Programmability
and Automation

with Cisco Open NX-0S

Brenden Buresh
Brian Daugherty
Cesar Obediente
Errol Roberts
Jason Pfeifer
Kenny Garreau
Lukas Krattiger
Ranga Rao

Shane Corban """Il'
Todd Escalona CISCO.

Programmability
and Automation
with Cisco Open NX-0S

Preface

Authors and Contributors

This book represents a collaborative effort between Technical Marketing and Sales Engineers
during a week-long intensive session at Cisco Headquarters Building 17 in San Jose, CA.

Authors

Brenden Buresh - Systems Engineering
Brian Daugherty - Systems Engineering
Cesar Obediente - Systems Engineering
Errol Roberts - Systems Engineering
Jason Pfeifer - Systems Engineering
Kenny Garreau - Systems Engineering
Lukas Krattiger - Technical Marketing
Ranga Rao - Technical Marketing

Shane Corban - Product Management
Todd Escalona - Systems Engineering

Contributors

Sanjaya Choudhury
Nicolas Delecroix
Parag Deshpande
Sam Henderson
Vishal Jain
Devarshi Shah

Acknowledgments

A special thanks to Cisco’s Insieme BU Executive, Technical Marketing and Engineering teams,
who supported the realization of this book. Thanks to Yousuf Khan, Joe Onisick, Jim Pisano,
James Christopher and Matt Smorto for supporting this effort. Thanks to Cisco Sales Leader-
ship for supporting the group of individual contributors who have dedicated their time author-
ing this book. Additionally, Cisco's CSG Engineering and QA Teams are acknowledged for devel-
oping some of the code and features addressed in this publication.

We would also like to thank Cynthia Broderick for her exceptional resource organization and
support throughout our journey.

We are also genuinely appreciative to our Book Sprint (www.booksprints.net) team:

Adam Hyde (Founder)

Laia Ros (Facilitator)

Henrik van Leeuwen (Illustrator)

Raewyn Whyte (Proof Reader)

Juan Carlos Gutiérrez Barquero and Julien Taquet (Technical Support)

Laia and the team created an enabling environment that allowed us to exercise our social and
technical skills to produce a quality publication.

Table of Contents

Introduction

INEFOAUCTION .t et 11
Organization of this BOOK. ...t e 13
EXpected AUAIBNCE et e e 15
Book Writing Methodologyooiii i 17

Open NX-0S and Linux

0o [o4) o 21
Cisco Nexus Switch as a Linux Deviceccoooviiiiiiiii i 23
Linux Containers and the Guest Shell.............coo i 47
Open NX-0OS ArchiteCture.ooii e 59
Third-party Application Integration. ... 69

Network Programmability Fundamentals

INErOAUCTION . e e e 79
Conventional Network Interfaces.oooioiiiii i 81
Programmable Network Elements 85
G Y o I 91

Model Driven Programming

INErOAUCTION . et 99

Model-driven Programmingooeiiii i 101
Cisco Open NX-OS MDP ArchiteCture.ooviiiiiiii e 105
REST APl Primer .o 117
Cisco NX-API REST INterfaceooveiiiiieii e 127

Cisco NX-API WebSocket Notifications. ...t 137

Configuration Management and Automation

INtrOAUCTION ... 143
Device Power-0On Automationcoouuiiiii e 145
Configuration and Lifecycle Managementcooviiiiiii i, 157
IT Automation TOOIS. e 165

Practical Applications of Network Programmability

INtrOdUCTION ... 177
Infrastructure Provisioning Automation ... 179
Automating Access Configuration with Ansible 189
Workload On-Boardingvuiiii 195
Infrastructure @as Codeviii i 205
Troubleshooting with Linux Capabilities ..o, 211
Network Monitoring with Splunk 215
Network Monitoring with Open Source TOOIS.ccviiiiiiiii i 221
Automating Network Auditing and Complianceccooiiiiiiiiiinn.. 227
Automated Network Topology Verification..............cooiiiiiiii ... 237
Workload Mobility and Correlation ..o 243
Network RESIIIENCY. e 249

Programmability Tools for Network Engineers

INTrOUCHION .. e 255
Languages and EnvironmentSo 257
Development and Testing TOOISco.iii i e 261
Source Code and Version CoNtrolt 273
Cisco DevNet for Open NX-0So i e 275

Learning and Helpful RESOUICESottt 283

INntroduction

Introduction 11

Introduction

DevOps. Programmability. Automation.
These concepts have become a central and pervasive theme in many areas of information tech-
nology. What does it all mean to the world of network infrastructure?

Automated workflows and virtualization technologies have led to dramatic improvements in
data center scale, agility, and efficiency. Application developers, server administrators, and
Cloud and DevOps teams have been utilizing the processes and tools around automation for
many years, resulting in streamlined and less error prone workflows. These teams are able to
keep up with the speed of business requirements and market transitions due to modern work-
flows. Leveraging open development frameworks has been essential for innovation.

Why not leverage these concepts for the network, whose management methods are still domi-
nated by human-to-machine interfaces?

Enter Open NX-OS on the Cisco Nexus platform, a rich software suite built on a Linux founda-
tion that exposes APIs, data models, and programmatic constructs. Using Application Program-
matic Interfaces (APIs) and configuration agents, operators can affect configuration changes in
a more programmatic way.

This book explores Open NX-OS and many of the tools and options it provides. The chapters
below examine the drivers for network automation, the fundamental supporting technologies,
and the many new capabilities now available to network infrastructures. Real-world use cases
are provided that can be immediately utilized for a successful transition to more efficient, safer,
repeatable operations.

The Open NX-OS features and functionality discussed within were first introduced on the Cisco
Nexus 9000 and Nexus 3000 Series Switches beginning with NX-OS Software Release 7.0(3).

Introduction 13

Organization of this Book

Introduction

Within the introduction, we provide an initial walkthrough of the sections and chapters of this
book. We try to highlight some important industry trends like the emergence of highly distrib-
uted applications and the adoption of Cloud and DevOps methodologies that are driving new
paradigms in the network.

Open NX-OS and Linux

This primary section emphasizes how Open NX-OS based networking devices expose the full
capability of the Linux operating system for end-users to utilize. Readers can learn how stan-
dard Linux tools like ifconfig, ethtool, route, tcpdump can be used to manage a Cisco Nexus
Switch. Further, we help readers understand how they can extend the functionality of their
switch with their own RPMs and containers, and unlock innovative new use cases.

Network Programmability Fundamentals

This section provides an overview of the evolution of interfaces on networking devices from
being human-centric to being programmabilty- friendly. It introduces the readers to some
easy-to-use programmatic interfaces like NX-API CLI and helps them get started down the path
of programmability.

Model-Driven Programming

This section explores the advantages of a model-driven approach to programmability, and high-
lights the powerful, new capabilities in Cisco NX-API REST, being a data model-backed RESTful
API, brings to the table.

14 Introduction

Configuration Management and Automation

Infrastructure and network automation, driven by programmability, is a key enabler for the De-
vOps transformation. This chapter highlights the broad set of tools, features and capabilities
that Open NX-OS incorporates to enable automation. The discussion covers integration with
modern config management tools like Puppet, Chef and Ansible.

Practical Applications of Network Programmability

This section shifts the focus from description of network programmability and automation
technologies to practical applications of these technologies. Although not exhaustive, the use-
cases showcase real solutions intended to spark ideas for new innovative deployments. Each
use-case is presented in the following format:

* Problem Statement - Overview of issues to be addressed
* Solution - Summarizes components used within exemplified solution
* Solution Approach - Utilized tools and enabled NX-OS capability

* Conclusion - Outcomes of exemplified solution

Programmability Tools for Network Engineers

This section explores essential tools for network programming as well as the underlying lan-
guages and environments. An introduction to Cisco DevNet for Open NX-OS is provided for de-
velopers and users to explore the capabilities of Open NX-OS.

Introduction 15

Expected Audience

The intended audience for this book are those persons with a general need to understand how
to utilize network programmability and unleash the power behind the Open NX-OS architec-
ture. While interested development and IT practitioners may reap the most benefits from this
content, the information and examples included within this book may be of use for every inter-
mediate to advanced network professional interested in programmable fabrics.

Elements in this book explore topics beyond the traditional responsibility of a network adminis-
trator. The modular and extensible framework of the Open NX-OS modular architecture is not
only discussed, but also exemplified through the ability to programmatically configure, operate,
and manage Cisco Nexus switches as Linux servers and beyond.

Introduction 17

Book Writing Methodology

Ten In, One Out: Ten individually-selected highly-skilled professionals from diverse back-
grounds accepted the challenge to duel thoughts over the course of five days. Figuring out how
to harness the brain power and collaborate effectively seemed to be nearly impossible, however
opposites attracted and the team persisted through the hurdles. The Book Sprint (www.
booksprints.net) methodology captured each of our strengths, fostered a team-oriented envi-
ronment and accelerated the overall time to completion. The assembled group leveraged their
near two hundred years of experience and a thousand hours of diligent authorship which re-
sulted in this publication.

Open NX-0OS and Linux

Open NX-0S and Linux 21

Introduction

Cisco NX-OS is the network operating system (OS) that powers Cisco Nexus switches across
thousands of customer environments. It was the first data center network operating system to
be built with Linux. While Cisco NX-OS has always been powered by Linux, under the hood, it
hasn't, till recently, exposed many of the Linux capabilities to end-users.

With the latest release of Cisco NX-OS, termed Open NX-OS, on the Cisco Nexus 9000 and
Nexus 3000 Series switches, Cisco has exposed the full power of the underlying Linux operat-
ing system for end-users to utilize. In addition, Cisco has built numerous extensions that make
it possible to access these capabilities with the appropriate level of security and protection de-
sired by the specific user.

This chapter will explore the Linux underpinnings of Open NX-OS.

Open NX-0S and Linux 23

Cisco Nexus Switch as a Linux Device

Open NX-OS Linux

This chapter will introduce some of the Linux capabilities of Open NX-OS including:

Kernel 3.4: At the core of Cisco's Open NX-OS is a 64-bit Linux kernel based on version
3.4. This kernel provides a balance of features, maturity, and stability; and serves as

a solid foundation for programmability and Linux-based management of a Cisco Nexus
switch.

Kernel Stack: Cisco Open NX-OS leverages the native Linux networking stack, instead
of a custom-built userspace stack (NetStack) that was used in prior versions of NX-OS.
Nexus switch interfaces, including physical, port-channel, vPC, VLAN and other logical
interfaces, are mapped to the kernel as standard Linux netdevs. VRFs on the switch map
to standard Linux namespaces.

Open Package Management: Open NX-OS leverages standard package management
tools, such as RPM and yum for software management. The same tools can be used for
Open NX-OS process-patching or installing external or custom-developed programs
onto the switch.

Container support: Open NX-OS supports running Linux Containers (LXCs) directly on
the platform, and provide access to Centos 7 based Guest Shell. This allows customers
and third-party application developers to add custom functionality directly on the
device in a secure, isolated environment.

In addition, Open NX-OS continues to uphold some of the Linux best practice capabilities that
have always been part of NX-OS:

Modularity: Modules are loaded into the kernel only when needed. Modules can be
loaded and unloaded on demand.

Fault Isolation: Provides complete process isolation for NX-OS features, services and
user application processes.

Resiliency: Graceful restart or initializion of processes following unexpected exit
conditions (segfault, panic).

24 Open NX-0S and Linux

Open NX-OS is based on Wind River Linux 5. By leveraging a standard and unmodified Linux
foundation, it is possible to run any standard Linux-based application without changes or wrap-
per libraries. Users can leverage their standard Linux server management tools and workflows
to install their custom-developed Linux-based applications, or other standard open source pro-
grams, and have them function "out of the box" on the Nexus switch. It is straightfoward to in-
tegrate common third-party configuration management agents like Puppet, Chef, and telemetry
applications such as ganglia, splunk, collector, nagios on the switch.

Linux Kernel Stack

One of the core capabilities of Open NX-OS is the ability to expose all interfaces on the device,
including front panel switching ports, as Linux netdevices, which enables:

* Linux utilities for Interface Management: Leverage standard Linux utilities like
ifconfig, ethtool, route, etc to manage network interfaces, routing and associated
parameters.

* Linux tools for troubleshooting: Leverage tools like tcpdump, ping, traceroute, etc to
troubleshoot network issues.

° VRF capabilities with Namespaces: Each VRF created within Open NX-OS will have a
corresponding namespace in Linux associated with it, maintaining the VRF isolation
extends from Open NX-OS to the Linux Kernel

* Linux socket communications: Open NX-OS and user applications use the Linux
kernel's networking stack to send and receive packets to/from the external world. This
enables applications that leverage standard Linux sockets, such as, agents and
monitoring tools, to work without custom compilation.

Open NX-OS Linux Network Architecture

Our Open NX-OS Linux Network Architecture is made up of two primary layers:

* User space processes and software —> traditional NX-OS software processes (ospf, vpc,
bgp, nxos arp, vpc), third-party user applications (configuration management,
visibility /analytics, custom built agents /tools)

° 64 Bit Linux 3.4.10 Kernel Layer -> linux kernel netdevices, linux networking
stack(route, arp tables)

What has been exposed in Open NX-OS network architecture is access to the linux kernel
networking stack, where the switch physical and logical interfaces have representation as a net
device and an IP address in the kernel layer. This design opens the door to management of the
routing and front panel ports using unmodified linux based tools and applications. However

Open NX-0S and Linux 25

there needs to be a synchronization function between NX-OS and the linux kernel layer, to
ensure the two layers work effectively in tandem. This synchronization function between
userspace NX-OS processes and kernel layer is provided by the netbroker module, which
ensures changes implemented to physical and logical interfaces in NX-OS are reflected correctly
to the linux netdevice interfaces. When NX-OS routing applications /processes like BGP program
routes, they program these routes directly in the NX-OS route table, which pushes it to the linux
kernel route table. Similarly if a route is installed at the linux kernel layer, the netbroker module
checks the validity of the route addition by forwarding to the NX-OS Routing Information Base
process, which then programs the route table in the hardware table if it's deemed valid. In the
architecture, VRF’s are implemented using linux network namespaces. Network namespaces are
a natural fit as they provide the same isolation capabilities as VRFs. A kernel net device is
associated with one and only one network namespace and the routing and ARP tables are local to
a network namespace such that tasks running in the namespace see only the resources assigned
to the namespace. Namespaces are covered in detail in a subsequent section.

. Config
Management
Third Party User Applications
' 3rd Party L2/L3 Protocol
| Applications

Py

7z

2
/
Vs
v
/ Linux Netdevices
i Linux IZ' & &
) >_) Networking Stack | €~ EXDICE) (ethmim)
\ J __...---'* .

User Space

Linux Kernel

E — — w

g | — Switc hl l-;h;rdware
Linux Shell Tools
Shell Access

Cisco Nexus switches support access to the Bourne-Again SHell (Bash). Bash interprets com-
mands that you enter or commands that are read from a shell script. Using bash enables access
to the underlying Linux system on the device and to manage the system.

26 Open NX-0S and Linux

Access to the bash shell and Linux is controlled via feature enablement on the Nexus platform.
You must explicitly enable [feature bash-shell]to gain access to bash as user admin, which is by

default part of DevOps role on the switch.

n9%k-sw-1# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role

cannot be modified.

Rule Perm Type Scope Entity

6 permit command conf t ; username *
5 permit command attach module *

4 permit command slot *

3 permit command bcm module *

2 permit command run bash *

1 permit command python *

Enabling and Accessing Bash

-

n9%k-sw-1(config)# do show feature | grep bash
bash-shell 1 disabled
n9%k-sw-1(config)# feature bash-shell
n9k-sw-1(config)# do show feature | grep bash

bash-shell 1 enabled

n9k-sw-1# run bash
bash-4.2$ id

uid=2002 (admin) gid=503 (network-admin) groups=503 (network-admin)

By default you are still user admin. In order to install third-party agents on the switch, you are
required to be root user and either utilize to enable the agent to be installed in the

filesystem, or authenticate as root within bash using .

bash-4.2$ yum install puppet
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages

You need to be root to perform this command.

Open NX-0S and Linux 27

Other capabilities available within bash are covered in the other sections of this chapter, such
as manipulating, configuring and monitoring the switch in Linux, agent installation, etc. Please
refer to these specific sections for further information.

From within bash, you also have the capability to execute NX-OS commands using our virtual

shell utility (vsh). This enables the use of bash utilities (sed, grep, awk) to parse output to pro-
duce proper formatting.

Virtual shell utility example - Provisioning a new tenant on the network

Ensure following features are enabled on the switch for this particular example:

n93k-sw-1# show feature | include bash

bash-shell 1 enabled
n93k-sw-1# show feature | include interface-vlan
interface-vlan 1 enabled

Go to bash shell n93k-sw-1# run bash

Switch to user root bash-4.2$ su - root

Password:

Switch to management namespace in Linux&# root@n93k-sw-1l#ip netns exec management bash
Verify current configuration of tenant interface eth2/4 root@n93k-sw-l#vsh -c "show

interface Eth2/4 brief"

Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
Eth2/4 1 eth access up none 40G (D) --

Configure tenant vlan 200, SVI, and assign provision tenant port"

root@n93k-sw-1#vsh -c "config terminal ; vlan 200 ; name TenantA ; exit"

root@n93k-sw-1#vsh -c "config terminal ; interface vlan 200 ; no shutdown ; exit"

root@n93k-sw-1#vsh -c "configure terminal ; interface eth2/4 ; switchport access vlan 200 ;
no shutdown"

Verify tenant is configured correctly in the network

root@n93k-sw-1#vsh -c "show running-config interface Eth2/4"

!Command: show running-config interface Ethernet2/4

version 7.0(3)I2(1)

interface Ethernet2/4

switchport access vlan 200

root@n93k-sw-1#vsh -c "show interface vlan 200 brief"

28 Open NX-0S and Linux

V1an200 - up -

The capabilities depicted above are simple examples to illustrate the flexibility of using bash for
automation. These types of functions/examples could be combined and built into a bash-devel-
oped monitoring "agent" for your switch. For specifics on making agents/processes persistent
in the native Linux shell, please refer to Custom Developed Applications section of the docu-
ment.

Package Management Infrastructure

Open NX-OS provides support for standard package management infrastructure. It supports
two possible hosting environments for installing packages:

* Bash shell: this is the native Open NX-OS Linux environment. It is disabled by default.
To enable access, users must explicitly enable the bash shell feature on the switch.

° Guest shell: this is a secure Linux container environment running CentOS 7.

The focus of this section will be on managing packages in bash shell, or the native Linux envi-
ronment where NX-OS runs. The guest shell environment will be covered in a subsequent sec-
tion.

Yellowdog Updater, Modified (yum)

Yum is the default package and repository management tool for a number of operating systems,
including Open NX-OS Linux. The yum package management infrastructure provides the fol-
lowing benefits:

° automatic resolution of software dependencies.
* easy to use Command Line Interface to install or upgrade software.

* yum can be configured to browse/search multiple software locations at one time for
the existence of a specific package.

e ability to use either local (on box) or remote software repositories to install or upgrade
software.

Open NX-0S and Linux 29

The yum client downloads software from repositories located on a local network or the Inter-
net. RPM package files in these repositories are organized in a hierarchical manner so they can
be found by the yum client.

From the command line, you can use the following subset of commands to interact with yum:

Command Description

[yum install [package-name (s)]] installs the specified package(s) along with any required
dependencies.

[yum erase [package-name (s)]] removes the specified package(s) from your system.

[yum search [search—pattern]] searches the list of package names and descriptions for
packages that match the search pattern and provides a list of
package names along with architectures and a brief
description of the package contents. Note that regular
expression searches are not permitted.

[yum deplist [package—name]] provides a listing of all of the libraries and modules that the
named package depends on, along with the names of the
packages (including versions) that provide those
dependencies.

refreshes the local cache of the yum database so that

dependency information and the latest packages are always
up to date.

[yum info [package—name]] provides the name, description of the package, as well as a
link to the upstream home page for the software, release
versions and the installed size of the software.

[yum reinstall [package-name (s)]] erases and re-downloads a new copy of the package file and
re-installs the software on your system.

[yum localinstall [local—rpm—file]] checks the dependencies of a .rpm file and then installs it.

[yum update [optional—package—name]] downloads and installs all updates including bug fixes,

security releases, and upgrades, as provided by the
distributors of your operating system. Note that you can
specify package names with the update command.

upgrades all packages installed on the system to the latest

release.

30 Open NX-0S and Linux

Example: Installing Puppet Agent using yum

To install an agent or software package natively in Open NX-OS, users will need a routable con-
nection to a software repository. This could be through any namespace that has connectivity
externally (Default or Management).

The file located at [/etc/yun/yun.cont| provides system-wide configuration options for yum, as

well as information about repositories. Specific repository information within Open NX-OS

Linux is located in files ending in under [/etc/yum/repos .d:]the repository to edit for pre-

built third-party agents is on the switch. You will need to edit the field

to point to your repository if you utilize one in your network.

Example for installing a software agent (Puppet) using yum:

bash-4.2$ cd /etc/yum/repos.d/

bash-4.2$ 1s
groups.repo nxos-extras.repo nxos.repo.orig thirdparty.repo
localrpmdb.repo nxos.repo patching.repo
bash-4.2$ more thirdparty.repo
[thirdparty]
name=Thirdparty RPM Database
baseurl=file:///bootflash/.rpmstore/thirdparty
enabled=1
gpgcheck=0
metadata expire=0
cost=500
root@n9k-sw-1# rpm -ga | grep puppet
root@n9k-sw-1# Yum install puppet
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages

groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00
patching | 951 B 00:00
thirdparty | 951 B 00:00

Setting up Install Process
Resolving Dependencies

--> Running transaction check

Open NX-0S and Linux 31

---> Package puppet-agent.x86_ 64 0:1.1.0.153.g77189%ea-1.nxosl will be installed

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository Size
Installing:
puppet-agent x86_64 1.1.0.153.g77189%ea-1.nxosl thirdparty 37 M

Transaction Summary

Install 1 Package

Total download size: 37 M
Installed size: 133 M
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : puppet-agent-1.1.0.153.g77189%ea-1.nxosl.x86 64

1/1

Installed:

puppet-agent.x86_64 0:1.1.0.153.g7718%a-1.nxosl

Complete!

Example for removing a software agent (Puppet) using yum:

root@n9k-sw-1# yum remove puppet

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-
packages

Setting up Remove Process

Resolving Dependencies

32 Open NX-0OS and Linux

--> Running transaction check
---> Package puppet-agent.x86_64 0:1.1.0.153.g77189%ea-1.nxosl will be erased

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository
Size
Removing:
puppet-agent x86_64 1.1.0.153.g77189%ea-1.nxosl @thirdparty
133 M

Transaction Summary

Remove 1 Package

Installed size: 133 M

Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Erasing : puppet-agent-1.1.0.153.g77189%ea-1.nxosl.x86_64

1/1

Removed:

puppet-agent.x86 64 0:1.1.0.153.g7718%ea-1.nxosl

Complete!

Open NX-0S and Linux 33

RedHat Package Manager (RPM)

In many ways, yum is simply a front end to a lower-level package management tool called
rpm, similar to apt-get’s relationship with dpkg. One key distinction to understand between the
two utilities is that rpm does not perform dependency resolution.

The following commands should be run as root. The flags are expanded here in the pursuit of
clarity, but the more conventional terse syntax is also included.

Command Description

rpm --install --verbose --hash [local-rpm— install an rom from the file.
is also capable of installing RPM files from http

and ftp sources as well as local files.

—\

file—name].rpﬁ

—\

rpm -ivh [filename].rpnﬂ

—

rpm --erase [package—name]] remove the given package. Usually will not

N complete if [[package-name]| matches more than

one package, but will remove more than one match

if used with the flag.

rpm --query ——all] lists the name of all packages currently installed.

H

—

rpm -ga

H

=

rpm --query [package—name]] confirm or deny if a given package is installed in
your system.

H

rpm -gq

—

rpm --query ——info] display the information about an installed package.

rpm -gi

i

—\

rpm --query --list [package—name]] generate a list of files installed by a given package.

rpm -gl

i

=

rpm --query ——file] check to see what installed package “owns” a given
file.

—

rpm -gq gf [file—name]]

Example installing software agent using RPM (Puppet)

root@n9k-sw-1# rpm -ga | grep puppet
root@n9k-sw-1# rpm -ivh /bootflash/puppet-enterprise-3.7.1.rc2.6.g6cdcl86-

1l.pe.nxos.x86_64.rpm

34 Open NX-0S and Linux

Preparing... FHEFHHHHHHHHH RS (100%)
1l:puppet-enterprise #HEHHAAF R A AR AR AR R AR R R R [(100%)
root@n9k-sw-1# rpm -ga | grep puppet

puppet-enterprise-3.7.1.rc2.6.g6cdcl86-1.pe.nxos.x86 64

Example removing software agent using RPM (Puppet)

root@n9k-sw-1# rpm -ga | grep puppet
puppet-enterprise-3.7.1.rc2.6.g6cdcl86-1.pe.nxos.x86 64

root@n9k-sw-1# rpm -e puppet-enterprise-3.7.1.rc2.6.g6cdcl86-1.pe.nxos.x86 64
root@n9k-sw-1# rpm -ga | grep puppet

root@n9k-sw-14#

Persistently Daemonizing a Third-party Process

Persistently starting your application from the Native Bash Shell

Your application should have a startup bash script that gets installed in
[/etc/init.d/<application7name>]. This startup bash script should have the following general for-

mat :

° Install your application startup bash script that you created above into

[/etc/init . d/<application7name>]

* Run your application with [/etc/init .d/<application_name> start]

° Run [chkconfig --add <application7name>]

° Run [chkconfig --level 3 <application name> on]. init runlevel 3 is the standard multi-

user runlevel in Open NX-OS.

e Verify that your application is scheduled to run on level 3 by running |chkconfig --1list
<application name>]and confirm that level 3 is set to

e Verify that your application is listed in . You should see something similar to
the following example, where there is an 'S' followed by a number, followed by your

application name (tcollector in this example), and a link to your bash startup script in
../init.d /<application_name>

Open NX-0S and Linux 35

bash-4.2# 1ls -1 /etc/rc3.d/tcollector
lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/Sl5tcollector -> ../init.d/tcollector

bash-4.2#

Full example: daemonizing an application

bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash

PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello

echo $$ > SPIDFILE

rm -f SOUTPUTFILE

while true

do
echo $(date) >> SOUTPUTFILE
echo 'Hello World' >> S$SOUTPUTFILE
sleep 10

done

bash-4.2#

bash-4.2#

bash-4.2# cat /etc/init.d/hello

#!/bin/bash

#

hello Trivial "hello world" example Third Party App
#

chkconfig: 2345 15 85

description: Trivial example Third Party App

#

BEGIN INIT INFO

Provides: hello

Required-Start: S$local fs Sremote fs Snetwork Snamed
Required-Stop: $local fs $remote fs $network

Description: Trivial example Third Party App

END INIT INFO

PIDFILE=/tmp/hello.pid

36 Open NX-OS and Linux

See how we were called.
case "S$1" in
start)
/etc/init.d/hello.sh &
RETVAL=$?
stop)
kill -9 ‘cat $PIDFILE"
RETVAL=$?
status)
ps -p ‘cat $PIDFILE"
RETVAL=$?
restart|force-reload|reload)
kill -9 ‘cat $PIDFILE"
/etc/init.d/hello.sh &
RETVAL=$?
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac
exit SRETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off l:o0ff 2:on 3:on 4:on 5:on
bash-4.2# 1s -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/Sl5hello ->
bash-4.2#
bash-4.2# reboot

6:0ff

../init.d/hello

Open NX-0S and Linux 37

Linux Networking

Netdevice

A netdevice (netdev) is a Linux kernel construct which represents a networking element. It can
represent a physical interface like a front-end switch port, or a logical interface such as a tun-

nel. The netdev files on NX-OS exist under filesystem. The names for netdevices
are similar to the NX-OS interface names. For example, Ethernetl/1 in NX-OS (port 1 in slot 1)

refers to the corresponding Linux interface name of Ethl-1. It is important to note that interface
names within Linux are limited to 15 characters, therefore ‘Ethernet’ is shortened to ‘Eth’. This
is consistent with the naming in [show interface brief] within NX-OS.

Using ifconfig on a Nexus Switch

Linux network utilities, commonly used by server admins, can now be used to configure, moni-
tor, troubleshoot and manage the switch.

Using ifconfig to view interfaces:

root@n9k-sw-1# ifconfig -a | grep Eth

Ethl-1 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:98

Ethl-2 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:99

Ethl-3 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9a

Ethl-4 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9

Ethl-5 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9c
\

Using ifconfig to enable /disable an interface and verify in NX-OS

root@n9k-sw-1# ifconfig Eth2-4 down
root@n9k-sw-1# vsh -c "show interface Eth2/4"
Ethernet2/4 is down (Administratively down)
admin state is down, Dedicated Interface
Hardware: 10000/40000 Ethernet, address: 6412.25ed.787f (bia 6412.25ed.787f

MTU 1500 bytes, BW 40000000 Kbit, DLY 10 usec

Notice above was used to run a NX-OS CLI command. When working within the Bash Shell,

the vsh command can be used to interact with the NX-OS parser.

38 Open NX-0S and Linux

Assigning a Layer 3 Address to an interface in Linux:
To maintain consistency between NX-OS and Linux, there are validation checks that are in-
cluded for several operations. As an example, if you attempt to assign a Layer 3 address to a

Layer 2 interface in Linux or via a third-party application, an error will be presented.

Error addressing Layer 2 interface

root@n9k-sw-1# vsh -c "show run int Eth2/4"

interface Ethernet2/4

switchport

root@n9k-sw-1# ifconfig Eth2-4 192.168.2.2 netmask 255.255.255.0
SIOCSIFADDR: Cannot assign requested address

SIOCSIFNETMASK: Cannot assign requested address

If you change the interface mode to Layer 3 within NX-OS you can now assign a Layer-3 ad-
dress in Linux:

Assign a Layer 3 address

root@n9k-sw-1# ip netns exec default bash
root@n9k-sw-1# vsh -c "config terminal ; interface Eth2/4 ; no switchport ; no shutdown"e
root@n9k-sw-1# ifconfig Eth2-4 192.168.2.2 netmask 255.255.255.0
root@n9k-sw-1# ifconfig Eth2-4
Eth2-4 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:97
inet addr:192.168.2.2 Bcast:192.168.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1837767 errors:0 dropped:1837763 overruns:0 frame:0
TX packets:70576 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

RX bytes:95625447 (91.1 MiB) TX bytes:17898072 (17.0 MiB)

root@n9k-sw-1# vsh -c "show run int Eth2/4"

interface Ethernet2/4

no switchport

Open NX-0S and Linux 39

ip address 192.168.2.2/24

no shutdown

Using ethtool on a Nexus Switch

Ethtool is a useful utility to view driver level interface statistics. This can be used to get infor-
mation about front panel interfaces. An example is shown here, which gathers port statistics
for the Ethnernet2 /4 interface.

Interface port statistics

root@n9k-sw-1# ethtool -S Eth2-4
NIC statistics:
speed: 40000
port_delay: 10
port_bandwidth: 40000000
admin_status: 1
oper_status: 1
port _mode: 0
reset counter: 6
load-interval-1: 30
rx_bit ratel: 256
rx_pkt_ratel: 0
tx bit ratel: 144
tx_pkt_ratel: 0
load-interval-2: 300

rx bit rate2: 248

Using tcpdump on a Nexus Switch

Tcpdump is a packet analyzer utility which can be run directly from the command line in the
default namespace for a front panel interface. The example below uses tcpdump to monitor
packets on an interface and store them in a pcap (packet capture) file named file.pcap. Use the

flag to specify an interface.

40 Open NX-0S and Linux

tcpdump packet capture

root@n9k-sw-1# tcpdump -i Eth2-4 -w /bootflash/file.pcap

tcpdump: WARNING: Eth2-4: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on Eth2-4, link-type EN1OMB (Ethernet), capture size 65535 bytes

23:06:54.402365 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id
8001.84:b8:02:0e:£8:3b.8031, length 43

23:06:56.402207 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id

8001.84:b8:02:0e:£8:3b.8031, length 43

Using route commands on a Nexus Switch

Managing Routing Within Linux

Routing can be configured within Open NX-OS Linux. Static routes can be added
and deleted directly using the command. Any routing changes made will be immediately

reflected within the NX-OS routing tables.

