

Programmability
and Automation

 with Cisco Open NX-OS

cisco.com

Preface 3

Preface

Authors and Contributors

This book rep​re​sents a col​lab​o​ra​tive ef​fort be​tween Tech​ni​cal Mar​ket​ing and Sales En​gi​neers
dur​ing a week-long in​ten​sive ses​sion at Cisco Head​quar​ters Build​ing 17 in San Jose, CA.

Authors

Bren​den Bu​resh - Sys​tems En​gi​neer​ing
Brian Daugh​erty - Sys​tems En​gi​neer​ing
Cesar Obe​di​ente - Sys​tems En​gi​neer​ing
Errol Roberts - Sys​tems En​gi​neer​ing
Jason Pfeifer - Sys​tems En​gi​neer​ing
Kenny Gar​reau - Sys​tems En​gi​neer​ing
Lukas Krat​tiger - Tech​ni​cal Mar​ket​ing
Ranga Rao - Tech​ni​cal Mar​ket​ing
Shane Cor​ban - Prod​uct Man​age​ment
Todd Escalona - Sys​tems En​gi​neer​ing

Con​trib​u​tors

San​jaya Choud​hury
Nico​las Dele​croix
Parag Desh​pande
Sam Hen​der​son
Vishal Jain
De​varshi Shah

Preface4

Ac​knowl​edg​ments

A spe​cial thanks to Cisco’s In​sieme BU Ex​ec​u​tive, Tech​ni​cal Mar​ket​ing and En​gi​neer​ing teams,
who sup​ported the re​al​iza​tion of this book. Thanks to Yousuf Khan, Joe On​isick, Jim Pisano,
James Christo​pher and Matt Smorto for sup​port​ing this ef​fort. Thanks to Cisco Sales Lead​er​-
ship for sup​port​ing the group of in​di​vid​ual con​trib​u​tors who have ded​i​cated their time au​thor​-
ing this book. Ad​di​tion​ally, Cisco's CSG En​gi​neer​ing and QA Teams are ac​knowl​edged for de​vel​-
op​ing some of the code and fea​tures ad​dressed in this pub​li​ca​tion.

We would also like to thank Cyn​thia Brod​er​ick for her ex​cep​tional re​source or​ga​ni​za​tion and
sup​port through​out our jour​ney.

We are also gen​uinely ap​pre​cia​tive to our Book Sprint (www.​booksprints.​net) team:

Adam Hyde (Founder)
Laia Ros (Fa​cil​i​ta​tor)
Hen​rik van Leeuwen (Il​lus​tra​tor)
Raewyn Whyte (Proof Reader)
Juan Car​los Gutiérrez Bar​quero and Julien Taquet (Tech​ni​cal Sup​port)

Laia and the team cre​ated an en​abling en​vi​ron​ment that al​lowed us to ex​er​cise our so​cial and
tech ​ni​cal skills to pro ​duce a qual ​ity pub ​li​ca ​tion.

Preface4

Ac​knowl​edg​ments

A spe​cial thanks to Cisco’s In​sieme BU Ex​ec​u​tive, Tech​ni​cal Mar​ket​ing and En​gi​neer​ing teams,
who sup​ported the re​al​iza​tion of this book. Thanks to Yousuf Khan, Joe On​isick, Jim Pisano,
James Christo​pher and Matt Smorto for sup​port​ing this ef​fort. Thanks to Cisco Sales Lead​er​-
ship for sup​port​ing the group of in​di​vid​ual con​trib​u​tors who have ded​i​cated their time au​thor​-
ing this book. Ad​di​tion​ally, Cisco's CSG En​gi​neer​ing and QA Teams are ac​knowl​edged for de​vel​-
op​ing some of the code and fea​tures ad​dressed in this pub​li​ca​tion.

We would also like to thank Cyn​thia Brod​er​ick for her ex​cep​tional re​source or​ga​ni​za​tion and
sup​port through​out our jour​ney.

We are also gen​uinely ap​pre​cia​tive to our Book Sprint (www.​booksprints.​net) team:

Adam Hyde (Founder)
Laia Ros (Fa​cil​i​ta​tor)
Hen​rik van Leeuwen (Il​lus​tra​tor)
Raewyn Whyte (Proof Reader)
Juan Car​los Gutiérrez Bar​quero and Julien Taquet (Tech​ni​cal Sup​port)

Laia and the team cre​ated an en​abling en​vi​ron​ment that al​lowed us to ex​er​cise our so​cial and
tech​ni​cal skills to pro​duce a qual​ity pub​li​ca​tion.

Table of Contents

Introduction
Introduction.. 	11

Organization of this Book.. 	13

Expected Audience.. 	15

Book Writing Methodology.. 	17

Open NX-OS and Linux
Introduction.. 	21

Cisco Nexus Switch as a Linux Device.. 	23

Linux Containers and the Guest Shell.. 	47

Open NX-OS Architecture.. 	59

Third-party Application Integration.. 	69

Network Programmability Fundamentals
Introduction.. 	79

Conventional Network Interfaces. 	81

Programmable Network Elements.. 	85

NX-API CLI.. 	91

Model Driven Programming
Introduction.. 	99

Model-driven Programming.. 	101

Cisco Open NX-OS MDP Architecture.. 	105

REST API Primer.. 	117

Cisco NX-API REST Interface.. 	127

Cisco NX-API WebSocket Notifications.. 	137

Configuration Management and Automation
Introduction.. 	143

Device Power-On Automation.. 	145

Configuration and Lifecycle Management.. 	157

IT Automation Tools.. 	165

Practical Applications of Network Programmability
Introduction.. 	177

Infrastructure Provisioning Automation.. 	179

Automating Access Configuration with Ansible.. 	189

Workload On-Boarding.. 	195

Infrastructure as Code.. 	205

Troubleshooting with Linux Capabilities.. 	211

Network Monitoring with Splunk.. 	215

Network Monitoring with Open Source Tools.. 	221

Automating Network Auditing and Compliance.. 	227

Automated Network Topology Verification.. 	237

Workload Mobility and Correlation.. 	243

Network Resiliency. 	249

Programmability Tools for Network Engineers
Introduction.. 	255

Languages and Environments.. 	257

Development and Testing Tools.. 	261

Source Code and Version Control.. 	273

Cisco DevNet for Open NX-OS.. 	275

Learning and Helpful Resources.. 	283

Introduction

Introduction 7

Introduction

De​vOps. Pro​gram​ma​bil​ity. Au​toma​tion.
These con​cepts have be​come a cen​tral and per​va​sive theme in many areas of in​for​ma​tion tech​-
nol​ogy. What does it all mean to the world of net​work in​fra​struc​ture?

Au​to​mated work​flows and vir​tu​al​iza​tion tech​nolo​gies have led to dra​matic im​prove​ments in
data cen​ter scale, agility, and ef​fi​ciency. Ap​pli​ca​tion de​vel​op​ers, server ad​min​is​tra​tors, and
Cloud and De​vOps teams have been uti​liz​ing the processes and tools around au​toma​tion for
many years, re​sult​ing in stream​lined and less error prone work​flows. These teams are able to
keep up with the speed of busi​ness re​quire​ments and mar​ket tran​si​tions due to mod​ern work​-
flows. Lever​ag​ing open de​vel​op​ment frame​works has been es​sen​tial for in​no​va​tion.

Why not lever​age these con​cepts for the net​work, whose man​age​ment meth​ods are still dom​i​-
nated by hu​man-to-ma​chine in​ter​faces?

Enter Open NX-OS on the Cisco Nexus plat​form, a rich soft​ware suite built on a Linux foun​da​-
tion that ex​poses APIs, data mod​els, and pro​gram​matic con​structs. Using Ap​pli​ca​tion Pro​gram​-
matic In​ter​faces (APIs) and con​fig​u​ra​tion agents, op​er​a​tors can af​fect con​fig​u​ra​tion changes in
a more pro​gram​matic way.

This book ex​plores Open NX-OS and many of the tools and op​tions it pro​vides. The chap​ters
below ex​am​ine the dri​vers for net​work au​toma​tion, the fun​da​men​tal sup​port​ing tech​nolo​gies,
and the many new ca​pa​bil​i​ties now avail​able to net​work in​fra​struc​tures. Real-world use cases
are pro​vided that can be im​me​di​ately uti​lized for a suc​cess​ful tran​si​tion to more ef​fi​cient, safer,
re​peat​able op​er​a​tions.

The Open NX-OS fea​tures and func​tion​al​ity dis​cussed within were first in​tro​duced on the Cisco
Nexus 9000 and Nexus 3000 Se​ries Switches be​gin​ning with NX-OS Soft​ware Re​lease 7.0(3).

11

Introduction 9

Organization of this Book

Introduction

Within the in​tro​duc​tion, we pro​vide an ini​tial walk​through of the sec​tions and chap​ters of this
book. We try to high​light some im​por​tant in​dus​try trends like the emer​gence of highly dis​trib​-
uted ap​pli​ca​tions and the adop​tion of Cloud and De​vOps method​olo​gies that are dri​ving new
par​a​digms in the net​work.

Open NX-OS and Linux

This pri​mary sec​tion em​pha​sizes how Open NX-OS based net​work​ing de​vices ex​pose the full
ca​pa​bil​ity of the Linux op​er​at​ing sys​tem for end-users to uti​lize. Read​ers can learn how stan​-
dard Linux tools like if​con ​fig, eth​tool, route, tcp ​dump can be used to man​age a Cisco Nexus
Switch. Fur​ther, we help read​ers un​der​stand how they can ex​tend the func​tion​al​ity of their
switch with their own RPMs and con​tain​ers, and un​lock in​no​v​a​tive new use cases.

Network Programmability Fundamentals

This sec​tion pro​vides an overview of the evo​lu​tion of in​ter​faces on net​work​ing de​vices from
being hu​man-cen​tric to being pro​gram​ma​bilty- friendly. It in​tro​duces the read​ers to some
easy-to-use pro​gram​matic in​ter​faces like NX-API CLI and helps them get started down the path
of pro​gram​ma​bil​ity.

Model-Driven Programming

This sec​tion ex​plores the ad​van​tages of a model-dri​ven ap​proach to pro​gram​ma​bil​ity, and high​-
lights the pow​er​ful, new ca​pa​bil​i​ties in Cisco NX-API REST, being a data model-backed REST​ful
API, brings to the table.

13

Introduction10

Configuration Management and Automation

In​fra​struc​ture and net​work au​toma​tion, dri​ven by pro​gram​ma​bil​ity, is a key en​abler for the De​-
vOps trans​for​ma​tion. This chap​ter high​lights the broad set of tools, fea​tures and ca​pa​bil​i​ties
that Open NX-OS in​cor​po​rates to en​able au​toma​tion. The dis​cus​sion cov​ers in​te​gra​tion with
mod​ern con​fig man​age​ment tools like Pup​pet, Chef and An​si​ble.

Practical Applications of Network Programmability

This sec​tion shifts the focus from de​scrip​tion of net​work pro​gram​ma​bil​ity and au​toma​tion
tech​nolo​gies to prac​ti​cal ap​pli​ca​tions of these tech​nolo​gies. Al​though not ex​haus​tive, the use-
cases show​case real so​lu​tions in​tended to spark ideas for new in​no​v​a​tive de​ploy​ments. Each
use-case is pre​sented in the fol​low​ing for​mat:

• Problem Statement - Overview of issues to be addressed

• Solution - Summarizes components used within exemplified solution

• Solution Approach - Utilized tools and enabled NX-OS capability

• Conclusion - Outcomes of exemplified solution

Programmability Tools for Network Engineers

This sec​tion ex​plores es​sen​tial tools for net​work pro​gram​ming as well as the un​der​ly​ing lan​-
guages and en​vi​ron​ments. An in​tro​duc​tion to Cisco De​vNet for Open NX-OS is pro​vided for de​-
vel​op​ers and users to ex​plore the ca​pa​bil​i​ties of Open NX-OS.

14

Introduction 11

Expected Audience

The in​tended au​di​ence for this book are those per​sons with a gen​eral need to un​der​stand how
to uti​lize net​work pro​gram​ma​bil​ity and un​leash the power be​hind the Open NX-OS ar​chi​tec​-
ture. While in​ter​ested de​vel​op​ment and IT prac​ti​tion​ers may reap the most ben​e​fits from this
con​tent, the in​for​ma​tion and ex​am​ples in​cluded within this book may be of use for every in​ter​-
me​di​ate to ad​vanced net​work pro​fes​sional in​ter​ested in pro​gram​ma​ble fab​rics.

El​e​ments in this book ex​plore top​ics be​yond the tra​di​tional re​spon​si​bil​ity of a net​work ad​min​is​-
tra​tor. The mod​u​lar and ex​ten​si​ble frame​work of the Open NX-OS mod​u​lar ar​chi​tec​ture is not
only dis​cussed, but also ex​em​pli​fied through the abil​ity to pro​gram​mat​i​cally con​fig​ure, op​er​ate,
and man ​age Cisco Nexus switches as Linux servers and be ​yond.

15

Introduction 13

Book Writing Methodology

Ten In, One Out: Ten in​di​vid​u​ally-se​lected highly-skilled pro​fes​sion​als from di​verse back​-
grounds ac​cepted the chal​lenge to duel thoughts over the course of five days. Fig​ur​ing out how
to har​ness the brain power and col​lab​o​rate ef​fec​tively seemed to be nearly im​pos​si​ble, how​ever
op​po​sites at​tracted and the team per​sisted through the hur​dles. The Book Sprint (www.​
booksprints.​net) method​ol​ogy cap​tured each of our strengths, fos​tered a team-ori​ented en​vi​-
ron​ment and ac​cel​er​ated the over​all time to com​ple​tion. The as​sem​bled group lever​aged their
near two hun​dred years of ex​pe​ri​ence and a thou​sand hours of dili​gent au​thor​ship which re​-
sulted in this pub ​li​ca ​tion.

17

Open NX-OS and Linux

Open NX-OS and Linux 17

Introduction

Cisco NX-OS is the net​work op​er​at​ing sys​tem (OS) that pow​ers Cisco Nexus switches across
thou​sands of cus​tomer en​vi​ron​ments. It was the first data cen​ter net​work op​er​at​ing sys​tem to
be built with Linux. While Cisco NX-OS has al​ways been pow​ered by Linux, under the hood, it
hasn't, till re​cently, ex​posed many of the Linux ca​pa​bil​i​ties to end-users.

With the lat​est re​lease of Cisco NX-OS, termed Open NX-OS, on the Cisco Nexus 9000 and
Nexus 3000 Se​ries switches, Cisco has ex​posed the full power of the un​der​ly​ing Linux op​er​at​-
ing sys​tem for end-users to uti​lize. In ad​di​tion, Cisco has built nu​mer​ous ex​ten​sions that make
it pos​si​ble to ac​cess these ca​pa​bil​i​ties with the ap​pro​pri​ate level of se​cu​rity and pro​tec​tion de​-
sired by the spe​cific user.

This chap ​ter will ex​plore the Linux un ​der ​pin​nings of Open NX-OS.

21

Open NX-OS and Linux 19

Cisco Nexus Switch as a Linux Device

Open NX-OS Linux

This chap​ter will in​tro​duce some of the Linux ca​pa​bil​i​ties of Open NX-OS in​clud​ing:

• Kernel 3.4: At the core of Cisco's Open NX-OS is a 64-bit Linux kernel based on version
3.4. This kernel provides a balance of features, maturity, and stability; and serves as
a solid foundation for programmability and Linux-based management of a Cisco Nexus
switch.

• Kernel Stack: Cisco Open NX-OS leverages the native Linux networking stack, instead
of a custom-built userspace stack (NetStack) that was used in prior versions of NX-OS.
Nexus switch interfaces, including physical, port-channel, vPC, VLAN and other logical
interfaces, are mapped to the kernel as standard Linux netdevs. VRFs on the switch map
to standard Linux namespaces.

• Open Package Management: Open NX-OS leverages standard package management
tools, such as RPM and yum for software management. The same tools can be used for
Open NX-OS process-patching or installing external or custom-developed programs
onto the switch.

• Container support: Open NX-OS supports running Linux Containers (LXCs) directly on
the platform, and provide access to Centos 7 based Guest Shell. This allows customers
and third-party application developers to add custom functionality directly on the
device in a secure, isolated environment.

In ad​di​tion, Open NX-OS con​tin​ues to up​hold some of the Linux best prac​tice ca​pa​bil​i​ties that
have al​ways been part of NX-OS:

• Modularity: Modules are loaded into the kernel only when needed. Modules can be
loaded and unloaded on demand.

• Fault Isolation: Provides complete process isolation for NX-OS features, services and
user application processes.

• Resiliency: Graceful restart or initializion of processes following unexpected exit
conditions (segfault, panic).

23

Open NX-OS and Linux20

Open NX-OS is based on Wind River Linux 5. By lever ​ag ​ing a stan ​dard and un ​mod ​i​fied Linux
foun​da​tion, it is pos​si​ble to run any stan​dard Linux-based ap​pli​ca​tion with​out changes or wrap​-
per li​braries. Users can lever​age their stan​dard Linux server man​age​ment tools and work​flows
to in​stall their cus​tom-de​vel​oped Linux-based ap​pli​ca​tions, or other stan​dard open source pro​-
grams, and have them func​tion "out of the box" on the Nexus switch. It is straight​foward to in​-
te​grate com​mon third-party con​fig​u​ra​tion man​age​ment agents like Pup​pet, Chef, and teleme​try
ap​pli​ca​tions such as gan​glia, splunk, col​lec​tor, na​gios on the switch.

Linux Kernel Stack

One of the core ca​pa​bil​i​ties of Open NX-OS is the abil​ity to ex​pose all in​ter​faces on the de​vice,
in​clud​ing front panel switch​ing ports, as Linux net​de​vices, which en​ables:

• Linux utilities for Interface Management: Leverage standard Linux utilities like
ifconfig, ethtool, route, etc to manage network interfaces, routing and associated
parameters.

• Linux tools for troubleshooting: Leverage tools like tcpdump, ping, traceroute, etc to
troubleshoot network issues.

• VRF capabilities with Namespaces: Each VRF created within Open NX-OS will have a
corresponding namespace in Linux associated with it, maintaining the VRF isolation
extends from Open NX-OS to the Linux Kernel

• Linux socket communications: Open NX-OS and user applications use the Linux
kernel’s networking stack to send and receive packets to/from the external world. This
enables applications that leverage standard Linux sockets, such as, agents and
monitoring tools, to work without custom compilation.

Open NX-OS and Linux 21

Open NX-OS Linux Network Architecture

Our Open NX-OS Linux Network Architecture is made up of two primary layers:

• User space processes and software –> traditional NX-OS software processes (ospf, vpc,
bgp, nxos arp, vpc), third-party user applications (configuration management,
visibility/analytics, custom built agents/tools)

• 64 Bit Linux 3.4.10 Kernel Layer –> linux kernel netdevices, linux networking
stack(route, arp tables)

What has been exposed in Open NX-OS network architecture is access to the linux kernel
networking stack, where the switch physical and logical interfaces have representation as a net
device and an IP address in the kernel layer. This design opens the door to management of the
routing and front panel ports using unmodified linux based tools and applications. However
there needs to be a synchronization function between NX-OS and the linux kernel layer, to
ensure the two layers work effectively in tandem. This synchronization function between
userspace NX-OS processes and kernel layer is provided by the netbroker module, which
ensures changes implemented to physical and logical interfaces in NX-OS are reflected correctly
to the linux netdevice interfaces. When NX-OS routing applications/processes like BGP program
routes, they program these routes directly in the NX-OS route table, which pushes it to the linux
kernel route table. Similarly if a route is installed at the linux kernel layer, the netbroker module
checks the validity of the route addition by forwarding to the NX-OS Routing Information Base
process, which then programs the route table in the hardware table if it’s deemed valid. In the
architecture, VRF’s are implemented using linux network namespaces. Network namespaces are
a natural fit as they provide the same isolation capabilities as VRFs. A kernel net device is
associated with one and only one network namespace and the routing and ARP tables are local to
a network namespace such that tasks running in the namespace see only the resources assigned
to the namespace. Namespaces are covered in detail in a subsequent section.

Open NX-OS and Linux 21

Open NX-OS Linux Network Architecture

Our Open NX-OS Linux Network Architecture is made up of two primary layers:

• User space processes and software –> traditional NX-OS software processes (ospf, vpc,
bgp, nxos arp, vpc), third-party user applications (configuration management,
visibility/analytics, custom built agents/tools)

• 64 Bit Linux 3.4.10 Kernel Layer –> linux kernel netdevices, linux networking
stack(route, arp tables)

What has been exposed in Open NX-OS network architecture is access to the linux kernel
networking stack, where the switch physical and logical interfaces have representation as a net
device and an IP address in the kernel layer. This design opens the door to management of the
routing and front panel ports using unmodified linux based tools and applications. However
there needs to be a synchronization function between NX-OS and the linux kernel layer, to
ensure the two layers work effectively in tandem. This synchronization function between
userspace NX-OS processes and kernel layer is provided by the netbroker module, which
ensures changes implemented to physical and logical interfaces in NX-OS are reflected correctly
to the linux netdevice interfaces. When NX-OS routing applications/processes like BGP program
routes, they program these routes directly in the NX-OS route table, which pushes it to the linux
kernel route table. Similarly if a route is installed at the linux kernel layer, the netbroker module
checks the validity of the route addition by forwarding to the NX-OS Routing Information Base
process, which then programs the route table in the hardware table if it’s deemed valid. In the
architecture, VRF’s are implemented using linux network namespaces. Network namespaces are
a natural fit as they provide the same isolation capabilities as VRFs. A kernel net device is
associated with one and only one network namespace and the routing and ARP tables are local to
a network namespace such that tasks running in the namespace see only the resources assigned
to the namespace. Namespaces are covered in detail in a subsequent section.

24

Open NX-OS and Linux 21

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture

Linux Shell Tools

Shell Access

Cisco Nexus switches sup​port ac​cess to the Bourne-Again SHell (Bash). Bash in​ter​prets com​-
mands that you enter or com​mands that are read from a shell script. Using bash en​ables ac​cess
to the un​der​ly​ing Linux sys​tem on the de​vice and to man​age the sys​tem.

Ac​cess to the bash shell and Linux is con​trolled via fea​ture en​able​ment on the Nexus plat​form.
You must ex​plic​itly en​able feature bash-shell to gain ac​cess to bash as user admin, which is by

de​fault part of De​vOps role on the switch.

Open NX-OS and Linux 21

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture

Linux Shell Tools

Shell Access

Cisco Nexus switches sup​port ac​cess to the Bourne-Again SHell (Bash). Bash in​ter​prets com​-
mands that you enter or com​mands that are read from a shell script. Using bash en​ables ac​cess
to the un​der​ly​ing Linux sys​tem on the de​vice and to man​age the sys​tem.

Ac​cess to the bash shell and Linux is con​trolled via fea​ture en​able​ment on the Nexus plat​form.
You must ex​plic​itly en​able feature bash-shell to gain ac​cess to bash as user admin, which is by

de​fault part of De​vOps role on the switch.

Open NX-OS and Linux 21

Open NX-OS Linux Network Architecture

Our Open NX-OS Linux Network Architecture is made up of two primary layers:

• User space processes and software –> traditional NX-OS software processes (ospf, vpc,
bgp, nxos arp, vpc), third-party user applications (configuration management,
visibility/analytics, custom built agents/tools)

• 64 Bit Linux 3.4.10 Kernel Layer –> linux kernel netdevices, linux networking
stack(route, arp tables)

What has been exposed in Open NX-OS network architecture is access to the linux kernel
networking stack, where the switch physical and logical interfaces have representation as a net
device and an IP address in the kernel layer. This design opens the door to management of the
routing and front panel ports using unmodified linux based tools and applications. However
there needs to be a synchronization function between NX-OS and the linux kernel layer, to
ensure the two layers work effectively in tandem. This synchronization function between
userspace NX-OS processes and kernel layer is provided by the netbroker module, which
ensures changes implemented to physical and logical interfaces in NX-OS are reflected correctly
to the linux netdevice interfaces. When NX-OS routing applications/processes like BGP program
routes, they program these routes directly in the NX-OS route table, which pushes it to the linux
kernel route table. Similarly if a route is installed at the linux kernel layer, the netbroker module
checks the validity of the route addition by forwarding to the NX-OS Routing Information Base
process, which then programs the route table in the hardware table if it’s deemed valid. In the
architecture, VRF’s are implemented using linux network namespaces. Network namespaces are
a natural fit as they provide the same isolation capabilities as VRFs. A kernel net device is
associated with one and only one network namespace and the routing and ARP tables are local to
a network namespace such that tasks running in the namespace see only the resources assigned
to the namespace. Namespaces are covered in detail in a subsequent section.

Open NX-OS and Linux 21

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture

Linux Shell Tools

Shell Access

Cisco Nexus switches sup​port ac​cess to the Bourne-Again SHell (Bash). Bash in​ter​prets com​-
mands that you enter or com​mands that are read from a shell script. Using bash en​ables ac​cess
to the un​der​ly​ing Linux sys​tem on the de​vice and to man​age the sys​tem.

Ac​cess to the bash shell and Linux is con​trolled via fea​ture en​able​ment on the Nexus plat​form.
You must ex​plic​itly en​able feature bash-shell to gain ac​cess to bash as user admin, which is by

de​fault part of De​vOps role on the switch.

Open NX-OS and Linux 21

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture

Linux Shell Tools

Shell Access

Cisco Nexus switches sup​port ac​cess to the Bourne-Again SHell (Bash). Bash in​ter​prets com​-
mands that you enter or com​mands that are read from a shell script. Using bash en​ables ac​cess
to the un​der​ly​ing Linux sys​tem on the de​vice and to man​age the sys​tem.

Ac​cess to the bash shell and Linux is con​trolled via fea​ture en​able​ment on the Nexus plat​form.
You must ex​plic​itly en​able feature bash-shell to gain ac​cess to bash as user admin, which is by

de​fault part of De​vOps role on the switch.
25

Open NX-OS and Linux22

 n9k-sw-1# show role name dev-ops

 Role: dev-ops

 Description: Predefined system role for devops access. This role

 cannot be modified.

 Rule Perm Type Scope Entity

 6 permit command conf t ; username *

 5 permit command attach module *

 4 permit command slot *

 3 permit command bcm module *

 2 permit command run bash *

 1 permit command python *

Enabling and Accessing Bash

 n9k-sw-1(config)# do show feature | grep bash

 bash-shell 1 disabled

 n9k-sw-1(config)# feature bash-shell

 n9k-sw-1(config)# do show feature | grep bash

 bash-shell 1 enabled

 n9k-sw-1# run bash

 bash-4.2$ id

 uid=2002(admin) gid=503(network-admin) groups=503(network-admin)

By de​fault you are still user admin. In order to in​stall third-party agents on the switch, you are
re​quired to be root user and ei​ther uti​lize sudo root to en​able the agent to be in​stalled in the

filesys​tem, or au​then​ti​cate as root within bash using su - root .

 bash-4.2$ yum install puppet

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

 : protect-packages

 You need to be root to perform this command.

Open NX-OS and Linux 21

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture

Linux Shell Tools

Shell Access

Cisco Nexus switches sup​port ac​cess to the Bourne-Again SHell (Bash). Bash in​ter​prets com​-
mands that you enter or com​mands that are read from a shell script. Using bash en​ables ac​cess
to the un​der​ly​ing Linux sys​tem on the de​vice and to man​age the sys​tem.

Ac​cess to the bash shell and Linux is con​trolled via fea​ture en​able​ment on the Nexus plat​form.
You must ex​plic​itly en​able feature bash-shell to gain ac​cess to bash as user admin, which is by

de​fault part of De​vOps role on the switch.

Open NX-OS and Linux22

 n9k-sw-1# show role name dev-ops

 Role: dev-ops

 Description: Predefined system role for devops access. This role

 cannot be modified.

 Rule Perm Type Scope Entity

 6 permit command conf t ; username *

 5 permit command attach module *

 4 permit command slot *

 3 permit command bcm module *

 2 permit command run bash *

 1 permit command python *

Enabling and Accessing Bash

 n9k-sw-1(config)# do show feature | grep bash

 bash-shell 1 disabled

 n9k-sw-1(config)# feature bash-shell

 n9k-sw-1(config)# do show feature | grep bash

 bash-shell 1 enabled

 n9k-sw-1# run bash

 bash-4.2$ id

 uid=2002(admin) gid=503(network-admin) groups=503(network-admin)

By de​fault you are still user admin. In order to in​stall third-party agents on the switch, you are
re​quired to be root user and ei​ther uti​lize sudo root to en​able the agent to be in​stalled in the

filesys​tem, or au​then​ti​cate as root within bash using su - root .

 bash-4.2$ yum install puppet

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

 : protect-packages

 You need to be root to perform this command.

26

Open NX-OS and Linux 23

Other ca ​pa ​bil​i​ties avail ​able within bash are cov​ered in the other sec ​tions of this chap ​ter, such
as ma​nip​u​lat​ing, con​fig​ur​ing and mon​i​tor​ing the switch in Linux, agent in​stal​la​tion, etc. Please
refer to these spe​cific sec​tions for fur​ther in​for​ma​tion.

From within bash, you also have the ca​pa​bil​ity to ex​e​cute NX-OS com​mands using our vir​tual
shell util​ity (vsh). This en​ables the use of bash util​i​ties (sed, grep, awk) to parse out​put to pro​-
duce proper for​mat​ting.

Virtual shell utility example - Provisioning a new tenant on the network

 Ensure following features are enabled on the switch for this particular example:

 n93k-sw-1# show feature | include bash

 bash-shell 1 enabled

 n93k-sw-1# show feature | include interface-vlan

 interface-vlan 1 enabled

 Go to bash shell n93k-sw-1# run bash

 Switch to user root bash-4.2$ su - root

 Password:

 Switch to management namespace in Linux&# ​root@n93k-sw-1#ip netns exec management bash
 Verify current configuration of tenant interface eth2/4 root@n93k-sw-1#vsh -c "show

interface Eth2/4 brief"

 --

 Ethernet VLAN Type Mode Status Reason Speed Port

 Interface Ch #

 --

 Eth2/4 1 eth access up none 40G(D) --

 Configure tenant vlan 200, SVI, and assign provision tenant port"

 root@n93k-sw-1#vsh -c "config terminal ; vlan 200 ; name TenantA ; exit"

 root@n93k-sw-1#vsh -c "config terminal ; interface vlan 200 ; no shutdown ; exit"

 root@n93k-sw-1#vsh -c "configure terminal ; interface eth2/4 ; switchport access vlan 200 ;

no shutdown"

 Verify tenant is configured correctly in the network

 root@n93k-sw-1#vsh -c "show running-config interface Eth2/4"

 !Command: show running-config interface Ethernet2/4

 version 7.0(3)I2(1)

 interface Ethernet2/4

 switchport access vlan 200

 root@n93k-sw-1#vsh -c "show interface vlan 200 brief"

27

Open NX-OS and Linux24

 Interface Secondary VLAN(Type) Status Reason

 Vlan200 -- up --

The ca​pa​bil​i​ties de​picted above are sim​ple ex​am​ples to il​lus​trate the flex​i​bil​ity of using bash for
au​toma​tion. These types of func​tions/ex​am​ples could be com​bined and built into a bash-de​vel​-
oped mon​i​tor​ing "agent" for your switch. For specifics on mak​ing agents/processes per​sis​tent
in the na​tive Linux shell, please refer to Cus ​tom De​vel​oped Ap​pli​ca ​tions sec​tion of the doc​u​-
ment.

Package Management Infrastructure

Open NX-OS pro​vides sup​port for stan​dard pack​age man​age​ment in​fra​struc​ture. It sup​ports
two pos​si​ble host​ing en​vi​ron​ments for in​stalling pack​ages:

• Bash shell: this is the native Open NX-OS Linux environment. It is disabled by default.
To enable access, users must explicitly enable the bash shell feature on the switch.

• Guest shell: this is a secure Linux container environment running CentOS 7.

The focus of this sec​tion will be on man​ag​ing pack​ages in bash shell, or the na​tive Linux en​vi​-
ron​ment where NX-OS runs. The guest shell en​vi​ron​ment will be cov​ered in a sub​se​quent sec​-
tion.

Yellowdog Updater, Modified (yum)

Yum is the de​fault pack​age and repos​i​tory man​age​ment tool for a num​ber of op​er​at​ing sys​tems,
in​clud​ing Open NX-OS Linux. The yum pack​age man​age​ment in​fra​struc​ture pro​vides the fol​-
low​ing ben​e​fits:

• automatic resolution of software dependencies.

• easy to use Command Line Interface to install or upgrade software.

• yum can be configured to browse/search multiple software locations at one time for
the existence of a specific package.

• ability to use either local (on box) or remote software repositories to install or upgrade
software.

28

Open NX-OS and Linux 25

The yum client down​loads soft​ware from repos​i​to ​ries lo ​cated on a local net​work or the In​ter ​-
net. RPM pack​age files in these repos​i​to​ries are or​ga​nized in a hi​er​ar​chi​cal man​ner so they can
be found by the yum client.

From the com​mand line, you can use the fol​low​ing sub​set of com​mands to in​ter​act with yum:

Command Description

yum install [package-name(s)] installs the specified package(s) along with any required
dependencies.

yum erase [package-name(s)] removes the specified package(s) from your system.

yum search [search-pattern] searches the list of package names and descriptions for
packages that match the search pattern and provides a list of
package names along with architectures and a brief
description of the package contents. Note that regular
expression searches are not permitted.

yum deplist [package-name] provides a listing of all of the libraries and modules that the
named package depends on, along with the names of the
packages (including versions) that provide those
dependencies.

yum check-update refreshes the local cache of the yum database so that
dependency information and the latest packages are always
up to date.

yum info [package-name] provides the name, description of the package, as well as a
link to the upstream home page for the software, release
versions and the installed size of the software.

yum reinstall [package-name(s)] erases and re-downloads a new copy of the package file and
re-installs the software on your system.

yum localinstall [local-rpm-file] checks the dependencies of a .rpm file and then installs it.

yum update [optional-package-name] downloads and installs all updates including bug fixes,
security releases, and upgrades, as provided by the
distributors of your operating system. Note that you can
specify package names with the update command.

yum upgrade upgrades all packages installed on the system to the latest
release.

29

Open NX-OS and Linux26

Example: Installing Puppet Agent using yum

To in​stall an agent or soft​ware pack​age na​tively in Open NX-OS, users will need a routable con​-
nec​tion to a soft​ware repos​i​tory. This could be through any name​space that has con​nec​tiv​ity
ex​ter​nally (De​fault or Man​age​ment).

The file lo​cated at /etc/yum/yum.conf pro​vides sys​tem-wide con​fig​u​ra​tion op​tions for yum, as

well as in​for​ma​tion about repos​i​to​ries. Spe​cific repos​i​tory in​for​ma​tion within Open NX-OS
Linux is lo​cated in files end​ing in .repo under /etc/yum/repos.d: the repos​i​tory to edit for pre-

built third-party agents is thirdparty.repo on the switch. You will need to edit the baseurl field

to point to your repos​i​tory if you uti​lize one in your net​work.

Ex​am​ple for in​stalling a soft​ware agent (Pup​pet) using yum:

 bash-4.2$ cd /etc/yum/repos.d/

 bash-4.2$ ls

 groups.repo nxos-extras.repo nxos.repo.orig thirdparty.repo

 localrpmdb.repo nxos.repo patching.repo

 bash-4.2$ more thirdparty.repo

 [thirdparty]

 name=Thirdparty RPM Database

 baseurl=file:///bootflash/.rpmstore/thirdparty

 enabled=1

 gpgcheck=0

 metadata_expire=0

 cost=500

 root@n9k-sw-1# rpm -qa | grep puppet

 root@n9k-sw-1# Yum install puppet

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

 : protect-packages

 groups-repo | 1.1 kB 00:00 ...

 localdb | 951 B 00:00 ...

 patching | 951 B 00:00 ...

 thirdparty | 951 B 00:00 ...

 Setting up Install Process

 Resolving Dependencies

 --> Running transaction check

30

Open NX-OS and Linux 27

 ---> Package puppet-agent.x86_64 0:1.1.0.153.g77189ea-1.nxos1 will be installed

 --> Finished Dependency Resolution

 Dependencies Resolved

 ==

 Package Arch Version Repository Size

 ==

 Installing:

 puppet-agent x86_64 1.1.0.153.g77189ea-1.nxos1 thirdparty 37 M

 Transaction Summary

 ==

 Install 1 Package

 Total download size: 37 M

 Installed size: 133 M

 Is this ok [y/N]: y

 Downloading Packages:

 Running Transaction Check

 Running Transaction Test

 Transaction Test Succeeded

 Running Transaction

 Installing : puppet-agent-1.1.0.153.g77189ea-1.nxos1.x86_64

1/1

 Installed:

 puppet-agent.x86_64 0:1.1.0.153.g77189ea-1.nxos1

 Complete!

Ex​am​ple for re​mov​ing a soft​ware agent (Pup​pet) using yum:

 root@n9k-sw-1# yum remove puppet

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-

packages

 Setting up Remove Process

 Resolving Dependencies

31

Open NX-OS and Linux28

 --> Running transaction check

 ---> Package puppet-agent.x86_64 0:1.1.0.153.g77189ea-1.nxos1 will be erased

 --> Finished Dependency Resolution

 Dependencies Resolved

===

========

 Package Arch Version Repository

Size

===

========

 Removing:

 puppet-agent x86_64 1.1.0.153.g77189ea-1.nxos1 @thirdparty

133 M

 Transaction Summary

===

========

 Remove 1 Package

 Installed size: 133 M

 Is this ok [y/N]: y

 Downloading Packages:

 Running Transaction Check

 Running Transaction Test

 Transaction Test Succeeded

 Running Transaction

 Erasing : puppet-agent-1.1.0.153.g77189ea-1.nxos1.x86_64

1/1

 Removed:

 puppet-agent.x86_64 0:1.1.0.153.g77189ea-1.nxos1

 Complete!

32

Open NX-OS and Linux 29

RedHat Package Manager (RPM)

In many ways, yum is sim​ply a front end to a lower-level pack​age man​age​ment tool called
rpm, sim​i​lar to apt-get’s re​la​tion​ship with dpkg. One key dis​tinc​tion to un​der​stand be​tween the
two util​i​ties is that rpm does not per​form de​pen​dency res​o​lu​tion.

The fol​low​ing com​mands should be run as root. The flags are ex​panded here in the pur​suit of
clar​ity, but the more con​ven​tional terse syn​tax is also in​cluded.

Ex​am​ple in​stalling soft​ware agent using RPM (Pup​pet)

 root@n9k-sw-1# rpm -qa | grep puppet

 root@n9k-sw-1# rpm -ivh /bootflash/puppet-enterprise-3.7.1.rc2.6.g6cdc186-

1.pe.nxos.x86_64.rpm

 Command Description

rpm --install --verbose --hash [local-rpm-

file-name].rpm

rpm -ivh [filename].rpm

install an rpm from the file.
rpm is also capable of installing RPM files from http

and ftp sources as well as local files.

rpm --erase [package-name]

rpm -e

remove the given package. Usually will not
complete if [package-name] matches more than

one package, but will remove more than one match
if used with the --allmatches flag.

rpm --query --all

rpm -qa

lists the name of all packages currently installed.

rpm --query [package-name]

rpm -q

confirm or deny if a given package is installed in
your system.

rpm --query --info

rpm -qi

display the information about an installed package.

rpm --query --list [package-name]

rpm -ql

generate a list of files installed by a given package.

rpm --query --file

rpm -q qf [file-name]

check to see what installed package “owns” a given
file.

33

Open NX-OS and Linux30

 Preparing... ### [100%]

 1:puppet-enterprise ### [100%]

 root@n9k-sw-1# rpm -qa | grep puppet

 puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64

Ex​am​ple re​mov​ing soft​ware agent using RPM (Pup​pet)

 root@n9k-sw-1# rpm -qa | grep puppet

 puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64

 root@n9k-sw-1# rpm -e puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64

 root@n9k-sw-1# rpm -qa | grep puppet

 root@n9k-sw-1#

Persistently Daemonizing a Third-party Process

Persistently starting your application from the Native Bash Shell

Your ap​pli​ca​tion should have a startup bash script that gets in​stalled in
/etc/init.d/<application_name> . This startup bash script should have the fol​low​ing gen​eral for​-
mat :

• Install your application startup bash script that you created above into
/etc/init.d/<application_name>

• Run your application with /etc/init.d/<application_name> start

• Run chkconfig --add <application_name>

• Run chkconfig --level 3 <application_name> on . init runlevel 3 is the standard multi-

user runlevel in Open NX-OS.

