LSB IDEAL = Electrical characteristics STM32F405xx, STM32F407xx 132/185 DocID022152 Rev 4 EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 51. Typical connection diagram using the ADC 1. Refer to Table 67 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. ai17534 VDD STM32F AINx IL±1 μA 0.6 V VT RAIN (1) Cparasitic VAIN 0.6 V VT RADC (1) CADC(1) 12-bit converter Sample and hold ADC converter DocID022152 Rev 4 133/185 STM32F405xx, STM32F407xx Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 52 or Figure 53, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA) 1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144, and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA. VREF+ STM32F VDDA VSSA/V REF- 1 μF // 10 nF 1 μF // 10 nF ai17535 (See note 1) (See note 1) VREF+/VDDA STM32F 1 μF // 10 nF VREF–/VSSA ai17536 (See note 1) (See note 1) Electrical characteristics STM32F405xx, STM32F407xx 134/185 DocID022152 Rev 4 5.3.21 Temperature sensor characteristics 5.3.22 VBAT monitoring characteristics Table 69. Temperature sensor characteristics Symbol Parameter Min Typ Max Unit TL (1) VSENSE linearity with temperature - ±1 ±2 °C Avg_Slope(1) Average slope - 2.5 mV/°C V25 (1) Voltage at 25 °C - 0.76 V tSTART (2) Startup time - 6 10 μs TS_temp (3)(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - μs 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. Table 70. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F Table 71. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 2 - Er(1) Error on Q –1 - +1 % TS_vbat (2)(2) ADC sampling time when reading the VBAT 1 mV accuracy 5 - - μs 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. DocID022152 Rev 4 135/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.23 Embedded reference voltage The parameters given in Table 72 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. 5.3.24 DAC electrical characteristics Table 72. Embedded internal reference voltage Symbol Parameter Conditions Min Typ Max Unit VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V TS_vrefint (1) ADC sampling time when reading the internal reference voltage 10 - - μs VRERINT_s (2) Internal reference voltage spread over the temperature range VDD = 3 V - 3 5 mV TCoeff (2) Temperature coefficient - 30 50 ppm/°C tSTART (2) Startup time - 6 10 μs 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production. Table 73. Internal reference voltage calibration values Symbol Parameter Memory address VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B Table 74. DAC characteristics Symbol Parameter Min Typ Max Unit Comments VDDA Analog supply voltage 1.8(1) - 3.6 V VREF+ Reference supply voltage 1.8(1) - 3.6 V VREF+ ≤ VDDA VSSA Ground 0 - 0 V RLOAD (2) Resistive load with buffer ON 5 - - kΩ RO (2) Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ CLOAD (2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT min(2) Lower DAC_OUT voltage with buffer ON 0.2 - - V It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.8 V DAC_OUT max(2) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V Electrical characteristics STM32F405xx, STM32F407xx 136/185 DocID022152 Rev 4 DAC_OUT min(2) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV It gives the maximum output DAC_OUT excursion of the DAC. max(2) Higher DAC_OUT voltage with buffer OFF - - VREF+ – 1LSB V IVREF+ (4) DAC DC VREF current consumption in quiescent mode (Standby mode) - 170 240 μA With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs - 50 75 With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs IDDA (4) DAC DC VDDA current consumption in quiescent mode(3) - 280 380 μA With no load, middle code (0x800) on the inputs - 475 625 μA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs DNL(4) Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration. - - ±2 LSB Given for the DAC in 12-bit configuration. INL(4) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±1 LSB Given for the DAC in 10-bit configuration. - - ±4 LSB Given for the DAC in 12-bit configuration. Offset(4) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±10 mV Given for the DAC in 12-bit configuration - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration tSETTLING (4) Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB - 3 6 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ THD(4) Total Harmonic Distortion Buffer ON - - - dB CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Table 74. DAC characteristics (continued) Symbol Parameter Min Typ Max Unit Comments DocID022152 Rev 4 137/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 54. 12-bit buffered /non-buffered DAC 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 5.3.25 FSMC characteristics Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ tWAKEUP (4) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (2) Power supply rejection ratio (to VDDA) (static DC measurement) - –67 –40 dB No RLOAD, CLOAD = 50 pF 1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 2. Guaranteed by design, not tested in production. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed by characterization, not tested in production. Table 74. DAC characteristics (continued) Symbol Parameter Min Typ Max Unit Comments RLOAD CLOAD Buffered/Non-buffered DAC DACx_OUT Buffer(1) 12-bit digital to analog converter ai17157 Electrical characteristics STM32F405xx, STM32F407xx 138/185 DocID022152 Rev 4 Asynchronous waveforms and timings Figure 55 through Figure 58 represent asynchronous waveforms and Table 75 through Table 78 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • AddressSetupTime = 1 • AddressHoldTime = 0x1 • DataSetupTime = 0x1 • BusTurnAroundDuration = 0x0 In all timing tables, the THCLK is the HCLK clock period. Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 2THCLK–0.5 2 THCLK+1 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 3 ns tw(NOE) FSMC_NOE low time 2THCLK–2 2THCLK+ 2 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 4.5 ns th(A_NOE) Address hold time after FSMC_NOE high 4 - ns Data FSMC_NE FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) t h(Data_NE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) FSMC_NWE tsu(Data_NE) tw(NE) ai14991c tv(NOE_NE) t w(NOE) t h(NE_NOE) th(Data_NOE) t h(A_NOE) t h(BL_NOE) tsu(Data_NOE) FSMC_NADV(1) t v(NADV_NE) tw(NADV) DocID022152 Rev 4 139/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+4 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns tw(NADV) FSMC_NADV low time - THCLK ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK+0.5 ns tw(NWE) FSMC_NWE low time THCLK–1 THCLK+2 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK–1 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_D[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:0] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) tv(Data_NE) tw(NE) ai14990 FSMC_NADV(1) t v(NADV_NE) tw(NADV) Electrical characteristics STM32F405xx, STM32F407xx 140/185 DocID022152 Rev 4 Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms th(A_NWE) Address hold time after FSMC_NWE high THCLK– 2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+3 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK–1 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns tw(NADV) FSMC_NADV low time - THCLK+0.5 ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK–1 3THCLK+1 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK–0.5 2THCLK+0.5 ns tw(NOE) FSMC_NOE low time THCLK–1 THCLK+1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) NBL Data FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NE) FSMC_A[25:16] Address tv(A_NE) FSMC_NWE t v(A_NE) ai14892b Address FSMC_NADV t v(NADV_NE) tw(NADV) tsu(Data_NE) th(AD_NADV) FSMC_NE FSMC_NOE tw(NE) t w(NOE) tv(NOE_NE) t h(NE_NOE) th(A_NOE) th(BL_NOE) tsu(Data_NOE) th(Data_NOE) DocID022152 Rev 4 141/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+1 ns th(AD_NADV) FSMC_AD(adress) valid hold time after FSMC_NADV high) THCLK - ns th(A_NOE) Address hold time after FSMC_NOE high THCLK–1 - ns th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 2 ns tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+4 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 4THCLK–0.5 4THCLK+3 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK -0.5 ns tw(NWE) FSMC_NWE low tim e 2THCLK–0.5 2THCLK+3 ns Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued) NBL Data FSMC_NEx FSMC_NBL[1:0] FSMC_AD[15:0] tv(BL_NE) th(Data_NWE) FSMC_NOE FSMC_A[25:16] Address tv(A_NE) tw(NWE) FSMC_NWE tv(NWE_NE) t h(NE_NWE) th(A_NWE) th(BL_NWE) t v(A_NE) tw(NE) ai14891B Address FSMC_NADV t v(NADV_NE) tw(NADV) t v(Data_NADV) th(AD_NADV) Electrical characteristics STM32F405xx, STM32F407xx 142/185 DocID022152 Rev 4 Synchronous waveforms and timings Figure 59 through Figure 62 represent synchronous waveforms and Table 80 through Table 82 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the THCLK is the HCLK clock period (with maximum FSMC_CLK = 60 MHz). th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 1 ns th(AD_NADV) FSMC_AD(address) valid hold time after FSMC_NADV high) THCLK–2 - ns th(A_NWE) Address hold time after FSMC_NWE high THCLK - ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK–2 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns tv(Data_NADV) FSMC_NADV high to Data valid - THCLK–0.5 ns th(Data_NWE) Data hold time after FSMC_NWE high THCLK - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) DocID022152 Rev 4 143/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 59. Synchronous multiplexed NOR/PSRAM read timings Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 2 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 4.5 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 - ns FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NOE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKL-NOEL) td(CLKL-NOEH) td(CLKL-ADV) td(CLKL-ADIV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(ADV-CLKH) th(CLKH-ADV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14893g Electrical characteristics STM32F405xx, STM32F407xx 144/185 DocID022152 Rev 4 Figure 60. Synchronous multiplexed PSRAM write timings th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 80. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued) FSMC_CLK FSMC_NEx FSMC_NADV FSMC_A[25:16] FSMC_NWE FSMC_AD[15:0] AD[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-NADVL) td(CLKL-AV) td(CLKL-NADVH) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-NBLH) td(CLKL-ADV) td(CLKL-ADIV) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14992g td(CLKL-Data) FSMC_NBL DocID022152 Rev 4 145/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 0.5 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 3 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK –0.5 - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0.5 ns Table 80. Synchronous multiplexed PSRAM write timings(1)(2) FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NOE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKL-NOEL) td(CLKL-NOEH) tsu(DV-CLKH) th(CLKH-DV) tsu(DV-CLKH) th(CLKH-DV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) tsu(NWAITV-CLKH) t h(CLKH-NWAITV) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14894f FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) Electrical characteristics STM32F405xx, STM32F407xx 146/185 DocID022152 Rev 4 Figure 62. Synchronous non-multiplexed PSRAM write timings td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 2 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0.5 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued) FSMC_CLK FSMC_NEx FSMC_A[25:0] FSMC_NWE FSMC_D[15:0] D1 D2 FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tw(CLK) tw(CLK) Data latency = 0 BUSTURN = 0 td(CLKL-NExL) td(CLKL-NExH) td(CLKL-AV) td(CLKL-AIV) td(CLKL-NWEL) td(CLKL-NWEH) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) ai14993g FSMC_NADV td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-Data) FSMC_NBL td(CLKL-NBLH) DocID022152 Rev 4 147/185 STM32F405xx, STM32F407xx Electrical characteristics PC Card/CompactFlash controller waveforms and timings Figure 63 through Figure 68 represent synchronous waveforms, and Table 83 and Table 84 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x04; • COM.FSMC_WaitSetupTime = 0x07; • COM.FSMC_HoldSetupTime = 0x04; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x04; • ATT.FSMC_WaitSetupTime = 0x07; • ATT.FSMC_HoldSetupTime = 0x04; • ATT.FSMC_HiZSetupTime = 0x00; • IO.FSMC_SetupTime = 0x04; • IO.FSMC_WaitSetupTime = 0x07; • IO.FSMC_HoldSetupTime = 0x04; • IO.FSMC_HiZSetupTime = 0x00; • TCLRSetupTime = 0; • TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. Table 82. Synchronous non-multiplexed PSRAM write timings(1)(2) 1. CL = 30 pF. 2. Based on characterization, not tested in production. Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period 2THCLK - ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 7 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 6 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 6 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 2 - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 3 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 3 - ns tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns Electrical characteristics STM32F405xx, STM32F407xx 148/185 DocID022152 Rev 4 Figure 63. PC Card/CompactFlash controller waveforms for common memory read access 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. Figure 64. PC Card/CompactFlash controller waveforms for common memory write access FSMC_NWE tw(NOE) FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2(1) FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NOE) tsu(D-NOE) th(NOE-D) tv(NCEx-A) td(NREG-NCEx) td(NIORD-NCEx) th(NCEx-AI) th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) ai14895b td(NCE4_1-NWE) tw(NWE) th(NWE-D) tv(NCE4_1-A) td(NREG-NCE4_1) td(NIORD-NCE4_1) th(NCE4_1-AI) MEMxHIZ =1 tv(NWE-D) th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR) ai14896b FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) td(D-NWE) FSMC_NCE4_2 High DocID022152 Rev 4 149/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access 1. Only data bits 0...7 are read (bits 8...15 are disregarded). td(NCE4_1-NOE) tw(NOE) tsu(D-NOE) th(NOE-D) tv(NCE4_1-A) th(NCE4_1-AI) td(NREG-NCE4_1) th(NCE4_1-NREG) ai14897b FSMC_NWE FSMC_NOE FSMC_D[15:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NOE-NCE4_1) High Electrical characteristics STM32F405xx, STM32F407xx 150/185 DocID022152 Rev 4 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access 1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z). Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access tw(NWE) tv(NCE4_1-A) td(NREG-NCE4_1) th(NCE4_1-AI) th(NCE4_1-NREG) tv(NWE-D) ai14898b FSMC_NWE FSMC_NOE FSMC_D[7:0](1) FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NWE-NCE4_1) High td(NCE4_1-NWE) td(NIORD-NCE4_1) tw(NIORD) tsu(D-NIORD) td(NIORD-D) tv(NCEx-A) th(NCE4_1-AI) ai14899B FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD DocID022152 Rev 4 151/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access td(NCE4_1-NIOWR) tw(NIOWR) tv(NCEx-A) th(NCE4_1-AI) th(NIOWR-D) ATTxHIZ =1 tv(NIOWR-D) ai14900c FSMC_NWE FSMC_NOE FSMC_D[15:0] FSMC_A[10:0] FSMC_NCE4_2 FSMC_NCE4_1 FSMC_NREG FSMC_NIOWR FSMC_NIORD Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space(1)(2) Symbol Parameter Min Max Unit tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+4 - ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+0.5 ns td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK +0.5 ns tw(NOE) FSMC_NOE low width 8THCLK–1 8THCLK+1 ns td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+2.5 - ns tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4.5 - ns th(N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 3 - ns tw(NWE) FSMC_NWE low width 8THCLK–0.5 8THCLK+ 3 ns td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK–1 - ns td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK –1 - ns td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK –1 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Electrical characteristics STM32F405xx, STM32F407xx 152/185 DocID022152 Rev 4 NAND controller waveforms and timings Figure 69 through Figure 72 represent synchronous waveforms, and Table 85 and Table 86 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x01; • COM.FSMC_WaitSetupTime = 0x03; • COM.FSMC_HoldSetupTime = 0x02; • COM.FSMC_HiZSetupTime = 0x01; • ATT.FSMC_SetupTime = 0x01; • ATT.FSMC_WaitSetupTime = 0x03; • ATT.FSMC_HoldSetupTime = 0x02; • ATT.FSMC_HiZSetupTime = 0x01; • Bank = FSMC_Bank_NAND; • MemoryDataWidth = FSMC_MemoryDataWidth_16b; • ECC = FSMC_ECC_Enable; • ECCPageSize = FSMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2) Symbol Parameter Min Max Unit tw(NIOWR) FSMC_NIOWR low width 8THCLK –1 - ns tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK– 1 ns th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK– 2 - ns td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 2.5 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK–1.5 - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 2 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 1.5 - ns tw(NIORD) FSMC_NIORD low width 8THCLK–0.5 - ns tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9 - ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID022152 Rev 4 153/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 69. NAND controller waveforms for read access Figure 70. NAND controller waveforms for write access FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] tsu(D-NOE) th(NOE-D) ai14901c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tv(NWE-D) th(NWE-D) ai14902c FSMC_NWE FSMC_NOE (NRE) FSMC_D[15:0] ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NWE) th(NWE-ALE) Electrical characteristics STM32F405xx, STM32F407xx 154/185 DocID022152 Rev 4 Figure 71. NAND controller waveforms for common memory read access Figure 72. NAND controller waveforms for common memory write access Table 85. Switching characteristics for NAND Flash read cycles(1) 1. CL = 30 pF. Symbol Parameter Min Max Unit tw(N0E) FSMC_NOE low width 4THCLK– 0.5 4THCLK+ 3 ns tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 10 - ns th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 0 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK– 2 - ns FSMC_NWE FSMC_NOE FSMC_D[15:0] tw(NOE) tsu(D-NOE) th(NOE-D) ai14912c ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) tw(NWE) tv(NWE-D) th(NWE-D) ai14913c FSMC_NWE FSMC_NOE FSMC_D[15:0] td(D-NWE) ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NCEx td(ALE-NOE) th(NOE-ALE) DocID022152 Rev 4 155/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.26 Camera interface (DCMI) timing specifications Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 13, with the following configuration: • PCK polarity: falling • VSYNC and HSYNC polarity: high • Data format: 14 bits Figure 73. DCMI timing diagram Table 86. Switching characteristics for NAND Flash write cycles(1) 1. CL = 30 pF. Symbol Parameter Min Max Unit tw(NWE) FSMC_NWE low width 4THCLK–1 4THCLK+ 3 ns tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK –2 - ns td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK–3 - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK–2 - ns Table 87. DCMI characteristics(1) Symbol Parameter Min Max Unit Frequency ratio DCMI_PIXCLK/fHCLK - 0.4 DCMI_PIXCLK Pixel clock input - 54 MHz Dpixel Pixel clock input duty cycle 30 70 % MS32414V1 Pixel clock tsu(VSYNC) tsu(HSYNC) HSYNC VSYNC DATA[0:13] 1/DCMI_PIXCLK th(HSYNC) th(HSYNC) tsu(DATA) th(DATA) Electrical characteristics STM32F405xx, STM32F407xx 156/185 DocID022152 Rev 4 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 88 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14 with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics. Figure 74. SDIO high-speed mode tsu(DATA) Data input setup time 2.5 - ns th(DATA) Data hold time 1 - tsu(HSYNC), tsu(VSYNC) HSYNC/VSYNC input setup time 2 - th(HSYNC), th(VSYNC) HSYNC/VSYNC input hold time 0.5 - 1. Data based on characterization results, not tested in production. Table 87. DCMI characteristics(1) (continued) Symbol Parameter Min Max Unit tW(CKH) CK D, CMD (output) D, CMD (input) tC tW(CKL) tOV tOH tISU tIH tf tr ai14887 DocID022152 Rev 4 157/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 75. SD default mode 5.3.28 RTC characteristics CK D, CMD (output) tOVD tOHD ai14888 Table 88. Dynamic characteristics: SD / MMC characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode 0 48 MHz SDIO_CK/fPCLK2 frequency ratio - - 8/3 - tW(CKL) Clock low time fpp = 48 MHz 8.5 9 - ns tW(CKH) Clock high time fpp = 48 MHz 8.3 10 - CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp = 48 MHz 3 - - ns tIH Input hold time HS fpp = 48 MHz 0 - - CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp = 48 MHz - 4.5 6 ns tOH Output hold time HS fpp = 48 MHz 1 - - CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp = 24 MHz 1.5 - - ns tIHD Input hold time SD fpp = 24 MHz 0.5 - - CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp = 24 MHz - 4.5 7 ns tOHD Output hold default time SD fpp = 24 MHz 0.5 - - 1. Data based on characterization results, not tested in production. Table 89. RTC characteristics Symbol Parameter Conditions Min Max - fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register 4 - Package characteristics STM32F405xx, STM32F407xx 158/185 DocID022152 Rev 4 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID022152 Rev 4 159/185 STM32F405xx, STM32F407xx Package characteristics Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline Bump side Side view Detail A Wafer back side A1 ball location A1 Detail A rotated by 90 °C eee D A0JW_ME Seating plane A2 A b E e e1 e G F e2 Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.520 0.570 0.620 0.0205 0.0224 0.0244 A1 0.165 0.190 0.215 0.0065 0.0075 0.0085 A2 0.350 0.380 0.410 0.0138 0.015 0.0161 b 0.240 0.270 0.300 0.0094 0.0106 0.0118 D 4.178 4.218 4.258 0.1645 0.1661 0.1676 E 3.964 3.969 4.004 0.1561 0.1563 0.1576 e 0.400 0.0157 e1 3.600 0.1417 e2 3.200 0.126 F 0.312 0.0123 G 0.385 0.0152 eee 0.050 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F405xx, STM32F407xx 160/185 DocID022152 Rev 4 Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline 1. Drawing is not to scale. ai14398b A A2 A1 c L1 L E E1 D D1 e b Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 12.000 0.4724 D1 10.000 0.3937 E 12.000 0.4724 E1 10.000 0.3937 e 0.500 0.0197 θ 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 N Number of pins 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID022152 Rev 4 161/185 STM32F405xx, STM32F407xx Package characteristics Figure 78. LQFP64 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. 48 49 32 64 17 1 16 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909 Package characteristics STM32F405xx, STM32F407xx 162/185 DocID022152 Rev 4 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline 1. Drawing is not to scale. IDENTIFICATION e PIN 1 GAUGE PLANE 0.25 mm SEATING PLANE D D1 D3 E3 E1 E K ccc C C 1 25 100 26 76 75 51 50 1L_ME_V4 A2 A A1 L1 L c b A1 Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data(1) Symbol millimeters inches Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 12.000 0.4724 E 15.80v 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 12.000 0.4724 e 0.500 0.0197 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID022152 Rev 4 163/185 STM32F405xx, STM32F407xx Package characteristics Figure 80. LQFP100 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. 