会议主题:思科面向未来的核心竞争力-硅光子技术及产品简介				
会议时间:2013年3月13日				
序号	问题	回答		
1	硅光子与现有光纤的差别在哪?	硅光子是光电集成技术,利用半导体材料实现光电转换		
2	现在光模块贵不贵?	100G的光模块尤其昂贵,思科收购硅光子技术之后将大幅度降低100GE光模块的成本。		
3	硅光子目前支持如何?有哪些设备支持这种技术?	思科准备将这项技术应用到路由器未来的开发中,第一个典型的应用就是提供100G的超小型光模块。		
4	基板的材质是什么?	硅		
5	硅光子不是类似于电子的一种物质,而是一中光电 集成的方法,是吗?	是的		
6	能否实现光交换,指的是像交换机一样的功能?	硅光子技术将来可以用于光交换		
7	现在100G应用场景很多么?	目前数据设备和传输设备均已具备商用条件,未来几年国家骨干网和大型数据中心会有大量的部署		
8	光交换路由器逐渐代替电路由器,大约何时能够实现?	具体取决于电传送的极限(25G->50G)是否能够取得突破性的		
9	请问是否可以把硅光子技术理解为下一代IC革新的 方向? 例如说晶体管替代了电子管?	完全正确		
10	仅用于芯片或集成电路中的通讯吗?还是已经可以 用光子代替电子进行二进制处理?	目前主要用于高速传输,未来可以用于光的交换		
11	如何实现交换?交换速度是否可与现有的电交换相比?	目前主要用于高速传输,未来可以用于光的交换,目前光交换的速度还是比较慢的		
12	为什么光传输的技术没有在主机的内部传输使用?	IBM & Intel正在做这方面的研究,已经有了演示系统		
13	硅光子最主要的就是减小体积和减少能耗么?对于 速率上的影响有么?	目前已经用于100GE高速的调制系统		
14	思科设备侧是CPAK 4×25,对端设备是CFP 4× 25,能互通吗?	可以		
15	CPAK与CFP比有价格优势吗?	是的		
16	CFP 和CPAK 具体区别有哪些,CPAK 有哪些优	主要是尺寸小,功耗低,可用于短距和长距		
17	CPAK是思科独有端口技术吧? 以后是否能和其他 厂商设备互联?	光传输的各个指标都是标准的,互联没有问题		
18	在工艺上CPAK是否更复杂,成品率更低?	CPAK工艺采用传统硅集成电路的制作工艺, 更简单,成品率高		
19	CPAK 应该会向下兼容么?	CPAK的接口是IEEE标准的,与其他接口形式全兼容		
20	CFP4、CXP2、QSFP28等是采用硅光子技术吗? CPAK是Cisco的过渡产品吗?	目前只有CPAK使用硅光子技术,其他几种标准都还没有确定		
21	CPAK里面哪些部分使用了硅光技术?	调制器,合波/分波器等		
22	对光纤有特殊的更高指标的要求吗?	没有,用现有光纤即可		
23	请问是否可以把硅光子技术理解为下一代IC革新的方向? 就好比说晶体管替代了电子管?	是的		
24	光的优势在于带宽大,衰减小,适合长距离传输; 但是用于交换和路由,是否合适?	目前主要用于高速传输,未来可以用于光的交换,目前光交换的速度还是比较慢的		
25	硅光子技术现在有实体的应用还是只是研发阶段?	CPAK硅光子光模块已经发布了,很快就可以应用		
26	硅光子技术仅用于芯片或集成电路中的通讯吗?还 是已经可以用光子代替电子进行二进制处理?	目前主要用于高速传输,未来可以用于光的交换,目前光交换的速度还是比较慢的		
27	100G波分直接传输设备吗?	思科同时提供彩光100GE和白光100GE接口,可以根据不同用户的需求灵活选择		

	思科的硅光子技术,已经产品化的有哪些设备?哪 些运营商购买并部署了?	正式产品下周一发布,首先在ONS 15454上应用,未来 会在CRS上实现