• Verify that your application is scheduled to run on level 3 by running chkconfig --list

<application_name> and confirm that level 3 is set to on

• Verify that your application is listed in /etc/rc3.d . You should see something similar to

the following example, where there is an 'S' followed by a number, followed by your
application name (tcollector in this example), and a link to your bash startup script in
../init.d/<application_name>

34

Open NX-OS and Linux 31

 bash-4.2# ls -l /etc/rc3.d/tcollector

 lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector

 bash-4.2#

Full ex​am​ple: dae​mo​niz​ing an ap​pli​ca​tion

 bash-4.2# cat /etc/init.d/hello.sh

 #!/bin/bash

 PIDFILE=/tmp/hello.pid

 OUTPUTFILE=/tmp/hello

 echo $$ > $PIDFILE

 rm -f $OUTPUTFILE

 while true

 do

 echo $(date) >> $OUTPUTFILE

 echo 'Hello World' >> $OUTPUTFILE

 sleep 10

 done

 bash-4.2#

 bash-4.2#

 bash-4.2# cat /etc/init.d/hello

 #!/bin/bash

 #

 # hello Trivial "hello world" example Third Party App

 #

 # chkconfig: 2345 15 85

 # description: Trivial example Third Party App

 #

 ### BEGIN INIT INFO

 # Provides: hello

 # Required-Start: $local_fs $remote_fs $network $named

 # Required-Stop: $local_fs $remote_fs $network

 # Description: Trivial example Third Party App

 ### END INIT INFO

 PIDFILE=/tmp/hello.pid

35

Open NX-OS and Linux32

 # See how we were called.

 case "$1" in

 start)

 /etc/init.d/hello.sh &

 RETVAL=$?

 ;;

 stop)

 kill -9 `cat $PIDFILE`

 RETVAL=$?

 ;;

 status)

 ps -p `cat $PIDFILE`

 RETVAL=$?

 ;;

 restart|force-reload|reload)

 kill -9 `cat $PIDFILE`

 /etc/init.d/hello.sh &

 RETVAL=$?

 ;;

 *)

 echo $"Usage: $prog {start|stop|status|restart|force-reload}"

 RETVAL=2

 esac

 exit $RETVAL

 bash-4.2#

 bash-4.2# chkconfig --add hello

 bash-4.2# chkconfig --level 3 hello on

 bash-4.2# chkconfig --list hello

 hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off

 bash-4.2# ls -al /etc/rc3.d/*hello*

 lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello

 bash-4.2#

 bash-4.2# reboot

36

Open NX-OS and Linux 33

Linux Networking

Netdevice

A net​de​vice (net​dev) is a Linux ker​nel con​struct which rep​re​sents a net​work​ing el​e​ment. It can
rep​re​sent a phys​i​cal in​ter​face like a front-end switch port, or a log​i​cal in​ter​face such as a tun​-
nel. The net​dev files on NX-OS exist under /proc/net/dev filesys​tem. The names for net​de​vices

are sim​i​lar to the NX-OS in​ter​face names. For ex​am​ple, Eth​er​net1/1 in NX-OS (port 1 in slot 1)
refers to the cor​re​spond​ing Linux in​ter​face name of Eth1-1. It is im​por​tant to note that in​ter​face
names within Linux are lim​ited to 15 char​ac​ters, there​fore ‘Eth​er​net’ is short​ened to ‘Eth’. This
is con​sis​tent with the nam​ing in show interface brief within NX-OS.

Using ifconfig on a Nexus Switch

Linux net​work util​i​ties, com​monly used by server ad​mins, can now be used to con​fig​ure, mon​i​-
tor, trou​bleshoot and man​age the switch.

Using if​con​fig to view in​ter​faces:

 root@n9k-sw-1# ifconfig -a | grep Eth

 Eth1-1 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:98

 Eth1-2 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:99

 Eth1-3 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9a

 Eth1-4 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9b

 Eth1-5 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:9c

Using if​con​fig to en​able/dis​able an in​ter​face and ver​ify in NX-OS

 root@n9k-sw-1# ifconfig Eth2-4 down

 root@n9k-sw-1# vsh -c "show interface Eth2/4"

 Ethernet2/4 is down (Administratively down)

 admin state is down, Dedicated Interface

 Hardware: 10000/40000 Ethernet, address: 6412.25ed.787f (bia 6412.25ed.787f)

 MTU 1500 bytes, BW 40000000 Kbit, DLY 10 usec

No​tice above vsh was used to run a NX-OS CLI com​mand. When work​ing within the Bash Shell,

the vsh com​mand can be used to in​ter​act with the NX-OS parser.

37

Open NX-OS and Linux34

As​sign​ing a Layer 3 Ad​dress to an in​ter​face in Linux:

To main​tain con​sis​tency be​tween NX-OS and Linux, there are val​i​da​tion checks that are in​-
cluded for sev​eral op​er​a​tions. As an ex​am​ple, if you at​tempt to as​sign a Layer 3 ad​dress to a
Layer 2 in​ter​face in Linux or via a third-party ap​pli​ca​tion, an error will be pre​sented.

Error ad​dress​ing Layer 2 in​ter​face

 root@n9k-sw-1# vsh -c "show run int Eth2/4"

 interface Ethernet2/4

 switchport

 root@n9k-sw-1# ifconfig Eth2-4 192.168.2.2 netmask 255.255.255.0

 SIOCSIFADDR: Cannot assign requested address

 SIOCSIFNETMASK: Cannot assign requested address

If you change the in​ter​face mode to Layer 3 within NX-OS you can now as​sign a Layer-3 ad​-
dress in Linux:

As​sign a Layer 3 ad​dress

 root@n9k-sw-1# ip netns exec default bash

 root@n9k-sw-1# vsh -c "config terminal ; interface Eth2/4 ; no switchport ; no shutdown"
l

root@n9k-sw-1# ifconfig Eth2-4 192.168.2.2 netmask 255.255.255.0

 root@n9k-sw-1# ifconfig Eth2-4

 Eth2-4 Link encap:Ethernet HWaddr 10:05:ca:f5:ee:97

 inet addr:192.168.2.2 Bcast:192.168.2.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1837767 errors:0 dropped:1837763 overruns:0 frame:0

 TX packets:70576 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:95625447 (91.1 MiB) TX bytes:17898072 (17.0 MiB)

 root@n9k-sw-1# vsh -c "show run int Eth2/4"

 interface Ethernet2/4

 no switchport

38

Open NX-OS and Linux 35

 ip address 192.168.2.2/24

 no shutdown

Using ethtool on a Nexus Switch

Eth​tool is a use​ful util​ity to view dri​ver level in​ter​face sta​tis​tics. This can be used to get in​for​-
ma​tion about front panel in​ter​faces. An ex​am​ple is shown here, which gath​ers port sta​tis​tics
for the Eth​n​er​net2/4 in​ter​face.

In​ter​face port sta​tis​tics

 root@n9k-sw-1# ethtool -S Eth2-4

 NIC statistics:

 speed: 40000

 port_delay: 10

 port_bandwidth: 40000000

 admin_status: 1

 oper_status: 1

 port_mode: 0

 reset_counter: 6

 load-interval-1: 30

 rx_bit_rate1: 256

 rx_pkt_rate1: 0

 tx_bit_rate1: 144

 tx_pkt_rate1: 0

 load-interval-2: 300

 rx_bit_rate2: 248

Using tcpdump on a Nexus Switch

Tcp​dump is a packet an​a​lyzer util​ity which can be run di​rectly from the com​mand line in the
de​fault name​space for a front panel in​ter​face. The ex​am​ple below uses tcp​dump to mon​i​tor
pack​ets on an in​ter​face and store them in a pcap (packet cap​ture) file named file.​pcap. Use the
-i flag to spec​ify an in​ter​face.

39

Open NX-OS and Linux36

tcp​dump packet cap​ture

 root@n9k-sw-1# tcpdump -i Eth2-4 -w /bootflash/file.pcap

 tcpdump: WARNING: Eth2-4: no IPv4 address assigned

 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

 listening on Eth2-4, link-type EN10MB (Ethernet), capture size 65535 bytes

 23:06:54.402365 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id

8001.84:b8:02:0e:f8:3b.8031, length 43

 23:06:56.402207 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id

8001.84:b8:02:0e:f8:3b.8031, length 43

Using route commands on a Nexus Switch

Man​ag​ing Rout​ing Within Linux

Rout​ing can be con​fig​ured within Open NX-OS Linux. Sta​tic routes can be added
and deleted di​rectly using the route com​mand. Any rout​ing changes made will be im​me​di​ately

re​flected within the NX-OS rout​ing ta​bles.

Set an IP ad​dress on e1/1

 n9k-sw-1(config)# int eth2/4

 n9k-sw-1(config-if)# ip address 192.168.1.2/24

En​sure you are root user and in de​fault name​space to con​fig​ure front​panel in​ter​faces

 n93k-1-pm# run bash

 bash-4.2$ id

 uid=2002(admin) gid=503(network-admin) groups=503(network-admin)

 bash-4.2$ su - root

 Password:

 root@n93k-1-pm#ip netns exec default bash

The fol​low​ing rout​ing changes are made com​pletely in bash.

40

Open NX-OS and Linux 37

Dis​play routes

 root@n9k-sw-1# route

 Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

 192.168.1.0 * 255.255.255.0 U 0 0 0 Eth2-4

 127.1.0.0 * 255.255.0.0 U 0 0 0 veobc

 127.1.2.0 * 255.255.255.0 U 0 0 0 veobc

Add a route

 root@n9k-sw-1# ip route add 192.168.3.0/24 via 192.168.1.2 dev Eth2-4

Dis​play up​dated route table

 root@n9k-sw-1# route

 Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

 192.168.1.0 * 255.255.255.0 U 0 0 0 Eth2-4

 192.168.3.0 192.168.1.2 255.255.255.0 UG 0 0 0 Eth2-4

 127.1.0.0 * 255.255.0.0 U 0 0 0 veobc

 127.1.2.0 * 255.255.255.0 U 0 0 0 veobc

Ver​ify in NX-OS

 n9k-sw-1# sh run | i "ip route" ip route 192.168.2.0/24 Ethernet1/192.168.1.2 1

 n9k-sw-1# sh ip route

 192.168.1.0/24, ubest/mbest: 1/0, attached *via 192.168.1.1, Eth1/1, [0/0], 00:02:08,

direct

 192.168.1.2/32, ubest/mbest: 1/0, attached *via 192.168.1.1, Eth1/1, [0/0], 00:02:08,

local

 192.168.2.0/24, ubest/mbest: 1/0 *via 192.168.1.2, Eth1/1, [1/0], 00:01:37, static

 n9k-sw-1#

Re​move a route

 n9k-sw-1# ip route del 192.168.3.0/24 via 192.168.1.2 dev Eth2-4

41

Open NX-OS and Linux38

Dis​play up​dated route table

 bash-4.2# route

 Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

 192.168.1.0 * 255.255.255.0 U 0 0 0 Eth1-1

 127.1.0.0 * 255.255.0.0 U 0 0 0 veobc

 127.1.2.0 * 255.255.255.0 U 0 0 0 veobc

 bash-4.2#

Linux Network Namespaces and NX-OS Virtual Routing and
Forwarding (VRF)

A sin​gle set of net​work in​ter​faces and rout​ing table en​tries are shared across the en​tire Linux
op​er​at​ing sys​tem. Net​work name​spaces vir​tu​al​ize these shared re​sources by pro​vid​ing dif​fer​ent
and sep​a​rate in​stances of net​work in​ter​faces and rout​ing ta​bles that op​er​ate in​de​pen​dently of
each other.

• Two namespaces are created by default in Linux - default and management. Each maps
to VRFs of the same name within NX-OS.

• The default namespace (and VRF) enables access to the front panel ports and tunneling
interfaces within Linux.

• The management namespace (and VRF) enables access to the management interface.

• Each new VRF created within NX-OS will map to a corresponding Linux namespace of
the same name.

42

Open NX-OS and Linux 39

Fig​ure: Open NX-OS Linux Net​work Ar​chi​tec​ture / Linux Name​space

Note: by de​fault you are in the "de​fault" name​space.

List avail​able name​spaces

 root@n9k-sw-1# ip netns

 management

 default

List in​ter​faces avail​able in a name​space

 root@n9k-sw-1# ip link list | grep Eth

 88: Eth2-1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 100

 89: Eth2-2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 100

43

Open NX-OS and Linux40

 90: Eth2-3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 100

 91: Eth2-4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT

qlen 100

Run a process/com​mand/shell within a given name​space

 root@n9k-sw-1#ip netns exec <vrf name> <command>.

 root@n9k-sw-1#ip netns exec management bash

Note: VRFs need to be cre​ated in NX-OS first to be rep​re​sented and ma​nip​u​lated as name​-
spaces in Linux.

Cre​ate a VRF in NX-OS and move an in​ter​face to this VRF

 n9k-sw-1(config)# vrf context red

 n9k-sw-1(config-vrf)#

 n9k-sw-1(config)# int e2/4

 n9k-sw-1(config-if)# vrf member red

 Warning: Deleted all Layer-3 config on interface Ethernet2/4

 n9k-sw-1(config-if)# ip address 192.168.1.2/24

 n9k-sw-1(config-if)#

Check the list of name​spaces

 bash-4.2# ip netns list

 red

 management

 default

Ob​serve rout​ing table dif​fer​ences be​tween name​spaces

 bash-4.2# route

 Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

 127.1.0.0 * 255.255.0.0 U 0 0 0 veobc

44

Open NX-OS and Linux 41

 127.1.2.0 * 255.255.255.0 U 0 0 0 veobc

 bash-4.2# ip netns exec red route

 Kernel IP routing table Destination Gateway Genmask Flags Metric Ref

Use Iface

 192.168.1.0 * 255.255.255.0 U 0 0 0 Eth2-4

 bash-4.2#

Cisco Open NX-OS is a Linux-based op​er​at​ing sys​tem that al​lows full Linux ac​cess to end-
users. This in​cludes en​abling ac​cess and man​age​abil​ity of a Cisco Nexus 9000 and Nexus 3000
Se​ries Switch via stan​dard Linux tools. Fur​ther, Open NX-OS in​cludes sup​port for pack​age
man​agers that en​able users to build and in​te​grate open source or cus​tom ap​pli​ca​tions na​tively
into NX-OS.

45

Open NX-OS and Linux 43

Linux Containers and the Guest Shell

Cisco Open NX-OS sup​ports Linux con​tain​ers (LXC) na​tively on the plat​form. This al​lows cus​-
tomers and third-party ap​pli​ca​tion de​vel​op​ers the abil​ity to add cus​tom func​tion​al​ity di​rectly
to the switch, and host their ap​pli​ca​tions on the de​vice in a se​cure, iso​lated en​vi​ron​ment:

The ben​e​fits of uti​liz​ing con​tain​ers in​clude:

• Isolated and secure application execution environments

Resource and process isolation. Resources can be controlled, limiting the amount of
CPU, memory, storage, and network bandwidth allocated to the container
environment.

• Independent software release cycles

Customers and third-party developers can create their own open-source based
custom applications, independent of the traditional NX-OS software release cycle.

Decreased time to market for custom-built features.

• Network Operation Optimization

Custom applications running within the container environment can reduce the
need to use separate software solutions or interfaces. An example of this is a packet
capture tool running locally on the device directly within the container, or
applications that can monitor and control the switch.

47

Open NX-OS and Linux44

Fig​ure: Open NX-OS Con​tainer Ar​chi​tec​ture

The Linux ker​nel pro​vides built-in re​source con​trols (cgroups) which allow for the iso​la​tion and
lim​it​ing of process, mem​ory and filesys​tem re​sources. The iso​la​tion pro​vided is trans​par​ent, so
there is no process-sched​ul​ing over​head.

The processes within a con​tainer are given their own name​space which does not over​lap
with na​tive NX-OS processes or any other con​tain​ers that may be pre​sent on the sys​-
tem. This en​sures that NX-OS processes are pro​tected from the con​tainer​ized guest processes.
This sep​a​ra​tion is pro​vided di​rectly within the ker​nel.

It's worth men​tion​ing that there are sig​nif​i​cant dif​fer​ences be​tween con​tain​ers and full hy​per​-
vi​sor en​vi​ron​ments. Since they are im​ple​mented di​rectly by the host ker​nel, only Linux con​tain​-
ers can be sup​ported. Even if the Linux dis​tri​b​u​tions used within con​tain​ers dif​fer, they will
still use the un​der​ly​ing host's ker​nel and li​braries. Hy​per​vi​sor-based vir​tual ma​chines dif​fer
from con​tain​ers in that each VM op​er​ates as an in​de​pen​dent en​tity: there is no re​liance on an
up-stream ker​nel.

48

Open NX-OS and Linux 45

Fig​ure: Dif​fer​ences in Con​tainer and Hy​per​vi​sor-based Ar​chi​tec​tures

Guest Shell

The Open NX-OS plat​form pre​sents a spe​cial​ized con​tainer that is pre-built and in​stalled within
the sys​tem. This con​tainer en​vi​ron​ment is called the guest shell. The guest shell is based on
Cen​tOS 7.

To check if the guest shell is en​abled on the sys​tem, the com​mand "show vir​tual-ser​vice list"
can be ex​e​cuted. The guest shell will be in "Ac​ti​vated" state if it is en​abled:

 n9k-sw-1# show virtual-service list

 Virtual Service List:

 Name Status Package Name

 guestshell+ Activated guestshell.ova

If the guest shell is not en​abled, the com​mand guestshell enable will ac​ti​vate the guest shell

con​tainer on the sys​tem:

49

Open NX-OS and Linux46

 n9k-sw-1# guestshell enable

 %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service 'guestshell+'

 %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual service 'guestshell+'; Activating

 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service 'guestshell+'

 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated virtual service 'guestshell+'

To ac​cess the guest shell, enter guestshell on the NX-OS CLI.

 n9k-sw-1# guestshell

 [guestshell@guestshell ~]$

From the guest shell prompt, the user can run Linux com​mands:

 [guestshell@guestshell ~]$ pwd

 /home/guestshell

 [guestshell@guestshell ~]$ ls

 [guestshell@guestshell ~]$ whoami

 guestshell

 [guestshell@guestshell ~]$ ps -e | grep systemd

 1 ? 00:00:00 systemd

 10 ? 00:00:00 systemd-journal

 28 ? 00:00:00 systemd-logind

 [guestshell@guestshell ~]$

The guest shell also pro​vides di​rect ac​cess to the hosts boot​flash on the switch. Files on /boot​-
flash can be edited di​rectly from within the guest shell en​vi​ron​ment. By de​fault the guest shell
comes with the vi ed​i​tor pre-in​stalled. More ed​i​tors can be in​stalled using yum or RPM to cus​-
tomize guest shell func​tion​al​ity to the shell of your choice.

Users within the guest shell can in​ter​act with the NX-OS host CLI to gather re​spec​tive switch
level in​for​ma​tion. The ap​pli​ca​tion dohost is pro​vided to ex​e​cute NX-OS CLI com​mands:

 [guestshell@guestshell ~]$ dohost "show ip int brief vrf management"

 IP Interface Status for VRF "management"(2)

 Interface IP Address Interface Status

 mgmt0 10.95.33.238 protocol-up/link-up/admin-up

50

Open NX-OS and Linux 47

The dohost com ​mand uses Unix do ​main sock​ets to fa ​cil​i​tate the trans ​fer of in​for​ma ​tion be​-
tween the guest shell and NX-OS host processes. Data re​trieved from the dohost com​mand can

be used to take ac​tions local to the net​work de​vice within the guest shell. With this func​tion​al​-
ity, self-heal​ing ma​chines can be cre​ated. As an ex​am​ple, an ap​pli​ca​tion could be cre​ated in the
Linux en​vi​ron​ment which cap​tured the in​ter​face state pe​ri​od​i​cally. When the in​ter​face state
changes, the Linux ap​pli​ca​tion could be used to bring up a part​ner or backup in​ter​face.

The guest shell uses the de​fault Vir​tual Rout​ing and Foward​ing (VRF) table for ex​ter​nal con​nec​-
tiv​ity. The ap​pli​ca​tion chvrf is pro​vided for VRF man​age​ment.

Usage of chvrf :

 [guestshell@guestshell ~]$ chvrf

 Usage: chvrf <vrf> [<cmd> ...]

Ping a host through the man​age​ment VRF:

 [guestshell@guestshell ~]$ chvrf management ping 10.70.42.150

 PING 10.70.42.150 (10.70.42.150) 56(84) bytes of data.

 64 bytes from 10.70.42.150: icmp_seq=1 ttl=53 time=19.2 ms

 64 bytes from 10.70.42.150: icmp_seq=2 ttl=53 time=20.0 ms

Note: The chvrf com ​mand can be used in front of any com ​mand in the sys​tem to use the de​sired

VRF.

The guest shell has been pop​u​lated with com​mon pack​age man​agers. The yum pack​age man​-
ager is in​stalled, and will pull pack​ages from the de​fault Cen​tOS 7 repos​i​to​ries. The lo​ca​tions of
pack​age repos​i​to​ries can be changed by mod​i​fy​ing the ".repo" repos​i​tory files in
the /etc/yum/repos.d di​rec​tory. The com​mand yum list available will show all avail​able pack​-
ages in the repos​i​to​ries.

In​stalling the git client via yum, using the man​age​ment VRF:

 [guestshell@guestshell ~]$ sudo chvrf management yum install git

 Loaded plugins: fastestmirror

 base | 3.6 kB 00:00

51

Open NX-OS and Linux48

 extras | 3.4 kB 00:00

 updates | 3.4 kB 00:00

 (1/4): extras/7/x86_64/primary_db | 87 kB 00:00

 (2/4): base/7/x86_64/group_gz | 154 kB 00:00

 (3/4): updates/7/x86_64/primary_db | 4.0 MB 00:03

 ...

 Transaction Summary

 ==

 Install 1 Package (+34 Dependent packages)

 Total download size: 17 M

 Installed size: 63 M

 Is this ok [y/d/N]:

You may need to in​crease the par​ti​tion size of the guest shell, which is an op​tion avail​able to
you from the host CLI using guestshell resize .

Re​siz​ing the rootfs of guest shell:

 n9k-sw-1# guestshell resize rootfs 600

 Note: Please disable/enable or reboot the Guest shell for root filesystem to be resized

In ad​di​tion to the yum pack​age man​ager, the Python pack​age man​ager (pip) is also avail​able
from within the guest shell. Python pack​ages are in​stalled by pip into the de​fault Python repos​i​-
tory. In order to view a list​ing of in​stalled pack​ages, run the pip freeze com​mand:

 [guestshell@guestshell ~]$ sudo pip freeze

 iniparse==0.4

 pycurl==7.19.0

 pygpgme==0.3

 pyliblzma==0.5.3

 pyxattr==0.5.1

 urlgrabber==3.10

 yum-metadata-parser==1.1.4

52

Open NX-OS and Linux 49

From this ex​am ​ple, we see that there are cer​tain pack ​ages al ​ready in​stalled such as Python curl
(pycurl). A com​mon pack​age needed when work​ing with Python and HTTP is the requests

mod​ule.

The com​mand listed below can be used to in​stall the re​quests Python mod​ule:

 guestshell@guestshell ~]$ sudo chvrf management pip --proxy=proxy.my.customer.com:8080

install requests

The com​mand was ex​e​cuted as root to en​sure we go through the man​age​ment vrf using the
chvrf com​mand. In the event that the guest shell re​quires a proxy server for ex​ter​nal HTTP

con​nec​tiv​ity, the --proxy op​tion can be used.

You can now start Python and see that the requests mod​ule can be im​ported.

 [guestshell@guestshell ~]$ python

 Python 2.7.5 (default, Jun 17 2014, 18:11:42)

 [GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

 Type "help", "copyright", "credits" or "license" for more information.

 >>> import requests

 >>>

The pip freeze com​mand will also show that the requests mod​ule has been in​stalled.

Ad​di​tional pro​gram​ming lan​guages can be in​stalled within the guest shell if de​sired, is a user
wants to uti​lize a dif​fer​ent script​ing lan​guage like perl. Users can in​stall pro​gram​ming en​vi​ron​-
ments as needed through the yum pack​age man​ager, or man​u​ally via RPM:

Run​ning perl

 [guestshell@guestshell ~]$ perl --version

 This is perl 5, version 16, subversion 3 (v5.16.3) built for x86_64-linux-thread-multi

 (with 28 registered patches, see perl -V for more detail)

 Copyright 1987-2012, Larry Wall

53

Open NX-OS and Linux50

 Perl may be copied only under the terms of either the Artistic License or the

 GNU General Public License, which may be found in the Perl 5 source kit.

 Complete documentation for Perl, including FAQ lists, should be found on

 this system using "man perl" or "perldoc perl". If you have access to the

 Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Perl files can be ex​e​cuted di​rectly within the guest shell:

 n9k-sw-1# guestshell

 [guestshell@guestshell ~]$./test.pl

 This is a perl script!

Pro​grams and scripts can be ex​e​cuted in the guest shell di​rectly from Open NX-OS using
guestshell run .

 [guestshell@guestshell ~]$ exit

 logout

 n9k-sw-1#

 n9k-sw-1#

 n9k-sw-1#

 n9k-sw-1# guestshell run /home/guestshell/test.py

 This is a Python script!

 n9k-sw-1#

 n9k-sw-1#

 n9k-sw-1# guestshell run /home/guestshell/test.pl

 This is a perl script!

 n9k-sw-1#

Application Persistence within the Guest Shell Environment

Ap​pli​ca​tions and scripts can be stopped and started au​to​mat​i​cally in the guest shell en​vi​ron​-
ment using systemd .

The below script named /home/guestshell/datecap.sh will save a file in the /tmp named date​cap:

54

Open NX-OS and Linux 51

 #!/bin/bash

 OUTPUTFILE=/tmp/datecap

 rm -f $OUTPUTFILE

 while true

 do

 echo $(date) >> $OUTPUTFILE

 echo 'Hello World' >> $OUTPUTFILE

 sleep 10

 done

This script can be tied into the systemd in​fra​struc​ture with the fol​low​ing file named

/usr/lib/systemd/system/datecap.service :

 [Unit]

 Description=Trivial "datecap" example daemon

 [Service]

 ExecStart=/home/guestshell/datecap.sh &

 Restart=always

 RestartSec=10s

 [Install]

 WantedBy=multi-user.target

After cre​at​ing the two files, the user can use systemctl to start and stop the datecap process:

 [guestshell@guestshell tmp]sudo systemctl start datecap

 [guestshell@guestshell tmp]$ sudo systemctl status -l datecap

 datecap.service - Trivial "datecap" example daemon

 Loaded: loaded (/usr/lib/systemd/system/datecap.service; disabled)

 Active: active (running) since Wed 2015-09-30 02:52:00 UTC; 2min 28s ago

 Main PID: 131 (datecap.sh)

55

Open NX-OS and Linux52

 CGroup: /system.slice/datecap.service

 ??131 /bin/bash /home/guestshell/datecap.sh &

 ??164 sleep 10

 Sep 30 02:52:00 guestshell systemd[1]: Started Trivial "datecap" example daemon.

 [guestshell@guestshell tmp]$ sudo systemctl stop datecap

When the de​vice is re​booted, systemd will au​to​mat​i​cally start the datecap dae​mon.

Working with Sockets in the Guest Shell

Linux sock​ets are avail​able to ap​pli​ca​tions run​ning within the guest shell. Sock​ets can be used
for com​mu​ni​ca​tion be​tween ap​pli​ca​tions re​sid​ing within the guest shell, as well as re​mote ap​-
pli​ca​tions. An ex​am​ple would be an echo server, writ​ten in Python. This will echo back any text
that it re​ceives on a socket:

 #!/usr/bin/env python

 import socket

 host = ''

 port = 50000

 backlog = 5

 size = 1024

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.bind((host,port))

 s.listen(backlog)

 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 while 1:

 client, address = s.accept()

 data = client.recv(size)

 if data:

 if (data == "done"):

 print "received a done message, exiting"

 client.send("server done, exiting")

56

Open NX-OS and Linux 53

 client.close()

 s.close()

 break

 else :

 print data

 client.send(data)

 client.close()

 s.close()

The code above will use Python to cre​ate a socket stream and lis​ten on port 50000. Any text it
re​ceives will be sent back to the sender. If done is en​tered the server will close its socket and

exit.

This can be used with an echo client ap​pli​ca​tion, which can re​side re​motely. A sam​ple echo
client may look like the fol​low​ing:

 #!/usr/bin/env python

 import socket

 host = '<ip address of echo server>'

 port = 50000

 size = 1024

 while(True):

 test = raw_input('Enter Data to send to server: ')

 if (test == 'q') or (test == 'quit'):

 break

 else:

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((host,port))

 s.send(test)

 data = s.recv(size)

 print 'Received:', data

 s.close()

 print 'done'

The Python code above will take input from the com​mand line through the raw_in​put call and
send it to the echo server through the socket con​nec​tion.

57

Open NX-OS and Linux54

Here is a sample run of both the client and server:

Open NX-OS pro​vides guest shell, a na​tive LXC con​tainer for switch man​age​ment and host​ing
ap​pli​ca​tions. Other LXC con​tain​ers can be cre​ated in Open NX-OS for third-party or cus​tom
ap​pli​ca​tions.

Server side (Run​ning in​side of Guest Shell using the man​age​ment VRF):

 [guestshell@guestshell gs]$ sudo chvrf management Python echoserver.py

 Hello Server

 Please echo this text

 received a done message, exiting

 [guestshell@guestshell gs]$

Client side (Run​ning on an ex​ter​nal Linux Server):

 ./echoclient.py

 Enter Data to send to server: Hello Server

 Received: Hello Server

 Enter Data to send to server: Please echo this text

 Received: Please echo this text

 Enter Data to send to server: done

 Received: server done, exiting

 Enter the Data to send to server: quit

 done

The server can also ac​cept mul​ti​ple in​com​ing sock​ets and below is an ex​am​ple where two
clients have con​nected si​mul​ta​ne​ously:

 [guestshell@guestshell gs]$ sudo chvrf management Python echoserver.py

 hello from client 1

 hello from client 2

58

Open NX-OS and Linux 55

Open NX-OS Architecture

An Extensible Network OS

The Cisco Open NX-OS soft​ware is de​signed to allow ad​min​is​tra​tors to man​age a switch such
as a Linux de​vice. The Open NX-OS soft​ware stack ad​dresses a num​ber of func​tional areas to
ad​dress the needs of a De​vOps-dri​ven au​toma​tion and pro​gram​ma​bil​ity frame​work.

• Auto Deployment (Bootstrap and Provisioning): Cisco Open NX-OS supports a robust
network bootstrapping and provisioning capability with Power-On Auto Provisioning
(POAP). Open NX-OS can utilize Pre-boot eXecution Environment (PXE) to facilitate the
boot process and initial configuration of a Nexus switch.

• Extensibility: Open NX-OS enables access to the Linux bash shell as well as the use of
package managers. The user can install native RPMs and third-party applications
running processes as they would on a Linux server. Supporting RPM-based packages
provides the ability to load only the services or packages required. The level of
extensibility in Open NX-OS ensures that third-party daemons and packages (such as
routing protocols) can be supported. Third-party monitoring tools like tcollector are

supported on the platform.

• Open Interfaces: Open NX-OS adds the ability to leverage Linux tools for configuration,
monitoring and troubleshooting. Front panel ports of a switch can be manipulated as
native Linux interfaces. Tools like ifconfig and tcpdump can be used as they would be in

a server environment for troubleshooting and configuration.

• Application Development (Adaptable SDK): Open NX-OS provides a tool chain to build
custom packages and agents. Open NX-OS has published an extensive SDK to enable a
build environment that can be installed on a Linux server. This provides the ability to
download a build agent that will incorporate the source code in the local directory
structure. The SDK allows administrators to build and package binaries for use on
Open NX-OS. Applications have two deployment options: they can be installed natively
into the Linux filesystem, or deployed in an LXC container.

Flexible Programming Options

Open NX-OS pro​vides flex​i​bil​ity in tool choice for pro​gram​ma​bil​ity tools and lan​guages.

• Python Libraries: There is embedded Python shell support with native Open NX-OS
libraries that can be utilized for development.

59

Open NX-OS and Linux56

• NX-API REST interacts with network elements through RESTful API calls. This allows
for a data model-driven approach to network configuration and management.

• NX-API CLI provides the ability to embed NX-OS CLI commands in a structured
data format (JSON or XML) for execution on the switch via an HTTP/HTTPS transport.
The data returned from the calls will also be formatted in JSON/XML, making it easy to
parse the data with modern programming languages. A sandbox environment (NX-API
Developer Sandbox) also exists as a development tool, which is covered in Section
7.3, Development and Testing Tools.

Support for Automation Tools

• Configuration management tools like Ansible, Chef and Puppet are orchestration engines
that function with Open NX-OS.

• Cloud Orchestration platforms such as OpenStack integrate seamlessly with Neutron
plugins.

• Cisco-sponsored and community-contributed open source management tools and
packages are available on Github: http://github.com/datacenter

Integrating Third-party Applications

The Open NX-OS mod​u​lar ar​chi​tec​ture pro​vides a flex​i​ble frame​work to in​te​grate third-party
ap​pli​ca​tion soft​ware as de​picted in the fig​ure below.

Fig​ure: Open NX-OS Third-party Ap​pli​ca​tion In​te​gra​tion - Soft​ware Ar​chi​tec​ture

60

Open NX-OS and Linux 57

The mod​u​lar frame​work al​lows for the sup​port of mon​i​tor​ing and an​a​lyt​ics ap​pli​ca​tions like
tcollector and Splunk amongst oth​ers. The frame​work sup​ports au​toma​tion tools and agents,

De​vOps or​ches​tra​tion and third-party pro​to​col sup​port like open​LLDP.

Sup​ported third-party ap​pli​ca​tions, open source tools and pub​lish RPMs that in​te​grate with
Open NX-OS are all avail​able at http://​developer.​cisco.​com/​opennxos

Open NX-OS Modular Architecture

Cisco Open NX-OS is a unique multi-process state-shar​ing ar​chi​tec​ture that sep​a​rates an el​e​-
ment's state from par​ent processes. This re​flects Cisco’s core soft​ware de​sign phi​los​o​phy and
en​ables fault re​cov​ery and real-time soft​ware up​dates on a process-level basis with​out af​fect​-
ing the run​ning state of the sys​tem.

61

Open NX-OS and Linux58

Pro ​to ​col rout ​ing and switch ​ing processes, se​cu ​rity func ​tions, man ​age ​ment processes, and even
de​vice dri​vers are de​cou​pled from the ker​nel. These mod​ules and processes run in user space,
not in ker​nel space, which en​sures process con​trol sys​tem sta​bil​ity. The mod​u​lar na​ture of the
sys​tem al​lows for the up​date and restart of in​di​vid​ual switch processes with​out re​quir​ing a
switch re​load.

The same bi​nary image of NX-OS can be de​ployed across any fam​ily of Nexus 9000 and Nexus
3000 Se​ries Switches. This im​proves the fea​ture com​pat​i​bil​ity across plat​forms and en​sures
con​sis​tency in de​fect res​o​lu​tion. It also makes it much sim​pler for users to de​ploy, cer​tify and
val​i​date new re​leases in their data cen​ter en​vi​ron​ment, and makes code portable across the en​-
vi​ron​ment.

Process Isolation and Scheduling

The Linux ker​nel back​ing Cisco Open NX-OS is a multi-task​ing ker​nel lever​ag​ing the Linux
Com​pletely Fair Process Sched​uler. The process sched​uler within the ker​nel co​or​di​nates which
processes are al​lowed to run at any given time, sched​ul​ing CPU equally amongst all user and
NX-OS sys​tem processes. By tak​ing sched​ul​ing class/pol​icy and process pri​or​i​ties into ac​count
to bal​ance processes be​tween mul​ti​ple CPU cores in SMP sys​tems, the CPU cy​cles are main​-
tained in fair ac​cess to main​tain sys​tem sta​bil​ity.

Shell Environment

Cisco Nexus switches sup​port di​rect Bourne Again SHell (Bash) ac​cess. With Bash, you can ac​-
cess the un​der​ly​ing Linux sys​tem on the de​vice to man​age the sys​tem. Most im​por​tantly, by
pro​vid​ing users un​re​stricted ac​cess to the Linux shell, users can now lever​age data cen​ter au​-
toma​tion tools, which can uti​lize bash script​ing and Linux in​ter​faces na​tively. Ac​cess to the
bash shell is con​trolled through RBAC. Users who are able to gain ac​cess can write shell scripts
which lever​age the net​work in a sim​i​lar fash​ion for other parts of the IT or​ga​ni​za​tion.

Process Patching

The Open NX-OS Linux ker​nel's process iso​la​tion al​lows patch​ing and mod​i​fi​ca​tion of soft​-
ware in​de​pen​dent of the tra​di​tional Cisco soft​ware re​lease cy​cles. Fea​tures and fixes can be
de​liv​ered in a more agile fash​ion to the end user. Mod​i​fi​ca​tions to the sys​tem can be re​leased
to users in the form of patches which can be in​stalled with​out the need to re​load the de​vice
being patched. An ex​am​ple of this might be the in​stal​la​tion of se​cu​rity fixes for pack​ages such
as OpenSSL or OpenSSH

62

Open NX-OS and Linux 59

Process Restartability

Processes within Open NX-OS can be restarted on-de​mand with​out af​fect​ing other processes,
and will au​to​mat​i​cally be restarted in the event of an un​ex​pected exit con​di​tion.

Process restart via NX-OS:

 n9k-sw-1(config)# router bgp 65000

 n9k-sw-1(config-router)# restart bgp 65000

 %BGP-5-ADJCHANGE: bgp-65000 [9224] (default) neighbor 192.168.1.2 Up

For ex​am​ple, we can kill the BGP process and see that it is au​to​mat​i​cally restarted by NX-OS.

Au​to​matic process restarta​bil​ity:

 root 17073 5900 0 00:11 ? 00:00:00 /isan/bin/routing-sw/bgp -t 65000

 admin 17137 17132 0 00:13 pts/2 00:00:00 grep bgp

 bash-4.2$ sudo kill -9 17073

 bash-4.2$ ps -ef | grep bgp

 root 17221 5900 34 00:13 ? 00:00:01 /isan/bin/routing-sw/bgp -t 65000

 admin 17258 17132 0 00:13 pts/2 00:00:00 grep bgp

 bash-4.2$

Interactive Programmability with Python

In Open NX-OS, the Python pro​gram​ming lan​guage is sup​ported di​rectly on the de​vice. An in​-
ter​ac​tive Python in​ter​preter is avail​able just by typ​ing python at the CLI prompt:

 n9k-sw-1# python

 Python 2.7.5 (default, Oct 8 2013, 23:59:43)

 [GCC 4.6.3] on linux2

 Type "help", "copyright", "credits" or "license" for more information.

 >>>

The Python in​ter​preter on the Open NX-OS plat​form can also in​ter​pret script files di​rectly, in
this case the Python in​ter​preter is run​ning "non-in​ter​ac​tively". To run non-in​ter​ac​tively, users

63

Open NX-OS and Linux60

can enter the name of the script to be run after the python com ​mand at the CLI prompt. Here

is an ex​am​ple run of the script hello_world.py

 n9k-sw-1# cd bootflash:

 n9k-sw-1# python hello_world.py

 hello world!

 n9k-sw-1# show file hello_world.py

 #!/usr/bin/python

 print "hello world!"

 n9k-sw-1#

For more in​for​ma​tion about Python, see Sec​tion 7.2 Pro ​gram​ma ​bil​ity Tools for Net ​work En ​gi​-
neers.

Cisco pro​vides a set of helper li​brary pack​ages de​signed specif​i​cally for Python. These pack​ages
are pre-in​stalled on the NX-OS plat​form and are named "cli" and "cisco".

The cli Python pack​age is used to allow Python scripts run​ning on the Open NX-OS de​vice to

in​ter​act with the CLI to get and set con​fig​u​ra​tion on the de​vice. This li​brary has one func​tion
within it named cli . The input pa​ra​me​ters to the func​tion are the CLI com​mands the user de​-
sires to run, the out​put is a string rep​re​sent​ing the parser out​put from the CLI com​mand.