75 51 76 50 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 Package characteristics STM32F405xx, STM32F407xx 164/185 DocID022152 Rev 4 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline 1. Drawing is not to scale. D1 D3 D E3 E1 E e Pin 1 identification 73 72 37 36 109 144 108 1 A A2A1 b c A1 L L1 k Seating plane C ccc C 0.25 mm gage plane ME_1A Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 17.500 0.689 E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 17.500 0.6890 e 0.500 0.0197 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394 DocID022152 Rev 4 165/185 STM32F405xx, STM32F407xx Package characteristics Figure 82. LQFP144 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max ai14905c 0.5 0.35 19.9 17.85 22.6 1.35 22.6 19.9 1 36 37 72 108 73 109 144 Package characteristics STM32F405xx, STM32F407xx 166/185 DocID022152 Rev 4 Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline 1. Drawing is not to scale. Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data Symbol millimeters inches(1) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.002 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 9.900 10.000 10.100 0.3898 0.3937 0.3976 E 9.900 10.000 10.100 0.3898 0.3937 0.3976 e 0.650 0.0256 F 0.425 0.450 0.475 0.0167 0.0177 0.0187 ddd 0.080 0.0031 eee 0.150 0.0059 fff 0.080 0.0031 A0E7_ME_V4 Seating plane A2 ddd C A1 A e F F e R A 15 1 BOTTOM VIEW E D TOP VIEW Øb (176 + 25 balls) B A Ø eee M B Ø fff M C C A C A1 ball identifier A1 ball index area DocID022152 Rev 4 167/185 STM32F405xx, STM32F407xx Package characteristics Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline 1. Drawing is not to scale. ccc C C Seating plane A A2 A1 c 0.25 mm gauge plane HD D A1 L L1 k 89 88 E HE 45 44 e 1 176 Pin 1 identification b 133 132 1T_ME ZD ZE Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.600 0.0630 A1 0.050 0.150 0.0020 A2 1.350 1.450 0.0531 0.0060 b 0.170 0.270 0.0067 0.0106 C 0.090 0.200 0.0035 0.0079 D 23.900 24.100 0.9409 0.9488 E 23.900 24.100 0.9409 0.9488 e 0.500 0.0197 HD 25.900 26.100 1.0200 1.0276 HE 25.900 26.100 1.0200 1.0276 L 0.450 0.750 0.0177 0.0295 L1 1.000 0.0394 ZD 1.250 0.0492 ZE 1.250 0.0492 Package characteristics STM32F405xx, STM32F407xx 168/185 DocID022152 Rev 4 Figure 85. LQFP176 recommended footprint 1. Dimensions are expressed in millimeters. ccc 0.080 0.0031 k 0 ° 7 ° 0 ° 7 ° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max 1T_FP_V1 133 132 1.2 0.3 0.5 89 88 1.2 44 45 21.8 26.7 1 176 26.7 21.8 DocID022152 Rev 4 169/185 STM32F405xx, STM32F407xx Package characteristics 6.2 Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Table 96. Package thermal characteristics Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 46 °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 43 Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch 38 Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.65 mm pitch 39 Thermal resistance junction-ambient WLCSP90 - 0.400 mm pitch 38.1 Part numbering STM32F405xx, STM32F407xx 170/185 DocID022152 Rev 4 7 Part numbering For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 97. Ordering information scheme Example: STM32 F 405 R E T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 405 = STM32F40x, connectivity 407= STM32F40x, connectivity, camera interface, Ethernet Pin count R = 64 pins O = 90 pins V = 100 pins Z = 144 pins I = 176 pins Flash memory size E = 512 Kbytes of Flash memory G = 1024 Kbytes of Flash memory Package T = LQFP H = UFBGA Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and reel DocID022152 Rev 4 171/185 STM32F405xx, STM32F407xx Application block diagrams Appendix A Application block diagrams A.1 USB OTG full speed (FS) interface solutions Figure 86. USB controller configured as peripheral-only and used in Full speed mode 1. External voltage regulator only needed when building a VBUS powered device. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. Figure 87. USB controller configured as host-only and used in full speed mode 1. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. STM32F4xx 5V to VDD Volatge regulator (1) VDD VBUS DP VSS PA12/PB15 PA11//PB14 USB Std-B connector DM OSC_IN OSC_OUT MS19000V5 STM32F4xx VDD VBUS DP VSS USB Std-A connector DM GPIO+IRQ GPIO EN Overcurrent 5 V Pwr OSC_IN OSC_OUT MS19001V4 Current limiter power switch(1) PA12/PB15 PA11//PB14 Application block diagrams STM32F405xx, STM32F407xx 172/185 DocID022152 Rev 4 Figure 88. USB controller configured in dual mode and used in full speed mode 1. External voltage regulator only needed when building a VBUS powered device. 2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 3. The ID pin is required in dual role only. 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller. STM32F4xx VDD VBUS DP VSS PA9/PB13 PA12/PB15 PA11/PB14 USB micro-AB connector DM GPIO+IRQ GPIO EN Overcurrent 5 V Pwr 5 V to VDD voltage regulator (1) VDD ID(3) PA10/PB12 OSC_IN OSC_OUT MS19002V3 Current limiter power switch(2) DocID022152 Rev 4 173/185 STM32F405xx, STM32F407xx Application block diagrams A.2 USB OTG high speed (HS) interface solutions Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode 1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection. 2. The ID pin is required in dual role only. DP STM32F4xx DM VBUS VSS DM DP ID(2) USB USB HS OTG Ctrl FS PHY ULPI High speed OTG PHY ULPI_CLK ULPI_D[7:0] ULPI_DIR ULPI_STP ULPI_NXT not connected connector MCO1 or MCO2 24 or 26 MHz XT(1) PLL XT1 XI MS19005V2 Application block diagrams STM32F405xx, STM32F407xx 174/185 DocID022152 Rev 4 A.3 Ethernet interface solutions Figure 90. MII mode using a 25 MHz crystal 1. fHCLK must be greater than 25 MHz. 2. Pulse per second when using IEEE1588 PTP optional signal. Figure 91. RMII with a 50 MHz oscillator 1. fHCLK must be greater than 25 MHz. MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK XT1 PHY_CLK 25 MHz MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER MII_TX_CLK MII_TX_EN MII_TXD[3:0] MII_CRS MII_COL MDIO MDC HCLK(1) PPS_OUT(2) XTAL 25 MHz STM32 OSC TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP MII = 15 pins MII + MDC = 17 pins MS19968V1 MCO1/MCO2 MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK PHY_CLK 50 MHz XT1 RMII_RXD[1:0] RMII_CRX_DV RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] MDIO MDC HCLK(1) STM32 OSC 50 MHz TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP RMII = 7 pins RMII + MDC = 9 pins MS19969V1 /2 or /20 2.5 or 25 MHz synchronous 50 MHz 50 MHz DocID022152 Rev 4 175/185 STM32F405xx, STM32F407xx Application block diagrams Figure 92. RMII with a 25 MHz crystal and PHY with PLL 1. fHCLK must be greater than 25 MHz. 2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block. MCU Ethernet MAC 10/100 Ethernet PHY 10/100 PLL HCLK PHY_CLK 25 MHz XT1 RMII_RXD[1:0] RMII_CRX_DV RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] MDIO MDC HCLK(1) STM32F TIM2 Timestamp comparator Timer input trigger IEEE1588 PTP RMII = 7 pins RMII + MDC = 9 pins MS19970V1 /2 or /20 2.5 or 25 MHz synchronous 50 MHz XTAL 25 MHz OSC PLL REF_CLK MCO1/MCO2 Revision history STM32F405xx, STM32F407xx 176/185 DocID022152 Rev 4 8 Revision history Table 98. Document revision history Date Revision Changes 15-Sep-2011 1 Initial release. 24-Jan-2012 2 Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Figure 3: Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and Figure 4: Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages, and removed note 1 and 2. Updated Section 2.2.9: Flexible static memory controller (FSMC). Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in Section 2.2.13: Boot modes. Updated note in Section 2.2.14: Power supply schemes. PDR_ON no more available on LQFP100 package. Updated Section 2.2.16: Voltage regulator. Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in Table 5: USART feature comparison. Removed support of I2C for OTG PHY in Section 2.2.30: Universal serial bus on-the-go full-speed (OTG_FS). Added Table 6: Legend/abbreviations used in the pinout table. Table 7: STM32F40x pin and ball definitions: replaced VSS_3, VSS_4, and VSS_8 by VSS; reformatted Table 7: STM32F40x pin and ball definitions to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to VSS; EVENTOUT added in the list of alternate functions for all I/Os; ADC3_IN8 added as alternate function for PF10; FSMC_CLE and FSMC_ALE added as alternate functions for PD11 and PD12, respectively; PH10 alternate function TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7: STM32F40x pin and ball definitions and Table 9: Alternate function mapping. Changed TCM data RAM to CCM data RAM in Figure 18: STM32F40x memory map. Added IVDD and IVSS maximum values in Table 12: Current characteristics. Added Note 1 related to fHCLK, updated Note 2 in Table 14: General operating conditions, and added maximum power dissipation values. Updated Table 15: Limitations depending on the operating power supply range. DocID022152 Rev 4 177/185 STM32F405xx, STM32F407xx Revision history 24-Jan-2012 2 (continued) Added V12 in Table 19: Embedded reset and power control block characteristics. Updated Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure , Figure 25, Figure 26, and Figure 27. Updated Table 22: Typical and maximum current consumption in Sleep mode and removed Note 1. Updated Table 23: Typical and maximum current consumptions in Stop mode and Table 24: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in VBAT mode, and Table 26: Switching output I/O current consumption. Section : On-chip peripheral current consumption: modified conditions, and updated Table 27: Peripheral current consumption and Note 2. Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in Table 29: High-speed external user clock characteristics. Added Cin(LSE) in Table 30: Low-speed external user clock characteristics. Updated maximum PLL input clock frequency, removed related note, and deleted jitter for MCO for RMII Ethernet typical value in Table 35: Main PLL characteristics. Updated maximum PLLI2S input clock frequency and removed related note in Table 36: PLLI2S (audio PLL) characteristics. Updated Section : Flash memory to specify that the devices are shipped to customers with the Flash memory erased. Updated Table 38: Flash memory characteristics, and added tME in Table 39: Flash memory programming. Updated Table 42: EMS characteristics, and Table 43: EMI characteristics. Updated Table 56: I2S dynamic characteristics Updated Figure 46: ULPI timing diagram and Table 62: ULPI timing. Added tCOUNTER and tMAX_COUNT in Table 51: Characteristics of TIMx connected to the APB1 domain and Table 52: Characteristics of TIMx connected to the APB2 domain. Updated Table 65: Dynamic characteristics: Ethernet MAC signals for RMII. Removed USB-IF certification in Section : USB OTG FS characteristics. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 178/185 DocID022152 Rev 4 24-Jan-2012 2 (continued) Updated Table 61: USB HS clock timing parameters Updated Table 67: ADC characteristics. Updated Table 68: ADC accuracy at fADC = 30 MHz. Updated Note 1 in Table 74: DAC characteristics. Section 5.3.25: FSMC characteristics: updated Table 75 toTable 86, changed CL value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 60: Synchronous multiplexed PSRAM write timings. Updated Table 96: Package thermal characteristics. Appendix A.1: USB OTG full speed (FS) interface solutions: modified Figure 86: USB controller configured as peripheral-only and used in Full speed mode added Note 2, updated Figure 87: USB controller configured as host-only and used in full speed mode and added Note 2, changed Figure 88: USB controller configured in dual mode and used in full speed mode and added Note 3. Appendix A.2: USB OTG high speed (HS) interface solutions: removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode, and updated Figure 89: USB controller configured as peripheral, host, or dual-mode and used in high speed mode and added Note 2. Added Appendix A.3: Ethernet interface solutions. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 179/185 STM32F405xx, STM32F407xx Revision history 31-May-2012 3 Updated Figure 5: STM32F40x block diagram and Figure 7: Power supply supervisor interconnection with internal reset OFF Added SDIO, added notes related to FSMC and SPI/I2S in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Starting from Silicon revision Z, USB OTG full-speed interface is now available for all STM32F405xx devices. Added full information on WLCSP90 package together with corresponding part numbers. Changed number of AHB buses to 3. Modified available Flash memory sizes in Section 2.2.4: Embedded Flash memory. Modified number of maskable interrupt channels in Section 2.2.10: Nested vectored interrupt controller (NVIC). Updated case of Regulator ON/internal reset ON, Regulator ON/internal reset OFF, and Regulator OFF/internal reset ON in Section 2.2.16: Voltage regulator. Updated standby mode description in Section 2.2.19: Low-power modes. Added Note 1 below Figure 16: STM32F40x UFBGA176 ballout. Added Note 1 below Figure 17: STM32F40x WLCSP90 ballout. Updated Table 7: STM32F40x pin and ball definitions. Added Table 8: FSMC pin definition. Removed OTG_HS_INTN alternate function in Table 7: STM32F40x pin and ball definitions and Table 9: Alternate function mapping. Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function mapping. Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping. Added Table 10: STM32F40x register boundary addresses. Updated Figure 18: STM32F40x memory map. Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power supply scheme. Added power dissipation maximum value for WLCSP90 in Table 14: General operating conditions. Updated VPOR/PDR in Table 19: Embedded reset and power control block characteristics. Updated notes in Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, and Table 22: Typical and maximum current consumption in Sleep mode. Updated maximum current consumption at TA = 25 °n Table 23: Typical and maximum current consumptions in Stop mode. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 180/185 DocID022152 Rev 4 31-May-2012 3 (continued) Removed fHSE_ext typical value in Table 29: High-speed external user clock characteristics. Updated Table 31: HSE 4-26 MHz oscillator characteristics and Table 32: LSE oscillator characteristics (fLSE = 32.768 kHz). Added fPLL48_OUT maximum value in Table 35: Main PLL characteristics. Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated Table 38: Flash memory characteristics, Table 39: Flash memory programming, and Table 40: Flash memory programming with VPP. Updated Section : Output driving current. Table 53: I2C characteristics: Note 4 updated and applied to th(SDA) in Fast mode, and removed note 4 related to th(SDA) minimum value. Updated Table 67: ADC characteristics. Updated note concerning ADC accuracy vs. negative injection current below Table 68: ADC accuracy at fADC = 30 MHz. Added WLCSP90 thermal resistance in Table 96: Package thermal characteristics. Updated Table 90: WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data. Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data. Added Figure 85: LQFP176 recommended footprint. Removed 256 and 768 Kbyte Flash memory density from Table 97: Ordering information scheme. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 181/185 STM32F405xx, STM32F407xx Revision history 04-Jun-2013 4 Modified Note 1 below Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Figure 4 title. Updated Note 3 below Figure 21: Power supply scheme. Changed simplex mode into half-duplex mode in Section 2.2.25: Interintegrated sound (I2S). Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively. Updated pin 36 signal in Figure 15: STM32F40x LQFP176 pinout. Changed pin number from F8 to D4 for PA13 pin in Table 7: STM32F40x pin and ball definitions. Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5 pins in Table 9: Alternate function mapping. Changed system memory into System memory + OTP in Figure 18: STM32F40x memory map. Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions. Updated IDDA description in Table 74: DAC characteristics. Removed PA9/PB13 connection to VBUS in Figure 86: USB controller configured as peripheral-only and used in Full speed mode and Figure 87: USB controller configured as host-only and used in full speed mode. Updated SPI throughput on front page and Section 2.2.24: Serial peripheral interface (SPI) Updated operating voltages in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts Updated note in Section 2.2.14: Power supply schemes Updated Section 2.2.15: Power supply supervisor Updated “Regulator ON” paragraph in Section 2.2.16: Voltage regulator Removed note in Section 2.2.19: Low-power modes Corrected wrong reference manual in Section 2.2.28: Ethernet MAC interface with dedicated DMA and IEEE 1588 support Updated Table 15: Limitations depending on the operating power supply range Updated Table 24: Typical and maximum current consumptions in Standby mode Updated Table 25: Typical and maximum current consumptions in VBAT mode Updated Table 36: PLLI2S (audio PLL) characteristics Updated Table 43: EMI characteristics Updated Table 48: Output voltage characteristics Updated Table 50: NRST pin characteristics Updated Table 55: SPI dynamic characteristics Updated Table 56: I2S dynamic characteristics Deleted Table 59 Updated Table 62: ULPI timing Updated Figure 47: Ethernet SMI timing diagram Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 182/185 DocID022152 Rev 4 04-Jun-2013 4 (continued) Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline Updated Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data Updated Figure 5: STM32F40x block diagram Updated Section 2: Description Updated footnote (3) in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts Updated Figure 3: Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package Updated Figure 4: Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages Updated Section 2.2.14: Power supply schemes Updated Section 2.2.15: Power supply supervisor Updated Section 2.2.16: Voltage regulator, including figures. Updated Table 14: General operating conditions, including footnote (2). Updated Table 15: Limitations depending on the operating power supply range, including footnote (3). Updated footnote (1) in Table 67: ADC characteristics. Updated footnote (3) in Table 68: ADC accuracy at fADC = 30 MHz. Updated footnote (1) in Table 74: DAC characteristics. Updated Figure 9: Regulator OFF. Updated Figure 7: Power supply supervisor interconnection with internal reset OFF. Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF availability. Updated footnote (2) of Figure 21: Power supply scheme. Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by “I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate function mapping. Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14, PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F40x pin and ball definitions. Removed the following sentence from Section : I2C interface characteristics: ”Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 14.”. In Table 7: STM32F40x pin and ball definitions on page 45: – For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1, RTC_TS” – for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2, RTC_TS”. – for pin PB15, added RTC_REFIN in Alternate functions column. In Table 9: Alternate function mapping on page 60, for port PB15, replaced “RTC_50Hz” by “RTC_REFIN”. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 183/185 STM32F405xx, STM32F407xx Revision history 04-Jun-2013 4 (continued) Updated Figure 6: Multi-AHB matrix. Updated Figure 7: Power supply supervisor interconnection with internal reset OFF Changed 1.2 V to V12 in Section : Regulator OFF Updated LQFP176 pin 48. Updated Section 1: Introduction. Updated Section 2: Description. Updated operating voltage in Table 2: STM32F405xx and STM32F407xx: features and peripheral counts. Updated Note 1. Updated Section 2.2.15: Power supply supervisor. Updated Section 2.2.16: Voltage regulator. Updated Figure 9: Regulator OFF. Updated Table 3: Regulator ON/OFF and internal reset ON/OFF availability. Updated Section 2.2.19: Low-power modes. Updated Section 2.2.20: VBAT operation. Updated Section 2.2.22: Inter-integrated circuit interface (I²C) . Updated pin 48 in Figure 15: STM32F40x LQFP176 pinout. Updated Table 6: Legend/abbreviations used in the pinout table. Updated Table 7: STM32F40x pin and ball definitions. Updated Table 14: General operating conditions. Updated Table 15: Limitations depending on the operating power supply range. Updated Section 5.3.7: Wakeup time from low-power mode. Updated Table 33: HSI oscillator characteristics. Updated Section 5.3.15: I/O current injection characteristics. Updated Table 47: I/O static characteristics. Updated Table 50: NRST pin characteristics. Updated Table 53: I2C characteristics. Updated Figure 39: I2C bus AC waveforms and measurement circuit. Updated Section 5.3.19: Communications interfaces. Updated Table 67: ADC characteristics. Added Table 70: Temperature sensor calibration values. Added Table 73: Internal reference voltage calibration values. Updated Section 5.3.25: FSMC characteristics. Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics. Updated Table 23: Typical and maximum current consumptions in Stop mode. Updated Section : SPI interface characteristics included Table 55. Updated Section : I2S interface characteristics included Table 56. Updated Table 64: Dynamic characteristics: Ehternet MAC signals for SMI. Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII. Table 98. Document revision history (continued) Date Revision Changes Revision history STM32F405xx, STM32F407xx 184/185 DocID022152 Rev 4 04-Jun-2013 4 (continued) Updated Table 64: Dynamic characteristics: Ehternet MAC signals for SMI. Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII. Updated Table 79: Synchronous multiplexed NOR/PSRAM read timings. Updated Table 80: Synchronous multiplexed PSRAM write timings. Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read timings. Updated Table 82: Synchronous non-multiplexed PSRAM write timings. Updated Section 5.3.26: Camera interface (DCMI) timing specifications including Table 87: DCMI characteristics and addition of Figure 73: DCMI timing diagram. Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics including Table 88. Updated Chapter Figure 9. Table 98. Document revision history (continued) Date Revision Changes DocID022152 Rev 4 185/185 STM32F405xx, STM32F407xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 1IN+ 1IN− FEEDBACK DTC CT RT GND C1 2IN+ 2IN− REF OUTPUT CTRL VCC C2 E2 E1 D, DB, N, NS, OR PW PACKAGE (TOP VIEW) TL494 www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014 TL494 Pulse-Width-Modulation Control Circuits Check for Samples: TL494 1FEATURES DESCRIPTION • Complete PWM Power-Control Circuitry The TL494 device incorporates all the functions • Uncommitted Outputs for 200-mA Sink or required in the construction of a pulse-width- modulation (PWM) control circuit on a single chip. Source Current Designed primarily for power-supply control, this • Output Control Selects Single-Ended or device offers the flexibility to tailor the power-supply Push-Pull Operation control circuitry to a specific application. • Internal Circuitry Prohibits Double Pulse at The TL494 device contains two error amplifiers, an Either Output on-chip adjustable oscillator, a dead-time control • Variable Dead Time Provides Control Over (DTC) comparator, a pulse-steering control flip-flop, a Total Range 5-V, 5%-precision regulator, and output-control circuits. • Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance The error amplifiers exhibit a common-mode voltage • Circuit Architecture Allows Easy range from –0.3 V to VCC – 2 V. The dead-time Synchronization control comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator can be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it can drive the common circuits in synchronous multiple-rail power supplies. The uncommitted output transistors provide either common-emitter or emitter-follower output capability. The TL494 device provides for push-pull or singleended output operation, which can be selected through the output-control function. The architecture of this device prohibits the possibility of either output being pulsed twice during push-pull operation. The TL494C device is characterized for operation from 0°C to 70°C. The TL494I device is characterized for operation from –40°C to 85°C. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1983–2014, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. GND VCC Reference Regulator C1 Pulse-Steering Flip-Flop C1 1D DTC CT RT PWM Comparator + − Error Amplifier 1 ≈ 0.1 V Dead-Time Control Comparator Oscillator OUTPUT CTRL (see Function Table) 0.7 mA E1 C2 E2 + − Error Amplifier 2 1IN+ 1IN− 2IN+ 2IN− FEEDBACK REF 6 5 4 1 2 16 15 3 13 8 9 11 10 12 14 7 Q1 ≈ 0.7 V Q2 TL494 SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Function Table INPUT TO OUTPUT FUNCTION OUTPUT CTRL VI = GND Single-ended or parallel output VI = Vref Normal push-pull operation Functional Block Diagram 2 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated Product Folder Links :TL494 TL494 www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT VCC Supply voltage(2) 41 V VI Amplifier input voltage VCC + 0.3 V VO Collector output voltage 41 V IO Collector output current 250 mA D package 73 DB package 82 θJA Package thermal impedance(3) (4) N package 67 °C/W NS package 64 PW package 108 Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C Tstg Storage temperature range –65 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltages are with respect to the network ground terminal. (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions MIN MAX UNIT VCC Supply voltage 7 40 V VI Amplifier input voltage –0.3 VCC – 2 V VO Collector output voltage 40 V Collector output current (each transistor) 200 mA Current into feedback terminal 0.3 mA fOSC Oscillator frequency 1 300 kHz CT Timing capacitor 0.47 10000 nF RT Timing resistor 1.8 500 kΩ TL494C 0 70 TA Operating free-air temperature °C TL494I –40 85 Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links :TL494    N n1 (xnX)2 N1  TL494 SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com Electrical Characteristics over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted) Reference Section TL494C, TL494I PARAMETER TEST CONDITIONS(1) UNIT MIN TYP(2) MAX Output voltage (REF) IO = 1 mA 4.75 5 5.25 V Input regulation VCC = 7 V to 40 V 2 25 mV Output regulation IO = 1 mA to 10 mA 1 15 mV Output voltage change with temperature ΔTA = MIN to MAX 2 10 mV/V Short-circuit output current(3) REF = 0 V 25 mA (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. (2) All typical values, except for parameter changes with temperature, are at TA = 25°C. (3) Duration of short circuit should not exceed one second. Oscillator Section CT = 0.01 μF, RT = 12 kΩ (see Figure 1) TL494C, TL494I PARAMETER TEST CONDITIONS(1) UNIT MIN TYP(2) MAX Frequency 10 kHz Standard deviation of frequency(3) All values of VCC, CT, RT, and TA constant 100 Hz/kHz Frequency change with voltage VCC = 7 V to 40 V, TA = 25°C 1 Hz/kHz Frequency change with temperature(4) ΔTA = MIN to MAX 10 Hz/kHz (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. (2) All typical values, except for parameter changes with temperature, are at TA = 25°C. (3) Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: (4) Temperature coefficient of timing capacitor and timing resistor are not taken into account. Error-Amplifier Section See Figure 2 TL494C, TL494I PARAMETER TEST CONDITIONS UNIT MIN TYP(1) MAX Input offset voltage VO (FEEDBACK) = 2.5 V 2 10 mV Input offset current VO (FEEDBACK) = 2.5 V 25 250 nA Input bias current VO (FEEDBACK) = 2.5 V 0.2 1 μA Common-mode input voltage range VCC = 7 V to 40 V –0.3 to VCC – 2 V Open-loop voltage amplification ΔVO = 3 V, VO = 0.5 V to 3.5 V, RL = 2 kΩ 70 95 dB Unity-gain bandwidth VO = 0.5 V to 3.5 V, RL = 2 kΩ 800 kHz Common-mode rejection ratio ΔVO = 40 V, TA = 25°C 65 80 dB Output sink current (FEEDBACK) VID = –15 mV to –5 V, V (FEEDBACK) = 0.7 V 0.3 0.7 mA Output source current (FEEDBACK) VID = 15 mV to 5 V, V (FEEDBACK) = 3.5 V –2 mA (1) All typical values, except for parameter changes with temperature, are at TA = 25°C. 4 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated Product Folder Links :TL494 TL494 www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014 Electrical Characteristics over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted) Output Section PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Collector off-state current VCE = 40 V, VCC = 40 V 2 100 μA Emitter off-state current VCC = VC = 40 V, VE = 0 –100 μA Common emitter VE = 0, IC = 200 mA 1.1 1.3 Collector-emitter saturation voltage V Emitter follower VO(C1 or C2) = 15 V, IE = –200 mA 1.5 2.5 Output control input current VI = Vref 3.5 mA (1) All typical values, except for temperature coefficient, are at TA = 25°C. Dead-Time Control Section See Figure 1 PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Input bias current (DEAD-TIME CTRL) VI = 0 to 5.25 V –2 –10 μA Maximum duty cycle, each output VI (DEAD-TIME CTRL) = 0, CT = 0.01 μF, 45 % RT = 12 kΩ Zero duty cycle 3 3.3 Input threshold voltage (DEAD-TIME CTRL) V Maximum duty cycle 0 (1) All typical values, except for temperature coefficient, are at TA = 25°C. PWM Comparator Section See Figure 1 PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Input threshold voltage (FEEDBACK) Zero duty cyle 4 4.5 V Input sink current (FEEDBACK) V (FEEDBACK) = 0.7 V 0.3 0.7 mA (1) All typical values, except for temperature coefficient, are at TA = 25°C. Total Device PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT RT = Vref, VCC = 15 V 6 10 Standby supply current All other inputs and outputs open mA VCC = 40 V 9 15 Average supply current VI (DEAD-TIME CTRL) = 2 V, See Figure 1 7.5 mA (1) All typical values, except for temperature coefficient, are at TA = 25°C. Switching Characteristics TA = 25°C PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Rise time 100 200 ns Common-emitter configuration, See Figure 3 Fall time 25 100 ns Rise time 100 200 ns Emitter-follower configuration, See Figure 4 Fall time 40 100 ns (1) All typical values, except for temperature coefficient, are at TA = 25°C. Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Links :TL494 Test Inputs DTC FEEDBACK RT CT GND 50 kW 12 kW 0.01 mF VCC OUTPUT REF CTRL E2 C2 E1 C1 Output 1 Output 2 150 W 2 W 150 W 2 W VCC = 15 V TEST CIRCUIT 1IN+ VCC VCC 0 V 0 V Voltage at C1 Voltage at C2 Voltage at CT DTC FEEDBACK 0 V 0.7 V 0% MAX 0% Threshold Voltage Threshold Voltage VOLTAGE WAVEFORMS Duty Cycle Error Amplifiers 7 14 12 8 9 11 10 4 3 6 5 1 2 16 15 13 1IN− 2IN− 2IN+ TL494 SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com Parameter Measurement Information Figure 1. Operational Test Circuit and Waveforms 6 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated Product Folder Links :TL494 Output Each Output Circuit 68 W 2 W 15 V CL = 15 pF (See Note A) 90% 10% 90% 10% tr tf TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM NOTE A: CL includes probe and jig capacitance. Output Each Output Circuit 68 W 2 W 15 V CL = 15 pF (See Note A) 90% 10% 90% 10% tf tr TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM NOTE A: CL includes probe and jig capacitance. + − + − VI Vref FEEDBACK Amplifier Under Test Other Amplifier TL494 www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014 Parameter Measurement Information Figure 2. Amplifier Characteristics Figure 3. Common-Emitter Configuration Figure 4. Emitter-Follower Configuration Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Links :TL494 10 0 100 20 1 10 100 1 M A − Amplifier Voltage Amplification − dB 30 f − Frequency − Hz 1 k VCC = 15 V !VO = 3 V TA = 25°C 10 k 40 50 60 70 80 90 100 k Df = 1% (1) 40 10 100 1 k 4 k 10 k 40 k 100 k 400 k 1 M f − Oscillator Frequency and Frequency Variation − Hz 400 1 k 4 k 10 k 40 k 100 k RT − Timing Resistance − ! 0.1 μF −2% −1% 0% 0.01 μF 0.001 μF VCC = 15 V TA = 25°C CT = 1 μF TL494 SLVS074F –JANUARY 1983–REVISED JANUARY 2014 www.ti.com Typical Characteristics (1) Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range. Figure 5. Oscillator Frequency and Frequency Variation vs Timing Resistance Figure 6. Amplifier Voltage Amplification vs Frequency 8 Submit Documentation Feedback Copyright © 1983–2014, Texas Instruments Incorporated Product Folder Links :TL494 TL494 www.ti.com SLVS074F –JANUARY 1983–REVISED JANUARY 2014 REVISION HISTORY Changes from Revision E (February 2005) to Revision F Page • Updated document to new TI data sheet format - no specification changes. ...................................................................... 1 • Removed Ordering Information table. ................................................................................................................................... 1 • Added ESD warning. ............................................................................................................................................................ 