
CISCO CONF IDENT IAL

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

SDK Developer’s Guide for CiscoWorks
Common Services 3.0.5

Customer Order Number:
Text Part Number: OL-xxxxx-xx

http://www.cisco.com

CISCO CONF IDENT IAL

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
Copyright © 2006, Cisco Systems, Inc. All rights reserved.

CCSP, CCVP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work,
Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP,
CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital,
the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink,
Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linksys, MeetingPlace, MGX, the Networkers logo,
Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast, SMARTnet,
The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the
United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (0601R)

CISCO CONF IDENT IAL

OL-xxxxx-xx
C O N T E N T S
Preface 33

Audience 1-33

Conventions 1-33

Related Documentation 1-34

Document Organization 1-35

Obtaining Documentation 1-37

Cisco.com 1-37

Product Documentation DVD 1-37

Ordering Documentation 1-37

Documentation Feedback 1-37

Cisco Product Security Overview 1-38

Reporting Security Problems in Cisco Products 1-38

Product Alerts and Field Notices 1-39

Obtaining Technical Assistance 1-39

Cisco Technical Support & Documentation Website 1-39

Submitting a Service Request 1-40

Definitions of Service Request Severity 1-40

Obtaining Additional Publications and Information 1-41

About CWCS

C H A P T E R 1 Introducing CWCS 1-1

CWCS Release Model 1-1

Benefits of Using CWCS 1-3

What’s New in CWCS 1-3

What’s New in This Guide 1-5

Understanding the CWCS Structure 1-5

Using CWCS Components 1-7

How CWCS is Distributed 1-9

Installation Interface Options 1-9

CD Image Structure 1-9

CD Image Structure for Windows 1-10

CD Image Structure for Solaris 1-10
3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Contents
Third-Party Tools 1-10

Where to Find the CWCS SDK 1-15

For Further Assistance 1-15

C H A P T E R 2 FAQs and Programming Hints 2-1

General Topics 2-1

Daemon Manager 2-4

Online Help 2-5

C H A P T E R 3 Understanding the CWCS Directory Structure 3-1

About CWCS Directory Policies 3-1

About the CWCS Top-Level Runtime Directories 3-1

About the CWCS Common Directories 3-2

About the CWCS Solaris-Specific Directories 3-3

About the CWCS UNIX-Specific Directories 3-3

About the CWCS Windows-Specific Directories 3-3

About CWCS File Permissions 3-4

About CWCS Property Files 3-4

About CWCS Log Files 3-7

C H A P T E R 4 Understanding the CWCS Execution Environment 4-1

Understanding the Java Application Launch Process 4-1

Launching a Java Application 4-2

Using Servlets and JSPs with Tomcat 4-5

Using JavaBeans 4-5

C H A P T E R 5 Getting Started with CWCS 5-1

How CWCS Works 5-1

Installing CWCS 5-2

Enabling CWCS Services 5-3

Understanding CWCS Service Bundles 5-3

Using CWCS Service Bundles 5-3

Registering for CWCS Services 5-4

Enabling New Service Bundles from the Command Line 5-5

Using CMFEnable 5-5

Interacting with CWCS 5-7

Designing the User Interface 5-7
4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Adding Your Application to the CiscoWorks Home Page 5-8