Here is an ex​am​ple of using the CLI li​brary to gather hard​ware ver​sion in​for​ma​tion

 import cli

 result = cli.cli("show version | beg Hardware")

 print result

Run​ning the ex​am​ple in Python re​sults in the fol​low​ing out​put:

 n9k-sw-1# python get_hardware.py

 Hardware

 cisco Nexus9000 C9396TX Chassis

 Intel(R) Core(TM) i3-3227U CPU @ 2.50GHz with 16402136 kB of memory.

 Processor Board ID SAL18370NXE

64

Open NX-OS and Linux 61

 Device name: n9k-sw-1

 bootflash: 51496280 kB

 Kernel uptime is 98 day(s), 21 hour(s), 16 minute(s), 43 second(s)

 Last reset at 180873 usecs after Tue Jun 23 18:15:50 2015

 Reason: Reset Requested by CLI command reload

 System version: 7.0(3)I2(1)

 Service:

 plugin

 Core Plugin, Ethernet Plugin

 Active Package(s):

The cli pack​age will ac​cept both show com​mands and con​fig​u​ra​tion com​mands in the cli func​tion.

In ad​di​tion to the cli pack​age, a "cisco" pack​age is pro​vided. The cisco pack​age pro​vides the fol​-
low​ing func​tion​al​ity:

Function Description

acl Adds the ability to create, delete, and modify Access Control Lists

bgp Functions around configuring BGP

cisco_secret Adjust Cisco passwords

feature Get information about supported and enabled features on NX-OS

interface Functions around manipulating interfaces

nxcli Contains useful CLI interaction utilities

ospf Functions around configuring OSPF

ssh Generate SSH key information

tacacs Runs and parsers TACACS+ status information

vrf Creates and deletes virtual routing and forwarding (VRF) tables

65

Open NX-OS and Linux62

The fol ​low​ing code sam ​ple uses the cisco pack ​age to change the state of all in ​ter ​faces to up.

 import cisco

 tp = cisco.Interface.interfaces()

 for tpint in tp:

 intf = cisco.Interface(tpint)

 intf.set_state()

The first line above im​ports the cisco pack​age into the Python script so func​tions within the
pack​age can be used. A for loop is then used to loop through each in​ter​face and set_s​tate().
set_s​tate with no op​tions will de​fault to set​ting the state of the in​ter​face to up.

ASIC-level Shell Access

Cisco Nexus Se​ries switches ar​chi​tec​ture en​ables ac​cess to the ASIC shell. You can use an ASIC
shell to ac​cess a shell prompt spe​cific to the de​vice front panel and fab​ric mod​ule line cards.

The fol​low​ing ex​am​ples de​scribe how you can ac​cess the com​mand-line broad​com based shell
(bcm-shell) and how to read from these ASICS, al​though it need not be lim​ited to these ASICs.

Ac​cess​ing the Broad​com Shell with the CLI (bcm-shell)

Syn​tax: bcm-shell module module_number [instance_number:command]

Query the Broad​com Shell for de​tailed VLAN in​for​ma​tion:

 n9k-sw-1# sh vlan id 101

 VLAN Name Status Ports

 ---- -------------------------------- --------- -------------------------------

 101 VLAN0101 active Po1, Po22, Eth1/1, Eth1/2

 Eth1/47, Eth1/48

 VLAN Type Vlan-mode

 ---- ----- ----------

66

Open NX-OS and Linux 63

 101 enet CE

 n9k-sw-1# bcm-shell module 1

 Warning: BCM shell access should be used with caution

 Entering bcm shell on module 1

 Available Unit Numbers: 0

 bcm-shell.0> vlan 101

 Current settings:

 VRF=3

 OuterTPID=0x8100

 LearnDisable=1

 UnknownIp6McastToCpu=0

 UnknownIp4McastToCpu=1

 Ip4Disable=0

 Ip6Disable=0

 Ip4McastDisable=0

 Ip6McastDisable=1

 Ip4McastL2Disable=0

 Ip6McastL2Disable=0

 L3VrfGlobalDisable=0

 MplsDisable=0

 CosqEnable=0

 MiMTermDisable=0

 Cosq=-277706854

 Ip6McastFloodMode=MCAST_FLOOD_UNKNOWN

 Ip4McastFloodMode=MCAST_FLOOD_UNKNOWN

 L2McastFloodMode=MCAST_FLOOD_UNKNOWN

 IfClass=17

 bcm-shell.0>

Query the Broad​com Shell for de​tailed MAC table in​for​ma​tion:

 n9k-sw-1# show mac address-table

 Legend:

 * - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC

 age - seconds since last seen,+ - primary entry using vPC Peer-Link,

 (T) - True, (F) - False

 VLAN MAC Address Type age Secure NTFY Ports

67

Open NX-OS and Linux64

 ---------+-----------------+--------+---------+------+----+------------------

 * 2501 5087.89d4.5495 static - F F Vlan2501

 * 2502 5087.89d4.5495 static - F F Vlan2502

 G - 5087.89d4.5495 static - F F sup-eth1(R)

 G 1 5087.89d4.5495 static - F F sup-eth1(R)

 G 101 5087.89d4.5495 static - F F sup-eth1(R)

 G 102 5087.89d4.5495 static - F F sup-eth1(R)

 G 2501 5087.89d4.5495 static - F F sup-eth1(R)

 G 2502 5087.89d4.5495 static - F F sup-eth1(R)

 G 201 5087.89d4.5495 static - F F sup-eth1(R)

 n9k-sw-1#

 n9k-sw-1# bcm-shell module 1

 Warning: BCM shell access should be used with caution

 Entering bcm shell on module 1

 Available Unit Numbers: 0

 bcm-shell.0> l2 show

 mac=50:87:89:d4:54:95 vlan=31174 GPORT=0x80000202 port=0x80000202(vxlan) Static Hit

 mac=50:87:89:d4:54:95 vlan=31173 GPORT=0x80000201 port=0x80000201(vxlan) Static Hit

 bcm-shell.0>

Summary

The Open NX-OS frame​work al​lows users to lever​age the ca​pa​bil​i​ties of an un​der​ly​ing Linux
dis​tri​b​u​tion. It al​lows the in​stal​la​tion and man​age​ment of a wide-va​ri​ety of third party tools and
ap​pli​ca​tions that ex​tend the ca​pa​bil​i​ties of the switch, en​abling pow​er​ful new use-cases. Open
NX-OS is de​signed fol​low​ing the lat​est soft​ware de​vel​op​ment best prac​tices and pro​vides best
of breed ca​pa​bil​i​ties such as process iso​la​tion, restarta​bil​ity and mod​u​lar​ity - char​ac​ter​is​tics
that make the sys​tem more re​silient.

68

Open NX-OS and Linux 65

Third-party Application Integration

The Open NX-OS ar​chi​tec​ture al​lows users to ex​pand base func​tion​al​ity on the Cisco Nexus
switch​ing plat​forms through the in​stal​la​tion of com​pat​i​ble pack​ages. Third-party ap​pli​ca​tions
or tools may ad​dress:

• Configuration Management

• Network Telemetry and Analytics

• Network Monitoring

• Custom Network Requirements

Configuration Management Tools

Cisco Open NX-OS sup​ports in​tent-based au​toma​tion through in​te​gra​tion of agent soft​ware for
Pup​pet and Chef. Au​toma​tion of var​i​ous net​work pro​vi​sion​ing, con​fig​u​ra​tion, and man​age​ment
tasks from a cen​tral server will en​able a dra​matic re​duc​tion in net​work de​ploy​ment and con​fig​-
u ​ra​tion times, while elim​i​nat​ing man​ual tasks that are repet​i​tive and er​ror-prone.

Fig​ure: Scal​able Net​work Man​age​ment with Con​fig​u​ra​tion Man​age​ment Tools

The pro​vi​sion​ing of net​work con​structs like VLANs, ports, net​work routes, qual​ity of ser​vice
(QoS) pa​ra​me​ters, and ac​cess con​trol can be op​ti​mized with au​toma​tion tool in​te​gra​tion.

69

Open NX-OS and Linux66

Lifecycle man​age​ment op​er​a​tions such as firmware and con​fig​u​ra​tion man​age​ment, com​pli​-
ance au​dit​ing, and per​for​mance mon​i​tor​ing are made sub​stan​tially eas​ier.

Puppet and Chef Agents

Fig​ure: Using Stan​dard Tools like YUM to in​stall Pup​pet and Chef Agents

70

Open NX-OS and Linux 67

The graphic de ​picts the work ​flow for the Pup ​pet/Chef agent sup ​port.

• The Puppet agent is installed via yum as an RPM.

• Configure agent to talk to proper server / master.

• User installs Chef cookbook / Puppet manifest as an example along with Cisco utility
libraries on the server/master.

• User creates a recipe or defines a manifest using the resources available in the
cookbook/module.

• Switch agent stays in sync with Puppet/Chef master for updated catalog/cookbooks.

If agent is configured to run periodically, it will obtain and download the
cookbook/catalog and attempt to remediate the network element/switch to the
desired state.

• The Puppet/Chef agent utilizes NX-API to apply changes as defined by the
Puppet/Chef master server to the switch.

Fig​ure: Types and Providers for Pup​pet and Chef sup​ported out-of-the-box with Open NX-OS

71

Open NX-OS and Linux68

The graphic list sam ​ples sup ​ported agents / provider ca ​pa ​bil​i​ties. The list can be ex ​tended,
lever​ag​ing the pup​pet work​flow via the util​ity classes. The user can de​velop ex​ten​sions to Cisco
Pup​pet mod​ules on GitHub. The agent is also ex​ten​si​ble by pass​ing CLI com​mands.

 cisco_command_config resource:

 cisco_command_config { " feature-portchannel1":

 command => " interface port channel1\n

 description nwk1-0106-ic4-gw1|Po2407\n

 no switchport\n

 ip address 10.1.1.51/31\n }

Sample Puppet Manifest

The Pup​pet man​i​fest for in​ter​face con​fig​u​ra​tion sets Eth​er​net 1/1 with an IP ad​dress of 10.​1.​43.​
43/​24.​

 cisco_interface { "ethernet1/1" :

 shutdown => false,

 description => 'managed by puppet',

 switchport_mode => disabled,

 ipv4_address => '10.1.43.43',

 ipv4_netmask_length => 24,

 }

Sam​ple Pup​pet man​i​fest for the in​stal​la​tion of tcollector

 class tcollector {

 package { 'tcollector':

 ensure => present,

 }

 service { "tcollector":

 ensure => running,

 }

 }

Ansible

An​si​ble is an au​toma​tion tool for cloud pro​vi​sion​ing, con​fig​u​ra​tion man​age​ment and ap​pli​ca​tion
de​ploy​ment. It is agent-less, and uses the YAML markup lan​guage in the form of An​si​ble Play​books.

72

Open NX-OS and Linux 69

Fig​ure: An​si​ble Con​fig​u​ra​tion Man​age​ment Work​flow

Here is a sam​ple An​si​ble play​book that cre​ates a sta​tic route on a NX-OS de​vice. Within this
sam​ple a sta​tic route for 10.​10.​1.​0/​24 is cre​ated with a next hop of 10.​20.​2.​2.

Sample Ansible Playbook

 # Static route with tag and preference set

 - nxos_static_routes: prefix=10.10.1.0/24 next_hop=10.20.2.2 tag=90 pref=80 host={{

inventory_hostname }}

Open NX-OS sup​ports a range of con​fig​u​ra​tion man​age​ment tools like Pup​pet, Chef, and An​si​-
ble and is ex​ten​si​ble to sup​port Salt, CFEngine and oth​ers.

Telemetry Applications

Open NX-OS sup​ports a wide range of third-party teleme​try ap​pli​ca​tions, and can sup​port a
pull or push model for teleme​try data to be ex​tracted from the de​vices.

Splunk

Splunk is a web-based data col​lec​tion, analy​sis, and mon​i​tor​ing tool. Splunk En​ter​prise helps
you gain valu​able op​er​a​tional in​tel​li​gence from your ma​chine-gen​er​ated data. It comes with a
full range of pow​er​ful search, vi​su​al​iza​tion and pre-pack​aged con​tent for use-cases where any
user can quickly dis​cover and share in​sights. The raw data is sent to the Splunk server using the
Splunk Uni​ver​sal For​warder. Uni​ver​sal For​warders pro​vide re​li​able and se​cure data col​lec​tion
from re​mote sources while for​ward​ing data into Splunk En​ter​prise for in​dex​ing and con​sol​i​da​-

73

Open NX-OS and Linux70

tion. A Splunk En​ter ​prise in​fra ​struc ​ture can scale to tens of thou ​sands of re​mote sys​tems, col ​-
lect​ing ter​abytes of data with min​i​mal im​pact on per​for​mance.

For ad​di​tional in​for​ma​tion, see http://​www.​splunk.​com/​en_​us/​download/​universal-
forwarder.​html.

 NX-OS with Splunk en​ables net​work op​er​a​tors to:

• Gain visibility into their infrastructure

• Track detailed network inventory

• Track power usage and temperature

• Authenticate and audit configuration changes

• Collect performance data from network devices

tcollector

tcol​lec​tor is a client-side process that gath​ers data from local col​lec​tors and pushes the data to
OpenTSDB. The tcol​lec​tor agent is in​stalled in the na​tive Linux filesys​tem.

For ad​di​tional in​for​ma​tion, see http://​opentsdb.​net/​docs/​build/​html/​user_​guide/​utilities/​
tcollector.​html.

Collectd

col​lectd is a dae​mon which col​lects sys​tem per​for​mance sta​tis​tics pe​ri​od​i​cally and pro​vides
mech​a​nisms to store the val​ues in a va​ri​ety of ways as for ex​am​ple in RRD files.

col​lectd gath​ers sta​tis​tics about the sys​tem it is run​ning on and stores this in​for​ma​tion. Sta​tis​-
tics can be used for per​for​mance analy​sis and ca​pac​ity plan​ning.

For ad​di​tional in​for​ma​tion, see https://​collectd.​org

Ganglia

Gan​glia is a scal​able, dis​trib​uted mon​i​tor​ing sys​tem for high-per​for​mance com​put​ing sys​tems
such as clus​ters and grids. It is based on a hi​er​ar​chi​cal de​sign tar​geted at fed​er​a​tions of clus​-

74

Open NX-OS and Linux 71

ters. It lever​ages widely used tech ​nolo​gies such as XML for data rep​re ​sen​ta ​tion, XDR for com​-
pact, portable data trans​port, and RRD​tool for data stor​age and vi​su​al​iza​tion.

For ad​di​tional in​for​ma​tion, see http://​ganglia.​info.

Nagios

Na​gios is an open source ap​pli​ca​tion which pro​vides mon​i​tor​ing of net​work ser​vices (through
ICMP, SNMP, SSH, FTP, HTTP etc), host re​sources (CPU load, disk usage, sys​tem logs, etc.) and
no​ti​fi​ca​tion for servers, switches, ap​pli​ca​tions, and ser​vices. Na​gios pro​vides re​mote mon​i​tor​-
ing through the Na​gios re​mote plu​gin ex​ecu​tor (NRPE) and through SSH or SSL tun​nels.

For more in​for​ma​tion, see https://​www.​nagios.​org

Open Source Protocols

Open NX-OS comes pack​aged with a com​pre​hen​sive suite of pro​to​cols. Cus​tomers may be in​-
ter​ested in aug​ment​ing or re​plac​ing de​fault mod​ules and pack​ages with cus​tom-de​vel​oped or
open source mod​ules. Ex​am​ples of these mod​ules could be Open​LLDP, OpenSSH, etc.

Open LLDP

LLDP is an in​dus​try stan​dard pro​to​col de​signed to sup​ple​ment pro​pri​etary Link-Layer dis​cov​-
ery pro​to​cols such as EDP or CDP. The goal of LLDP is to pro​vide an in​ter-ven​dor com​pat​i​ble
mech​a​nism to de​liver Link-Layer no​ti​fi​ca​tions to ad​ja​cent net​work de​vices.

For more in​for​ma​tion, see https://​vincentbernat.​github.​io/​lldpd/​index.​html

Custom Applications on Open NX-OS

Cisco SDK

The Cisco SDK is a de​vel​op​ment-kit based on Yocto 1.2. It con​tains all of the tools needed to
build ap​pli​ca​tions for na​tive in​stal​la​tion on a Cisco Nexus switch be​gin​ning with NX-OS Re​lease
7.0(3)I2(1). The basic com​po​nents are the C cross-com​piler, linker, li​braries, and header files
that are com​monly used in many ap​pli​ca​tions. The SDK can be used to de​velop ap​pli​ca​tions and

75

Open NX-OS and Linux72

pack​age them as RPMs to be in​stalled on a switch. The SDK should be dowloaded and in​stalled
on your Linux build server in your data cen​ter for your ap​pli​ca​tion de​vel​op​ment ef​forts.

Basic ex​am​ple of build​ing an ap​pli​ca​tion into an RPM:

Es​sen​tially if the ap​pli​ca​tion suc​cess​fully builds using "make", then it can be pack​aged into an
RPM. The pack​age should con​tain the meta data for use with au​to​conf and RPM pack​ag​ing
tools. As​sum​ing all of the de​pen​den​cies are met, you can just use the stan​dard RPM build pro​-
ce​dure:

 bash$ mkdir rpm

 bash$ cd rpm

 bash$ mkdir BUILD RPMS SOURCES SPECS SRPMS

 bash$ cp ../example-app-1.0.tgz SOURCES

 bash$ cp ../example-app.spec SPECS

 bash$ rpmbuild -v --bb SPECS/example-app.spec

The SDK is avail​able for down​load at: http://​developer.​cisco.​com/​opennxos . This will also
con​tain de​tailed doc​u​men​ta​tion around the SDK in​stal​la​tion and cus​tom ap​pli​ca​tion build​ing
process, to as​sist user de​vel​op​ment ef​forts.

Many com​monly used ap​pli​ca​tions are al​ready pre-built and avail​able at http://​developer.​
cisco.​com/​opennxos

Conclusion

Cisco Open NX-OS al​lows net​work op​er​a​tors and de​vel​op​ers to in​te​grate third-party and cus​-
tom ap​pli​ca​tions di​rectly onto Nexus switch plat​forms. These ap​pli​ca​tions can ad​dress a wide
va​ri​ety of con​fig​u​ra​tion man​age​ment, teleme​try and ad​vanced net​work mon​i​tor​ing chal​lenges.

76

Network Programmability
Fundamentals

Network Programmability Fundamentals 77

Introduction

The dri​vers for net​work pro​gram​ma​bil​ity and soft​ware-de​fined net​work​ing are nu​mer​ous and
grow​ing. Net​work in​fra​struc​ture com​po​nents rep​re​sent one of the last el​e​ments of the IT ser​-
vice de​liv​ery chain that re​quire man​ual pro​vi​sion​ing.

Au​tomat​ing and or​ches​trat​ing net​work in​fra​struc​tures through pro​gram​matic in​ter​faces can
pro​vide many ben​e​fits, in​clud​ing re​duced pro​vi​sion​ing time and in​creased ser​vice ve​loc​ity. A
more dy​namic, agile, re​peat​able, and re​li​able ap​proach to net​work de​vice con​fig​u​ra​tion, op​er​a​-
tion and mon​i​tor​ing is nec​es​sary to keep pace with the rapid change of busi​ness today.

Au​toma​tion and or​ches​tra​tion method​olo​gies that have been suc​cess​fully ap​plied to com​pute,
vir​tu​al​iza​tion, and stor​age plat​forms in the data cen​ter can also be ap​plied to net​work fab​rics.
Per​haps the most im​pact​ful of these method​olo​gies is the uti​liza​tion of Ap​pli​ca​tion Pro​gram​-
ming In​ter​faces (APIs). When net​work plat​forms ex​pose APIs as a means for con​fig​u​ra​tion, con​-
trol, and mon​i​tor​ing, it be​comes pos​si​ble to re​place ex​ist​ing man​ual processes with au​to​-
mated work​flows.

The ex​ten​si​bil​ity of an API al​lows for net​work com​po​nents to be con​trolled and man​aged in a
cen​tral​ized fash​ion. Some prac​ti​cal ex​am​ples in​volv​ing cen​tral​ized man​age​ment through APIs
in​clude:

• Network controllers leverage APIs to manage and operate the network inclusive of
monitoring key performance indicators (KPI) such as latency, jitter and delay. The
controllers' knowledge allows for routine change actions to be performed, such as
dynamic traffic movement away from identified saturated links.

• Policy controllers leverage APIs to apply policies to meet the security and performance
requirements of a given application, service, or user - all based on high-level policy
definitions.

This sec​tion will pro​vide an overview of non-pro​gram​matic man​age​ment in​ter​faces avail​able on
Cisco Nexus switch​ing plat​forms, as well as in​tro​duc​ing the new open NX-OS pro​gram​matic in​-
ter ​faces for Cisco Nexus switches.

79

Network Programmability Fundamentals 79

Conventional Network Interfaces

Net​work de​vices have tra​di​tion​ally been man​aged using the Com​mand Line In​ter​face (CLI) and
with pro​to​cols such as Sim​ple Net​work Man​age​ment Pro​to​col (SNMP) and Net​work Con​fig​u​ra​-
tion Pro​to​col (NET​CONF).

Command Line Interface (CLI)

CLI has been the pri​mary in​ter​face to in​ter​act with net​work de​vices, used to man​age, op​er​ate
and trou​bleshoot the net​work de​vice through​out its life​cy​cle. CLI is a very com​pre​hen​sive in​-
ter​face to lever​age, but has lim​i​ta​tions when used as the in​ter​face for au​toma​tion:

• The CLI was designed as a human-readable interface, returning unstructured text data
to the operator.

• This unstructured text data requires post-processing (screen scraping) to transcode to
machine-friendly formatting.

• CLI does not return error/exit codes which can be programmatically acted upon.

• CLI is a single-threaded serial interface, reducing the ability to manipulate multiple
objects at the same time.

"Screen Scrap​ing" is the process of using text-pro​cess​ing tools or in​ter​preters to ex​am​ine the
re​sults of CLI com​mands ex​e​cuted via script. This ap​proach was de​vel​oped as a means to pro​-
vide some rudi​men​tary lev​els of au​toma​tion, but has sev​eral draw​backs:

• Requires domain-specific scripting skills and often requires the use of regular
expressions.

• Increased operational costs due to script repository maintenance, particularly with CLI
syntax changes.

• Lack of interoperability / applicability across heterogeneous network devices.

Simple Network Management Protocol (SNMP)

SNMP is an in​dus​try stan​dard pro​to​col for man​ag​ing net​work de​vices, and in​cludes an ap​pli​ca​-
tion layer pro​to​col, a data​base schema, and a set of data ob​jects. SNMP ex​poses man​age​ment

81

Network Programmability Fundamentals80

data in the form of ac​ces​si​ble vari​ables on the sys​tem, de​scrib​ing the sys​tem con​fig​u​ra​tion in its
en​tirety. These vari​ables can be queried (and some​times set) by man​age​ment ap​pli​ca​tions.

SNMP is widely used for mon​i​tor​ing of net​work de​vices. While it can be lever​aged for con​fig​ur​-
ing net​work de​vices, it is not widely de​ployed for this pur​pose. This is due in part to the fact
SNMP lacks a de​fined dis​cov​ery process which makes it chal​leng​ing to find the cor​rect MIB
(Man​age​ment In​for​ma​tion Base) mod​ules and el​e​ments for each plat​form. SNMP also suf​fers
from lim​i​ta​tions in​her​ent to use of the UDP pro​to​col which is state​less and con​sid​ered a less-
than-re​li​able trans​port. It has also been bur​dened by a lack of ef​fec​tive MIB stan​dard​iza​tion ef​-
forts.

NETCONF

NET​CONF is an​other con​fig​u​ra​tion man​age​ment pro​to​col, and con​tin​ues to be de​vel​oped as an
IETF stan​dard. The NET​CONF pro​to​col de​fines a sim​ple mech​a​nism through which a net​work
de​vice can be man​aged, con​fig​u​ra​tion data can be re​trieved, and new con​fig​u​ra​tion data can be
up​loaded and ma​nip​u​lated.

The NET​CONF pro​to​col uses re​mote pro​ce​dure calls for com​mu​ni​ca​tion. The data pay​load is
en​coded within XML for NET​CONF RPC calls. The data is sent to the server over a se​cure, con​-
nec​tion-ori​ented pro​to​col - se​cure shell (SSH) is an ex​am​ple of this. The server re​sponse is also
en​coded in XML. The key part of this mech​a​nism is the re​quest, and both the re​quest and the
re​sponse are fully de​scribed in an agreed upon com​mu​ni​ca​tion model, mean​ing both par​-
ties un​der​stand the syn​tax that is being ex​changed.

NET​CONF has a set of trans​port pro​to​col re​quire​ments which in​clude:

• Connection-oriented communication

• Authentication

• Connection data integrity

Al​though Cisco and NX-OS plat​forms have ex​ten​sive sup​port for NET​CONF, it will not be dis​-
cussed in de​tail in this book.

CLI and SNMP have pre​sented chal​lenges for net​work au​toma​tion. To ad​dress these lim​i​ta​-
tions, Cisco has in​tro​duced NX-API with the launch of the Nexus 9000 Se​ries. The fol​low​ing

82

Network Programmability Fundamentals 81

sec​tion in​tro​duces NX-API CLI and the NX-API Sand​box. This pro​vides a new way to in​ter​-
act with the net​work - using APIs and pro​gram​ma​bil​ity par​a​digms.

83

Network Programmability Fundamentals 83

Programmable Network Elements

The pre​vi​ous chap​ter pre​sented some of the key API-re​lated con​cepts and tech​nolo​gies. In this
chap​ter we will ex​plore where APIs can be ex​posed within a net​work.

Just as there is a hi​er​ar​chy as​so​ci​ated with most net​work ar​chi​tec​tures, there is a hi​er​ar​chy as​-
so​ci​ated with the el​e​ments that can be con​trolled via APIs. The hi​er​ar​chy il​lus​trated below re​-
flects the na​ture of the el​e​ments and APIs ex​posed at each layer, fo​cus​ing specif​i​cally on two
key fac​tors: ab​strac​tion and scope of in​flu​ence.

Figure: Various Programmable Elements in the Network

85

Network Programmability Fundamentals84

Device Layer

In the above ex​am​ple, de​vices re​side at the low​est layer of the hi​er​ar​chy, with ap​pli​ca​tions
and con​trollers using APIs to com​mu​ni​cate with the de​vice to achieve some de​sired func​tion​al​-
ity.

An im​por​tant thing to con​sider at this layer is that vis​i​bil​ity and scope of in​flu​ence is gen​er​ally
lim​ited to a sin​gle de​vice. APIs at this layer are used to con​trol de​vice con​fig​u​ra​tions and func​-
tions, as well as to cap​ture in​for​ma​tion about things that are con​trolled by or vis​i​ble to the de​-
vice.

Be​cause NX-OS is based on Linux and pro​vides ac​cess to a Bash shell, it's pos​si​ble for APIs to be
lever​aged not only by de​vices ex​ter​nal to the switch, but also di​rectly on the switch. In the fol​-
low​ing ex​am​ple, a Python script using an API li​brary is ex​e​cuted "off-box" to per​form a func​tion
on one or more switches:

Fig​ure: Run​ning the User Logic out​side of the Switch on a Server or VM

86

Network Programmability Fundamentals 85

In this ex​am​ple, a Python script using an API li​brary is ex​e​cuted "on-box" to per​form the
same func​tion. The tar​get of this script is the local switch, but there is noth​ing pre​vent​ing a
script ex​e​cuted on one Nexus switch from using APIs to ma​nip​u​late other switches in the net​-
work.

Fig​ure: Run​ning the User Logic within the Switch, Na​tively or in a Con​tainer

The abil​ity to ex​e​cute a script "on-box" can offer sig​nif​i​cant value, par​tic​u​larly when ac​tions
must be taken while a switch is not reach​able by tra​di​tional ac​cess meth​ods.

For ex​am​ple, it might be de​sir​able that the ac​cess ports on a switch be held in a down state
until up​link con​nec​tiv​ity has been es​tab​lished. A Python script can con​fig​ure these ac​cess ports
in an ad​min​is​tra​tively down state at boot. When the up​links be​come ac​tive, a Python script trig​-
gered by the Em​bed​ded Event Man​ager (EEM) could then bring the ac​cess ports on​line.

Low-Level Device APIs

It is also pos​si​ble for ap​pli​ca​tions to con​trol a sub​set of switch func​tion​al​ity by in​ter​act​ing with
an au​tonomous sub​sys​tem within the de​vice. For ex​am​ple, some of the ASICs that per​form low-
level packet switch​ing may ex​pose an API that can be lever​aged by scripts to ex​pose low-level
coun​ters or af​fect low-level packet for​ward​ing func​tions:

87

Network Programmability Fundamentals86

Fig​ure: Using APIs Ex​posed by ASICs on Net​work De​vices

Controller Layer

The con​trol layer re​sides above the de​vice layer. Con​trollers are typ​i​cally com​pute de​vices
that:

• Provide network layer abstraction by hiding away details of individual devices and their
connectivity. Applications communicate with this abstraction layer.

• Expose and use APIs in two directions. "Northbound" APIs are consumed by applications
that need to use the controller's services; "southbound" APIs communicate with
managed devices.

• Provide increased visibility through the capture, consolidation and correlation of data
describing device-state and status, path and link characteristics, and many other types
of information from southbound devices.

• Analyze and interpret data for consumption by northbound applications.

• Implement policy by accepting a policy definition, and manipulating the
configuration of managed devices.

In gen​eral, con​trollers pro​vide a in​creased level of vis​i​bil​ity, in​tel​li​gence, ab​strac​tion, and scope
of in​flu​ence than is pos​si​ble at the de​vice layer.

88

Network Programmability Fundamentals 87

Fig​ure: Con​troller Scope of In​flu​ence

89

Network Programmability Fundamentals88

Some ex​am ​ples of API-dri ​ven Cisco con ​trollers in ​clude:

• APIC provides policy-driven management of data center network fabrics to streamline
application deployment and security.

• Enterprise Controller extends policy-driven management capabilities to routers and
switches throughout enterprise networks.

• Cisco Open SDN Controller provides a protocol conversion, network abstraction, and
application delivery platform for Cisco and third-party developers.

• Mobility Services Engine enables the development of sophisticated, secure applications
built around high-fidelity location tracking and analysis.

Higher Layer Orchestration

Some en​vi​ron​ments uti​lize or​ches​tra​tion tools or ap​pli​ca​tions that re​side above the con​troller
layer or di​rectly above the de​vice layer. This lay​er​ing cre​ates a "stack" of API providers. Each
layer has the ca​pa​bil​ity of ex​pos​ing "north​bound" APIs that allow other ap​pli​ca​tions to in​ter​act
with the stack.

To sum​ma​rize, APIs are of​fered at each layer of the in​fra​struc​ture. At each suc​ces​sive layer
through​out the ar​chi​tec​ture, the scope of in​flu​ence and level of ab​strac​tion will in​crease.

90

Network Programmability Fundamentals 87

NX-API CLI

The NX-API CLI is a web in​ter​face through which com​mands, tra​di​tion​ally en​tered via the CLI,
can be en​coded using ei​ther XML or JSON, and trans​mit​ted via HTTP or a se​cure trans​port
(HTTPS) to the de​vice. The com​mands are ex​e​cuted on-box and re​sponses are re​turned in ei​-
ther XML or JSON for​mat.

The NX-API CLI can be char​ac​ter​ized as an "en​cap​su​lated CLI" sup​port​ing both NX-OS com​-
mands and those avail​able in bash. In con​trast, NX-API REST in​ter​face pro​vides a means
through which de​vice con​fig​u​ra​tions can be ma​nip​u​lated via REST​ful API calls. Both the NX-API
CLI and NX-API REST are ser​viced by an nginx web server on the back end.

NX-API CLI Security

NX-API CLI lever​ages HTTPS to se​cure and en​crypt data. NX-API CLI pro​vides a ses​sion-based
cookie nxapi_auth when users first au​then​ti​cate. The ses​sion cookie is used to avoid re-au​-
then​ti​ca​tion dur​ing com​mu​ni​ca​tion.

If the ses​sion cookie is not in​cluded with sub​se​quent re​quests, an​other ses​sion cookie is re​-
quired and is achieved through a full au​then​ti​ca​tion process. Avoid​ing un​nec​es​sary use of the
au​then​ti​ca​tion process helps to re​duce the work​load on the de​vice.

Note: An nxapi_auth cookie ex​pires after 600 sec​onds (10 min​utes). This value is not con​fig​-
urable.

Working with NX-API CLI

To en​able NX-API CLI, enter the fol​low​ing com​mand:

 feature nxapi

The fol​low​ing di​a​gram shows an NX-API call, demon​strat​ing a show clock re​quest.

91

Network Programmability Fundamentals90

Fig​ure: Re​quest and Re​sponse Se​quence of NX-API CLI

NX-API CLI Developer Sandbox

Cisco has de​vel​oped a tool to help cus​tomers be​come fa​mil​iar with the NX-API CLI by cre​at​ing
the NX-API CLI De​vel​oper Sand​box. This is a web in​ter​face that al​lows users to make NX-API
in​ter​face calls, and it can transcode tra​di​tional Nexus CLI com​mands into JSON or XML for​mat.

The NX-API CLI De​vel​oper Sand​box is di​vided into three com​po​nents:

• Post Pane:

This Pane is composed into three major categories:

92

Network Programmability Fundamentals 91

Text Area: This is where the user can enter show, configuration, or bash
commands.

Message format: XML, or JSON

Command Type:

cli_show represents the CLI show commands (such as show version or show

clock)

cli_show_asci represents the CLI show command that expects ASCII
output. This aligns with existing scripts that parse ASCII output. Users are
able to use existing scripts with minimal changes.

cli_conf represents the CLI for the configuration commands

bash represents the Bash command

Post

• Request Pane:

Provides a brief description of the request elements that are displayed

Includes a Python code output option

• Response Pane:

The POST response will be displayed in this pane

In order to ac​cess the NX-API CLI De​vel​oper Sand​box, point your browser to the IP or host​-
name of a Nexus switch.

 http://<<switch ip>>

​The au​then​ti​ca​tion page will prompt for a user​name and pass​word. Once au​then​ti​cated, the
sand​box in​ter​face will be dis​played:

93

Network Programmability Fundamentals92

Fig​ure: NX-API CLI De​vel​oper Sand​box Web In​ter​face

94

Network Programmability Fundamentals 93

Fig​ure: Screen​shot of the 'show clock' Ex​am​ple Work​flow

The user can also lever​age the Python func​tion in NX-API CLI De​vel​oper Sand​box in order to
gen​er​ate Python code.

95

Network Programmability Fundamentals92

Fig​ure: Au​to​matic Python Code Gen​er​a​tion with NX-API CLI

Python code gen​er​ated by the NX-API CLI De​vel​oper Sand​box can be copied into an ed​i​tor for
ex​e​cu​tion using the Python in​ter​preter.

Summary

NX-API CLI is a start​ing point for net​work en​gi​neers to fa​mil​iar​ize them​selves with net​work
pro​gram​ma​bil​ity via the NX-API.

NX-API REST pro​vides the next level of pro​gram​ma​bil​ity with a REST​ful in​ter​face to a data
model, en​abling model-dri​ven pro​gram​ma​bil​ity. NX-API REST is dis​cussed in more de​tail in the
next chap​ter.

96

Model Driven
Programming

Model Driven Programming 97

Introduction

When rout​ing plat​forms were first in​tro​duced in the 1980s, the pace of new fea​ture de​vel​op​-
ment was fre​netic. It was com​mon prac​tice for new de​vel​op​ment teams to be formed al​most
daily and for them to work in rel​a​tive iso​la​tion. These teams de​vel​oped every el​e​ment of a new
fea​ture, in​clud​ing the com​mand line in​ter​face (CLI) and the data struc​tures that were nec​es​sary
for its con​fig​u​ra​tion, op​er​a​tion, and mon​i​tor​ing.

This prac​tice per​sisted for years and was preva​lent in​dus​try-wide, there​fore the syn​tax as​so​ci​-
ated with fea​tures such as BGP, QOS, or VPNs var​ied widely across plat​forms and soft​ware re​-
leases.

Fig​ure: Tra​di​tional In​for​ma​tion Store Model - In​ter​nal to each Process

This soft​ware de​vel​op​ment model was pro​duc​tive for cus​tomers as it sup​ported rapid fea​ture
ve​loc​ity. Over time, how​ever, this model in​hib​ited the abil​ity to con​fig​ure and man​age net​works
at scale. Con​fig​ur​ing and op​er​at​ing a sin​gle fea​ture within a large net​work could re​quire the use
of sev​eral dif​fer​ent CLIs.

99

Model Driven Programming98

Legacy script ​ing tools such as Tcl and Ex​pect were lever​aged to op ​ti​mize con​fig​u ​ra ​tion work​-
flows and de​liver more re​peat​able, less er​ror-prone re​sults, but they still had to be de​vel​oped
and main​tained for po​ten​tially many dis​parate CLI in​ter​faces.

As the net​work​ing in​dus​try adopts pro​gram​matic net​work de​vice ac​c​cess meth​ods, APIs and
model-dri​ven soft​ware in​ter​faces offer a struc​tured way to ac​cess and au​to​mate the net​work
de​vice.

This chap​ter will ex​plore so​lu​tions to these legacy net​work man​age​ment is​sues, which can be
ad ​dressed with data model con ​cepts and the NX-API REST in ​ter ​face.

100

Model Driven Programming 99

Model-driven Programming

Data mod​els and ap​pli​ca​tion pro​gram​ma​ble in​ter​faces (APIs) have shown enor​mous
promise ad​dress​ing the pre​vi​ously de​scribed prob​lems and have been avail​able in a num​ber of
forms since the early 2000s.

A data model is a schema or spec​i​fi​ca​tion that de​scribes the con​fig​u​ra​tion and op​er​a​tional state
as​so​ci​ated with the el​e​ments and fea​tures of a rout​ing or switch​ing plat​form. Net​work de​vices
that im​ple​ment a data model, like the Cisco Open NX-OS and IOS-XR plat​forms, typ​i​cally store
the con​fig​u​ra​tion and op​er​a​tional data in a cen​tral​ized data store, and ex​pose model via an API
frame​work.

Fig​ure: Mod​ern, Cen​tral​ized In​for​ma​tion Store Model in Cisco Open NX-OS

In a model-based ar​chi​tec​ture, CLI ma​nip​u​lates the model rather than in​di​vid​ual fea​tures or el​-
e​ments. After an up​date to the data model, ap​plic​a​ble net​work fea​tures or el​e​ments will
react to any changes in the model. Every fea​ture in​di​vid​u​ally main​tains its op​er​a​tional state and

101

Model Driven Programming100

per​for​mance data within the data model. The pres​ence of a data model im​ple​men​ta​tion in a
net​work plat​form en​ables pro​gram​matic in​ter​faces, such as NX-API REST.

The Nature of Data Models

Data mod​els can be im​ple​mented using nu​mer​ous data rep​re​sen​ta​tion and stor​age for​mats, in​-
clud​ing ar​rays, linked lists, stacks, and graphs (e.g hi​er​ar​chi​cal trees). The hi​er​ar​chi​cal tree is
very ef​fi​cient in rep​re​sent​ing repet​i​tive and hi​er​ar​chi​cal data and is typ​i​cally as​so​ci​ated with
rout​ing or switch​ing plat​form con​fig​u​ra​tions. There​fore it is the most com​mon data model for​-
mat used for net​work​ing plat​forms.

Fig​ure: In​for​ma​tion Store Model - Hi​er​ar​chi​cal Tree of Ob​jects

Tree-based data mod​els are char​ac​ter​ized by nodes that can have par​ents, chil​dren, or both.
 The root of the tree has child nodes but no par​ent. Leafs have par​ents but no chil​dren, and
nodes have both; as il​lus​trated above. In many data model im​ple​men​ta​tions there are po​ten​-
tially one or more trees, each con​tain​ing in​for​ma​tion about some major group or im​por​tant di​-
vi​sion of in​for​ma​tion per​tain​ing to a mod​eled ob​ject.

102

Model Driven Programming 101

Data mod ​els en​able data to be eas​ily struc​tured, grouped, and repli​cated to rep​re ​sent in​for​-
ma​tion re​lated to net​work de​vices, fea​tures, and so​lu​tions. The ex​am​ple below rep​re​sents a
data model of net​work in​ter​faces, where there is:

• a root node described by the category "interfaces"

• child-nodes for various interface types and discrete interfaces

• leafs containing information that pertains to specific object instances (interfaces),
including configuration and operational state

Fig​ure: In​her​i​tance Re​la​tion​ship be​tween Par​ent-Child Ob​jects in Ob​ject Store

Data mod​els can be used to en​force data con​sis​tency and va​lid​ity. Rules gov​ern data model
struc​tures, in​clud​ing the man​ner in which in​for​ma​tion can be in​serted, mod​i​fied, ac​cessed,
or deleted, and who is able to ma​nip​u​late the data model. These rules en​sure that data is main​-
tained in a known, valid state.