2 Copyright © 1983–2014, Texas Instruments Incorporated Submit Documentation Feedback 9 Product Folder Links :TL494 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples TL494CD ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C TL494CDG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C TL494CDR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 TL494C TL494CDRE4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C TL494CDRG3 PREVIEW SOIC D 16 TBD Call TI Call TI 0 to 70 TL494C TL494CDRG4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494C TL494CJ OBSOLETE CDIP J 16 TBD Call TI Call TI TL494CN ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL494CN TL494CNE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 TL494CN TL494CNSR ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494 TL494CNSRG4 ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL494 TL494CPW ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494 TL494CPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494 TL494CPWLE OBSOLETE TSSOP PW 16 TBD Call TI Call TI TL494CPWR ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494 TL494CPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T494 TL494ID ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I TL494IDG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples TL494IDR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 TL494I TL494IDRE4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I TL494IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL494I TL494IN ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL494IN TL494INE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 TL494IN TL494MJ OBSOLETE CDIP J 16 TBD Call TI Call TI -55 to 125 TL494MJB OBSOLETE CDIP J 16 TBD Call TI Call TI -55 to 125 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 3 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant TL494CDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL494CDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL494CDRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL494CPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TL494IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 TL494IDRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Feb-2014 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TL494CDR SOIC D 16 2500 367.0 367.0 38.0 TL494CDR SOIC D 16 2500 333.2 345.9 28.6 TL494CDRG4 SOIC D 16 2500 333.2 345.9 28.6 TL494CPWR TSSOP PW 16 2000 367.0 367.0 35.0 TL494IDR SOIC D 16 2500 333.2 345.9 28.6 TL494IDRG4 SOIC D 16 2500 333.2 345.9 28.6 PACKAGE MATERIALS INFORMATION www.ti.com 11-Feb-2014 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated All technical caracteristics are subject to change without previous notice. Caractéristiques sujettes à modifications sans préavis. Proud to serve you celduc r e l a i s page 1 / 5F/GB S/MON/SO967460/B/01/03/2005 Relais statique monophasé de puissance Power Solid State Relay SO967460 okpac ❏ Relais statique synchrone spécialement adapté aux charges résistives. Zero Cross Solid State Relay specially designed for resistive loads. ❏ Sortie thyristors technologie TMS2 (*) permettant une longue durée de vie : 24 à 600VAC 75A. Back to back thyristors on output with TMS2 (*) technology for a long lifetime expectancy : 24 to 600VAC 75A. ❏ Large plage de contrôle: 3,5 - 32VDC avec un courant de commande régulé. LED de visualisation sur l'entrée de couleur verte. Protection aux surtensions sur l'entrée intégrée. Large control range: 3.5-32VDC with input current limiter. Green LED visualization on the input. Input over-voltage protection. ❏ Protection IP20 sur demande par l'ajout de volets. IP20 protection flaps on request (option). ❏ Construit en conformité aux normes EN60947-4-3 (IEC947-4-3) et EN60950/VDE0805 (Isolement renforcé) -UL-cUL Designed in conformity with EN60947-4-3 (IEC947-4-3) and EN60950/VDE0805 (Reinforced Insulation) -UL-cUL Output : 24-600VAC 75A Input : 3,5-32VDC Typical application: 30kW resistor (AC-51 load) on 400 VAC avec protection IP20/ with IP20 flaps Entrée control + * 1/L1 et 2/T2 peuvent être inversées/ 1/L1 T2 can be changed * le relais doit être monté sur dissipateur thermique / SSR must be mounted on a heatsink 24-600VAC - CHARGE/LOAD protection réseau line protection 4/A2- 3/A1+ 1/L1 2/T1 LED ZC sans protection IP20/ without IP20 flaps (*) : Thermo mechanical Stress Solution - 1/L1 et 2/T1 peuvent être inversées. 1/L1 and 2/T1 can be swapped. - Le relais être monté sur dissipateur thermique. SSR must be mounted on heatsink Application typique: Resistance 30 kW (Catégorie AC-51) en 400 VAC 3,5-32VDC Volets IP20 sur demande/ with IP20 flaps on request Dimensions : r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com celduc Caractéristiques d'entrée / Control characteristics (at 25°C) DC Paramètre / Parameter Symbol Min Typ Max Unit Tension de commande / Control voltage Uc 3,5 5-12-24 32 V Courant de commande / Control current (@ Uc ) Ic <10 <13 <13 mA Tension de non fonctionnement / Release voltage Uc off 2 V LED d'entrée / Input LED verte / green Tension Inverse / Reverse voltage Urv 32 V Tension de transil d'entrée / Clamping voltage (Transil) Uclamp 36 V Immunité / Input immunity : EN61000-4-4 2kV Immunité / Input immunity : EN61000-4-5 2KV Caractéristiques de sortie / Output characteristics (at 25°C) Paramètre / Parameter Conditions Symbol Min Typ. Max Unit Plage de tension utilisation / Operating voltage range Ue 24 400 600 V rms Tension de crête / Peak voltage Up 1200 V Niveau de synchronisme / Zero cross level Usync 35 V Tension minimum amorçage / Latching voltage Ie nom Ua 10 V Courant nominal / nominal current (AC-51) Ie AC-51 75 90 A rms Courant surcharge / Non repetitive overload current tp=10ms (Fig. 3) Itsm 1000 1200 A Chute directe à l'état passant / On state voltage drop @ 25°C Vt 0,9 V Résistance dynamique / On state dynamic resistance rt 4,5 mΩ Puissance dissipée (max) / Output power dissipation (max value) Pd 0,9x0,9xIe + 0,0045xIe2 W Résistance thermique jonction/semelle Thermal resistance between junction to case Rthj/c 0,4 K/W Courant de fuite à l'état bloqué / Off state leakage current @Ue typ, 50Hz Ilk 1 mA Courant minimum de charge / Minimum load current Iemin 5 mA Temps de fermeture / Turn on time @Ue typ, 50Hz ton max 10 ms Temps d'ouverture / Turn off time @Ue typ, 50Hz toff max 10 ms Fréquence utilisation/ Operating frequency range F mains f 0,1 50-60 800 Hz dv/dt à l'état bloqué / Off state dv/dt dv/dt 500 V/μs di/dt max / Maximum di/dt non repetitive di/dt 50 A/μs I2t (<10ms) I2t 5000 7200 A2s Immunité / Conducted immunity level IEC/EN61000-4-4 (bursts) 2kV criterion B Immunité / Conducted immunity level IEC/EN61000-4-5 (surge) 2kV criterion A with external VDR Protection court-circuit / Short circuit protection voir/see page 5 Example Fuse Ferraz URC63A or fast Breaker Input : Ic = f( Uc) page 2 / 5F/GB S/MON/SO967460/B/01/03/2005 okpac Caractéristiques générales / General characteristics (at 25°C) Symbol Isolement entrée/sortie - Input to output insulation Ui 4000 VRMS Isolation sortie/ semelle - Output to case insulation Ui 4000 VRMS Résistance Isolement / Insulation resistance Ri 1000 (@500VDC) MΩ Tenue aux tensions de chocs / Rated impulse voltage Uimp 4000 V Degré de protection / Protection level / CEI529 IP00 Degré de pollution / Pollution degree - 2 Vibrations / Vibration withstand 10 -55 Hz according to CEI68 double amplitude 1,5 mm Tenue aux chocs / Shocks withstand according to CEI68 - 30/50 g Température de fonctionnement / Ambient temperature (no icing, no condensation) - -40 /+100 °C Température de stockage/ Storage temperature (no icing, no condensation) -40/+125 °C Humidité relative / Ambient humidity HR 40 to 85 % Poids/ Weight 80 g Conformité / Conformity EN60947-4-3 (IEC947-4-3) Conformité / Conformity VDE0805/EN60950 UL/cUL plastique du boitier / Housing Material PA 6 UL94VO Semelle / Base plate Aluminium, nickel-plated 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0 2 4 6 8 10 12 14 Uc (VDc) Ic (mA) r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com celduc page 3 / 5F/GB S/MON/SO967460/B/01/03/2005 okpac Surcharge de courant non répétitive sans tension réappliquée / No repetive surge current without voltage reapplied. Surcharge de courant répétitive avec tension réappliquée Repetive surge current with voltage reapplied. 0,01 0,1 1 10 0 500 1000 1500 t (s) Itsm (Apeak) Surcharge de courant :Itsm (Apeak)=f(t) pour modéle 75A/ Surge current : Itsm (Apeak) = f(t) for 75A Fig.3: 1 2 fig 3 : Courants de surcharges / Overload currents 6K/W correspond à un relais monté sur un adaptateur DIN celduc type 1LD12020 6K/W corresponds to a relay mounted on a DIN rail adaptator like celduc 1LD12020 Fig. 2 Courbes thermiques & Choix dissipateur thermique / Thermal curves and heatsink choice 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100 110 Courant de charge / RMS load current (A) Puissance Dissipée / Power Dissipation (W) 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 110 Température ambiante / Ambient temperature (°C) 1,1K/W 6K/W 2,1K/W 1,5K/W Full on State 50% on State 0,95K/W 0,75K/W 0,55K/W 0,3K/W −> Warning ! semiconductor relays don't provide any galvanic insulation between the load and the mains. Always use in conjunction with an adapted circuit breaker with isolation feature or a similar device in order to ensure a reliable insulation in the event of wrong function and when the relay must be insulated from the mains (maintenance ; if not used for a long duration ...). 1 -Itsm non répétitif sans tension réappliquée est donné pour la détermination des protections. 1 - No repetitive Itsm is given without voltage reapplied . This curve is used to define the protection (fuses). 2 -Itsm répétitif est donné pour des surcharges de courant (Tj initiale=70°C). Attention : la répétition de ces surcharges de courant diminue la durée de vie du relais. 2 - Repetitive Itsm is given for inrush current with initial Tj = 70°C. In normal operation , this curve musn't be exceeded. Be careful, the repetition of the surge current decreases the life expectancy of the SSR. −> Attention ! les relais à semi-conducteurs ne procurent pas d'isolation galvanique entre le réseau et la charge. Ils doivent être utilisés associés à un disjoncteur avec propriété de sectionnement ou similaire, afin d'assurer un sectionnement fiable en amont de la ligne dans l'hypothèse d'une défaillance et pour tous les cas où le relais doit être isolé du réseau (maintenance ; non utilisation sur une longue durée...). r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com page 4 / 5F/GB S/MON/SO967460/B/01/03/2005 okpac okpac Raccordement d'entrée / Control wiring Nombre de fils / Number of wires Modèle de tournevis / Screwdriver type Couple de serrage recommandé 1 2 Recommended Torque Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) M4 N.m 0,75 ... 2,5 mm2 AWG18....AWG14 0,75 ... 2,5 mm2 AWG18....AWG14 0,75 ... 2,5 mm2 AWG18....AWG14 0,75 ... 2,5 mm2 AWG18....AWG14 POZIDRIV 2 1,2 okpac Raccordement de puissance / Power wiring Nombre de fils / Number of wires Modèle de tournevis / Screwdriver type Couple de serrage recommandé 1 2 Recommended Torque Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) Fil rigide (sans embout) SOLID (No ferrule) Fil multibrins (avec embout) FINE STRANDED (With ferrule) M5 N.m 1,5 ... 10 mm2 AWG16....AWG8 1,5 ... 6 mm2 AWG16....AWG10 1,5 ... 10 mm2 AWG16....AWG8 1,5 ... 