Using the Backend Services on the CWCS Server 5-8

Using the CWCS Support Tools 5-9

Getting Up to Speed Quickly 5-9

About CWCS Shared Services

C H A P T E R 6 Using Shared Services 6-1

Understanding Shared Services 6-1

About the Shared Services Components 6-4

About the CiscoWorks Home Page Component 6-5

About Web Server and Servlet Engine Components 6-6

About the Cisco Management Integration Center (CMIC) Component 6-6

About the Security System Components 6-7

About the Database Components 6-8

About the Backup and Restore Components 6-8

About the Device List and Credentials Repository (DCR) Components 6-9

About the Core Client Registry (CCR) Component 6-10

About the Core Logging Component 6-11

About the Online Help Component 6-12

About the Daemon Manager Component 6-12

About the Job and Resource Manager (JRM) Component 6-13

About the Event Services Software (ESS) Component 6-13

About the Event Distribution System (EDS) Component 6-13

About the Installation Framework Component 6-14

About the Java Plug-in Component 6-14

About Diagnostic and Support Components 6-14

About SNMP Service Components 6-15

About NT Service Components 6-15

About Device Center Components 6-15

C H A P T E R 7 Using the CiscoWorks Home Page 7-1

Understanding CWHP 7-1

About the CWHP Interface 7-2

How CWHP Works 7-3

How CWHP Uses CMIC 7-4

How CWHP Handles Security 7-5

About the CWHP Runtime Structure 7-5

Integrating Your Application with CWHP 7-6
5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Registering Your UII-based Application with CWHP 7-6

Implementing CWHP Security 7-7

Implementing Special License Checks 7-8

Handling CWHP Messages 7-8

Migrating to CWHP 7-9

C H A P T E R 8 Using Web Servers and Servlet Engines 8-1

Understanding the CWCS Web Server and Servlet Engine 8-1

About the CWCS Web Server and SSL 8-2

Using CWCS Web Servers and Servlet Engines 8-2

About the JRE Version 8-2

About Apache Version and Access Control 8-2

Servlet Engines and Runtime Directory 8-3

Runtime Structure for New Components 8-3

Existing Tomcat Based Components/Applications 8-4

New Tomcat Based Components/Applications 8-4

Runtime Structure for CiscoWorks Common Services Webapps 8-5

Runtime Structure for DCR 8-6

Runtime Structure for CMIC 8-6

Runtime Structure for Device Center 8-6

Implications of HTML Based Login 8-7

C H A P T E R 9 Integrating Applications with CMIC 9-1

Understanding CMIC 9-1

Using CMIC Services 9-2

Registering Applications 9-2

Unregistering Applications Through Command Line 9-3

Registering Applications Through Command Line 9-3

Querying an Application 9-4

Calling an Application 9-4

Integrating CMIC with CWHP, Device Center, and Setup Center 9-4

Wrapper Java Code 9-5

System Flow for CWHP using CMIC 9-6

About the CMIC APIs 9-7

About the Management Service Template 9-7

Component Interaction 9-8

About CMIC Registry Dependencies 9-9

Sample MST File 9-9
6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
C H A P T E R 10 Using the Security System 10-1

Understanding CWCS Security 10-1

About Client-to-Server Security 10-2

About Server Internal Security 10-2

User Name Length Restrictions 10-3

Using CWCS Single Sign-On 10-3

How the Login Protocol Works 10-4

How the Logout Protocol Works 10-5

About Server-Imposed Security 10-5

About Administrator-Imposed Security 10-6

About Server-to-Device Security 10-6

About Secure Shell (SSH) 10-6

Using CWCS Server Security 10-6

About General Security 10-7

Application Integration with CAM 10-7

How CAM Cache works 10-8

API Level Details 10-9

Authorization Checking 10-9

Setting Up Server Internal Security 10-10

Using the Shared Secret Client API 10-10

Client Side API Details 10-11

SecretClient.secretLogon 10-12

SecretClient.getErrCode 10-12

SecretClient.getErrReason 10-13

SecretClient.doPost 10-13

SecretClient.dumpResponse 10-14

Setting Up Server-to-Device Security 10-14

Integrating a New Application 10-16

Securing Applications 10-17

Securing Java Servlets 10-17

Securing Java Applets 10-17

Backend Perl Script 10-17

Java Server Pages (JSP) 10-18

Creating Auto Login Pages 10-18

Performing Encryption 10-19

Handling Symmetrical Encryption 10-19

Handling Asymmetrical (One-Way) Encryption 10-20

Stopping Eavesdropping Using SSL 10-20

Why Use SSL in CWCS? 10-20
7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
SSL Support in CWCS 10-21