Since data mod​els rep​re​sent the com​plete state of the net​work plat​form at any point in time, it
is pos​si​ble to im​ple​ment and uti​lize re​cov​ery fea​tures such as back​ups and snap​shots, al​low​ing
con​fig​u​ra​tion changes to be val​i​dated and rolled-back if nec​es​sary.

Data mod​els are ex​ten​si​ble; they can grow and adapt to ac​com​mo​date ad​di​tions or changes
to fea​tures and el​e​ments, pro​vided any rules gov​ern​ing the struc​ture of the data model are ob​-
served.

103

Model Driven Programming102

Data mod ​els are flex​i​ble; once a model struc ​ture is cho ​sen, it can be used to en ​code more than
one model si​mul​ta​ne​ously to meet the needs of mul​ti​ple ad​min​is​tra​tive au​di​ences.

The Value of Data Models

A data model's struc​ture, con​sis​tency, data val​i​da​tion, flex​i​bil​ity, and ex​ten​si​bil​ity en​able a shift
from hu​man- or script-based meth​ods of de​vice con​fig​u​ra​tion to ma​chine-based, pro​gram​-
matic meth​ods.

Once the struc​ture and rules gov​ern​ing the use of a data model are de​fined, it is pos​si​ble to ex​-
pose a pro​gram​matic in​ter​face that en​ables ac​cess to, and ma​nip​u​la​tion of, the in​for​ma​tion
con​tained therein.

These pro​gram​matic in​ter​faces lever​age tech​nolo​gies al​ready dis​cussed, such as data in​ter​-
change for​mats (XML, JSON), trans​ports (HTTP, RPC), and pro​to​cols (NET​CONF, REST​conf) to
en​able re​mote ap​pli​ca​tions and con​trollers to man​age and mon​i​tor the net​work plat​forms.

Pro​gram​matic in​ter​faces form the foun​da​tion of soft​ware-de​fined net​works (SDN) and allow
net​work plat​forms to be con​trolled in a more rapid, dy​namic, and re​peat​able man​ner.

Data Models and YANG

Data mod​els have been in use on the Cisco IOS-XR plat​form for over a decade. In the fol​low​ing
sec​tion, a data model spe​cific to the Open NX-OS op​er​at​ing sys​tem, the Data Man​age​ment En​-
gine-Data Model (DME-DM) will be in​tro​duced.

There are in​dus​try-wide ef​forts, in​clud​ing those in the IETF NET​MOD work​ing group and the
Open​Con​fig or​ga​ni​za​tion, to build com​mon data mod​els in YANG. Cisco and Tail-f pi​o​neered
the data-mod​el​ing lan​guage presently avail​able in the in​dus​try. YANG mod​els can be mapped to
net​work plat​form data mod​els, and pre​sent an op​por​tu​nity to de​liver com​mon in​ter​faces for a
wide va​ri​ety of end-to-end net​work use cases.

More spe​cific data mod​els, such as the the Cisco Open NX-OS man​aged in​for​ma​tion tree, will
be dis​cussed in the next sec​tion. Data mod​els and APIs are es​sen​tial to suc​cess​ful au​toma​tion.

104

Model Driven Programming 105

Cisco Open NX-OS MDP Architecture

The Cisco Open NX-OS Model-Dri​ven Pro​gram​ma​bil​ity (MDP) ar​chi​tec​ture is an ob​ject-ori​-
ented soft​ware frame​work aimed at de​vel​op​ment of man​age​ment sys​tems. The MDP ob​ject
model is an ab​stract rep​re​sen​ta​tion of the ca​pa​bil​i​ties, con​fig​u​ra​tion and op​er​a​tional state of
el​e​ments and fea​tures on a Cisco Nexus switch. The ob​ject model con​sists of var​i​ous classes
that rep​re​sent dif​fer​ent func​tions and their at​trib​utes on the switch.

As an ex​am​ple, a switch has phys​i​cal net​work in​ter​faces, and those in​ter​faces have char​ac​ter​is​-
tics. These char​ac​ter​is​tics in​clude the mode of op​er​a​tion (Layer 2 or Layer 3), speed, and con​-
nec​tor type(s). Some of these char​ac​ter​is​tics are con​fig​urable while oth​ers are read-only. The
ob​ject model is re​spon​si​ble for rep​re​sent​ing each el​e​ment's state and hi​er​ar​chy.

The Cisco Open NX-OS MDP frame​work pro​vides users with many ad​van​tages:

• Ability to automate network configuration using a programmatic method

• Backed by a data model with abstraction suitable for network programmability

• Support for a variety of management agents

• Ability to extract configuration and operational data from devices

• Security through Role-Based Access Control (RBAC)

This sec​tion will pro​vide an overview of the data man​age​ment en​gine, man​aged ob​jects, and
ob​ject re​la​tion​ships and de​pen​den​cies.

Data Management Engines

The data man​age​ment frame​work con​sists of the Data Man​age​ment En​gine (DME), clients of
the DME (“north​bound” in​ter​face), and back-end processes and ap​pli​ca​tions.

Cisco Open NX-OS MDP Architecture

105

Model Driven Programming106

Fig​ure: Au​to​mated Gen​er​a​tion of Code and Ar​ti​facts from Data Model De​f​i​n​i​tion

The DME has the fol​low​ing prop​er​ties:

• Transactional, with each transaction following ACID semantics with regard to objects
they affect:

Atomicity

Consistency

Isolation

Durability

• Model-driven architecture

• Multi-threaded

• Secure

• Upgradable

• Ultimately consistent across multiple objects affected by a transaction

106

Model Driven Programming 107

Management Information Tree

The DME holds the repos​i​tory for the state of the man​aged sys​tem in the Man​age​ment In​for​-
ma​tion Tree (MIT). The MIT man​ages and main​tains the whole hi​er​ar​chi​cal tree of ob​jects on
the switch, with each ob​ject rep​re​sent​ing the con​fig​u​ra​tion, op​er​a​tional sta​tus, ac​com​pa​ny​ing
sta​tis​tics and as​so​ci​ated faults for a switch func​tion. The MIT is the sin​gle source of truth for
the con​fig​u​ra​tion and op​er​a​tional sta​tus of NX-OS fea​tures and el​e​ments. Ob​ject in​stances, also
re​ferred to as Man​aged Ob​ject (MOs), are stored in the MIT in a hi​er​ar​chi​cal tree, as shown
below:

Fig​ure: Char​ac​ter​is​tics of Open NX-OS Ob​ject Store - Man​age​ment In​for​ma​tion Tree (MIT)

The gen​eral con​cept is sim​i​lar to the tree-based hi​er​ar​chy of a file sys​tem. The MO data​base is
or​ga​nized in such a way that there is a par​ent-child hi​er​ar​chy, mean​ing there is a root node fol​-
lowed by a hi​er​ar​chi​cal group of chil​dren.

107

Model Driven Programming108

One such par ​ent-child hi ​er ​ar ​chy is il​lus ​trated using the fol ​low​ing ex​am ​ple:

Fig​ure: Par​ent-Child Con​tain​ment Re​la​tion​ship in Open NX-OS Data Model

In the above ex​am​ple:

• top:sys is the root of the entire MIT

• aggregate:systemTable is a child of top:sys

• aggregate:controllerTable is a child of aggregate:systemTable

• parent/child relationship continues through the table

When there are user-pro​vided dis​tin​guish​ers, val​ues for the nam​ing prop​erty of the ob​ject
and mul​ti​ple ob​jects of the same class can exist in the same sub​tree. In the ex​am​ple above, mul​-
ti​ple in​stances of the con​troller class can exist since it has a nam​ing prop​erty ([id]) as​so​ci​ated
with it in which each in​stance will have a unique user sup​plied [id].

Everything is an Object

108

Model Driven Programming 109

Everything is an Object

Cisco Open NX-OS is ob​ject-ori​ented, and every​thing within the model is rep​re​sented as an ob​-
ject. Ob​jects store the con​fig​u​ra​tion or op​er​a​tional state for Open NX-OS fea​tures as​so​ci​ated
with the data model. Within the model, ob​jects can be cre​ated in ref​er​ence to other ob​jects.
Ref​er​ences may be among var​i​ous net​work​ing con​structs, such as in​ter​faces and VLANs, as well
as re​la​tion​ships be​tween these com​po​nents. Trunked VLAN in​ter​faces rep​re​sent an ex​am​ple of
re​lated, hi​er​ar​chi​cal ob​jects.

The fol​low​ing sec​tion out​lines how MOs are de​fined in Open NX-OS dur​ing the soft​ware de​vel​-
op​ment process.

MO Definition

Open NX-OS soft​ware de​vel​op​ers de​fine mod​els for var​i​ous classes in an XML for​mat, and use a
mod​el​ing schema with var​i​ous tags to de​note spe​cific at​trib​utes of the class. This re​la​tion​ship is
de​fined prior to com​pile-time and is en​forced dur​ing run time. How​ever, it is only the re​la​tion​-
ship that we cre​ate when defin​ing the model and prop​er​ties of each MO.

Class model definition

 <model>

 <package name="aggregate">

 <objects>

 <! Section1 >

 <mo name="SystemTable"

 concrete="yes"

 label="System Table"

 read-access="access-protocol-util"

 >

 <! List of other properties>

 </mo>

 <rn mo="SystemTable">

 <item prefix="systemTable"/>

 </rn>

 <contains parent="top:System"

 child="SystemTable"

 />

109

Model Driven Programming110

 <mo name="ControllerTable"

 concrete="yes"

 label="Controller Table"

 read-access="access-protocol-util"

 >

 </mo>

 <rn mo="ControllerTable">

 <item prefix="controllerTable"/>

 </rn>

 <contains parent="SystemTable"

 child="ControllerTable"

 />

 <mo name="ControllerEntry"

 concrete="yes"

 label="Controller Entry"

 read-access="access-protocol-util"

 >

 <! Section2 >

 <property name="id"

 type="scalar:Uint32"

 owner="management"

 mod="implicit"

 label="Controller ID"

 />

 <rn mo="ControllerEntry">

 <item prefix="controller" property="id" />

 </rn>

 <! Section3 >

 <contains parent="ControllerTable"

 child="ControllerEntry"

 />

 <! Section4 >

 <chunk target="ControllerEntry"

 owner="vlanmgr"

 type="primary"

 />

110

Model Driven Programming 111

MO Properties

On a Cisco Nexus switch, the con​fig​u​ra​tion and/or op​er​a​tional state of the net​work can be
stored in the MO as prop​er​ties of the MO. Some prop​er​ties can be used to store con​fig​u​ra​-
tion state, such as en​abled/dis​abled state and at​trib​utes of pro​to​cols, while other prop​er​ties
can be used to store op​er​a​tional state, such as sta​tis​tics, faults, events, and audit trails.

Prop​er​ties within MOs will have an at​tribute.

 propertyname="attribute"

Val​ues can be ex​pressed in terms of reg​u​lar ex​pres​sions, etc. Thus, one can ac​tu​ally spec​ify that
a cer​tain prop​erty can have a string as its value only if that string matches a par​tic​u​lar reg​u​lar
ex​pres​sion. All type/regex check​ing is done prior to cre​at​ing an MO and stor​ing the value as
one of its prop​er​ties.

MO property definition

 <property name="speed"

 type="Speed"

 owner="management"

 mod="implicit"

 label="Speed"

 />

MO Grouping

Each class is part of a pack​age, and the de​f​i​n​i​tion of the class in​cludes the pack ​age name. Each
class has a mo name that iden​ti​fies the class. Ref​er​ences to an MO in the cur​rent pack​age can
be made by di​rectly spec​i​fy​ing the name of the MO. Any ref​er​ence to an MO in a dif​fer​ent
file/pack​age will have to pre​fix the ref​er​ence with the pack​age name of the MO being re​ferred.
Any ref​er​ence from an ex​ter​nal pack​age to the con ​trollerTable MO, in the Class model de​f​i​n​i​-
tion ex​am​ple above, should be for​mat​ted as ag​gre ​gate: con ​trollerTable, where con ​trollerTable is
the class name and ag​gre ​gate is the name​space qual​i​fier. This en​sures you are using the right
class while ref​er​enc​ing it in some other pack​age.

111

Model Driven Programming112

MO Inheritance

Each ob​ject within the data model is an in​stance of its as​so​ci​ated class. The ob​jects in the
model can use the con​cept of in​her​i​tance, which al​lows for new ob​jects to take on prop​er​ties
from ex​ist​ing, more ab​stracted base ob​jects. For ex​am​ple, a phys​i​cal in​ter​face can be a data
port or a man​age​ment port; how​ever, both of these still have the same basic prop​er​ties, so they
can in​herit from a sin​gle in​ter​face base class. Rather than re​de​fine the same prop​er​ties many
times, in​her​i​tance can be used to de​fine them in one base class, and then cus​tomize them for a
spe​cific child class.

A class can be de​fined as a purely ab​stract class by set​ting the concrete=yes/no at​tribute

to concrete=no. Such classes are purely ab​stract - no ob​jects of the class can be in​stan​ti​ated.

Other non-ab​stract, con​crete MO can ref​er​ence the ab​stract MO as a “super class” and in​-
herit the class prop​er​ties.

Fig​ure: Par​ent-Child In​her​i​tance Re​la​tion​ship in Open NX-OS Data Model

Access Control

112

Model Driven Programming 113

Access Control

An im​por​tant at​tribute of the MO is its ac​cess con​trol at​tribute, de​fined
by access=admin/user . This ba​si​cally de​notes the ac​cess priv​i​leges for the spe​cific MO and de​-
ter​mines which user-ac​cess-role is al​lowed to ac​cess and mod​ify this par​tic​u​lar MO. This abil​ity
to spec​ify per-MO per​mis​sions en​ables a pro​gram​ma​bil​ity model with gran​u​lar ac​cess con​-
trol to meet the se​cu​rity re​quire​ments of the in​fra​struc​ture.

Identifying Objects in the MIT

Man​aged ob​jects make up the man​age​ment in​for​ma​tion tree. Each MO, other than “top:Sys” has
the fol​low​ing at​trib​utes:

• A parent object

• A relative name (RN) that uniquely identifies the object among its siblings

• A distinguished name (DN) that uniquely identifies the object globally

The RN is im​mutable; it is set once at MO cre​ation time. The DN is the con​cate​na​tion of rel​a​tive
names along the path from the root to the MO, with RNs sep​a​rated by “/”

Fig​ure: Iden​ti​fy​ing Ob​jects with their Dis​tin​guished Name (DN) and Rel​a​tive Name (RN)

113

Model Driven Programming114

Distinguished Name

Every ob​ject in the ob​ject store will have a DN. The dis​tin​guished name en​ables you to un​am​-
bigu​ously iden​tify the tar​get ob​ject. The dis​tin​guished name has the fol​low​ing for​mat con​sist​ing
of a se​ries of rel​a​tive names:

 dn = {rn}/{rn}/{rn}/{rn}...

In the fol​low​ing ex​am​ple, the DN pro​vides a fully qual​i​fied path for peer-[192.​168.​0.​2] from the
top of the ob​ject tree to the ob​ject. The DN spec​i​fies the exact man​aged ob​ject on which the
API call is op​er​at​ing.

 < dn =”sys/bgp/inst/dom-default/peer-[192.168.0.2]” />

DN_of_MO is the con​cate​na​tion of Par ​en ​t_DN and RN_of_MO

top:Sys is the only MO that has RN ~= DN. RN of top:Sys spec​i​fied in the model is sys and
its DN /sys

In the ex​am​ple above:

• The RN of aggregate:SystemTable is systemTable. Thus its DN
is /sys/systemTable because it does not have a naming property. The RN
of aggregate:ControllerTable is controllerTable. The DN of aggregate:ControllerTable MO
is /sys/systemTable/controllerTable

• The RN of aggregate:ControllerEntry is controllerEntry-[id], where id is the naming
property of the MO.

• The DN of aggregate: ControllerEntry MO will
become /sys/systemTable/controllerTable/controllerEntry-[id]. Since this MO has a
naming property, we can have multiple instances of this MO under its parent
MO aggregate:ControllerTable, with each instance being associated with a unique [id]
value.

• The DN /sys/systemTable/controllerTable/controllerEntry-1 refers to one particular
instance of controllerEntry class.

114

Model Driven Programming 115

Relative Name

The rel​a​tive name iden​ti​fies an ob​ject within the con​text of its par​ent ob​ject. The dis​tin​guished
name is com​posed of a se​quence of rel​a​tive names. The fol​low​ing dis​tin​guished name is com​-
posed of the fol​low​ing rel​a​tive names:

Distinguished name

 <dn="sys/bgp/inst/dom-default/peer-[192.168.0.2]"/>

Relative name

 'peer-[192.168.0.2]'

Relative name and Distinguished name

The next chap​ter, which dis​cusses the REST API, pro​vides more in​for​ma​tion about how to use
an ob​ject's dis​tin​guished name and rel​a​tive name to form a REST URI.

Accessing Objects with Queries

The MIT al​lows op​er​a​tions such as search, tra​ver​sal, in​ser​tion, and dele​tion. One of the most
com​mon op​er​a​tions is a search to query in​for​ma​tion from the MIT.

Object Name DN Parent DN RN

topSystem 'sys' N/A 'sys'

BGP 'sys/bgp' 'sys' 'bgp'

BGP Instance 'sys/bgp/inst' 'sys/bgp' 'inst'

BGP Domain 'sys/bgp/inst/dom-
default'

'sys/bgp/inst' 'dom-default'

BGP Peer 'sys/bgp/inst/dom-
default/peer-
[192.168.0.2]'

'sys/bgp/inst/dom-
default'

'peer-[192.168.0.2]'

115

Model Driven Programming116

The fol ​low​ing types of queries are sup ​ported:

• tree-level query: search the MIT for objects of a specific subtree.

• class-level query: search the MIT for objects of a specific class.

• object-level query: search the MIT for a specific DN.

Each of these query types sup​port nu​mer​ous fil​ter​ing and sub​tree op​tions, but the pri​mary dif​-
fer​ence is the way that each type is used.

A class-based query is use​ful for search​ing for a spe​cific type of in​for​ma​tion with​out know​ing
all the de​tails, or only know​ing par​tial de​tails. Be​cause a class-based query can re​turn a range
of re​sults from zero to many, it can be a help​ful means of query​ing the fab​ric for in​for​ma​tion
when the full de​tails are not known. A class-based query com​bined with fil​ter​ing can be a pow​-
er​ful tool for ex​tract​ing data from the MIT. For ex​am​ple, a class-based query can be used to find
all in​ter​faces that are func​tion​ing as up​link in​ter​faces on leaf switches in a dat​a​cen​ter fab​-
ric and ex​tract their CDP/LLDP in​for​ma​tion, for a way to rapidly cre​ate a cable plan of the fab​-
ric.

An ob​ject-based (DN) query re​turns a sin​gle match, and the full DN for an ob​ject must be pro​-
vided for a match to be found. Com​bined with an ini​tial class query, a DN query can be help​ful
for find​ing more de​tails about an ob​ject ref​er​enced from an​other ob​ject, or for up​dat​ing a local
copy of in​for​ma​tion.

Both query types sup​port tree-level queries with scope and fil​ter​ing cri​te​ria. Thus, you can
query the MIT for all ob​jects of a spe​cific class or DN and then re​trieve the chil​dren or com​plete
sub​tree for the re​turned ob​jects. Fur​ther​more, the data sets can be fil​tered to re​turn only
records of in​ter​est for the cur​rent pur​pose.

The next chap​ter, which dis​cusses the REST API, pro​vides more in​for​ma​tion about how to build
and run these queries.

116

Model Driven Programming 117

REST API Primer

Application Programming Interface - API

Most ap​pli​ca​tions ex​pose some sort of API that gov​erns how an ap​pli​ca​tion can be ac​cessed by
other ap​pli​ca​tions. APIs pro​vide a set of rou​tines, pro​to​cols, tools and doc​u​men​ta​tion which
can be lever​aged for pro​gram​matic in​ter​ac​tion. They rep​re​sent a means through which el​e​-
ments or ap​pli​ca​tions can be pro​gram​mat​i​cally con​trolled and de​scribe how ex​ter​nal ap​pli​ca​-
tions can gain ac​cess to ca​pa​bil​i​ties and func​tions within an​other ap​pli​ca​tion. APIs have four
pri​mary com​po​nents:

• Methods: Describes the mechanism of the API implementation including how resources
communicate, provide encapsulation, etc

• Actions: This is the intent of the API call, often referred to as a "verb". It describes the
operations available such as GET, PUT, POST, and DELETE

• Objects: This is the resource the user is trying to access. This is often referred to as a
noun and it is typically a URI.

• Formats: This is how the data is represented. e.g., JSON, XML, etc.

Fig​ure: API Frame​work

117

Model Driven Programming118

The fol​low​ing char ​ac ​ter ​is​tics of an API en​able users to build a more ef​fi​cient, man​age ​able and
re​li​able net​work via au​toma​tion.

• Modularity: Applications can be built leveraging clearly defined and reusable modules

• Abstraction: APIs abstract the details of the underlying implementation from the higher
level logic that invokes it

• Stability: APIs provide a stable and consistent interface

Cisco Open NX-OS ex​poses three pri​mary APIs:

• NX-API REST - HTTP-based RESTful API

• NX-API CLI - RPC-based API

• NETCONF API

Each of these APIs can be used with mul​ti​ple lan​guage bind​ings. There are Python bind​ings for
both NX-API REST and NX-API CLI.

This chap​ter will ex​plore the Open NX-OS REST​ful APIs in more de​tail.

HTTP

Hy​per​text Trans​fer Pro​to​col (HTTP) is an ap​pli​ca​tion pro​to​col for dis​trib​uted, col​lab​o​ra​tive, and
hy​per​me​dia in​for​ma​tion sys​tems and is one of the pri​mary meth​ods for com​mu​ni​ca​tion with
the API. In this case, our focus will be lever​ag​ing HTTP from a pro​gram​matic per​spec​tive rather
than as an ac​cess mech​a​nism, which is the case with the World Wide Web. Hy​per​text is struc​-
tured text using log​i​cal links be​tween nodes con​tain​ing text (also called "hy​per​links") and HTTP
is the pro​to​col to en​able ex​change or trans​fer of hy​per​text.

HTTP has two types of mes​sages:

• Requests - from a client to a server, consisting of:

Request Line: The request line begins with the method token, followed by the
Request-URI and the protocol version.

Request Uniform Resource Identifiers (URI): The URI is a set of string of characters
used to identify the name of a resource. The most commonly used URI is in the
form of the Uniform Resource Locator (URL). For example www.cisco.com

118

Model Driven Programming 119

Request Method: The request method indicates the method to be performed on the
resource identified by the given Request-URI. Here is a list of supported methods:

GET - The action of "getting" the information which is identified by the
Request-URI

HEAD - Similar to the GET method but it includes the transfer of the status line
and the header section only

POST - Used to send data to the server. Examples include loading a new
configuration or querying the state of the network element

PUT - Replaces all the current representations of the target resource with the
uploaded content

DELETE - Requests the origin server delete the resource identified by the
Request-URI

OPTIONS - Requests for information about the communication options
available on the Request-URI

TRACE - Invokes a remote, application-layer loop-back of the request message

CONNECT - Establishes a tunnel to the server identified by a given Request-
URI

• Responses - from a server to a client in response to a request, consisting of:

Status Line: This is the first line of the Response Message which contains the
protocol version follow by the status code.

503 – Services Unavailable

500 – Internal Server Error

404 – Not Found

403 – Forbidden

400 – Bad Request

301 – Moved Permanently

201 – Created

200 – OK

 Message Body

The fol​low​ing di​a​gram de​scribes a Client Re​quest and the Server Re​sponse com​mu​ni​ca​tion

119

Model Driven Programming120

Fig​ure: HTTP Client Re​quest and Server Re​sponse

120

Model Driven Programming 121

Fig​ure: HTTP Client Re​quest with Re​sponse Code

REpresentational State Transfer - REST

Given an un​der​stand​ing of APIs and their im​por​tance, let's ex​plore REST - REpre​sen​ta​tional
State Trans​fer. REST is a soft​ware ar​chi​tec​ture style for de​sign​ing scal​able net​worked ap​pli​ca​-
tions, specif​i​cally web ser​vices. By pro​vid​ing a co​or​di​nated set of con​straints ap​plied to com​po​-
nent de​sign in dis​trib​uted sys​tems, REST fa​cil​i​tates higher lev​els of per​for​mance and more
main​tain​able ar​chi​tec​tures.

REST​ful con​straints are de​scribed as fol​lows:

1 Client server - clients and servers are fully separated and communicate only via the

RESTful interface.

2 Stateless - no client context or state is stored on the server between requests, and each

client request must contain all of the information needed for the server to service the

request.

121

Model Driven Programming122

3 Cacheable - clients can cache responses, and servers must define the cacheability of the

response.

4 Layered - a client should not be able to tell whether it is connected to a server or to an

intermediate that provides functionality such as security, caching, or load-balancing.

5 Code on Demand (Optional) - servers can at times extend the capabilities of a client

through the transfer of executable code or scripts.

6 Uniform Interface - both client and server must adhere to a uniform interface that

allows for the independent development of functionality.

7 Resource Identification - individual resources are identified using URIs in requests.

Representations of resources are distinct from the actual resources and may be

provided in formats such as HTML, XML, or JSON.

REST re​lies on stan​dards pro​to​cols HTTP or HTTPS to trans​mit calls be​tween en​ti​ties, and
within that lever​ages unique URL iden​ti​fiers, ei​ther a verb or a noun. The spec​i​fied HTTP meth​-
ods or verbs for REST are as fol​lows:

• GET - List the URI's in a collection, or a representation of an individual member

• POST - Create a new entry in a collection. The new entry's URI is assigned automatically
and returned by the operation

• PUT - Replace an entire collection with a collection, or individual member with another.
If a member does not exist, create one

• DELETE - Delete an entire collection or an individual member

The two be​hav​iors of REST op​er​a​tions are:

• Idempotent - the operation has the same effect no matter how many times it is
performed (PUT and DELETE)

• Nullipotent - the operation does not affect the resource (GET)

122

Model Driven Programming 123

Fig​ure: REST Com​mu​ni​ca​tion Flow

URI

The URI is a string of char​ac​ters used to iden​tify the name of a re​source. Two types of URI's
exist:

• Uniform Resource Locator (URL) - what we often refer to as a web address

• Uniform Resource Name (URN) - less frequently utilized, but intended to compliment
URLs by offering a way to identify specific namespace resources

A REST URL con​tains:

• Protocol/schema

• Resource IP or hostname

123

Model Driven Programming124

• Path and filename

An im​por​tant dis​tinc​tion and con​cept to un​der​stand is the dif​fer​ence be​tween ab​solute and rel​-
a ​tive. In ab​solute we pro​vide the exact path, whereas in rel​a​tive there is a layer of in​di​rec​tion
where we give the path to the ac​tual lo​ca​tion. The fol​low​ing is a sam​ple URI:

Fig​ure: URI Model

API Security

REST uses HTTPS for en​crypted trans​port. Sev​eral widely-ac​cepted in​dus​try prac​tices to pro​-
vide API se​cu​rity are uti​lized today, in​clud​ing OAuth, Ba​si​cAuth, and API Keys.

Data Formats

Data for​mats re​sp​re​sent dif​fer​ent ways we ren​der out​put in​for​ma​tion to the user or ap​pli​ca​-
tion. Two pri​mary data for​mats we'll cover here are JavaScript Object Noti​fi​ca​tion (JSON)
and eXten​si​ble Markup Lan​guage (XML).

XML is sim​i​lar to HTML, but de​signed to en​code struc​tured data. Tags are self-de​fined rather
than stan​dard​ized.

124

Model Driven Programming 125

Fig​ure: XML Re​quest and Re​sponse For​mat

JSON is fo​cused on being more human read​able and uses at​tribute-value pairs. The en​cod​ing
for​mat uti​lizes:

• a collection of name/value pairs

• an ordered list of values

125

Model Driven Programming126

Fig​ure: JSON Re​quest and Re​sponse For​mat

The REST API's struc​ture is one of the most preva​lent API de​sign types avail​able. It pro​vides a
lan​guage-in​de​pen​dent easy-to-struc​ture in​ter​face based on well known HTTP web con​cepts
that are fami​lar to most users.

126

Model Driven Programming 129

Cisco NX-API REST Interface

NX-API REST is a REST​ful pro​gram​matic in​ter​face for Cisco Open NX-OS. In the pre​vi​ous sec​-
tions, we dis​cussed how NX-OS stores con​fig​u​ra​tion and op​er​a​tional data in a cen​tral​ized ob​-
ject store, the Man​age​ment In​for​ma​tion Tree (MIT). The nodes in the MIT store the con​fig​u​ra​-
tion and state for a switch el​e​ment or fea​ture (in​ter​faces, pro​to​cols, etc.). NX-API REST pro​-
vides ac​cess to ob​jects stored in the MIT. Man​aged ob​jects (MOs) are as​so​ci​ated with a well-de​-
fined REST URI, and can be queried or con​fig​ured from NX-API REST using their URI.

In the sec​tions below, we ex​am​ine some of the char​ac​ter​is​tics of Cisco's NX-API REST in​ter​face.

Transactional

NX-API REST op​er​ates in a for​giv​ing mode, mean​ing miss​ing at​trib​utes are sub​sti​tuted with de​-
fault val​ues (if ap​plic​a​ble) that are main​tained in the in​ter​nal data man​age​ment en​gine (DME).
The DME val​i​dates and re​jects in​cor​rect at​trib​utes. NX-API REST is also atomic; if mul​ti​ple MOs
are being con​fig​ured si​mul​ta​ne​ously, the API has the abil​ity to stop its op​er​a​tion in the
event any of the tar​geted MOs can​not be con​fig​ured. It will re​turn the con​fig​u​ra​tion to its pre​-
vi​ous state, stop the API op​er​a​tion, and re​turn an error code.

NX-API REST is trans​ac​tional and ter​mi​nates on a sin​gle data model. De​vel​op​ers are re​lieved
from the task of pro​gram​ming and in​ter​fac​ing with in​di​vid​ual com​po​nent con​fig​u​ra​tions.

The API model in​cludes the fol​low​ing pro​gram​matic en​ti​ties:

• Classes are templates that define the properties and states of objects in the
management information tree.

• Methods are actions that the API performs on one or more objects.

• Types are object properties that map values to the object state such as
equipmentPresence.

A typ​i​cal re​quest comes into the DME and is placed in the trans​ac​tor queue using a first in, first
out (FIFO) sched​uler. The trans​ac​tor re​trieves the re​quest from the queue, in​ter​prets the re​-

127

Model Driven Programming130

quest, and per​forms an au ​tho ​riza ​tion check. After the re ​quest is con ​firmed, the trans ​ac ​tor up ​-
dates the MIT. This com​plete set of steps is ex​e​cuted for every trans​ac​tion the DME processes.

Backwards Compatible

Up​dates to MOs and prop​er​ties con​form to the ex​ist​ing ob​ject model, which en​sures back​ward
com​pat​i​bil​ity. If ex​ist​ing prop​er​ties are changed dur​ing a prod​uct up​grade, they are man​aged
dur​ing the data​base load after the up​grade. New prop​er​ties are as​signed de​fault val​ues.

Event-Driven

Full event sub​scrip​tion is en​abled. When any MO is cre​ated, changed, or deleted due to a user
or sys​tem-ini​ti​ated ac​tion, an event is gen​er​ated. You can sub​scribe to no​ti​fi​ca​tions for changes
that occur to an ob​ject through a web​socket, and re​ceive proac​tive no​ti​fi​ca​tions back from
DME, show​ing the change that oc​curred. This is cov​ered in the next sec​tion.

Secure

Cur​rently, the fol​low​ing con​trols for API se​cu​rity func​tions within NX-API REST are sup​ported
and pro​vided by Cisco:

• REST API password-based authentication uses a special subset of request URIs,
including aaaLogin, aaaLogout,and aaaRefresh as the DN targets of a POST operation.

• Data payloads are formatted in XML or JSON, and contain the MO representation of an
aaaUser object with attributes defining the username and password.

• The response to the POST operation will contain an authentication token as both a Set-
Cookie header and an attribute to the aaaLogin object in the response.

• Subsequent operations on the REST API can use this cookie to authenticate future
requests.

Flexible

NX-API REST sup​ports a wide range of flex​i​ble fil​ters which are use​ful for nar​row​ing the scope
of a search, al​low​ing in​for​ma​tion to be lo​cated quickly. The fil​ters them​selves are ap​pended as
query URI op​tions start​ing with a ques​tion mark (?) and con​cate​nated with an am​per​sand (&).
Mul​ti​ple con​di​tions can be joined to​gether to form com​plex fil​ters.

128

Model Driven Programming 131

The Cisco NX-API REST API User Guide dis​cusses in de ​tail how to use fil ​ters and fil ​ter syn​tax
while pro​vid​ing ex​am​ples. Using some of the tools dis​cussed in the fol​low​ing sec​tions, you can
build your own query strings and dis​cover those being used by the na​tive Cisco NX-API
REST in​ter​face.

Tree-Level Queries

The fol​low​ing fig​ure shows a switch chas​sis that is queried at the tree level.

Fig​ure: Tree-Level Queries

Tree queries re​turn the ref​er​enced ob​ject and its child ob​jects. This ap​proach is use​ful for dis​-
cov​er​ing the com​po​nents of a larger sys​tem. In this ex​am​ple, the query dis​cov​ers the cards and
ports of a given switch chas​sis.

129

Model Driven Programming132

Class-Level Queries

The fol​low​ing fig​ure shows the sec​ond query type: the class-level query.

Fig​ure: Class-Level Queries

Class-level queries re​turn all ob​jects of a given class. This ap​proach is use​ful for dis​cov​er​ing all
the ob​jects of a cer​tain type that are avail​able in the MIT. In this ex​am​ple, the class used is
Cards which re​turns all ob​jects of type Cards.

Object-Level Queries

The third query type is an ob​ject-level query. In an ob​ject-level query, a dis​tin​guished name is
used to re​turn a spe​cific ob​ject.

130

Model Driven Programming 133

Fig​ure: Ob​ject-Level Queries

For all MIT queries, an ad​min​is​tra​tor can op​tion​ally re​turn the en​tire sub​tree or a par​tial sub​-
tree. Ad​di​tion​ally, the role-based ac​cess con​trol (RBAC) mech​a​nism in the sys​tem dic​tates
which ob​jects are re​turned; only the ob​jects that the user has rights to view will be re​turned.

Standards-based

Stan​dard REST meth​ods are sup​ported on the API, which in​clude POST, GET, and DELETE, op​-
er​a​tions through HTTP.

131

Model Driven Programming134

REST HTTP and HTTPS-Based Meth​ods

The POST and DELETE meth​ods are idem​po​tent, mean​ing they have no ad​di​tional ef​fect if they
are called more than once with the same input pa​ra​me​ters. The GET method is nul​lipo​tent,
mean​ing it can be called zero or more times with​out mak​ing any changes (or that it is a read-
only op​er​a​tion).

Payload Encapsulation

Pay​loads to and from the NX-API REST in​ter​face can be en​coded with ei​ther XML or JSON. The
XML en​cod​ing op​er​a​tion uses the el​e​ment tag as the name of the pack​age and class, with the
re​spec​tive prop​er​ties of that ob​ject being spec​i​fied as at​trib​utes of the el​e​ment. Con​tain​ment is
de​fined by cre​at​ing child el​e​ments.

The fol​low​ing ex​am​ple cre​ates a BGP in​stance in an XML pay​load.

Fig​ure: Cre​ate BGP - XML

 POST http://n9k-sw-1/api/mo/sys/bgp.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <bgpEntity adminSt="enabled">

 <bgpInst adminSt="enabled" asn="65000">

 </bgpInst>

 </bgpEntity>

JSON en​cod​ing re​quires de​f​i​n​i​tion of cer​tain en​ti​ties to re​flect the tree-based hi​er​ar​chy.

• All objects are described as JSON dictionaries. The key is the name of the package and
class while the value is another nested dictionary with two keys: attribute and children.

Method Ac​tion Be​hav​ior

POST Cre​ate/Up​date Idem​po​tent

GET Read Nul​lipo​tent

DELETE Delete Idem​po​tent

132

Model Driven Programming 135

• The attribute key contains a further nested dictionary describing key-value pairs that
define attributes on the object.

• The children key contains a list that defines all the child objects. The children in this list
are dictionaries containing any nested objects which are defined as described in the MIT.

The fol​low​ing ex​am​ple cre​ates a BGP in​stance in a JSON pay​load.

Fig​ure: Cre​ate BGP Peer - JSON

 POST http://n9k-sw-1/api/mo/sys/bgp/inst/dom-default.json

 {

 "bgpPeer": {

 "attributes": {

 "addr": "192.168.0.2",

 "asn": "65000"

 }

 }

 }

Both ex​am​ples have been ab​bre​vi​ated to sim​plify vi​sual un​der​stand​ing.

Read Operations

After the ob​ject pay​loads are prop​erly en​coded as XML or JSON, they can be used in cre​ate,
read, up​date, or delete (CRUD) op​er​a​tions through the REST API (Fig​ure 5).

Fig​ure: Read Op​er​a​tions

 GET http://n9k-sw-1/api/mo/sys/bgp.json

Re​sponse to the above query:

 {

 "totalCount": "1",

 "imdata": [

 {

 "bgpEntity": {

133

Model Driven Programming136

 "attributes": {

 "adminSt": "enabled",

 "childAction": "",

 "dn": "sys/bgp",

 "lcOwn": "local",

 "modTs": "2015-09-30T03:28:52.083+00:00",

 "monPolDn": "uni/fabric/monfab-default",

 "name": "",

 "operErr": "",

 "operSt": "enabled",

 "status": ""

 }

 }

 }

]

 }

Be​cause NX-API REST uses HTTP, defin​ing the uni​ver​sal re​source iden​ti​fier (URI) to ac​cess a
cer​tain re​source type is im​por​tant. The first two sec​tions of the re​quest URI sim​ply de​fine the
pro​to​col and ac​cess de​tails (host​name, IP ad​dress) of a Cisco Open NX-OS de​vice. Next in the
re​quest URI is the lit​eral string "/api", fol​lowed by the DN of the ob​ject or class being queried.
The final part of the re​quest URI is the en​cod​ing for​mat: JSON or XML.

The op​tional part of a re​quest URI con​sists of any query op​tions. Query op​tions pro​vide fil​ter​ing
ca​pa​bil​i​ties to de​vel​op​ers, and are ex​plained ex​ten​sively in the NX API REST doc​u​men​ta​tion
avail​able at http://​developer.​cisco.​com/​open-nxos.​

 GET http://n9k-sw-1/api/class/l1PhysIf.json

Re​sponse to the above query:

 {

 "totalCount": "54",

 "imdata": [

 {

 "l1PhysIf": {

 "attributes": {

 "accessVlan": "vlan-1",

134

Model Driven Programming 137

 "adminSt": "up",

 "autoNeg": "on",

 "descr": "",

 "dn": "sys/phys-[eth1/33]",

 "dot1qEtherType": "0x8100",

 "duplex": "auto",

 "ethpmCfgFailedBmp": "",

 "ethpmCfgFailedTs": "00:00:00:00.000",

 "ethpmCfgState": "0",

 "id": "eth1/33",

 "inhBw": "unspecified",

 "layer": "Layer2",

 "linkDebounce": "100",

 "linkLog": "default",

 "modTs": "2015-06-26T16:04:10.748+00:00",

 "mode": "access",

 "monPolDn": "uni/infra/moninfra-default",

 "mtu": "1500",

 "name": "",

 "speed": "auto",

 "trunkVlans": "",

 }

 }

 },

 {

 ...

 }

 }

]

 }

The ex​am​ple above shows a query for all ob​jects with class "l1​PhysIf". For a com​plete ref​er​ence
to the var​i​ous ob​jects and their prop​er​ties and pos​si​ble val​ues, please refer to the Cisco NX-API
REST doc​u​men​ta​tion at http://​developer.​cisco.​com/​open-nxos.​

135

Model Driven Programming138

Write Operations

Cre​ate and up​date op​er​a​tions in the REST API are im​ple​mented using the POST method, so if an
ob​ject does not al​ready exist, it will be cre​ated. If the ob​ject al​ready ex​ists, it will be up​dated to
re​flect any changes be​tween its ex​ist​ing state and de​sired state.

