·IIIII CISCO

Cisco 面向未来的核心 竞争力硅光子技术和产 品简介

蒋星 思科解决方案架构师

电传 vs. 光传送

光传送面临的挑战

- 采用多种介质和技术
- 需要大量的手工组装过程,如光轴对齐等
- 成本高

Main network challenge: cost of optics

Cost of optics drops slower than the rest of the system

CMOS meets Photonics

Optical Network Connectivity Requirements

- Very High Bandwidth: 40G/ 100G &beyond
- Increase in Switch & Router Port Density
- Green Enterprise Initiatives
- Complete Portfolio of interface reaches

CMOS IC Manufacturing

- High Volume, low cost
 - Highly integrated
- Highly scalable
- Automated Manufacturing tools

CMOS PHOTONICS

Leverages Silicon/ Moore's law: low-cost CMOS Manufacturing

- Simplifies manufacturing complexity
- Integrates optical and digital functions

Eliminates the discrete divide between optical and electrical components

Highly integrated design yields smaller footprint

Low power dissipation

硅光子技术-Silicon Photonics 硅光晶体和硅光波导器件

What is Silicon Photonics?

Enables:

Easier fabrication of (passive) photonic devices

Easy interfacing of electronics and (active) photonics devices

Optical chip to chip interconnect

Applications:

Passive devices Modulators

Lasers

Receivers

光电集成技术的发展 - 分立器件/混合集成电路/单片集成电路

Cisco Confidential

硅光子技术的设计和制造流程

Design Flow

Using the same reliable tools and processes from the semiconductor industry

硅光子技术的应用场景

- IBM 大规模高性能计算
- Intel CPU互联和高速接口
- Data Center on a chip
- Super computer on a chip
- 网络用户侧高速接口
- 100G/400G/1T 波分系统
- 路由器多机箱互联,芯片,板卡互联等

Near term benefits: Si Photonics Transmitter – How it works

- CMOS Photonics designed using standard IC design tools
- CMOS Photonics grown in Silicon fab like other commercial ICs
- Continuous Wave Power (DC in electricity) supplied by laser
- Light is modulated in CMOS photonics & coupled into fiber for transmission
- Traditional photonics is designed with analog approximations & customized tools

Near term benefits: Cisco CPAK vs CFP port density

Generation 1

- IEEE Compliant interfaces
- 10x 10G electrical interface only
- Power Consumption: < 24 W</p>
- ➢ Size: W = 82; L = 145; H = 13.6 mm
- Density: 1 or 2 port systems

- IEEE Compliant Interfaces
- >4x 25G & 10x 10G interface
- Power Consumption: < 7.5 W</p>
- Size: W = 35; L = 101; H = 11.6 mm
- ➤ Density: ≥10 port systems

More details on CPAK

Future: optical PCB

Optical for all High Speed Signals Electrical for Power/Ground & Control Only

Rationale for acquiring CoreOptics

Dual Pol. Differential QPSK 100G Module

Best in class 100G LH today

Future 100G+ Module

Synergy between CoreOptics and LightWire technology

Future 100G+ Module

How LightWire technology reduces the size of the modulator+driver

Beyond 100G+ - The Superchannel Concept

PROBLEM:

sending >200G over a single carrier is not reasonable today

even with future 100 GS/s ADC technology it would require PM-1024QAM

→ poor sensitivity, phase noise problems, non-linearity impact, hardware problems, very short reach

SOLUTION:

information distributed over a few subcarriers spaced as closely as possible forming a variable rate superchannel

each subcarrier working at a lower rate, compatible with current ADCs and DSPs

subcarriers

Role of optics in the IP network – in the past

- SERDES between ASICs 10G → 25G → 50G? Harder to keep signal integrity Getting more expensive & power consuming
- Non-optimized optics:
 - WDM (off the shelf)
 - Client (off the shelf)
 - Intra system (same as client optics)

Role of optics in the IP network – now and future

- Optimized optics:
 - WDM (CoreOptics now)
 - Client (LightWire now)
 - Intra system (LightWire near term)
 - Backplane (LightWire mid term)
 - Chip to chip (LightWire long term)

Cisco 硅光子 相关产品简介

G/100G Industry Standards	
 IEEE 802.3ba: 40Gb/s and 100Gb/s Ethernet Task F 40G and 100G Ethernet Physical interfaces for Backplane, Copper, Fiber PMDs 	orce Ratified
 IEEE 802.3bg: 40Gb/s SMF Ethernet Task Force 40G Serial PMD optimized for carrier applications 	Ratified
 ITU Study Group 15: Optical and Transport Networks OTU4 frame format Single mapping for 40GE/100GE into OTU3/OTU4 OTL protocol enabling OTU3/4 over multi-lane (low cost) optics 	Ratified
 OIF: 100G Long-distance DWDM Transmission Industry consolidation around a single 100G DWDM solution 	Ratified
Multiple suppliers at all levels of the Eco-system	
Suppliers for network equipment (Routing/ Switching/ Tequipment etc)	ransport), Test