What Kind of SSL Support is Available in CWCS? 10-21

SSL-Enabling Your Application 10-21

Configuring System Identity Setups 10-21

Configuring a Cisco.com User and Password 10-22

C H A P T E R 11 Using the Database APIs 11-1

Understanding the CWCS Database 11-2

What’s New in This Release 11-2

Understanding the Tools 11-2

Database Access Methods 11-3

Types of Database Servers 11-3

JDBC Access Methods 11-4

ODBC Access Methods 11-4

Perl Access Methods 11-4

Connection Strings 11-5

Understanding the NMTG Database Delivery Process 11-5

Setting Up a New Database 11-6

Creating the ODBC Database Definition File 11-7

Creating the Database Template File 11-7

Creating the odbc.tmplorig Template File 11-7

Customizing the odbc.tmpl File 11-8

Enabling Database Password Encryption 11-9

Creating the Backup Manifest Files 11-10

Creating the Database Backup Manifest File 11-11

Creating the Application Backup Manifest File 11-11

About the Database Property Files and Settings 11-12

About the Database Server Property File 11-12

About Private Property Files 11-13

Managing the Database Engine 11-13

Understanding Port IDs 11-14

Creating a Database Port 11-15

Changing the Database Port 11-16

Dynamically Allocating a Port ID 11-17

Performing a Quick Integration 11-17

Using the Sybase Database 11-18

Before You Begin 11-19

Setting Up Your Environment 11-19

Initializing a New Database 11-19
8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Creating a New Database 11-20

Step 1: Change the User ID and Password 11-21

Step 2: Create and Populate DbVersion and DbVersionHistory 11-21

Step 3: Install the Database Files 11-23

Updating the Database Password 11-24

Starting and Stopping Database Engines 11-25

Starting a Database Engine 11-25

Stopping a Database Engine 11-27

Creating and Closing Database Connections 11-28

Connecting to a Database 11-28

Closing a Database Connection 11-30

Examining the Contents of a Database 11-31

Creating a DSN 11-31

Accessing Your Data 11-32

Backing Up Your Database 11-32

Debugging and Troubleshooting the Database 11-33

Managing Database Log Files 11-33

Ensuring Sufficient Temporary Space 11-33

Optimizing Query Processing 11-33

Verifying a Database 11-34

Reinitializing a Database 11-35

Cleaning Up Other Application Files 11-36

Database API Command Reference 11-37

Enabling the CWCS Database Engine 11-37

Compiling and Running a Database 11-37

Code Samples 11-38

Using Java to Read a Database 11-38

Using ODBC to Access a Table 11-40

Using Perl to Access a Database 11-40

Using JDBC API Wrappers 11-41

DBClient 11-41

DBResult 11-42

Class DBUtil 11-43

DBConnection 11-44

Using CWCS Perl APIs 11-46

Programming Tips for Perl APIs 11-46

Perl API Summaries 11-46

addManifestFiles 11-47

check_create 11-48

checkDb 11-48
9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
deleteDbVersionData 11-48

deleteManifestFiles 11-49

getDbVersionData 11-49

getManifestFiles 11-50

setDbVersionData 11-51

StartDb 11-51

StopDb 11-51

unloadDbVersionData 11-52

Using the Database Utilities 11-52

configureDb.pl 11-53

dbinit 11-54

dbMonitor 11-55

DBPing 11-56

dbpasswd.pl 11-57

dbreader.pl 11-59

dbRestoreOrig 11-59

dbvalid 11-60

runIsql 11-60

C H A P T E R 12 Using Backup and Restore 12-1

Using CWCS Backup 12-1

CWCS Backup 12-1

How CWCS Backups are Stored 12-2

Running CWCS Backups 12-3

Offline Backup 12-4

Using CWCS Restore 12-4

CWCS Restore: Changes for CWCS 3.0 12-4

Understanding the CWCS Restore Framework 12-5

Running CWCS Restores 12-6

Guidelines for Writing CWCS Restore Application Adaptors 12-6

Sample CWCS Restore Application Adaptor 12-8

CWCS Backup and Restore API Command Reference 12-9

backup.pl 12-10

restorebackup.pl 12-11

copyFileToNMSROOT 12-12

copyFolderToNMSROOT 12-12

getCMFVersion 12-13

getCMFPatchVersion 12-13

getNMSROOT 12-14
10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
getArchiveNMSROOT 12-14