Set an IP address on e1/1

n9k-sw-1(config)# int eth2/4

n9k-sw-1(config-if)# ip address 192.168.1.2/24

Ensure you are root user and in default namespace to configure frontpanel interfaces

n93k-1-pm# run bash

bash-4.2$ id

uid=2002 (admin) gid=503 (network-admin) groups=503 (network-admin)
bash-4.2$ su - root

Password:

root@n93k-1-pm#ip netns exec default bash

The following routing changes are made completely in bash.

Open NX-0S and Linux 41

Display routes

root@n9k-sw-1# route
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

192.168.1.0 * 255.255.255.0 U 0 0 0 Eth2-4
127.1.0.0 * 255.255.0.0 U 0 0 0 veobc
127.1.2.0 * 255.255.255.0 U 0 0 0 veobc
Add a route

[root@n9k-sw-1# ip route add 192.168.3.0/24 via 192.168.1.2 dev Eth2-4

Display updated route table

root@n9k-sw-1# route
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

192.168.1.0 * 255.255.255.0 U 0 0 0 Eth2-4
192.168.3.0 192.168.1.2 255.255.255.0 UG 0 0 0 Eth2-4
127.1.0.0 * 255.255.0.0 U 0 0 0 veobc
127.1.2.0 * 255.255.255.0 U 0 0 0 veobc

Verify in NX-OS

n9k-sw-1# sh run | i "ip route" ip route 192.168.2.0/24 Ethernetl1/192.168.1.2 1

n9k-sw-1# sh ip route

192.168.1.0/24, ubest/mbest: 1/0, attached *via 192.168.1.1, Ethl/1, [0/0], 00:02:08,
direct

192.168.1.2/32, ubest/mbest: 1/0, attached *via 192.168.1.1, Ethl/1, [0/0], 00:02:08,
local

192.168.2.0/24, ubest/mbest: 1/0 *via 192.168.1.2, Ethl/1, [1/0], 00:01:37, static

n9k-sw-1#

Remove a route

[n9k-sw-1# ip route del 192.168.3.0/24 via 192.168.1.2 dev Eth2-4

42 Open NX-0S and Linux

Display updated route table

bash-4.2# route
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

192.168.1.0 * 255.255.255.0 y) 0 0 0 Ethl-1
127.1.0.0 * 255.255.0.0 U 0 0 0 veobc
127.1.2.0 * 255.255.255.0 U 0 0 0 veobc
bash-4.2#

Linux Network Namespaces and NX-OS Virtual Routing and
Forwarding (VRF)

A single set of network interfaces and routing table entries are shared across the entire Linux
operating system. Network namespaces virtualize these shared resources by providing different
and separate instances of network interfaces and routing tables that operate independently of
each other.

* Two namespaces are created by default in Linux - default and management. Each maps
to VRFs of the same name within NX-OS.

* The default namespace (and VRF) enables access to the front panel ports and tunneling
interfaces within Linux.

¢ The management namespace (and VRF) enables access to the management interface.

* Each new VRF created within NX-OS will map to a corresponding Linux namespace of
the same name.

Open NX-0S and Linux 43

Figure: Open NX-OS Linux Network Architecture / Linux Namespace

f ™
Default Red Purple
L] VRF VRF VRF
1]
]
o
w
]
-
Netbroker
. >
(2 W)
Default NetDevice Interfaces
Name Name Partchannell Sy
. Space Space
[
§
4 Eth M/N
£ ~
-
Linux Networking Stack
\ 4,,:‘*'ﬂf'~' ‘4,f""". J
f e & Vv 3
w
& [ASIC-1 J [ASIC-2] -
<
. A

Switch Ports

Note: by default you are in the "default” namespace.

List available namespaces

root@n9k-sw-1# ip netns
management

default

List interfaces available in a namespace

root@n9k-sw-1# ip link list | grep Eth

88: Eth2-1:

89: Eth2-2:

<BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT glen 100

<BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT glen 100

44 Open NX-0S and Linux

90: Eth2-3: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode DEFAULT glen 100
91: Eth2-4: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 gdisc pfifo_fast state UP mode DEFAULT

glen 100

Run a process/command /shell within a given namespace

root@n9k-sw-1#ip netns exec <vrf name> <command>.

root@n9k-sw-1#ip netns exec management bash

Note: VRFs need to be created in NX-OS first to be represented and manipulated as name-
spaces in Linux.

Create a VRF in NX-OS and move an interface to this VRF

n9k-sw-1(config)# vrf context red
n9%k-sw-1 (config-vrf) #
n9%k-sw-1(config)# int e2/4
n9k-sw-1(config-if)# vrf member red

Warning: Deleted all Layer-3 config on interface Ethernet2/4

n9k-sw-1(config-if)# ip address 192.168.1.2/24

n9k-sw-1 (config-if) #

Check the list of namespaces

bash-4.2# ip netns list
red
management

default

Observe routing table differences between namespaces

bash-4.2# route
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref
Use Iface

127.1.0.0 * 255.255.0.0 U 0 0 0 veobc

Open NX-0S and Linux 45

127.1.2.0 * 255.255.255.0 y) 0 0 0 veobc

bash-4.2# ip netns exec red route
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

192.168.1.0 * 255.255.255.0 v) 0 0 0 Eth2-4

bash-4.2#

Cisco Open NX-OS is a Linux-based operating system that allows full Linux access to end-
users. This includes enabling access and manageability of a Cisco Nexus 9000 and Nexus 3000
Series Switch via standard Linux tools. Further, Open NX-OS includes support for package
managers that enable users to build and integrate open source or custom applications natively
into NX-OS.

Open NX-0S and Linux 47

Linux Containers and the Guest Shell

Cisco Open NX-OS supports Linux containers (LXC) natively on the platform. This allows cus-
tomers and third-party application developers the ability to add custom functionality directly
to the switch, and host their applications on the device in a secure, isolated environment:

The benefits of utilizing containers include:

* Isolated and secure application execution environments
e Resource and process isolation. Resources can be controlled, limiting the amount of
CPU, memory, storage, and network bandwidth allocated to the container
environment.
* Independent software release cycles
o Customers and third-party developers can create their own open-source based
custom applications, independent of the traditional NX-OS software release cycle.
¢ Decreased time to market for custom-built features.
* Network Operation Optimization

o Custom applications running within the container environment can reduce the
need to use separate software solutions or interfaces. An example of this is a packet
capture tool running locally on the device directly within the container, or
applications that can monitor and control the switch.

48 Open NX-0S and Linux

Figure: Open NX-OS Container Architecture

'S \
g N\ ™ ™\ f
NX-0S Native Third Party) I
Linux Mative Linux
OSPF Processes Applications rocesses
BGP
QoOs
\ g\ s\ 7 A LN
CGROUP-1 CGROUP-
Process NS=Global rocess NS=Guestshe

64 Bit Linux Kernel

[ASIC-1](ASIC-2] ASIC-M

Switch Hardware

The Linux kernel provides built-in resource controls (cgroups) which allow for the isolation and
limiting of process, memory and filesystem resources. The isolation provided is transparent, so
there is no process-scheduling overhead.

The processes within a container are given their own namespace which does not overlap
with native NX-OS processes or any other containers that may be present on the sys-
tem. This ensures that NX-OS processes are protected from the containerized guest processes.
This separation is provided directly within the kernel.

It's worth mentioning that there are significant differences between containers and full hyper-
visor environments. Since they are implemented directly by the host kernel, only Linux contain-
ers can be supported. Even if the Linux distributions used within containers differ, they will
still use the underlying host's kernel and libraries. Hypervisor-based virtual machines differ
from containers in that each VM operates as an independent entity: there is no reliance on an
up-stream kernel.

Open NX-0S and Linux 49

Figure: Differences in Container and Hypervisor-based Architectures

Containers Hypervisors
OS kernel level abstraction Hardware level abstraction
® Share the same kernel ® Runs separate kernel copies
® Easy resource management ® Full hardware emulation within VM
[Y “

Container 1 s Container N

Hypervisor [Virtual Hardware Emulator
Host Operating System Host Operating System
Hardware Hardware

Guest Shell

The Open NX-OS platform presents a specialized container that is pre-built and installed within
the system. This container environment is called the guest shell. The guest shell is based on
CentOS 7.

To check if the guest shell is enabled on the system, the command "show virtual-service list"
can be executed. The guest shell will be in "Activated” state if it is enabled:

n9%k-sw-1# show virtual-service list

Virtual Service List:

Name Status Package Name

guestshell+ Activated guestshell.ova

If the guest shell is not enabled, the command will activate the guest shell

container on the system:

50 Open NX-0S and Linux

n9%k-sw-1# guestshell enable

$$ VDC-1 %$ SVMAN-2-INSTALL STATE: Installing virtual service 'guestshell+'

$$ VDC-1 %$ S$VMAN-2-INSTALL STATE: Install success virtual service 'guestshell+'; Activating
%S VDC-1 %$ $VMAN-2-ACTIVATION STATE: Activating virtual service 'guestshell+'

%S VDC-1 %$ $VMAN-2-ACTIVATION STATE: Successfully activated virtual service 'guestshell+'

To access the guest shell, enter on the NX-OS CLI

n9k-sw-1# guestshell

[guestshell@guestshell ~]$

From the guest shell prompt, the user can run Linux commands:

~

[guestshell@guestshell ~]$ pwd
/home/guestshell
[guestshell@guestshell ~]$ 1s
[guestshell@guestshell ~]$ whoami
guestshell

[guestshell@guestshell ~]$ ps -e | grep systemd

172 00:00:00 systemd
10 2 00:00:00 systemd-journal
28 2 00:00:00 systemd-logind

[guestshell@guestshell ~]$

The guest shell also provides direct access to the hosts bootflash on the switch. Files on /boot-
flash can be edited directly from within the guest shell environment. By default the guest shell
comes with the vi editor pre-installed. More editors can be installed using yum or RPM to cus-
tomize guest shell functionality to the shell of your choice.

Users within the guest shell can interact with the NX-OS host CLI to gather respective switch
level information. The application is provided to execute NX-OS CLI commands:

[guestshell@guestshell ~]$ dohost "show ip int brief vrf management"
IP Interface Status for VRF "management" (2)
Interface IP Address Interface Status

mgmt 0 10.95.33.238 protocol-up/link-up/admin-up

Open NX-0S and Linux 51

The command uses Unix domain sockets to facilitate the transfer of information be-
tween the guest shell and NX-OS host processes. Data retrieved from the command can

be used to take actions local to the network device within the guest shell. With this functional-
ity, self-healing machines can be created. As an example, an application could be created in the
Linux environment which captured the interface state periodically. When the interface state
changes, the Linux application could be used to bring up a partner or backup interface.

The guest shell uses the default Virtual Routing and Fowarding (VRF) table for external connec-
tivity. The application is provided for VRF management.

Usage of :

[guestshell@guestshell ~]$ chvrf

Usage: chvrf <vrf> [<cmd> ...]

Ping a host through the management VREF:

[guestshell@guestshell ~]$ chvrf management ping 10.70.42.150
PING 10.70.42.150 (10.70.42.150) 56(84) bytes of data.
64 bytes from 10.70.42.150: icmp_seg=1 ttl=53 time=19.2 ms

64 bytes from 10.70.42.150: icmp seqg=2 ttl=53 time=20.0 ms

Note: The command can be used in front of any command in the system to use the desired
VRF.

The guest shell has been populated with common package managers. The yum package man-
ager is installed, and will pull packages from the default CentOS 7 repositories. The locations of
package repositories can be changed by modifying the "repo" repository files in

the directory. The command [yum 1ist available] will show all available pack-

ages in the repositories.

Installing the git client via yum, using the management VRF:

[guestshell@guestshell ~]$ sudo chvrf management yum install git
Loaded plugins: fastestmirror

base | 3.6 kB 00:00

52 Open NX-0S and Linux

extras | 3.4 kB 00:00
updates | 3.4 kB 00:00
(1/4): extras/7/x86_64/primary db | 87 kB 00:00
(2/4): base/7/x86_64/group_gz | 154 kB 00:00
(3/4) : updates/7/x86 64/primary db | 4.0 MB 00:03

Transaction Summary

Install 1 Package (+34 Dependent packages)

Total download size: 17 M
Installed size: 63 M

Is this ok [y/d/N]:

You may need to increase the partition size of the guest shell, which is an option available to

you from the host CLI using [guestshell resizel.

Resizing the rootfs of guest shell:

n9k-sw-1# guestshell resize rootfs 600

Note: Please disable/enable or reboot the Guest shell for root filesystem to be resized

In addition to the yum package manager, the Python package manager (pip) is also available
from within the guest shell. Python packages are installed by pip into the default Python reposi-

tory. In order to view a listing of installed packages, run the command:

[guestshell@guestshell ~]$ sudo pip freeze
iniparse==0.4

pycurl==7.19.0

pygpgme==0.3

pyliblzma==0.5.3

pyxattr==0.5.1

urlgrabber==3.10

yum-metadata-parser==1.1.4

Open NX-0S and Linux 53

From this example, we see that there are certain packages already installed such as Python curl

(). A common package needed when working with Python and HTTP is the

module.

The command listed below can be used to install the requests Python module:

guestshell@guestshell ~]$ sudo chvrf management pip --proxy=proxy.my.customer.com:8080

install requests

The command was executed as root to ensure we go through the management vrf using the
command. In the event that the guest shell requires a proxy server for external HTTP

connectivity, the option can be used.

You can now start Python and see that the module can be imported.

~

[guestshell@guestshell ~]$ python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)

[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import requests

>>>

The command will also show that the module has been installed.

Additional programming languages can be installed within the guest shell if desired, is a user
wants to utilize a different scripting language like perl. Users can install programming environ-
ments as needed through the yum package manager, or manually via RPM:

Running perl

[guestshell@guestshell ~]$ perl --version

This is perl 5, version 16, subversion 3 (v5.16.3) built for x86_64-linux-thread-multi

(with 28 registered patches, see perl -V for more detail)

Copyright 1987-2012, Larry Wall

54 Open NX-0OS and Linux

Perl may be copied only under the terms of either the Artistic License or the

GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the

Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Perl files can be executed directly within the guest shell:

n9k-sw-1# guestshell
[guestshell@guestshell ~]$./test.pl

This is a perl script!

Programs and scripts can be executed in the guest shell directly from Open NX-OS using

guestshell run|.

[guestshell@guestshell ~]$ exit

logout

n9k-sw-1#

n9k-sw-1#

n9k-sw-1#

n9k-sw-1# guestshell run /home/guestshell/test.py
This is a Python script!

n9k-sw-1#

n9k-sw-1#

n9k-sw-1# guestshell run /home/guestshell/test.pl
This is a perl script!

n9k-sw-1#

Application Persistence within the Guest Shell Environment

Applications and scripts can be stopped and started automatically in the guest shell environ-

ment using .

The below script named [/home /guestshell/datecap. sh] will save a file in the named datecap:

Open NX-0S and Linux 55

#!/bin/bash

OUTPUTFILE=/tmp/datecap

rm -f SOUTPUTFILE

while true

do
echo $(date) >> SOUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done

This script can be tied into the infrastructure with the following file named

Pusr/lib/systemd/system/datecap.servic%ﬁ

[Unit]

Description=Trivial "datecap" example daemon

[Service]
ExecStart=/home/guestshell/datecap.sh &
Restart=always

RestartSec=10s

[Install]

WantedBy=multi-user.target

After creating the two files, the user can use to start and stop the process:

[guestshell@guestshell tmp]sudo systemctl start datecap

[guestshell@guestshell tmp]$ sudo systemctl status -1 datecap
datecap.service - Trivial "datecap" example daemon
Loaded: loaded (/usr/lib/systemd/system/datecap.service; disabled)
Active: active (running) since Wed 2015-09-30 02:52:00 UTC; 2min 28s ago

Main PID: 131 (datecap.sh)

56 Open NX-0S and Linux

CGroup: /system.slice/datecap.service
2?2131 /bin/bash /home/guestshell/datecap.sh &

7?2?2164 sleep 10

Sep 30 02:52:00 guestshell systemd[1l]: Started Trivial "datecap" example daemon.

[guestshell@guestshell tmp]$ sudo systemctl stop datecap

When the device is rebooted, will automatically start the daemon.

Working with Sockets in the Guest Shell

Linux sockets are available to applications running within the guest shell. Sockets can be used
for communication between applications residing within the guest shell, as well as remote ap-
plications. An example would be an echo server, written in Python. This will echo back any text
that it receives on a socket:

#!/usr/bin/env python

import socket

host = "'
port = 50000
backlog = 5
size = 1024
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.bind((host,port))
s.listen (backlog)
s.setsockopt (socket.SOL_SOCKET, socket.SO REUSEADDR, 1)
while 1:
client, address = s.accept/()
data = client.recv(size)
if data:
if (data == "done"):
print "received a done message, exiting"

client.send("server done, exiting"

Open NX-0S and Linux 57

client.close()
s.close ()
break

else :
print data
client.send(data)

client.close()

s.close()

The code above will use Python to create a socket stream and listen on port 50000. Any text it
receives will be sent back to the sender. If is entered the server will close its socket and

exit.

This can be used with an echo client application, which can reside remotely. A sample echo
client may look like the following:

#!/usr/bin/env python

import socket

host = '<ip address of echo server>'
port = 50000
size = 1024

while (True) :

test = raw input ('Enter Data to send to server: ')
if (test == 'q') or (test == 'quit'):

break
else:

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect ((host, port))

s.send(test)

data = s.recv(size)

print 'Received:', data

s.close()

print 'done'

The Python code above will take input from the command line through the raw_input call and
send it to the echo server through the socket connection.

58 Open NX-0S and Linux

Here is a sample run of both the client and server:

Open NX-OS provides guest shell, a native LXC container for switch management and hosting
applications. Other LXC containers can be created in Open NX-OS for third-party or custom
applications.

Server side (Running inside of Guest Shell using the management VRF):

[guestshell@guestshell gs]$ sudo chvrf management Python echoserver.py
Hello Server

Please echo this text

received a done message, exiting

[guestshell@guestshell gs]$

Client side (Running on an external Linux Server):

./echoclient.py

Enter Data to send to server: Hello Server
Received: Hello Server

Enter Data to send to server: Please echo this text
Received: Please echo this text

Enter Data to send to server: done

Received: server done, exiting

Enter the Data to send to server: quit

done

The server can also accept multiple incoming sockets and below is an example where two
clients have connected simultaneously:

[guestshell@guestshell gs]$ sudo chvrf management Python echoserver.py
hello from client 1

hello from client 2

Open NX-0S and Linux 59

Open NX-OS Architecture

An Extensible Network OS

The Cisco Open NX-OS software is designed to allow administrators to manage a switch such
as a Linux device. The Open NX-OS software stack addresses a number of functional areas to
address the needs of a DevOps-driven automation and programmability framework.

« Auto Deployment (Bootstrap and Provisioning): Cisco Open NX-OS supports a robust
network bootstrapping and provisioning capability with Power-On Auto Provisioning
(POAP). Open NX-OS can utilize Pre-boot eXecution Environment (PXE) to facilitate the
boot process and initial configuration of a Nexus switch.

« Extensibility: Open NX-OS enables access to the Linux bash shell as well as the use of
package managers. The user can install native RPMs and third-party applications
running processes as they would on a Linux server. Supporting RPM-based packages
provides the ability to load only the services or packages required. The level of
extensibility in Open NX-OS ensures that third-party daemons and packages (such as
routing protocols) can be supported. Third-party monitoring tools like are
supported on the platform.

« Open Interfaces: Open NX-OS adds the ability to leverage Linux tools for configuration,
monitoring and troubleshooting. Front panel ports of a switch can be manipulated as
native Linux interfaces. Tools like [‘l fconfiq] and [tcpdump] can be used as they would be in

a server environment for troubleshooting and configuration.

« Application Development (Adaptable SDK): Open NX-OS provides a tool chain to build
custom packages and agents. Open NX-OS has published an extensive SDK to enable a
build environment that can be installed on a Linux server. This provides the ability to
download a build agent that will incorporate the source code in the local directory
structure. The SDK allows administrators to build and package binaries for use on
Open NX-OS. Applications have two deployment options: they can be installed natively
into the Linux filesystem, or deployed in an LXC container.

Flexible Programming Options

Open NX-OS provides flexibility in tool choice for programmability tools and languages.

* Python Libraries: There is embedded Python shell support with native Open NX-OS
libraries that can be utilized for development.

60 Open NX-0S and Linux

* NX-API REST interacts with network elements through RESTful API calls. This allows
for a data model-driven approach to network configuration and management.

« NX-API CLI provides the ability to embed NX-OS CLI commands in a structured
data format (JSON or XML) for execution on the switch via an HTTP /HTTPS transport.
The data returned from the calls will also be formatted in JSON /XML, making it easy to
parse the data with modern programming languages. A sandbox environment (NX-API
Developer Sandbox) also exists as a development tool, which is covered in Section
7.3, Development and Testing Tools.

Support for Automation Tools

« Configuration management tools like Ansible, Chef and Puppet are orchestration engines
that function with Open NX-OS.

« Cloud Orchestration platforms such as OpenStack integrate seamlessly with Neutron
plugins.

« Cisco-sponsored and community-contributed open source management tools and
packages are available on Github: http://github.com /datacenter

Integrating Third-party Applications

The Open NX-OS modular architecture provides a flexible framework to integrate third-party
application software as depicted in the figure below.

Figure: Open NX-OS Third-party Application Integration - Software Architecture

Open NX-0OS and Linux 61

i R ' N ' R ' N
Mo e o collectc
-A @ ¥ 2t
P ‘; ~ SALTSTACK amMsiBLE Nmiox, 7

Open Source Routing

— =
pet splunk =

‘\ up
)
OpenLLDP openstack Vi P forge tcollector
’ o » »
-) '8 ™\ '8) g B
Third Party Devops B e Monitoring/
Protocol Apps Orchestration e Analytics
. » - > = > . .
8 R
Base NX-OS Third Party/ User
Hasa 0D Custom Applications -— Space
\ J
' N\
64 Bit Linux Kerne
Kernel
o
[V Kernel Route) [Kernel ARP] [Kstack/Netdevs \"] Space
- v
[Switch Hardware J

The modular framework allows for the support of monitoring and analytics applications like
and Splunk amongst others. The framework supports automation tools and agents,

DevOps orchestration and third-party protocol support like openLLDP.

Supported third-party applications, open source tools and publish RPMs that integrate with
Open NX-OS are all available at http://developer.cisco.com /opennxos

Open NX-OS Modular Architecture

Cisco Open NX-OS is a unique multi-process state-sharing architecture that separates an ele-
ment's state from parent processes. This reflects Cisco’s core software design philosophy and
enables fault recovery and real-time software updates on a process-level basis without affect-
ing the running state of the system.

62 Open NX-0S and Linux

Protocol routing and switching processes, security functions, management processes, and even
device drivers are decoupled from the kernel. These modules and processes run in user space,
not in kernel space, which ensures process control system stability. The modular nature of the
system allows for the update and restart of individual switch processes without requiring a
switch reload.

The same binary image of NX-OS can be deployed across any family of Nexus 9000 and Nexus
3000 Series Switches. This improves the feature compatibility across platforms and ensures
consistency in defect resolution. It also makes it much simpler for users to deploy, certify and
validate new releases in their data center environment, and makes code portable across the en-
vironment.

Process Isolation and Scheduling

The Linux kernel backing Cisco Open NX-OS is a multi-tasking kernel leveraging the Linux
Completely Fair Process Scheduler. The process scheduler within the kernel coordinates which
processes are allowed to run at any given time, scheduling CPU equally amongst all user and
NX-OS system processes. By taking scheduling class/policy and process priorities into account
to balance processes between multiple CPU cores in SMP systems, the CPU cycles are main-
tained in fair access to maintain system stability.

Shell Environment

Cisco Nexus switches support direct Bourne Again SHell (Bash) access. With Bash, you can ac-
cess the underlying Linux system on the device to manage the system. Most importantly, by
providing users unrestricted access to the Linux shell, users can now leverage data center au-
tomation tools, which can utilize bash scripting and Linux interfaces natively. Access to the
bash shell is controlled through RBAC. Users who are able to gain access can write shell scripts
which leverage the network in a similar fashion for other parts of the IT organization.

Process Patching

The Open NX-OS Linux kernel's process isolation allows patching and modification of soft-
ware independent of the traditional Cisco software release cycles. Features and fixes can be
delivered in a more agile fashion to the end user. Modifications to the system can be released
to users in the form of patches which can be installed without the need to reload the device
being patched. An example of this might be the installation of security fixes for packages such
as OpenSSL or OpenSSH

Open NX-0S and Linux 63

Process Restartability

Processes within Open NX-OS can be restarted on-demand without affecting other processes,
and will automatically be restarted in the event of an unexpected exit condition.

Process restart via NX-0OS:

n9k-sw-1(config) # router bgp 65000
n9k-sw-1 (config-router)# restart bgp 65000

%$BGP-5-ADJCHANGE: bgp-65000 [9224] (default) neighbor 192.168.1.2 Up

For example, we can kill the BGP process and see that it is automatically restarted by NX-OS.

Automatic process restartability:

root 17073 5900 0 00:11 ? 00:00:00 /isan/bin/routing-sw/bgp -t 65000

admin 17137 17132 0 00:13 pts/2 00:00:00 grep bgp

bash-4.2$ sudo kill -9 17073

bash-4.2$ ps -ef | grep bgp

root 17221 5900 34 00:13 ? 00:00:01 /isan/bin/routing-sw/bgp -t 65000
admin 17258 17132 0 00:13 pts/2 00:00:00 grep bgp
bash-4.2$

Interactive Programmability with Python

In Open NX-OS, the Python programming language is supported directly on the device. An in-
teractive Python interpreter is available just by typing at the CLI prompt:

n9%k-sw-1# python

Python 2.7.5 (default, Oct 8 2013, 23:59:43)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

The Python interpreter on the Open NX-OS platform can also interpret script files directly, in
this case the Python interpreter is running "non-interactively". To run non-interactively, users

64 Open NX-0S and Linux

can enter the name of the script to be run after the command at the CLI prompt. Here

is an example run of the script

n9k-sw-1# cd bootflash:

n9k-sw-1# python hello world.py
hello world!

n9k-sw-1# show file hello world.py

#!/usr/bin/python

print "hello world!"

n9k-sw-1+#

For more information about Python, see Section 7.2 Programmability Tools for Network Engi-
neers.

Cisco provides a set of helper library packages designed specifically for Python. These packages
are pre-installed on the NX-OS platform and are named "cli" and "cisco".

The Python package is used to allow Python scripts running on the Open NX-OS device to

interact with the CLI to get and set configuration on the device. This library has one function
within it named . The input parameters to the function are the CLI commands the user de-

sires to run, the output is a string representing the parser output from the CLI command.

Here is an example of using the CLI library to gather hardware version information

import cli

result = cli.cli("show version | beg Hardware")

print result

Running the example in Python results in the following output:

n9k-sw-1# python get hardware.py
Hardware
cisco Nexus9000 C9396TX Chassis
Intel (R) Core(TM) 13-3227U CPU @ 2.50GHz with 16402136 kB of memory.

Processor Board ID SAL18370NXE

Open NX-0S and Linux 65

Device name: n9k-sw-1
bootflash: 51496280 kB

Kernel uptime is 98 day(s), 21 hour(s), 16 minute(s), 43 second(s)
Last reset at 180873 usecs after Tue Jun 23 18:15:50 2015

Reason: Reset Requested by CLI command reload

System version: 7.0(3)I2(1)

Service:

plugin

Core Plugin, Ethernet Plugin

Active Package (s):

The cli package will accept both show commands and configuration commands in the cli function.

In addition to the cli package, a "cisco" package is provided. The cisco package provides the fol-
lowing functionality:

Function Description

Adds the ability to create, delete, and modify Access Control Lists

Functions around configuring BGP

cisco_secret Adjust Cisco passwords

Get information about supported and enabled features on NX-OS

interface Functions around manipulating interfaces

Contains useful CLI interaction utilities

osp Functions around configuring OSPF

Generate SSH key information

tacacs Runs and parsers TACACS+ status information

< [9) =] h W
[a 9] X 0] Q
h =8 Q I
h H IS8
= c
=
0]

Creates and deletes virtual routing and forwarding (VRF) tables

66 Open NX-0S and Linux

The following code sample uses the cisco package to change the state of all interfaces to up.

import cisco

tp = cisco.Interface.interfaces()
for tpint in tp:
intf = cisco.Interface (tpint)

intf.set_state()

The first line above imports the cisco package into the Python script so functions within the
package can be used. A for loop is then used to loop through each interface and set_state().
set_state with no options will default to setting the state of the interface to up.

ASIC-level Shell Access

Cisco Nexus Series switches architecture enables access to the ASIC shell. You can use an ASIC
shell to access a shell prompt specific to the device front panel and fabric module line cards.

The following examples describe how you can access the command-line broadcom based shell
(bcm-shell) and how to read from these ASICS, although it need not be limited to these ASICs.

Accessing the Broadcom Shell with the CLI (bcm-shell)

SyntaXIch—shell module module number [instanceinumber:commandq

Query the Broadcom Shell for detailed VLAN information:

n9k-sw-1# sh vlan id 101

VLAN Name Status Ports

101 VLANO0101 active Pol, Po22, Ethl/1l, Ethl/2

Ethl/47, Ethl/48

VLAN Type Vlan-mode

Open NX-0S and Linux 67

101 enet CE

n9%k-sw-1# bcm-shell module 1
Warning: BCM shell access should be used with caution
Entering bcm shell on module 1
Available Unit Numbers: 0
bcm-shell.0> vlan 101
Current settings:
VRF=3
OuterTPID=0x8100
LearnDisable=1
UnknownIp6McastToCpu=0
UnknownIp4McastToCpu=1
Ip4Disable=0
Ip6Disable=0
Ip4McastDisable=0
Ip6McastDisable=1
Ip4McastL2Disable=0
Ip6McastL2Disable=0
L3VrfGlobalDisable=0
MplsDisable=0
CosgEnable=0
MiMTermDisable=0
Cosg=-277706854
Ip6McastFloodMode=MCAST FLOOD_ UNKNOWN
Ip4McastFloodMode=MCAST_ FLOOD_ UNKNOWN
L2McastFloodMode=MCAST FLOOD_ UNKNOWN
IfClass=17

bcm-shell.0>

Query the Broadcom Shell for detailed MAC table information:

n9k-sw-1# show mac address-table

Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen,+ - primary entry using vPC Peer-Link,
(T) - True, (F) - False

VLAN MAC Address Type age Secure NTEY Ports

68 Open NX-0S and Linux

* 2501
* 2502

101
102
2501

2502

Q O 0 0 0 Q@ @

201

n9k-sw-1+#

Available

bcm-shell.
mac=50:87:
mac=50:87:

bcm-shell.

5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -
5087.89d4.5495 static -

n9%k-sw-1# bcm-shell module 1

Unit Numbers: 0

0> 12 show
89:d4:54:95 vlan=31174 GPORT=0x80000202 port=0x80000202 (vxlan)

89:d4:54:95 v1an=31173 GPORT=0x80000201 port=0x80000201 (vxlan)

0>

Entering bcm shell on module 1

Warning: BCM shell access should be used with caution

V1an2501

V1an2502

sup-ethl (R)
sup-ethl (R)
sup-ethl (R)
sup-ethl (R)
sup-ethl (R)
sup-ethl (R)

sup-ethl (R)

————————— Bttt s S S

Static Hit

Static Hit

Summary

The Open NX-OS framework allows users to leverage the capabilities of an underlying Linux
distribution. It allows the installation and management of a wide-variety of third party tools and
applications that extend the capabilities of the switch, enabling powerful new use-cases. Open
NX-OS is designed following the latest software development best practices and provides best
of breed capabilities such as process isolation, restartability and modularity - characteristics

that make the system more resilient.

Open NX-0S and Linux 69

Third-party Application Integration

The Open NX-OS architecture allows users to expand base functionality on the Cisco Nexus
switching platforms through the installation of compatible packages. Third-party applications
or tools may address:

¢ Configuration Management
* Network Telemetry and Analytics
* Network Monitoring

* Custom Network Requirements

Configuration Management Tools

Cisco Open NX-OS supports intent-based automation through integration of agent software for
Puppet and Chef. Automation of various network provisioning, configuration, and management
tasks from a central server will enable a dramatic reduction in network deployment and config-
uration times, while eliminating manual tasks that are repetitive and error-prone.