29	数通设备端口速率要跟传输设备同步么?不然如何 连接?	当然要同步,所以才会有IEEE,ITU国际标准.所有100G接口都是复合标准的,可以相互对接
30	TXP是可以接TMUX?还是直接接路由器?	路由器白光接口接TXP,彩光接口进入波分合波/分波器
31	目前哪些型号的设备支持100G呢?	思科现在支持100G的产品包括核心路由器CRS、边缘路由器ASR9K、100G的波分产品15454-M6和数据中心交换器Nexus 7K
32	硅光子技术产品化目前是实验阶段还是已有成功案	已经是商用产品了,思科CPAK 100GE接口率先使用
33	硅光子技术已经投入商用?一般核心层不会随意改造的,它的优势何在?	简单讲,CPAK会采用与现有10GE和GE大小,功耗差不多的光模块,传输40G/100G的速率
34	现在SDN正在热门研究中(软件定义网络),作为新产品,光交换板,光路由器,在网管上,采用或参考虑SDN技术吗?	思科也在向这方面发展,建议关注思科的Cisco Quantum系统
35	现在思科波分一个波道支持多少带宽?	商用的波分产品提供的是每波道100Gbps带宽,思科在去年已经demoguo在一个lamda上利用flexspectrum技术提供400G乃至1Tbps的带宽
36	我们这里有两套CRS, IP承载网的可以上这个模块	只要是是CRS-3,就可以
37	硅光子技术产品在SDN方面的互通性如何?	基本上,硅光子技术是一层技术,SDN主要在控制层面, 他们的协作没有问题
38	现在,大数据(Big Data),也是研究热点。它要求从Gn等接口进行采集,DPI识别等。这些都能通过硅光子技术来实现吗?如果不包含DPI模块,对于运营商来说,不同厂家产品的对接,是否会有问	硅光子和CPAK是一层,即物理层方面的创新,与DPI等应用没有冲突。当然需要DPI设备和模块的厂商需要创造出与100G传输速率相配合的处理能力
39	一般一个40odd支持40个波道,那是说整个系统就支持4T的带宽么?	40G和100G DWDM系统是的.到了400G, 1T系统将会 采用Super Channel,将若干波道捆绑使用.
40	如何进行怎么分类,全是100GE的,有没有POS	100G以上就没有POS标准了。全部是Ethernet
41	采用硅光子技术后,CRS的板卡重量和功耗会有明显下降么?	会的。在未来400G每槽或者更高容量的高端路由器中,这个优势更加明显
42	CFP2如果在CFP向后兼容上做得好,平滑升级比更换CPAK更容易么?	由于CFP2直到目前还不能标准化,所以思科采用CPAK技术来尽快为用户提供高性价比的100G方案
43	只是模块?设备的核心也必须是硅光子技术?	目前是,路由器,交换机和波分系统用户侧接口,将来回用于核心
44	比XFP 模块贵多少?	CPAK面向100/40G接口的,XFP面向10G的,不好比较
45	目前100G的多模传输,距离都还是限制在100m以内么?	是的, 硅光子技术主要用于长距传送,LR4, ER4, DWDM 等比较有优势
46	硅光子技术是不是以前提的光通信啊?	是
47	10G以上的接口的光纤的必须买原厂线吗?还是可以在现场制作光头?	可以现场制作光头,需要保证质量.如果采用OTN封装可以通过FEC功能对光纤的性能劣化进行误码纠错,误码率比较低,传送性能更有保障.
48	固然硅光子与DPI不冲突,但是2种板子通常是共架的。如果思科不能在同一个机框提供,是不是会有互联互通的问题?	目前100GE主要用户核心网和数据中心高速链路. DPI处理能力距离100G还有比较大的差距,主要部署在网络边缘.所以目前还不需要在同机箱中部署.