getFolderSeperator 12-14

getLogFileName 12-15

getTempFolder 12-15

isWindows 12-15

redirectToScreen 12-16

redirectToLog 12-17

restoreDatabase 12-17

StandardDbRebuild 12-18

Restoring a Corrupt Database 12-18

Restoring a Corrupt Database from a Previous Backup 12-19

Recovering Part of a Corrupt Database 12-19

Recovering Part of a Corrupt Database On Windows Platforms 12-19

Recovering Part of a Corrupt Database On Solaris Platforms 12-20

Abandoning a Corrupt Database 12-21

C H A P T E R 13 Using the Core Client Registry 13-23

Understanding CCR 13-23

About the CCR Components 13-24

CCR Local System Data (LSD) Component 13-24

CCRProcess Component 13-26

CCRInterface Component 13-26

CCREntry Component 13-26

CCRResponse Component 13-26

About CCR System Flow 13-27

Adding an LSD Entry (Installation) 13-27

Removing an LSD Entry (Uninstall) 13-27

Modifying an LSD Entry (Patching/Upgrading) 13-27

Retrieving an LSD Entry 13-28

About CCR Data Structures 13-28

Local System Data (LSD) Data Structure 13-28

CCREntry Data Structure 13-31

CCRResponse Data Structure 13-31

Using the CCR C++ API 13-31

CCRInterface Functions 13-31

CCREntry Functions 13-36

CCRResponse Functions 13-43

Using the CCR API: Example 13-46

Using the CCRAccess Client 13-47
11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Scripting CCRAccess 13-49

Using the CCRAccess DLL 13-50

Using the CCR Java Interface 13-51

Encrypting and Decrypting CCREntry Values 13-52

Encrypting Entry Names 13-52

Decrypting Entry Names 13-53

Encrypting Entry Data 13-54

Decrypting Entry Data 13-55

Encrypting Entry Locations 13-55

Decrypting Entry Locations 13-56

Encrypting Custom Entries 13-57

Decrypting Custom Entries 13-58

C H A P T E R 14 Using the Device Credentials Repository 14-1

Understanding DCR 14-2

About DCR Features and Benefits 14-2

How DCR Works 14-3

About the DCR Modes 14-4

About the DCR Components 14-5

How DCR Masters and Slaves Interact 14-6

How DCR Adds Devices 14-7

How DCR Modifies Devices 14-7

How DCR Deletes Devices 14-8

How DCR Secures Device and Credentials Data 14-8

About DCR Data Storage 14-9

About the DCR Device ID 14-9

How DCR Stores Attributes 14-10

How DCR Stores Credentials 14-10

How DCR Stores Proxy Device Data 14-11

How DCR Stores Enable-Mode Passwords 14-13

About User-Defined Fields 14-13

Integrating DCR with OGS 14-13

Integrating DCR with ACS 14-14

About DCR Events 14-15

About the DCR Domain ID and Transaction ID 14-16

About DCR Device Events 14-17

About DCR Process Events 14-19

About DCR Restore Events 14-21

About DCR Events During Backup and Restore 14-22
12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Using DCR 14-25

Getting Started With DCR 14-26

DCR Tasks to Perform During Application Startup 14-27

Using the DCR APIs 14-27

About the DCR APIs 14-28

Creating the DCRProxy Object 14-29

Creating the APIExtraInfo Object 14-30

Adding Devices to DCR 14-31

Updating a DCR Device 14-33

Adding and Updating Devices in Bulk 14-33

Retrieving DCR Device Objects 14-34

Retrieving DCR Devices in Bulk 14-35

Retrieving Data From a Device Object 14-36

Comparing Two Device Objects 14-37

Registering Third-Party Applications with DCR 14-37

Guidelines for DCR Application Development 14-38

DCR Error Codes and Interpretations 14-38

Responding to DCR Events 14-40

Using DCR Domain and Transaction IDs 14-44

Using the DCR Command-Line Interface 14-46

Enhancing DCR Performance 14-49

C H A P T E R 15 Using the Core Logging API 15-1

About the Core Logging API Structure 15-1

Using the Core Logging API 15-2

Initializing the Core Logging API 15-2

Creating Debug Messages 15-2

Creating Information Messages 15-2

Creating Warning Messages 15-3

Creating Error Messages 15-3

Creating Fatal Messages 15-3

Creating Auditing Messages 15-3

Altering Priority for Category 15-3

Adding Logging Location to CCR 15-4

Adding Logging Category and Priority to CCR 15-4

About the Core Logging API Interface Design 15-4

About the Logger Interface 15-4

About the JavaLogger Interface 15-6

About the Auditlog Interface 15-8
13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
C H A P T E R 16 Adding Online Help 16-1