Figure: Scalable Network Management with Configuration Management Tools

A

puppet PC

€ A«) op— e g B 2N | sl
as-:mas-pasi:® as:mpaiA D adsi:B
Cisco Nexus Clhdld Chessdd Chwsss® CiscoNexus Ol Clhesssd® Clwsssdld Cisco Nexus

L J
|

Compute/Storage Servers

The provisioning of network constructs like VLANs, ports, network routes, quality of service
(QoS) parameters, and access control can be optimized with automation tool integration.

70 Open NX-0S and Linux

Lifecycle management operations such as firmware and configuration management, compli-
ance auditing, and performance monitoring are made substantially easier.

Puppet and Chef Agents

Figure: Using Standard Tools like YUM to install Puppet and Chef Agents

Yum/RPM install
puppet/chef.rpm

/ﬁ& puppat Linux Software

forge
s Repository

0 git Server

“=
Chef

Cisco Puppet/Chef
Maodule(lnel Utility
GEMs)

Puppet/Chef Master Server
\

Native Linux Service
fetcfinit.d/puppet.d & chef.d

Open NX-0S and Linux 71

The graphic depicts the workflow for the Puppet/Chef agent support.

° The Puppet agent is installed via yum as an RPM.
* Configure agent to talk to proper server / master.

* User installs Chef cookbook / Puppet manifest as an example along with Cisco utility
libraries on the server /master.

* User creates a recipe or defines a manifest using the resources available in the
cookbook /module.

* Switch agent stays in sync with Puppet/Chef master for updated catalog/cookbooks.

o If agent is configured to run periodically, it will obtain and download the
cookbook/catalog and attempt to remediate the network element/switch to the
desired state.

¢ The Puppet/Chef agent utilizes NX-API to apply changes as defined by the
Puppet/Chef master server to the switch.

Figure: Types and Providers for Puppet and Chef supported out-of-the-box with Open NX-OS

Puppet Agent Types/Providers

cisco_vtp

cisco_tacacs_server_host

cisco_snmp_community

cisco_ospf

cisco_vlan

cisco_bgp_vrf*

cisco_interface_ospf

72 Open NX-0S and Linux

The graphic list samples supported agents / provider capabilities. The list can be extended,
leveraging the puppet workflow via the utility classes. The user can develop extensions to Cisco
Puppet modules on GitHub. The agent is also extensible by passing CLI commands.

p
cisco_command config resource:

cisco_command_config { " feature-portchannell":
command => " interface port channell\n
description nwkl-0106-ic4d-gwl|P0o2407\n
no switchport\n

ip address 10.1.1.51/31\n }

Sample Puppet Manifest

The Puppet manifest for interface configuration sets Ethernet 1/1 with an IP address of 10.1.43.
43,24,

cisco_interface { "ethernetl/1"
shutdown => false,
description => 'managed by puppet',
switchport mode => disabled,
ipv4 address => '10.1.43.43",
ipv4 netmask length => 24,
}
L

Sample Puppet manifest for the installation of

class tcollector {
package { 'tcollector':
ensure => present,
}
service { "tcollector":

ensure => running,

Ansible

Ansible is an automation tool for cloud provisioning, configuration management and application
deployment. It is agent-less, and uses the YAML markup language in the form of Ansible Playbooks.

Open NX-0S and Linux 73

Figure: Ansible Configuration Management Workflow

' T
. ANSIBLE ORCHESTRATION ENGINE
&
Users ['H"“;““l‘* J [AP] SSH
Osti rlle
%

N — | =)

Playbook

Here is a sample Ansible playbook that creates a static route on a NX-OS device. Within this
sample a static route for 10.10.1.0 /24 is created with a next hop of 10.20.2.2.

Sample Ansible Playbook

Static route with tag and preference set
- nxos_static_routes: prefix=10.10.1.0/24 next hop=10.20.2.2 tag=90 pref=80 host={{

inventory hostname }}

Open NX-OS supports a range of configuration management tools like Puppet, Chef, and Ansi-
ble and is extensible to support Salt, CFEngine and others.

Telemetry Applications

Open NX-OS supports a wide range of third-party telemetry applications, and can support a
pull or push model for telemetry data to be extracted from the devices.

Splunk

Splunk is a web-based data collection, analysis, and monitoring tool. Splunk Enterprise helps
you gain valuable operational intelligence from your machine-generated data. It comes with a
full range of powerful search, visualization and pre-packaged content for use-cases where any
user can quickly discover and share insights. The raw data is sent to the Splunk server using the
Splunk Universal Forwarder. Universal Forwarders provide reliable and secure data collection
from remote sources while forwarding data into Splunk Enterprise for indexing and consolida-

74 Open NX-0S and Linux

tion. A Splunk Enterprise infrastructure can scale to tens of thousands of remote systems, col-
lecting terabytes of data with minimal impact on performance.

For additional information, see http://www.splunk.com/en us/download/universal-

forwarder.html.

NX-OS with Splunk enables network operators to:

¢ Gain visibility into their infrastructure

* Track detailed network inventory

* Track power usage and temperature

* Authenticate and audit configuration changes

* Collect performance data from network devices

tcollector

tcollector is a client-side process that gathers data from local collectors and pushes the data to
OpenTSDB. The tcollector agent is installed in the native Linux filesystem.

For additional information, see http://opentsdb.net/docs /build /html /user guide /utilities

tcollector.html.

Collectd

collectd is a daemon which collects system performance statistics periodically and provides
mechanisms to store the values in a variety of ways as for example in RRD files.

collectd gathers statistics about the system it is running on and stores this information. Statis-
tics can be used for performance analysis and capacity planning.

For additional information, see https://collectd.org

Ganglia

Ganglia is a scalable, distributed monitoring system for high-performance computing systems
such as clusters and grids. It is based on a hierarchical design targeted at federations of clus-

Open NX-0S and Linux 75

ters. It leverages widely used technologies such as XML for data representation, XDR for com-
pact, portable data transport, and RRDtool for data storage and visualization.

For additional information, see http://ganglia.info.

Nagios

Nagios is an open source application which provides monitoring of network services (through
ICMP, SNMP, SSH, FTP, HTTP etc), host resources (CPU load, disk usage, system logs, etc.) and
notification for servers, switches, applications, and services. Nagios provides remote monitor-
ing through the Nagios remote plugin executor (NRPE) and through SSH or SSL tunnels.

For more information, see https://www.nagios.org

Open Source Protocols

Open NX-OS comes packaged with a comprehensive suite of protocols. Customers may be in-
terested in augmenting or replacing default modules and packages with custom-developed or
open source modules. Examples of these modules could be OpenLLDP, OpenSSH, etc.

Open LLDP

LLDP is an industry standard protocol designed to supplement proprietary Link-Layer discov-
ery protocols such as EDP or CDP. The goal of LLDP is to provide an inter-vendor compatible
mechanism to deliver Link-Layer notifications to adjacent network devices.

For more information, see https://vincentbernat.github.io /lldpd /index.html

Custom Applications on Open NX-OS

Cisco SDK

The Cisco SDK is a development-kit based on Yocto 1.2. It contains all of the tools needed to
build applications for native installation on a Cisco Nexus switch beginning with NX-OS Release
7.0(3)I2(1). The basic components are the C cross-compiler, linker, libraries, and header files
that are commonly used in many applications. The SDK can be used to develop applications and

76 Open NX-0S and Linux

package them as RPMs to be installed on a switch. The SDK should be dowloaded and installed
on your Linux build server in your data center for your application development efforts.

Basic example of building an application into an RPM:

Essentially if the application successfully builds using "make", then it can be packaged into an
RPM. The package should contain the meta data for use with autoconf and RPM packaging
tools. Assuming all of the dependencies are met, you can just use the standard RPM build pro-
cedure:

bash$ mkdir rpm

bash$ cd rpm

bash$ mkdir BUILD RPMS SOURCES SPECS SRPMS
bash$ cp ../example-app-1.0.tgz SOURCES
bash$ cp ../example-app.spec SPECS

bash$ rpmbuild -v --bb SPECS/example-app.spec

The SDK is available for download at: http://developer.cisco.com /opennxos . This will also
contain detailed documentation around the SDK installation and custom application building

process, to assist user development efforts.

Many commonly used applications are already pre-built and available at http://developer.

cisco.com /opennxos

Conclusion

Cisco Open NX-OS allows network operators and developers to integrate third-party and cus-
tom applications directly onto Nexus switch platforms. These applications can address a wide
variety of configuration management, telemetry and advanced network monitoring challenges.

Network Programmabillity
Fundamentals

Network Programmability Fundamentals 79

Introduction

The drivers for network programmability and software-defined networking are numerous and
growing. Network infrastructure components represent one of the last elements of the IT ser-
vice delivery chain that require manual provisioning.

Automating and orchestrating network infrastructures through programmatic interfaces can
provide many benefits, including reduced provisioning time and increased service velocity. A
more dynamic, agile, repeatable, and reliable approach to network device configuration, opera-
tion and monitoring is necessary to keep pace with the rapid change of business today.

Automation and orchestration methodologies that have been successfully applied to compute,
virtualization, and storage platforms in the data center can also be applied to network fabrics.
Perhaps the most impactful of these methodologies is the utilization of Application Program-
ming Interfaces (APIs). When network platforms expose APIs as a means for configuration, con-
trol, and monitoring, it becomes possible to replace existing manual processes with auto-
mated workflows.

The extensibility of an API allows for network components to be controlled and managed in a
centralized fashion. Some practical examples involving centralized management through APIs
include:

* Network controllers leverage APIs to manage and operate the network inclusive of
monitoring key performance indicators (KPI) such as latency, jitter and delay. The
controllers' knowledge allows for routine change actions to be performed, such as
dynamic traffic movement away from identified saturated links.

* Policy controllers leverage APIs to apply policies to meet the security and performance
requirements of a given application, service, or user - all based on high-level policy
definitions.

This section will provide an overview of non-programmatic management interfaces available on
Cisco Nexus switching platforms, as well as introducing the new open NX-OS programmatic in-
terfaces for Cisco Nexus switches.

Network Programmability Fundamentals 81

Conventional Network Interfaces

Network devices have traditionally been managed using the Command Line Interface (CLI) and
with protocols such as Simple Network Management Protocol (SNMP) and Network Configura-
tion Protocol (NETCONF).

Command Line Interface (CLI)

CLI has been the primary interface to interact with network devices, used to manage, operate
and troubleshoot the network device throughout its lifecycle. CLI is a very comprehensive in-
terface to leverage, but has limitations when used as the interface for automation:

* The CLI was designed as a human-readable interface, returning unstructured text data
to the operator.

e This unstructured text data requires post-processing (screen scraping) to transcode to
machine-friendly formatting.

* CLI does not return error/exit codes which can be programmatically acted upon.

e CLlis a single-threaded serial interface, reducing the ability to manipulate multiple
objects at the same time.

"Screen Scraping" is the process of using text-processing tools or interpreters to examine the
results of CLI commands executed via script. This approach was developed as a means to pro-
vide some rudimentary levels of automation, but has several drawbacks:

* Requires domain-specific scripting skills and often requires the use of regular
expressions.

* Increased operational costs due to script repository maintenance, particularly with CLI
syntax changes.

* Lack of interoperability / applicability across heterogeneous network devices.

Simple Network Management Protocol (SNMP)

SNMP is an industry standard protocol for managing network devices, and includes an applica-
tion layer protocol, a database schema, and a set of data objects. SNMP exposes management

82 Network Programmability Fundamentals

data in the form of accessible variables on the system, describing the system configuration in its
entirety. These variables can be queried (and sometimes set) by management applications.

SNMP is widely used for monitoring of network devices. While it can be leveraged for configur-
ing network devices, it is not widely deployed for this purpose. This is due in part to the fact
SNMP lacks a defined discovery process which makes it challenging to find the correct MIB
(Management Information Base) modules and elements for each platform. SNMP also suffers
from limitations inherent to use of the UDP protocol which is stateless and considered a less-
than-reliable transport. It has also been burdened by a lack of effective MIB standardization ef-
forts.

NETCONF

NETCONF is another configuration management protocol, and continues to be developed as an
IETF standard. The NETCONF protocol defines a simple mechanism through which a network
device can be managed, configuration data can be retrieved, and new configuration data can be
uploaded and manipulated.

The NETCONTF protocol uses remote procedure calls for communication. The data payload is
encoded within XML for NETCONF RPC calls. The data is sent to the server over a secure, con-
nection-oriented protocol - secure shell (SSH) is an example of this. The server response is also
encoded in XML. The key part of this mechanism is the request, and both the request and the
response are fully described in an agreed upon communication model, meaning both par-
ties understand the syntax that is being exchanged.

NETCONF has a set of transport protocol requirements which include:

* Connection-oriented communication
* Authentication

* Connection data integrity

Although Cisco and NX-OS platforms have extensive support for NETCONF, it will not be dis-
cussed in detail in this book.

CLI and SNMP have presented challenges for network automation. To address these limita-
tions, Cisco has introduced NX-API with the launch of the Nexus 9000 Series. The following

Network Programmability Fundamentals 83

section introduces NX-API CLI and the NX-API Sandbox. This provides a new way to inter-
act with the network - using APIs and programmability paradigms.

Network Programmability Fundamentals 85

Programmable Network Elements

The previous chapter presented some of the key API-related concepts and technologies. In this
chapter we will explore where APIs can be exposed within a network.

Just as there is a hierarchy associated with most network architectures, there is a hierarchy as-
sociated with the elements that can be controlled via APIs. The hierarchy illustrated below re-
flects the nature of the elements and APIs exposed at each layer, focusing specifically on two

key factors: abstraction and scope of influence.

Figure: Various Programmable Elements in the Network

ht I\ | REST ™ ™
<] a2 (9 (&

REST I NETCONF

Java

and Ab

vy
- -
- =
Py ﬂ Enterprise -, -
Controller
o) Cisco Open SDN Mobility Service
Controller Engine

Platforms and Service APls I

. . | BEm 9 »a
D B a5 5

Cloud Networking Collaboration Things

86 Network Programmability Fundamentals

Device Layer

In the above example, devices reside at the lowest layer of the hierarchy, with applications
and controllers using APIs to communicate with the device to achieve some desired functional-

ity.

An important thing to consider at this layer is that visibility and scope of influence is generally
limited to a single device. APIs at this layer are used to control device configurations and func-
tions, as well as to capture information about things that are controlled by or visible to the de-
vice.

Because NX-OS is based on Linux and provides access to a Bash shell, it's possible for APIs to be
leveraged not only by devices external to the switch, but also directly on the switch. In the fol-
lowing example, a Python script using an API library is executed "off-box" to perform a function
on one or more switches:

Figure: Running the User Logic outside of the Switch on a Server or VM

#!/usr/bin/env python
print(*Hello World!")

Network Programmability Fundamentals 87

In this example, a Python script using an API library is executed "on-box" to perform the
same function. The target of this script is the local switch, but there is nothing preventing a
script executed on one Nexus switch from using APIs to manipulate other switches in the net-
work.

Figure: Running the User Logic within the Switch, Natively or in a Container

#!/usr/bin/env python

print(‘Hello World!")

The ability to execute a script "on-box" can offer significant value, particularly when actions
must be taken while a switch is not reachable by traditional access methods.

For example, it might be desirable that the access ports on a switch be held in a down state
until uplink connectivity has been established. A Python script can configure these access ports
in an administratively down state at boot. When the uplinks become active, a Python script trig-
gered by the Embedded Event Manager (EEM) could then bring the access ports online.

Low-Level Device APIs

It is also possible for applications to control a subset of switch functionality by interacting with
an autonomous subsystem within the device. For example, some of the ASICs that perform low-
level packet switching may expose an API that can be leveraged by scripts to expose low-level
counters or affect low-level packet forwarding functions:

88 Network Programmability Fundamentals

Figure: Using APIs Exposed by ASICs on Network Devices

i

#!/usr/bin/env python
print(‘Register: ‘+ reg014.x4483)

LI

Controller Layer

The control layer resides above the device layer. Controllers are typically compute devices

that:

Provide network layer abstraction by hiding away details of individual devices and their
connectivity. Applications communicate with this abstraction layer.

Expose and use APIs in two directions. "Northbound" APIs are consumed by applications
that need to use the controller's services; "southbound" APIs communicate with
managed devices.

Provide increased visibility through the capture, consolidation and correlation of data
describing device-state and status, path and link characteristics, and many other types
of information from southbound devices.

Analyze and interpret data for consumption by northbound applications.

Implement policy by accepting a policy definition, and manipulating the

configuration of managed devices.

In general, controllers provide a increased level of visibility, intelligence, abstraction, and scope
of influence than is possible at the device layer.

Network Programmability Fundamentals 89

90 Network Programmability Fundamentals

Some examples of API-driven Cisco controllers include:

* APIC provides policy-driven management of data center network fabrics to streamline
application deployment and security.

* Enterprise Controller extends policy-driven management capabilities to routers and
switches throughout enterprise networks.

* Cisco Open SDN Controller provides a protocol conversion, network abstraction, and
application delivery platform for Cisco and third-party developers.

* Mobility Services Engine enables the development of sophisticated, secure applications
built around high-fidelity location tracking and analysis.

Higher Layer Orchestration

Some environments utilize orchestration tools or applications that reside above the controller
layer or directly above the device layer. This layering creates a "stack" of API providers. Each
layer has the capability of exposing "northbound" APIs that allow other applications to interact
with the stack.

To summarize, APIs are offered at each layer of the infrastructure. At each successive layer
throughout the architecture, the scope of influence and level of abstraction will increase.

Network Programmability Fundamentals 91

NX-API CLI

The NX-API CLI is a web interface through which commands, traditionally entered via the CLI,
can be encoded using either XML or JSON, and transmitted via HTTP or a secure transport
(HTTPS) to the device. The commands are executed on-box and responses are returned in ei-
ther XML or JSON format.

The NX-API CLI can be characterized as an "encapsulated CLI" supporting both NX-OS com-
mands and those available in bash. In contrast, NX-API REST interface provides a means
through which device configurations can be manipulated via RESTful API calls. Both the NX-API
CLI and NX-API REST are serviced by an nginx web server on the back end.

NX-API CLI Security

NX-API CLI leverages HTTPS to secure and encrypt data. NX-API CLI provides a session-based
cookie nxapi_auth when users first authenticate. The session cookie is used to avoid re-au-
thentication during communication.

If the session cookie is not included with subsequent requests, another session cookie is re-
quired and is achieved through a full authentication process. Avoiding unnecessary use of the
authentication process helps to reduce the workload on the device.

Note: An nxapi_auth cookie expires after 600 seconds (10 minutes). This value is not config-
urable.

Working with NX-API CLI

To enable NX-API CLI, enter the following command:

[feature nxapi

The following diagram shows an NX-API call, demonstrating a request.

92 Network Programmability Fundamentals

Figure: Request and Response Sequence of NX-API CLI

“ins_api™: {
“version™ “1.0",
“type”: “cli_show",

“chunk”: “0",
“sid"; “1°,
“input”: “show clock”, .
“output_format™: “json” Nexus Switch
}
t
: / T
hY
rd
. HTTR/HTTPS NXAPI
- Web Server @
(NGINX)
q 3
{
“ins_api™: {
“type”: “cli_show",
“version™ “1.0",
“sid"; “eoc”,
“outputs™ {
“output”: {

“input”: “show clock”,
“msg”: “Success”,
“code”: “200",
“body": {
“simple_time": “12:17:21.469
UTC Tue Sep 29 2015\n”

NX-API CLI Developer Sandbox

Cisco has developed a tool to help customers become familiar with the NX-API CLI by creating
the NX-API CLI Developer Sandbox. This is a web interface that allows users to make NX-API
interface calls, and it can transcode traditional Nexus CLI commands into JSON or XML format.

The NX-API CLI Developer Sandbox is divided into three components:

¢ Post Pane:

o This Pane is composed into three major categories:

Network Programmability Fundamentals 93

e Text Area: This is where the user can enter show, configuration, or bash
commands.

e Message format: XML, or JSON
o Command Type:

e cli_show represents the CLI show commands (such as OT [show
clock)

e cli_show_asci represents the CLI show command that expects ASCII
output. This aligns with existing scripts that parse ASCII output. Users are
able to use existing scripts with minimal changes.

e cli_conf represents the CLI for the configuration commands
o bash represents the Bash command
e Post
° Request Pane:
e Provides a brief description of the request elements that are displayed
¢ Includes a Python code output option
° Response Pane:

e The POST response will be displayed in this pane

In order to access the NX-API CLI Developer Sandbox, point your browser to the IP or host-
name of a Nexus switch.

[http://<<switch ip>>

The authentication page will prompt for a username and password. Once authenticated, the
sandbox interface will be displayed:

94 Network Programmability Fundamentals

Figure: NX-API CLI Developer Sandbox Web Interface

il NX-API Developer Sandbox Quick Start . | Lopout e

Message format. @
jpor-rpa wrl o

Command type: @

[
& Post Pane
== ==
=3 2
E=
N N
Cooymight € 2084 Cisco System. Inc. All rights reserved. HX-AF version 1.0

Request Pane Response Pane

Network Programmability Fundamentals 95

Figure: Screenshot of the 'show clock' Example Workflow

ith NX-API Developer Sandbox Quicle Starl | Logod

Message format: @
show clock 4 Show clock
ponme

Command type: @

cll_shaw,_asc eil_cont

m S;&' { Output clock I

The user can also leverage the Python function in NX-API CLI Developer Sandbox in order to
generate Python code.

96 Network Programmability Fundamentals

Figure: Automatic Python Code Generation with NX-API CLI

cisco NX-API Developer Sandbox tart | Logoetle

Message format: @

show clock

Command type: @

{ Python Function I

{ Python Qutput I

Python code generated by the NX-API CLI Developer Sandbox can be copied into an editor for
execution using the Python interpreter.

Summary

NX-API CLI is a starting point for network engineers to familiarize themselves with network
programmability via the NX-APL

NX-API REST provides the next level of programmability with a RESTful interface to a data
model, enabling model-driven programmability. NX-API REST is discussed in more detail in the
next chapter.

Model Driven
Programming

Model Driven Programming 99

Introduction

When routing platforms were first introduced in the 1980s, the pace of new feature develop-
ment was frenetic. It was common practice for new development teams to be formed almost
daily and for them to work in relative isolation. These teams developed every element of a new
feature, including the command line interface (CLI) and the data structures that were necessary
for its configuration, operation, and monitoring.

This practice persisted for years and was prevalent industry-wide, therefore the syntax associ-
ated with features such as BGP, QOS, or VPNs varied widely across platforms and software re-
leases.

Figure: Traditional Information Store Model - Internal to each Process

BGP QOS VPN

Configuration
and State

Configuration
and State

This software development model was productive for customers as it supported rapid feature
velocity. Over time, however, this model inhibited the ability to configure and manage networks
at scale. Configuring and operating a single feature within a large network could require the use
of several different CLIs.

100 Model Driven Programming

Legacy scripting tools such as Tcl and Expect were leveraged to optimize configuration work-
flows and deliver more repeatable, less error-prone results, but they still had to be developed
and maintained for potentially many disparate CLI interfaces.

As the networking industry adopts programmatic network device acccess methods, APIs and
model-driven software interfaces offer a structured way to access and automate the network
device.

This chapter will explore solutions to these legacy network management issues, which can be
addressed with data model concepts and the NX-API REST interface.

Model Driven Programming 101

Model-driven Programming

Data models and application programmable interfaces (APIs) have shown enormous
promise addressing the previously described problems and have been available in a number of
forms since the early 2000s.

A data model is a schema or specification that describes the configuration and operational state
associated with the elements and features of a routing or switching platform. Network devices
that implement a data model, like the Cisco Open NX-OS and IOS-XR platforms, typically store
the configuration and operational data in a centralized data store, and expose model via an API
framework.

Figure: Modern, Centralized Information Store Model in Cisco Open NX-OS

Configuration and State

90
O‘O

7
‘ BGP

In a model-based architecture, CLI manipulates the model rather than individual features or el-
ements. After an update to the data model, applicable network features or elements will
react to any changes in the model. Every feature individually maintains its operational state and

\

102 Model Driven Programming

performance data within the data model. The presence of a data model implementation in a
network platform enables programmatic interfaces, such as NX-API REST.

The Nature of Data Models

Data models can be implemented using numerous data representation and storage formats, in-
cluding arrays, linked lists, stacks, and graphs (e.g hierarchical trees). The hierarchical tree is
very efficient in representing repetitive and hierarchical data and is typically associated with
routing or switching platform configurations. Therefore it is the most common data model for-
mat used for networking platforms.

Figure: Information Store Model - Hierarchical Tree of Objects

Tree-based data models are characterized by nodes that can have parents, children, or both.

The root of the tree has child nodes but no parent. Leafs have parents but no children, and
nodes have both; as illustrated above. In many data model implementations there are poten-
tially one or more trees, each containing information about some major group or important di-
vision of information pertaining to a modeled object.

Model Driven Programming 103

Data models enable data to be easily structured, grouped, and replicated to represent infor-
mation related to network devices, features, and solutions. The example below represents a
data model of network interfaces, where there is:

* aroot node described by the category "interfaces"
* child-nodes for various interface types and discrete interfaces

* leafs containing information that pertains to specific object instances (interfaces),
including configuration and operational state

Figure: Inheritance Relationship between Parent-Child Objects in Object Store

[Admin State | MAC Address J [Admin State J { MAC Address ‘

Data models can be used to enforce data consistency and validity. Rules govern data model
structures, including the manner in which information can be inserted, modified, accessed,
or deleted, and who is able to manipulate the data model. These rules ensure that data is main-
tained in a known, valid state.

Since data models represent the complete state of the network platform at any point in time, it
is possible to implement and utilize recovery features such as backups and snapshots, allowing
configuration changes to be validated and rolled-back if necessary.

Data models are extensible; they can grow and adapt to accommodate additions or changes
to features and elements, provided any rules governing the structure of the data model are ob-
served.

104 Model Driven Programming

Data models are flexible; once a model structure is chosen, it can be used to encode more than
one model simultaneously to meet the needs of multiple administrative audiences.

The Value of Data Models

A data model's structure, consistency, data validation, flexibility, and extensibility enable a shift
from human- or script-based methods of device configuration to machine-based, program-
matic methods.

Once the structure and rules governing the use of a data model are defined, it is possible to ex-
pose a programmatic interface that enables access to, and manipulation of, the information
contained therein.

These programmatic interfaces leverage technologies already discussed, such as data inter-
change formats (XML, JSON), transports (HTTP, RPC), and protocols (NETCONF, RESTconf) to
enable remote applications and controllers to manage and monitor the network platforms.

Programmatic interfaces form the foundation of software-defined networks (SDN) and allow
network platforms to be controlled in a more rapid, dynamic, and repeatable manner.

Data Models and YANG

Data models have been in use on the Cisco IOS-XR platform for over a decade. In the following
section, a data model specific to the Open NX-OS operating system, the Data Management En-
gine-Data Model (DME-DM) will be introduced.

There are industry-wide efforts, including those in the IETF NETMOD working group and the
OpenConfig organization, to build common data models in YANG. Cisco and Tail-f pioneered
the data-modeling language presently available in the industry. YANG models can be mapped to
network platform data models, and present an opportunity to deliver common interfaces for a
wide variety of end-to-end network use cases.

More specific data models, such as the the Cisco Open NX-OS managed information tree, will
be discussed in the next section. Data models and APIs are essential to successful automation.

Model Driven Programming 105

Cisco Open NX-OS MDP Architecture

The Cisco Open NX-OS Model-Driven Programmability (MDP) architecture is an object-ori-
ented software framework aimed at development of management systems. The MDP object
model is an abstract representation of the capabilities, configuration and operational state of
elements and features on a Cisco Nexus switch. The object model consists of various classes
that represent different functions and their attributes on the switch.

As an example, a switch has physical network interfaces, and those interfaces have characteris-
tics. These characteristics include the mode of operation (Layer 2 or Layer 3), speed, and con-
nector type(s). Some of these characteristics are configurable while others are read-only. The
object model is responsible for representing each element's state and hierarchy.

The Cisco Open NX-OS MDP framework provides users with many advantages:

* Ability to automate network configuration using a programmatic method

* Backed by a data model with abstraction suitable for network programmability
* Support for a variety of management agents

* Ability to extract configuration and operational data from devices

* Security through Role-Based Access Control (RBAC)

This section will provide an overview of the data management engine, managed objects, and
object relationships and dependencies.

Data Management Engines

The data management framework consists of the Data Management Engine (DME), clients of
the DME (“northbound” interface), and back-end processes and applications.

106 Model Driven Programming

Figure: Automated Generation of Code and Artifacts from Data Model Definition

[CLI, REST Clients, JSON RPC Clients, SNMP etc.]

Program I T Notifications
(v)
Northbound API

Code/artifacts generated from models

Models

Code/artifacts generated from models

Southbound API

e T s U e 0 e W

P [
& ¥ T3

Backend processes

The DME has the following properties:

* Transactional, with each transaction following ACID semantics with regard to objects
they affect:

e Atomicity
o Consistency
« Isolation
e Durability
* Model-driven architecture
* Multi-threaded
* Secure
e Upgradable

* Ultimately consistent across multiple objects affected by a transaction

Model Driven Programming 107

Management Information Tree

The DME holds the repository for the state of the managed system in the Management Infor-
mation Tree (MIT). The MIT manages and maintains the whole hierarchical tree of objects on
the switch, with each object representing the configuration, operational status, accompanying
statistics and associated faults for a switch function. The MIT is the single source of truth for
the configuration and operational status of NX-OS features and elements. Object instances, also

referred to as Managed Object (MOs), are stored in the MIT in a hierarchical tree, as shown
below:

Figure: Characteristics of Open NX-OS Object Store - Management Information Tree (MIT)

(Everything is an object]
[Root] { MIT 1
[Objects are hierarchically organized]
/\
Managed information tree (MIT) [] []
contains comprehensive system information
« Discovered components /\ /\
+ Systemn configuration ~ U o ot
« Operation status including statistics and faults D
-]]
Class indentifies object type
« Card, port, link, etc.
L. A —'
MO
Class inheritance class
* Anaccess port is a subclass of the port dn
+ A power-supply is a subclass of the device component prop1
- prop?
Set of attributes J
T,

[Descriptions] [States] (Idenlily] Full, Unified Description of Entities

Mo Artificial Seperation of Configuration,
State, Or Runtime Data
Lifecycle References

The general concept is similar to the tree-based hierarchy of a file system. The MO database is
organized in such a way that there is a parent-child hierarchy, meaning there is a root node fol-
lowed by a hierarchical group of children.

108 Model Driven Programming

One such parent-child hierarchy is illustrated using the following example:

Figure: Parent-Child Containment Relationship in Open NX-OS Data Model

aggregate:
systemTable

aggregate:
controllerTable

controllerEntry

In the above example:

° top:sys is the root of the entire MIT
* aggregate:systemTable is a child of top:sys
* aggregate:controllerTable is a child of aggregate:systemTable

* parent/child relationship continues through the table

When there are user-provided distinguishers, values for the naming property of the object
and multiple objects of the same class can exist in the same subtree. In the example above, mul-
tiple instances of the controller class can exist since it has a naming property ([id]) associated
with it in which each instance will have a unique user supplied [id].

Model Driven Programming 109

Everything is an Object

Cisco Open NX-OS is object-oriented, and everything within the model is represented as an ob-
ject. Objects store the configuration or operational state for Open NX-OS features associated
with the data model. Within the model, objects can be created in reference to other objects.
References may be among various networking constructs, such as interfaces and VLANS, as well
as relationships between these components. Trunked VLAN interfaces represent an example of
related, hierarchical objects.

The following section outlines how MOs are defined in Open NX-OS during the software devel-
opment process.

MO Definition

Open NX-OS software developers define models for various classes in an XML format, and use a
modeling schema with various tags to denote specific attributes of the class. This relationship is
defined prior to compile-time and is enforced during run time. However, it is only the relation-
ship that we create when defining the model and properties of each MO.