Both cre​ate and up​date op​er​a​tions can con​tain com​plex ob​ject hi​er​ar​chies. A com​plete tree can
be de​fined in a sin​gle com​mand as long as all ob​jects are within the same con​text and root, and
are under the 1MB limit for the REST API data pay​loads. This limit is in place to guar​an​tee per​-
for​mance and pro​tect the sys​tem under high load. Very large op​er​a​tions may need to be bro​ken
into smaller pieces.

Ex​am​ple: Write Op​er​a​tions

 POST http://n9k-sw-1/api/mo/sys/bgp/inst/dom-default.json

 {

 "bgpPeer": {

 "attributes": {

 "addr": "192.168.0.2",

 "asn": "65000"

 }

 }

 }

Cre​ate and up​date op​er​a​tions use the same syn​tax as read op​er​a​tions, ex​cept they are al​ways
ex​e​cuted at an ob​ject level, as you can​not make changes to every ob​ject of a spe​cific class. The
cre​ate or up​date op​er​a​tion should tar​get a spe​cific man​aged ob​ject; the lit​eral string "/mo" in a
URL in​di​cates the DN of the man​aged ob​ject will be pro​vided, fol​lowed by the DN. Fil​ter strings
can be ap​plied to POST op​er​a​tions. As an ex​am​ple, if you want to re​trieve the re​sults of your
POST op​er​a​tion in the re​sponse, you can pass the rsp‑sub ​tree=mod ​i​fied query string to in​di​cate
you want the re​sponse to in​clude any ob​jects that have been mod​i​fied by the POST op​er​a​tion.

The pay​load of the POST op​er​a​tion will con​tain the XML or JSON en​coded data rep​re​sent​ing
the man​aged ob​ject being queried.

In sum​mary, REST-based APIs are the most pop​u​lar APIs today. They are easy to use, well doc​u​-
mented and lan​guage in​de​pen​dent. NX-API REST ex​poses these ben​e​fits while pre​sent​ing a
com ​pre ​hen ​sive data model for man ​ag ​ing net ​work in​fra ​struc ​tures.

136

Model Driven Programming 139

Cisco NX-API WebSocket Notifications

The Cisco Open NX-API REST in​ter​face, de​scribed in the pre​vi​ous sec​tion, is a very pow​er​ful in​-
ter​face for push​ing con​fig​u​ra​tion changes or pulling in​for​ma​tion from the Cisco Nexus
switches. How​ever, there might be in​stances where it might be de​sir​able to re​ceive no​ti​fi​ca​-
tions from the switch di​rectly- for ex​am​ple, when a counter rep​re​sent​ing un​ex​pected packet
er​rors in​cre​ments.

Cisco Open NX-OS pro​vides an in​ter​face ca​pa​bil​ity to en​ables the switch to push no​ti​fi​ca​tions
to in​ter​ested sub​scribers. Through the NX-API Web​Socket in​ter​face, pro​grams and end-users
can re​ceive no​ti​fi​ca​tions about var​i​ous state changes on the switch, elim​i​nat​ing the need for
pe​ri​odic polling. The in​ter​face es​tab​lishes full-du​plex com​mu​ni​ca​tion on a sin​gle ses​sion
with a re​mote en​tity.

Subscribing to Query Results

When you per​form an API query using the Cisco NX-API REST in​ter​face, you have the op​tion to
cre​ate a sub​scrip​tion to any fu​ture changes in the re​sults of a given query. When any man​age​-
ment ob​ject (MO) is cre​ated, changed, or deleted, be​cause of a user-ini​ti​ated or sys​tem-ini​ti​-
ated ac​tion, an event is gen​er​ated. If the re​ceived event changes the re​sults of a sub​scribed
query, the switch gen​er​ates a push no​ti​fi​ca​tion to the API client that cre​ated the sub​scrip​tion.

Opening a WebSocket

The API sub​scrip​tion fea​ture uses the Web​Socket pro​to​col (RFC 6455) to im​ple​ment a two-way
con​nec​tion with the API client. This way, the API can send un​so​licited no​ti​fi​ca​tion mes​sages to
the client it​self. To es​tab​lish the no​ti​fi​ca​tion chan​nel, you must first open a Web​Socket con​nec​-
tion with the re​spec​tive API. Only a sin​gle Web​Socket con​nec​tion is needed to sup​port mul​ti​ple
query sub​scrip​tions within each switch. The Web​Socket con​nec​tion is de​pen​dent on your API
ses​sion con​nec​tion, and closes when your API ses​sion ends.

137

Model Driven Programming140

Creating a Subscription

To cre​ate a sub​scrip​tion to a query, per​form the query with the op​tion ?subscription=yes.
This ex​am​ple cre​ates a sub​scrip​tion to a query of the fv:Ten​ant class in the JSON for​mat:

 GET https://n9k-sw-1/api/class/l1PhysIf.json?subscription=yes

The query re​sponse con​tains a sub​scrip​tion iden​ti​fier, sub​scrip​tionId, that you can use to re​-
fresh the sub​scrip​tion and iden​tify fu​ture no​ti​fi​ca​tions from the given sub​scrip​tion.

 { "subscriptionId" : "72057611234574337",

 "imdata" : [{

 "l1PhyIf" : {

 "attributes" : {

 "instanceId" : "0:0",

 "childAction" : "",

 "dn" : "sys/phys-[eth1/1]",

 "lcOwn" : "local",

 "monPolDn" : "",

 "description" : "uplink to core-1",

 "replTs" : "never",

 "status" : ""

 }

 }

 }

]

 }

Receiving Notifications

An event no​ti​fi​ca​tion from the sub​scrip​tion de​liv​ers a data struc​ture that con​tains the sub​scrip​-
tion ID and the MO de​scrip​tion. In this JSON ex​am​ple, a new user has been cre​ated with the
name "sysad​min5":

 {

 "subscriptionId" : ["72057598349672454", "72057598349672456"],

 "imdata" : [{

 "aaaUser" : {

 "attributes" : {

138

Model Driven Programming 141

 "accountStatus" : "active",

 "childAction" : "",

 "clearPwdHistory" : "no",

 "descr" : "",

 "dn" : "sys/userext/user-sysadmin5",

 "email" : "",

 "encPwd" : "TUxISkhH$VHyidGgBX0r7N/srt/YcMYTEn5248ommFhNFzZghvAU=",

 "expiration" : "never",

 "expires" : "no",

 "firstName" : "",

 "intId" : "none",

 "lastName" : "",

 "lcOwn" : "local",

 "name" : "sysadmin5",

 "phone" : "",

 "pwd" : "",

 "pwdLifeTime" : "no-password-expire",

 "pwdSet" : "yes",

 "replTs" : "2013-05-30T11:28:33.835",

 "rn" : "",

 "status" : "created"

 }

 }

 }

]

 }

As mul​ti​ple ac​tive sub​scrip​tions can exist for a given query, a no​ti​fi​ca​tion can con​tain mul​ti​ple
sub​scrip​tion IDs; sim​i​lar as shown in the ex​am​ple above. No​ti​fi​ca​tions are sup​ported in ei​ther
JSON or XML for​mat.

Refreshing the Subscription

In order to con​tinue re​ceiv​ing event no​ti​fi​ca​tions, you must pe​ri​od​i​cally re​fresh each sub​scrip​-
tion dur​ing your API ses​sion. To re​fresh a sub​scrip​tion, send an HTTP GET mes​sage to the API
method sub​scrip​tion​Re​fresh with the pa​ra​me​ter id, equal to the sub​scrip​tionId shown in the
ex​am​ple:

139

Model Driven Programming142

 GET https://n9k-sw-1/api/subscriptionRefresh.json?id=72057611234574337

The API will re​turn an empty re​sponse to the re​fresh mes​sage un​less the sub​scrip​tion has ex​-
pired.

Note: The time​out pe​riod for a sub​scrip​tion is one minute per de​fault. To pre​vent loss of no​ti​fi​-
ca​tions, you must send a sub​scrip​tion re​fresh mes​sage at least once every 60 sec​onds.

In sum​mary, Web​Socket pro​vides a pow​er​ful tool for al​low​ing pub​lisher-sub​scriber com​mu​ni​-
ca​tion for event sub​scrip​tion within the Open NX-OS REST API.

140

Configuration
Management and
Automation

Configuration Management and Automation 145

Introduction

The con​cept of De​vel​op​ment Op​er​a​tions (De​vOps) re​lates to op​ti​miz​ing the life​cy​cle of ap​pli​ca​-
tions and ser​vices through col​lab​o​ra​tion and co​op​er​a​tion be​tween de​vel​op​ment and op​er​a​tions
teams. The de​sired out​come for De​vOps is to fa​cil​i​tate rapid de​vel​op​ment cy​cles, in​crease ap​-
pli​ca​tion scal​a​bil​ity and sta​bil​ity, and en​able a flex​i​ble and agile in​fra​struc​ture.

Fun​da​men​tal as​pects of De​vOps in​clude:

• Simplification of processes and workflows used to deploy infrastructure

• Workload scalability

• Integrated lifecycle management

In​fra​struc​ture au​toma​tion, dri​ven by pro​gram​ma​bil​ity, is a key en​abler for the De​vOps tran​for​-
ma​tion. Open NX-OS in​tro​duces a broad set of tools, fea​tures, and ca​pa​bil​i​ties to fa​cil​i​tate net​-
work au​toma​tion.

The rest of this sec​tion will dis​cuss Open NX-OS fea​tures that en​able au​toma​tion and De​vOps,
in​clud​ing:

• Native Linux-based management of Open NX-OS

• Agent-based Configuration Management Systems (Puppet, Chef, etc.)

• Agentless Management Systems (Ansible)

• NX-API REST Programmability

• Automation of switch provisioning operations (POAP, Ignite)

143

Configuration Management and Automation 147

Device Power-On Automation

Open NX-OS pro​vides foun​da​tional el​e​ments for the au​toma​tion and con​fig​u​ra​tion life cycle
man​age​ment of a net​work de​vice. This is es​sen​tial to ini​tial boot​strap​ping and pro​vi​sion​ing of
the NX-OS de​vice. On​go​ing life cycle man​age​ment of de​vice con​fig​u​ra​tions can be ac​com​-
plished using con​fig​u​ra​tion man​age​ment agents, pro​gram​ming and open source tools.

The net​work build and op​er​a​tion life​cy​cle is di​vided in three main phases or stages:

• Day-0 – Initial device and network startup

• Day-1 – Incremental configuration, including provisioning of new end-points and
workloads

• Day-2 – Monitoring and Visibility

Start​ing at Day-0 (zero), the net​work de​vice is brought up with an ini​tial con​fig​u​ra​tion. In gen​-
eral, the net​work de​vice could be pro​vi​sioned with all rel​e​vant con​fig​u​ra​tion at Day-0, but the
focus for ini​tial startup should be on fea​tures and func​tions which change the least over the
life​cy​cle of the net​work el​e​ment. De​vice name, man​age​ment IP ad​dress, and rout​ing process
con​fig​u​ra​tion are some ex​am​ples.

While Host in​ter​face and Port-Chan​nel con​fig​u​ra​tion could be part of the Day-0 con​fig​u​ra​tion,
most likely not all in​for​ma​tion will be avail​able at ini​tial net​work de​vice setup. Con​fig​u​ra​tion of
these el​e​ments can be au​to​mated in later phases.

Day-1 pro​vi​sion​ing cov​ers in​cre​men​tal and on​go​ing con​fig​u​ra​tion changes. Dur​ing this phase,
flex​i​ble con​fig​u​ra​tion man​age​ment and au​toma​tion al​lows changes to be ac​com​plished in an ef​-
fi​cient way. Man​age​ment of end-points and seg​men​ta​tion are ex​am​ples.

The di​vi​sion be​tween Day-0 and Day-1 con​fig​u​ra​tion can be very fluid as the ini​tial con​fig​u​ra​-
tion can span from sim​ple man​age​ment ac​cess to an ex​ten​sive con​fig​u​ra​tion to en​able a net​-
work de​vice to par​tic​i​pate in a data cen​ter net​work fab​ric.

Sam​ple Min​i​mal Switch Con​fig​u​ra​tion (Day-0):

• Switch name

145

Configuration Management and Automation148

• Admin username and password

• Out-of-Band management interface and routing

• Console access

Ex​tended Switch Con​fig​u​ra​tion (Day-0)

• Inband management

• AAA - Authentication, Authorization and Accounting

• Enabling NX-OS features

• Global switching parameters

• Common routing protocol parameters

• vPC - Virtual Port-Channel domain

• VXLAN VTEP parameters

• Network interfaces

Day-0 or Day-1 con​fig​u​ra​tion

• Access/host interfaces configurations including vPCs

• Tenant/workload configs: VRFs, routes, host facing VLANs

• Additional features

At Day-2, vis​i​bil​ity and mon​i​tor​ing be​come ex​tremely im​por​tant. In most en​vi​ron​ments, Day-1
and Day-2 op​er​a​tions run in par​al​lel and ex​tend through the en​tire life​cy​cle of the net​work de​-
vice, and ap​pro​pri​ate tool​ing is nec​es​sary to achieve these tasks ef​fi​ciently.

Day-0 (zero) Provisioning

Zero-Touch de​vice pro​vi​sion​ing is com​monly as​so​ci​ated with com​pute de​vices, but net​work
de​vices have had this ca​pa​bil​ity for years. How​ever, this ca​pa​bil​ity has been fairly lim​ited until
now. Cisco’s Power on Auto Pro​vi​sion​ing (POAP) was de​signed to pro​vide ad​vanced Day-0 pro​-
vi​sion​ing ca​pa​bil​i​ties using an ex​ten​si​ble frame​work.

POAP in​cludes the abil​ity to ex​e​cute Python scripts as part of its work​flow - this of​fers an un​-
par​al​leled level of flex​i​bil​ity. Today, POAP can down​load and in​stall ad​di​tional man​age​ment

146

Configuration Management and Automation 149

agents and apply spe​cific con​fig​u​ra​tions based on in​for​ma​tion such as lo​ca​tion in a net​-
work topol​ogy.

A sim​i​lar ap​proach is achieved by using PXE – Pre​boot Ex​e​cu​tion En​vi​ron​ment, which uses a
process well known in com​pute en​vi​ron​ments. PXE has ex​tended its pres​ence into the net​work
as in​fra​struc​ture de​vices are in​creas​ingly man​aged more like servers. NX-OS uses iPXE which
lever​ages an open source net​work firmware based on gPXE/Ether​boot. With PXE, we can
lever​age ex​ist​ing skillsets and in​fra​struc​tures de​vel​oped for com​pute en​vi​ron​ments to sim​plify
ini​tial de​vice start-up.

Open source tools like Ig​nite can also make it eas​ier to au​to​mate the Day-0 pro​vi​sion​ing.

POAP/PXE Components and Architecture

POAP/PXE can be the first con​fig​u​ra​tion man​age​ment tools lever​aged in the net​work de​vice
life​cy​cle (Day 0). The ini​tial startup of the net​work de​vice con​tains basic ac​cess con​fig​u​ra​tions
such as the IP con​nec​tiv​ity for out-of-band man​age​ment in​ter​faces, con​sole in​for​ma​tion, and
set​ting of user​names and pass​words.

It could con​tain more ex​ten​sive con​fig​u​ra​tions, as de​scribed above. POAP and PXE startup
processes de​pends on mul​ti​ple ser​vices that pro​vide dif​fer​ent func​tions. It is pos​si​ble to host all
of these ser​vices on the same server, if de​sired:

• DHCP - Dynamic Host Configuration Protocol to provide necessary information to the
device being set up

• A script server for providing the initial configuration script download. TFTP- and HTTP-
based script download mechanisms are supported with Open NX-OS

• A configuration and software server hosts a repository of software images,
configuration, and additional components. Various transport protocols such as Secure
Copy (SCP), File Transfer Protocol (FTP), Secure File Transfer Protocol or Hypertext
Transfer Protocol (HTTP) could be supported here

147

Configuration Management and Automation150

Fig​ure: POAP / Com​po​nent Ar​chi​tec​ture

POAP Process

The POAP process starts by as​sign​ing a tem​po​rary IP ad​dress to the switch via the DHCP pro​to​-
col. Ad​di​tional DHCP scope op​tions are also pro​vided to fa​cil​i​tate the con​fig​u​ra​tion script
down​load.

• Option 66 or Option 150: References the Script Server. IEEE Option 66 allows a single IP
address or Server name. Cisco's Option 150 allows provision of a list of IP addresses for
accessing the TFTP-Server

148

Configuration Management and Automation 151

• Option 67: References the Configuration Script or Bootfile Name.

The Open NX-OS switch, act​ing as a DHCP client, will use this in​for​ma​tion to con​tact the TFTP
server to ob​tain the con​fig​u​ra​tion script file.

The con​fig​u​ra​tion script (e.g., poap.​py) will be ex​e​cuted. The logic of the con​fig​u​ra​tion script
will down​load the soft​ware image, switch con​fig​u​ra​tion, agent in​for​ma​tion and any other ad​di​-
tional re​quire​ments from the net​work. POAP pro​vides mul​ti​ple mech​a​nisms to flex​i​bly iden​tify
switches, based on their se​r​ial num​ber or sys​tem MAC ad​dress or their lo​ca​tion in the net​work,
as de​ter​mined by its di​rectly con​nected neigh​bors. The down​loaded image and con​fig​u​ra​tion is
'sched​uled' to be ap​plied after a re​boot.

Below is a flow​chart rep​re​sent​ing the POAP process:

149

Configuration Management and Automation152

Fig​ure: POAP Process Flow Chart

150

Configuration Management and Automation 153

PXE Process

Sim​i​lar to POAP, the PXE process starts by as​sign​ing a tem​po​rary IP ad​dress to the switch via
the DHCP pro​to​col. Ad​di​tional DHCP scope op​tions are also pro​vided to fa​cil​i​tate the con​fig​u​-
ra​tion script down​load.

• Option 66: This "next-server" options provide the information of a TFTP Server Name
that acts as a script server

• Option 67: Provides the Configuration Script or Bootfile Name

The Open NX-OS switch, act​ing as the DHCP client, will down​load the con​fig​u​ra​tion script and
ex​e​cute it.

PXE based boot​strap​ping of net​work de​vices be​haves very sim​i​larly to the process on a com​-
pute sys​tem. While in nor​mal PXE we will start a mini-OS (Net​work Boot​strap Pro​gram), in NX-
OS we are using "NET​BOOT" to ex​e​cute the con​fig​u​ra​tion script and re​spec​tively full​fill the task
of down​load​ing the soft​ware image and con​fig​u​ra​tion re​play onto the net​work de​vice.

The new soft​ware image and con​fig​u​ra​tion will be used on the next re​boot of the net​work de​-
vice.

Below is a flow​chart rep​re​sent​ing the PXE process:

151

Configuration Management and Automation154

Fig​ure: PXE Process Flow Chart

152

Configuration Management and Automation 155

POAP and PXE are great tools for ini ​tial start-up of com ​put ​ing sys​tems and net ​work de ​vices.
Using these tools at the be​gin​ning of a de​vice's life​cy​cle helps en​sure con​sis​tency and mit​i​gates
er​ro​neous typ​ing or mis​takes. Using a stream​lined process through net​work pro​gram​ma​bil​ity
can re​duce the risk of such out​ages.

Fur​ther ad​van​tages with au​to​mated net​work de​vice on-board​ing can be seen dur​ing re​place​-
ment sce​nar​ios where archived con​fig​u​ra​tions can be ap​plied to a new de​vice after re​plac​ing
the unique iden​ti​fier (ie se​r​ial num​ber) in the POAP or PXE de​f​i​n​i​tions.

Loading RPMs and agents using POAP/PXE

While some Dy​namic Con​fig​u​ra​tion Man​age​ment tools are agent-less and rely on the CLI
(Com​mand Line In​ter​face) or REST-based APIs (i.e., NX-API REST), oth​ers re​quire a spe​cific
agent to be pre​sent in order to con​fig​ure the net​work de​vice. For the agent-based tools, we
want to pro​vide a sim​pli​fied way to on-board the agent au​tonomously dur​ing startup. The ex​-
ten​si​bil​ity of POAP and PXE en​ables going be​yond the soft​ware image and con​fig​u​ra​tion down​-
load for a net​work de​vice, and can pro​vide the in​stal​la​tion of such an agent dur​ing ini​tial start-
up.

As part of POAP/PXE, we have to ex​tend the process to add con​fig​u​ra​tion man​age​ment agents
to the net​work de​vice. To in​clude the agent in​stal​la​tion in the over​all start-up process, a post-
pro​cess​ing com​mand-file is re​quired to fa​cil​i​tate the ex​e​cu​tion and in​stal​la​tion of the agent en​-
vi​ron​ment.

The fol​low​ing are ex​am​ples of the post-pro​cess​ing steps needed for en​abling agent in​stal​la​tion
in the net​work de​vice's bash shell.

• Enable feature bash-shell

• DNS configuration of bash-shell

• RPM installation

• Installation of configuration management agent

De​pend​ing on whether the agent is in​stalled in the bash shell or in the guest shell (con​tainer),
the post-pro​cess​ing com​mand file con​tent will vary.

153

Configuration Management and Automation156

Fig​ure: POAP/PXE for Dy​namic Con​fig​u​ra​tion Man​age​ment "Agent" on​board​ing

Day-0 Automation Tool - Ignite

Ig​nite is an open source tool de​signed to fa​cil​i​tate ini​tial net​work boot-strap​ping and pro​vi​sion​-
ing. It sup​ports Cisco Nexus switches lever​ag​ing POAP and, in the near fu​ture, PXE ca​pa​bil​i​ties
of NX-OS. Ig​nite pro​vides a pow​er​ful and flex​i​ble frame​work through which a data cen​ter net​-
work ad​min​is​tra​tor can de​fine the data cen​ter fab​ric in terms of its topol​ogy, con​fig​u​ra​tion
tem​plates (con​figlets) and re​source pools.

Ig​nite pro​vides the fol​low​ing func​tion​al​ity to help with Day-0 au​toma​tion:

• Topology design

• Configuration design

• Image and configuration store for POAP

• POAP request handler

154

Configuration Management and Automation 157

Ig ​nite pro ​vides a flex​i​ble mech ​a ​nism to iden​tify switches based on their se ​r ​ial num ​ber, MAC ad ​-
dress, or its lo​ca​tion in the net​work as de​ter​mined by ex​am​in​ing its re​la​tion​ship to peers. Ig​-
nite, can then gen​er​ate a con​fig​u​ra​tion unique to the switch using rules pro​vided by the ad​min​-
is​tra​tor, con​fig​u​ra​tion tem​plates and con​figlets, scripts, and re​source pools.

Fig​ure: Topol​ogy De​sign with Ig​nite

Getting Started with Ignite

In​for​ma​tion for get​ting started with Ig​nite can be found at http://​github.​com/​datacenter/​
ignite

In sum​mary, POAP is an es​sen​tial tool for Day-0 au​toma​tion. This can fa​cil​i​tate the de​ploy​ment
of net​works of any size. The use of POAP with python script​ing pro​vides ad​di​tional Day 0-1
func​tion​al​ity for futher ma​nip​u​la​tion of con​fig​u​ra​tions.

155

Configuration Management and Automation 159

Configuration and Lifecycle Management

Con​fig​u​ra​tion man​age​ment is part of the larger process of de​vice life​cy​cle man​age​ment - from
plan​ning and im​ple​ment​ing, to op​er​a​tions, and even​tual de​vice de​com​mis​sion​ing.

Con​fig​u​ra​tion man​age​ment is one of the most te​dious and repet​i​tive op​er​a​tions that will occur
through​out the life​cy​cle of a de​vice, and it is tightly in​te​grated with or​ga​ni​za​tional change man​-
age​ment processes. The pur​pose of con​fig​u​ra​tion man​age​ment is to build con​sis​tent and re​-
peat​able processes to im​ple​ment and ver​ify changes, as well as re​me​di​ate ex​cep​tions or vi​o​la​-
tions found within the in​fra​struc​ture.

All of this is done to en​sure com​pli​ance with the best-prac​tice con​fig​u​ra​tions and any or​ga​ni​za​-
tional or reg​u​la​tory stan​dards. Con​fig​u​ra​tion man​age​ment en​ables con​sis​tent con​fig​u​ra​tion of
com​pute, vir​tu​al​iza​tion, net​work​ing and stor​age re​sources and ser​vices. Mul​ti​ple facets of a
com​pany's in​fra​struc​ture can ben​e​fit from these processes, as shown in the the fol​low​ing il​lus​-
tra​tion.

Fig​ure: The Broad Ap​plic​a​bil​ity of Con​fig​u​ra​tion Man​age​ment In​fra​struc​tures

Configuration and Lifecycle Management

157

Configuration Management and Automation160

Con​fig​u ​ra ​tion man​age ​ment tools, typ ​i​cally, have a hi ​er ​ar ​chi ​cally-dis​trib ​uted struc ​ture built on
a de​clar​a​tive ap​proach to man​age​ment. They most often im​ple​ment a client-server or mas​ter-
agent frame​work, where poli​cies are main​tained on the server, and agents en​sure the poli​cies
are ap​plied on the de​vices being man​aged.

Ex​am​ples of tasks that can be au​to​mated in​clude:

• Auto-discovery and provisioning of devices

• Granular discovery of device components

• Policy-based and role-based management of infrastructure

• Configuration, event and power management

• Availability management (redundancy)

• Inventory, operation and licensing status report

• Continuous monitoring of resource utilization and capacity

• Dynamic provisioning of device resources (interface, VLANs, routes, switch/port
profiles etc)

There are nu​mer​ous se​cu​rity-re​lated checks that can be im​ple​mented. For ex​am​ple:

• Configuration and policy compliance

• Disabling clear-text access mechanisms

• VLAN and trunk management

Net​work au​toma​tion that started at Day-0 with POAP and PXE, can be ex​tended by tools like
Pup​pet, Chef, An​si​ble, Salt Stack, etc. Lever​ag​ing tools for day-to-day man​age​ment, mon​i​tor​ing
and con​fig​u​ra​tion changes, IT au​toma​tion with dy​namic con​fig​u​ra​tion man​age​ment, can op​ti​-
mize the work of in​fra​struc​ture op​er​a​tions teams, at the same time mit​i​gat​ing the risk of er​ror-
prone key​board input.

Models: Imperative vs. Declarative

Con​fig​u​ra​tion changes in a net​work have tra​di​tion​ally been made on a per-de​vice
basis using a spe​cific set of pro​ce​dures and con​fig​u​ra​tion line items.

These de​vices were con​fig​ured im ​per​a ​tively, that is, the exact steps to achieve the de​sired end-
state were spec​i​fied. With the im​per​a​tive model, ad​min​is​tra​tors build a work​flow every sin​gle

158

Configuration Management and Automation 161

time they want to per​form a task, and as more com​po​nents are added, the work​flow grows in
size and com​plex​ity.

This dif​fers from using a de​clar ​a ​tive model where an ad​min​is​tra​tor mod​els how they would like
their en​vi​ron​ment to look, and the switches, con​fig​u​ra​tion man​age​ment tool, or a com​bi​na​tion
thereof de​cides on how best to im​ple​ment the re​quested changes.

One of the main dif​fer​ences be​tween the im​per​a​tive and de​clar​a​tive mod​els is that ad​min​is​tra​-
tors in an im​per​a​tive model are typ​i​cally re​quired to have deep syn​tax and con​text knowl​edge
for the en​ti​ties they are con​fig​ur​ing. Syn​tax and con​text can dif​fer based on op​er​at​ing code
ver​sion. Using a de​clar​a​tive ap​proach ad​min​is​tra​tors can re​quest a change using a broad state​-
ment of de​sired out​come, and the sys​tem is re​spon​si​ble for "trans​lat​ing" the de​sired out​come to
the dif​fer​ent net​work el​e​ments.

De​clar​a​tive or model-based con​fig​u​ra​tion man​age​ment be​comes im​por​tant in the broader data
cen​ter con​text, in​clud​ing com​pute, vir​tu​al​iza​tion, net​work, stor​age, and other re​sources. Ar​chi​-
tects and en​gi​neers are not just mod​el​ing the net​work, they are mod​el​ling the en​tire in​fra​struc​-
ture.

From a micro level, the net​work it​self may be het​ero​ge​neous; it may have dif​fer​ent switch
types, lev​els of code, or even ven​dors. From a macro level, the net​work is not the only en​tity
within the data cen​ter; con​fig​ur​ing a net​work el​e​ment on a vir​tual switch can be dras​ti​cally dif​-
fer​ent from con​fig​ur​ing that same el​e​ment on a phys​i​cal switch.

To il​lus​trate the dif​fer​ence be​tween im​per​a​tive and de​clar​a​tive mod​els, the fol​low​ing work​flow
is an ex​am​ple of an im​per​a​tive op​er​a​tion on a switch - con​fig​ur​ing a VLAN.

Fig​ure: Im​per​a​tive Work​flow Ex​plic​itly Ex​presses Each In​struc ​tion

159

Configuration Management and Automation162

Fig​ure: De​clar​a​tive Ap​proach to In​fra​struc​ture Man​age​ment (Promise The​ory)

Configuration Management in Open NX-OS

For par​tic​i​pa​tion in a con​fig​u​ra​tion man​age​ment frame​work, switches must en​able con​fig​u​ra​-
tion man​age​ment ca​pa​bil​i​ties. Due to dif​fer​ences in con​fig​u​ra​tion man​age​ment tool method​-
olo​gies, Open NX-OS sup​ports a va​ri​ety of ac​cess mech​a​nisms, in​clud​ing:

• Secure Shell (SSH)

• Guest agents (installed via RPM), and

• NX-API CLI and REST APIs

Secure Shell (SSH)

Con​fig​u​ra​tion man​age​ment tools that uti​lize an em​bed​ded/di​rect pay​load use Se​cure Shell
(SSH). The fol​low​ing com​mand will con​firm that SSH is en​abled on a switch:

160

Configuration Management and Automation 163

 n9k-sw-1# show feature | inc ssh

 sshServer 1 enabled

Guest Agent Installation using Bash/RPM

Open NX-OS al​lows in​stal​la​tion and con​fig​u​ra​tion of man​age​ment agents through the bash or
guest shell. To learn about the dif​fer​ences be​tween bash and guest shells, and rec​om​mended
im​ple​men​ta​tions of each, please see the Third-party Ap ​pli​ca ​tion In​te​gra​tion chap​ter.

NX-API CLI and REST APIs

For con​fig​u​ra​tion man​age​ment tools and other ar​chi​tec​tures such as cloud man​age​ment plat​-
forms, the NX-API may be uti​lized for de​vice con​fig​u​ra​tion, gath​er​ing de​vice data, and per​for​-
mance mon​i​tor​ing.

For more in​for​ma​tion see http://​developer.​cisco.​com/​opennxos

Agent-less Management

Na​tive or agent-less man​age​ment is ac​com​plished through re​mote shell ac​cess or through the
NX-API. With re​mote shell ac​cess, a con​fig​u​ra​tion man​age​ment server or mas​ter will uti​lize a
push model to de​liver a pay​load in the form of a script through the net​work. The con​fig​u​ra​tion
man​age​ment scripts are stored on the mas​ter.

As an ex​am​ple, a Python script can be used to gather switch in​for​ma​tion and sta​tis​tics and re​-
turn re​sults to the orig​i​nat​ing server. The script will run in a tem​po​rary space on the switch,
and any rel​e​vant data will be streamed back or com​pressed and re​turned through the net​work.

A major ad​van​tage to the re​mote shell ac​cess method is that there is lit​tle to no con​fig​u​ra​tion
re​quired on the switch de​vice as there are no agents re​quired for in​stal​la​tion. A po​ten​tial draw​-
back is the need to en​sure that the se​cu​rity con​fig​u​ra​tion on the switch is kept syn​chro​nized,
as any change can have a sig​nif​i​cant im​pact on the con​fig​u​ra​tion man​age​ment tool's abil​ity
to ac​cess the switch.

An​si​ble is a good ex​am​ple of an agent-less con​fig​u​ra​tion man​age​ment tool.

161

Configuration Management and Automation164

Fig​ure: Agent-less Mod​els Uti​lize Stan​dard De​vice In​ter​faces like Se​cure SHell (SSH)

Agent-based Management

Agent-based con​fig​u​ra​tion man​age​ment is pull-based, and re​quires in​stal​la​tion of an agent on
the switch. When agents are used for switch man​age​ment, they can be in​stalled in the na​tive
Linux user-space, a Linux Con​tainer (LXC), or the guest shell. Com​mu​ni​ca​tion be​tween agents
and mas​ter nodes is ac​com​plished through the net​work, and agents should be con​fig​ured
for se​cure, en​crypted com​mu​ni​ca​tion be​tween mas​ter nodes and agents.

162

Configuration Management and Automation 165

While bash will run agents di ​rectly within the shell, guest shell has the ca​pa ​bil​ity to in​stall
agents within an LXC, or to run an open vir​tual for​mat (OVF/OVA) ma​chine, which can be
launched from the boot​flash di​rec​tory. Guest shell en​sures agent-based op​er​a​tions are iso​-
lated from the un​der​ly​ing host con​text to en​sure se​cu​rity

Pup​pet and Chef are ex​am​ples of agent-based con​fig​u​ra​tion man​age​ment tools.

Fig​ure: Pup​pet and Chef Lever​age an Agent on the Open NX-OS Switch

In sum​mary, con​fig​u​ra​tion man​age​ment tools have been proven in server au​toma​tion en​vi​ro​-
ments, and can be ex​tended to net​work in​fra​struc​ture com​po​nents using a com​mon con​fig​u​ra​-
tion man​age​ment frame​work.

163

Configuration Management and Automation 167

IT Automation Tools

The open source com​mu​nity has sev​eral toolsets for con​fig​u​ra​tion man​age​ment. Many of these
toolsets also offer en​ter​prise-level prod​uct man​age​ment and sup​port. Cisco of​fers sup​port for
sev​eral open source con​fig​u​ra​tion man​age​ment tools, in​clud​ing:

• Ansible

• Chef

• Puppet

Open NX-OS also of​fers de​vel​op​ers and ad​min​is​tra​tors the abil​ity to cre​ate and share their own
code in Python, Ruby, Go or any pro​gram​ming ca​pa​ble of ac​cess​ing NX-API REST.

Ansible

Introduction

An​si​ble is an open-source soft​ware plat​form for con​fig​ur​ing and man​ag​ing com​pute and
switch​ing in​fra​struc​ture using “play​books". An​si​ble fea​tures a state-dri​ven re​source model that
de​scribes the de​sired state of com​puter sys​tems and ser​vices. It is used to au​to​mate the con​fig​-
u ​ra​tion of a com​pany’s com​pute and switch​ing re​sources in an agent-less man​ner.

An​si​ble is a very straight​for​ward and pow​er​ful tool for in​tent-based net​work au​toma​tion, all
you need to get started are play​books, a server con​fig​u​ra​tion file, and an in​ven​tory file.

Key Technical Concepts

Play​books

Play​books spec​ify a list of tasks that are run in se​quence across one or more hosts. Each task
can also run mul​ti​ple times with a vari​able tak​ing a dif​fer​ent value. Play​books are ex​pressed in
YAML for​mat.

165

Configuration Management and Automation168

In​ven​tory

In​ven​tory is the rep​re​sen​ta​tion of in​for​ma​tion about hosts — what groups a host be​longs to, the
prop​er​ties those groups and hosts have. A hi​er​ar​chy of groups often re​sults.

Tem​plates

Tem​plates allow you to gen​er​ate con​fig​u​ra​tion files from val​ues set in var​i​ous in​ven​tory prop​-
er​ties. This means that you can store one tem​plate in source con​trol that ap​plies to many dif​-
fer​ent en​vi​ron​ments.

Roles

Roles are a way to en​cap​su​late com​mon tasks and prop​er​ties for reuse, if you find your​self writ​-
ing the same tasks in mul​ti​ple play​books, turn them into roles.

Sam​ple Play​book To Con​fig​ure VLANs:

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ more vlans.yml

 # vlans.yml

 - name: VLANs

 hosts: all

 connection: local

 gather_facts: no

 tasks:

 - name: ensure VLANs 2-20 and 99 exist on all switches

 nxos_vlan: vlan_id="2-20,99" state=present host={{ inventory_hostname }}

 - name: config VLANs names for a few VLANs

 nxos_vlan: vlan_id={{ item.vid }} name={{ item.name }} host={{ inventory_hostname }}

state=present

 with_items:

 - { vid: 2, name: web }

 - { vid: 3, name: app }

166

Configuration Management and Automation 169

 - { vid: 4, name: db }

 - { vid: 20, name: server }

 - { vid: 99, name: native }

An​si​ble Ref​er​ence Links

https://​github.​com/​datacenter/​nxos-ansible

http://​docs.​ansible.​com/​ansible/​

Chef

Introduction

Chef is a pow​er​ful au​toma​tion plat​form that trans​forms com​plex in​fra​struc​ture into code, en​-
abling your data cen​ter in​fra​struc​ture au​toma​tion using a de​clar​a​tive, in​tent-based model.
Whether you’re op​er​at​ing in the cloud, on-premises, or a hy​brid, Chef au​to​mates how ap​pli​ca​-
tions are con​fig​ured, de​ployed, and man​aged across your net​work, no mat​ter its size.

Chef is built around sim​ple con​cepts: achiev​ing de​sired state, cen​tral​ized mod​el​ing of IT in​fra​-
struc​ture, and re​source prim​i​tives that serve as build​ing blocks. These con​cepts en​able you to
quickly man​age any in​fra​struc​ture with Chef. These very same con​cepts allow Chef to han​dle
the most dif​fi​cult in​fra​struc​ture chal​lenges and cus​tomer use-cases, any​thing that can run the
chef-client can be man​aged by Chef.

Key Technical Concepts

Chef Server

The Chef server acts as a hub for con​fig​u​ra​tion data. It stores:

• Cookbooks

• Recipes (The policies that are applied to nodes)

• Metadata that describes each registered node that is being managed by the chef-client.

167

Configuration Management and Automation170

Node

Any phys​i​cal, vir​tual, or cloud ma​chine or switch con​fig​ured to be main​tained by a chef-client.

Chef Client

Runs lo​cally on every node that is reg​is​tered with the Chef server. Per​forms all con​fig​u​ra​tion
tasks spec​i​fied by the run-list and brings client into de​sired state.

Chef Re​sources

Term used for a group​ing of man​aged ob​jects/at​trib​utes and one or more cor​re​spond​ing im​-
ple​men​ta​tions. It de​scribes the de​sired state for a con​fig​u​ra​tion item and de​clares the steps
needed to bring that item to the de​sired state. It spec​i​fies a re​source type—such as a pack​age,
tem​plate or ser​vice, and lists ad​di​tional de​tails (also known as at​trib​utes), as nec​es​sary. These
are grouped into recipes, which de​scribe work​ing con​fig​u​ra​tions

The 2 core lay​ers of a re​source:

• Resource Type: Definition of managed objects.

• Resource Provider: Implementation of management tasks on objects.

Cook​book

A cook​book de​fines a sce​nario and con​tains every​thing that is re​quired to sup​port that sce​-
nario, and is used for de​vice con​fig​u​ra​tion and pol​icy dis​tri​b​u​tion:

• Recipes that specify the resources to use and the order in which they are to be applied

• Attribute values

• File distributions

• Templates

• Extensions to Chef, such as libraries, definitions, and custom resources

Recipe

A col​lec​tion of re​sources, de​fined using pat​terns (re​source names, at​tribute-value pairs, and ac​-
tions); helper code is added around this using Ruby:

168

Configuration Management and Automation 171

• Must be stored in a cookbook

• May use the results of a search query and read the contents of a data bag

• May have a dependency on one (or more) recipes

• Must be added to a run-list before it can be used by the chef-client

• Is always executed in the same order as listed in a run-list

• The chef-client will run a recipe only when asked

Sam​ple Cook​book Show​ing Con​fig​u​ra​tion of Switch In​ter​face as L3 or L2:

 cisco_interface 'Ethernet1/1' do

 action :create

 ipv4_address '10.1.1.1'

 ipv4_netmask_length 24

 ipv4_proxy_arp true

 ipv4_redirects true

 shutdown true

 switchport_mode 'disabled'

 end

 cisco_interface 'Ethernet1/2' do

 action :create

 access_vlan 100

 shutdown false

 switchport_mode 'access'

 switchport_vtp true

 end

Chef Reference Links

Cisco Chef Client: (WRL5 Agent, Cen​tOS7 Agent for Guest Shell)

Cisco Chef Cook​book: (https://​supermarket.​chef.​io/​cookbooks/​cisco-cookbook)

Cisco Chef Cook​book Source Repos​i​tory (https://​github.​com/​cisco/​cisco-network-chef-
cook​book)

List of Sup​ported Cisco Re​sources (https://​github.​com/​cisco/​cisco-network-chef-cookbook/​

169

Configuration Management and Automation172

blob/​develop/ ​README. ​md# ​resource-by-tech)

Puppet

Introduction

Pup​pet mod​els de​sired sys​tem states, en​forces those states, and re​ports any vari​ances so you
can track what Pup​pet is doing. To model sys​tem states, Pup​pet uses a de​clar​a​tive re​source-
based lan​guage - this means a user de​scribes a de​sired final state (e.g. “this pack​age must be in​-
stalled” or “this ser​vice must be run​ning”) rather than de​scrib​ing a se​ries of steps to ex​e​cute.