Overview of Online Help 16-2

How Help Is Displayed 16-2

Understanding the Help Engine 16-4

Displaying Help Topics 16-4

Linking Context-Sensitive Help Buttons 16-4

Creating the Main Help Contents and Index 16-5

Handling Error Conditions 16-5

Summarizing the Display Process 16-5

Understanding the Search Engine 16-6

Displaying the Search Dialog Box 16-7

Searching the Files and Displaying the Search Results 16-7

Summarizing the Search Process 16-8

Understanding Mapping Files 16-9

Mapping File Conventions and Requirements 16-10

Mapping File Line Types 16-10

Sample Mapping File 16-12

Implementing Help: Engineering Tasks 16-13

Installing the Help Packages 16-13

Adding a Call to the Help Engine 16-14

Calling Help From a Java Application 16-14

Calling Help From an HTML-Based Application 16-15

Updating the Mapping File 16-15

Packaging the Help Files 16-16

Implementing Help: Writing Tasks 16-18

Selecting an Authoring Tool 16-19

Setting Up Your Authoring Environment 16-19

Setting Up the Native HTML Authoring Environment 16-19

Setting Up the XML Authoring Environment 16-20

Setting Up the FrameMaker/WebWorks Authoring Environment 16-21

Creating the Help Topic Files 16-22

Maintaining Your Help System’s Mapping File 16-23

Creating the Mapping File 16-23

Defining the Main Help Page Contents and Index 16-24

Adding Search Support 16-27

Maintaining the Search Index File 16-28

Delivering Your Help System 16-28

Adding Drop-In Help Systems 16-29
14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
C H A P T E R 17 Using the Daemon Manager 17-1

Understanding the Daemon Manager 17-1

Using the Daemon Manager 17-2

Starting and Stopping the Daemon Manager 17-2

Using the Daemon Manager Command Line Interface 17-3

Using the Daemon Manager Application Programming Interface 17-3

Using the Daemon Manager C++ Interface 17-4

Using the Daemon Manager Java Interface 17-4

Using a Ready File to Ensure Process Dependencies are Met 17-4

Writing Messages to Log Files 17-5

Daemon Manager Command Reference 17-5

Daemon Manager Command Line Utilities 17-6

pdexec 17-6

pdrapp 17-6

pdreg 17-7

pdshow 17-9

pdterm 17-10

Daemon Manager ANSI C and C++ Commands 17-11

dMgtClose 17-11

dMgtCreateReadyFile 17-12

dMgtErr 17-12

dMgtGetMsg 17-13

dMgtInit 17-13

dMgtIsShutdown 17-14

dMgtProcessMsg 17-14

dMgtSendStatus 17-14

GetConFile 17-15

GetDescriptor 17-15

GetDmgtHostAndPort 17-16

ValidatePgmPath 17-16

Daemon Manager Java Methods 17-17

CreateReadyFile 17-18

GetCmdType 17-18

GetDescriptor 17-18

GetErr 17-19

GetMsg 17-19

GetServerInfo 17-19

GetStatusMsg 17-20

IsShutdownRequest 17-20
15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
ProcessMsg 17-20