49	在cisco list price有这个了吗?	近期就会有了
50	· 硅光子技术还是在芯片间或者板件进行传输的么? 在芯片内的传输还是电信号么?	目前是,路由器,交换机和波分系统用户侧接口,将来回用于核心
		硅光子调制器的功耗显著低于传统铌酸锂调制器,所以相

	CRS的100G是用的硅光子吗?	高密度的100G接口将采用硅光子技术
53	硅光子技术是目前光电转换的一个升级版,目前可能的产品是光模块,以后还可能有背板么?	是的
54	现用光纤 和 硅光子物理材质还是不一样?	光纤主要材料是石英玻璃, 硅光子主要是单晶硅做成的硅 光晶体
55	400g CRS能否与现有 140G平台混搭	可以
56	长距离支持方面,目前最远能支持到多远?40G, 100G?	最新的40G DWDM系统或彩光接口采用相干光检测和增强FEC可以在无电中继的情况下传送超过2000KM, 100G也差不多.
57	硅光子可以用在矩阵吗?	目前还不行,将来可以通过将AWG, 光开关集成在一起实
	目前思科CRS-3设备可通过软件升级方式,可以直接支持到CPAK板卡吗?能否稍微介绍下目前思科CRS-3 100G路由器全球商用情况(不保密的情况	可以支持, CRS-3目前在中国电信中国联通的核心网, 城域网核心和IDC核心中得到大规模的应用,并且实用 的单点多机箱集成已经达到4+2,即4个线卡框与两个矩
59	硅光子的成本是不是要高呢?高多少呢?相对普通 的电集成	目前高速接口成本还比较高,随着技术的逐渐成熟会比传统光系统成本低.和电集成目前还无法比较
60	光交换路由100G现在昂贵,在哪些行业会重点使	国家骨干网,数据中心高密度100G
- h	整100G的接口模块和分成10个10GE模块是同一款吗?还是从10个10G到100G整要升级模块?	是同一个板卡,通过软件设置和不同的光纤实现,不需要整个模块升级
62	Cisco 会将光交换完全取代 电交换产品吗?可否将 光交换的成本和电交换的产品对比介绍一下。	短期不会, 因为目前成本还比较高
63	两个100G CPAK间用什么线缆互联?	LR4现有的光缆即可,SR-10采用24芯条带光纤
64	供应商会大规模使用么?	预计会
65	光纤线缆方面是否都和1G,10G的不一样了?	单模光纤一样, 多模光纤采用条带光纤
66	端口速率上去以后,cpu性能会成为瓶颈吗?如果不是,今后的瓶颈在哪里?	目前看来CPU不是瓶颈,瓶颈还是在IO上面,关键是如何平衡性能,能耗和成本
67	除了接口模块以外,思科下一步想将硅光子技术应 用在网络设备的哪个部分上?	DWDM系统,未来核心网络综合传送系统
68	CPAK的传送距离通常多少?	和IEEE的标准是完全一样的, LR-4 10KM
	新的CPAK对于接收光功率的动态范围和目前采用的CFP相比,有没有什么变化,例如光功率动态范围变小等?	和IEEE的标准是完全一样的
70	CPAK与CFP2比较有价格优势吗,另外2个光模块可以互通吗,光模块厂家对CPAK是什么态度?	由于CFP2还没有标准化,所以目前还不好比较. 由于思科CPAK较之CFP2全面领先, 所以不少光模块厂家可能放弃CFP2 而直接研发CFP4
1 / 1	CPAK有非MPO的接口模块吗? 最大支持400G带 宽么?	LR-4就是采用双芯光纤,目前是100G的
72	80km有没有?	目前没有
73	9001上可以用100G模块吗?	目前不行
74	是不是要换MSC?	可以水平升级(增加400G机箱)或垂直升级(更换FCC-400 和MSC-400)
75	研发成本很高,设备成本会不会也会很高的呢?	成本的构成还包括能耗,维护等,总体成本会比现有方案低
76	目前思科光传输系统的100G板卡 预留的100G接口都是CXP的接口,是否到时候会全部更换为CPAK接口?CPAK模块什么时候发布?	CXP接口只能用于电口或多模短距接口,长距都需要使用CPAK. 所以这些接口会长期共存
77	片间互联是怎么通过硅光子实现的?	目前还没有, 将来的方向