6 mm2 AWG16....AWG10 POZIDRIV 2 2 Raccordement / Connections celduc Options : Volets IP20 1K453000 = référence d'un volet sans le montage 1LK00500 = 1 volet (côté puissance) + 1 montage celduc 1LK00600 = 2 volets (puissance & commande) + montages celduc Option : IP20 flaps 1K453000 : Flap reference without mounting 1LK00500 = 1 flap (on output) + 1 celduc mounting 1LK00600 = 2 flaps (input & output) + 2 celduc mounting FASTONS : Nous consulter / Consult us Directement avec fils avec ou sans embouts/ Direct connection with wires with or without ferrules Avec cosses/ With ring terminals Puissance avec cosses / Power with ring terminals. W max =12,6mm 16 mm2 (AWG6) 25 mm2 (AWG4) 35mm2 (AWG2 /AWG3) 50mm2 (AWG0 /AWG1) Des cosses et kits d'adaptation peuvent être fournis : voir relais forte puissance et documentation connexion forte puissance/ Suitable ring terminals and special kit for high current can be delivered: see high power SSR and data-sheet for power connexion. r e l a i s Rue Ampère B.P. 4 42290 SORBIERS - FRANCE E-Mail : celduc-relais@celduc.com Fax +33 (0) 4 77 53 85 51 Service Commercial France Tél. : +33 (0) 4 77 53 90 20 Sales Dept.For Europe Tel. : +33 (0) 4 77 53 90 21 Sales Dept. Asia : Tél. +33 (0) 4 77 53 90 19 www.celduc.com S/MON/SO967460/B/01/03/2005 okpac Montage /Mounting: −> Les relais statiques de la gamme okpac doivent être montés sur dissipateur thermique. Une gamme étendue de dissipateurs est disponible. Voir exemples ci dessous et la gamme "WF" sur www.celduc.com. okpac SSRs must be mounted on heatsinks. A large range of heatsinks is available. See below some examples and "WF" range on www.celduc.com. −> Pour le montage du relais sur dissipateur utiliser de la graisse thermique ou un "thermal pad" haute performance spécifié par celduc .Une version autocollante précollée sur le relais est aussi disponible: nous consulter / For heatsink mounting, it is necessary to use thermal grease or thermal pad with high conductibility specified by celduc. An adhesive model mounted by celduc on the SSR is also available: please contact us. Application typiques / Typical LOADS −> Le produit SO9 est défini principalement pour charge résistive AC-51 (chauffage). Pour les autres charges, consulter notre guide de choix. SO9 product is specially designed for AC-51 résistive load (heating). For other loads, consult our selection guide Protection /Protection : −> La protection d'un relais statique contre les court-circuits de la charge peut être faite par fusibles rapides avec des I2t = 1/2 I2t du relais . Un test en laboratoire a été effectué sur les fusibles de marque FERRAZ. Une protection par MCB ( disjoncteurs modulaires miniatures) est aussi possible. Voir notre note application ( protection SSR) et utiliser des relais avec I2t >5000A2s To protect the SSR against a short-circuit of the load , use a fuse with a I2t value = 1/2 I2t value specified page 2. A test has been made with FERRAZ fuses . It is possible to protect SSR by MCB ( miniature circuit breaker). In this case, see application note ( SSR protection) and use a SSR with high I2t value (5000A2s minimum). EMC : −> Immunité : Nous spécifions dans nos notices le niveau d'immunité de nos produits selon les normes essentielles pour ce type de produit, c'est à dire EN61000-4-4 &5. Immunity : We give in our data-sheets the immunity level of our SSRs according to the main standards for these products: EN61000-4-4 &5. −> Emission: Nos relais statiques sont principalement conçus et conformes pour la classe d'appareils A (Industrie). L'utilisation du produit dans des environnements domestiques peut amener l'utilisateur à employer des moyens d'atténuation supplémentaires. En effet, les relais statiques sont des dispositifs complexes qui doivent être interconnectés avec d'autres materiels (charges, cables, etc) pour former un système. Etant donné que les autres materiels ou interconnexions ne sont pas de la responsabilité de celduc, il est de la responsabilité du réalisateur du système de s'assurer que les systèmes contenant des relais statiques satisfont aux prescriptions de toutes les règles et règlements applicables au niveau des systèmes. Consulter celduc qui peut vous conseiller ou réaliser des essais dans son laboratoire sur votre application. Emission: celduc SSRs are mainly designed in compliance with standards for class A equipment (Industry). Use of this product in domestic environments may cause radio interference. In this case the user may be required to employ additionnal devices to reduce noise. SSRs are complex devices that must be interconnected with other equipment (loads, cables, etc.) to form a system. Because the other equipment or the interconnections may not be under the control of celduc, it shall be the responsability of the system integrator to ensure that systems containing SSRs comply with the requirement of any rules and regulations applicable at the system level. Consult celduc for advices. Tests can be preformed in our laboratory. Thermal pad : 5TH21000 WF151200 (2-2,5 K/W) WF108110 ( 1,1 K/W) Installation des volets IP20 / IP20 flaps mounting Poussez et fermer. Push and close M4x12mm 1,2N.m Thermal grease or pad page 5 / 5F/GB celduc 1 2 3 4 5 6 7 8 9 18 17 16 15 14 13 12 11 10 1B 2B 3B 4B 5B 6B 7B 8B GND 1C 2C 3C 4C 5C 6C 7C 8C COM DW OR N PACKAGE (TOP VIEW) ULN2803A www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 ULN2803A Darlington Transistor Arrays Check for Samples: ULN2803A 1FEATURES DESCRIPTION • 500-mA-Rated Collector Current The ULN2803A device is a high-voltage, high-current (Single Output) Darlington transistor array. The device consists of eight npn Darlington pairs that feature high-voltage • High-Voltage Outputs: 50 V outputs with common-cathode clamp diodes for • Output Clamp Diodes switching inductive loads. The collector-current rating • Inputs Compatible With Various of each Darlington pair is 500 mA. The Darlington Types of Logic pairs may be connected in parallel for higher current capability. • Relay-Driver Applications • Compatible with ULN2800A Series Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. The ULN2803A device has a 2.7-kΩ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1997–2014, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 2.7 k! 7.2 k! 3 k! COM Output C E Input B 8C 7C 6C 5C 4C 3C 2C 7 6 5 4 3 2 1 7B 6B 5B 4B 3B 2B 1B 11 12 13 14 15 16 17 COM 8 8B 10 1C 18 ULN2803A SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Logic Diagram Schematic (Each Darlington Pair) 2 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated Product Folder Links :ULN2803A ULN2803A www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 Absolute Maximum Ratings(1) at 25°C free-air temperature (unless otherwise noted) VALUE UNIT Collector-emitter voltage 50 V Input voltage(2) 30 V Peak collector current 500 mA Output clamp current 500 mA Total substrate-terminal current –2.5 A D package 73.14 θJA Package thermal impedance(3) (4) °C/W DW package 62.66 TJ Operating virtual junction temperature 150 °C Tstg Storage temperature range –65 to 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values, unless otherwise noted, are with respect to the emitter/substrate terminal GND. (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7. Electrical Characteristics at TA = 25°C free-air temperature (unless otherwise noted) ULN2002A PARAMETER TEST CONDITIONS UNIT MIN TYP MAX I VCE = 50 V, CEX Collector cutoff current see Figure 1 II = 0 50 μA I VCE = 50 V, IC = 500 μA, I(off) Off-state input current T 50 65 μA A = 70°C see Figure 2 II(on) Input current VI = 3.85 V, See Figure 3 0.93 1.35 mA IC = 200 mA 2.4 V VCE = 2 V, I(on) On-state input voltage see Figure 4 IC = 250 mA 2.7 V IC = 300 mA 3 II = 250 μA, IC = 100 mA 0.9 1.1 see Figure 5 V II = 350 μA, CE(sat) Collector-emitter saturation voltage see Figure 5 IC = 200 mA 1 1.3 V II = 500 μA, IC = 350 mA 1.3 1.6 see Figure 5 IR Clamp diode reverse current VR = 50 V, see Figure 6 50 μA VF Clamp diode forward voltage IF = 350 mA see Figure 7 1.7 2 V Ci Input capacitance VI = 0, f = 1 MHz 15 25 pF Switching Characteristics TA = 25°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tPLH Propagation delay time, low- to high-level output VS = 50 V, CL = 15 pF, RL = 163 Ω, 130 See Figure 8 ns tPHL Propagation delay time, high- to low-level output 20 VOH High-level output voltage after switching VS = 50 V, IO = 300 mA, See Figure 9 VS – 20 mV Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links :ULN2803A Open VF IF Open VCE II IC hFE = IC II VR Open IR Open VCE IC VI Open II VI Open Open VCE IC II(off) Open VCE ICEX Open ULN2803A SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com Parameter Measurement Information Figure 1. ICEX Test Circuit Figure 2. II(off) Test Circuit Figure 3. II(on) Test Circuit Figure 4. VI(on) Test Circuit Figure 5. hFE, VCE(sat) Test Circuit Figure 6. IR Test Circuit Figure 7. VF Test Circuit 4 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated Product Folder Links :ULN2803A Pulse Generator (see Note A) Input Open VS = 50 V RL = 163 ! CL = 15 pF (see Note B) Output tPHL tPLH 0.5 μs <5 ns <10 ns 90% 50% 10% 10% 90% 50% 50% 50% VIH Input (see Note C) Output 0 Test Circuit Voltage Waveforms VOH ULN2803A www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 Parameter Measurement Information (continued) A. The pulse generator has the following characteristics: PRR = 12.5 kHz, ZO = 50 Ω. B. CL includes probe and jig capacitance. C. VIH = 3 V Figure 8. Propagation Delay-Times Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Links :ULN2803A Pulse Generator (see Note A) Input VS 163 ! CL = 15 pF (see Note B) Output 40 μs <5 ns <10 ns 90% 1.5 V 10% 10% 90% 1.5 V VIH Input (see Note C) Output 0 2 mH VOH Test Circuit Voltage Waveforms ULN2803A SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 www.ti.com Parameter Measurement Information (continued) A. The pulse generator has the following characteristics: PRR = 12.5 kHz, ZO = 50 Ω. B. CL includes probe and jig capacitance. C. VIH = 3 V Figure 9. Latch-Up Test 6 Submit Documentation Feedback Copyright © 1997–2014, Texas Instruments Incorporated Product Folder Links :ULN2803A ULN2803A www.ti.com SLRS049F –FEBRUARY 1997–REVISED JANUARY 2014 REVISION HISTORY Changes from Revision E (July 2006) to Revision F Page • Updated document to new TI data sheet format - no specification changes. ...................................................................... 1 • Deleted Ordering Information table. ...................................................................................................................................... 1 • Added ESD warning. ............................................................................................................................................................ 2 Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Links :ULN2803A PACKAGE OPTION ADDENDUM www.ti.com 27-Jan-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples ULN2803ADW ACTIVE SOIC DW 18 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A ULN2803ADWG4 ACTIVE SOIC DW 18 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A ULN2803ADWR ACTIVE SOIC DW 18 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A ULN2803ADWRG4 ACTIVE SOIC DW 18 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 ULN2803A ULN2803AN ACTIVE PDIP N 18 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 ULN2803AN ULN2803ANE4 ACTIVE PDIP N 18 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 ULN2803AN (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. PACKAGE OPTION ADDENDUM www.ti.com 27-Jan-2014 Addendum-Page 2 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant ULN2803ADWR SOIC DW 18 2000 330.0 24.4 10.9 12.0 2.7 12.0 24.