40G/100G Ready for Field Deployment

4

Cisco's Efforts in 40/100G Standards

• <u>IEEE</u>

- Initiated standardization efforts for higher speed Ethernet (CFI, July 2006)
- Defined 40G/100G architecture frame work (with Sun, BCM, Intel, AMCC)
- Defined MLD protocol fundamental to the multi-lane 40G/100G standards
- Defined "Phy error monitoring" 'OTN like' PMs for Ethernet
- Chaired 802.3ba architecture sub-group
- Chaired 802.3bg (40G serial) Task Force

■ <u>ITU</u>

Original contribution on OTL protocol (enables low cost optics)

• <u>OIF</u>

- Initiated (along with Ciena) 100G DWDM project(s)
- Drove to a single modulation scheme PM-QPSK

Continued industry leadership from Cisco

High Speed Ethernet Standard Interfaces

		1G	10G	40G		100G	
	SMF	LX	ER 40	km 40G-LR4 40G-FR	2km	100G-ER4 100G-LR4	40km 10km
	MMF	SX	LX4 30 SR 300 LRM 22	00m 0m* 20m 40G-SR4		100G-SR10	100m OM-3/4 Parallel Fiber
Co	opper	т	T CX4 15	5m 40G-CR4		100G-CR10	7m Twinax
F	iber nfrastruc	cture	Multimode 40G-SR4/ 100G-SR10	Need parallel ribbon fiber 12-strand for 40G-SR4 24-strand for 100G-SR10		Fiber Infrastrue interface needs (2-strand)	cture for 10G-SR s only Duplex fiber
F	Reach		Multimode 40G-SR4/ 100G-SR10	Defined for a shorter reach 100m OM3/ 150m OM4 mult	timode fiber	10G-SR interfa OM3 /400m ON	ce defined for 300m 14 multimode fiber
Complexity		ity	Singlemode 40G-LR4/ 100G-LR4	Complex & Expensive optic	cal design	No changes fro	om 10G-LR in Fiber & reach

Customers should consider fiber infrastructure & reach when upgrading to 40G/100G

Parallel ribbon fiber for 40G/100G interfaces

MPO is a generic name for a ribbon optical connector, while MTP is a brand name

IEEE 802.3: Parallel Data Streams

- Device interfaces in Switches & Routers (ASICs) currently cannot handle single 40Gb/s and 100Gb/s data streams (only 10Gb/s)
- IEEE has defined 'parallel lanes' to handle flow of data
- Multi-lane Distribution (in the PCS layer) provides a simple way to map 40G/100G to physical interfaces of different lane widths – with Virtual lanes
- Data from any particular virtual lane will reside on the same electrical and optical lane across the link

 No skew introduced between bits within the virtual lane

10G/40G/100G Transceiver form factors

100G Module Form Factors Evolution

Power consumption (limited by SIZE)	<u>≤</u> 32 W	<u>≤</u> 4 W?	< 7.5 W	< 6 W?	<u><</u> 8 or 12 W?	<u>≤</u> 5 W?	<u><</u> 3.5 W?
Interface Support 4x25G 10x10G	Yes Yes	<mark>No</mark> Yes	Yes Yes	<mark>No</mark> Yes	Yes Yes	Yes No	Yes No
Availability	Shipping now	Shipping now	1HCY13 Production	Unknown	Protos in CY13	Unknown	Unknown

CPAK offers the highest port density, lowest power consumption and complete portfolio of 100G optics 2006 Class Sy among form factors that support 4x25G and 10x10G interfaces

Interoperability

Why is this important? helps to understand Cisco's CPAK100G transceiver strategy Cisco's CPAK100G is a non-MSA form factor designed by Cisco, for use on Cisco

- Switch & Router ports
- CPAK100G transceivers will be designed to meet all existing and future 100G IEEE interface standards
- CPAK100G transceivers will interoperate with all other 100G transceivers available in the industry (such as CFP100G, CFP2/CFP4/QSFP28 etc)

Next gen 100G form factor

- Multiple 100G MSA Form Factors discussed in the industry
- Too many form factors removes economies of scale due to form factor proliferation
- Proposed MSA solutions DID NOT MEET
 Cisco schedule for product release
 Cisco's power & port density
 requirements on switches and routers
- Cisco needed a 100G optics solution to meet our port density requirements driven by our customers

Cisco's SOLUTION Definition of a new Cisco CPAK100G form factor & Lightwire CMOS Photonics acquisition

Introducing the Cisco Next Gen 100G Transceiver

Standards Compliant

- IEEE standards compliant interfaces
- OTU4 compliant
- Electrical interface OIF compliant (CEI-28G-VSR)

High Density

CPAK100G yields >70% size Reduction

Low Power Consumption

CPAK yields a 70% decrease in power consumption

What makes CPAK possible at Cisco?