You use the de​clar​a​tive, read​able Pup​pet DSL (Do​main Spe​cific Lan​guage) to de​fine the de​sired
end-state of your en​vi​ron​ment, and Pup​pet con​verges the in​fra​struc​ture to the de​sired state.
So if you have a pre-de​fined con​fig​u​ra​tion that every new switch should re​ceive, or need to
make in​cre​men​tal con​fig​u​ra​tion changes to your in​fra​struc​ture, or even have a need to in​stall
third party soft​ware agents, the pup​pet in​tent-based au​toma​tion so​lu​tion can au​to​mate these
repet​i​tive con​fig​u​ra​tion man​age​ment tasks quickly. We sup​port both open source and pup​pet
en​ter​prise with Open NX-OS.

Key Technical Concepts

Pup​pet Server

The pup​pet server acts as a cen​tral server or point of con​fig​u​ra​tion and con​trol for your dat​a​-
cen​ter, both switch​ing and com​pute:

• Manifests

• Resources

Node

Any phys​i​cal, vir​tual, or cloud ma​chine or switch con​fig​ured to be main​tained by a pup​pet
client, be it server or switch.

170

Configuration Management and Automation 173

Pup​pet Client

Runs lo​cally on every node that is man​aged by the pup​pet mas​ter server. Per​forms all con​fig​u​-
ra​tion tasks spec​i​fied by the man​i​fest and con​verges the node into de​sired state.

Resources

Pup​pet ships with a num​ber of pre-de​fined re ​sources, which are the fun​da​men​tal com​po​nents
of your in​fra​struc​ture. The most com​monly used re​source types are files, users, pack​ages and
ser​vices. You can see a com​plete list of the Cisco re​source types at the Github re​spos​i​tory link
below.

Pup​pet re​volves around the man​age​ment of these re​sources. The fol​low​ing code sam​ple en​-
sures a third party agent ser​vice is al​ways up and run​ning.

 service { 'tcollector':

 ensure => running,

 }

Here, the “ser​vice” is the re​source type, and “tcol​lec​tor” is the man​aged re​source. Each re​-
source has at​trib​utes, and here, “en​sure” is an at​tribute of the tcol​lec​tor ser​vice. We’re set​ting
the “en​sure” at​tribute to “run​ning” to tell Pup​pet that tcol​lec​tor should al​ways be run​ning, and
to start the ser​vice if it is not.

Manifests

Introduction

Man​i​fests are files con​tain​ing Pup​pet code. They are stan​dard text files saved with the .pp ex​-
ten​sion. Most man​i​fests should be arranged into mod​ules.

Resources

The core of the Pup​pet lan​guage is de​clar​ing re​sources. A re​source de​c​la​ra​tion looks like this:

 # A resource declaration:

 cisco_interface { "Ethernet1/2" :

171

Configuration Management and Automation174

 description => 'default',

 shutdown => 'default',

 access_vlan => 'default',

 }

When a re​source de​pends on an​other re​source, you should ex​plic​itly state the re​la​tion​ship to
make sure they occur in the proper order.

Classes

A class is a set of com​mon con​fig​u​ra​tions — re​sources, vari​ables and more ad​vanced at​trib​utes.
Any​time we as​sign this class to a ma​chine, it will apply those all con​fig​u​ra​tions within the class.

Modules

A Pup​pet mod​ule is just a col​lec​tion of files and di​rec​to​ries that can con​tain Pup​pet man​i​fests,
as well as other ob​jects such as files and tem​plates, all pack​aged and or​ga​nized in a way that
Pup​pet can un​der​stand and use. When you down​load a mod​ule from Pup​pet​Forge, you are
down​load​ing a top-level di​rec​tory with sev​eral sub​di​rec​to​ries that con​tain the com​po​nents
needed to spec​ify the de​sired state. When you want to use that mod​ule to man​age your nodes,
you clas​sify each node by as​sign​ing to it a class within the mod​ule.

The hi​er​ar​chy is as fol​lows:

• Resources can be contained within classes.

• Classes can live in a manifest.

• Manifests can live in a module.

Sam​ple Man​i​fest

Three types are needed to add OSPF sup​port on an in​ter​face: cis​co_ospf, cis​co_ospf_vrf, and
cis​co_in​ter​face_ospf.

First, to con​fig​ure cis​co_ospf to en​able ospf on the de​vice, add the fol​low​ing type in the man​i​-
fest:

 cisco_ospf {"Sample":

 ensure => present,

172

Configuration Management and Automation 175

 }

Then put the ospf router under a VRF, and add the cor​re​spond​ing OSPF con​fig​u​ra​tion.

If the con​fig​u​ra​tion is global, use 'de​fault' as the VRF name:

 cisco_ospf_vrf {"Sample default":

 ensure => 'present',

 default_metric => '5',

 auto_cost => '46000',

 }

Fi​nally, apply the ospf con​fig​u​ra​tion to the in​ter​face:

 cisco_interface_ospf {"Ethernet1/2 Sample":

 ensure => present,

 area => 200,

 cost => "200",

 }

Puppet Reference Links

Pup​pet Mod​ule: (https://​forge.​puppetlabs.​com/​puppetlabs/​cis​cop​up​pet)

Pup​pet Mod​ule Source Repos​i​tory (https://​github.​com/​cisco/​cisco-network-puppet-mod​ule)

List of Sup​ported Cisco Re​sources (https://​github.​com/​cisco/​cisco-network-puppet-
module/​blob/​develop/​README.​md#​resource-by-tech)

Com​mon Ar​ti​facts

Ruby Li​braries (https://​rubygems.​org/​gems/​cisco_​nxapi, https://​rubygems.​org/​gems/​cis​-
co_n​ode_u​tils)

Ruby Li​brary Source Repos​i​tory (https://​github.​com/​cisco/​cisco-network-node-
utils, https://​github.​com/​cisco/​cisco-nxapi)

173

Configuration Management and Automation176

Any con ​fig​u ​ra ​tion man ​age ​ment switch-res​i​dent agents in​clud ​ing Pup ​pet and Chef, are sup​-
ported na​tively in Open NX-OS Linux, or in the guest shell, pro​vid​ing choice for au​toma​tion
agent in​stal​la​tion.

In sum​mary, con​fig​u​ra​tion and life​cy​cle man​age​ment are core tenets of the De​vOps model,
and there are mul​ti​ple open source tools avail​able for con​fig​u​ra​tion man​age​ment and au​toma​-
tion that Open NX-OS can lever​age.

174

Practical Applications of
Network Programmability

Practical Applications of Network Programmability 179

Introduction

Up to now, the focus has been on net​work au​toma​tion con​cepts, tech​nolo​gies, tools, and de​vel​-
op​ment method​olo​gies. In the sec​tions that fol​low, the focus will shift to prac​ti​cal use-cases
which il​lus​trate how net​work pro​gram​ma​bil​ity and au​toma​tion can be ap​plied to drive in​no​va​-
tion and ad​dress real is​sues af​fect​ing net​work op​er​a​tions teams.

In each of the use-cases de​scribed below, the chal​lenge af​fect​ing the net​work op​er​a​tor will be
de​scribed, and a so​lu​tion that lever​ages net​work au​toma​tion will be il​lus​trated, along with sam​-
ple APIs, scripts, tools, code-snip​pets, and con​fig​u​ra​tion-snip​pets.

These use-cases and their so​lu​tions are drawn from real-world cus​tomer sce​nar​ios. Hope​fully
they will spark ideas for other use-cases and new so​lu​tions that can be shared with the Open
NX-OS com​mu ​nity.

177

Practical Applications of Network Programmability 181

Infrastructure Provisioning Automation

Problem Statement

Ini​tial startup of a net​work in​volves dis​tinct net​work plan​ning, pro​vi​sion​ing and val​i​da​tion
phases. With the man​ual ap​proach to these processes that has been preva​lent to date, net​work
op​er​a​tors have been forced to spend less time plan​ning and more time per​form​ing te​dious con​-
fig​u​ra​tion and val​i​da​tion tasks.

Au​tomat​ing these tasks would de​liver im​me​di​ate ben​e​fits, in​clud​ing:

• Faster initial setup: Reducing the time needed to get infrastructure ready for the
applications

• Fewer errors: Eliminating manual processes with well planned network blueprints

• Repeatability: Leveraging automation tools and scripts across multiple deployments

Net​work startup is a com​plex process in​volv​ing nu​mer​ous con​fig​u​ra​tion and val​i​da​tion steps.
 The fol​low​ing is an abridged ex​am​ple of the con​fig​u​ra​tion steps nec​es​sary to de​ploy a new net​-
work. The whole process could take mul​ti​ple days ex​tend​ing to weeks, de​pend​ing on the size
and com​plex​ity of the net​work. In this ex​am​ple there are 100 nodes.

In​fra​struc ​ture Setup (x1):

• Start-up and configure DHCP infrastructure

• (Optional) Configure and enable infrastructure services like AAA servers, SNMP servers,
syslog server, etc

Switch De​ploy​ment (x 100):

• Physical Installation:

Rack the switch

Connect management (in-band or out-of-band) interfaces

(Optional) connect a console connection to a terminal server

Power up the switch

179

Practical Applications of Network Programmability182

• Switch Configuration:

Configure management parameters on the switch

Validate management connectivity

Validate if the right image exists on the switch

Upgrade/downgrade the image, as needed

Configure AAA parameters

Validate AAA and user access

Configure infrastructure features SNMP, syslog, etc.

Validate infrastructure features

Configure fabric interfaces with appropriate VLANs or IP addresses

Validate connectivity to adjacent switches

Configure connectivity to external / default routers

Validate connectivity to external / core networks

Configure connectivity to the Layer 4-7 service devices

Validate Layer 4-7 service connectivity

Configure Layer 2/3 interfaces and protocols

Validate protocol reachability

Install configuration agents (Puppet, Chef, Splunk forwarder, etc.)

Fab​ric Wide (x1):

• Validate node-to-node and end-to-end connectivity

The prob​lem with this man​ual con​fig​u​ra​tion ex​er​cise is each of the con​fig​u​ra​tion steps above
must be done by hand - 100 times - which is ex​tremely time-con​sum​ing and er​ror-prone.

Solution

Cisco NX-OS in​cludes a power-on au​to​mated pro​vi​sion​ing (POAP) ca​pa​bil​ity that aids in au​-
tomat​ing the ini​tial start-up and con​fig​u​ra​tion processes. In ad​di​tion, Cisco has re​cently pub​-
lished an open source tool called Ig​nite that fur​ther en​hances au​toma​tion with tools for topol​-
ogy, con​fig​u​ra​tion de​sign and man​age​ment.

Cisco Power-On Auto Provisioning (POAP)

180

Practical Applications of Network Programmability 183

Cisco Power-On Auto Provisioning (POAP)

Cisco’s POAP im​ple​men​ta​tion al​lows au​to​mated con​fig​u​ra​tion of a net​work de​vice by pro​vid​ing
the re​quired image and con​fig​u​ra​tion via down​load.

While POAP was orig​i​nally tar​geted at ini​tial con​fig​u​ra​tion, it is im​ple​mented using a Python-
based script​ing mech​a​nism that is ex​tremely flex​i​ble, so its func​tion​al​ity can be ex​tended well
be​yond power-on pro​vi​sion​ing. Cur​rently POAP is al​ready ca​pa​ble of han​dling com​plex re​-
quire​ments for in​ter​me​di​ate boot or​ders, re​play check​points, and con​fig​u​ra​tion man​age​ment
agent in​stal​la​tion.

A broader dis​cus​sion on POAP is in​cluded in the Con ​fig​u ​ra ​tion Man ​age​ment and Au ​toma ​-
tion chap​ter.

Open NX-OS Extensibility Support

POAP uti​lizes the Open NX-OS RPM (Pup​pet, Chef) ca​pa​bil​i​ties to in​stall con​fig​u​ra​tion man​age​-
ment agents dur​ing power-on in​stal​la​tion.

Ignite

Ig​nite is a tool that au​to​mates the process of in​stalling and up​grad​ing soft​ware im​ages and in​-
stalling con​fig​u​ra​tion files on Cisco Nexus switches that are being de​ployed in the net​work,
work​ing in con​junc​tion with POAP on the switch.

Ig​nite pro​vides a pow​er​ful and flex​i​ble frame​work through which a data cen​ter net​work ad​min​-
is​tra​tor can de​fine data-cen​ter net​work topolo​gies, con​fig​u​ra​tion tem​plates (con​figlets), and
re​source pools. Ig​nite au​to​mat​i​cally iden​ti​fies the switch from its neigh​bors or by its unique
iden​ti​fiers (Se​r​ial ID or Sys​tem MAC ad​dress) and then de​liv​ers the the proper con​fig​u​ra​tion
tem​plate and image to the switch.

Using these tools, users can au​to​mate a sig​nif​i​cant por​tion of their switch start-up process, as
il​lus​trated below:

181

Practical Applications of Network Programmability184

Solution Approach

In​fra​struc ​ture setup (x1):

• Start and configure the DHCP infrastructure

• (Optional) Configure and enable infrastructure services like AAA servers, SNMP servers,
syslog server, etc

• Install and configure Ignite

Create IP/VLAN pools

Design the configuration templates for the leaf and spine switches

One single template is needed per switch category (leaf, spine, core, etc)

Design the topology for the fabric

Assign image version and configuration templates to the switches

• Configure the DHCP server to redirect DHCP requests from the switches to Ignite

Fig​ure: Sam​ple DHCP-Server con​fig​u​ra​tion for POAP (Linux dhcpd)

 ##ScopeStart:ScopeName:POAP_Scope

 subnet 10.10.10.0 netmask 255.255.255.0 {

 range 10.10.10.40 10.10.10.50;

 max-lease-time 3600;

 option bootfile-name "poap.py";

 option domain-name-servers 10.10.10.250;

 option routers 10.10.10.1;

 option tftp-server-name "10.10.10.200";

 }

182

Practical Applications of Network Programmability 185

Fig​ure: De​sign Pools of Re​sources

Fig​ure: De​sign Con​fig​u​ra​tion Tem​plate Leaf Switches with Ig​nite

183

Practical Applications of Network Programmability186

Fig​ure: De​sign topol​ogy for the fab​ric with Ig​nite

184

Practical Applications of Network Programmability 187

Fig​ure: As​sign​ing Con​fig​u​ra​tion Tem​plates to Switches

Switch setup (x100):

• Rack the switch

• Connect the management (in-band or out-of-band) interfaces

• Connect a console connection to a terminal server (Optional)

• Power-on the switch

Each switch, upon being booted, com​pletes the fol​low​ing steps au​to​mat​i​cally:

• Issues a DHCP request and receives an IP address

• Contacts the Ignite server and downloads the assigned image and configuration

Ignite generates configurations based on the defined configuration templates and
pools

• Reboots with the proper image and configuration (Figure 5)

• Installs and configures the configuration agents (Puppet, Chef, Splunk Forwarder)

185

Practical Applications of Network Programmability188

Fig​ure 5: Switch boot ​ing up with POAP

 [7:51:26] - INFO: Get serial number: ABC1234ab

 [7:51:26]S/N[ABC1234ab] - INFO: device type is n9k

 [7:51:26]S/N[ABC1234ab] - INFO: device os version is 7.0(3)I1(2)

 [7:51:26]S/N[ABC1234ab] - INFO: device system image is n9000-dk9.7.0.3.I1.2.bin

 [7:51:26]S/N[ABC1234ab] - INFO: check free space

 [7:51:26]S/N[ABC1234ab] - INFO: free space is 3881536 kB

 [7:51:26]S/N[ABC1234ab] - INFO: Ready to copy protocol scp, host 10.10.10.30, source

/server-list.cfg

 [7:51:29]S/N[ABC1234ab] - INFO: Get Device Image Config File

 [7:51:29]S/N[ABC1234ab] - INFO: removing tmp file /bootflash/server-list.cfg

 [7:51:29]S/N[ABC1234ab] - INFO: Ready to copy protocol scp host

10.10.10.30/ABC1234ab/recipe.cfg recipe.cfg

 [7:51:33]S/N[ABC1234ab] - INFO: Get Device Recipe

 [7:51:33]S/N[ABC1234ab] - INFO: removing tmp file /bootflash/recipe.cfg

 [7:51:35]S/N[ABC1234ab] - INFO: Download CA Certificate

 [7:51:35]S/N[ABC1234ab] - INFO: Ready to copy protocol scp, host 10.10.10.30, source

/cacert.pem

 [7:51:38]S/N[ABC1234ab] - INFO: create_image_conf

 [7:51:51]S/N[ABC1234ab] - INFO: Ready to copy protocol scp, host 10.10.10.30, source

/n9000-dk9.7.0.3.I2.1.bin

 [7:53:13]S/N[ABC1234ab] - INFO: Completed Copy of System Image

 [7:53:35]S/N[ABC1234ab] - INFO: Ready to copy protocol scp, host 10.10.10.30, source

/ABC1234ab/device-config

 [7:53:38]S/N[ABC1234ab] - INFO: Completed Copy of Config File

 [7:53:38]S/N[ABC1234ab] - INFO: Split config invoked....

Fab​ric Wide (x1):

• Validate node-to-node and end-to-end configuration and connectivity

​(Future) Trigger a validation in Ignite to verify configuration and connectivity

186

Practical Applications of Network Programmability 189

Conclusion

Using POAP and Ig​nite, users can dra​mat​i​cally re​duce the time re​quired to pre​pare the net​work
for ap​pli​ca​tions while re​duc​ing the pos​si​b​lity of con​fig​u​ra​tion er​rors. Fur​ther, any ef​fort ap​-
plied to de​sign one Pod/Fab​ric can be re-lever​aged to ac​cel​er​ate fu​ture de​ploy​ments.

187

Practical Applications of Network Programmability 191

Automating Access Configuration with Ansible

Problem Statement

Users per​form man​ual Day-1 op​er​a​tions to con​fig​ure net​work el​e​ments re​peat​edly for the pur​-
pose on on-board​ing new work​loads. One com​mon cat​e​gory of Day-1 con​fig​u​ra​tion ac​tiv​ity
is per​form​ing rou​tine VLAN re​lated op​er​a​tions:

• Check if VLAN exists

• Change names and descriptions of VLANs

• Configure a VLAN

It would be ben​e​fi​cial to au​to​mate this repet​i​tive con​fig​u​ra​tion with a goal of re​duc​ing time and
ef​fort needed to com​plete the con​fig​u​ra​tions, while re​duc​ing the prob​a​bil​ity of er​rors.

Today net​works are in high de​mand and change con​stantly due to pro​lif​er​a​tion of cus​tomer de​-
mands. Net​work en​gi​neers need the abil​ity to au​to​mate their net​work in a sim​ple and man​age​-
able way. One of the most fre​quent net​work changes is cre​ation and re​moval of VLANs where
net​work en​gi​neers are ac​com​mo​dat​ing dy​namic cus​tomer de​mands.

Solution

An​si​ble pro​vides a clean way to ac​com​plish the cre​ation and re​moval of VLANs be​cause An​si​ble
doesn’t re​quire an agent be in​stalled on the de​vices. The main re​quire​ments for this so​lu​tion
are:

• SSH

• Python – this is not required but it is the most commonly used language

In this par​tic​u​lar ex​am​ple we are going to demon​strate how to lever​age An​si​ble to cre​ate
VLANs. Below is a graph​i​cal rep​re​sen​ta​tion of how An​si​ble re​lates to the net​work.

189

Practical Applications of Network Programmability192

Fig​ure: An​si​ble Work​flow with a Cisco Open NX-OS Switch

To un​der​stand the so​lu​tion ap​proach, it might be ben​e​fi​cial to un​der​stand some of the key An​-
si​ble ter​mi​nol​ogy:

• Hosts: Remote machines Ansible manages.

• Groups: Group of hosts assigned to a pool that can be conveniently targeted and
managed together.

• Inventory: File describing the Hosts and Groups in Ansible.

• Modules: Modules (also referred to as “task plugins” or “library plugins”) are the
components that do the actual work in Ansible. They are what gets executed in each
playbook task.

• Playbooks: A collection of plays which the Ansible Engine orchestrates, configures,
administers, or deploys. These playbooks describe the policy to be executed to the
host(s). People refer to these playbooks as "design plans" which are designed to be
human- readable and are developed in a basic text language called YAML.

Solution Approach

1) Host File

The hosts file lever​aged for this spe​cific use-case:

190

Practical Applications of Network Programmability 193

 cisco@linux-dev:~/nxos-ansible$ more hosts

 [all:vars]

 ansible_connection = local

 [spine]

 dean

 cisco@linux-dev:~/nxos-ansible$

2) Playbook

The play​book used for this par​tic​u​lar use-case

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ more vlans.yml

 # vlans.yml

 - name: VLANs

 hosts: all

 connection: local

 gather_facts: no

 tasks:

 - name: ensure VLANs 2-20 and 99 exist on all switches

 nxos_vlan: vlan_id="2-20,99" state=present host={{ inventory_hostname }}

 - name: config VLANs names for a few VLANs

 nxos_vlan: vlan_id={{ item.vid }} name={{ item.name }} host={{ inventory_hostname }}

state=present

 with_items:

 - { vid: 2, name: web }

 - { vid: 3, name: app }

 - { vid: 4, name: db }

 - { vid: 20, name: server }

 - { vid: 99, name: native }

3) Checking VLAN

191

Practical Applications of Network Programmability194

In this step we are ver​i​fy​ing the VLANS are not con​fig​ured in the switch

 n9k-sw-1# sh vlan brief

 VLAN Name Status Ports

 ---- -------------------------------- --------- -------------------------------

 1 default active Eth1/1, Eth1/2, Eth1/3, Eth1/4

 Eth1/5, Eth1/6, Eth1/7, Eth1/8

 Eth1/9, Eth1/10, Eth1/11

 Eth1/12, Eth1/13, Eth1/14

 Eth1/15, Eth1/16, Eth1/17

 Eth1/18, Eth1/19, Eth1/20

 Eth1/21, Eth1/22, Eth1/23

 Eth1/24, Eth1/25, Eth1/26

 Eth1/27, Eth1/28, Eth1/29

 Eth1/30, Eth1/31, Eth1/32

 Eth1/33, Eth1/34, Eth1/35

 Eth1/36, Eth1/37, Eth1/38

 Eth1/39, Eth1/40, Eth1/41

 Eth1/42, Eth1/43, Eth1/44

 Eth1/45, Eth1/46, Eth1/47

 Eth1/48, Eth1/49, Eth1/50

 Eth1/51, Eth1/52, Eth1/53

 Eth1/54

 n9k-sw-1#

4) Execute Playbook

Now run the play​book by ex​e​cut​ing an​si​ble-play​book vlans.​yml

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ ansible-playbook vlans.yml

 PLAY [VLANs] **

 TASK: [ensure VLANs 2-20 and 99 exist on all switches] ************************

 changed: [dean]

Practical Applications of Network Programmability194

In this step we are ver ​i​fy​ing the VLANS are not con ​fig​ured in the switch

 n9k-sw-1# sh vlan brief

 VLAN Name Status Ports

 ---- -------------------------------- --------- -------------------------------

 1 default active Eth1/1, Eth1/2, Eth1/3, Eth1/4

 Eth1/5, Eth1/6, Eth1/7, Eth1/8

 Eth1/9, Eth1/10, Eth1/11

 Eth1/12, Eth1/13, Eth1/14

 Eth1/15, Eth1/16, Eth1/17

 Eth1/18, Eth1/19, Eth1/20

 Eth1/21, Eth1/22, Eth1/23

 Eth1/24, Eth1/25, Eth1/26

 Eth1/27, Eth1/28, Eth1/29

 Eth1/30, Eth1/31, Eth1/32

 Eth1/33, Eth1/34, Eth1/35

 Eth1/36, Eth1/37, Eth1/38

 Eth1/39, Eth1/40, Eth1/41

 Eth1/42, Eth1/43, Eth1/44

 Eth1/45, Eth1/46, Eth1/47

 Eth1/48, Eth1/49, Eth1/50

 Eth1/51, Eth1/52, Eth1/53

 Eth1/54

 n9k-sw-1#

4) Execute Playbook

Now run the play​book by ex​e​cut​ing an​si​ble-play​book vlans.​yml

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ ansible-playbook vlans.yml

 PLAY [VLANs] **

 TASK: [ensure VLANs 2-20 and 99 exist on all switches] ************************

 changed: [dean]

Practical Applications of Network Programmability 193

 cisco@linux-dev:~/nxos-ansible$ more hosts

 [all:vars]

 ansible_connection = local

 [spine]

 dean

 cisco@linux-dev:~/nxos-ansible$

2) Playbook

The play​book used for this par​tic​u​lar use-case

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ more vlans.yml

 # vlans.yml

 - name: VLANs

 hosts: all

 connection: local

 gather_facts: no

 tasks:

 - name: ensure VLANs 2-20 and 99 exist on all switches

 nxos_vlan: vlan_id="2-20,99" state=present host={{ inventory_hostname }}

 - name: config VLANs names for a few VLANs

 nxos_vlan: vlan_id={{ item.vid }} name={{ item.name }} host={{ inventory_hostname }}

state=present

 with_items:

 - { vid: 2, name: web }

 - { vid: 3, name: app }

 - { vid: 4, name: db }

 - { vid: 20, name: server }

 - { vid: 99, name: native }

3) Checking VLAN

192

Practical Applications of Network Programmability 195

 TASK: [config VLANs names for a few VLANs] ************************************

 changed: [dean] => (item={'name': 'web', 'vid': 2})

 changed: [dean] => (item={'name': 'app', 'vid': 3})

 changed: [dean] => (item={'name': 'db', 'vid': 4})

 changed: [dean] => (item={'name': 'server', 'vid': 20})

 changed: [dean] => (item={'name': 'native', 'vid': 99})

 PLAY RECAP **

 dean : ok=2 changed=2 unreachable=0 failed=0

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$

5) Verify VLAN Creation

Check the switch to ver​ify the VLANs have been cre​ated

 n9k-sw-1# sh vlan brief

 VLAN Name Status Ports

 ---- -------------------------------- --------- -------------------------------

 1 default active Eth1/1, Eth1/2, Eth1/3, Eth1/4

 Eth1/5, Eth1/6, Eth1/7, Eth1/8

 Eth1/9, Eth1/10, Eth1/11

 Eth1/12, Eth1/13, Eth1/14

 Eth1/15, Eth1/16, Eth1/17

 Eth1/18, Eth1/19, Eth1/20

 Eth1/21, Eth1/22, Eth1/23

 Eth1/24, Eth1/25, Eth1/26

 Eth1/27, Eth1/28, Eth1/29

 Eth1/30, Eth1/31, Eth1/32

 Eth1/33, Eth1/34, Eth1/35

 Eth1/36, Eth1/37, Eth1/38

 Eth1/39, Eth1/40, Eth1/41

 Eth1/42, Eth1/43, Eth1/44

 Eth1/45, Eth1/46, Eth1/47

 Eth1/48, Eth1/49, Eth1/50

 Eth1/51, Eth1/52, Eth1/53

 Eth1/54

Practical Applications of Network Programmability 193

 cisco@linux-dev:~/nxos-ansible$ more hosts

 [all:vars]

 ansible_connection = local

 [spine]

 dean

 cisco@linux-dev:~/nxos-ansible$

2) Playbook

The play​book used for this par​tic​u​lar use-case

 cisco@linux-dev:~/nxos-ansible/ansible_playbooks$ more vlans.yml

 # vlans.yml

 - name: VLANs

 hosts: all

 connection: local

 gather_facts: no

 tasks:

 - name: ensure VLANs 2-20 and 99 exist on all switches

 nxos_vlan: vlan_id="2-20,99" state=present host={{ inventory_hostname }}

 - name: config VLANs names for a few VLANs

 nxos_vlan: vlan_id={{ item.vid }} name={{ item.name }} host={{ inventory_hostname }}

state=present

 with_items:

 - { vid: 2, name: web }

 - { vid: 3, name: app }

 - { vid: 4, name: db }

 - { vid: 20, name: server }

 - { vid: 99, name: native }

3) Checking VLAN

193

Practical Applications of Network Programmability196

 2 web active

 3 app active

 4 db active

 5 VLAN0005 active

 6 VLAN0006 active

 7 VLAN0007 active

 8 VLAN0008 active

 9 VLAN0009 active

 10 VLAN0010 active

 11 VLAN0011 active

 12 VLAN0012 active

 13 VLAN0013 active

 14 VLAN0014 active

 15 VLAN0015 active

 16 VLAN0016 active

 17 VLAN0017 active

 18 VLAN0018 active

 19 VLAN0019 active

 20 server active

 99 native active

Conclusion

An​si​ble pro​vides an easy way to man​age and au​to​mate the net​work with an agent​less model.
This ex​am​ple il​lus​trates one way to lever​age An​si​ble with Cisco Open NX-OS.

194

Practical Applications of Network Programmability 197

Workload On-Boarding

Problem Statement

As multi-ten​ant data cen​ters - both pub​lic and pri​vate - at​tract an ever in​creas​ing num​ber
of cus​tomers, cloud op​er​a​tors are strug​gling to on-board ten​ants, ap​pli​ca​tions, work​loads, and
users in a rapid and ef​fi​cient fash​ion. Cus​tomers - many of whom have al​ready ben​e​fited first-
hand from au​toma​tion tools - will no longer ac​cept the de​lays that ac​com​pany tra​di​tional ten​-
ant on-board​ing processes.

Solution

Net​work op​er​a​tors must begin to lever​age au​toma​tion tools to as​sist with work​load on-board​-
ing. One such au​toma​tion tool is Pup​pet, which can be lever​aged with Open NX-OS to en​able:

• Intent-based configuration, dramatically decreasing configuration steps and
deployment times

• The application of common tooling and skillsets across both server and network teams,
decreasing operation costs

• Visibility into configuration change management history that aids in compliance
monitoring

Al​though Pup​pet-based au​toma​tion can be ap​plied to many work​load on-board​ing prob​lems,
the ex​am​ple below fo​cuses on a spe​cific and par​tic​u​larly trou​ble​some prob​lem of ac​cess-port
pro​vi​sion​ing.

His​tor​i​cally, ac​cess-port pro​vi​sion​ing has been a man​ual, la​bor-in​ten​sive, and er​ror-prone
process. With Pup​pet in​tent-based au​toma​tion and Open NX-OS, processes that pre​vi​ously
took hours or days can be com​pleted in min​utes, and with lit​tle po​ten​tial for er​rors.

At the core of this use-case is the ex​ten​si​bil​ity of open NX-OS Linux which al​lows for the in​te​-
gra​tion of third-party soft​ware agents using RPMs. This use-case in​volves using a Pup​pet
Agent to en​able in​tent-based au​toma​tion of the switch​ing in​fra​struc​ture.

The so​lu​tion ar​chi​tec​ture (il​lus​tated in Fig​ure 1) con​sists of the fol​low​ing com​po​nent pieces:

195

Practical Applications of Network Programmability198

• A Puppet Master server

• A Cisco Puppet module

• A Puppet Agent / service which utilizes the NX-API CLI utility to configure the switch

Fig​ure: Open NX-OS Agent-based Con​fig​u​ra​tion Man​age​ment (e.g., Pup​pet) Ar​chi​tec​ture

Puppet Domain-Specific Language

196

Practical Applications of Network Programmability 199

Puppet Domain-Specific Language

Pup​pet uses its own do​main-spe​cific lan​guage (DSL) to de​scribe ma​chine con​fig​u​ra​tions and
model re​sources. The de​c​la​ra​tion of re​sources is key to the Pup​pet DSL. When one re​source
de​pends on an​other, you should ex​plic​itly state the re​la​tion​ship to en​sure that they are ap​plied
in the proper order.

The Pup​pet Re​source Model Con​sists of two lay​ers – Types (or Re​sources) and Providers.
 Types/Re​sources spec​ify the in​ter​faces used to de​scribe re​sources in Pup​pet. Providers en​-
cap​su​late the pro​ce​dures used to man​age re​sources on a spe​cific plat​form.

Fig​ure: Types and Providers sup​ported out-of-the-box by the Cisco Pup​pet Mod​ule

Puppet Manifests

197

Practical Applications of Network Programmability200

Puppet Manifests

The con​fig​u​ra​tions for each node under man​age​ment are writ​ten using the DSL lan​guage men​-
tioned above. Code in this lan​guage is saved in files called man ​i​fests.

For com​plete in​for​ma​tion about the Pup​pet lan​guage see http://​docs.​puppetlabs.​com/​
puppet/​4.​2/​reference/​lang_​summary.​html.

Man​i​fests are files con​tain​ing Pup​pet code on the pup​pet mas​ter server. They are stan​dard text
files saved with the .pp ex​ten​sion. Man​i​fests should be arranged into mod​ules that spec​ify the

con​fig​u​ra​tions that should be ap​plied to the node.

See http://​docs.​puppetlabs.​com/​pe/​latest/​puppet_​modules_​manifests.​html#​puppet-
modules for more in​for​ma​tion on Pup​pet man​i​fest mod​ules.

Solution Approach

Puppet Master Setup

The Pup​pet Mas​ter must be setup in order to man​age the con​fig​u​ra​tion of the net​work
switches. This is done once:

1 Download, install and configure the Puppet master software

2 Install the Cisco Puppet module directly from GitHub

3 Optionally, set up certificate auto-signing for Puppet agent nodes in your data center

Switch Native Puppet Agent Setup

Pup​pet Agents must be in​stalled on each switch to en​able com​mu​ni​ca​tions with the Pup​pet
Mas​ter. These steps are done once per switch:

• Ensure basic networking is configured, and communication is established between
switch and Puppet master in the management namespace.

1) Enter Bash Shell

In NX-OS, Pup​pet Agent gets in​stalled in the Bash Shell of the Cisco Nexus Switch

198

Practical Applications of Network Programmability 201

 n9k-sw-1# run bash

 bash-4.2$ whoami

 admin

2) Change to the "management" namespace in the linux shell

This will re​sult in chang​ing the vrf to the man​age​ment vrf.

 bash-4.2# sudo ip netns exec management bash

 bash-4.2# whoami

 root

 bash-4.2#

3) Add the DNS server to resolv.conf

 bash-4.2# vi /etc/resolv.conf

 nameserver <<DNS Server>>

4) Download puppet release agent rpm from yum.puppetlabs.com

Note: For the lat​est Pup​pet Agent info please refer to https://​github.​com/​cisco/​cisco-network-
puppet-module/​blob/​master/​docs/​README-agent-install.​md#​agent-config

This step con​fig​ures the yum repos​i​tory on the switch for the agent, im​ports linux GPG en​-
cryp​tion keys and copies the agent RPM to the switch.

 bash-4.2# yum install http://yum.puppetlabs.com/puppetlabs-release-pc1-cisco-wrlinux-

5.noarch.rpm

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-

packages

 groups-repo

 | 1.1 kB 00:00 ...

 localdb

 | 951 B 00:00 ...

 patching

 | 951 B 00:00 ...

199

Practical Applications of Network Programmability202

 thirdparty

 | 951 B 00:00 ...

 Setting up Install Process

 puppetlabs-release-pc1-cisco-wrlinux-5.noarch.rpm

 | 5.8 kB 00:00

 Examining /var/tmp/yum-root-g33Fyq/puppetlabs-release-pc1-cisco-wrlinux-5.noarch.rpm:

puppetlabs-release-pc1-0.9.4-1.cisco_wrlinux5.noarch

 Marking /var/tmp/yum-root-g33Fyq/puppetlabs-release-pc1-cisco-wrlinux-5.noarch.rpm to be

installed

 Resolving Dependencies

 --> Running transaction check

 ---> Package puppetlabs-release-pc1.noarch 0:0.9.4-1.cisco_wrlinux5 will be installed

 --> Finished Dependency Resolution

 Dependencies Resolved

===

=============

 Package Arch Version Repository

Size

===

=============

 Installing:

 puppetlabs-release-pc1 noarch 0.9.4-1.cisco_wrlinux5 /puppetlabs-pc1-cisco-lnx-

5.noarch 2.2 k

 Transaction Summary

===

=============

 Install 1 Package

 Total size: 2.2 k

 Installed size: 2.2 k

 Is this ok [y/N]: y

 Downloading Packages:

200

Practical Applications of Network Programmability 203

 Running Transaction Check

 Running Transaction Test

 Transaction Test Succeeded

 Running Transaction

 Installing : puppetlabs-release-pc1-0.9.4-1.cisco_wrlinux5.noarch

 1/1

 Installed:

 puppetlabs-release-pc1.noarch 0:0.9.4-1.cisco_wrlinux5

 Complete!

5) Installing the Puppet Agent from the yum repository

 bash-4.2# yum install puppet

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-

packages

 groups-repo

 | 1.1 kB 00:00 ...

 localdb

 | 951 B 00:00 ...

 patching

 | 951 B 00:00 ...

 thirdparty

 | 951 B 00:00 ...

 puppetlabs-pc1

 | 2.5 kB 00:00

 puppetlabs-pc1/primary_db

 | 6.6 kB 00:00

 Setting up Install Process

 Resolving Dependencies

 --> Running transaction check

 ---> Package puppet-agent.x86_64 0:1.2.5-1.cisco_wrlinux5 will be installed

 --> Finished Dependency Resolution

 Dependencies Resolved

201

Practical Applications of Network Programmability204

===

=============

 Package Arch Version Repository Size

===

=============

 Installing:

 puppet-agent x86_64 1.2.5-1.cisco_wrlinux5 puppetlabs-pc1 39 M

 Transaction Summary

===

=============

 Install 1 Package

 Total download size: 39 M

 Installed size: 139 M

 Is this ok [y/N]: y

 Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

 Downloading Packages:

 puppet-agent-1.2.5-1.cisco_wrlinux5.x86_64.rpm

 | 39 MB 00:11

 Running Transaction Check

 Running Transaction Test

 Transaction Test Succeeded

 Running Transaction

 Installing : puppet-agent-1.2.5-1.cisco_wrlinux5.x86_64

 1/1

 Installed:

 puppet-agent.x86_64 0:1.2.5-1.cisco_wrlinux5

 Complete!

 bash-4.2#

• Install net_http_unix, cisco_nxapi, and cisco_nodeutil gem modules either individually
on the switch, or as part of the Puppet manifest for the switch.​

202

Practical Applications of Network Programmability 205

Download these packages as part of the Cisco agent software
from https://forge.puppetlabs.com/puppetlabs/ciscopuppet

Ad​di​tional in​for​ma​tion re​gard​ing in​stal​la​tion in​struc​tions is avail​able at https://​puppetlabs.​
com/​solutions/​cisco

6) Edit the switch manifest on the Puppet Master to enable tenant on-
boarding

For ten​ant on-board​ing in data cen​ter en​vi​ron​ments, typ​i​cal op​er​a​tions are cre​at​ing VLAN, SVI,
as​sign​ing ports to VLANs. An ex​am​ple man​i​fest that on-boards a new Ten​ant A in VLAN 220
would ap​pear as:

Pro​vi​sion Ten​ant A:

 cisco_vlan { "220":

 ensure => present,

 vlan_name => 'TenantA',

 shutdown => 'true',

 state => 'active',

 }

Pro​vi​sion VLAN In​ter​face for Ten​ant A:

 cisco_interface { "Vlan220" :

 svi_autostate => false,

 }

Pro​vi​sion Ten​ant A Switch Port:

 cisco_interface { "Ethernet1/2" :

 description => 'default',

 shutdown => 'default',

 access_vlan => '220',

 }

7) When applied to a switch the resulting configuration would be:

203

Practical Applications of Network Programmability206

7) When applied to a switch the resulting configuration would be:

 interface Ethernet1/2

 switchport access vlan 220

 vlan 220

 name TenantA

 interface Vlan220

 no shutdown

Conclusion

En​abling au​toma​tion through the com​bi​na​tion of NX-OS ex​ten​si​bil​ity and Pup​pet re​sults in a
fun​da​men​tal de​crease in time-to-de​ploy​ment for on-board​ing ten​ants, im​proved SLA com​pli​-
ance, and de​creased op​er​a​tional costs.