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jan-2014 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) ULN2803ADWR SOIC DW 18 2000 370.0 355.0 55.0 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jan-2014 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated MAX3222/MAX3232/MAX3237/MAX3241* 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors ________________________________________________________________ Maxim Integrated Products 1 19-0273; Rev 7; 1/07 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. ________________General Description The MAX3222/MAX3232/MAX3237/MAX3241 transceivers have a proprietary low-dropout transmitter output stage enabling true RS-232 performance from a 3.0V to 5.5V supply with a dual charge pump. The devices require only four small 0.1μF external chargepump capacitors. The MAX3222, MAX3232, and MAX3241 are guaranteed to run at data rates of 120kbps while maintaining RS-232 output levels. The MAX3237 is guaranteed to run at data rates of 250kbps in the normal operating mode and 1Mbps in the MegaBaud™ operating mode, while maintaining RS-232 output levels. The MAX3222/MAX3232 have 2 receivers and 2 drivers. The MAX3222 features a 1μA shutdown mode that reduces power consumption and extends battery life in portable systems. Its receivers remain active in shutdown mode, allowing external devices such as modems to be monitored using only 1μA supply current. The MAX3222 and MAX3232 are pin, package, and functionally compatible with the industry-standard MAX242 and MAX232, respectively. The MAX3241 is a complete serial port (3 drivers/ 5 receivers) designed for notebook and subnotebook computers. The MAX3237 (5 drivers/3 receivers) is ideal for fast modem applications. Both these devices feature a shutdown mode in which all receivers can remain active while using only 1μA supply current. Receivers R1 (MAX3237/MAX3241) and R2 (MAX3241) have extra outputs in addition to their standard outputs. These extra outputs are always active, allowing external devices such as a modem to be monitored without forward biasing the protection diodes in circuitry that may have VCC completely removed. The MAX3222, MAX3232, and MAX3241 are available in space-saving TSSOP and SSOP packages. ________________________Applications Notebook, Subnotebook, and Palmtop Computers High-Speed Modems Battery-Powered Equipment Hand-Held Equipment Peripherals Printers __Next Generation Device Features ♦ For Smaller Packaging: MAX3228E/MAX3229E: +2.5V to +5.5V RS-232 Transceivers in UCSP™ ♦ For Integrated ESD Protection: MAX3222E/MAX3232E/MAX3237E/MAX3241E*/ MAX3246E: ±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers ♦ For Low-Voltage or Data Cable Applications: MAX3380E/MAX3381E: +2.35V to +5.5V, 1μA, 2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 SHDN VCC GND C1- T1OUT V+ C1+ EN TOP VIEW R1IN R1OUT T1IN T2OUT T2IN VC2- C2+ R2IN 9 10 R2OUT DIP/SO MAX3222 + MAX3222 _________________Pin Configurations _______________Ordering Information MegaBaud and UCSP are trademarks of Maxim Integrated Products, Inc. *Covered by U.S. Patent numbers 4,636,930; 4,679,134; 4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending. Typical Operating Circuits appear at end of data sheet. Pin Configurations continued at end of data sheet. Ordering Information continued at end of data sheet. +Denotes lead-free package. PART TEMP RANGE PIN-PACKAGE PKG CODE MAX3222CUP+ 0°C to +70°C 20 TSSOP U20+2 MAX3222CAP+ 0°C to +70°C 20 SSOP A20+1 MAX3222CWN+ 0°C to +70°C 18 SO W18+1 MAX3222CPN+ 0°C to +70°C 18 Plastic Dip P18+5 VCC = 5.0V MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors 2 _______________________________________________________________________________________ ABSOLUTE MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS (VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 1: V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V. VCC...........................................................................-0.3V to +6V V+ (Note 1) ...............................................................-0.3V to +7V V- (Note 1) ................................................................+0.3V to -7V V+ + V- (Note 1)...................................................................+13V Input Voltages T_IN, SHDN, EN ...................................................-0.3V to +6V MBAUD...................................................-0.3V to (VCC + 0.3V) R_IN .................................................................................±25V Output Voltages T_OUT...........................................................................±13.2V R_OUT....................................................-0.3V to (VCC + 0.3V) Short-Circuit Duration T_OUT ....................................................................Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin TSSOP (derate 6.7mW/°C above +70°C).............533mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)........762mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)...842mW 18-Pin SO (derate 9.52mW/°C above +70°C)..............762mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ..889mW 20-Pin SSOP (derate 7.00mW/°C above +70°C) .........559mW 20-Pin TSSOP (derate 8.0mW/°C above +70°C).............640mW 28-Pin TSSOP (derate 8.7mW/°C above +70°C).............696mW 28-Pin SSOP (derate 9.52mW/°C above +70°C) .........762mW 28-Pin SO (derate 12.50mW/°C above +70°C) .....................1W Operating Temperature Ranges MAX32_ _C_ _.....................................................0°C to +70°C MAX32_ _E_ _ .................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C IOUT = -1.0mA IOUT = 1.6mA Receivers disabled T_IN, EN, SHDN, MBAUD T_IN, EN, SHDN, MBAUD CONDITIONS V 0.8 1.5 Input Threshold Low 0.6 1.2 Input Voltage Range -25 25 V 0.5 2.0 VCC Power-Supply Current Output Voltage High VCC - 0.6 VCC - 0.1 V Output Voltage Low 0.4 V Output Leakage Current ±0.05 ±10 μA Input Leakage Current ±0.01 ±1.0 μA 0.8 V Input Logic Threshold Low (Note 3) PARAMETER MIN TYP MAX UNITS TA = +25°C TA = +25°C V 1.8 2.4 Input Threshold High 1.5 2.4 VCC = 3.3V VCC = 5.0V 2.0 V 2.4 Input Logic Threshold High (Note 3) No load, VCC = 3.3V or 5.0V, TA = +25°C mA 0.3 1.0 MAX3222/MAX3232/ MAX3241 MAX3237 Shutdown Supply Current SHDN = GND, TA = +25°C 1.0 10 μA VCC = 3.3V VCC = 5.0V VCC = 3.3V VCC = 5.0V DC CHARACTERISTICS LOGIC INPUTS AND RECEIVER OUTPUTS RECEIVER INPUTS MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors _______________________________________________________________________________________ 3 TIMING CHARACTERISTICS—MAX3222/MAX3232/MAX3241 (VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) ELECTRICAL CHARACTERISTICS (continued) (VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) T1IN = T2IN = GND, T3IN = VCC, T3OUT loaded with 3kΩ to GND, T1OUT and T2OUT loaded with 2.5mA each CONDITIONS Transmitter Output Voltage ±5.0 V Input Hysteresis 0.3 V PARAMETER MIN TYP MAX UNITS Output Voltage Swing All transmitter outputs loaded with 3kΩ to ground ±5.0 ±5.4 V Output Short-Circuit Current ±35 ±60 mA Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V 300 10M Ω VOUT = ±12V, VCC = 0V or 3V to 5.5V, transmitters disabled Output Leakage Current ±25 μA tPHL RL = 3kΩ, CL = 1000pF, one transmitter switching tPLH | tPHL - tPLH | | tPHL - tPLH | Normal operation Normal operation CONDITIONS 0.3 μs 0.3 Receiver Propagation Delay Maximum Data Rate 120 235 kbps Receiver Skew 300 ns Transmitter Skew 300 ns Receiver Output Disable Time 200 ns Receiver Output Enable Time 200 ns PARAMETER MIN TYP MAX UNITS VCC = 3.3V, RL = 3kΩ to 7kΩ, 6 30 +3V to -3V or -3V to +3V, TA = +25°C, one transmitter switching V/μs 4 30 Transition-Region Slew Rate R_IN to R_OUT, CL = 150pF CL = 150pF to 1000pF CL = 150pF to 2500pF Input Resistance TA = +25°C 3 5 7 kΩ MOUSE DRIVEABILITY (MAX3241) TRANSMITTER OUTPUTS MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors 4 _______________________________________________________________________________________ __________________________________________Typical Operating Characteristics (VCC = +3.3V, 235kbps data rate, 0.1μF capacitors, all transmitters loaded with 3kΩ, TA = +25°C, unless otherwise noted.) RL = 3kΩ, CL = 1000pF, one transmitter switching, MBAUD = GND Normal operation CONDITIONS Receiver Output Disable Time Normal operation 200 ns | tPHL - tPLH |, MBAUD = GND 100 ns 0.15 250 μs 0.15 Receiver Propagation Delay Receiver Output Enable Time 200 ns PARAMETER MIN TYP MAX UNITS TIMING CHARACTERISTICS—MAX3237 (VCC = +3.0V to +5.5V, C1–C4 = 0.1μF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) VCC = 3.0V to 4.5V, RL = 3kΩ, CL = 250pF, one transmitter switching, MBAUD = VCC 1000 VCC = 4.5V to 5.5V, RL = 3kΩ, CL = 1000pF, one transmitter switching, MBAUD = VCC kbps 1000 Maximum Data Rate R_IN to R_OUT, CL = 150pF | tPHL - tPLH |, MBAUD = VCC 25 ns Transmitter Skew Receiver Skew | tPHL - tPLH | 50 ns 6 30 V/μs 4 30 tPHL tPLH CL = 150pF to 2500pF, MBAUD = GND CL = 150pF to 1000pF MBAUD = GND VCC = 3.3V, RL = 3Ω to 7kΩ, +3V to -3V or -3V to +3V, TA = +25°C Transition-Region Slew Rate MBAUD = VCC 24 150 Note 2: MAX3222/MAX3232/MAX3241: C1–C4 = 0.1μF tested at 3.3V ±10%; C1 = 0.047μF, C2–C4 = 0.33μF tested at 5.0V ±10%. MAX3237: C1–C4 = 0.1μF tested at 3.3V ±5%; C1–C4 = 0.22μF tested at 3.3V ±10%; C1 = 0.047μF, C2–C4 = 0.33μF tested at 5.0V ±10%. Note 3: Transmitter input hysteresis is typically 250mV. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 0 MAX3222/MAX3232 TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE MAX3222-01 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (V) 1000 2000 3000 4000 5000 VOUT+ VOUT- 0 2 4 6 8 10 12 14 16 18 20 22 150 MAX3222/MAX3232 SLEW RATE vs. LOAD CAPACITANCE MAX3222-02 LOAD CAPACITANCE (pF) SLEW RATE (V/μs) 1000 2000 3000 4000 5000 FOR DATA RATES UP TO 235kbps +SLEW -SLEW 0 5 10 15 20 25 30 35 40 0 MAX3222/MAX3232 SUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA MAX3222-03 LOAD CAPACITANCE (pF) SUPPLY CURRENT (mA) 1000 2000 3000 4000 5000 235kbps 120kbps 20kbps MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors _______________________________________________________________________________________ 5 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 0 MAX3241 TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE MAX3222-04 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (V) 1000 2000 3000 4000 5000 VOUT+ 1 TRANSMITTER AT 235kbps 2 TRANSMITTERS AT 30kbps VOUTALL OUTPUTS LOADED WITH 3kΩ +CL 0.1μF CHARGE-PUMP CAPACITORS 4 FOR ALL DATA RATES UP TO 235kbps 6 8 10 12 14 16 18 20 22 24 0 MAX3241 SLEW RATE vs. LOAD CAPACITANCE MAX3222-05 LOAD CAPACITANCE (pF) SLEW RATE (V/μs) 1000 2000 3000 4000 5000 +SLEW -SLEW 0 5 10 15 20 25 30 35 45 40 0 MAX3241 SUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA MAX3222-06 LOAD CAPACITANCE (pF) SUPPLY CURRENT (mA) 1000 2000 3000 4000 5000 235kbps 120kbps 20kbps -7.5 -5.0 -2.5 0 2.5 5.0 7.5 0 MAX3237 TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND) MAX3222-07 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (V) 1000 2000 3000 4000 5000 1 TRANSMITTER AT 240kbps 4 TRANSMITTERS AT 15kbps 3kΩ + CL LOADS VCC = 3.3V 0 10 20 30 50 40 60 70 0 MAX3237 SLEW RATE vs. LOAD CAPACITANCE (MBAUD = VCC) MAX3222-10 LOAD CAPACITANCE (pF) SLEW RATE (V/μs) 500 1000 1500 2000 -SLEW, 1Mbps +SLEW, 1Mbps 1 TRANSMITTER AT FULL DATA RATE 4 TRANSMITTERS AT 1/16 DATA RATE 3kΩ + CL LOAD EACH OUTPUT VCC = 3.3V -SLEW, 2Mbps +SLEW, 2Mbps -7.5 -5.0 -2.5 0 2.5 5.0 7.5 0 MAX3237 TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = VCC) MAX3222-08 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (V) 500 1000 1500 2000 1 TRANSMITTER AT FULL DATA RATE 4 TRANSMITTERS AT 1/16 DATA RATE 3kΩ + CL LOAD, EACH OUTPUT VCC = 3.3V 2Mbps 1.5Mbps 1Mbps 2Mbps 1Mbps 1.5Mbps 0 10 20 30 40 50 60 0 MAX3237 SUPPLY CURRENT vs. LOAD CAPACITANCE (MBAUD = GND) MAX3222-11 LOAD CAPACITANCE (pF) SUPPLY CURRENT (mA) 1000 2000 3000 4000 5000 240kbps 120kbps 20kbps 1 TRANSMITTER AT FULL DATA RATE 4 TRANSMITTERS AT 1/16 DATA RATE 3kΩ + CL LOADS VCC = 3.3V 0 2 4 6 8 10 12 0 MAX3237 SLEW RATE vs. LOAD CAPACITANCE (MBAUD = GND) MAX3222-09 LOAD CAPACITANCE (pF) SLEW RATE (V/μs) 1000 2000 3000 4000 5000 +SLEW -SLEW 1 TRANSMITTER AT 240kbps 4 TRANSMITTERS AT 15kbps 3kΩ + CL LOADS VCC = 3.3V 0 10 30 20 40 50 60 70 0 MAX3237 SKEW vs. LOAD CAPACITANCE (tPLH - tPHL) MAX3222-12 LOAD CAPACITANCE (pF) 500 1000 1500 2000 2500 MAX MIN AVERAGE; 10 PARTS SKEW (ns) 1 TRANSMITTER AT 512kbps 4 TRANSMITTERS AT 32kbps 3kΩ + CL LOADS VCC = 3.3V MBAUD = VCC _____________________________Typical Operating Characteristics (continued) (VCC = +3.3V, 235kbps data rate, 0.1μF capacitors, all transmitters loaded with 3kΩ, TA = +25°C, unless otherwise noted.) MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1μF External Capacitors 6 _______________________________________________________________________________________ — FUNCTION — MAX3222 Noninverting Complementary Receiver Outputs. Always active. DIP/SO SSOP — 11, 14 1 1 Receiver Enable. Active low. 2 2 Positive Terminal of Voltage-Doubler Charge-Pump Capacitor 6 6 Negative Terminal of Inverting Charge-Pump Capacitor 5 5 Positive Terminal of Inverting Charge-Pump Capacitor