>> Next gen optics technology & next gen IC technology for efficiency

>> CMOS photonics from the Lightwire acquisition on Single mode reaches for best in class power consumption

Cisco's customers benefit from CPAK: <u>Lower power consumption</u> & <u>Smaller footprint</u> Switches/ Routers with increased port density

Modern Industrial Design

100GBASE SR10

CPAK100G-SR10 for 100 m

FEATURES

- IEEE 100GE Compliance
- Configurable to run in 10x10GSR mode
- Configurable to run in 2x40GSR4 mode
- ➢ Up to 100 m reach on MMF OM3
 - Up to 150 m reach on MMF OM4

Key Specs	CPAK100G-SR10
Standard	100GBASE-SR10
Connector	MPO-24
Reach	OM3: ≤ 100 m OM4: ≤ 150 m
Fiber	Multi Mode
Power Consumption	<7.5W

CFP-40G-LR4

Shipping!

CFP-40G-FR

Shipping!

- 40G Serial interface Transceiver, CFP form factor
 Compliant to IEEE802.3bg, 40GBASE-FR
 Interoperate with 40G ITU G.693 VSR2000-3R2 300-pin (ransponder, legacy interfaces
 2km reach, SMF fiber, with SC Duplex connector
- Will only be available in a CFP form factor (Power consumption ~8W)

Optical interface	Electrical interface	Reference standard
40GE (41.25 Gbps)	XLAUI	IEEE802.3ba
OTU3, OTU3e2 (43.0 Gbps, 44.58 Gbps)	OTL3.4	ITU G.709

Continued demand for 10G density

- 10G/40G/100G operation on the same linecard, by simply plugging in a different optic **A very powerful solution for Cisco platforms**. What enables this feature?
- □ IEEE 40G/100G interfaces were for nx10G host interface
- This enables a high-density10G optic to plug this into a 40G or 100G port
- QSFP (4x10G) or a CPAK(10x10G) offers much higher 10G density than what can be achieved with SFP+ or XFP
- Cisco will release nx10G optics for multimode (SR) and singlemode (LR)
- Cisco specified the 40GBASE-SR4 and 100GBASE-SR10 optics to simultaneously meet two sets of specifications:
 - □ Interoperate with IEEE 40GBASE-SR4 & 100GBASE-SR10 optics
 - □ Interoperate with 10GBASE-SR optics
 - □ This required the optical interface specifications to be modified for Cisco optics
 - □ Without these modifications, there is risk of 10G SR link flaps or receiver damage
- High density single mode (nx10G LR) will use <u>Silicon Photonics</u> to meet the power consumption requirements

10G/40G/100G Connectivity Sample Configurations for Singlemode fiber

10GE Interconnect Options

40GBASE-LR4 interoperability with CPAK100G is not available

http://10x10msa.org/index.htm

Standards	No IEEE Standard
Electrical interface	10x10G CAUI
Network Interface	10x10G MSA (not an IEEE standard)
Media Type	Standard Single mode duplex fiber
Optical Technology	8nm spacing DWDM cooled laser & receiver array Includes optical mux and demux – SINGLE SOURCED
Reach	10x10 MSA defines 2km, 10km, 40km reaches
Optical interface	SC Duplex connector

© 2006 Cisco Systems, Inc. All rights reserved. 🦳 Cisco Confidentia

Summary of Key challenges with 10x10 MSA

Immediate challenges:

□ 10x10 MSA not interoperable with any IEEE defined interface
 □ 只有1个主流的10*10光模块厂家(Santur),产业链脆弱。不像LR4,主流器件厂家都支持(Finisar,Opnext,Sumitomo)

Long term challenges:

- Limited to CFP port density; next-gen smaller form factors such as CPAK, CFP2 or CFP4 cannot support 10x10 MSA
- With no form factor evolution, 10x10 MSA could be a stranded network interface, for a single generation
 随着SiP技术的发展, LR4功耗和成本具有优势

<u>行业动态</u> ❑ Google <mark>以前大力推</mark>动, 目前已经转向LR4

Cisco has no plans to productize a CFP 10x10 MSA transceiver at this time

#