Class model definition

<model>
<package name="aggregate">
<objects>
<! Sectionl >
<mo name="SystemTable"
concrete="yes"
label="System Table"
read-access="access-protocol-util"
>
<! List of other properties>
</mo>
<rn mo="SystemTable">
<item prefix="systemTable"/>
</rn>
<contains parent="top:System"
child="SystemTable"

/>

110 Model Driven Programming

<mo name="ControllerTable"
concrete="yes"
label="Controller Table"
read-access="access-protocol-util"
>
</mo>
<rn mo="ControllerTable">
<item prefix="controllerTable"/>
</rn>
<contains parent="SystemTable"
child="ControllerTable"
/>

<mo name="ControllerEntry"

concrete="yes"

label="Controller Entry"

read-access="access-protocol-util"

>

<! Section2 >

<property name="id"
type="scalar:Uint32"
owner="management"
mod="implicit"
label="Controller ID"
/>

<rn mo="ControllerEntry">
<item prefix="controller" property="id" />
</rn>
<! Section3 >
<contains parent="ControllerTable"
child="ControllerEntry"
/>
<! Section4 >
<chunk target="ControllerEntry"
owner="vlanmgr"
type="primary"

/>

Model Driven Programming 111

MO Properties

On a Cisco Nexus switch, the configuration and/or operational state of the network can be
stored in the MO as properties of the MO. Some properties can be used to store configura-
tion state, such as enabled/disabled state and attributes of protocols, while other properties
can be used to store operational state, such as statistics, faults, events, and audit trails.

Properties within MOs will have an attribute.

[propertyname="attribute"

Values can be expressed in terms of regular expressions, etc. Thus, one can actually specify that
a certain property can have a string as its value only if that string matches a particular regular
expression. All type/regex checking is done prior to creating an MO and storing the value as
one of its properties.

MO property definition

<property name="speed"
type="Speed"
owner="management"
mod="implicit"
label="Speed"

/>

MO Grouping

Each class is part of a package, and the definition of the class includes the package name. Each
class has a mo name that identifies the class. References to an MO in the current package can
be made by directly specifying the name of the MO. Any reference to an MO in a different
file /package will have to prefix the reference with the package name of the MO being referred.
Any reference from an external package to the controllerTable MO, in the Class model defini-
tion example above, should be formatted as aggregate: controllerTable, where controllerTable is
the class name and aggregate is the namespace qualifier. This ensures you are using the right
class while referencing it in some other package.

112 Model Driven Programming

MO Inheritance

Each object within the data model is an instance of its associated class. The objects in the
model can use the concept of inheritance, which allows for new objects to take on properties
from existing, more abstracted base objects. For example, a physical interface can be a data
port or a management port; however, both of these still have the same basic properties, so they
can inherit from a single interface base class. Rather than redefine the same properties many
times, inheritance can be used to define them in one base class, and then customize them for a
specific child class.

A class can be defined as a purely abstract class by setting the attribute
to Such classes are purely abstract - no objects of the class can be instantiated.
Other non-abstract, concrete MO can reference the abstract MO as a “super class” and in-

herit the class properties.

Figure: Parent-Child Inheritance Relationship in Open NX-OS Data Model

Interfaces

Ethernet VLAN

Admin State MAC Address Admin State MAC Address

Model Driven Programming 113

Access Control

An important attribute of the MO is its access control attribute, defined
by [access:admin/user]. This basically denotes the access privileges for the specific MO and de-

termines which user-access-role is allowed to access and modify this particular MO. This ability
to specify per-MO permissions enables a programmability model with granular access con-
trol to meet the security requirements of the infrastructure.

Identifying Objects in the MIT

Managed objects make up the management information tree. Each MO, other than “top:Sys” has
the following attributes:

* A parent object

* Arelative name (RN) that uniquely identifies the object among its siblings

* Adistinguished name (DN) that uniquely identifies the object globally

The RN is immutable; it is set once at MO creation time. The DN is the concatenation of relative
names along the path from the root to the MO, with RNs separated by “/”

Figure: Identifying Objects with their Distinguished Name (DN) and Relative Name (RN)

N

)
O

DN
RN} MO RN

114 Model Driven Programming

Distinguished Name

Every object in the object store will have a DN. The distinguished name enables you to unam-
biguously identify the target object. The distinguished name has the following format consisting
of a series of relative names:

[dn = {rn}/{rn}/{rn}/{rn}...

In the following example, the DN provides a fully qualified path for peer-[192.168.0.2] from the
top of the object tree to the object. The DN specifies the exact managed object on which the
API call is operating.

[< dn ="sys/bgp/inst/dom-default/peer-[192.168.0.2]1" />

DN_of_MO is the concatenation of Parent_DN and RN_of_MO

top:Sys is the only MO that has RN ~= DN. RN of top:Sys specified in the model is sys and
its DN /sys

In the example above:

* The RN of aggregate:SystemTable is systemTable. Thus its DN
is /sys/systemTable because it does not have a naming property. The RN
of aggregate:ControllerTable is controllerTable. The DN of aggregate:ControllerTable MO
is /sys/systemTable/controllerTable

* The RN of aggregate:ControllerEntry is controllerEntry-[id], where id is the naming
property of the MO.

* The DN of aggregate: ControllerEntry MO will
become /sys/systemTable/controllerTable/controllerEntry-[id]. Since this MO has a
naming property, we can have multiple instances of this MO under its parent
MO aggregate:ControllerTable, with each instance being associated with a unique [id]
value.

* The DN /sys/systemTable/controllerTable/controllerEntry-1 refers to one particular
instance of controllerEntry class.

Model Driven Programming 115

Relative Name

The relative name identifies an object within the context of its parent object. The distinguished
name is composed of a sequence of relative names. The following distinguished name is com-
posed of the following relative names:

Distinguished name

[<dn="sys/bgp/inst/dom-default/peer-[192.168.0.2]"/>

Relative name

["peer-[192.168.0.2]"

Relative name and Distinguished name

Object Name DN Parent DN RN

topSystem 'sys' N/A 'sys'

BGP 'sys/bgp' 'sys' 'bgp’

BGP Instance 'sys/bgp/inst’ 'sys/bgp’ 'inst’

BGP Domain 'sys/bgp/inst/dom- 'sys/bgp/inst’ ‘dom-default’
default’

BGP Peer 'sys/bgp/inst/dom- 'sys/bgp/inst/dom- 'peer-[192.168.0.2]'
default/peer- default'
[192.168.0.2]'

The next chapter, which discusses the REST API, provides more information about how to use
an object's distinguished name and relative name to form a REST URI.

Accessing Objects with Queries

The MIT allows operations such as search, traversal, insertion, and deletion. One of the most
common operations is a search to query information from the MIT.

116 Model Driven Programming

The following types of queries are supported:

* tree-level query: search the MIT for objects of a specific subtree.
e class-level query: search the MIT for objects of a specific class.

* object-level query: search the MIT for a specific DN.

Each of these query types support numerous filtering and subtree options, but the primary dif-
ference is the way that each type is used.

A class-based query is useful for searching for a specific type of information without knowing
all the details, or only knowing partial details. Because a class-based query can return a range
of results from zero to many, it can be a helpful means of querying the fabric for information
when the full details are not known. A class-based query combined with filtering can be a pow-
erful tool for extracting data from the MIT. For example, a class-based query can be used to find
all interfaces that are functioning as uplink interfaces on leaf switches in a datacenter fab-
ric and extract their CDP/LLDP information, for a way to rapidly create a cable plan of the fab-
ric.

An object-based (DN) query returns a single match, and the full DN for an object must be pro-
vided for a match to be found. Combined with an initial class query, a DN query can be helpful
for finding more details about an object referenced from another object, or for updating a local
copy of information.

Both query types support tree-level queries with scope and filtering criteria. Thus, you can
query the MIT for all objects of a specific class or DN and then retrieve the children or complete
subtree for the returned objects. Furthermore, the data sets can be filtered to return only
records of interest for the current purpose.

The next chapter, which discusses the REST API, provides more information about how to build
and run these queries.

REST API Primer

Application Programming Interface - API

Model Driven Programming 117

Most applications expose some sort of API that governs how an application can be accessed by
other applications. APIs provide a set of routines, protocols, tools and documentation which
can be leveraged for programmatic interaction. They represent a means through which ele-
ments or applications can be programmatically controlled and describe how external applica-
tions can gain access to capabilities and functions within another application. APIs have four

primary components:

* Methods: Describes the mechanism of the API implementation including how resources

communicate, provide encapsulation, etc

* Actions: This is the intent of the API call, often referred to as a "verb". It describes the
operations available such as GET, PUT, POST, and DELETE
* Objects: This is the resource the user is trying to access. This is often referred to as a
noun and it is typically a URIL.
* Formats: This is how the data is represented. e.g., JSON, XML, etc.

Figure: API Framework

What action
is to be
taken?

How is
the API
invoked?

Actions

Q

What is
to be acted
upon?

How is
data to be
formatted?

118 Model Driven Programming

The following characteristics of an API enable users to build a more efficient, manageable and
reliable network via automation.

* Modularity: Applications can be built leveraging clearly defined and reusable modules

* Abstraction: APIs abstract the details of the underlying implementation from the higher
level logic that invokes it

e Stability: APIs provide a stable and consistent interface

Cisco Open NX-OS exposes three primary APIs:

* NX-API REST - HTTP-based RESTful API
* NX-API CLI - RPC-based API
°* NETCONF API

Each of these APIs can be used with multiple language bindings. There are Python bindings for
both NX-API REST and NX-API CLI.

This chapter will explore the Open NX-OS RESTful APIs in more detail.

HTTP

Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, and
hypermedia information systems and is one of the primary methods for communication with
the API. In this case, our focus will be leveraging HTTP from a programmatic perspective rather
than as an access mechanism, which is the case with the World Wide Web. Hypertext is struc-
tured text using logical links between nodes containing text (also called "hyperlinks") and HTTP
is the protocol to enable exchange or transfer of hypertext.

HTTP has two types of messages:

° Requests - from a client to a server, consisting of:
e Request Line: The request line begins with the method token, followed by the
Request-URI and the protocol version.
¢ Request Uniform Resource Identifiers (URI): The URI is a set of string of characters
used to identify the name of a resource. The most commonly used URI is in the
form of the Uniform Resource Locator (URL). For example www.cisco.com

Model Driven Programming 119

¢ Request Method: The request method indicates the method to be performed on the

resource identified by the given Request-URI. Here is a list of supported methods:

GET - The action of "getting" the information which is identified by the
Request-URI

HEAD - Similar to the GET method but it includes the transfer of the status line
and the header section only

POST - Used to send data to the server. Examples include loading a new
configuration or querying the state of the network element

PUT - Replaces all the current representations of the target resource with the
uploaded content

DELETE - Requests the origin server delete the resource identified by the
Request-URI

OPTIONS - Requests for information about the communication options
available on the Request-URI

TRACE - Invokes a remote, application-layer loop-back of the request message
CONNECT - Establishes a tunnel to the server identified by a given Request-
URI

* Responses - from a server to a client in response to a request, consisting of:

o Status Line: This is the first line of the Response Message which contains the

protocol version follow by the status code.

503 - Services Unavailable
500 - Internal Server Error
404 - Not Found

403 - Forbidden

400 - Bad Request

301 - Moved Permanently
201 - Created

200 - OK

¢ Message Body

The following diagram describes a Client Request and the Server Response communication

120 Model Driven Programming

Figure: HTTP Client Request and Server Response

Client

Time

1

Server
G
(TR
I
S . Client Request
f — N
GET/index.html HTTP/1.0
User-Agent: Mozilla/1.1N(Macintosh;l;68K;)
Accept: “/”
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg
A, - \:A
Server Response Z
”
d “\

HTTP/1.0 200 OK

Date: Sat, 20-May-95 03:25:12 GMT
Server: NCSA/1.3

MIME-version: 1.0

Content-type: text/htmi

Last-modified: Web. 14-Mar-95 18:15:23
GMT

Content-length: 1029

[body of document here]
N

”
”

kf

Model Driven Programming 121

Figure: HTTP Client Request with Response Code

9 { »)= Comsole HTML (€SS Script DOM Net~ Cookies

we | Clear Persist Al B8 €SS JavaScript XHR Images Plugins Media Fonts
URL Status Domain Size Remote IP Timeline
¥ GET 200 OK 9.9 KB N 218ms

I

¥ Response Headers

Headers Response HTML Cookies

& (Response start line
BTTE/1.1 200 OK L Status “200 OK”
Date: Sat, 21 Mar 2015 12:37:48 GMT

Server: Apache/2.2

Rccept-Ranges: bytes

Vary: Accept-Encoding

Content-Encoding: gzip

(

Request start line
Method “GET” “/” -URL

¥ Request Headers (

Host: wwwin.cisco.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 08 w37 B c
Beeept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
Accept-Language: en-US,en;g=0.5

Becept-Encoding: gzip, deflate

1refox/36.0

@0

REpresentational State Transfer - REST

Given an understanding of APIs and their importance, let's explore REST - REpresentational
State Transfer. REST is a software architecture style for designing scalable networked applica-
tions, specifically web services. By providing a coordinated set of constraints applied to compo-

nent

design in distributed systems, REST facilitates higher levels of performance and more

maintainable architectures.

RESTful constraints are described as follows:

_

N

Client server - clients and servers are fully separated and communicate only via the
RESTful interface.

Stateless - no client context or state is stored on the server between requests, and each
client request must contain all of the information needed for the server to service the

request.

122 Model Driven Programming

3 Cacheable - clients can cache responses, and servers must define the cacheability of the
response.

4 Layered - a client should not be able to tell whether it is connected to a server or to an
intermediate that provides functionality such as security, caching, or load-balancing.

5 Code on Demand (Optional) - servers can at times extend the capabilities of a client
through the transfer of executable code or scripts.

6 Uniform Interface - both client and server must adhere to a uniform interface that
allows for the independent development of functionality.

7 Resource Identification - individual resources are identified using URIs in requests.
Representations of resources are distinct from the actual resources and may be
provided in formats such as HTML, XML, or JSON.

REST relies on standards protocols HTTP or HTTPS to transmit calls between entities, and
within that leverages unique URL identifiers, either a verb or a noun. The specified HTTP meth-
ods or verbs for REST are as follows:

* GET - List the URI's in a collection, or a representation of an individual member

* POST - Create a new entry in a collection. The new entry's URI is assigned automatically
and returned by the operation

* PUT - Replace an entire collection with a collection, or individual member with another.
If a member does not exist, create one

°* DELETE - Delete an entire collection or an individual member
The two behaviors of REST operations are:

* Idempotent - the operation has the same effect no matter how many times it is
performed (PUT and DELETE)

* Nullipotent - the operation does not affect the resource (GET)

Model Driven Programming 123

Figure: REST Communication Flow

Client Server

Client requests object state
N
4
Server returns object state
p.
Y
Client specifies desired state
N
Fd
Server returns resultant state
€

URI

The URI is a string of characters used to identify the name of a resource. Two types of URI's
exist:

* Uniform Resource Locator (URL) - what we often refer to as a web address

* Uniform Resource Name (URN) - less frequently utilized, but intended to compliment
URLSs by offering a way to identify specific namespace resources

A REST URL contains:

* Protocol/schema

* Resource IP or hostname

124 Model Driven Programming

* Path and filename
An important distinction and concept to understand is the difference between absolute and rel-
ative. In absolute we provide the exact path, whereas in relative there is a layer of indirection

where we give the path to the actual location. The following is a sample URI:

Figure: URI Model

https://10.87.34.16/#c:a.1|topology/pod-1/node-105/sys/phys-[eth1/1]

Ll | J

Optional
Port
80/4443

Scheme Host Path and/or Filename

API Security

REST uses HTTPS for encrypted transport. Several widely-accepted industry practices to pro-
vide API security are utilized today, including OAuth, BasicAuth, and API Keys.

Data Formats

Data formats respresent different ways we render output information to the user or applica-
tion. Two primary data formats we'll cover here are JavaScript Object Notification (JSON)
and eXtensible Markup Language (XML).

XML is similar to HTML, but designed to encode structured data. Tags are self-defined rather
than standardized.

Model Driven Programming 125

Figure: XML Request and Response Format

Request Response
(- .
Root % <?xml version="1.0"7> <?xml version="1.0" encoding="UTF-8"7>
<ins_api> <ins_api>
<yersion>1.0</version> <type>cli_show</type>
<type>cli_show</type> <version=1.0</version=>
Each element has a starting <chunk>0</chunk> <sid>eoc</sid=>
and closing tag <sid>sid</sid> <outputs>
<input>sho ver<finput> <output>
<output_format>xmi</output_format> <body=>
<fins_api> <header_str>Cisco Nexus Operating

System (NX-05) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2014, Cisco and/or its
affiliates.
All rights reserved
http:ffwww.gnu.org/licenses/old-licenses/
library. tet.
</header_str>
<bios_ver_str>07.11</bios_ver_str>
<kickstart_ver_str=6.1(2)12(2a)</kick-
start_ver_str>
<bios_cmpl_time=05/28/2014</bios_
cmpl_time=
<kick_file_name=>bootflash:///n9000-
dk9.6.1.2.12.2a.bin</kick_file_name=>
<manufacturer>Cisco Systems, Inc.<fman-
ufacturer>
<TABLE_smu_list>
<ROW_smu_list>
<install_smu_id>n3000-
dk9.6.1.2.12.2a.C5Cup81353.bin</finstall_
smu_id>
</ROW_smu_list>
<(TABLE_smu_list>
</body>
<input=sho ver</finput>
<msg>Success</msg>
<code>200</code>
<foutput=
<foutputs>
<fins_api>

JSON is focused on being more human readable and uses attribute-value pairs. The encoding
format utilizes:

* acollection of name/value pairs

* an ordered list of values

126 Model Driven Programming

Figure: JSON Request and Response Format

Request

Response

“ins_api”: {
“version”: “1.0",
“type”: “cli_show",
“chunk™: “0",
“sid™: “17,

“input”: “sho ver”,

“output_format”: “json”
}
}

“ins_api”™: {
“type™: “cli_show",
“version”: “1.0",
“sid”: "eoc”,
“outputs”: {
“output”: {
“input”: “sho ver”,
“msg”: “Success”,
“code”: “200",
“body”: {
“header_str": "Cisco Nexus Operat-
ing System (NX-0S)
“kickstart_ver_str": “6.1(2)12(2a)",
“bios_cmpl_time™: “05/28/2014",
“kick_file_name”: “bootflash:///
n9000-dk9.6.1.2.12.2a.bin",
“rr_reason”: “"Reset Requested by
CLI command reload”,
“rr_sys_ver": “6.1(2)12(2a)",
“rr_service”: "",
“manufacturer”: “Cisco Systems,
Inc.”,
“TABLE_smu_list": {
“ROW _smu_list": {
“install_smu_id": “n9000-

dk9.6.1.2.12.2a.CSCup81353.bin"

The REST API's structure is one of the most prevalent API design types available. It provides a

language-independent easy-to-structure interface based on well known HTTP web concepts
that are familar to most users.

Model Driven Programming 127

Cisco NX-API REST Interface

NX-API REST is a RESTful programmatic interface for Cisco Open NX-OS. In the previous sec-
tions, we discussed how NX-OS stores configuration and operational data in a centralized ob-
ject store, the Management Information Tree (MIT). The nodes in the MIT store the configura-
tion and state for a switch element or feature (interfaces, protocols, etc.). NX-API REST pro-
vides access to objects stored in the MIT. Managed objects (MOs) are associated with a well-de-
fined REST URI, and can be queried or configured from NX-API REST using their URL

In the sections below, we examine some of the characteristics of Cisco's NX-API REST interface.

Transactional

NX-API REST operates in a forgiving mode, meaning missing attributes are substituted with de-
fault values (if applicable) that are maintained in the internal data management engine (DME).
The DME validates and rejects incorrect attributes. NX-API REST is also atomic; if multiple MOs
are being configured simultaneously, the API has the ability to stop its operation in the
event any of the targeted MOs cannot be configured. It will return the configuration to its pre-
vious state, stop the API operation, and return an error code.

NX-API REST is transactional and terminates on a single data model. Developers are relieved
from the task of programming and interfacing with individual component configurations.

The API model includes the following programmatic entities:

* Classes are templates that define the properties and states of objects in the
management information tree.

* Methods are actions that the API performs on one or more objects.

* Types are object properties that map values to the object state such as
equipmentPresence.

A typical request comes into the DME and is placed in the transactor queue using a first in, first
out (FIFO) scheduler. The transactor retrieves the request from the queue, interprets the re-

128 Model Driven Programming

quest, and performs an authorization check. After the request is confirmed, the transactor up-
dates the MIT. This complete set of steps is executed for every transaction the DME processes.

Backwards Compatible

Updates to MOs and properties conform to the existing object model, which ensures backward
compatibility. If existing properties are changed during a product upgrade, they are managed
during the database load after the upgrade. New properties are assigned default values.

Event-Driven

Full event subscription is enabled. When any MO is created, changed, or deleted due to a user
or system-initiated action, an event is generated. You can subscribe to notifications for changes
that occur to an object through a websocket, and receive proactive notifications back from
DME, showing the change that occurred. This is covered in the next section.

Secure

Currently, the following controls for API security functions within NX-API REST are supported
and provided by Cisco:

* REST API password-based authentication uses a special subset of request URIs,
including aaaLogin, aaaLogout,and aaaRefresh as the DN targets of a POST operation.

e Data payloads are formatted in XML or JSON, and contain the MO representation of an
aaaUser object with attributes defining the username and password.

* The response to the POST operation will contain an authentication token as both a Set-
Cookie header and an attribute to the aaaLogin object in the response.

* Subsequent operations on the REST API can use this cookie to authenticate future
requests.

Flexible

NX-API REST supports a wide range of flexible filters which are useful for narrowing the scope
of a search, allowing information to be located quickly. The filters themselves are appended as
query URI options starting with a question mark (?) and concatenated with an ampersand (&).
Multiple conditions can be joined together to form complex filters.

Model Driven Programming 129

The Cisco NX-API REST API User Guide discusses in detail how to use filters and filter syntax
while providing examples. Using some of the tools discussed in the following sections, you can

build your own query strings and discover those being used by the native Cisco NX-API
REST interface.

Tree-Level Queries

The following figure shows a switch chassis that is queried at the tree level.

Chassis 1]
N

/
4

3l

/H iy

Tree queries return the referenced object and its child objects. This approach is useful for dis-

covering the components of a larger system. In this example, the query discovers the cards and
ports of a given switch chassis.

Figure: Tree-Level Queries

130 Model Driven Programming

Class-Level Queries

The following figure shows the second query type: the class-level query.

Figure: Class-Level Queries

Chassis 1

l Card 1 Card 2 I

Port 1 Port 2 Port 1

Class-level queries return all objects of a given class. This approach is useful for discovering all
the objects of a certain type that are available in the MIT. In this example, the class used is
Cards which returns all objects of type Cards.

Object-Level Queries

The third query type is an object-level query. In an object-level query, a distinguished name is
used to return a specific object.

Model Driven Programming 131

Figure: Object-Level Queries

Chassis 1

[]

Card 1 Card 2

Port 1 f Port 2 i Port 1

For all MIT queries, an administrator can optionally return the entire subtree or a partial sub-
tree. Additionally, the role-based access control (RBAC) mechanism in the system dictates
which objects are returned; only the objects that the user has rights to view will be returned.

Standards-based

Standard REST methods are supported on the API, which include POST, GET, and DELETE, op-
erations through HTTP.

132 Model Driven Programming

REST HTTP and HTTPS-Based Methods

Method Action Behavior
POST Create/Update Idempotent
GET Read Nullipotent
DELETE Delete Idempotent

The POST and DELETE methods are idempotent, meaning they have no additional effect if they
are called more than once with the same input parameters. The GET method is nullipotent,
meaning it can be called zero or more times without making any changes (or that it is a read-

only operation).

Payload Encapsulation

Payloads to and from the NX-API REST interface can be encoded with either XML or JSON. The
XML encoding operation uses the element tag as the name of the package and class, with the
respective properties of that object being specified as attributes of the element. Containment is

defined by creating child elements.

The following example creates a BGP instance in an XML payload.

Figure: Create BGP - XML

[POST http://n9%k-sw-1/api/mo/sys/bgp.xml

<?xml version="1.0" encoding="UTF-8"?2>

<bgpEntity adminSt="enabled">

<bgpInst adminSt="enabled" asn="65000">

</bgpInst>

</bgpEntity>

JSON encoding requires definition of certain entities to reflect the tree-based hierarchy.

e All objects are described as JSON dictionaries. The key is the name of the package and
class while the value is another nested dictionary with two keys: attribute and children.

Model Driven Programming 133

* The attribute key contains a further nested dictionary describing key-value pairs that
define attributes on the object.

¢ The children key contains a list that defines all the child objects. The children in this list
are dictionaries containing any nested objects which are defined as described in the MIT.

The following example creates a BGP instance in a JSON payload.

Figure: Create BGP Peer - JSON

[POST http://n9%k-sw-1/api/mo/sys/bgp/inst/dom-default.json

"bgpPeer": {
"attributes": {
"addr": "192.168.0.2",

"asn": "65000"

Both examples have been abbreviated to simplify visual understanding.

Read Operations

After the object payloads are properly encoded as XML or JSON, they can be used in create,
read, update, or delete (CRUD) operations through the REST API (Figure 5).

Figure: Read Operations

[GET http://n%-sw-1/api/mo/sys/bgp.json

Response to the above query:

"totalCount™: "1",
"imdata": [
{

"bgpEntity": {

134 Model Driven Programming

"attributes": {
"adminSt": "enabled",
"childAction": "",
"dn": "sys/bgp",
"lcOwn": "local",

"modTs": "2015-09-30T03:28:52.083+00:00",

"monPolDn": "uni/fabric/monfab-default"
"hame": "M,

"operErr": "V,

"operSt": "enabled",

wstatus": """

Because NX-API REST uses HTTP, defining the universal resource identifier (URI) to access a
certain resource type is important. The first two sections of the request URI simply define the
protocol and access details (hostname, IP address) of a Cisco Open NX-OS device. Next in the
request URI is the literal string "/api", followed by the DN of the object or class being queried.
The final part of the request URI is the encoding format: JSON or XML.

The optional part of a request URI consists of any query options. Query options provide filtering
capabilities to developers, and are explained extensively in the NX API REST documentation
available at http: / /developer.cisco.com/open-nxos.

[GET http://n%k-sw-1/api/class/11PhysIf.json

Response to the above query:

-

{
"totalCount": "54",
"imdata": [
{
"11PhysIf": {
"attributes": {

"accessVlan": "vlan-1",

Model Driven Programming 135

"adminSt": "up",
"autoNeg": "on",
"descr": "V,

"dn": "sys/phys-[ethl/33]",

"dotlgEtherType": "0x8100",
"duplex": "auto",
"ethpmCfgFailedBmp": "",

"ethpmCfgFailedTs": "00:00:00:00.000"
"ethpmCfgState": "0",

"id": "ethl/33",

"inhBw": "unspecified",

"layer": "Layer2",

"linkDebounce": "100",

"linkLog": "default",

"modTs": "2015-06-26T16:04:10.748+00:00",

"mode": "access",

"monPolDn": "uni/infra/moninfra-default",
"mtu": "1500",

"name": "",

"speed": "auto",

"trunkvlans": "",

The example above shows a query for all objects with class "11PhysIf". For a complete reference
to the various objects and their properties and possible values, please refer to the Cisco NX-API
REST documentation at http://developer.cisco.com /open-nxos.

136 Model Driven Programming

Write Operations

Create and update operations in the REST API are implemented using the POST method, so if an
object does not already exist, it will be created. If the object already exists, it will be updated to
reflect any changes between its existing state and desired state.

Both create and update operations can contain complex object hierarchies. A complete tree can
be defined in a single command as long as all objects are within the same context and root, and
are under the 1IMB limit for the REST API data payloads. This limit is in place to guarantee per-
formance and protect the system under high load. Very large operations may need to be broken
into smaller pieces.

Example: Write Operations

[POST http://n9%k-sw-1/api/mo/sys/bgp/inst/dom-default.json

"bgpPeer": {
"attributes": {
"addr": "192.168.0.2",
"asn": "65000"

Create and update operations use the same syntax as read operations, except they are always
executed at an object level, as you cannot make changes to every object of a specific class. The
create or update operation should target a specific managed object; the literal string " /mo" in a
URL indicates the DN of the managed object will be provided, followed by the DN. Filter strings
can be applied to POST operations. As an example, if you want to retrieve the results of your
POST operation in the response, you can pass the rsp-subtree=modified query string to indicate
you want the response to include any objects that have been modified by the POST operation.

The payload of the POST operation will contain the XML or JSON encoded data representing
the managed object being queried.

In summary, REST-based APIs are the most popular APIs today. They are easy to use, well docu-
mented and language independent. NX-API REST exposes these benefits while presenting a
comprehensive data model for managing network infrastructures.

Model Driven Programming 137

Cisco NX-API WebSocket Notifications

The Cisco Open NX-API REST interface, described in the previous section, is a very powerful in-
terface for pushing configuration changes or pulling information from the Cisco Nexus
switches. However, there might be instances where it might be desirable to receive notifica-
tions from the switch directly- for example, when a counter representing unexpected packet
errors increments.

Cisco Open NX-OS provides an interface capability to enables the switch to push notifications
to interested subscribers. Through the NX-API WebSocket interface, programs and end-users
can receive notifications about various state changes on the switch, eliminating the need for
periodic polling. The interface establishes full-duplex communication on a single session
with a remote entity.

Subscribing to Query Results

When you perform an API query using the Cisco NX-API REST interface, you have the option to
create a subscription to any future changes in the results of a given query. When any manage-
ment object (MO) is created, changed, or deleted, because of a user-initiated or system-initi-
ated action, an event is generated. If the received event changes the results of a subscribed
query, the switch generates a push notification to the API client that created the subscription.

Opening a WebSocket

The API subscription feature uses the WebSocket protocol (RFC 6455) to implement a two-way
connection with the API client. This way, the API can send unsolicited notification messages to
the client itself. To establish the notification channel, you must first open a WebSocket connec-
tion with the respective API. Only a single WebSocket connection is needed to support multiple
query subscriptions within each switch. The WebSocket connection is dependent on your API
session connection, and closes when your API session ends.

138 Model Driven Programming

Creating a Subscription

To create a subscription to a query, perform the query with the option ?subscription=yes.
This example creates a subscription to a query of the fv:Tenant class in the JSON format:

[GET https://n9%k-sw-1/api/class/11PhysIf.json?subscription=yes

The query response contains a subscription identifier, subscriptionld, that you can use to re-
fresh the subscription and identify future notifications from the given subscription.

{ "subscriptionId" : "72057611234574337",
"imdata"™ : [{
"11PhyIf" : {
"attributes" : {
"instanceId" : "0:0",
"childAction™ : "",
"dn" : "sys/phys-[ethl/1]",
"lcOwn" : "local",
"monPolDn" : "",
"description" : "uplink to core-1",
"replTs" : "never",
"status" : ""
}
}
}
1
}
L

Receiving Notifications

An event notification from the subscription delivers a data structure that contains the subscrip-
tion ID and the MO description. In this JSON example, a new user has been created with the
name "sysadmin5":

"subscriptionId" : ["72057598349672454", "72057598349672456"],
"imdata"™ : [{
"aaaUser" : {

"attributes" : {

Model Driven Programming 139

"accountStatus" : "active",
"childAction™ : "",
"clearPwdHistory" : "no",
"descr" @ "",
"dn" : "sys/userext/user-sysadmin5",
"email"™ : "",
"encPwd" : "TUxISkhH$SVHyidGgBXO0r7N/srt/YcMYTEn5248ommFhNFzZghvAU=",
"expiration" : "never",
"expires" : "no",
"firstName" : "",
"intId"™ : "none",
"lastName" : "",
"lcOwn" : "local",
"name" : "sysadmin5",
"phone" : "",
"pwd" A ’
"pwdLifeTime" : "no-password-expire",
"pwdSet" : "yes",
"replTs" : "2013-05-30T11:28:33.835",
"rn" : "",
"status" : "created"
}
}
}
]
}

As multiple active subscriptions can exist for a given query, a notification can contain multiple
subscription IDs; similar as shown in the example above. Notifications are supported in either
JSON or XML format.

Refreshing the Subscription

In order to continue receiving event notifications, you must periodically refresh each subscrip-
tion during your API session. To refresh a subscription, send an HTTP GET message to the API
method subscriptionRefresh with the parameter id, equal to the subscriptionld shown in the
example:

140 Model Driven Programming

[GET https://n9%k-sw-1/api/subscriptionRefresh.json?id=72057611234574337

The API will return an empty response to the refresh message unless the subscription has ex-
pired.