204

Practical Applications of Network Programmability 209

Infrastructure as Code

Problem Statement

Net​work op​er​a​tors have a strong in​ter​est in main​tain​ing con​trol over the con​fig​u​ra​tions that
have been ap​plied to switches. Ad​di​tion​ally, users need to store and track con​fig​u​ra​tion
changes within the net​work​ing in​fra​struc​ture. Open source tools can be used to au​to​mat​i​cally
push switch con​fig​u​ra​tion changes to a cen​tral repos​i​tory data​base sys​tem.

Solution

The De​vOps move​ment has re​sulted in changes to many tra​di​tional processes and tools. One
ar​ti​fact of the move​ment is treat​ment of in​fra​struc​ture data as code, which is dif​fer​ent fom pre​-
vi​ous mod​els. This in​cludes stor​ing items such as de​vice con​fig​u​ra​tions in source con​trol man​-
age​ment sys​tems. Some of the ben​e​fits of using a source con​trol man​age​ment sys​tem are audit
track​ing and the abil​ity to roll back to any ver​sion that was pre​vi​ously checked-in. The source
con​trol sys​tem check-in could also trig​ger other parts of a change/test/re​lease cycle, ex​pand​-
ing events to tools such as Jenk​ins to au​to​mat​i​cally test and re​port on the ef​fect the change it​-
self had on the in​fra​struc​ture.

The so​lu​tion set for this prob​lem can be ap​plied to mul​ti​ple net​work topolo​gies. The de​vices
need to have con​nec​tiv​ity to a source con​trol man​age​ment sys​tem.

205

Practical Applications of Network Programmability210

Fig​ure: Open NX-OS Switches In​te​grate into Con​fig​u​ra​tion Man​age​ment Work​flow

Solution Approach

This so​lu​tion in​volves mul​ti​ple el​e​ments.

1) Trigger Event

The trig​ger event in​volves the switch lever​ag​ing Em​bed​ded Event Man​ager (EMM) to mon​i​tor
the CLI for changes. In this par​tic​u​lar sce​nario, EEM is look​ing for match cri​te​ria "copy run ​ning-
con ​fig startup-con ​fig." After EEM de​tects the com​mand, it will in​voke a Python script from guest
shell called autoconfig. ​py which is stored in the local switch stor​age (boot​flash)

Here is a sam​ple EEM con​fig​u​ra​tion:

 event manager applet gitpush

 event cli match "copy running-config startup-config"

 action 2 cli copy running bootflash:/autoconfig/running.latest

206

Practical Applications of Network Programmability 211

 action 3 cli guestshell run /home/guestshell/autoconfig.py

 action 4 event-default

2) LXC Container / Guest Shell

The guest shell is used to host the Python Script and is where the git client is going to be run​-
ning

 n9k-sw-1# guestshell

 [guestshell@guestshell ~]$

3) Installing Git client

The git client is avail​able as open source pack​age, and can be down​loaded di​rectly onto the de​-
vice through Yum within the guest shell. The git client will allow changes to be pushed first into
a local repos​i​tory, and then pushed to a cen​tral con​fig​u​ra​tion store. Y in​stall can be used to
grab the git client soft​ware:

 guestshell:~$ sudo chvrf management yum install git

NOTE: In the above sam​ple the man​age​ment con​text (VRF - Vir​tual Rout​ing and For​ward​ing) is
used for con​nec​tiv​ity.

4) Python script

A python script which is trig​gered di​rectly from the Em​bed​ded Event Man​ager (EEM) will be
used to save the con​fig​u​ra​tion change, and use the git APIs to push the changes to the Cen​tral
Repos​i​tory.

The script is saved as autoconfig. ​py which matches the name that was trig​gered from the Em​-
bed​ded Event Man​ager (EMM) above. It will take the saved file and sched​ule it to be com​mit​ted
through the calls to git. Fi​nally a git push is called to push the changes to an ex​ter​nal repos​i​-
tory. No​tice above that vrf man​age​ment is also used within the script for ex​ter​nal con​nec​tiv​ity.

The python script for this use case looks like the fol​low​ing:

207

Practical Applications of Network Programmability212

 #!/usr/bin/python

 import os

 import subprocess

 from subprocess import call

 f = open("autoouptput.txt","w") #opens file with name of "test.txt"

 os.chdir("/home/guestshell/autoconfig")

 call(["mv", "/bootflash/autoconfig/running.latest", "/home/guestshell/autoconfig/n9k-sw-

1/running"])

 call(["git", "add", "n9k-sw-1/running"])

 call(["git", "commit", "-m", "Configuration change"])

 p = subprocess.Popen(['chvrf', 'management', 'git', 'push'], stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

 out, err = p.communicate()

 f.write(out)

 f.write(err)

 f.close

5) Git repository

A cen​tral git repos​i​tory is needed to store the checked-in data. This could be an in-house git
repos​i​tory, or a cloud-based com​mu​nity repos​i​tory such as GitHub.

6) Verification

When the end user en​ters a con​fig​u​ra​tion save from the CLI, the cen​tral repos​i​tory store will be
up​dated.

208

Practical Applications of Network Programmability 213

Fig​ure: In​cre​men​tal Con​fig​u​ra​tion on Open NX-OS Switch Archived on Git

Conclusion

As shown above, with this type of method​ol​ogy lever​ag​ing open source tools and basic pro​-
gram​ming skills, a com​plete con​fig​u​ra​tion store and re​vi​sion mech​a​nism can be cre​ated.

209

Practical Applications of Network Programmability 215

Troubleshooting with Linux Capabilities

Problem Statement

Net​work de​vices in​creas​ingly are run​ning Linux as the base op​er​at​ing sys​tem. How do we
lever​age tools na​tively avail​able in Linux to man​age the switch and trou​bleshoot net​work prob​-
lems?

Solution

Cisco Open NX-OS al​lows Linux shell ac​cess for users to ac​cess the un​der​ly​ing Linux file sys​-
tem on Cisco Nexus Se​ries Switches, to col​lect in​for​ma​tion and trou​bleshoot is​sues using fa​mil​-
iar Linux com​mands.

Solution Approach

In Open NX-OS, net​work in​ter​faces are ex​posed as net​de​vices within Linux (EthX-X). Linux
com​mands a net​work op​er​a​tor can use are if​con​fig, tcp​dump, vsh etc. to make it eas​ier to
man​age the switch in​ter​faces in the same man​ner as net​work ports on a Linux server.

211

Practical Applications of Network Programmability216

Fig​ure: Using Stan​dard Pack​age Man​age​ment In​fra​struc ​ture (e.g., yum) with Open NX-OS

For trou​bleshoot​ing, use tcp​dump to cap​ture all pack​ets on a given port, and dump out​put to a
file:

 bash-4.2$ sudo tcpdump -w file.pcap -i Eth1-1

 tcpdump: WARNING: Eth1-1: no IPv4 address assigned

 tcpdump: listening on Eth1-1, link-type EN10MB (Ethernet), capture size 65535 bytes

 3 packets captured

 3 packets received by filter

 0 packets dropped by kernel

Use eth​tool to dis​play de​tailed in​ter​face sta​tis​tics:

212

Practical Applications of Network Programmability 217

 #ethtool –S eth1-1

 NIC statistics:

 speed: 10000

 port_delay: 10

 port_bandwidth: 10000000

 admin_status: 1

 oper_status: 1

 port_mode: 0

 reset_counter: 20

 load-interval-1: 30

 rx_bit_rate1: 0

 rx_pkt_rate1: 0

 tx_bit_rate1: 272

 tx_pkt_rate1: 0

 load-interval-2: 300

 rx_bit_rate2: 0

 rx_pkt_rate2: 0

 tx_bit_rate2: 256

 tx_pkt_rate2: 0

 rx_unicast_pkts: 1340

 rx_multicast_pkts: 0

 rx_broadcast_pkts: 0

 rx_input_pkts: 1340

 rx_bytes_input_pkts: 1886720

Ver​ify the MTU of an in​ter​face, and then use if​con​fig to change mtu for an in​ter​face to jumbo
MTU:

 n9k-sw-1# run bash

 bash-4.2#

 bash-4.2# ifconfig Eth1-1

 Eth1-1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::fac2:88ff:fe90:2cb2 prefixlen 64 scopeid 0x20<link>

 ether f8:c2:88:90:2c:b2 txqueuelen 100 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 2204374 bytes 170123906 (162.2 MiB)

213

Practical Applications of Network Programmability218

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The fol​low​ing ex​am​ple shows how to set the MTU for in​ter​face 1/1 to 9000

 bash-4.2# sudo ifconfig Eth1-1 mtu 9000

 bash-4.2#

 bash-4.2# ifconfig Eth1-1

 Eth1-1 Link encap:Ethernet HWaddr f8:c2:88:90:2c:b2

 inet6 addr: fe80::fac2:88ff:fe90:2cb2/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2204856 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:0 (0.0 B) TX bytes:170161160 (162.2 MiB)

The last ex​am​ple de​picts how cus​tomers can ex​e​cute NX-OS com​mands from bash. This is ben​-
e​fi​cial be​cause the user will be able to ex​e​cute com​mands and lever​age their ex​ist​ing Linux
tools to man​age the switch. In this par​tic​u​lar ex​am​ple, we are query​ing the in​ter​faces from the
switch lever​ag​ing the vsh com​mand from bash shell.

 bash-4.2$ vsh -c "show interface brief" | grep up | awk '{print $1}'

 mgmt0

 Eth1/49

 bash-4.2$

Conclusion

Cisco en​ables the ca​pa​bil​ity to con​fig​ure switch ports as Linux de​vices with stan​dard Linux
tools on Cisco Nexus Se​ries switches. This will re​duce and sim​plify the IT tool​chain.

214

Practical Applications of Network Programmability 219

Network Monitoring with Splunk

Problem Statement

Fine gran​u​lar vis​i​bil​ity into net​work struc​ture, per​for​mance and fail​ures can help net​work op​-
er​a​tors man​age the net​work more ef​fi​ciently. Cus​tomers have had suc​cess using tools like
Splunk to mon​i​tor com​pute in​fra​struc​tures. Splunk can also be used in co​or​di​na​tion with the
net​work for cap​tur​ing and graph​ing in​ven​tory, per​for​mance, con​ges​tion, la​tency and fail​ure
data.

Solution

Net​work per​for​mance mon​i​tor​ing ca​pa​bil​i​ties can help an op​er​a​tor to proac​tively iden​tify aris​-
ing prob​lems and re​solve them. This use-case il​lus​trates how a net​work op​er​a​tor can gather
per​for​mance data, in​clud​ing re​sponse time, one-way la​tency, jit​ter (in​ter​packet delay vari​ance),
packet loss, net​work re​source avail​abil​ity, ap​pli​ca​tion per​for​mance, and server re​sponse time
for var​i​ous paths in the net​work. This ca​pa​bil​ity can be ex​tremely help​ful in man​ag​ing and trou​-
bleshoot​ing a net​work.

Splunk is a tool that can be used to gain op​er​a​tional vis​i​bil​ity across the IT in​fra​struc​ture. With
Splunk you can search, re​port, mon​i​tor and an​a​lyze real-time stream​ing and his​tor​i​cal IT data
gen​er​ated by all your IT sys​tems from one place. Ad​di​tion​ally, Splunk can trou​bleshoot ap​pli​ca​-
tion prob​lems and in​ves​ti​gate se​cu​rity in​ci​dents, re​duc​ing time to re​pair them.

IP SLA on Nexus de​vice gath​ers rich net​work per​for​mance data by mon​i​tor​ing and cap​tur​ing la​-
tency and jit​ter be​tween des​ig​nated net​work el​e​ments. An on-box col​lec​tor is re​quired to cap​-
ture the per​for​mance met​rics be​tween the net​work com​po​nents, and this per​for​mance data is
ag​gre​gated and sent to a cen​tral lo​ca​tion for fur​ther analy​sis.

Splunk for​warders on NX-OS switch (light​weight Splunk servers with in​dex​ing turned off) can
be de​ployed in sit​u​a​tions where the data needed isn't avail​able over the net​work nor vis​i​ble to
the server where Splunk is in​stalled. Splunk for​warders can mon​i​tor local ap​pli​ca​tion log files,
cap​ture the out​put of sta​tus com​mands on a sched​ule, grab per​for​mance met​rics from vir​tual
or non-vir​tual sources, or watch the file sys​tem for con​fig​u​ra​tion, per​mis​sions and at​tribute

215

Practical Applications of Network Programmability220

changes. For​warders send data se​curely to the cen​tral Splunk server in real time. They are
light​weight, can be de​ployed quickly and no ad​di​tional cost is in​curred.

Fig​ure: En​hance In​fra​struc​ture Vis​i​bil​ity with Splunk For​warder on Open NX-OS

216

Practical Applications of Network Programmability 221

This use case uti ​lizes nu ​mer ​ous Open NX-OS ca ​pa ​bil​i​ties:

• Guest shell: Guest shell provides a secure, isolated environment for users to install
software that extends the switch functionality. We'll install the Splunk forwarder in the
guest shell.

• RPM capabilities: Splunk forwarder running in a container or an RPM to send data to a
centralized Splunk forwarder.

• Python: A python script running on the switch, utilizing native python capabilities,
gathers information to be presented to Splunk.

• NX-API CLI: The python script interacts with NX-OS via NX-API CLI interface and
gathers performance data.

Solution Approach

For the pur​pose of il​lus​trat​ing this par​tic​u​lar use-case, we'll use two Nexus de​vices con​nected
back to back.

1) Install Splunk forwarder as RPM on NX-OS

 n9k-sw-1# guestshell

 bash-4.2# yum install splunkforwarder-6.2.3-264376-linux-2.6-x86_64.rpm

2) Start Splunk

 bash-4.2# splunk start \--accept-license

3) Add forward server to push data to Splunk Enterprise

 bash-4.2# splunk add forward-server <splunk enterprise>:9997

4) Enable forwarder

 bash-4.2# splunk restart

217

Practical Applications of Network Programmability222

5) Configure Splunk forwarder

Lastly, con​fig​ure the Splunk for​warder to watch a mon​i​tor file for in​com​ing data. When any
data is writ​ten to the mon​i​tor file, the Splunk for​warder will pick that data up and send it to the
Splunk server.

 bash-4.2#splunk add monitor /bootflash/home/admin/monitor_file

The Splunk for​warder can be checked to see what files it is mon​i​tor​ing:

 bash-4.2#splunk list monitor

Sam​ple scripts to for​ward data to the Splunk en​ter​prise. All scripts that will be run by Splunk
For​warder should be placed in $SPLUNK_HOME/bin/scripts folder.

6) Create the interface-counter.py script

In ad​di​tion to cap​tur​ing IP SLA data, other data sources can be cap​tured as well and sent to the
Splunk Col​lec​tor. As an ex​am​ple, the script below will gather in​ter​face counter data which is
picked up by the Splunk Uni​ver​sal for​warder. Using the fol​low​ing script in​ter​faces with NX-API
CLI func​tion​al​ity to grab in​ter​face data through a JSON-RPC call, the re​sult​ing data is stored in
the re​sponse dic​tio​nary.

The script used to push any sta​tis​tics can be eas​ily de​vel​oped using NX-API CLI.
(nxapi URI)
Use the nxapi sand​box to cut-and-paste the python script with the de​sired 'show com​mand'
(In the sand​box se​lect out​put for​mat as JSON, and in the re​quest pane se​lect python)

(sam​ple gen​er​ated script from the sand​box for ‘show in​ter​face counter’ CLI)

 #!/usr/bin/python

 import os, json, sys, requests

 Modify these please

 url='http://<SWITCH_MGMT_IP>/ins'

218

Practical Applications of Network Programmability 223

 switchuser='<USERNAME>'

 switchpassword='<PASSWORD>'

 myheaders={'content-type':'application/json'}

 payload={

 "ins_api": {

 "version": "1.0",

 "type": "cli_show",

 "chunk": "0",

 "sid": "1",

 "input": "show interface ethernet1/13",

 "output_format": "json"

 }

 }

 response = requests.post(url,data=json.dumps(payload), headers=myheaders,auth=

(switchuser,switchpassword)).json()

 #Add just this line.to push/forward json output to splunk server.

 print json.dumps(response)

7) Create data-forwarder.sh script

This is a wrap​per shell script that will ex​e​cute spe​cific python scripts.

 #\!/bin/bash

 unset LD_LIBRARY_PATH

 /opt/splunkforwarder/bin/scripts/interface-counter.py

Con​fig​ure the inputs.​conf file ac​cord​ing to the sam​ple shown below

 script://$SPLUNK_HOME/bin/scripts/data-forwarder.sh

 interval = 60

 sourcetype = json

The script listed above can be mod​i​fied to write the re​sponse dic​tio​nary data di​rectly to the
mon​i​tor_​file which the Splunk uni​ver​sal for​warder will then pick up and send to the col​lec​tor.

219

Practical Applications of Network Programmability224

8) Executing the Splunk forwarder

For the IP SLA ex​am​ple, data spe​cific to IP SLA can also be sent to the For​warder. Here is an
ex​am​ple where jit​ter data is gath​ered and sent to the for​warder.

 Splunk search string and graph

 Search string to plot the average max jitter time from IP SLA sender to responder every

minute:

 host=lp1 sourcetype=json "udp-jitter” -> Filter the udp-jitter json formatted event from the

host

 ins_api.outputs.output.body.TABLE_common.ROW_common.latest-return-code="1” -> Filter

successful event

 earliest=-1m -> Filter events over the last one minute

 | stats avg(ins_api.outputs.output.body.TABLE_jitter{}.ROW_jitter.sd-jitter-max) as

avg_max_jitter_time -> Calculate the average of max-jitter-time from source to destination

 | gauge avg_max_jitter_time 20010 20025 20040 20055 -> Plot the value on a gauge

Conclusion

For this third-party mon​i​tor​ing ap​pli​ca​tion in​te​gra​tion use-case, a Splunk for​warder was in​-
stalled as an RPM. The for​warder can also be sup​ported in a se​cure con​tainer. Splunk can be
ex​tended to in​clude spe​cific local queries of col​lected IP SLA data to be in​dexed for fur​ther vi​-
su​al​iza​tion and analy​sis by the cen​tral server.

220

Practical Applications of Network Programmability 225

Network Monitoring with Open Source Tools

Problem Statement

Net​work Mon​i​tor​ing is a crit​i​cal func​tion in today's en​vi​ron​ment in order to:

• Optimize the network for performance and availability

• Keep track of network utilization

• Provide visibility for the current state of the network

• Provide certain types of IP SLA

There are many net​work mon​i​tor​ing soft​ware tools in the mar​ket today. These soft​ware net​-
work mon​i​tor​ing tools can be pro​pri​etary or cre​ated in a open source com​mu​nity.

Solution

In this par​tic​u​lar use-case, we show​case the ways users can lever​age an open source tool called
TCol ​lec​tor to mon​i​tor the net​work. TCol​lec​tor is an ap​pli​ca​tion run​ning in the Cisco Nexus
switch that will process data from local col​lec​tors and send the data to OpenTSB.

Solution Approach

1) Enter Bash Shell

In NX-OS, TCol​lec​tor gets in​stalled in the Bash Shell of the Cisco Nexus Switch.

 n9k-sw-1# run bash

 bash-4.2$ whoami

 admin

2) Change the namespace interface in the shell to use "management"

This will move us into the man​age​ment vrf and cre​ate a new shell.

221

Practical Applications of Network Programmability226

 bash-4.2# sudo ip netns exec management bash

 bash-4.2# whoami

 root

 bash-4.2#

3) Add the DNS server to shell

 bash-4.2# vi /etc/resolv.conf

 nameserver <<DNS Server>>

4) Create a new yum repository configuration file

 bash-4.2# pwd

 /etc/yum/repos.d

 bash-4.2#vi open-nxos.repo

 [open-nxos]

 name=open-nxos

 baseurl=https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/

 enabled=1

 gpgcheck=0

 metadata_expire=0

 cost=500

 sslverify=0

5) Install TCollector

The TCol ​lec​tor client is avail​able as an open source pack​age, and can be down​loaded di​rectly
onto the de​vice through yum.

 root@n9k-sw-1#yum install tcollector

 Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching, protect-

packages

 groups-repo | 1.1 kB

00:00 ...

 localdb | 951 B

00:00 ...

222

Practical Applications of Network Programmability 227

 patching | 951 B

00:00 ...

 thirdparty | 951 B

00:00 ...

 Setting up Install Process

 Resolving Dependencies

 --> Running transaction check

 ---> Package tcollector.noarch 0:1.0.1-10 will be installed

 --> Finished Dependency Resolution

 Dependencies Resolved

===

==========

 Package Arch Version Repository

Size

===

==========

 Installing:

 tcollector noarch 1.0.1-10 thirdparty

59 k

 Transaction Summary

===

==========

 Install 1 Package

 Total download size: 59 k

 Installed size: 190 k

 Is this ok [y/N]: y

 Downloading Packages:

 Running Transaction Check

 Running Transaction Test

 Transaction Test Succeeded

 Running Transaction

 Warning: RPMDB altered outside of yum.

223

Practical Applications of Network Programmability228

 Installing : tcollector-1.0.1-10.noarch

1/1

 Starting tcollector: [OK]

 Installed:

 tcollector.noarch 0:1.0.1-10

 Complete!

5) Verify TCollector is running

 root@n9k-sw-1#ps -ef | grep tcoll

 root 22788 1 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/tcollector.py -D -H 10.6.54.60 -t host=n93k-2 -P /var/run/tcollector.pid

--reconnect-interval 0 --max-bytes 67108864 --backup-count 0 --logfile /var/log/tcollector.log

 nobody 22830 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/netstat.py

 nobody 22872 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/dfstat.py

 root 22908 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/smart-stats.py

 nobody 22942 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/iostat.py

 nobody 22985 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/procstats.py

 nobody 23036 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/ifstat.py

 nobody 23040 22788 0 22:35 ? 00:00:00 /usr/bin/python

/usr/local/tcollector/collectors/0/procnettcp.py

 root 23098 16343 0 22:35 pts/0 00:00:00 grep tcoll

6) TSDB Interface

Log into the TSDB in​ter​face to view the data.

224

Practical Applications of Network Programmability 229

Fig​ure: Using TCol​lec​tor Agent on Open NX-OS to Mon​i​tor Switch Per​for​mance with
OpenTSDB

Conclusion

Open source soft​ware tools built for net​work op​er​a​tions, data gath​er​ing, sta​tis​ti​cal analy​sis and
trend​ing can pro​vide sim​pler and more ro​bust toolsets than the pre​vail​ing pro​pri​etary soft​ware
prod​uct equiv​a​lents. In​stalling light​weight agents di​rectly into a switch's shell pro​vides an open
in​ter​face and en​ables a straight​for​ward, sim​ple, and ro​bust set of tools to mon​i​tor DC in​fra​-
struc​ture.

225

Practical Applications of Network Programmability 231

Automating Network Auditing and Compliance

Problem Statement

There are nu​mer​ous in​stances where pe​ri​odic or on-de​mand audit checks on con​fig​u​ra​tions
can en​sure con​sis​tency and se​cu​rity in the in​fra​struc​ture. The fol​low​ing use case il​lus​trates
how a audit check for Vir​tual Port-Chan​nel (vPC) con​fig​u​ra​tion can be per​formed - the same
method​ol​ogy can be ex​tended to check ACLs, QoS, and many other use cases.

vPC or Vir​tual Port Chan​nel is a tech​nol​ogy cre​ated by Cisco which al​lows phys​i​cal links con​-
nected to two sep​a​rate sets of switches to ap​pear as a sin​gle port chan​nel to the end de​vices.
 The end de​vices could be any net​work de​vice such as servers, routers, fire​walls, etc. The ad​-
van​tage of vPC is it pro​vides re​dun​dancy to the de​vices while in​creas​ing band​width.

vPC con​fig​u​ra​tion in some cases can be te​dious and er​ror-prone as:

• vPC requires several steps to configure

• vPC configuration steps must follow a specific order

• Certain vPC configuration elements must be identical on both switches

227

Practical Applications of Network Programmability232

Fig​ure: Sam​ple Topol​ogy used by the vPC Con​sis​tency Han​dling Script

Op​er​a​tors can ben​e​fit from an au​to​mated mech​a​nism that helps val​i​date the con​sis​tency of vPC
con​fig​u​ra​tions.

Solution

This so​lu​tion is going to il​lus​trate a Python script that checks both vPC pair switches for any in​-
con​sis​ten​cies re​lated to vPC. In this par​tic​u​lar ex​am​ple we are only cov​er​ing MTU mis​match,
but it could be ex​tended to any other value.

228

Practical Applications of Network Programmability 233

If the the script de ​tects any con​fig​u ​ra ​tion is​sues, it will iden ​tify the mis-match and at ​tempt
a re​cov​ery by ap​ply​ing the cor​rect con​fig​u​ra​tion value. We are able to ac​com​plish this so​lu​tion
by using the Python script and NX-API CLI.

Solution Approach

vPC Consistency Check Script

The lat​est ver​sion of the script can be down​loaded from https://​github.​com/​tecdct2941

The fol​low​ing code snip​pet cap​tures the var​i​ous vPC con​fig​u​ra​tions on which it is de​sir​able to
run con​sis​tency checks:

 type_tbl = {

 'Interface type' : '1',

 'LACP Mode' : '1',

 'STP Port Guard' : '1',

 'STP Port Type' : '1',

 'Speed' : '1',

 'Duplex' : '1',

 'MTU' : '1',

 'Port Mode' : '1',

 'STP MST Simulate PVST' : '1',

 'Native Vlan' : '1',

 'Pvlan list' : '2',

 'Admin port mode' : '1',

 'lag-id' : '1',

 'mode' : '1',

 'vPC card type' : '1',

 'Allowed VLANs' : '-',

 'Local error VLANs' : '-'

 }

The fol​low​ing sec​tion uses NX-API CLI to gather the vPC op​er​a​tional state from a switch:

229

Practical Applications of Network Programmability234

 def check_vpc_status(switch_x):

 switch_ip = switch_x["mgmt_ip"]

 switchuser = switch_x["username"]

 switchpassword = switch_x["user_pw"]

 return_data = {}

 url = "http://"+switch_ip+"/ins"

 myheaders={'content-type':'application/json-rpc'}

 payload=[

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "show vpc brief",

 "version": 1.2

 },

 "id": 1

 }

]

 response = requests.post(url,data=json.dumps(payload), headers=myheaders,auth=

(switchuser,switchpassword)).json()

 resp_body = response['result']['body']

 return_data['vpc-peer-status'] = resp_body['vpc-peer-status']

 resp_vpc_table = resp_body['TABLE_vpc']['ROW_vpc']

 for iter in resp_vpc_table:

 one_vpc_id = iter['vpc-id']

 vpc_id.append(one_vpc_id)

 return_data[str(one_vpc_id)] = {}

 return_data[str(one_vpc_id)]['consistency-status'] = iter['vpc-consistency-

status']

 return_data[str(one_vpc_id)]['port-id'] = iter['vpc-ifindex']

 return return_data

The fol​low​ing sec​tion gath​ers vPC con​sis​tency state across the two switches:

230

Practical Applications of Network Programmability 235

 def check_vpc_consistency(switch_x,switch_y, vpc_id):

 cmd = "show vpc consistency-parameters vpc " + str(vpc_id) + " errors"

 switch_ip = switch_x["mgmt_ip"]

 switchuser = switch_x["username"]

 switchpassword = switch_x["user_pw"]

 return_data = {}

 url = "http://"+switch_ip+"/ins"

 myheaders={'content-type':'application/json-rpc'}

 payload=[

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": cmd,

 "version": 1.2

 },

 "id": 1

 }

]

 response = requests.post(url,data=json.dumps(payload), headers=myheaders,auth=

(switchuser,switchpassword)).json()

 resp_body = response['result']['body']['TABLE_vpc_consistency']['ROW_vpc_consistency']

fail_list = []

 for iter in resp_body:

 i_name = iter['vpc-param-name']

 i_type = iter['vpc-param-type']

 i_local = iter['vpc-param-local-val']

 i_peer = iter['vpc-param-peer-val']

 if i_local != i_peer:

 print "Found Inconsistency in " + i_name + ": local val: " + i_local +

" peer val : " + i_peer

231

Practical Applications of Network Programmability236

 fail_list.append(iter)

 return fail_list

The fol​low​ing sec​tion cor​rects any in​con​sis​ten​cies iden​ti​fied:

 def correct_vpc_consistency(switch_x, switch_y,fail_list, vpc_id,port_id):

 print "Correcting VPC " + str(vpc_id) + "\n"

 switch_ip = ""

 switchuser = ""

 switchpassword = ""

 for iter in fail_list:

 if iter['vpc-param-name'] == "MTU":

 print "Correcting MTU"

 higher_mtu = ""

 if iter['vpc-param-local-val'] < iter['vpc-param-peer-val']:

 higher_mtu = iter["vpc-param-peer-val"]

 switch_ip = switch_x["mgmt_ip"]

 switchuser = switch_x["username"]

 switchpassword = switch_x["user_pw"]

 else:

 higher_mtu = iter["vpc-param-local-val"]

 switch_ip = switch_y["mgmt_ip"]

 switchuser = switch_y["username"]

 switchpassword = switch_y["user_pw"]

 payload=[

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "conf t",

 "version": 1.2

 },

232

Practical Applications of Network Programmability 237

 "id": 1

 },

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "interface " + port_id,

 "version": 1.2

 },

 "id": 2

 },

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "mtu " + str(higher_mtu),

 "version": 1.2

 },

 "id": 3

 }

]

 url = "http://"+switch_ip+"/ins"

 myheaders={'content-type':'application/json-rpc'}

 response = requests.post(url,data=json.dumps(payload), headers=myheaders,auth=

(switchuser,switchpassword)).json()

Fi​nally, the con​trol logic for the en​tire script:

 def main():

 print "**** Calling vlan consistency checker ***"

 consistent1 = check_vpc_status(switch_a)

 print "Checking VPC status. Results:\n "

 is_consistent = 1

233

Practical Applications of Network Programmability238

 for one_vpc_id in vpc_id:

 if consistent1[str(one_vpc_id)]['consistency-status'] == "INVALID":

 is_consistent = 0

 print "VPC " + str(one_vpc_id) + " is inconsistent - checking

reason...\n"

 cons_check = check_vpc_consistency(switch_a, switch_b, one_vpc_id)

 correct_it = correct_vpc_consistency(switch_a, switch_b,cons_check,

one_vpc_id,consistent1[str(one_vpc_id)]['port-id'])

 print "VPC" + str(one_vpc_id) + " corrected"

 time.sleep(5)

 if is_consistent == 0:

 print "Rechecking VPC Status after correction. Results: \n"

 consistent_recheck = check_vpc_status(switch_a)

 for one_vpc_id in vpc_id:

 if consistent_recheck[str(one_vpc_id)]['consistency-status'] ==

"INVALID":

 print "VPC " + str(one_vpc_id) + " is still inconsistent"

 else:

 print "No Inconsistency found !! \n"

Script Output

1) Here is a sam​ple out​put where in​con​sis​tency was not found

 admin@linux:python vcp_check_py

 **** Calling vlan consistency checker ***

 Checking VPC status. Results:

 No Inconsistency found !!

 *** Vlan consistency checker complete ***

234

Practical Applications of Network Programmability 239

2) Here is a sam​ple out​put where in​con​sis​tency was found

 admin@linux:python vcp_check_py

 **** Calling vlan consistency checker ***

 Checking VPC status. Results:

 VPC 200 is incosistent - checking reason...

 Found Inconsistency in MTU: local val: 1500 peer val : 9216

 Correcting VPC 200

 Correcting MTU

 VPC200 corrected

 Rechecking VPC Status after correction. Results:

 *** Vlan consistency checker complete ***

Conclusion

Using the power of Python script​ing com​bined with the NX-API CLI, it is pos​si​ble to au​to​mate
many time-con​sum​ing and er​ror-prone tasks. In this use-case, we showed how au​toma​tion can
help op​er​a​tors min​i​mize con​fig​u​ra​tion er​rors that could po​ten​tially lead to ser​vice in​ter​rup​-
tions, and elim​i​nate time it might take to trou​bleshoot vPC prob​lems man​u​ally.

235

Practical Applications of Network Programmability 241

Automated Network Topology Verification

Problem Statement

Net​work ad​min​is​tra​tors are con​stantly striv​ing to cap​ture a real time view of their net​work
topol​ogy or ca​ble-plan so it can be com​pared against the in​tended topol​ogy. They can ben​e​fit
from the use of pro​gram​matic tools ca​pa​ble of dy​nam​i​cally gen​er​at​ing maps of a live topol​-
ogy and com​par​ing it to archived ver​sions of the des​ig​nated ca​ble-plan.

Solution

Lever​ag​ing an API-dri​ven ap​proach to dy​nam​i​cally gen​er​ate a live ca​ble-plan for a net​work al​-
lows op​er​a​tors to work with the re​sult​ing data pro​gram​mat​i​cally. Hav​ing cap​tured the live ca​-
ble-plan they can uti​lize it as fol​lows:

• Compare it to previous versions to identify changes

• Analyze the topology for troubleshooting and failure analysis

• Track the evolution of the topology

• Archive the cable-plan for future comparisons

nxtoolkit

The NX Toolkit is a set of Python li​braries that allow for basic con​fig​u​ra​tion of the Cisco Nexus
Switch. It is in​tended to allow users to quickly begin using the NX-API REST in​ter​face and de​-
crease the learn​ing curve nec​es​sary to begin using the switch.

nx ​toolkit is avail​able as an open source pro​ject (Apache Li​cense, Ver​sion2.0) on Github http://​
github.​com/​datacenter/​nxtoolkit

Cable-Plan Application for nxtoolkit

The ca​ble-plan mod​ule al​lows the pro​gram​mer to eas​ily im​port ex​ist​ing ca​ble-plans from XML
files, im​port the cur​rently run​ning ca​ble-plan from a Cisco Nexus Switch, ex​port pre​vi​ously im​-
ported ca​ble-plans to a file, and com​pare ca​ble-plans.

237

Practical Applications of Network Programmability242

More ad​vanced users can use the Ca​ble-Plan ap ​pli​ca ​tion to eas​ily build a ca​ble-plan XML file,
query a ca​ble-plan, and mod​ify a ca​ble-plan.

The Ca​ble-Plan ap​pli​ca​tion is avail​able as an ap​pli​ca​tion under the nx​toolkit open source pro​-
ject (nxtoolkit/applications/cableplan).

Cable-Plan XML Syntax

The ca​ble-plan XML ap​pears as fol​lows:

 <?xml version="1.0" encoding="UTF-8"?>

 <?created by cable.py?>

 <CISCO_NETWORK_TYPES version="None" xmlns="http://www.cisco.com/cableplan/Schema2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="nxos-cable-plan-

schema.xsd">

 <DATA_CENTER networkLocation="None" idFormat="hostname">

 <CHASSIS_INFO sourceChassis="spine1" type="n9k">

 <LINK_INFO sourcePort="eth2/35" destChassis="leaf1" destPort="eth1/50"/>

 <LINK_INFO sourcePort="eth2/3" destChassis="leaf3" destPort="eth1/50"/>

 <LINK_INFO sourcePort="eth2/2" destChassis="leaf2" destPort="eth1/50"/>

 </CHASSIS_INFO>

 <CHASSIS_INFO sourceChassis="spine2" type="n9k">

 <LINK_INFO sourcePort="eth2/1" destChassis="leaf1" destPort="eth1/49"/>

 <LINK_INFO sourcePort="eth2/3" destChassis="leaf3" destPort="eth1/49"/>

 <LINK_INFO sourcePort="eth2/2" destChassis="leaf2" destPort="eth1/49"/>

 </CHASSIS_INFO>

 </DATA_CENTER>

 </CISCO_NETWORK_TYPES>

The CHAS​SIS_INFO tag nor​mally iden​ti​fies the spine switches, then the leaf switches are con​-
tained in the LINK_INFO. When the XML is read, both leaf and spine switch ob​jects will be cre​-
ated and the get_switch() and get_link()meth​ods can be used to ac​cess them.

238

Practical Applications of Network Programmability 243

Solution Approach

Fig​ure 1. Using nx​toolkit to Gen​er​ate a Cable Plan from a Run​ning Topol​ogy

Getting Started with Cable-Plan

The Ca​ble-Plan ap​pli​ca​tion mod​ule is im​ported from :file:`cableplan.​py` which can be found in
the nxtoolkit/applications/cableplan di​rec​tory.

It can be in​cor​po​rated di​rectly into a Python script, or it can be used from the com​mand-line.

 from cableplan import CABLEPLAN

To cre​ate a ca​ble-plan from the cur​rent run​ning Nexus switch, sim​ply do the fol​low​ing:

 cp = CABLEPLAN.get(session)

where session is a Nexus switch ses​sion ob​ject gen​er​ated using the nxtoolkit, cp will be the

ca​ble-plan ob​ject.

239

Practical Applications of Network Programmability244

Ex​port that ca ​ble-plan by open ​ing a file and call ​ing the export() method as fol ​lows:

 cpFile = open('cableplan1.xml','w')

 cp.export(cpFile)

 cpFile.close()

The ca​ble-plan will be writ​ten to the :file:`cableplan1.​xml` file.

Working with Saved Cable-Plans

Read​ing an ex​ist​ing ca​ble-plan xml file is equally easy:

 fileName = 'cableplan2.xml'

 cp2 = CABLEPLAN.get(fileName)

Note that you don't have to ex​plic​itly open or close the file. The get(fileName) method will han​-
dle this.

Comparing Cable-Plans

Com​par​ing ca​ble-plans is one of the more in​ter​est​ing ca​pa​bil​i​ties of the ca​ble-plan mod​ule and
is very easy to do using "dif​fer​ence" meth​ods. When gen​er​at​ing the dif​fer​ence be​tween two ca​-
ble-plans, the mod​ule will re​turn those items that exist in the first ca​ble-plan, but not in the
sec​ond.

Missing Switches

For ex​am​ple, as​sume that in the above ex​am​ple, the sec​ond ca​ble-plan read from
the :file:`cableplan2.​xml` file does not have switch "Spine3" and the first ca​ble-plan does have it.
The fol​low​ing ex​am​ple will print all of the switches in the first ca​ble-plan and not in the sec​ond:

 missing_switches = cp1.difference_switch(cp2)

 for switch in missing_switches :

 print switch.get_name()

This should print the fol​low​ing out​put:

 Spine3

240

Practical Applications of Network Programmability 245

Missing Links

Si​m​il​iarly, the fol​low​ing ex​am​ple will print all of the miss​ing links:

 missing_links = cp1.difference_link(cp2)

 for link in missing_links :

 print link.get_name()

New and Missing Links

To un​der​stand all of the dif​fer​ences be​tween two ca​ble-plans it is nec​es​sary to com​pare them
in both di​rec​tions:

 missing_links = cp1.difference_link(cp2)

 extra_links = cp2.difference_link(cp1)

 print 'The following links are missing from the second cable-plan'

 for link in missing_links :

 print link.get_name()

 print 'The following links are extra links in the second cable-plan'

 for link in extra_links:

 print link.get_name()

Cable-Plan from the Command Line

In​vok​ing the Ca​ble-Plan ap​pli​ca​tion from the com​mand line is very sim​ple.

From the com​mand prompt do the fol​low​ing:

 python cableplan.py -h

This will re​turn usage in​struc​tions that ex​plain each of the com​mand line op​tions.

There are two pri​mary func​tions that can be in​voked from the com​mand-line: 'ex​port' and
'com​pare'.

The 'ex​port' func​tion, se​lected with the '-e' op​tion, will cre​ate a ca​ble-plan by read​ing the state
of the Nexus switch. This ca​ble-plan will be ei​ther dis​played on the mon​i​tor or, if a file​name is
spec​i​fied, will be placed in a file. It will be for​mat​ted in XML.