ReqStatus 17-21

SendBusyMsg 17-21

SendErrMsg 17-21

SendOkMsg 17-22

StartProcess 17-22

StopProcess 17-22

Status 17-23

C H A P T E R 18 Using the Job and Resource Manager 18-1

Understanding JRM Services 18-2

Managing JRM Services 18-3

Scheduling Jobs 18-3

Locking Resources 18-4

Locking Resources from Another Application 18-4

Locking Parts of a Device 18-5

Understanding the JRM Architecture 18-5

An Overview of the JRM Architecture 18-5

Understanding the JRM Server 18-7

About Jobs and Resources 18-7

About JRM Server Classes 18-8

About the IDL Interface 18-8

About the Helper API 18-9

About JRM Events 18-9

Understanding the Job Browser 18-10

How JRM Relates to Other CWCS Components 18-11

Enabling JRM 18-12

Using JRM from a Java Application 18-12

Establishing a Connection 18-12

Creating a Job 18-14

Setting the Job Status 18-15

Getting Job Descriptions 18-16

Handling an Unapproved Job 18-16

Enabling a Disabled Job 18-17

Handling a Crashed Job 18-18

Locking and Unlocking a Device 18-19

Handling an Unavailable Resource 18-19

Accessing a Locked Device 18-20

Using JRM from a Web Browser 18-21
16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Customizing the Job Browser Button Behaviors 18-22

Using JRM from the Command Line 18-24

Job Command Line Interface 18-25

Lock Command Line Interface 18-25

JRM Command Reference 18-26

About the Job and Resource Lock Attributes 18-26

About Displayed Job Status Values 18-28

About the Job Manager Methods 18-29

job_cancel 18-31

job_cancel_instance 18-31

job_cancel_event 18-32

job_cancel_instance_event 18-32

job_create 18-33

job_create_hist 18-33

job_delete 18-34

job_delete_instance 18-34

job_enum 18-35

job_enum_hist 18-35

job_get_info 18-36

job_get_info_hist 18-36

job_get_result 18-37

job_get_schedule 18-37

job_get_schedule_string 18-38

job_run 18-38

job_set_approved 18-39

job_set_info 18-39

job_set_info_hist 18-40

job_set_progress_string 18-40

job_set_reference 18-40

job_set_result 18-41

job_set_resume 18-41

job_set_schedule 18-42

next 18-42

next_n 18-43

release 18-43

About the Lock Manager Methods 18-44

enum_job_locks 18-44

find_lock 18-45

get_lock 18-45

lock 18-46
17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
lock_n 18-46

next 18-47

next_n 18-47

release 18-48

unlock 18-48

unlock_job 18-49

unlock_n 18-49

About the Helper API Methods 18-49

get_job_id 18-51

get_job_instance_id 18-51

get_job_info 18-52

get_job_info_hist 18-52

get_lock_info 18-52

getOrbConnectionProperties 18-53

getScheduleString 18-53

getStateStrings 18-53

is_server_running 18-54

lock 18-54

lock_n 18-55

set_completion_state 18-55

set_progress 18-55

unlock 18-56

unlock_all 18-56

About the JRM Java Constants 18-56

Parsing ESS Messages 18-58

Using the Job Command-Line Commands 18-59

approve 18-59

cancel 18-60

create 18-60

delay 18-60

delete 18-61

getnextschedule 18-61

reject 18-61

resume 18-61

run 18-62

schedule 18-62

suspend 18-62

C H A P T E R 19 Using Event Services Software 19-1

Understanding ESS Subsystems 19-1
18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
How Does ESS Work? 19-2

How Is ESS Organized? 19-2

Using Tibco’s Rendezvous 19-2

About Subject Names and Event Formats 19-3

How Subject Names are Structured 19-3

Choosing Subject Names and Namespaces 19-3

Subscribing with Wildcards 19-5

About ESS Event Formats 19-5

About Reserved Subject Names 19-5

Support for Map Messages 19-6

Using the Lightweight Messaging Service 19-8

Understanding LWMS 19-9

About the LWMS Components 19-9

How LWMS Works 19-10

About LWMS Message Queues 19-12

About JMS API Support 19-12

About LWMS Server Logging 19-12

About LWMS Usage Assumptions 19-12

About Tibco-LWMS Gateway Support 19-13

Configuring LWMS 19-13

Configuring Client Properties 19-13

Configuring Server Properties 19-14

Using the LWMS API 19-15

Creating a Mailbox with LWMS 19-15

Posting a Message to a Mailbox with LWMS 19-16

Polling Mailboxes for New Messages with LWMS 19-16

Removing a Message Listener with LWMS 19-16

Filtering Messages with LWMS 19-16

Using the JMS API 19-18

Creating a Mailbox with JMS APIs 19-18

Posting a Message to a Mailbox with JMS 19-18

Polling Mailboxes for New Messages with JMS 19-18

Removing a Message Listener with JMS 19-18

Using JMS Message Selectors 19-19

LWMS Command Reference 19-19

LWMS Native API Messaging Methods 19-19

JMS to LWMS Mappings 19-21
19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
C H A P T E R 20 Using the Event Distribution System 20-1