Note: The timeout period for a subscription is one minute per default. To prevent loss of notifi-
cations, you must send a subscription refresh message at least once every 60 seconds.

In summary, WebSocket provides a powerful tool for allowing publisher-subscriber communi-
cation for event subscription within the Open NX-OS REST APIL.

Configuration
Management and
Automation

Configuration Management and Automation 143

Introduction

The concept of Development Operations (DevOps) relates to optimizing the lifecycle of applica-
tions and services through collaboration and cooperation between development and operations
teams. The desired outcome for DevOps is to facilitate rapid development cycles, increase ap-
plication scalability and stability, and enable a flexible and agile infrastructure.

Fundamental aspects of DevOps include:

e Simplification of processes and workflows used to deploy infrastructure
* Workload scalability

* Integrated lifecycle management

Infrastructure automation, driven by programmability, is a key enabler for the DevOps tranfor-
mation. Open NX-OS introduces a broad set of tools, features, and capabilities to facilitate net-
work automation.

The rest of this section will discuss Open NX-OS features that enable automation and DevOps,
including:

* Native Linux-based management of Open NX-OS

* Agent-based Configuration Management Systems (Puppet, Chef, etc.)
* Agentless Management Systems (Ansible)

* NX-API REST Programmability

* Automation of switch provisioning operations (POAP, Ignite)

Configuration Management and Automation 145

Device Power-0On Automation

Open NX-OS provides foundational elements for the automation and configuration life cycle
management of a network device. This is essential to initial bootstrapping and provisioning of
the NX-OS device. Ongoing life cycle management of device configurations can be accom-
plished using configuration management agents, programming and open source tools.

The network build and operation lifecycle is divided in three main phases or stages:

* Day-0 - Initial device and network startup

* Day-1 - Incremental configuration, including provisioning of new end-points and
workloads

* Day-2 - Monitoring and Visibility

Starting at Day-0 (zero), the network device is brought up with an initial configuration. In gen-
eral, the network device could be provisioned with all relevant configuration at Day-0, but the
focus for initial startup should be on features and functions which change the least over the
lifecycle of the network element. Device name, management IP address, and routing process
configuration are some examples.

While Host interface and Port-Channel configuration could be part of the Day-0 configuration,
most likely not all information will be available at initial network device setup. Configuration of
these elements can be automated in later phases.

Day-1 provisioning covers incremental and ongoing configuration changes. During this phase,
flexible configuration management and automation allows changes to be accomplished in an ef-
ficient way. Management of end-points and segmentation are examples.

The division between Day-0 and Day-1 configuration can be very fluid as the initial configura-
tion can span from simple management access to an extensive configuration to enable a net-
work device to participate in a data center network fabric.

Sample Minimal Switch Configuration (Day-0):

* Switch name

146 Configuration Management and Automation

* Admin username and password
* Out-of-Band management interface and routing

* Console access

Extended Switch Configuration (Day-0)

* Inband management

* AAA - Authentication, Authorization and Accounting
* Enabling NX-OS features

* Global switching parameters

* Common routing protocol parameters

* vPC - Virtual Port-Channel domain

* VXLAN VTEP parameters

* Network interfaces

Day-0 or Day-1 configuration

* Access/host interfaces configurations including vPCs
* Tenant/workload configs: VRFs, routes, host facing VLANs

* Additional features

At Day-2, visibility and monitoring become extremely important. In most environments, Day-1
and Day-2 operations run in parallel and extend through the entire lifecycle of the network de-
vice, and appropriate tooling is necessary to achieve these tasks efficiently.

Day-0 (zero) Provisioning

Zero-Touch device provisioning is commonly associated with compute devices, but network
devices have had this capability for years. However, this capability has been fairly limited until
now. Cisco’s Power on Auto Provisioning (POAP) was designed to provide advanced Day-0 pro-
visioning capabilities using an extensible framework.

POAP includes the ability to execute Python scripts as part of its workflow - this offers an un-
paralleled level of flexibility. Today, POAP can download and install additional management

Configuration Management and Automation 147

agents and apply specific configurations based on information such as location in a net-
work topology.

A similar approach is achieved by using PXE - Preboot Execution Environment, which uses a
process well known in compute environments. PXE has extended its presence into the network
as infrastructure devices are increasingly managed more like servers. NX-OS uses iPXE which
leverages an open source network firmware based on gPXE /Etherboot. With PXE, we can
leverage existing skillsets and infrastructures developed for compute environments to simplify
initial device start-up.

Open source tools like Ignite can also make it easier to automate the Day-0 provisioning.

POAP/PXE Components and Architecture

POAP/PXE can be the first configuration management tools leveraged in the network device
lifecycle (Day 0). The initial startup of the network device contains basic access configurations
such as the IP connectivity for out-of-band management interfaces, console information, and
setting of usernames and passwords.

It could contain more extensive configurations, as described above. POAP and PXE startup
processes depends on multiple services that provide different functions. It is possible to host all
of these services on the same server, if desired:

* DHCP - Dynamic Host Configuration Protocol to provide necessary information to the
device being set up

* Ascript server for providing the initial configuration script download. TFTP- and HTTP-
based script download mechanisms are supported with Open NX-OS

* A configuration and software server hosts a repository of software images,
configuration, and additional components. Various transport protocols such as Secure
Copy (SCP), File Transfer Protocol (FTP), Secure File Transfer Protocol or Hypertext
Transfer Protocol (HTTP) could be supported here

148 Configuration Management and Automation

Figure: POAP / Component Architecture

Script Server
(HTTP and TFTP) Server Configuration and
Software Server

RFIEE SerRr = (SCR FTP’ SFFR HWP}
Script File
IP Address, Gateway, Configuration File
Script Server and and Software
Script File Images

Default Gateway

Nexus Switch

POAP Process

The POAP process starts by assigning a temporary IP address to the switch via the DHCP proto-
col. Additional DHCP scope options are also provided to facilitate the configuration script
download.
* Option 66 or Option 150: References the Script Server. IEEE Option 66 allows a single IP
address or Server name. Cisco's Option 150 allows provision of a list of IP addresses for
accessing the TFTP-Server

Configuration Management and Automation 149

* Option 67: References the Configuration Script or Bootfile Name.

The Open NX-OS switch, acting as a DHCP client, will use this information to contact the TFTP
server to obtain the configuration script file.

The configuration script (e.g., poap.py) will be executed. The logic of the configuration script
will download the software image, switch configuration, agent information and any other addi-
tional requirements from the network. POAP provides multiple mechanisms to flexibly identify
switches, based on their serial number or system MAC address or their location in the network,
as determined by its directly connected neighbors. The downloaded image and configuration is
'scheduled' to be applied after a reboot.

Below is a flowchart representing the POAP process:

150 Configuration Management and Automation

Figure: POAP Process Flow Chart

Yes

Powerup switch

l

Startup
configuration
exists?

Bootup normally with

startup configuration.

Yes

Mo

Execute DHCP discovery
and obtain IP Address and
TFTP server address of
where to get the POAP
script file.

)

-
Switch downloads the POAP

script file and executes it.

-

Abort POAP
l process?
Begin existing interactive
setup over serial console.
Does the €
switch bootflash
contain the image
noted in the
script file? No
—

Switch determines the]

Switch downloads the image
noted in the script.

-

name of the configuration
file and downloads it.

Switch reboots.

1}

Switch replays the
configuration file to
configure the switch.

Configuration is saved
locally to NVRAM.

|
(
|
[

<

Configuration Management and Automation 151

PXE Process

Similar to POAP, the PXE process starts by assigning a temporary IP address to the switch via
the DHCP protocol. Additional DHCP scope options are also provided to facilitate the configu-
ration script download.
° Option 66: This "next-server" options provide the information of a TFTP Server Name
that acts as a script server

* Option 67: Provides the Configuration Script or Bootfile Name

The Open NX-OS switch, acting as the DHCP client, will download the configuration script and
execute it.

PXE based bootstrapping of network devices behaves very similarly to the process on a com-
pute system. While in normal PXE we will start a mini-OS (Network Bootstrap Program), in NX-
OS we are using "NETBOOT" to execute the configuration script and respectively fullfill the task
of downloading the software image and configuration replay onto the network device.

The new software image and configuration will be used on the next reboot of the network de-
vice.

Below is a flowchart representing the PXE process:

152 Configuration Management and Automation

Figure: PXE Process Flow Chart

Bare Metal (BM)

BM needs its IP address
and IP address of the
boot server. If there is one,
it issues DHCP request with
PXE extension tags.

DHCP
Request

DHCP
Request

BM needs the filename
of the Network Bootstrap

DHCP

DHCP Server

Host with DHCP service
replies with IP address.

Boot Server

Program: Issues a Special Reply [Proxy DHCP service
DHCP request. < replies with Boot
l Server IP address.
BINL
Request
'S)\ BINL e “
BM request Network Reply Boot Image Negotiation
Bootstrap Program 2 Layer (BINL) service replies
file from the server ~ with the filename of the
via TFTPR. MNetwork Bootstrap Program.
\ v . v
TFTP
Request
i N 3
BM stores Network TFTP service sends
Bootstrap Program in MNetwork Boot Program
memory as received file to BM via TFTP.
TFTP Data ~ -~
When complete, control Packets
is passed to Network
Bootstrap Program
Bootstrap Program can
download further Linux
programs from the server
via TFTP
. -

Configuration Management and Automation 153

POAP and PXE are great tools for initial start-up of computing systems and network devices.
Using these tools at the beginning of a device's lifecycle helps ensure consistency and mitigates
erroneous typing or mistakes. Using a streamlined process through network programmability
can reduce the risk of such outages.

Further advantages with automated network device on-boarding can be seen during replace-
ment scenarios where archived configurations can be applied to a new device after replacing
the unique identifier (ie serial number) in the POAP or PXE definitions.

Loading RPMs and agents using POAP /PXE

While some Dynamic Configuration Management tools are agent-less and rely on the CLI
(Command Line Interface) or REST-based APIs (i.e., NX-API REST), others require a specific
agent to be present in order to configure the network device. For the agent-based tools, we
want to provide a simplified way to on-board the agent autonomously during startup. The ex-
tensibility of POAP and PXE enables going beyond the software image and configuration down-
load for a network device, and can provide the installation of such an agent during initial start-

up.

As part of POAP/PXE, we have to extend the process to add configuration management agents
to the network device. To include the agent installation in the overall start-up process, a post-
processing command-file is required to facilitate the execution and installation of the agent en-
vironment.

The following are examples of the post-processing steps needed for enabling agent installation
in the network device's bash shell.

* Enable feature bash-shell
* DNS configuration of bash-shell
* RPM installation

* Installation of configuration management agent

Depending on whether the agent is installed in the bash shell or in the guest shell (container),
the post-processing command file content will vary.

154 Configuration Management and Automation

Figure: POAP /PXE for Dynamic Configuration Management "Agent” onboarding

Pre-Install = Load compatible NX-OS image on switch
Tasks = Configure NX-OS network settings
= Choose agent environment bash-shell or guestshell

Replace puppet with
‘configuration management’

= |nstall RPM in agent environment

Install
Agent RPM = Configure agent environment
Run = Optionally set up agent as persistent service
Agent = Start agent

Day-0 Automation Tool - Ignite

Ignite is an open source tool designed to facilitate initial network boot-strapping and provision-
ing. It supports Cisco Nexus switches leveraging POAP and, in the near future, PXE capabilities
of NX-OS. Ignite provides a powerful and flexible framework through which a data center net-
work administrator can define the data center fabric in terms of its topology, configuration
templates (configlets) and resource pools.

Ignite provides the following functionality to help with Day-0 automation:

* Topology design
¢ Configuration design
¢ Image and configuration store for POAP

* POAP request handler

Configuration Management and Automation 155

Ignite provides a flexible mechanism to identify switches based on their serial number, MAC ad-
dress, or its location in the network as determined by examining its relationship to peers. Ig-
nite, can then generate a configuration unique to the switch using rules provided by the admin-
istrator, configuration templates and configlets, scripts, and resource pools.

Figure: Topology Design with Ignite

IgnTta RESOURCES - FABRICS DEPLOYEDFABRICS ADMIN

FABRICS
Name Topology Replica Locked Validate
Ignite_DC1_Hall1 Ignite_DC1 1 YES NO Set Configuration | Set Serial ID
TOPOLOGY DETAILS

Name: lgnite_LC1

[Ign..-Leat-1 |

e S
NX3332PQ NXg3lzPQ NX2332PQ NXS33ZPQ NX3332PQ

Getting Started with Ignite

Information for getting started with Ignite can be found at http://github.com /datacenter/
ignite

In summary, POAP is an essential tool for Day-0 automation. This can facilitate the deployment
of networks of any size. The use of POAP with python scripting provides additional Day 0-1
functionality for futher manipulation of configurations.

Configuration Management and Automation 157

Configuration and Lifecycle Management

Configuration management is part of the larger process of device lifecycle management - from
planning and implementing, to operations, and eventual device decommissioning.

Configuration management is one of the most tedious and repetitive operations that will occur
throughout the lifecycle of a device, and it is tightly integrated with organizational change man-
agement processes. The purpose of configuration management is to build consistent and re-
peatable processes to implement and verify changes, as well as remediate exceptions or viola-
tions found within the infrastructure.

All of this is done to ensure compliance with the best-practice configurations and any organiza-
tional or regulatory standards. Configuration management enables consistent configuration of
compute, virtualization, networking and storage resources and services. Multiple facets of a
company's infrastructure can benefit from these processes, as shown in the the following illus-
tration.

Figure: The Broad Applicability of Configuration Management Infrastructures

{ Comprehensive Coverage]

Compute Network

158 Configuration Management and Automation

Configuration management tools, typically, have a hierarchically-distributed structure built on
a declarative approach to management. They most often implement a client-server or master-
agent framework, where policies are maintained on the server, and agents ensure the policies
are applied on the devices being managed.

Examples of tasks that can be automated include:

* Auto-discovery and provisioning of devices

* Granular discovery of device components

* Policy-based and role-based management of infrastructure
* Configuration, event and power management

* Availability management (redundancy)

* Inventory, operation and licensing status report

* Continuous monitoring of resource utilization and capacity

* Dynamic provisioning of device resources (interface, VLANS, routes, switch /port
profiles etc)

There are numerous security-related checks that can be implemented. For example:

* Configuration and policy compliance
* Disabling clear-text access mechanisms

* VLAN and trunk management

Network automation that started at Day-0 with POAP and PXE, can be extended by tools like
Puppet, Chef, Ansible, Salt Stack, etc. Leveraging tools for day-to-day management, monitoring
and configuration changes, IT automation with dynamic configuration management, can opti-
mize the work of infrastructure operations teams, at the same time mitigating the risk of error-
prone keyboard input.

Models: Imperative vs. Declarative

Configuration changes in a network have traditionally been made on a per-device
basis using a specific set of procedures and configuration line items.

These devices were configured imperatively, that is, the exact steps to achieve the desired end-
state were specified. With the imperative model, administrators build a workflow every single

Configuration Management and Automation 159

time they want to perform a task, and as more components are added, the workflow grows in
size and complexity.

This differs from using a declarative model where an administrator models how they would like
their environment to look, and the switches, configuration management tool, or a combination
thereof decides on how best to implement the requested changes.

One of the main differences between the imperative and declarative models is that administra-
tors in an imperative model are typically required to have deep syntax and context knowledge
for the entities they are configuring. Syntax and context can differ based on operating code
version. Using a declarative approach administrators can request a change using a broad state-
ment of desired outcome, and the system is responsible for "translating" the desired outcome to
the different network elements.

Declarative or model-based configuration management becomes important in the broader data
center context, including compute, virtualization, network, storage, and other resources. Archi-
tects and engineers are not just modeling the network, they are modelling the entire infrastruc-
ture.

From a micro level, the network itself may be heterogeneous; it may have different switch
types, levels of code, or even vendors. From a macro level, the network is not the only entity
within the data center; configuring a network element on a virtual switch can be drastically dif-

ferent from configuring that same element on a physical switch.

To illustrate the difference between imperative and declarative models, the following workflow
is an example of an imperative operation on a switch - configuring a VLAN.

Figure: Imperative Workflow Explicitly Expresses Each Instruction

Remove Configure Configure
5| : ;
Create VLAN ‘I’:}:g:::‘ Existing Interface Access Nc]{i:;}l’fl’:‘w"
- Configuration Mode VLAN s

160 Configuration Management and Automation

Figure: Declarative Approach to Infrastructure Management (Promise Theory)

e ——— —
¢ “I want things to
- look like x*
r —_— S £
£
S5 g
B ———
—_— L “Will da*]
€ With Scale
S —]
‘i ® Model remains intact.
0 e System scales linearly with
. o .
2 object-based model.
— “Do x* 8 ® Objects are responsible for
S — requested configuration.

Mo assumptions are made about

Faults
4
b

@
|
0

current object state.

AW ‘
Applicable

I--'I @ @ € change made

- —

<

Configuration Management in Open NX-OS

For participation in a configuration management framework, switches must enable configura-
tion management capabilities. Due to differences in configuration management tool method-
ologies, Open NX-OS supports a variety of access mechanisms, including:

¢ Secure Shell (SSH)
* Guest agents (installed via RPM), and
° NX-API CLI and REST APIs

Secure Shell (SSH)

Configuration management tools that utilize an embedded/direct payload use Secure Shell
(SSH). The following command will confirm that SSH is enabled on a switch:

Configuration Management and Automation 161

n9k-sw-1# show feature | inc ssh

sshServer 1 enabled

Guest Agent Installation using Bash /RPM

Open NX-OS allows installation and configuration of management agents through the bash or
guest shell. To learn about the differences between bash and guest shells, and recommended
implementations of each, please see the Third-party Application Integration chapter.

NX-API CLI and REST APIs

For configuration management tools and other architectures such as cloud management plat-
forms, the NX-API may be utilized for device configuration, gathering device data, and perfor-
mance monitoring.

For more information see http://developer.cisco.com /opennxos

Agent-less Management

Native or agent-less management is accomplished through remote shell access or through the
NX-API. With remote shell access, a configuration management server or master will utilize a
push model to deliver a payload in the form of a script through the network. The configuration
management scripts are stored on the master.

As an example, a Python script can be used to gather switch information and statistics and re-
turn results to the originating server. The script will run in a temporary space on the switch,
and any relevant data will be streamed back or compressed and returned through the network.

A major advantage to the remote shell access method is that there is little to no configuration
required on the switch device as there are no agents required for installation. A potential draw-
back is the need to ensure that the security configuration on the switch is kept synchronized,
as any change can have a significant impact on the configuration management tool's ability
to access the switch.

Ansible is a good example of an agent-less configuration management tool.

162 Configuration Management and Automation

Figure: Agent-less Models Utilize Standard Device Interfaces like Secure SHell (SSH)

Configuration/
Query Payload

SSH SSH SSH SSH

Agent-based Management

Agent-based configuration management is pull-based, and requires installation of an agent on
the switch. When agents are used for switch management, they can be installed in the native
Linux user-space, a Linux Container (LXC), or the guest shell. Communication between agents
and master nodes is accomplished through the network, and agents should be configured
for secure, encrypted communication between master nodes and agents.

Configuration Management and Automation 163

While bash will run agents directly within the shell, guest shell has the capability to install
agents within an LXC, or to run an open virtual format (OVF/OVA) machine, which can be
launched from the bootflash directory. Guest shell ensures agent-based operations are iso-
lated from the underlying host context to ensure security

Puppet and Chef are examples of agent-based configuration management tools.

Figure: Puppet and Chef Leverage an Agent on the Open NX-OS Switch

Configuration Master Server

G
Agent Agent Agent Agent
Protocol Protocol Protocol Protocol

[Agent Process] [Agent Process] [Agent Process] [Agent Process]

111 ey

B
44
44
44
44
44

111

In summary, configuration management tools have been proven in server automation enviro-
ments, and can be extended to network infrastructure components using a common configura-
tion management framework.

Configuration Management and Automation 165

IT Automation Tools

The open source community has several toolsets for configuration management. Many of these
toolsets also offer enterprise-level product management and support. Cisco offers support for
several open source configuration management tools, including:

* Ansible
* Chef
° Puppet

Open NX-OS also offers developers and administrators the ability to create and share their own
code in Python, Ruby, Go or any programming capable of accessing NX-API REST.

Ansible

Introduction

Ansible is an open-source software platform for configuring and managing compute and
switching infrastructure using “playbooks". Ansible features a state-driven resource model that
describes the desired state of computer systems and services. It is used to automate the config-
uration of a company’s compute and switching resources in an agent-less manner.

Ansible is a very straightforward and powerful tool for intent-based network automation, all
you need to get started are playbooks, a server configuration file, and an inventory file.

Key Technical Concepts

Playbooks

Playbooks specify a list of tasks that are run in sequence across one or more hosts. Each task
can also run multiple times with a variable taking a different value. Playbooks are expressed in
YAML format.

166 Configuration Management and Automation

Inventory

Inventory is the representation of information about hosts — what groups a host belongs to, the
properties those groups and hosts have. A hierarchy of groups often results.

Templates

Templates allow you to generate configuration files from values set in various inventory prop-
erties. This means that you can store one template in source control that applies to many dif-
ferent environments.

Roles

Roles are a way to encapsulate common tasks and properties for reuse, if you find yourself writ-
ing the same tasks in multiple playbooks, turn them into roles.

Sample Playbook To Configure VLANS:

cisco@linux-dev:~/nxos-ansible/ansible playbooks$ more vlans.yml

vlans.yml

- name: VLANs
hosts: all
connection: local

gather facts: no

tasks:
- name: ensure VLANs 2-20 and 99 exist on all switches

nxos_vlan: vlan_id="2-20,99" state=present host={{ inventory hostname }}

- name: config VLANs names for a few VLANs
nxos vlan: vlan id={{ item.vid }} name={{ item.name }} host={{ inventory hostname }}
state=present
with items:
- { vid: 2, name: web }

- { vid: 3, name: app }

Configuration Management and Automation 167

- { vid: 4, name: db }
- { vid: 20, name: server }

- { vid: 99, name: native }

Ansible Reference Links

https: //github.com /datacenter /nxos-ansible

http: //docs.ansible.com /ansible

Chef

Introduction

Chef is a powerful automation platform that transforms complex infrastructure into code, en-
abling your data center infrastructure automation using a declarative, intent-based model.
Whether you're operating in the cloud, on-premises, or a hybrid, Chef automates how applica-
tions are configured, deployed, and managed across your network, no matter its size.

Chef is built around simple concepts: achieving desired state, centralized modeling of IT infra-
structure, and resource primitives that serve as building blocks. These concepts enable you to
quickly manage any infrastructure with Chef. These very same concepts allow Chef to handle
the most difficult infrastructure challenges and customer use-cases, anything that can run the
chef-client can be managed by Chef.

Key Technical Concepts

Chef Server

The Chef server acts as a hub for configuration data. It stores:

* Cookbooks
* Recipes (The policies that are applied to nodes)
° Metadata that describes each registered node that is being managed by the chef-client.

168 Configuration Management and Automation

Node
Any physical, virtual, or cloud machine or switch configured to be maintained by a chef-client.
Chef Client

Runs locally on every node that is registered with the Chef server. Performs all configuration
tasks specified by the run-list and brings client into desired state.

Chef Resources

Term used for a grouping of managed objects/attributes and one or more corresponding im-
plementations. It describes the desired state for a configuration item and declares the steps
needed to bring that item to the desired state. It specifies a resource type—such as a package,
template or service, and lists additional details (also known as attributes), as necessary. These
are grouped into recipes, which describe working configurations

The 2 core layers of a resource:

* Resource Type: Definition of managed objects.

* Resource Provider: Implementation of management tasks on objects.
Cookbook

A cookbook defines a scenario and contains everything that is required to support that sce-
nario, and is used for device configuration and policy distribution:

* Recipes that specify the resources to use and the order in which they are to be applied
* Attribute values

e File distributions

* Templates

* Extensions to Chef, such as libraries, definitions, and custom resources
Recipe

A collection of resources, defined using patterns (resource names, attribute-value pairs, and ac-
tions); helper code is added around this using Ruby:

Configuration Management and Automation 169

° Must be stored in a cookbook

* May use the results of a search query and read the contents of a data bag
° May have a dependency on one (or more) recipes

* Must be added to a run-list before it can be used by the chef-client

¢ Is always executed in the same order as listed in a run-list

* The chef-client will run a recipe only when asked

Sample Cookbook Showing Configuration of Switch Interface as L3 or L2:

cisco_interface 'Ethernetl/1' do
action :create
ipv4_address '10.1.1.1°'
ipv4_netmask_length 24
ipvd proxy arp true
ipvd_redirects true
shutdown true
switchport mode 'disabled'

end

cisco_interface 'Ethernetl/2' do
action :create
access_vlan 100
shutdown false
switchport mode 'access'

switchport vtp true

end

Chef Reference Links

Cisco Chef Client: (WRL5 Agent, CentOS7 Agent for Guest Shell)

Cisco Chef Cookbook: (https://supermarket.chef.io /cookbooks /cisco-cookbook)

Cisco Chef Cookbook Source Repository (https://github.com/cisco/cisco-network-chef-

cookbook)

List of Supported Cisco Resources (https: //github.com /cisco /cisco-network-chef-cookbook

170 Configuration Management and Automation

blob /develop /README.md#resource-by-tech)

Puppet

Introduction

Puppet models desired system states, enforces those states, and reports any variances so you
can track what Puppet is doing. To model system states, Puppet uses a declarative resource-
based language - this means a user describes a desired final state (e.g. “this package must be in-
stalled” or “this service must be running”) rather than describing a series of steps to execute.

You use the declarative, readable Puppet DSL (Domain Specific Language) to define the desired
end-state of your environment, and Puppet converges the infrastructure to the desired state.
So if you have a pre-defined configuration that every new switch should receive, or need to
make incremental configuration changes to your infrastructure, or even have a need to install
third party software agents, the puppet intent-based automation solution can automate these
repetitive configuration management tasks quickly. We support both open source and puppet
enterprise with Open NX-OS.

Key Technical Concepts

Puppet Server

The puppet server acts as a central server or point of configuration and control for your data-
center, both switching and compute:

* Manifests

°* Resources
Node

Any physical, virtual, or cloud machine or switch configured to be maintained by a puppet
client, be it server or switch.

Configuration Management and Automation 171

Puppet Client

Runs locally on every node that is managed by the puppet master server. Performs all configu-
ration tasks specified by the manifest and converges the node into desired state.

Resources

Puppet ships with a number of pre-defined resources, which are the fundamental components
of your infrastructure. The most commonly used resource types are files, users, packages and
services. You can see a complete list of the Cisco resource types at the Github respository link
below.

Puppet revolves around the management of these resources. The following code sample en-
sures a third party agent service is always up and running.

service { 'tcollector':

ensure => running,

Here, the “service” is the resource type, and “tcollector” is the managed resource. Each re-
source has attributes, and here, “ensure” is an attribute of the tcollector service. We're setting
the “ensure” attribute to “running” to tell Puppet that tcollector should always be running, and
to start the service if it is not.

Manifests

Introduction

Manifests are files containing Puppet code. They are standard text files saved with the ex—

tension. Most manifests should be arranged into modules.

Resources

The core of the Puppet language is declaring resources. A resource declaration looks like this:

A resource declaration:

cisco interface { "Ethernetl/2" :

172 Configuration Management and Automation

description => 'default',
shutdown => 'default',

access_vlan => 'default',

When a resource depends on another resource, you should explicitly state the relationship to
make sure they occur in the proper order.

Classes

A class is a set of common configurations — resources, variables and more advanced attributes.
Anytime we assign this class to a machine, it will apply those all configurations within the class.

Modules

A Puppet module is just a collection of files and directories that can contain Puppet manifests,
as well as other objects such as files and templates, all packaged and organized in a way that
Puppet can understand and use. When you download a module from PuppetForge, you are
downloading a top-level directory with several subdirectories that contain the components
needed to specify the desired state. When you want to use that module to manage your nodes,
you classify each node by assigning to it a class within the module.

The hierarchy is as follows:

* Resources can be contained within classes.
* (lasses can live in a manifest.

* Manifests can live in a module.
Sample Manifest

Three types are needed to add OSPF support on an interface: cisco_ospf, cisco_ospf_vrf, and
cisco_interface_ospf.

First, to configure cisco_ospf to enable ospf on the device, add the following type in the mani-
fest:

cisco_ospf {"Sample":

ensure => present,

Configuration Management and Automation 173

l }

Then put the ospf router under a VRF, and add the corresponding OSPF configuration.

If the configuration is global, use 'default' as the VRF name:

cisco_ospf vrf {"Sample default":
ensure => 'present',
default_metric => '5',

auto_cost => '46000',

Finally, apply the ospf configuration to the interface:

cisco_interface ospf {"Ethernetl/2 Sample":
ensure => present,
area => 200,

cost => "200",

Puppet Reference Links

Puppet Module: (https:/ /forge.puppetlabs.com /puppetlabs /ciscopuppet)

Puppet Module Source Repository (https://github.com /cisco /cisco-network-puppet-module)

List of Supported Cisco Resources (https://github.com /cisco/cisco-network-puppet-
module /blob /develop /README.md#resource-by-tech)

Common Artifacts

Ruby Libraries (https://rubygems.org/gems/cisco_nxapi, https://rubygems.org/gems /cis-
co_node_ utils)

Ruby Library Source Repository (https://github.com/cisco/cisco-network-node-
utils, https: / /github.com /cisco /cisco-nxapi)

174 Configuration Management and Automation

Any configuration management switch-resident agents including Puppet and Chef, are sup-

ported natively in Open NX-OS Linux, or in the guest shell, providing choice for automation
agent installation.

In summary, configuration and lifecycle management are core tenets of the DevOps model,
and there are multiple open source tools available for configuration management and automa-
tion that Open NX-OS can leverage.

Practical Applications of
Network Programmability

Practical Applications of Network Programmability 177

Introduction

Up to now, the focus has been on network automation concepts, technologies, tools, and devel-
opment methodologies. In the sections that follow, the focus will shift to practical use-cases
which illustrate how network programmability and automation can be applied to drive innova-
tion and address real issues affecting network operations teams.

In each of the use-cases described below, the challenge affecting the network operator will be
described, and a solution that leverages network automation will be illustrated, along with sam-
ple APIs, scripts, tools, code-snippets, and configuration-snippets.

These use-cases and their solutions are drawn from real-world customer scenarios. Hopefully
they will spark ideas for other use-cases and new solutions that can be shared with the Open
NX-OS community.

Practical Applications of Network Programmability 179

Infrastructure Provisioning Automation

Problem Statement

Initial startup of a network involves distinct network planning, provisioning and validation
phases. With the manual approach to these processes that has been prevalent to date, network
operators have been forced to spend less time planning and more time performing tedious con-
figuration and validation tasks.

Automating these tasks would deliver immediate benefits, including:

* Faster initial setup: Reducing the time needed to get infrastructure ready for the
applications

e Fewer errors: Eliminating manual processes with well planned network blueprints

* Repeatability: Leveraging automation tools and scripts across multiple deployments

Network startup is a complex process involving numerous configuration and validation steps.
The following is an abridged example of the configuration steps necessary to deploy a new net-
work. The whole process could take multiple days extending to weeks, depending on the size
and complexity of the network. In this example there are 100 nodes.

Infrastructure Setup (x1):

e Start-up and configure DHCP infrastructure
* (Optional) Configure and enable infrastructure services like AAA servers, SNMP servers,
syslog server, etc

Switch Deployment (x 100):

* Physical Installation:
e Rack the switch
o Connect management (in-band or out-of-band) interfaces
¢ (Optional) connect a console connection to a terminal server

e Power up the switch

180 Practical Applications of Network Programmability

* Switch Configuration:

Configure management parameters on the switch
Validate management connectivity

Validate if the right image exists on the switch
Upgrade /downgrade the image, as needed

Configure AAA parameters

Validate AAA and user access

Configure infrastructure features SNMP, syslog, etc.
Validate infrastructure features

Configure fabric interfaces with appropriate VLANSs or IP addresses
Validate connectivity to adjacent switches

Configure connectivity to external / default routers
Validate connectivity to external / core networks
Configure connectivity to the Layer 4-7 service devices
Validate Layer 4-7 service connectivity

Configure Layer 2 /3 interfaces and protocols

Validate protocol reachability

Install configuration agents (Puppet, Chef, Splunk forwarder, etc.)