241

Practical Applications of Network Programmability246

The 'com​pare' func ​tion will com​pare two ca​ble-plans. One of those must be in a file that is
spec​i​fied at the com​mand line and the sec​ond one can come ei​ther di​rectly from the switch or
from a sec​ond file. If only the '-c1 file_​name' op​tion is used, then the con​tent of file_​name is
com​pared to the ac​tual run​ning con​fig​u​ra​tion of the switch:

 python cableplan.py -c1 netwrk1.xml

To com​pare two files, then both the '-c1 file_​name1' and '-c2 file_​name2' op​tions must be used:

 python cableplan.py -c1 netwrk1.xml -c2 netwrk2.xml

This com​par​i​son will list all of the links in the first ca​ble-plan that are not in the sec​ond, and
vice-versa.

Conclusion

Using the NX-API REST in​ter​face that is part of Open NX-OS and open source tools like nx ​-
toolkit, op​er​a​tors can very eas​ily build tools and scripts to help un​der​stand the cur​rent state of
their in​fra​struc​ture.

242

Practical Applications of Network Programmability 247

Workload Mobility and Correlation

Problem Statement

Vir​tu​al​iza​tion has be​come a cor​ner​stone tech​nol​ogy in data cen​ters today and is used ex​ten​-
sively to en​able faster pro​vi​sion​ing and im​prove re​source uti​liza​tion rates. These vir​tu​al​ized
servers are fre​quently moved be​tween com​pute re​sources to sat​isfy de​mands for per​for​mance
and ser​vice-scale.

When op​er​a​tors have a need to track the lo​ca​tion of VMs or groups of VMs within a net​work,
this work​load mo​bil​ity can pre​sent sig​nif​i​cant chal​lenges. For ex​am​ple, in the di​a​gram below, a
work​load has been moved but the net​work op​er​a​tions team is un​aware of it. An au​to​mated
means of track​ing these changes is needed.

Fig​ure: Track​ing VMs in the In​fra​struc​ture with Open NX-OS Tools

243

Practical Applications of Network Programmability248

Solution

The so​lu​tion in​cor​po​rates a num​ber of Cisco and third-party / Open Source ca​pa​bil​i​ties, in​-
clud​ing:

• Extensible Messaging and Presence Protocol (XMPP) and Python XMPP modules to
facilitate group communications with NX-OS switches

• Cisco VM Tracker to access virtual machine name information on each switch

• A Python script that manages the communication with all of the target switches

• An XMPP/Jabber room where VM locations are reported

All com​mu​ni​ca​tions are se​cured using SSL/TLS, as is typ​i​cal with XMPP. Rule-Base Ac​cess
Con​trol (RBAC) is used to map the au​then​ti​cated user ex​e​cut​ing the com​mand via
Python/XMPP to the switch com​mand-line in​ter​face. RBAC is en​forced in a del​e​gated man​ner
on the Switch it​self.

Cisco NX-OS pro​vides a ex​ten​sive set of tools and com​po​nents in order to achieve vir​tual ma​-
chine vis​i​bil​ity in ac​cor​dance with VM Tracker for VMM - Vir​tual Ma​chine Man​ager (vCen​ter)
in​te​gra​tion or VDP (part of lld​pad) for the Open Vir​tual Switch (OVS). With this, we are able to
as​so​ci​ate the name of a vir​tual ma​chine (VM) with the Cisco Nexus switch to which it is con​-
nected.

Solution Approach

1) Enabling VM Tracker feature

 n9k-sw-1# conf t

 Enter configuration commands, one per line. End with CNTL/Z.

 n9k-sw-1(config)# feature vmtracker

 n9k-sw-1(config)#

2) Establishing a Connection to vCenter

 n9k-sw-1# configure terminal

 n9k-sw-1(config)# vmtracker connection conn1

 n9k-sw-1(config-vmt-conn)# remote ip address 10.1.1.1 port 80 vrf management

 n9k-sw-1(config-vmt-conn)# username user1 password cisco123

244

Practical Applications of Network Programmability 249

 n9k-sw-1(config-vmt-conn)# connect

3) Verification

Once the con​nec​tion and the in​for​ma​tion be​tween switch and vCen​ter has been ex​changed you
should be able to see the Vir​tual Ma​chines.

 n9k-sw-1# show vmtracker info detail

 --

 Interface Host VMNIC VM State PortGroup VLAN-Range

 --

 Ethernet1/3 192.168.2.50 vmnic4 VM1 on PGroup100 100

 --

4) Using XMPP for VM visibility (VM Tracker)

With XMPP we can cre​ate groups of switches and then use group-chat ex​e​cute com​mands on
all of the switches si​mul​ta​ne​ously. This al​lows us to send - from a sin​gle lo​ca​tion - a VM Track​-
ing com​mand to the group, and have each switch re​turn the list of VMs that are con​nected.

5) Install an XMPP Server

 admin@linux# yum install jabberd

6) Join a Group

Here is an ex​am​ple on how to at​tach a switch to the group chat "xmpp":

 guestshell# jabberd attach group xmpp

 guestshell>xmpp#

7) Executing a CLI Command

Here is a ex​am​ple of send​ing a sin​gle CLI com​mand to mul​ti​ple switches lever​ag​ing
XMPP group chat:

245

Practical Applications of Network Programmability250

 guestshell>xmpp# show clock

 <n9k-sw-1@xmpp.cisco.com/(fmgr-device)(ABC1234abcd)>

 18:46:37.481 UTC Wed Sep 30 2015

 </n9k-sw-1@xmpp.cisco.com/(fmgr-device)(ABC1234abcd)>

 <n9k-sw-2@xmpp.cisco.com/(fmgr-device)(DEF5678abcd)>

 18:46:56.420 UTC Wed Sep 30 2015

 </n9k-sw-2@xmpp.cisco.com/(fmgr-device)(DEF5678abcd)>

 Responses expected:2 received:2, time spend:117 msec

Below is an​other sam​ple to show​case the power of VM Tracker with XMPP to gather in​for​ma​-
tion across mul​ti​ple switches based on VM Name, IP ad​dress, con​nected in​ter​face, and so on:

 guestshell>xmpp#

 guestshell>xmpp# show vmtracker info detail

 <n9k-sw-1@xmpp.cisco.com/(fmgr-device)(ABC1234abcd)>

 --

 Interface Host VMNIC VM State PortGroup VLAN-Range

 --

 Ethernet1/3 192.168.2.50 vmnic4 VM1 on PGroup100 100

 --

 <n9k-sw-2@xmpp.cisco.com/(fmgr-device)(DEF5678abcd)>

 --

 Interface Host VMNIC VM State PortGroup VLAN-Range

 --

 --

8) Leveraging Python

Pro​gram​matic ac​cess using XMPP will allow for the ex​e​cu​tion of sched​uled com​mands, the cap​-
ture of struc​tured re​sponses (XML), and the stor​age of the data to a repos​i​tory.

246

Practical Applications of Network Programmability 251

In the ex​am ​ple below a Python script con ​nects to XMPP and ex ​e​cutes a show com ​mand against
"VM tracker" with a re​spec​tive VM name. The re​sult is the lo​ca​tion of the switch where the vir​-
tual ma​chine (VM) is pre​sent.

 import xmpp, re

 vm="VM1"

 cmd="show vmtracker info detail | include " + vm

 jid='python@xmpp.cisco.com'

 pwd="P@$$w0rd"

 room="server@xmpp.cisco.com"

 def messageHandler(conn, msg):

 if msg.getType() == "groupchat":

 result=re.findall("Interface [1-9]", str(msg.getBody()))

 if result:

 sw=re.findall("/(.*?)/",str(msg.getFrom()))

 print vm + " was found on:\n"

 print sw[0] + "\n"

 print str(msg.getBody()) + "\n"

 def StepOn(conn):

 try:

 conn.Process(1)

 except KeyboardInterrupt:

 return 0

 return 1

 def GoOn(conn):

 while StepOn(conn):

 pass

 jid=xmpp.protocol.JID(jid)

 cl=xmpp.Client(jid.getDomain(), debug=[])

 if cl.connect() == "":

 print "connection failed"

 sys.exit(0)

247

Practical Applications of Network Programmability252

 if cl.auth(jid.getNode(),pwd) == None:

 print "authentication failed"

 sys.exit(0)

 cl.RegisterHandler('message',messageHandler)

 cl.sendInitPresence()

 cl.send(xmpp.Presence(to='{0}/{1}'.format(room, jid)))

 message = xmpp.Message(room, cmd)

 message.setAttr('type', 'groupchat')

 cl.send(message)

 GoOn(cl)

Below is the out​put of the Python script, which can be stored for cor​re​la​tion:

 VM1 was found on: n9k-sw-1@xmpp.cisco.com

 --

 Interface Host VMNIC VM State PortGroup VLAN-Range

 --

 Ethernet1/3 192.168.2.50 vmnic4 VM1 on PGroup100 100

 --

 Results returned :: 0

Conclusion

Vir​tual Ma​chine vis​i​bil​ity - real time or his​tor​i​cal - can be achieved using Python scripts with a
struc​tured mes​sage bus (XMPP) and cap​tur​ing the re​sults. This in​for​ma​tion is au​to​mat​i​cally
time stamped as per the XMPP mes​sage bus. Ex​tract​ing this in​for​ma​tion and stor​ing it in a
repos​i​tory can sim​plify the track​ing of VMs and net​work trou​bleshoot​ing in a vir​tu​al​ized en​vi​-
ron​ment.

248

Practical Applications of Network Programmability 255

Network Resiliency

Problem Statement

In some cases, users may need to ma​nip​u​late the way net​work el​e​ments come on​line. This
could be nec​es​sary to en​sure servers are able to suc​cess​fully come on​line when they are get​ting
built.

Solution

In this par​tic​u​lar use-case, re​quire​ments dic​tate host ports are kept in a shut​down state until
up​link ports are ac​tive. This is nec​es​sary to en​sure the ESX hosts are built prop​erly.

Solution Approach

The fol​low​ing tools are lever​aged to achieve the stated re​quire​ments:

• Embedded Event Manager (EEM)

To track the port up/down events

• Python

To execute a script based on an EEM argument to take the host port up or down.

The first stage is to cre​ate the EEM script to track the up​link port states and pass the ar​gu​ment
based on state UP or DOWN:

 event manager applet link_reboot

 event syslog pattern "Module 1 current-status is"

 action 1 syslog priority critical msg Running linkchange6 down

 action 2 cli source linkchange6.py down

 event manager applet link_up

 event track 30 state up

 action 1 syslog priority critical msg Running linkchange6 up

 action 2 cli source linkchange6.py up

 !

 track 1 interface Ethernet2/1 line-protocol

249

Practical Applications of Network Programmability256

 track 2 interface Ethernet2/2 line-protocol

 track 3 interface Ethernet2/3 line-protocol

 track 4 interface Ethernet2/4 line-protocol

 track 5 interface Ethernet2/1/1 line-protocol

 track 6 interface Ethernet2/1/2 line-protocol

 track 7 interface Ethernet2/1/3 line-protocol

 track 8 interface Ethernet2/1/4 line-protocol

 track 9 interface Ethernet2/2/1 line-protocol

 track 10 interface Ethernet2/2/2 line-protocol

 track 11 interface Ethernet2/2/3 line-protocol

 track 12 interface Ethernet2/2/4 line-protocol

 track 13 interface Ethernet2/3/1 line-protocol

 track 14 interface Ethernet2/3/2 line-protocol

 track 15 interface Ethernet2/3/3 line-protocol

 track 16 interface Ethernet2/3/4 line-protocol

 track 17 interface Ethernet2/4/1 line-protocol

 track 18 interface Ethernet2/4/2 line-protocol

 track 19 interface Ethernet2/4/3 line-protocol

 track 20 interface Ethernet2/4/4 line-protocol

 track 30 list boolean or

 object 1

 object 2

 object 3

 object 4

 object 5

 object 6

 object 7

 object 8

 object 9

 object 10

 object 11

 object 12

 object 13

 object 14

 object 15

 object 16

 object 17

 object 18

250

Practical Applications of Network Programmability 257

 object 19

 object 20

The sec​ond phase is to cre​ate the Python script that takes the ar​gu​ment from the EEM script
and does the fol​low​ing:

• ARGV = Down

Check the host ports and shut them down and place on a flat file

• ARGV = UP

Read flat file and bring the host ports back online

 #!/usr/bin/python

 import sys

 import os

 import re

 from cisco import cli

 hostlistfile = "hostlist"

 print cli('pwd')

 try:

 sys.argv[1]

 except IndexError:

 print "Error: Missing argument, need either 'up' or 'down'"

 exit()

 if sys.argv[1] == "up":

 # At this point we should have a file containing ports to bring up.

 dirresult = cli("dir hostlist")

 if dirresult == "No such file or directory" :

 print "No hostlist found, exiting"

 exit()

 file = cli("show file hostlist")

 for match in file[0:-1].split('\n'):

 if match[0:8] == "Ethernet":

 cli("config terminal ; interface %s ; no shutdown" % match)

 cli ("delete hostlist no-prompt")

251

Practical Applications of Network Programmability258

 exit()

 if sys.argv[1] == "down":

 # Uplinks are not yet up, lets see which hosts are active, bring those

 # down and save to a file

 print "Generating host list dynamically."

 result = cli("show interface")

 for rline in result[0:-1].split('\n'):

 match = re.match(r'^(Ethernet[\S]+).*', rline)

 if match:

 #Check name against Ethenert2/ we will skip these uplinks.

 match2 = re.match(r'Ethernet2/.*', match.group(1))

 if match2:

 continue

 # If we made it this far, check state then adjust

 match3 = re.match(r'Ethernet1/.*', match.group(1))

 if match3:

 match4 = re.match(r'.*(Administratively down|SFP not inserted).*', rline)

 if match4 == None:

 print match.group(1)

 cli("echo '%s '>> hostlist" %match.group(1))

 #Change state

 cli("config t ; interface %s ; shutdown" % match.group(1))

Conclusion

Em​bed​ded Event Man​ager (EEM) can be used to trig​ger Python scripts to solve net​work con​-
nec​tiv​ity is​sues that are af​fected by tim​ing.

252

Programmability Tools for
Network Engineers

Programmability Tools for Network Engineers 261

Introduction

This chap​ter ex​plores es​sen​tial tools for net​work pro​gram​ming such as lan​guages and en​vi​ron​-
ments, de​vel​op​ment and test​ing tools, source code and ver​sion con​trol. An in​tro​duc​tion to
Cisco De​vNet for Open NX-OS is pro​vided for read​ers to ex​plore the ca​pa​bil​i​ties of Open NX-
OS. Re​sources for learn​ing net​work pro​gram​ming lan​guages and Open NX-OS con​cepts are
also pro​vided.

For net​work pro​gram​ming novices, some good prac​tices to fol​low are also out​lined, which per​-
tain to use of pro​gram​ming tools and de​vel​op​ment en​vi​ron​ments, stor​ing and shar​ing your
code, and in ​te ​grat ​ing both of these processes.

255

Programmability Tools for Network Engineers 263

Languages and Environments

Choos​ing a lan​guage in which to de​velop code is the first de​ci​sion when build​ing an ap​pli​ca​tion
or pro​gram, fol​lowed by the plat​form for which the code will be writ​ten.

Pro​gram​ming lan​guages are gov​erned by rules and reg​u​la​tions (syn​tax) for con​struct​ing pro​-
grams that pass in​struc​tions to a proces​sor. Open NX-OS pro​vides the abil​ity to build na​tive
Linux ap​pli​ca​tions using the Open NX-OS SDK, as well as uti​liz​ing NX-API REST for ex​ten​si​ble
and flex​i​ble pro​gram​ming op​tions.

Python

Python is a heav​ily used lan​guage for net​work pro​gram​ming; it is a mod​u​lar, ex​ten​si​ble and
flex​i​ble lan​guage with a focus on code read​abil​ity. Code writ​ten in Python is ex​e​cuted through
an in​ter​preter, al​low​ing porta​bil​ity of code be​tween dif​fer​ent plat​forms. Porta​bil​ity is a key fac​-
tor, par​tic​u​larly for ad​min​is​tra​tors and de​vel​op​ers who may work in Win​dows, Linux or OS X.
Python is grow​ing in pop​u​lar​ity and in​dus​try adop​tion. Other Python fea​tures in​clude:

• High level and readable syntax

• Support for object-oriented constructs

• Ability to express concepts in fewer lines of code

Many of Cisco's net​work pro​gram​ma​bil​ity pro​jects avail​able at https://​github.​com/​datacenter
are writ​ten using Python.

Other Languages

Python is cer​tainly the most widely adopted lan​guage, al​though it is not the only lan​guage uti​-
lized for net​work pro​gram​ming. Metaphor​i​cally speak​ing, Python ap​pli​ca​tions may be a sin​gle
spoke in the larger wheel of net​work man​age​ment and as​so​ci​ated ap​pli​ca​tions. Net​work pro​-
gram​mers de​vel​op​ing in Python may also use Python frame​works such as Django or Flask for
rapid web de​vel​op​ment. For​mat​ting and tag​ging with HTML and CSS, or in​te​gra​tion with ex​ist​-
ing web-based ap​pli​ca​tions using PHP may be de​sired. Pro​gram​ming lan​guage se​lec​tion and
usage should al​ways tie di​rectly back to core re​quire​ments and con​straints.

257

Programmability Tools for Network Engineers264

Integrated Development Environments (IDE)

While all pro​gram code be​gins as text in a win​dow, thank​fully there are soft​ware pack​ages
avail​able for down​load and use that can help sim​plify the de​vel​op​ment process. These pack​ages
are called In ​te​grated De​vel​op ​ment En​vi ​ron ​ments (IDEs) and in​te​grate many of the com​mon tasks
in soft​ware de​vel​op​ment to en​able rapid ap​pli​ca​tion de​vel​op​ment. While most be​gin​ners and
novice pro​gram​mers will uti​lize a text ed​i​tor for their first pro​jects, soon these users will lever​-
age an In​te​grated De​vel​op​ment En​vi​ron​ment. The IDE is not code- or do​main-spe​cific, and in
many cases the IDE is not lan​guage-spe​cific, ei​ther.

An IDE can in​cor​po​rate ex​ten​sions, such as those dis​cussed later with re​gard to ver​sion con​trol,
to allow pro​gram​mers to in​te​grate other as​pects of ap​pli​ca​tion de​vel​op​ment into their work​-
flow. For ex​am​ple, git ex​ten​sions avail​able within an IDE would allow check-in/check-out of
code, as well as edit​ing of changelog in​for​ma​tion dur​ing com​mits.

Py​Charm is an IDE with full sup​port for Python, as well as for HTML, CSS, JavaScript, Node.​js
and more.

https://​www.​jetbrains.​com/​pycharm/​

Ko​modo is an​other IDE with full sup​port for Python, as well as Go, Perl, Ruby and more.

http://​komodoide.​com/​

Software Development Kits

A soft​ware de​vel​op​ment kit (SDK) dif​fers fun​da​men​tally from an IDE. An SDK is a set of func​-
tions, pack​ages, doc​u​men​ta​tion and pro​grams re​quired for de​vel​op​ment on a spe​cific plat​form
or tech​nol​ogy, whereas an IDE can be thought of as pro​vid​ing tools for ap​pli​ca​tion de​vel​op​-
ment using a spe​cific lan​guage or tech​nol​ogy. Java is one of the most widely-used lan​guages,
and it re​quires an SDK in order to de​velop Java ap​pli​ca​tions. It is also im​por​tant to out​line the
fact that run ​ning these ap​pli​ca​tions does not re​quire a full SDK, only a run​time en​vi​ron​ment.
Soft​ware de​vel​op​ment kits are typ​i​cally quite de​pen​dent on the tar​get plat​form. For ex​am​-
ple, de​vel​op​ing iOS ap​pli​ca​tions for iPhone re​quires the Swift lan​guage, con​tained within the
iOS SDK. De​vel​op​ers can then use the Xcode IDE for de​vel​op​ing iOS ap​pli​ca​tions.

258

Programmability Tools for Network Engineers 265

Python does not have an SDK per se; its mod ​u ​lar ​ity sup ​ports using com ​mands like pip to down ​-
load and in​stall pack​ages and mod​ules for use in Python pro​grams.

Pro​gram​ming lan​guages, IDEs and SDKs are es​sen​tial com​po​nents for soft​ware de​vel​op​ment.
The user has mul​ti​ple op​tions re​lated to lan​guage and IDE of choice. What is a crit​i​cal, is that
APIs and data mod​els are made avail​able for net​work el​e​ments to be pro​grammed.

259

Programmability Tools for Network Engineers 267

Development and Testing Tools

Just as net​work ad​min​is​tra​tors have tools at their dis​posal for trou​bleshoot​ing, de​bug​ging, and
analy​sis, a pro​gram​mer has their own set of tools. The tools listed in this sec​tion can aid in de​-
vel​op​ment, test​ing and de​bug​ging of code.

Postman

Post​man can be uti​lized to build and test APIs. In the con​text of net​work pro​gram​ma​bil​-
ity where an API is al​ready con​structed and ready to be fol​lowed, ad​min​is​tra​tors and de​vel​op​ers
can uti​lize Post​man to debug code and test REST calls that need to be made. Post​man is avail​-
able from https://​www.​getpostman.​com/​ and also of​fers a browser ex​ten​sion for Google
Chrome, avail​able within the Chrome Web Store.

There are sim​i​lar easy-to-use tools like In​som​nia and Paw that are pop​u​lar as well.

Fig​ure: REST Clients like In​som​nia can be help​ful in get​ting started with NX-API REST

261

Programmability Tools for Network Engineers268

NX-API CLI Developer Sandbox

The NX-API CLI De​vel​oper Sand​box is an ex​cel​lent tran​si​tion tool which can be en​abled from
the NX-OS com​mand line. After en​abling fea​ture nxapi, an nginx web server is started on the
switch which al​lows de​vel​op​ers or ad​min​is​tra​tors the abil​ity to transcode tra​di​tional Nexus
com​mand line in​puts to REST-based op​er​a​tions via HTTP/HTTPS. It also in​cludes the abil​ity to
gen​er​ate Python code, and sup​ports dif​fer​ent mes​sage for​mats like XML or JSON.

En​abling the NX-API CLI De​vel​oper Sand​box:

 n9k-sw-1(config)# exit

 n9k-sw-1# conf t

 Enter configuration commands, one per line. End with CNTL/Z.

 n9k-sw-1(config)# feature nxapi

 n9k-sw-1(config)# show feature | inc nxapi

 nxapi 1 enabled

Ac​cess​ing the NX-API CLI De​vel​oper Sand​box is ac​com​plished by point​ing a web browser to the
host​name or IP ad​dress of the switch. This func​tion​al​ity is sup​ported on any in-band and out-
of-band man​age​ment IP ad​dress.

 http://<ip or hostname>

Enter ac​cess cre​den​tials to the switch and the NX-API CLI De​vel​oper Sand​box will ap​pear.

262

Programmability Tools for Network Engineers 269

Fig​ure: NX-API CLI De​vel​oper Sand​box

Visore

Vi​sore is an Ital​ian word, which trans​lates to Viewer. It al​lows users to a mech​a​nism to browse
and nav​i​gate the man​age​ment ob​jects (MOs) in the sys​tem's man​age​ment in​for​ma​tion tree
(MIT). This en​ables users to view the struc​ture of the Open NX-OS DME data-model that backs
the NX-API REST in​ter​face. Vi​sore en​ables users to gather in​for​ma​tion about the data as​so​ci​-
ated with a spe​cific ob​ject or a group of ob​jects, typ​i​cally for the pur​pose of trou​bleshoot​ing
and event analy​sis. Vi​sore is also a very use​ful ed​u​ca​tional tool to un​der​stand how Open NX-OS
stores data within with the data model. Vi​sore sup​ports query​ing by Dis​tin​guished Name (DN)
or Class.

Note: Vi ​sore is not ca ​pa ​ble of per ​form ​ing con​fig​u ​ra ​tion op ​er​a ​tions.

263

Programmability Tools for Network Engineers270

To ac ​cess Vi​sore, fol​low these steps:

• Enable NX-API in the configuration of the switch with feature nxapi

• Open a web browser and connect to the URL http://<switch ip address>/visore.html

The au​then​ti​ca​tion chal​lenge will dis​play where the user will need to enter cre​den​tials.

Fig​ure: Cisco NX-API CLI Sand​box Login Screen

After au​then​ti​cat​ing, the Vi​sore ob​ject store browser is dis​played.

264

Programmability Tools for Network Engineers 271

Fig​ure: Brows​ing Cisco NX-API REST Ob​ject Store with Vi​sore

Here is a sam​ple BGP con​fig​u​ra​tion, which we will then show in the MIT using Vi​sore:

 router bgp 65501

 router-id 10.10.10.12

 timers bgp 60 180

 timers prefix-peer-timeout 30

 timers prefix-peer-wait 90

 graceful-restart

 graceful-restart restart-time 120

 graceful-restart stalepath-time 300

 reconnect-interval 60

 fast-external-fallover

 enforce-first-as

265

Programmability Tools for Network Engineers272

 event-history periodic

 event-history events

 event-history cli

 address-family ipv4 unicast

 network 10.10.0.0/16

 network 168.10.10.0/24

 network 192.0.0.0/8

 maximum-paths 1

 maximum-paths ibgp 1

 nexthop trigger-delay critical 3000 non-critical 10000

 client-to-client reflection

 distance 20 200 220

 dampen-igp-metric 600

 neighbor 10.10.10.11

 remote-as 65000

 dynamic-capability

 timers 60 180

 address-family ipv4 unicast

 next-hop-third-party

Vi​sore can be used to ex​am​ine how the con​fig​u​ra​tion is rep​re​sented in the data model. For ex​-
am​ple, we browse to the top-level of the BGP ob​ject at sys/bgp:

266

Programmability Tools for Network Engineers 273

Fig​ure: Brows​ing Cisco NX-API REST BGP Ob​ject Store with Vi​sore

By nav​i​gat​ing deeper into the BGP data model (se​lect the right-ar​row next to sys/bgp), we can
see how BGP data is mod​eled within the MIT.

267

Programmability Tools for Network Engineers274

As we con​tinue to nav​i​gate the browser, we can ob​serve ob​ject hi​er​ar​chy and de​pen​dency.

268

Programmability Tools for Network Engineers 275

Fig​ure: Nav​i​gat​ing Deeper into Cisco NX-API REST Ob​ject Store with Vi​sore

Firebug

269

Programmability Tools for Network Engineers276

Firebug

For web ap​pli​ca​tions, Fire​bug is avail​able for de​bug​ging and in​spect​ing HTML, CSS
and JavaScript. It is avail​able at http://​getfirebug.​com/​. Like Post​man, it has a Google Chrome
ex​ten​sion avail​able within the Google Chrome Web Store. The ex​ten​sion is light​weight and not
as fea​ture-dense as the na​tive Fire​bug ap​pli​ca​tion, so be sure to an​a​lyze your re​quire​ments for
debug and in​spec​tion.

Virtual Internet Routing Lab (VIRL) and NX-OSv

Cisco VIRL is a net​work or​ches​tra​tion and vir​tu​al​iza​tion plat​form that al​lows users to:

• Design and configure simulated networks with Cisco and third-party elements using a
graphical tool

• Set properties on network topologies or individual network elements.

• Generate router and switch configurations, and visualizations of network designs that
illustrate a wide range of characteristics such Layer-2 connectivity, IP addressing, IGP
configurations, BGP configurations, and more.

• Start and stop simulations of network designs.

• Interact with active simulations, including the ability to access simulated nodes via
console connections, modify running configurations, and extract configurations for use
in subsequent simulations for transfer to 'real' routers.

• Link network simulations with external networks for management-, control-, and data-
plane connectivity.

270

Programmability Tools for Network Engineers 277

Fig​ure: Using VIRL to Sim​u​late an Open NX-OS En​vi​ron​ment

VIRL is based in part on Open​Stack, and the el​e​ments that are used to build net​work topolo​gies
are ex​e​cuted as Nova / KVM vir​tual ma​chines. These are linked with Neu​tron-man​aged net​-
works and sub​nets.

Many vir​tu​al​ized el​e​ments are avail​able, in​clud​ing:

• Cisco NX-OSv

• Cisco IOSv

• Cisco IOS XRv

• Cisco IOS XE (as CSR1000v)

• Cisco ASAv

• Ubuntu 14.04 LTS server

271

Programmability Tools for Network Engineers278

VIRL pro ​vides a sim ​ple and cost-ef​fec ​tive mech ​a ​nism for de ​vel​op ​ers (or any​one else) to learn
the NX-API REST in​ter​face and cre​ate net​work ap​pli​ca​tions.

Note: users can lever​age the De​vNet Open NX-OS Sand ​box avail ​able at https:// ​developer. ​cisco. ​
com/ ​sandbox for NX-API REST in ​ter​face test​ing.

Be​yond pro​vid​ing a sim​u​la​tion ca​pa​bil​ity that can be used with NX-API REST, VIRL also pro​vides
sev​eral other fa​cil​i​ties that ex​pose REST​ful in​ter​faces that can be used for learn​ing about APIs,
in​clud​ing the full set of Open​Stack APIs and those ex​posed by VIRL di​rectly.

For more in​for​ma​tion on VIRL, in​clud​ing con​fig​u​ra​tion guides, tu​to​ri​als, and how to pur​chase
VIRL for per​sonal or de​vel​op​ment use, please visit the VIRL mi​crosite at http://​virl.​cisco.​com.

272

Programmability Tools for Network Engineers 281

Source Code and Version Control

Why Version Control?

Being or​ga​nized and track​ing changes are two very crit​i​cal parts to de​vel​op​ing, cu​rat​ing, and
main​tain​ing code. The use of a source code ver​sion con​trol sys​tem is ex​tremely im​por​tant for
de​vel​op​ers, whether they are work​ing in​de​pen​dently or as part of a larger team. There are
three pri​mary ap​proaches to ver​sion con​trol: local, cen​tral​ized and dis​trib​uted. Im​por​tant
ques​tions to ask when se​lect​ing a ver​sion con​trol sys​tem can in​clude the fol​low​ing:

• Who will use the version control system at my company?

• Is any information contained within the source of a proprietary or secure nature?

• Will anyone outside of my company use this code? (see Open Source and Licensing)

• Will access to the repository be required from different machines or locations?

• What is the rate of change of my code?

• How is the version control system being backed up or replicated?

Local ver​sion con​trol is eas​ily re​lat​able: cre​ate a di​rec​tory on a ma​chine and copy data or files
into it. These local sys​tems evolve into sys​tems that in​cor​po​rate data​bases to track changes and
com​mits. While sim​ple to in​stan​ti​ate, local ver​sion con​trol sys​tems suf​fer from sev​eral draw​-
backs in​clud​ing backup and repli​ca​tion, and the in​abil​ity to share code with a larger com​mu​-
nity.

Cen​tral​ized ver​sion con​trol ex​pands on local ver​sion con​trol by mov​ing the repos​i​tory to a
cen​tral​ized lo​ca​tion, and grant​ing ac​cess to the code repos​i​tory for users within an or​ga​ni​za​-
tion. Sub​ver​sion, Vi​sual Source Safe and CVS are good ex​am​ples of cen​tral​ized ver​sion con​trol
sys​tems. While this ap​proach solves the issue of grant​ing ac​cess to larger teams for code col​-
lab​o​ra​tion, it still fails to ad​dress fail​ure sce​nar​ios of the ver​sion con​trol sys​tem repos​i​tory,
whether it is housed on a file server, stor​age array, or other re​source. Los​ing the ver​sion con​-
trol server con​sti​tutes a code stop for all de​vel​op​ers work​ing on pro​jects within the sys​tem.

Dis​trib​uted ver​sion con​trol takes cen​tral​ized ver​sion con​trol a step fur​ther. Re​spos​i​to​ries and
code are dis​trib​uted amongst dif​fer​ent servers, which can be dis​trib​uted be​tween mul​ti​ple
servers or data cen​ters, placed in the cloud, or mod​eled as a soft​ware ser​vice (SaaS) of​fer​ing.
Git is a good ex​am​ple of a dis​trib​uted ver​sion con​trol sys​tem, and is dis​cussed in the next sec​-

273

Programmability Tools for Network Engineers282

tion. Con​sid​er ​a ​tions when using a dis​trib ​uted ver​sion con​trol sys​tem typ ​i​cally focus around ac ​-
cess, and whether or not code should be stored lo​cally within an or​ga​ni​za​tion or be put onto a
cloud-based repos​i​tory such as GitHub.

Git

For the pur​poses of this book, Git will be dis​cussed as the pri​mary ver​sion con​trol tool. In a
pure client-server con​text, the Git client is re​spon​si​ble for check​ing-out/ check​ing-in code, as
well as cloning and build​ing repos​i​to​ries.

The Git server can be used to build a dis​trib​uted ver​sion con​trol sys​tem for an or​ga​ni​za​tion or
de​part​ment. The use of a Git server that will be main​tained or​ga​ni​za​tion​ally or de​part​men​tally
will be based on re​quire​ments and con​straints out​lined dur​ing the re​quire​ments-gath​er​ing
phase. It is crit​i​cal to re​view this cri​te​ria with busi​ness stake​hold​ers, par​tic​u​larly se​cu​rity and
audit de​part​ments.

GitHub

GitHub is a cloud-based repos​i​tory with a web-based in​ter​face for any​one to use to col​lab​o​rate
on pro​jects through build​ing, down​load​ing and pro​vid​ing feed​back on code. A so​cial layer is
added to the dis​trib​uted ver​sion con​trol sys​tem, al​low​ing users to cre​ate branches or forks of
code, sub​mit bugs (and fixes), watch or tag fa​vorite pro​jects, as well as cre​ate doc​u​men​ta​tion
for pro​jects and code.

GitHub al​lows users in dif​fer​ent or​ga​ni​za​tions, cities or coun​tries to cre​ate and share code. It is
geared to​ward those who em​brace the Open Source move​ment, so it is im​per​a​tive to re​view or​-
ga​ni​za​tional re​quire​ments and con​straints around code shar​ing and the li​cens​ing that will be
ap​plied to any code that is dis​trib​uted on GitHub.

274

Programmability Tools for Network Engineers 283

Cisco DevNet for Open NX-OS

As you begin to ex​plore net​work pro​gram​ma​bil​ity and how to lever​age APIs with Cisco Nexus
switches, a good place to learn and get help is De​vNet – Cisco’s pri​mary re​source for de​vel​op​-
ers, en​gi​neers, and cus​tomers who want build ap​pli​ca​tions or ser​vices with or around Cisco so​-
lu​tions. De​vNet can be found at http://​developer.​cisco.​com, and the Open NX-OS mi​-
crosite can be found at http://​developer.​cisco.​com/​opennxos.

You can visit the mi​crosite and ex​plore on your own, or take a brief tour here. The land​ing page
for the Open NX-OS site in​cludes links to cur​rently fea​tured con​tent and dis​cus​sions:

275

Programmability Tools for Network Engineers284

In the Get ​ting Started sec ​tion you'll find some quick ex​am ​ples of how to con ​fig​ure com ​mon
switch fea​tures, in​clud​ing in​ter​faces, VLANs, OSPF, and AAA. For each of these, ex​am​ples are
pro​vided for Pup​pet, NX-API, Python, Chef, and An​si​ble.

In the dis​cus​sions sec​tion, you can start or par​tic​i​pate in dis​cus​sion about NX-OS and NX-API
pro​gram​ming, search for so​lu​tions to is​sues that may have been en​coun​tered and re​solved by
oth​ers, or get help from com​mu​nity ex​perts.

276

Programmability Tools for Network Engineers 285

The Code Shop sec​tion pro​vides a means through which you can share scripts, pro​grams,
recipes, and other sam​ples for the com​mu​nity to re​view and use. You can also search, sort
and browse code sam​ples sub​mit​ted by oth​ers.

277

Programmability Tools for Network Engineers286

In the Ar​ti​cle Cen​ter you can browse, search, and re​view an​nounce​ments, con​fig​u​ra​tion guides,
and other con​tent sub​mit​ted to the com​mu​nity by Cisco Nexus / NX-API en​gi​neers.

278

Programmability Tools for Network Engineers 287

The API sec​tion of the Open NX-OS mi​crosite is where you'll find de​tailed in​for​ma​tion and con​-
fig​u​ra​tion guides for the com​plete port​fo​lio of NX-OS pro​gram​ma​bil​ity so​lu​tions, in​clud​ing for
the NX-API REST in​ter​face, Python script​ing, and au​toma​tion tools such as POAP, Pup​pet, Chef,
and An​si​ble.

279

Programmability Tools for Network Engineers288

Within the NX-API REST sub​sec​tion, you'll find a com​plete ref​er​ence on how to use the NX-API
REST in​ter​face to con​fig​ure Open NX-OS fea​tures and ca​pa​bil​i​ties - phys​i​cal in​ter​faces, log​i​cal
in​ter​faces, pro​to​cols, etc.

280

Programmability Tools for Network Engineers 289

The Open NX-OS De​vNet com​mu​nity should be your pri​mary re​source for in​for​ma​tion and up​-
dates on Open NX-OS pro​gram​ma​bil​ity. Start there when​ever you need help, want to share
code, or browse for new Open NX-OS or NX-API REST ca​pa​bil​i​ties.

281

Programmability Tools for Network Engineers 291

Learning and Helpful Resources

This sec​tion will out​line some use​ful re​sources that de​vel​op​ers and ad​min​is​tra​tors can use for
self-learn​ing and help in de​vel​op​ing pro​jects, sim​ple or com​plex. Most of these re​sources are
ac​cessed or de​liv​ered via the web, and some in​clude plat​forms where a learn​ing and feed​back
en​vi​ron​ment is com​pletely in​te​grated into the web​site. This level of ac​ces​si​bil​ity makes it pos​si​-
ble for any​one in​ter​ested to sign up and begin learn​ing, even if they have no pre​vi​ous ex​pe​ri​-
ence cod​ing or de​vel​op​ing pro​grams.

Learning a Language

Prior to the In​ter​net, the two pri​mary av​enues for learn​ing a pro​gram​ming lan​guage were text​-
books or uni​ver​sity courses. How​ever, the In​ter​net now en​ables stu​dents to teach them​selves a
lan​guage in an ac​ces​si​ble and in​ter​ac​tive way. The fol​low​ing re​sources are free un​less noted,
and are avail​able for pub​lic use.

Code Acad​emy - http://​www.​codecademy.​com/​
In​ter​ac​tive, self-paced web​site to learn pro​gram​ming lan​guages such as Python, Ruby and C++.

Google's Python Class - https://​developers.​google.​com/​edu/​python/​
In​struc​tional web​site for learn​ing Python, with ex​am​ple code and com​mu​nity dis​cus​sion fo​-
rums.

Cours​era - https://​www.​coursera.​org/​
eLearn​ing site for on​line classes in all dis​ci​plines and fields. Rice Uni​ver​sity and Uni​ver​sity of
Michi​gan offer multi-week Python courses for be​gin​ner and in​ter​me​di​ate skill lev​els. In​struc​-
tors are avail​able for grad​ing and feed​back of as​sign​ments.

edX - https://​www.​edx.​org/​
eLearn​ing web​site started by MIT and Har​vard, of​fer​ing on​line and self-paced classes in mul​ti​-
ple dis​ci​plines and fields. Courses in Python are of​fered by MIT and the Uni​ver​sity of Texas at
Ar​ling​ton.

283

Programmability Tools for Network Engineers292

Learn Python the Hard Way - http:// ​learnpythonthehardway. ​org/ ​
Web​site for Python learn​ers with videos, doc​u​men​ta​tion and sam​ple code for use. Fee of $29.95
USD.

Please note: this is by no means meant to be an ex​haus​tive list of pro​gram​ming courses or re​-
sources avail​able on the web, but is sim​ply meant to point the reader in a di​rec​tion for find​ing a
so​lu​tion which best fits their learn​ing style. Many uni​ver​si​ties and com​mu​nity col​leges also
offer on​line and in​struc​tor-led courses.

Getting Help

Every pro​gram​mer and de​vel​oper will even​tu​ally come to an error mes​sage they can't debug on
their own, or a pro​gram that does not flow prop​erly or pro​duce the ex​pected out​put or re​sults.
Thank​fully there are re​sources avail​able on​line for as​sis​tance.

Cisco De​vNet - http://​developer.​cisco.​com/​opennxos/​
On​line source of in​for​ma​tion for learn​ing con​cepts, APIs, code ex​am​ples and more, with on​line
com​mu​ni​ties for post​ing ques​tions or hav​ing dis​cus​sions.

Stack Over​flow - http://​stackoverflow.​com/​
On​line dis​cus​sion forum for ques​tions or re​quest​ing help with cod​ing ap​proaches or prob​lems
in any pro ​gram ​ming lan ​guage.

284