About the EDS Components 20-1

About the EDS Event Server 20-2

About the EDS Event Message 20-2

About the EDS Atom Service 20-2

About the EDS Manager 20-2

About the EDS Class Loader 20-3

About the EDS New Event Message Fields 20-3

About the EDS Event Logger 20-3

About the EDS Event Logger Display 20-3

About the EDS Named Event Filter Service 20-3

About the EDS Event to Trap Converter 20-3

About the EDS Trap to Event Converter 20-3

Using the EDS Programmatic Interface 20-4

About EDS Events 20-4

Formatting EDS Events 20-5

Defining and Registering EDS Event Atoms 20-5

Using the EDS Atom Definition File 20-6

Using the Atom Service Executables 20-8

Using the EDS Java Interface Classes 20-8

Registering EDS Application Events 20-10

Using the EDS Trap to Event Service 20-10

Using the EDS Trap Receiver Framework 20-10

Using the Trap Receptor 20-11

Using the Trap Receiver Configuration File 20-12

Using TrapInclude/TrapExclude Statements 20-12

Creating Trap Actions 20-13

Matching Trap Records 20-14

Using the TrapToEDS Converter 20-14

How the TrapToEDS Conversion Table is Used 20-14

Using the TrapLaunch Action 20-15

Using the TrapEcho Action 20-15

Setting Trap Receiver Properties 20-16

Using the Generic Consumer Framework 20-16

Using the GCF Configuration File 20-16

Using the GCF Admin Display 20-17

Creating Generic Consumers 20-17

Using the Event to Trap Converter with Generic Consumers 20-17

Using EDS to Publish Events 20-18
20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
About the EDS-Published Event Types 20-19

About the EDS-Published Severity Codes 20-19

Registering Your Application with EDS 20-20

C H A P T E R 21 Using the Installation Framework 21-1

About the Installation Framework 21-1

What’s New in This Release 21-2

Understanding the CWCS Installation Framework 21-2

Understanding Installation Team Responsibilities 21-3

Understanding Developer Responsibilities 21-3

Getting Started with the Installation Framework 21-4

Third-Party Tools for Installation Framework 21-4

Understanding Install Component and Image Structures 21-4

Building an Installable Image 21-5

Selecting Package Names 21-6

Specifying Package Properties 21-6

Understanding the Package Properties File 21-7

Understanding Suite Properties 21-10

Creating the Table of Contents 21-11

How the Installer Processes Properties 21-18

Specifying Properties 21-19

Preparing Installation Protopackages 21-19

Including Files in the Protopackage 21-20

Using the Installation Framework 21-21

Understanding the Common Services Upgrade 21-21

Understanding and Implementing the casuser 21-21

Providing Licensing Information During Installation 21-22

Installing Database Upgrades 21-22

Upgrade Installation Paths and Strategies 21-22

About the CWCS Upgrade Mechanism 21-23

Adding Unauthenticated URLs 21-26

Overriding the Dependency Handler 21-27

Handling Patches 21-27

Patch Policy 21-27

Creating a Patch 21-27

Example: Making a Patch CD 21-28

Application Registration with ACS during Installation 21-31

Windows Installation Reference 21-32

Setting File Permissions During Installation on Windows 21-32
21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Writing Windows Scripts 21-33