Fabric Wide (x1):

* Validate node-to-node and end-to-end connectivity

The problem with this manual configuration exercise is each of the configuration steps above
must be done by hand - 100 times - which is extremely time-consuming and error-prone.

Solution

Cisco NX-OS includes a power-on automated provisioning (POAP) capability that aids in au-
tomating the initial start-up and configuration processes. In addition, Cisco has recently pub-
lished an open source tool called Ignite that further enhances automation with tools for topol-

ogy, configuration design and management.

Practical Applications of Network Programmability 181

Cisco Power-On Auto Provisioning (POAP)

Cisco’'s POAP implementation allows automated configuration of a network device by providing
the required image and configuration via download.

While POAP was originally targeted at initial configuration, it is implemented using a Python-
based scripting mechanism that is extremely flexible, so its functionality can be extended well
beyond power-on provisioning. Currently POAP is already capable of handling complex re-
quirements for intermediate boot orders, replay checkpoints, and configuration management
agent installation.

A broader discussion on POAP is included in the Configuration Management and Automa-
tion chapter.

Open NX-OS Extensibility Support

POAP utilizes the Open NX-OS RPM (Puppet, Chef) capabilities to install configuration manage-
ment agents during power-on installation.

Ignite

Ignite is a tool that automates the process of installing and upgrading software images and in-
stalling configuration files on Cisco Nexus switches that are being deployed in the network,
working in conjunction with POAP on the switch.

Ignite provides a powerful and flexible framework through which a data center network admin-
istrator can define data-center network topologies, configuration templates (configlets), and
resource pools. Ignite automatically identifies the switch from its neighbors or by its unique
identifiers (Serial ID or System MAC address) and then delivers the the proper configuration
template and image to the switch.

Using these tools, users can automate a significant portion of their switch start-up process, as
illustrated below:

182 Practical Applications of Network Programmability

Solution Approach

Infrastructure setup (x1):
¢ Start and configure the DHCP infrastructure

* (Optional) Configure and enable infrastructure services like AAA servers, SNMP servers,
syslog server, etc

¢ Install and configure Ignite
e Create IP/VLAN pools
o Design the configuration templates for the leaf and spine switches
o One single template is needed per switch category (leaf, spine, core, etc)
« Design the topology for the fabric
¢ Assign image version and configuration templates to the switches

¢ Configure the DHCP server to redirect DHCP requests from the switches to Ignite

Figure: Sample DHCP-Server configuration for POAP (Linux dhcpd)

##ScopeStart:ScopeName: POAP Scope
subnet 10.10.10.0 netmask 255.255.255.0 {
range 10.10.10.40 10.10.10.50;
max-lease-time 3600;
option bootfile-name "poap.py";
option domain-name-servers 10.10.10.250;
option routers 10.10.10.1;

option tftp-server-name "10.10.10.200";

Practical Applications of Network Programmability 183

Figure: Design Pools of Resources

POOLS s B
Name Type

LPBKO_IP B
Start Range End Range

10.1.1. 10.1.1

200113 20113

30119 3010

401,11 40111

50.1.1. 50.1.1

60111 60.1.11

70.1.1.1 70.1.1.1

Cancel

Figure: Design Configuration Template Leaf Switches with Ignite

Ign‘kg RESOURCES - FABRICS DEPLOYEDFABRICS ADMIN

CONFIGURATION

Hame

lableaf_fabric

LIST OF CONSTRUCTS
® Construct Template/Script Parameters
1 append_configlet adminuser ADMIN_PASSWORD = cisco123
2 append_confighet hostname HOST_NAME = Instance.SWITCH_NAME
3 append_configlet feature
4 append_confighet mgmt MGMT_IP = Pool MGMT_IFv4
5 append_configlet wri-management
& append_configlet loopbackd LOOPBACKD = Pool.LPOKO_IP
7 append_configlet anycastrp

& append_script trunkportieal TRUNK_PORTS = Instance. THUNK_PURTS

184 Practical Applications of Network Programmability

Figure: Design topology for the fabric with Ignite

Ign?tg RESOURCES ~ FABRICS DEPLOYEDFABRICS ADMIN

FABRICS
Name Topology Replica Locked Validate
Ignite_DC1_Hall1 Ignite_DC1 = 1 YES % NG Set Configuration | Set Serial ID
TOPOLOGY DETAILS

Name: Ignite_DC1

Ign_.Spine-2

0
[RESET

a =
NXa504
7NE
PN

= 3 \\.‘\
Son — o gy P g, N i
[Ign..-Leaf-1] | Ign..-Leaf-5 | [Ign..-Leaf-&]

NX3332PQ NX3332PQ KX3332PQ NX333ZPQ NX8332PQ NX3332PQ

Practical Applications of Network Programmability 185

Figure: Assigning Configuration Templates to Switches

SET CONFIGURATIONS

Switch Name Set Configuration

1 Spine 1 11 Blab_spineconfig ;
2 Spine-2 1118lab_spineconfig :
3 Leaf-1 II8lab leaffconfig ¢
4 Leaf-? 111 8lab_leaffconfig :
5 Leaf-3 I18lab_leaffconfig v
6 Leaf-4 I11Blab_leaffeonfig s
7 Leaf-5 11 8lab_leaffconfig ;
8 Leaf & IBlab leatfconfig :

Cancel m
Switch setup (x100):

* Rack the switch
¢ Connect the management (in-band or out-of-band) interfaces
* Connect a console connection to a terminal server (Optional)

* Power-on the switch

Each switch, upon being booted, completes the following steps automatically:

e Issues a DHCP request and receives an IP address
* Contacts the Ignite server and downloads the assigned image and configuration

« Ignite generates configurations based on the defined configuration templates and
pools

* Reboots with the proper image and configuration (Figure 5)

* Installs and configures the configuration agents (Puppet, Chef, Splunk Forwarder)

186 Practical Applications of Network Programmability

Figure 5: Switch booting up with POAP

[7:51:26]S/N[ABC1234ab]
[7:51:26]S/N[ABC1234ab]
[7:51:26]S/N[ABC1234ab]
[7:51:26]S/N[ABC1234ab]
[7:51:26]S/N[ABC1234ab]
[7:51:26]S/N[ABC1234ab]
/server-list.cfg
[7:51:29]S/N[ABC1234ab]
[7:51:29]S/N[ABC1234ab]
[7:51:29]S/N[ABC1234ab]

7:51:33]S/N[ABC1234ab]

7:51:33]S/N[ABC1234ab]
[7:51:35]S/N[ABC1234ab]

7:51:35]S/N[ABC1234ab]
/cacert.pem
[7:51:38]S/N[ABC1234ab]
[7:51:51]S/N[ABC1234ab]
/n9000-dk9.7.0.3.12.1.bin
[7:53:13]S/N[ABC1234ab]
[7:53:35]S/N[ABC1234ab]
/ABCl1234ab/device-config
[7:53:38]S/N[ABC1234ab]
[7:53:38]S/N[ABC1234ab]

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

[7:51:26] - INFO: Get serial number: ABC1l234ab

device type is n9k

device os version is 7.0(3)I1(2)

device system image is n9000-dk9.7.0.3.I1.2.bin
check free space

free space is 3881536 kB

Ready to copy protocol scp, host 10.10.10.30, source

Get Device Image Config File
removing tmp file /bootflash/server-list.cfg

Ready to copy protocol scp host

10.10.10.30/ABC1234ab/recipe.cfg recipe.cfg

Get Device Recipe
removing tmp file /bootflash/recipe.cfg
Download CA Certificate

Ready to copy protocol scp, host 10.10.10.30, source

create_image_conf

Ready to copy protocol scp, host 10.10.10.30, source

Completed Copy of System Image

Ready to copy protocol scp, host 10.10.10.30, source

Completed Copy of Config File

Split config invoked....

Fabric Wide (x1):

* Validate node-to-node and end-to-end configuration and connectivity

o (Future) Trigger a validation in Ignite to verify configuration and connectivity

Practical Applications of Network Programmability 187

Conclusion

Using POAP and Ignite, users can dramatically reduce the time required to prepare the network
for applications while reducing the possiblity of configuration errors. Further, any effort ap-
plied to design one Pod /Fabric can be re-leveraged to accelerate future deployments.

Practical Applications of Network Programmability 189

Automating Access Configuration with Ansible

Problem Statement

Users perform manual Day-1 operations to configure network elements repeatedly for the pur-
pose on on-boarding new workloads. One common category of Day-1 configuration activity
is performing routine VLAN related operations:

* Check if VLAN exists

* Change names and descriptions of VLANs

* Configure a VLAN

It would be beneficial to automate this repetitive configuration with a goal of reducing time and
effort needed to complete the configurations, while reducing the probability of errors.

Today networks are in high demand and change constantly due to proliferation of customer de-
mands. Network engineers need the ability to automate their network in a simple and manage-
able way. One of the most frequent network changes is creation and removal of VLANs where
network engineers are accommodating dynamic customer demands.

Solution

Ansible provides a clean way to accomplish the creation and removal of VLANs because Ansible
doesn’t require an agent be installed on the devices. The main requirements for this solution
are:

°o SSH

* o Python - this is not required but it is the most commonly used language

In this particular example we are going to demonstrate how to leverage Ansible to create
VLANSs. Below is a graphical representation of how Ansible relates to the network.

190 Practical Applications of Network Programmability

Figure: Ansible Workflow with a Cisco Open NX-OS Switch

e

Users

[L]—s

Playbook

ANSIBLE ORCHESTRATION ENGINE

Inventory AP
Host File
[Module] [Plugins J

SSH

To understand the solution approach, it might be beneficial to understand some of the key An-

sible terminology:

* Hosts: Remote machines Ansible manages.

* Groups: Group of hosts assigned to a pool that can be conveniently targeted and
managed together.

° Inventory: File describing the Hosts and Groups in Ansible.

* Modules: Modules (also referred to as “task plugins” or “library plugins”) are the
components that do the actual work in Ansible. They are what gets executed in each

playbook task.

* Playbooks: A collection of plays which the Ansible Engine orchestrates, configures,
administers, or deploys. These playbooks describe the policy to be executed to the
host(s). People refer to these playbooks as "design plans" which are designed to be
human- readable and are developed in a basic text language called YAML.

Solution Approach

1) Host File

The hosts file leveraged for this specific use-case:

Practical Applications of Network Programmability 191

cisco@linux-dev:~/nxos-ansible$ more hosts
[all:vars]

ansible connection = local

[spine]
dean

cisco@linux-dev:~/nxos-ansible$

2) Playbook

The playbook used for this particular use-case

cisco@linux-dev:~/nxos-ansible/ansible playbooks$ more vlans.yml

vlans.yml

- name: VLANs
hosts: all
connection: local

gather facts: no

tasks:
- name: ensure VLANs 2-20 and 99 exist on all switches

nxos_vlan: vlan id="2-20,99" state=present host={{ inventory hostname }}

- name: config VLANs names for a few VLANs
nxos_vlan: vlan_id={{ item.vid }} name={{ item.name }} host={{ inventory hostname }}
state=present

with_items:
- { vid: 2, name: web }
- { vid: 3, name: app }
- { vid: 4, name: db }
- { vid: 20, name: server }

- { vid: 99, name: native }

192 Practical Applications of Network Programmability

3) Checking VLAN

In this step we are verifying the VLANS are not configured in the switch

n9k-sw-1# sh vlan brief

VLAN Name Status
1 default active
n9k-sw-1#

Ethl/1,

Ethl/5,

Ethl/9,

Ethl/12,
Ethl/15,
Ethl/18,
Ethl/21,
Ethl/24,
Ethl/27,
Eth1/30,
Ethl1/33,
Ethl/36,
Ethl1/39,
Ethl/42,
Ethl/45,
Ethl/48,
Ethl/51,

Ethl/54

Ethl/2,

Ethl/6,

Ethl1/10,
Eth1/13,
Ethl/16,
Eth1/19,
Ethl/22,
Ethl/25,
Ethl/28,
Ethl/31,
Ethl1/34,
Ethl/37,
Ethl1/40,
Ethl1/43,
Ethl/46,
Eth1/49,

Ethl/52,

Ethl/3,

Ethl/7,

Ethl/4

Ethl/8

Ethl/11
Ethl/14
Ethl/17
Ethl/20
Ethl/23
Ethl/26
Ethl/29
Ethl/32
Ethl/35
Ethl/38
Ethl/41
Ethl/44
Ethl/47
Ethl/50
Ethl/53

4) Execute Playbook

Now run the playbook by executing ansible-playbook vlans.yml

PLAY [VLANs]
TASK:

changed: [dean]

[ensure VLANs 2-20 and 99 exist on all switches]

cisco@linux-dev:~/nxos-ansible/ansible playbooks$ ansible-playbook vlans.yml

B e R R

kkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk

Practical Applications of Network Programmability 193

TASK: [config VLANs names for a few VLANS] %% %k k& kokdok k& ko dok & &k kdok & % %k ook % % % ok k

changed: [dean] => (item={'name': 'web', 'vid': 2})
changed: [dean] => (item={'name': 'app', 'vid': 3})
changed: [dean] => (item={'name': 'db', 'vid': 4})
changed: [dean] => (item={'name': 'server',k6 'vid': 20})
changed: [dean] => (item={'name': 'native', 'vid': 99})

PLAY RECAP %%k % % % ko o ok o % %k ok o % % k ok ok 5k ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok % ok kK ok

dean : ok=2 changed=2 unreachable=0 failed=0

cisco@linux-dev:~/nxos-ansible/ansible playbooks$

5) Verify VLAN Creation

Check the switch to verify the VLANs have been created

n9k-sw-1# sh vlan brief

VLAN Name Status Ports

1 default active Ethl/1, Ethl/2, Ethl/3, Ethl/4
Ethl/5, Ethl/6, Ethl/7, Ethl/8
Ethl/9, Ethl1/10, Ethl/11
Ethl/12, Ethl/13, Ethl/14
Ethl/15, Ethl/16, Ethl/17
Ethl/18, Ethl1/19, Ethl/20
Ethl/21, Ethl/22, Ethl/23
Ethl/24, Ethl/25, Ethl/26
Ethl/27, Ethl/28, Ethl/29
Ethl1/30, Ethl1/31, Ethl1/32
Ethl/33, Ethl/34, Ethl/35
Ethl/36, Ethl1/37, Ethl/38
Ethl1/39, Ethl1/40, Ethl/41
Ethl/42, Ethl/43, Ethl/44
Ethl/45, Ethl/46, Ethl/47
Ethl1/48, Ethl1/49, Ethl/50
Ethl/51, Ethl/52, Ethl/53

Ethl/54

194 Practical Applications of Network Programmability

2 web active
3 app active
4 db active
5 VLANO0OS5 active
6 VLANO0O6 active
7 VLANOOO7 active
8 VLANO0O8 active
9 VLANO0O9 active
10 VLANO010 active
11 VLANOO11 active
12 VLANO012 active
13 VLANO013 active
14 VLANOO14 active
15 VLANOO15 active
16 VLANOO016 active
17 VLANOO017 active
18 VLANO018 active
19 VLANOO19 active
20 server active
99 native active
L
Conclusion

Ansible provides an easy way to manage and automate the network with an agentless model.
This example illustrates one way to leverage Ansible with Cisco Open NX-OS.

Practical Applications of Network Programmability 195

Workload On-Boarding

Problem Statement

As multi-tenant data centers - both public and private - attract an ever increasing number
of customers, cloud operators are struggling to on-board tenants, applications, workloads, and
users in a rapid and efficient fashion. Customers - many of whom have already benefited first-
hand from automation tools - will no longer accept the delays that accompany traditional ten-
ant on-boarding processes.

Solution

Network operators must begin to leverage automation tools to assist with workload on-board-
ing. One such automation tool is Puppet, which can be leveraged with Open NX-OS to enable:

* Intent-based configuration, dramatically decreasing configuration steps and
deployment times

* The application of common tooling and skillsets across both server and network teams,
decreasing operation costs

* Visibility into configuration change management history that aids in compliance
monitoring

Although Puppet-based automation can be applied to many workload on-boarding problems,
the example below focuses on a specific and particularly troublesome problem of access-port
provisioning.

Historically, access-port provisioning has been a manual, labor-intensive, and error-prone
process. With Puppet intent-based automation and Open NX-OS, processes that previously
took hours or days can be completed in minutes, and with little potential for errors.

At the core of this use-case is the extensibility of open NX-OS Linux which allows for the inte-
gration of third-party software agents using RPMs. This use-case involves using a Puppet

Agent to enable intent-based automation of the switching infrastructure.

The solution architecture (illustated in Figure 1) consists of the following component pieces:

196 Practical Applications of Network Programmability

° A Puppet Master server

* A Cisco Puppet module
* A Puppet Agent / service which utilizes the NX-API CLI utility to configure the switch

Figure: Open NX-OS Agent-based Configuration Management (e.g., Puppet) Architecture

/ﬁ‘!\ puppfgrge Linux Software Yum/RPM install
- Repository puppet/chef.rpm
Server
 git
Chef

Cisco Puppet/Chef
Maodule(lncl Utility
GEMs)

.
.

Puppet/Chef Master Server
\ J

Native Linux Service
fetcfinit.d/puppet.d & chef.d

Practical Applications of Network Programmability 197

Puppet Domain-Specific Language

Puppet uses its own domain-specific language (DSL) to describe machine configurations and
model resources. The declaration of resources is key to the Puppet DSL. When one resource
depends on another, you should explicitly state the relationship to ensure that they are applied
in the proper order.

The Puppet Resource Model Consists of two layers — Types (or Resources) and Providers.
Types/Resources specify the interfaces used to describe resources in Puppet. Providers en-

capsulate the procedures used to manage resources on a specific platform.

Figure: Types and Providers supported out-of-the-box by the Cisco Puppet Module

Puppet Agent Types/Providers

cisco_vtp

cisco_tacacs_server

cisco_tacacs_server_host

Cisco_snmp_server

cisco_snmp_community

cisco_snmp_group

cisco_ospf

cisco_ospf_vrf

cisco_vlan

cisco_bgp*

cisco_bgp_vrf*

cisco_interface

cisco_interface_ospf

=

cisco_interface_vlan

198 Practical Applications of Network Programmability

Puppet Manifests

The configurations for each node under management are written using the DSL language men-
tioned above. Code in this language is saved in files called manifests.

For complete information about the Puppet language see http://docs.puppetlabs.com

puppet /4.2 /reference /lang__summary.html.

Manifests are files containing Puppet code on the puppet master server. They are standard text
files saved with the extension. Manifests should be arranged into modules that specify the

configurations that should be applied to the node.

See http://docs.puppetlabs.com /pe /latest /puppet__modules manifests.html#puppet-
modules for more information on Puppet manifest modules.

Solution Approach

Puppet Master Setup

The Puppet Master must be setup in order to manage the configuration of the network
switches. This is done once:

1 Download, install and configure the Puppet master software
2 Install the Cisco Puppet module directly from GitHub

3 Optionally, set up certificate auto-signing for Puppet agent nodes in your data center

Switch Native Puppet Agent Setup

Puppet Agents must be installed on each switch to enable communications with the Puppet
Master. These steps are done once per switch:

* Ensure basic networking is configured, and communication is established between
switch and Puppet master in the management namespace.

1) Enter Bash Shell

In NX-OS, Puppet Agent gets installed in the Bash Shell of the Cisco Nexus Switch

Practical Applications of Network Programmability 199

n9k-sw-1# run bash
bash-4.2$ whoami

admin

2) Change to the "management" namespace in the linux shell

This will result in changing the vrf to the management vrf.

bash-4.2# sudo ip netns exec management bash
bash-4.2# whoami
root

bash-4.2#

3) Add the DNS server to resolv.conf

bash-4.2# vi /etc/resolv.conf

nameserver <<DNS Server>>

4) Download puppet release agent rpm from yum.puppetlabs.com

Note: For the latest Puppet Agent info please refer to https://github.com /cisco /cisco-network-
puppet-module /blob /master /docs /README-agent-install. nd#agent-config

This step configures the yum repository on the switch for the agent, imports linux GPG en-
cryption keys and copies the agent RPM to the switch.

bash-4.2# yum install http://yum.puppetlabs.com/puppetlabs-release-pcl-cisco-wrlinux-—
5.noarch.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-
packages
groups-repo
| 1.1 kB 00:00 ...
localdb
| 951 B 00:00 ...
patching

| 951 B 00:00 ...

200 Practical Applications of Network Programmability

thirdparty
| 951 B 00:00
Setting up Install Process
puppetlabs-release-pcl-cisco-wrlinux-5.noarch.rpm
| 5.8 kB 00:00
Examining /var/tmp/yum-root-g33Fyq/puppetlabs-release-pcl-cisco-wrlinux-5.noarch.rpm:
puppetlabs-release-pcl-0.9.4-1.cisco_wrlinux5.noarch
Marking /var/tmp/yum-root-g33Fyq/puppetlabs-release-pcl-cisco-wrlinux-5.noarch.rpm to be
installed
Resolving Dependencies
--> Running transaction check
---> Package puppetlabs-release-pcl.noarch 0:0.9.4-1.cisco _wrlinux5 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository
Size
Installing:
puppetlabs-release-pcl noarch 0.9.4-1.cisco_wrlinux5 /puppetlabs-pcl-cisco-lnx-

5.noarch 2.2 k

Transaction Summary

Install 1 Package

Total size: 2.2 k
Installed size: 2.2 k
Is this ok [y/N]: y

Downloading Packages:

Practical Applications of Network Programmability 201

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : puppetlabs-release-pcl-0.9.4-1.cisco wrlinux5.noarch

1/1

Installed:

puppetlabs-release-pcl.noarch 0:0.9.4-1.cisco_wrlinux5

Complete!

5) Installing the Puppet Agent from the yum repository

bash-4.2# yum install puppet
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-
packages

groups-repo

| 1.1 kB 00:00
localdb

| 951 B 00:00
patching

| 951 B 00:00
thirdparty

| 951 B 00:00
puppetlabs-pcl

| 2.5 kB 00:00

puppetlabs-pcl/primary db
| 6.6 kB 00:00
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package puppet-agent.x86_64 0:1.2.5-1.cisco_wrlinux5 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

202 Practical Applications of Network Programmability

Package Arch Version Repository Size
Installing:
puppet-agent x86_64 1.2.5-1.cisco_wrlinux5 puppetlabs-pcl 39 M

Transaction Summary

Install 1 Package

Total download size: 39 M
Installed size: 139 M
Is this ok [y/N]: y
Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs
Downloading Packages:
puppet-agent-1.2.5-1.cisco wrlinux5.x86 64.rpm
| 39 MB 00:11

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction

Installing : puppet-agent-1.2.5-1.cisco_wrlinux5.x86_64

1/1

Installed:

puppet-agent.x86_64 0:1.2.5-1.cisco_wrlinux5

Complete!

bash-4.2#

¢ Install net_http_unix, cisco_nxapi, and cisco_nodeutil gem modules either individually
on the switch, or as part of the Puppet manifest for the switch.

Practical Applications of Network Programmability 203

» Download these packages as part of the Cisco agent software
from https://forge.puppetlabs.com /puppetlabs /ciscopuppet

Additional information regarding installation instructions is available at https://puppetlabs.
com /solutions /cisco

6) Edit the switch manifest on the Puppet Master to enable tenant on-
boarding

For tenant on-boarding in data center environments, typical operations are creating VLAN, SVI,
assigning ports to VLANs. An example manifest that on-boards a new Tenant A in VLAN 220
would appear as:

Provision Tenant A:

cisco vlan { "220":
ensure => present,
vlan_name => 'TenantA',
shutdown => 'true',

state => 'active',

Provision VLAN Interface for Tenant A:

cisco_interface { "Vlan220" :

svi_autostate => false,

Provision Tenant A Switch Port:

cisco interface { "Ethernetl/2" :
description => 'default',
shutdown => 'default',

access_vlan => '220',

204 Practical Applications of Network Programmability

7) When applied to a switch the resulting configuration would be:

interface Ethernetl/2

switchport access vlan 220

vlan 220

name TenantA

interface Vl1an220

no shutdown

Conclusion

Enabling automation through the combination of NX-OS extensibility and Puppet results in a
fundamental decrease in time-to-deployment for on-boarding tenants, improved SLA compli-
ance, and decreased operational costs.

Practical Applications of Network Programmability 205

Infrastructure as Code

Problem Statement

Network operators have a strong interest in maintaining control over the configurations that
have been applied to switches. Additionally, users need to store and track configuration
changes within the networking infrastructure. Open source tools can be used to automatically
push switch configuration changes to a central repository database system.

Solution

The DevOps movement has resulted in changes to many traditional processes and tools. One
artifact of the movement is treatment of infrastructure data as code, which is different fom pre-
vious models. This includes storing items such as device configurations in source control man-
agement systems. Some of the benefits of using a source control management system are audit
tracking and the ability to roll back to any version that was previously checked-in. The source
control system check-in could also trigger other parts of a change /test/release cycle, expand-
ing events to tools such as Jenkins to automatically test and report on the effect the change it-
self had on the infrastructure.

The solution set for this problem can be applied to multiple network topologies. The devices
need to have connectivity to a source control management system.

206 Practical Applications of Network Programmability

Figure: Open NX-OS Switches Integrate into Configuration Management Workflow

!l I] I Code changes
H .| I _
—_—

[GitHub

Automatic build trigger Results

Solution Approach

This solution involves multiple elements.

1) Trigger Event

The trigger event involves the switch leveraging Embedded Event Manager (EMM) to monitor
the CLI for changes. In this particular scenario, EEM is looking for match criteria "copy running-
config startup-config." After EEM detects the command, it will invoke a Python script from guest
shell called autoconfig.py which is stored in the local switch storage (bootflash)

Here is a sample EEM configuration:

event manager applet gitpush
event cli match "copy running-config startup-config"

action 2 cli copy running bootflash:/autoconfig/running.latest

Practical Applications of Network Programmability 207

action 3 cli guestshell run /home/guestshell/autoconfig.py
action 4 event-default

2) LXC Container / Guest Shell

The guest shell is used to host the Python Script and is where the git client is going to be run-
ning

n9k-sw-1# guestshell

[guestshell@guestshell ~]$

3) Installing Git client

The git client is available as open source package, and can be downloaded directly onto the de-
vice through Yum within the guest shell. The git client will allow changes to be pushed first into
a local repository, and then pushed to a central configuration store. Y install can be used to
grab the git client software:

guestshell:~$ sudo chvrf management yum install git

NOTE: In the above sample the management context (VRF - Virtual Routing and Forwarding) is
used for connectivity.

4) Python script

A python script which is triggered directly from the Embedded Event Manager (EEM) will be
used to save the configuration change, and use the git APIs to push the changes to the Central
Repository.

The script is saved as autoconfig.py which matches the name that was triggered from the Em-
bedded Event Manager (EMM) above. It will take the saved file and schedule it to be committed
through the calls to git. Finally a git push is called to push the changes to an external reposi-
tory. Notice above that vrf management is also used within the script for external connectivity.

The python script for this use case looks like the following:

208 Practical Applications of Network Programmability

#!/usr/bin/python

import os
import subprocess

from subprocess import call

f = open ("autoouptput.txt","w") #opens file with name of "test.txt"

os.chdir ("/home/guestshell/autoconfig"

call (["mv", "/bootflash/autoconfig/running.latest", "/home/guestshell/autoconfig/n9%k-sw-
1/running"])

call(["git", "add", "n9k-sw-1/running"])

call(["git", "commit", "-m", "Configuration change"]

p = subprocess.Popen(['chvrf', 'management', 'git', 'push'], stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

out, err = p.communicate ()

f.write (out)

f.write (err)

f.close

5) Git repository

A central git repository is needed to store the checked-in data. This could be an in-house git
repository, or a cloud-based community repository such as GitHub.

6) Verification

When the end user enters a configuration save from the CLI, the central repository store will be
updated.

Practical Applications of Network Programmability 209

Figure: Incremental Configuration on Open NX-OS Switch Archived on Git

Code Review / autoconfig.git / summary

summary | shortlog | log | commit | commitdiff | review | tree

description
owner

last change
URL

shortlog

3% git

commit : I gearch: re

Push network element configs to git Repository

codehub

Mon, 1 Jun 2015 13:08:34 -0700 (20:08 +0000)

hitp://codehu

.cigco.com:B090/p/autoconfig.git

ash

33 hours ago jpleifer
33 hours ago jpfeifer
34 hours ago jpfeifer

2015-06-15
2015-05-15
2015-05-15
2015-05-15
2015-05-15
2015-05-15
2015-05-15
2016-05-15
2015-05-15
2015-05-15
2015-05-15
2015-05-15
2015-05-15

heads

fefeifer
Jpfeifer
Jipfeifer
Jpfeiter
Jpteiter
ipfeifer
Jjptaifer
lefeifer
Jpfeiter
Jipfeifer
Ipfeifer
Ipteifer
lpfeifer

iat I"uuu

Configuration change mase: |

Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change
Configuration change

33 hours ago master totealionlires

Push network element configs to git Hepository

review.cisco.com:29418/autoconfig.git

ommit | pommitdif | tres | snapshot

et | | e | gngoshol
‘ggmmit | commitdif | tres | gnapshot
‘commit | gommingift | tree | snapshot
£OMTS! | Commindit | fras | gnapshol
‘commit | commindif | tree | snapshotl
oMt | commnnit | i | snapsnol

Source code
repositary
(codehub)

‘Qommit | commitdif | res | snapshol
Eommis | commingl | iree | snaDshon
gommit | commingilt | tree | gnapghot
ot | o | {row | sragshel
‘COMTE | COMMAN | {ras | SADENO!
Commit | commngift | new | snagshot

COMMIE | commBnTt | frea | SNApsnol
gommit | comminditt | tres | anapshot
OIS | CoTmBKINT | [res | SNADSNOY

Conclusion

As shown above, with this type of methodology leveraging open source tools and basic pro-
gramming skills, a complete configuration store and revision mechanism can be created.

Practical Applications of Network Programmability 211

Troubleshooting with Linux Capabilities

Problem Statement

Network devices increasingly are running Linux as the base operating system. How do we
leverage tools natively available in Linux to manage the switch and troubleshoot network prob-
lems?

Solution

Cisco Open NX-OS allows Linux shell access for users to access the underlying Linux file sys-
tem on Cisco Nexus Series Switches, to collect information and troubleshoot issues using famil-
iar Linux commands.

Solution Approach

In Open NX-OS, network interfaces are exposed as netdevices within Linux (EthX-X). Linux
commands a network operator can use are ifconfig, tcpdump, vsh etc. to make it easier to
manage the switch interfaces in the same manner as network ports on a Linux server.

212 Practical Applications of Network Programmability

Figure: Using Standard Package Management Infrastructure (e.g., yuam) with Open NX-OS

ECRMP& LiBPCAP

Linux

Yum install http://repo-server/utility.rpm
utility.rpm

For troubleshooting, use tcpdump to capture all packets on a given port, and dump output to a
file:

bash-4.2$ sudo tcpdump -w file.pcap -i Ethl-1
tcpdump: WARNING: Ethl-1: no IPv4 address assigned

tcpdump: listening on Ethl-1, link-type EN1OMB (Ethernet), capture size 65535 bytes

3 packets captured
3 packets received by filter

0 packets dropped by kernel

Use ethtool to display detailed interface statistics:

Practical Applications of Network Programmability 213

#ethtool -S ethl-1

NIC statistics:
speed: 10000
port_delay: 10
port_bandwidth: 10000000
admin_status: 1
oper_status: 1
port _mode: 0
reset counter: 20
load-interval-1: 30
rx _bit ratel: 0
rx_pkt_ratel: 0
tx bit ratel: 272
tx_pkt_ratel: 0
load-interval-2: 300
rx_bit_rate2: 0
rx_pkt_rate2: 0
tx _bit_rate2: 256
tx pkt_rate2: 0
rx_unicast_pkts: 1340
rx_multicast_pkts: 0
rx_broadcast_pkts: 0
rx_input_ pkts: 1340

rx bytes input pkts: 1886720

Verify the MTU of an interface, and then use ifconfig to change mtu for an interface to jumbo
MTU:

n9k-sw-1# run bash
bash-4.2#
bash-4.2# ifconfig Ethl-1
Ethl-1: flags=4163<UP, BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 feB80::fac2:88ff:fe%90:2cb2 prefixlen 64 scopeid 0x20<link>
ether £8:c2:88:90:2c:b2 txqueuelen 100 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0O

TX packets 2204374 Dbytes 170123906 (162.2 MiB)

214 Practical Applications of Network Programmability

{ TX errors 0 dropped 0 overruns 0 carrier O collisions 0

The following example shows how to set the MTU for interface 1/1 to 9000

bash-4.2# sudo ifconfig Ethl-1 mtu 9000
bash-4.2#
bash-4.2# ifconfig Ethl-1
Ethl-1 Link encap:Ethernet HWaddr £8:c2:88:90:2c:b2
inet6 addr: fe80::fac2:88ff:fe9%90:2cb2/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2204856 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:0 (0.0 B) TX bytes:170161160 (162.2 MiB)

The last example depicts how customers can execute NX-OS commands from bash. This is ben-
eficial because the user will be able to execute commands and leverage their existing Linux
tools to manage the switch. In this particular example, we are querying the interfaces from the
switch leveraging the command from bash shell.

bash-4.2$ vsh -c "show interface brief" | grep up | awk '{print $1}'
mgmt 0
Ethl/49

bash-4.2$

Conclusion

Cisco enables the capability to configure switch ports as Linux devices with standard Linux
tools on Cisco Nexus Series switches. This will reduce and simplify the IT toolchain.

Practical Applications of Network Programmability 215

Network Monitoring with Splunk

Problem Statement

Fine granular visibility into network structure, performance and failures can help network op-
erators manage the network more efficiently. Customers have had success using tools like
Splunk to monitor compute infrastructures. Splunk can also be used in coordination with the
network for capturing and graphing inventory, performance, congestion, latency and failure
data.

Solution

Network performance monitoring capabilities can help an operator to proactively identify aris-
ing problems and resolve them. This use-case illustrates how a network operator can gather
performance data, including response time, one-way latency, jitter (interpacket delay variance),
packet loss, network resource availability, application performance, and server response time
for various paths in the network. This capability can be extremely helpful in managing and trou-
bleshooting a network.

Splunk is a tool that can be used to gain operational visibility across the IT infrastructure. With
Splunk you can search, report, monitor and analyze real-time streaming and historical IT data
generated by all your IT systems from one place. Additionally, Splunk can troubleshoot applica-
tion problems and investigate security incidents, reducing time to repair them.

IP SLA on Nexus device gathers rich network performance data by monitoring and capturing la-
tency and jitter between designated network elements. An on-box collector is required to cap-
ture the performance metrics between the network components, and this performance data is
aggregated and sent to a central location for further analysis.

Splunk forwarders on NX-OS switch (lightweight Splunk servers with indexing turned off) can
be deployed in situations where the data needed isn't available over the network nor visible to
the server where Splunk is installed. Splunk forwarders can monitor local application log files,
capture the output of status commands on a schedule, grab performance metrics from virtual
or non-virtual sources, or watch the file system for configuration, permissions and attribute

216 Practical Applications of Network Programmability

changes. Forwarders send data securely to the central Splunk server in real time. They are
lightweight, can be deployed quickly and no additional cost is incurred.

Figure: Enhance Infrastructure Visibility with Splunk Forwarder on Open NX-OS

NIK Switch N9K Switch

Responder

Splunk Server

IP SLA stats Format:
JSON Splunk
Universal Forwarder

LA Dbl I #

ot

St i AT P . L ey S i g AV

et B S c—

Splunk Web: http://<splunkserver>:5000

Practical Applications of Network Programmability 217

This use case utilizes numerous Open NX-OS capabilities:

* Guest shell: Guest shell provides a secure, isolated environment for users to install
software that extends the switch functionality. We'll install the Splunk forwarder in the
guest shell.

* RPM capabilities: Splunk forwarder running in a container or an RPM to send data to a
centralized Splunk forwarder.

° Python: A python script running on the switch, utilizing native python capabilities,
gathers information to be presented to Splunk.

* NX-API CLI The python script interacts with NX-OS via NX-API CLI interface and
gathers performance data.

Solution Approach

For the purpose of illustrating this particular use-case, we'll use two Nexus devices connected
back to back.

1) Install Splunk forwarder as RPM on NX-OS

n9k-sw-1# guestshell

bash-4.2# yum install splunkforwarder-6.2.3-264376-1inux-2.6-x86_64.rpm

2) Start Splunk

[bash-4.2# splunk start \--accept-license

3) Add forward server to push data to Splunk Enterprise

[bash-4.2# splunk add forward-server <splunk enterprise>:9997

4) Enable forwarder

[bash-4.2# splunk restart

218 Practical Applications of Network Programmability

5) Configure Splunk forwarder

Lastly, configure the Splunk forwarder to watch a monitor file for incoming data. When any
data is written to the monitor file, the Splunk forwarder will pick that data up and send it to the
Splunk server.

[bash-4.2#splunk add monitor /bootflash/home/admin/monitor file

The Splunk forwarder can be checked to see what files it is monitoring:

[bash-4.2#splunk list monitor

Sample scripts to forward data to the Splunk enterprise. All scripts that will be run by Splunk
Forwarder should be placed in $SPLUNK_HOME /bin/scripts folder.

6) Create the interface-counter.py script

In addition to capturing IP SLA data, other data sources can be captured as well and sent to the
Splunk Collector. As an example, the script below will gather interface counter data which is
picked up by the Splunk Universal forwarder. Using the following script interfaces with NX-API
CLI functionality to grab interface data through a JSON-RPC call, the resulting data is stored in
the response dictionary.

The script used to push any statistics can be easily developed using NX-API CLIL

(nxapi URI)

Use the nxapi sandbox to cut-and-paste the python script with the desired 'show command'
(In the sandbox select output format as JSON, and in the request pane select python)

(sample generated script from the sandbox for ‘show interface counter’ CLI)

#!/usr/bin/python

import os, Jjson, sys, requests

Modify these please

url='http://<SWITCH MGMT IP>/ins'

Practical Applications of Network Programmability 219

switchuser='<USERNAME>"'

switchpassword="'<PASSWORD>"'

myheaders={"'content-type':'application/json'}

payload={

"ins_api": {
"version": "1.0",
"type": "cli_ show",
"chunk": "0",
"sid": "1",
"input": "show interface ethernetl/13",
"output format": "json"

response = requests.post (url,data=json.dumps (payload), headers=myheaders,auth=

(switchuser, switchpassword)) .json()

#Add just this line.to push/forward json output to splunk server.

print json.dumps (response)

7) Create data-forwarder.sh script

This is a wrapper shell script that will execute specific python scripts.

#\!/bin/bash
unset LD LIBRARY_ PATH

/opt/splunkforwarder/bin/scripts/interface-counter.py

Configure the inputs.conf file according to the sample shown below

script://$SPLUNK_HOME/bin/scripts/data-forwarder.sh
interval = 60

sourcetype = json

The script listed above can be modified to write the response dictionary data directly to the
monitor_file which the Splunk universal forwarder will then pick up and send to the collector.

220 Practical Applications of Network Programmability

8) Executing the Splunk forwarder

For the IP SLA example, data specific to IP SLA can also be sent to the Forwarder. Here is an
example where jitter data is gathered and sent to the forwarder.

Splunk search string and graph

Search string to plot the average max jitter time from IP SLA sender to responder every

minute:

host=1pl sourcetype=json "udp-jitter” -> Filter the udp-jitter json formatted event from the
host

ins_api.outputs.output.body.TABLE common.ROW common.latest-return-code="1" -> Filter
successful event

earliest=-1m -> Filter events over the last one minute

| stats avg(ins_api.outputs.output.body.TABLE jitter{}.ROW_jitter.sd-jitter-max) as
avg_max_Jjitter_ time -> Calculate the average of max-jitter-time from source to destination

| gauge avg max jitter time 20010 20025 20040 20055 -> Plot the value on a gauge

Conclusion

For this third-party monitoring application integration use-case, a Splunk forwarder was in-
stalled as an RPM. The forwarder can also be supported in a secure container. Splunk can be
extended to include specific local queries of collected IP SLA data to be indexed for further vi-
sualization and analysis by the central server.

Practical Applications of Network Programmability 221

Network Monitoring with Open Source Tools

Problem Statement

Network Monitoring is a critical function in today's environment in order to:
* Optimize the network for performance and availability
* Keep track of network utilization
° Provide visibility for the current state of the network

* Provide certain types of IP SLA
There are many network monitoring software tools in the market today. These software net-

work monitoring tools can be proprietary or created in a open source community.

Solution

In this particular use-case, we showcase the ways users can leverage an open source tool called
TCollector to monitor the network. TCollector is an application running in the Cisco Nexus
switch that will process data from local collectors and send the data to OpenTSB.

Solution Approach

1) Enter Bash Shell

In NX-OS, TCollector gets installed in the Bash Shell of the Cisco Nexus Switch.

n9k-sw-1# run bash
bash-4.2$ whoami

admin

2) Change the namespace interface in the shell to use "management”

This will move us into the management vrf and create a new shell.

222 Practical Applications of Network Programmability

bash-4.2# sudo ip netns exec management bash
bash-4.2# whoami
root

bash-4.2#

3) Add the DNS server to shell

bash-4.2# vi /etc/resolv.conf

nameserver <<DNS Server>>

4) Create a new yum repository configuration file

bash-4.2# pwd

/etc/yum/repos.d

bash-4.2#vi open-nxos.repo

[open—-nxos]

name=open-nxos
baseurl=https://devhub.cisco.com/artifactory/open-nxos/7.0-3-12-1/x86 64/
enabled=1

gpgcheck=0

metadata_expire=0

cost=500

sslverify=0

5) Install TCollector

The TCollector client is available as an open source package, and can be downloaded directly
onto the device through yum.

root@n9k-sw-1l#yum install tcollector

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-

packages

groups-repo | 1.1 kB
00:00

localdb | 951 B

00:00

Practical Applications of Network Programmability 223

patching
00:00
thirdparty
00:00
Setting up Install Process
Resolving Dependencies

--> Running transaction check

---> Package tcollector.noarch 0:1.0.1-10 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

951 B

951 B

Package Arch Version Repository
Size

Installing:

tcollector noarch 1.0.1-10 thirdparty
59 k

Transaction Summary

Install 1 Package

Total download size: 59 k
Installed size: 190 k

Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction

Warning: RPMDB altered outside of yum.

224 Practical Applications of Network Programmability

Installing : tcollector-1.0.1-10.noarch
1/1
Starting tcollector: [OK]
Installed:

tcollector.noarch 0:1.0.1-10

Complete!

5) Verify TCollector is running

root@n9k-sw-1#ps -ef | grep tcoll

root 22788 1 0 22:35 7 00:00:00 /usr/bin/python
/usr/local/tcollector/tcollector.py -D -H 10.6.54.60 -t host=n93k-2 -P /var/run/tcollector.pid
--reconnect-interval 0 --max-bytes 67108864 --backup-count 0 --logfile /var/log/tcollector.log

nobody 22830 22788 0 22:35 ? 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/netstat.py

nobody 22872 22788 0 22:35 2 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/dfstat.py

root 22908 22788 0 22:35 ? 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/smart-stats.py

nobody 22942 22788 0 22:35 2 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/iostat.py

nobody 22985 22788 0 22:35 ? 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/procstats.py

nobody 23036 22788 0 22:35 2 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/ifstat.py

nobody 23040 22788 0 22:35 ? 00:00:00 /usr/bin/python
/usr/local/tcollector/collectors/0/procnettcp.py

root 23098 16343 0 22:35 pts/0 00:00:00 grep tcoll

6) TSDB Interface

Log into the TSDB interface to view the data.

Practical Applications of Network Programmability 225

Figure: Using TCollector Agent on Open NX-OS to Monitor Switch Performance with
OpenTSDB

€ Fieinx P o view Wy Hockmaks oo Wndow Hep TR b YO Y i DWMET I T muymanm o =

Feom To el pu— WM. s

Conclusion

Open source software tools built for network operations, data gathering, statistical analysis and
trending can provide simpler and more robust toolsets than the prevailing proprietary software
product equivalents. Installing lightweight agents directly into a switch's shell provides an open
interface and enables a straightforward, simple, and robust set of tools to monitor DC infra-
structure.

Practical Applications of Network Programmability 227

Automating Network Auditing and Compliance

Problem Statement

There are numerous instances where periodic or on-demand audit checks on configurations
can ensure consistency and security in the infrastructure. The following use case illustrates
how a audit check for Virtual Port-Channel (vPC) configuration can be performed - the same
methodology can be extended to check ACLs, QoS, and many other use cases.

vPC or Virtual Port Channel is a technology created by Cisco which allows physical links con-
nected to two separate sets of switches to appear as a single port channel to the end devices.
The end devices could be any network device such as servers, routers, firewalls, etc. The ad-
vantage of vPC is it provides redundancy to the devices while increasing bandwidth.

vPC configuration in some cases can be tedious and error-prone as:

* vPCrequires several steps to configure
* vPC configuration steps must follow a specific order

* Certain vPC configuration elements must be identical on both switches

228 Practical Applications of Network Programmability

Figure: Sample Topology used by the vPC Consistency Handling Script

Backbone IP Network

Layer 2 Link

Layer 3 Link

PortChannel

Operators can benefit from an automated mechanism that helps validate the consistency of vPC
configurations.

Solution

This solution is going to illustrate a Python script that checks both vPC pair switches for any in-
consistencies related to vPC. In this particular example we are only covering MTU mismatch,
but it could be extended to any other value.

Practical Applications of Network Programmability 229

If the the script detects any configuration issues, it will identify the mis-match and attempt
a recovery by applying the correct configuration value. We are able to accomplish this solution
by using the Python script and NX-API CLI.

Solution Approach

vPC Consistency Check Script

The latest version of the script can be downloaded from https: //github.com /tecdct2941

The following code snippet captures the various vPC configurations on which it is desirable to
run consistency checks:

type tbl = {
'"Interface type' : '1',
'"LACP Mode' : 'l
'STP Port Guard' : 'l',
'STP Port Type' : '1',
'Speed’ : 'l
'Duplex’ : '1',
'"MTU' o1,
'Port Mode' ',
'STP MST Simulate PVST' : '1',
'"Native Vlan' 'l
'"Pvlan list' s '27,
'Admin port mode' : '1',
'lag-id' : '1"',
'mode' : '1',
'vPC card type' HEA
'Allowed VLANs' HEEE

'Local error VLANs' : '-'

The following section uses NX-API CLI to gather the vPC operational state from a switch:

230 Practical Applications of Network Programmability

def check vpc status(switch x):

switch ip = switch x["mgmt ip"]

switchuser = switch_x["username"]
switchpassword = switch_x["user_ pw"]
return_data = {}

url = "http://"+switch ip+"/ins"

myheaders={"'content-type':'application/json-rpc'}

payload=|[
{

"jsonrpc": "2.0",

"method": "cli",

"params": |
"cmd": "show vpc brief",
"version": 1.2

by

"id": 1

response = requests.post (url,data=json.dumps (payload), headers=myheaders,auth=

(switchuser, switchpassword)) .json()

resp_body = response['result']['body']
return_datal['vpc-peer-status'] = resp body['vpc-peer-status']
resp_vpc_table = resp body['TABLE vpc']['ROW_vpc']

for iter in resp vpc table:

one vpc id = iter['vpc-id']

vpc_id.append(one_vpc_id)

return datal[str(one vpc id)] = {}

return datal[str(one vpc id)]['consistency-status'] = iter['vpc-consistency-
status']

return data([str(one vpc id)]['port-id'] = iter['vpc-ifindex']

return return_data

The following section gathers vPC consistency state across the two switches:

Practical Applications of Network Programmability 231

def check vpc consistency(switch x,switch y, vpc_id):

cmd = "show vpc consistency-parameters vpc " + str(vpc_id) + " errors"
switch ip = switch x["mgmt ip"]
switchuser = switch x["username"]

switchpassword = switch_x["user_pw"]

return_data = {}
url = "http://"+switch ip+"/ins"
myheaders={'content-type':'application/json-rpc'}
payload=[
{

"jsonrpc": "2.0",

"method": "cli",

"params": |

"cmd": cmd,
"version": 1.2
I
"id": 1

response = requests.post (url,data=json.dumps (payload), headers=myheaders,auth=

(switchuser, switchpassword)) .json()

resp_body = response['result']['body'] ['TABLE_vpc_consistency'] ['ROW_vpc_consistency']

fail list = []

for iter in resp_body:
i _name = iter['vpc-param-name']
i type = iter['vpc-param-type']
i local = iter['vpc-param-local-val']

i_peer = iter['vpc-param-peer-val']

if 1_local != i_peer:
print "Found Inconsistency in " + i name + ": local val: " + i local +

" peer val : " + i peer

232 Practical Applications of Network Programmability

fail list.append(iter)

return fail list

The following section corrects any inconsistencies identified:

def correct vpc consistency(switch x,

switch_ip = ""
switchuser = ""

switchpassword = ""

for iter in fail list:

"

higher_mtu =

else:

payload=[
{

"jsonrpc": "2.0",
"method": "cli",
"params": {

"cmd": "conf t",

"version": 1.2

b

print "Correcting VPC " + str(vpc_id) +

if iter['vpc-param-name']

if iter['vpc-param-local-val']
higher_mtu =

switch ip =

switchpassword =

higher mtu =

switch_ip =

switch y,fail list, vpc_id,port id):

"\n"

== "MTU":

print "Correcting MTU"

< iter['vpc-param-peer-val']:
= iter["vpc-param-peer-val"]
switch x["mgmt ip"]
switchuser = switch_x["username"
switch_x["user pw"]

= iter["vpc-param-local-val"]
switch_y["mgmt_ip"]

switchuser = switch_y["username"]

switchpassword = switch_y["user_pw"]

Practical Applications of Network Programmability 233

midt: 1

"jsonrpc": "2.0",

"method": "cli",
"params": {
"cmd": "interface " + port_id,
"version": 1.2
by
"id": 2
by
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "mtu " + str(higher mtu),
"version": 1.2
by
"id": 3
}
]
url = "http://"+switch_ip+"/ins"

myheaders={'content-type':'application/json-rpc'}
response = requests.post (url,data=json.dumps (payload), headers=myheaders,auth=

(switchuser, switchpassword)) .Jjson ()

Finally, the control logic for the entire script:

def main () :

print "**** Calling vlan consistency checker ***"

consistentl = check_vpc_status(switch_a)

print "Checking VPC status. Results:\n "

is_consistent =1

234 Practical Applications of Network Programmability

for one_vpc_id in vpc_id:
if consistentl[str (one_vpc_id)]['consistency-status'] == "INVALID":
is_consistent = 0

print "VPC " + str(one vpc id) + " is inconsistent - checking

reason...\n"
cons_check = check_vpc_consistency(switch_a, switch b, one_vpc_id)
correct it = correct vpc_consistency(switch a, switch b,cons_check,
one vpc_id,consistentl[str(one vpc id)]['port-id'])

print "VPC" + str(one_vpc_id) + " corrected"

time.sleep (5)

if is_consistent ==
print "Rechecking VPC Status after correction. Results: \n"

consistent recheck = check vpc_status(switch_a)

for one_vpc_id in vpc_id:

if consistent_recheck([str (one_vpc_id)]['consistency-status'] ==

"INVALID":

print "VPC " + str(one vpc id) + " is still inconsistent"

else:

print "No Inconsistency found !! \n"

Script Output

1) Here is a sample output where inconsistency was not found

admin@linux:python vcp check py
***% Calling vlan consistency checker ***
Checking VPC status. Results:

No Inconsistency found !!

*** Vlan consistency checker complete ***

Practical Applications of Network Programmability 235

2) Here is a sample output where inconsistency was found

admin@linux:python vcp check py
****% Calling vlan consistency checker ***

Checking VPC status. Results:

VPC 200 is incosistent - checking reason...

Found Inconsistency in MTU: local val: 1500 peer val : 9216

Correcting VPC 200
Correcting MTU
VPC200 corrected

Rechecking VPC Status after correction. Results:

*** Vlan consistency checker complete ***

Conclusion

Using the power of Python scripting combined with the NX-API CLI, it is possible to automate
many time-consuming and error-prone tasks. In this use-case, we showed how automation can
help operators minimize configuration errors that could potentially lead to service interrup-
tions, and eliminate time it might take to troubleshoot vPC problems manually.

Practical Applications of Network Programmability 237

Automated Network Topology Verification

Problem Statement

Network administrators are constantly striving to capture a real time view of their network
topology or cable-plan so it can be compared against the intended topology. They can benefit
from the use of programmatic tools capable of dynamically generating maps of a live topol-
ogy and comparing it to archived versions of the designated cable-plan.

Solution

Leveraging an API-driven approach to dynamically generate a live cable-plan for a network al-
lows operators to work with the resulting data programmatically. Having captured the live ca-
ble-plan they can utilize it as follows:

* Compare it to previous versions to identify changes
* Analyze the topology for troubleshooting and failure analysis
* Track the evolution of the topology

* Archive the cable-plan for future comparisons

nxtoolkit

The NX Toolkit is a set of Python libraries that allow for basic configuration of the Cisco Nexus
Switch. It is intended to allow users to quickly begin using the NX-API REST interface and de-
crease the learning curve necessary to begin using the switch.

nxtoolkit is available as an open source project (Apache License, Version2.0) on Github http://
github.com /datacenter /nxtoolkit

Cable-Plan Application for nxtoolkit

The cable-plan module allows the programmer to easily import existing cable-plans from XML
files, import the currently running cable-plan from a Cisco Nexus Switch, export previously im-
ported cable-plans to a file, and compare cable-plans.

238 Practical Applications of Network Programmability

More advanced users can use the Cable-Plan application to easily build a cable-plan XML file,
query a cable-plan, and modify a cable-plan.

The Cable-Plan application is available as an application under the nxtoolkit open source pro-

ject nxtoolkit/applications/cableplaﬁp.

Cable-Plan XML Syntax

The cable-plan XML appears as follows:

<?xml version="1.0" encoding="UTF-8"?>
<?created by cable.py?>
<CISCO NETWORK TYPES version="None" xmlns="http://www.cisco.com/cableplan/Schema2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="nxos-cable-plan-
schema.xsd">
<DATA CENTER networkLocation="None" idFormat="hostname">
<CHASSIS INFO sourceChassis="spinel" type="n9%k">
<LINK_INFO sourcePort="eth2/35" destChassis="leafl" destPort="ethl/50"/>
<LINK_INFO sourcePort="eth2/3" destChassis="leaf3" destPort="ethl/50"/>
<LINK_INFO sourcePort="eth2/2" destChassis="leaf2" destPort="ethl/50"/>
</CHASSIS_INFO>
<CHASSIS_INFO sourceChassis="spine2" type="n9%k">
<LINK_INFO sourcePort="eth2/1" destChassis="leafl" destPort="ethl/49"/>
<LINK_ INFO sourcePort="eth2/3" destChassis="leaf3" destPort="ethl/49"/>
<LINK_INFO sourcePort="eth2/2" destChassis="leaf2" destPort="ethl/49"/>
</CHASSI S_INFO>

</DATA_CENTER>

</CISCO_NETWORK_TYPES>

The CHASSIS_INFO tag normally identifies the spine switches, then the leaf switches are con-
tained in the LINK_INFO. When the XML is read, both leaf and spine switch objects will be cre-
ated and the [get_switch ()] and [get_link ()]methods can be used to access them.

Practical Applications of Network Programmability 239

Solution Approach

Figure 1. Using nxtoolkit to Generate a Cable Plan from a Running Topology

- - 'NX_API :

nxtoolkit with
capleplan

Getting Started with Cable-Plan

The Cable-Plan application module is imported from :file:'cableplan.py” which can be found in
the [nxtoolkit/applications/cableplan] directory.

It can be incorporated directly into a Python script, or it can be used from the command-line.

[from cableplan import CABLEPLAN

To create a cable-plan from the current running Nexus switch, simply do the following:

[cp = CABLEPLAN.get (session)

where is a Nexus switch session object generated using the will be the

cable-plan object.

240 Practical Applications of Network Programmability

Export that cable-plan by opening a file and calling the method as follows:

cpFile = open('cableplanl.xml', 'w')
cp.export (cpFile)

cpFile.close()

The cable-plan will be written to the :file:"cableplan1.xml" file.

Working with Saved Cable-Plans

Reading an existing cable-plan xml file is equally easy:

fileName = 'cableplan2.xml'

cp2 = CABLEPLAN.get (fileName)

Note that you don't have to explicitly open or close the file. The method will han-
dle this.

Comparing Cable-Plans

Comparing cable-plans is one of the more interesting capabilities of the cable-plan module and
is very easy to do using "difference" methods. When generating the difference between two ca-
ble-plans, the module will return those items that exist in the first cable-plan, but not in the
second.

Missing Switches

For example, assume that in the above example, the second cable-plan read from
the :file:'cableplan2.xml file does not have switch "Spine3" and the first cable-plan does have it.
The following example will print all of the switches in the first cable-plan and not in the second:

missing_switches = cpl.difference_switch (cp2)
for switch in missing_switches :

print switch.get name ()

This should print the following output:

[Spine3

Practical Applications of Network Programmability 241

Missing Links

Similiarly, the following example will print all of the missing links:

missing links = cpl.difference link(cp2)
for link in missing links :

print link.get_name ()

New and Missing Links

To understand all of the differences between two cable-plans it is necessary to compare them
in both directions:

missing links = cpl.difference link(cp2)
extra links = cp2.difference_link(cpl)
print 'The following links are missing from the second cable-plan'
for link in missing links :
print link.get name ()
print 'The following links are extra links in the second cable-plan'

for link in extra_ links:

print link.get name ()

Cable-Plan from the Command Line

Invoking the Cable-Plan application from the command line is very simple.

From the command prompt do the following:

[python cableplan.py -h

This will return usage instructions that explain each of the command line options.

There are two primary functions that can be invoked from the command-line: ‘export' and
‘compare’.

The 'export’ function, selected with the '-e' option, will create a cable-plan by reading the state
of the Nexus switch. This cable-plan will be either displayed on the monitor or, if a filename is
specified, will be placed in a file. It will be formatted in XML.

242 Practical Applications of Network Programmability

The 'compare' function will compare two cable-plans. One of those must be in a file that is
specified at the command line and the second one can come either directly from the switch or
from a second file. If only the '-cl file_name' option is used, then the content of file_name is
compared to the actual running configuration of the switch:

[python cableplan.py -cl netwrkl.xml

To compare two files, then both the '-cl file_namel' and '-c2 file_name2' options must be used:

[python cableplan.py -cl netwrkl.xml -c2 netwrk2.xml

This comparison will list all of the links in the first cable-plan that are not in the second, and
vice-versa.

Conclusion

Using the NX-API REST interface that is part of Open NX-OS and open source tools like nx-
toolkit, operators can very easily build tools and scripts to help understand the current state of
their infrastructure.

Practical Applications of Network Programmability 243

Workload Mobility and Correlation

Problem Statement

Virtualization has become a cornerstone technology in data centers today and is used exten-
sively to enable faster provisioning and improve resource utilization rates. These virtualized
servers are frequently moved between compute resources to satisfy demands for performance
and service-scale.

When operators have a need to track the location of VMs or groups of VMs within a network,
this workload mobility can present significant challenges. For example, in the diagram below, a
workload has been moved but the network operations team is unaware of it. An automated
means of tracking these changes is needed.

Figure: Tracking VMs in the Infrastructure with Open NX-OS Tools

Leaf

VM1
192.168.2.50

VM Move

244 Ppractical Applications of Network Programmability

Solution
The solution incorporates a number of Cisco and third-party / Open Source capabilities, in-
cluding:
* Extensible Messaging and Presence Protocol (XMPP) and Python XMPP modules to
facilitate group communications with NX-OS switches
¢ Cisco VM Tracker to access virtual machine name information on each switch
* A Python script that manages the communication with all of the target switches

° An XMPP/Jabber room where VM locations are reported

All communications are secured using SSL/TLS, as is typical with XMPP. Rule-Base Access
Control (RBAC) is used to map the authenticated user executing the command via
Python/XMPP to the switch command-line interface. RBAC is enforced in a delegated manner
on the Switch itself.

Cisco NX-OS provides a extensive set of tools and components in order to achieve virtual ma-
chine visibility in accordance with VM Tracker for VMM - Virtual Machine Manager (vCenter)
integration or VDP (part of lldpad) for the Open Virtual Switch (OVS). With this, we are able to
associate the name of a virtual machine (VM) with the Cisco Nexus switch to which it is con-
nected.

Solution Approach

1) Enabling VM Tracker feature

n9k-sw-1# conf t
Enter configuration commands, one per line. End with CNTL/Z.
n9k-sw-1 (config)# feature vmtracker

n9k-sw-1 (config) #

2) Establishing a Connection to vCenter

n9k-sw-1# configure terminal
n9k-sw-1(config)# vmtracker connection connl
n9k-sw-1 (config-vmt-conn) # remote ip address 10.1.1.1 port 80 vrf management

n9k-sw-1 (config-vmt-conn) # username userl password ciscol23

Practical Applications of Network Programmability 245

t n9k-sw-1 (config-vmt-conn) # connect

3) Verification

Once the connection and the information between switch and vCenter has been exchanged you
should be able to see the Virtual Machines.

n9k-sw-1# show vmtracker info detail

Ethernetl/3 192.168.2.50 vmnic4 VM1 on PGroupl00 100

4) Using XMPP for VM visibility (VM Tracker)

With XMPP we can create groups of switches and then use group-chat execute commands on
all of the switches simultaneously. This allows us to send - from a single location - a VM Track-
ing command to the group, and have each switch return the list of VMs that are connected.

5) Install an XMPP Server

[admin@linux# yum install jabberd

6) Join a Group

Here is an example on how to attach a switch to the group chat "xmpp":

guestshell# jabberd attach group xmpp

guestshell>xmpp#

7) Executing a CLI Command

Here is a example of sending a single CLI command to multiple switches leveraging
XMPP group chat:

246 Practical Applications of Network Programmability

guestshell>xmpp# show clock

<n9%k-sw-1@xmpp.cisco.com/ (fmgr-device) (ABC1234abcd) >
18:46:37.481 UTC Wed Sep 30 2015

</n9%k-sw-1@xmpp.cisco.com/ (fmgr-device) (ABC1234abcd) >

<n9%k-sw-2@xmpp.cisco.com/ (fmgr-device) (DEF5678abcd) >
18:46:56.420 UTC Wed Sep 30 2015
</n9%k-sw-2@xmpp.cisco.com/ (fmgr-device) (DEF5678abcd) >

Responses expected:2 received:2, time spend:117 msec

Below is another sample to showcase the power of VM Tracker with XMPP to gather informa-
tion across multiple switches based on VM Name, IP address, connected interface, and so on:

-

guestshell>xmpp#

guestshell>xmpp# show vmtracker info detail

<n9%k-sw-1@xmpp.cisco.com/ (fmgr-device) (ABC1234abcd) >

Ethernetl/3 192.168.2.50 vmnic4 VM1 on PGrouplO0 100

8) Leveraging Python

Programmatic access using XMPP will allow for the execution of scheduled commands, the cap-
ture of structured responses (XML), and the storage of the data to a repository.

Practical Applications of Network Programmability 247

In the example below a Python script connects to XMPP and executes a show command against
"VM tracker" with a respective VM name. The result is the location of the switch where the vir-
tual machine (VM) is present.

import xmpp, re

vm="VML"

cmd="show vmtracker info detail | include " + vm
jid='python@xmpp.cisco.com"'

pwd="PRSSwOrd"

room="server@xmpp.cisco.com"

def messageHandler (conn, msg):

if msg.getType () == "groupchat":

result=re.findall ("Interface [1-9]", str(msg.getBody()))
if result:

sw=re.findall ("/(.*?)/",str (msg.getFrom()))

print vm + " was found on:\n"

print sw[0] + "\n"

print str(msg.getBody()) + "\n"

def StepOn (conn) :

try:

conn.Process (1)

except KeyboardInterrupt:
return 0

return 1

def GoOn (conn) :
while StepOn (conn) :

pass

jid=xmpp.protocol.JID(jid)

cl=xmpp.Client (jid.getDomain (), debug=[]

if cl.connect() == "":
print "connection failed"

sys.exit (0)

248 Practical Applications of Network Programmability

if cl.auth(jid.getNode(),pwd) == None:
print "authentication failed"

sys.exit (0)

cl.RegisterHandler ('message',messageHandler)
cl.sendInitPresence ()

cl.send (xmpp.Presence (to="'{0}/{1}"'.format (room, jid)))
message = xmpp.Message (room, cmd)
message.setAttr('type', 'groupchat')

cl.send (message)

GoOn (cl)

Below is the output of the Python script, which can be stored for correlation:

VM1 was found on: n9k-sw-1@xmpp.cisco.com
Interface Host VMNIC VM State PortGroup VLAN-Range
Ethernetl/3 192.168.2.50 vmnic4 VM1 on PGrouplO0 100
Results returned :: 0
.
Conclusion

Virtual Machine visibility - real time or historical - can be achieved using Python scripts with a
structured message bus (XMPP) and capturing the results. This information is automatically
time stamped as per the XMPP message bus. Extracting this information and storing it in a
repository can simplify the tracking of VMs and network troubleshooting in a virtualized envi-
ronment.

Practical Applications of Network Programmability 249

Network Resiliency

Problem Statement

In some cases, users may need to manipulate the way network elements come online. This
could be necessary to ensure servers are able to successfully come online when they are getting
built.

Solution

In this particular use-case, requirements dictate host ports are kept in a shutdown state until
uplink ports are active. This is necessary to ensure the ESX hosts are built properly.

Solution Approach

The following tools are leveraged to achieve the stated requirements:
* Embedded Event Manager (EEM)
e To track the port up/down events
* Python

e To execute a script based on an EEM argument to take the host port up or down.

The first stage is to create the EEM script to track the uplink port states and pass the argument
based on state UP or DOWN:

event manager applet link reboot
event syslog pattern "Module 1 current-status is"
action 1 syslog priority critical msg Running linkchange6 down
action 2 cli source linkchange6.py down

event manager applet link up
event track 30 state up
action 1 syslog priority critical msg Running linkchange6 up
action 2 cli source linkchange6.py up

i

track 1 interface Ethernet2/1 line-protocol

250 Practical Applications of Network Programmability

track
track
track
track
track
track
track
track
track
track
track
track
track
track
track
track
track
track
track

track

9
10

12

13
14

30

object

object

object

object

object

object

object

object

object

object

object

object

object

object

object

object

object

object

interface Ethernet2/2 1i
interface Ethernet2/3 1i
interface Ethernet2/4 1i
interface Ethernet2/1/1

interface Ethernet2/1/2

interface Ethernet2/1/3

interface Ethernet2/1/4

interface Ethernet2/2/1

interface Ethernet2/2/2
interface Ethernet2/2/3
interface Ethernet2/2/4
interface Ethernet2/3/1
interface Ethernet2/3/2
interface Ethernet2/3/3
interface Ethernet2/3/4
interface Ethernet2/4/1
interface Ethernet2/4/2
interface Ethernet2/4/3
interface Ethernet2/4/4
list boolean or

1

2

10
11
12
13
14
15
16
17
18

ne-protocol
ne-protocol
ne-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol
line-protocol

line-protocol

Practical Applications of Network Programmability 251

object 19

object 20

The second phase is to create the Python script that takes the argument from the EEM script
and does the following:

° ARGV =Down

e Check the host ports and shut them down and place on a flat file
° ARGV=UP

o Read flat file and bring the host ports back online

#!/usr/bin/python

import sys
import os
import re

from cisco import cli

hostlistfile = "hostlist"

print cli('pwd'")

try:
sys.argv([l]
except IndexError:
print "Error: Missing argument, need either 'up' or 'down'"

exit ()

if sys.argv[l] == "up":

At this point we should have a file containing ports to bring up.
dirresult = cli("dir hostlist")
if dirresult == "No such file or directory"

print "No hostlist found, exiting"

exit ()
file = cli("show file hostlist")
for match in file[0:-1].split('\n'):

if match[0:8] == "Ethernet":

cli("config terminal ; interface %s ; no shutdown" % match)

cli ("delete hostlist no-prompt")

252 Practical Applications of Network Programmability

exit ()

if sys.argv[l] == "down":
Uplinks are not yet up, lets see which hosts are active, bring those
down and save to a file
print "Generating host list dynamically."
result = cli("show interface")
for rline in result[0:-1].split('\n'):
match = re.match(r'”(Ethernet[\S]+).*', rline)
if match:
#Check name against Ethenert2/ we will skip these uplinks.
match2 = re.match(r'Ethernet2/.*', match.group (1))
if match2:

continue

If we made it this far, check state then adjust

match3 = re.match(r'Ethernetl/.*', match.group(l))

if match3:
match4 = re.match(r'.* (Administratively down|SFP not inserted).*', rline)
if match4 == None:

print match.group (1)

cli("echo '"$s '>> hostlist" %match.group(1l))

#Change state

o

cli("config t ; interface %s ; shutdown" % match.group(l))

Conclusion

Embedded Event Manager (EEM) can be used to trigger Python scripts to solve network con-
nectivity issues that are affected by timing.

Programmability Tools for
Network Engineers

Programmability Tools for Network Engineers 255

Introduction

This chapter explores essential tools for network programming such as languages and environ-
ments, development and testing tools, source code and version control. An introduction to
Cisco DevNet for Open NX-OS is provided for readers to explore the capabilities of Open NX-
OS. Resources for learning network programming languages and Open NX-OS concepts are
also provided.

For network programming novices, some good practices to follow are also outlined, which per-
tain to use of programming tools and development environments, storing and sharing your
code, and integrating both of these processes.

Programmability Tools for Network Engineers 257

Languages and Environments

Choosing a language in which to develop code is the first decision when building an application
or program, followed by the platform for which the code will be written.

Programming languages are governed by rules and regulations (syntax) for constructing pro-
grams that pass instructions to a processor. Open NX-OS provides the ability to build native
Linux applications using the Open NX-OS SDK, as well as utilizing NX-API REST for extensible
and flexible programming options.

Python

Python is a heavily used language for network programming; it is a modular, extensible and
flexible language with a focus on code readability. Code written in Python is executed through
an interpreter, allowing portability of code between different platforms. Portability is a key fac-
tor, particularly for administrators and developers who may work in Windows, Linux or OS X.
Python is growing in popularity and industry adoption. Other Python features include:

° High level and readable syntax
* Support for object-oriented constructs

* Ability to express concepts in fewer lines of code

Many of Cisco's network programmability projects available at https: //github.com /datacenter

are written using Python.

Other Languages

Python is certainly the most widely adopted language, although it is not the only language uti-
lized for network programming. Metaphorically speaking, Python applications may be a single
spoke in the larger wheel of network management and associated applications. Network pro-
grammers developing in Python may also use Python frameworks such as Django or Flask for
rapid web development. Formatting and tagging with HTML and CSS, or integration with exist-
ing web-based applications using PHP may be desired. Programming language selection and
usage should always tie directly back to core requirements and constraints.

258 Programmability Tools for Network Engineers

Integrated Development Environments (IDE)

While all program code begins as text in a window, thankfully there are software packages
available for download and use that can help simplify the development process. These packages
are called Integrated Development Environments (IDEs) and integrate many of the common tasks
in software development to enable rapid application development. While most beginners and
novice programmers will utilize a text editor for their first projects, soon these users will lever-
age an Integrated Development Environment. The IDE is not code- or domain-specific, and in
many cases the IDE is not language-specific, either.

An IDE can incorporate extensions, such as those discussed later with regard to version control,
to allow programmers to integrate other aspects of application development into their work-
flow. For example, git extensions available within an IDE would allow check-in/check-out of
code, as well as editing of changelog information during commits.

PyCharm is an IDE with full support for Python, as well as for HTML, CSS, JavaScript, Node.js
and more.

https://www.jetbrains.com/pycharm

Komodo is another IDE with full support for Python, as well as Go, Perl, Ruby and more.

http: //komodoide.com

Software Development Kits

A software development kit (SDK) differs fundamentally from an IDE. An SDK is a set of func-
tions, packages, documentation and programs required for development on a specific platform
or technology, whereas an IDE can be thought of as providing tools for application develop-
ment using a specific language or technology. Java is one of the most widely-used languages,
and it requires an SDK in order to develop Java applications. It is also important to outline the
fact that running these applications does not require a full SDK, only a runtime environment.
Software development kits are typically quite dependent on the target platform. For exam-
ple, developing iOS applications for iPhone requires the Swift language, contained within the
iOS SDK. Developers can then use the Xcode IDE for developing iOS applications.

Programmability Tools for Network Engineers 259

Python does not have an SDK per se; its modularity supports using commands like pip to down-
load and install packages and modules for use in Python programs.

Programming languages, IDEs and SDKs are essential components for software development.
The user has multiple options related to language and IDE of choice. What is a critical, is that
APIs and data models are made available for network elements to be programmed.

Programmability Tools for Network Engineers 261

Development and Testing Tools

Just as network administrators have tools at their disposal for troubleshooting, debugging, and
analysis, a programmer has their own set of tools. The tools listed in this section can aid in de-
velopment, testing and debugging of code.

Postman

Postman can be utilized to build and test APIs. In the context of network programmabil-
ity where an API is already constructed and ready to be followed, administrators and developers
can utilize Postman to debug code and test REST calls that need to be made. Postman is avail-
able from https://www.getpostman.com/ and also offers a browser extension for Google
Chrome, available within the Chrome Web Store.

There are similar easy-to-use tools like Insomnia and Paw that are popular as well.

Figure: REST Clients like Insomnia can be helpful in getting started with NX-API REST

262 Programmability Tools for Network Engineers

NX-API CLI Developer Sandbox

The NX-API CLI Developer Sandbox is an excellent transition tool which can be enabled from
the NX-OS command line. After enabling feature nxapi, an nginx web server is started on the
switch which allows developers or administrators the ability to transcode traditional Nexus
command line inputs to REST-based operations via HTTP /HTTPS. It also includes the ability to
generate Python code, and supports different message formats like XML or JSON.

Enabling the NX-API CLI Developer Sandbox:

n9k-sw-1 (config) # exit

n9k-sw-1# conf t

Enter configuration commands, one per line. End with CNTL/Z.
n9%k-sw-1(config)# feature nxapi

n9k-sw-1(config)# show feature | inc nxapi

nxapi 1 enabled

Accessing the NX-API CLI Developer Sandbox is accomplished by pointing a web browser to the
hostname or IP address of the switch. This functionality is supported on any in-band and out-
of-band management IP address.

[http://<ip or hostname>

Enter access credentials to the switch and the NX-API CLI Developer Sandbox will appear.

Programmability Tools for Network Engineers 263

Figure: NX-API CLI Developer Sandbox

el NX-API Developer Sandbox) A Lot

Python |

Visore

Visore is an Italian word, which translates to Viewer. It allows users to a mechanism to browse
and navigate the management objects (MOs) in the system's management information tree
(MIT). This enables users to view the structure of the Open NX-OS DME data-model that backs
the NX-API REST interface. Visore enables users to gather information about the data associ-
ated with a specific object or a group of objects, typically for the purpose of troubleshooting
and event analysis. Visore is also a very useful educational tool to understand how Open NX-OS
stores data within with the data model. Visore supports querying by Distinguished Name (DN)
or Class.

Note: Visore is not capable of performing configuration operations.

264 Programmability Tools for Network Engineers

To access Visore, follow these steps:

* Enable NX-API in the configuration of the switch with

* Open a web browser and connect to the URL [http: //<switch ip address>/visore.html]

The authentication challenge will display where the user will need to enter credentials.

Figure: Cisco NX-API CLI Sandbox Login Screen

Login X

Username:

Password:

Login

After authenticating, the Visore object store browser is displayed.

Programmability Tools for Network Engineers 265

Figure: Browsing Cisco NX-API REST Object Store with Visore

Object Store Browser

Filter
Class or DN:
Property: Op: -- Vall:
Fun Quary

Display URI of last que;

Display last response

topSystem
address 0000

childAction
configlssues

currentTime 2015-09-29T07:13:52.343+00:00

dn sys € 20D

fabricld 1

fabricMAC 0:22:BD:F8: 19:FF

id 0

inbMgmtAddr 0.00.0

leOwn local

modTs 2015-09-21T05:53:25.775+00:00
mode unspecified

monPolDn yni/fabric/monfab-defauls < > W@

name NIKv-1
oobMgmtAddr 0.0.00
podid 1

role unsupported
serial

state out-of-service
status

€} 2012:2003 Casco Systems, Inc

£&—2— Class (Object) Name

€—— DN This is the parent view

&—— Device Name

Here is a sample BGP configuration, which we will then show in the MIT using Visore:

router bgp 65501
router-id 10.10.10.12
timers bgp 60 180
timers prefix-peer-timeout 30
timers prefix-peer-wait 90
graceful-restart
graceful-restart restart-time 120
graceful-restart stalepath-time 300
reconnect-interval 60
fast-external-fallover

enforce-first-as

266 Programmability Tools for Network Engineers

event-history periodic
event-history events
event-history cli
address-family ipv4 unicast
network 10.10.0.0/16
network 168.10.10.0/24
network 192.0.0.0/8
maximum-paths 1
maximum-paths ibgp 1
nexthop trigger-delay critical 3000 non-critical 10000
client-to-client reflection
distance 20 200 220
dampen-igp-metric 600
neighbor 10.10.10.11
remote-as 65000
dynamic-capability
timers 60 180
address-family ipv4 unicast

next-hop-third-party

Visore can be used to examine how the configuration is represented in the data model. For ex-
ample, we browse to the top-level of the BGP object at sys/bgp:

Programmability Tools for Network Engineers 267

Figure: Browsing Cisco NX-API REST BGP Object Store with Visore

bgpEntity

adminSt enabled

childAction

dn sysibep € > ulOD

lcOwn local

modTs 2015-09-15T17:39:48.628+00:00

monPolDn uni/fabric/monfab-default € 2 W@

name
operErr

operSt enabled
status

uid 0

By navigating deeper into the BGP data model (select the right-arrow next to sys/bgp), we can
see how BGP data is modeled within the MIT.

268 Programmability Tools for Network Engineers

bgplnst
activateTs 2015-09-15T17:39:50.819+00:00
adminSt enabled
asPathDbSz 0

asn 63501
attribDbSz 100
childAction

createTs 2015-09-15T17:39:50.129+00:00

ctrl fastExtFallover
dn sys/bgp/inst € >ul0D
lcOwn local

memAlert normal

modTs 2015-09-15T17:39:48.635+00:00

monPolDn uni/fabric/monfab-default < > /@

name
numAsPath 0
numRtAttrib 1
operErr

snmpTrapSt disable
status

syslogLvl err

uid 0

ver v4

waitDoneTs 2015-09-15T17:39:50.819+00:00

As we continue to navigate the browser, we can observe object hierarchy and dependency.

Programmability Tools for Network Engineers 269

Figure: Navigating Deeper into Cisco NX-API REST Object Store with Visore

always
bestPathIntvl
bgpCfgFailedBmp
bgpCfgFailedTs
bgpCfgState
childAction
clusterld

dn
firstPeerUpTs
holdIntvl
kalntvl
lcOwn
maxAsLimit
modTs

mode
monPolDn
name
numEstPeers
numPeers
operRtrld
operSt

rd

rtrld

status

uid

bgpDom
disabled
300

00:00:00:00.000

unspecified

sys/bep/inst/dom-default < > /@
2015-08-19T20:30:47.037+00:00

180

60

local

0

2015-09-15T17:39:51.648+00:00
fabric

uni/fabric/monfab-default € >III.|®Q
default

0

1

10.10.10.12

up

unknown:unknown:0:0

10.10.10.12

0

270 Programmability Tools for Network Engineers

Firebug

For web applications, Firebug is available for debugging and inspecting HTML, CSS

and JavaScript. It is available at http:

getfirebug.com/. Like Postman, it has a Google Chrome

extension available within the Google Chrome Web Store. The extension is lightweight and not
as feature-dense as the native Firebug application, so be sure to analyze your requirements for
debug and inspection.

Virtual Internet Routing Lab (VIRL) and NX-OSv

Cisco VIRL is a network orchestration and virtualization platform that allows users to:

Design and configure simulated networks with Cisco and third-party elements using a
graphical tool

Set properties on network topologies or individual network elements.

Generate router and switch configurations, and visualizations of network designs that
illustrate a wide range of characteristics such Layer-2 connectivity, IP addressing, IGP
configurations, BGP configurations, and more.
Start and stop simulations of network designs.

Interact with active simulations, including the ability to access simulated nodes via
console connections, modify running configurations, and extract configurations for use
in subsequent simulations for transfer to 'real’ routers.

Link network simulations with external networks for management-, control-, and data-
plane connectivity.

Programmability Tools for Network Engineers 271

Figure: Using VIRL to Simulate an Open NX-OS Environment

= @0 ®
&4 Topology Pslette =0 H agsdinl 5
(= Tools virktopology
d
Stlect Cannect
[~ Nodes
% P b 4
il b o |
105y a4 Y esA.
- ¥ 2
KK-0%¢ Lnman... server sarar-d
s Swtch
=
Sz oy - _
15 Sty I
ASAv werve-2 - e [T
General
——t —
Ste L3 Lz werver-3 server-8
Extornal Externa
(SMNAT) [FLAT)
External
Router
2 Projects 1 =0
o | Progerties £
» 5 My Topoiogies Praperty pYaln
» i Sample Topologies
F quest

1 Design @ simulatior

=0

VIRL is based in part on OpenStack, and the elements that are used to build network topologies

are executed as Nova / KVM virtual machines. These are linked with Neutron-managed net-
works and subnets.

Many virtualized elements are available, including:

* (Cisco NX-OSv

* (Cisco IOSv

* (Cisco IOS XRv

* Cisco IOS XE (as CSR1000v)
* (Cisco ASAv
* Ubuntu 14.04 LTS server

272 Programmability Tools for Network Engineers

VIRL provides a simple and cost-effective mechanism for developers (or anyone else) to learn
the NX-API REST interface and create network applications.

Note: users can leverage the DevNet Open NX-OS Sandbox available at https://developer.cisco.
com/sandbox for NX-API REST interface testing.

Beyond providing a simulation capability that can be used with NX-API REST, VIRL also provides
several other facilities that expose RESTful interfaces that can be used for learning about APIs,
including the full set of OpenStack APIs and those exposed by VIRL directly.

For more information on VIRL, including configuration guides, tutorials, and how to purchase
VIRL for personal or development use, please visit the VIRL microsite at http://virl.cisco.com.

Programmability Tools for Network Engineers 273

Source Code and Version Control

Why Version Control?

Being organized and tracking changes are two very critical parts to developing, curating, and
maintaining code. The use of a source code version control system is extremely important for
developers, whether they are working independently or as part of a larger team. There are
three primary approaches to version control: local, centralized and distributed. Important
questions to ask when selecting a version control system can include the following:

° Who will use the version control system at my company?

* Is any information contained within the source of a proprietary or secure nature?

e Will anyone outside of my company use this code? (see Open Source and Licensing)
* Will access to the repository be required from different machines or locations?

* What is the rate of change of my code?

* How is the version control system being backed up or replicated?

Local version control is easily relatable: create a directory on a machine and copy data or files
into it. These local systems evolve into systems that incorporate databases to track changes and
commits. While simple to instantiate, local version control systems suffer from several draw-
backs including backup and replication, and the inability to share code with a larger commu-
nity.

Centralized version control expands on local version control by moving the repository to a
centralized location, and granting access to the code repository for users within an organiza-
tion. Subversion, Visual Source Safe and CVS are good examples of centralized version control
systems. While this approach solves the issue of granting access to larger teams for code col-
laboration, it still fails to address failure scenarios of the version control system repository,
whether it is housed on a file server, storage array, or other resource. Losing the version con-
trol server constitutes a code stop for all developers working on projects within the system.

Distributed version control takes centralized version control a step further. Respositories and
code are distributed amongst different servers, which can be distributed between multiple
servers or data centers, placed in the cloud, or modeled as a software service (SaaS) offering.
Git is a good example of a distributed version control system, and is discussed in the next sec-

274 Programmability Tools for Network Engineers

tion. Considerations when using a distributed version control system typically focus around ac-
cess, and whether or not code should be stored locally within an organization or be put onto a
cloud-based repository such as GitHub.

Git
For the purposes of this book, Git will be discussed as the primary version control tool. In a

pure client-server context, the Git client is responsible for checking-out/ checking-in code, as
well as cloning and building repositories.

The Git server can be used to build a distributed version control system for an organization or
department. The use of a Git server that will be maintained organizationally or departmentally
will be based on requirements and constraints outlined during the requirements-gathering
phase. It is critical to review this criteria with business stakeholders, particularly security and
audit departments.

GitHub

GitHub is a cloud-based repository with a web-based interface for anyone to use to collaborate
on projects through building, downloading and providing feedback on code. A social layer is
added to the distributed version control system, allowing users to create branches or forks of
code, submit bugs (and fixes), watch or tag favorite projects, as well as create documentation
for projects and code.

GitHub allows users in different organizations, cities or countries to create and share code. It is
geared toward those who embrace the Open Source movement, so it is imperative to review or-
ganizational requirements and constraints around code sharing and the licensing that will be
applied to any code that is distributed on GitHub.

Programmability Tools for Network Engineers 275

Cisco DevNet for Open NX-0OS

As you begin to explore network programmability and how to leverage APIs with Cisco Nexus
switches, a good place to learn and get help is DevNet - Cisco’s primary resource for develop-
ers, engineers, and customers who want build applications or services with or around Cisco so-
lutions. DevNet can be found at http://developer.cisco.com, and the Open NX-OS mi-
crosite can be found at http: //developer.cisco.com /opennxos.

You can visit the microsite and explore on your own, or take a brief tour here. The landing page
for the Open NX-OS site includes links to currently featured content and discussions:

> & ppennans.cisco.com

Sign In - Register

atfuan]ns " : . . a

cisco Open NX-0S -

o's new community for Open NX-0S

g for

FEATURED SCRIPTS RECENT DISCUSSIONS
Cisco Chef Recipes ki (1] 2 20 Can | add a new type and provider for
user ratings CoWMIoads ViEWE ;"L.'Duel'}
Postedd by Asha Hogee - Sept. 01, 2006
NX-API| getting started "
jits Where can | iind Puppet manifest and
) : Chef recipes?
Ignite - Network bootstrapper Ak (1] 15 Posted by Asha Hegde - Sept. 01, 2015
user ratings WA
. . What is Ignite?
NXAPI Examples T “osted by Asha Hegde - Sept. 01, 2015
[t WIEWS

12 What is nxtoolkit?
by Asha

2 (0] o

Python Samples ha
user ratings downloads WEWE

"

r n 1 1 What are the important highlights of
NexusDash - Monitoring Dashboard Frickcick 2 e s e
userratings downloads views OpanhX0s
F by Asha Hagda - Sept. 01, 2015
View i i

all discussions

276 Programmability Tools for Network Engineers

In the Getting Started section you'll find some quick examples of how to configure common
switch features, including interfaces, VLANs, OSPF, and AAA. For each of these, examples are
provided for Puppet, NX-API, Python, Chef, and Ansible.

< & opennns cisto,cam)ps

ting-started

n In - Registar
alaln Gy y

cisco Open NX-0S - GaingStarted Code Shop Discussions Article Center AP

CONFIGURATION CONFIGURATION

Interface

VLAN

OSPF
Interface

TACACS

BAA Progrem and manage interfaces. You can configure interfaces using different
configuration management tools. Following example shows how to display Nexus

MONITORING 9000 interfaces, bring the interfaces up or down, configure IP address.

Interface

LLDP

Puppat NX-AP1 Python Chef Angible

Script Sancbox @

#Config pysical ethernet port

POST fapi/mo/sys/phys=[ethil/1].json?query-target=self HTTP/1.1
Host: switch_ip

Content-Type: application/json

Cache-Contral: no-cache

Postman-Token: 5cA11b93-249d-bléc-653a-8bal?187416c

{
“11PhysIf": {
"attributes": {
"accessvian": “vlan-321",
“admin5t": "down",
oty MR,

In the discussions section, you can start or participate in discussion about NX-OS and NX-API
programming, search for solutions to issues that may have been encountered and resolved by
others, or get help from community experts.

Programmability Tools for Network Engineers 277

ene < m 4 opennens cisoo.com 5 ¢ [+]

] T
‘CISCIQ pen NX-0S - : hop Discussions

Home » D

© Start a Discussien

i i . Feature a
Discussions Recent Featured RECENT ACTIVITY

Al Autornation Extensibility APls and Scripting Programmability - General Misc.

1 1 22 Can | add a new type and provider for Puppet?
woles rephes views B 7y . 1, 20156 1.0,
o 1 14 What is nxtoolkit?
woles meplies views Posted by ashegde2 Sept. 1, 2015, 3:51 am. mented on
ind Puppet manifest and Chef
o 1 6 What is Ignita?

o Puppet

woies reples views Posted by ashegdel Sept. 1, 2015, 344 am,
o 1 8 ‘Where can | find Puppet manifest and Chef recipes?
woies replies views Posted by ashegdel Sept. 1, 2015, 3:37 am.

[+} 1 10 What are the important highlights of OpenNX0S?

voles reples views Pos

1 by ashegde?

Page 1

Asha Hegde commaented on
Wihat arm tha imasrant hinklinkte ~f

The Code Shop section provides a means through which you can share scripts, programs,
recipes, and other samples for the community to review and use. You can also search, sort
and browse code samples submitted by others.

278 Programmability Tools for Network Engineers

< & opennns cisco.com|public/codeshop

s o
il o en NX-0S -

Network Switch - meet Programmability | o

Solutions developed by the community to automate the cloud. —

" Contribute to Code Shop

Search Name Category Rating ol's
Ignite = Netwark bootstrapper Provisicning dedededed (1) 3
Nx=API Cable Check Manitoring
Catagory
MNX-API getting started Maonitaring 3
Monitoring
Miscellaneous Cisco Chef Recipes Confy Management drdededed (1) 3
Config Management
MNexusDash - Monitoring Dashboard Monitging Hededrded (1) a
Dev Toots
Provisioning Who Moved my CLI Config Menagemant 1]
Troubleshooting %
Ansible Mocule for Nexus switches Config Management aQ
lags Cimco Puppet Module Config Managemant 0
Power on Auto Provisioning (POAR) Pravisicning 1*3° [+]
NX-API (8]
Python Samples Manitaring o
Pyihan {8 ¥ 2
NexusOk (2

In the Article Center you can browse, search, and review announcements, configuration guides,
and other content submitted to the community by Cisco Nexus / NX-API engineers.

Programmability Tools for Network Engineers 279

< & openneos.cisco.comjpublic e ticles

o i
‘CIIS‘CIQ' Open NX-0S - @ Gode Shop Discussions Article Center API

Home » Article Center RECENT ACTIVITY
Article Center pecent Featured 2

Register for DemaoFriday: Achieve Network Programmahility & Seamless
Scalability with Cisco’s NX-AP|

Aug 31,2015

i

TechWise Live Webinar - Maximize Programmability with NX-AP| REST

Aug 31, 2005

Program and Automate Your Switches with the New, More Open NX-05

Cisco DemoFriday: Maximizing Network Programmability and
Autamation with Cisco Open NX-05
Aug 31,2015

Open Netwarking with Cisco ACIH and Open NX-05

Aug. 31, 2015

[h
|
i m . .

Page 1

The API section of the Open NX-OS microsite is where you'll find detailed information and con-
figuration guides for the complete portfolio of NX-OS programmability solutions, including for
the NX-API REST interface, Python scripting, and automation tools such as POAP, Puppet, Chef,
and Ansible.

280 Programmability Tools for Network Engineers

< & opennuns.cisca.cam/public/restap]

el 5
cisco Open NX - Getting Started Co scussions Article Center

APIs & SCRIPTS APls & SCRIPTS
NX-AP| REST

Python
AUTOMATION NX-API REST

POAP MNX-AP| REST improves the accessibility of the Nexus configuration by providing
HTTP/HTTPS APls. Read more...

Puppet
Chef
Ansible
EXTENSIBILITY

Python
Kstack
Guest She Python APis to sutomate and simplify the management/operation of Nexus switches.
PYE Read more.

AUTOMATION
POAP

PowerOn Auto Provisioning (POAP) automates the process of upgrading software
image=s and installing configuration files on devices that are being deployed in the
network for the first time. Read more...

Within the NX-API REST subsection, you'll find a complete reference on how to use the NX-API
REST interface to configure Open NX-OS features and capabilities - physical interfaces, logical
interfaces, protocols, etc.

Programmability Tools for Network Engineers 281

il
cisco L

|a

Getting Started with the Cisco Nexus 9000 ...
Configuring RBAC Setings

Configuring BGP

Configuring Interlaces and Port Channels
Configuring a Subinterface

Configunng SVis

Configuring VRAP

Running CLIs Through Route Policy Manager
Canfiguring an IP Route

Configuring STP Settings

Configuring ACLs

Configuring QoS

Configunng VOLD

Additional Configuration Areas

Querying Interface and VLAN Counters an.

Running the NX-API REST from the Gues

Using the Managed Object Browser

Published August 27, 2015

& opennums.cisco.com|pubiic/apijnapl-rest)

A

Sign In - Register

=}

Example Request JSOM Response

Overview of the Cisco Nexus
9000 Series NX-API REST
SDK

3 s, configues miaand-liney
that run only on the device. NX-API REST oves the
accessibiy of the Newxus configuration by providing HTTR/HTTPS APts

that

errtion i porformod wsing

* Make specilic CLIs avalable outside of the swin

o Enable configurations that would require issuing many GLI commands

by combining conf e in roatively fow HTTRHTTPS

oparations.

NX-AP1 REE
configurations. a

how commines

ux Bash,

MNX-AP1 REST uses HTTP/HTTPS as its transport, CUs are encoded into
the HTTRMHTTPS POST body. The NX-AP| REST backend uses the Nginx
HTTP server. The Maink process.and all of hildren processes, ane

undor Limm o
capped. If the Nginx rescurce usage exceeds the cgroup limiaticns, the
Nginx process is restarted and restored

» profection whern th

Understanding the Model Driven
Programming Framework

The Open NX-OS DevNet community should be your primary resource for information and up-
dates on Open NX-OS programmability. Start there whenever you need help, want to share
code, or browse for new Open NX-OS or NX-API REST capabilities.

Programmability Tools for Network Engineers 283

Learning and Helpful Resources

This section will outline some useful resources that developers and administrators can use for
self-learning and help in developing projects, simple or complex. Most of these resources are
accessed or delivered via the web, and some include platforms where a learning and feedback
environment is completely integrated into the website. This level of accessibility makes it possi-
ble for anyone interested to sign up and begin learning, even if they have no previous experi-
ence coding or developing programs.

Learning a Language

Prior to the Internet, the two primary avenues for learning a programming language were text-
books or university courses. However, the Internet now enables students to teach themselves a
language in an accessible and interactive way. The following resources are free unless noted,
and are available for public use.

Code Academy - http://www.codecademy.com
Interactive, self-paced website to learn programming languages such as Python, Ruby and C++.

Google's Python Class - https://developers.google.com /edu/python
Instructional website for learning Python, with example code and community discussion fo-

rums.

Coursera - https://www.coursera.org

eLearning site for online classes in all disciplines and fields. Rice University and University of
Michigan offer multi-week Python courses for beginner and intermediate skill levels. Instruc-
tors are available for grading and feedback of assignments.

edX - https://www.edx.org

eLearning website started by MIT and Harvard, offering online and self-paced classes in multi-
ple disciplines and fields. Courses in Python are offered by MIT and the University of Texas at
Arlington.

284 Programmability Tools for Network Engineers

Learn Python the Hard Way - http: //learnpythonthehardway.org
Website for Python learners with videos, documentation and sample code for use. Fee of $29.95
USD.

Please note: this is by no means meant to be an exhaustive list of programming courses or re-
sources available on the web, but is simply meant to point the reader in a direction for finding a
solution which best fits their learning style. Many universities and community colleges also
offer online and instructor-led courses.

Getting Help

Every programmer and developer will eventually come to an error message they can't debug on
their own, or a program that does not flow properly or produce the expected output or results.
Thankfully there are resources available online for assistance.

Cisco DevNet - http: //developer.cisco.com /opennxos

Online source of information for learning concepts, APIs, code examples and more, with online
communities for posting questions or having discussions.

Stack Overflow - http: //stackoverflow.com

Online discussion forum for questions or requesting help with coding approaches or problems
in any programming language.