Using the Windows Installation Hooks 21-33

Using the pkg.rul Installation File 21-34

Using Installer Global Variables 21-35

Preloading the Global List, lAnswerFile 21-35

Reducing Windows Installation Time 21-36

Using the Windows Installation APIs 21-37

Accessing and Setting Package Properties to Perform Version Comparisons 21-37

Controlling Responses to Terminated Installations 21-45

Processing Name=Value Pairs 21-46

Sending Informational Messages to a Log File 21-48

Informing the Installer That a Component Requires More Space 21-50

Registering and Unregistering CWCS Daemons 21-51

Running Commands in a Shell 21-52

Locating the Root Directory Path Name 21-54

Registering and Controlling Windows Services 21-55

Using Generic Utilities 21-58

Managing Passwords 21-62

Configuring Tomcat 21-67

Controlling Reboots 21-69

Using Windows Build Tools 21-70

Step 1: Install Third-Party Tools for Windows 21-70

Step 2: Install the Framework on Windows Platforms 21-70

Step 3: Prepare the Make Image on Windows Platforms 21-71

Debugging on Windows Platforms 21-72

Example: Using Windows Build Tools 21-72

Customizing the Installation Workflow for Windows 21-76

About the Installer Workflow 21-77

Getting Started with Windows Installer Tools 21-77

Creating the Installation Project File 21-77

Creating Install Actions 21-78

Creating Install Panels 21-79

Specifying Conditions For Install Actions and Panels 21-82

Creating the Install Staging Area 21-82

Example: Adding Message Boxes to an Installation 21-83

Example: Creating Custom Password Dialogs 21-84

Example: Adding User Data to Show Details 21-85

Solaris Installation Reference 21-86

Setting Ownership for Package Files on Solaris 21-86

Setting Ownership from package_name.owner File 21-87
22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Understanding the package_name.owner File 21-88

Setting Ownership During Build/Installation 21-88

Setting Ownership Assignment Details 21-88

Creating the Answer File 21-89

Writing Solaris Scripts 21-90

Using the Solaris Installation Hooks 21-90

Where to Find Solaris Installation Examples 21-91

Using the Solaris Installation APIs 21-91

Using the Solaris Input/Output APIs 21-92

Using the Solaris Package APIs 21-97

Using the Solaris System APIs 21-100

Using the Solaris Installable Unit APIs 21-102

Using Solaris Build Tools 21-103

Step 1: Install Third-Party Tools On Solaris 21-103

Step 2: Install the Framework On Solaris Platforms 21-103

Step 3: Prepare the Make Image on Solaris 21-103

Customizing the Installation Workflow on Solaris 21-104

Debugging on Solaris 21-105

Verifying Packages on Solaris 21-105

Solaris Getting Started Example 21-106

C H A P T E R 22 Using the Java Plug-in 22-1

About the Java Plug-in Requirements 22-1

Using the Java Plug-in API 22-2

Accessing the JPI Configuration from CCR 22-2

Using Tags Java Plug-in 22-3

Using Client Local Resources 22-3

JPI Technology References 22-4

C H A P T E R 23 Using the Diagnostic and Support Utilities 23-1

Using Collect Server Info 23-1

What Data Does Collect Server Info Gather? 23-1

Customizing Collect Server Info 23-2

Running CollectServerInfo 23-2

Using the MDC Support Utility 23-3

About the MDC Support Utility Requirements 23-3

What Data Does the MDC Utility Collect? 23-3

Registering Alternative MDC Support Utilities 23-4

Running MDC Support 23-5
23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Using SNMP Set and Walk 23-6

About the SNMP Set and Walk Requirements 23-6

Running SNMP Set and Walk 23-6

Updating the MIBs for SNMP Walk 23-8

Using Packet Capture 23-8

About the Packet Capture Utility Requirements 23-8

Running Packet Capture 23-9

Using Logrot 23-10

Configuring Logrot 23-10

Running Logrot 23-11

Using Logrot Command Line Switches 23-12

Troubleshooting Logrot 23-12

Verifying Files and Time Cycles 23-12

Verifying Scheduled Tasks 23-13

Viewing the Scheduled Jobs Log File 23-13

Verifying Logrot Status 23-13

Known Problems with Logrot 23-13

C H A P T E R 24 Using SNMP Services 24-1

Why SNMPv3? 24-1

How SNMP Support Works 24-2

Using CWCS SNMP Services 24-3

About the SNMP Classes in the Main Library 24-4

About the SNMP Classes in the Futureapi 24-5

C H A P T E R 25 Using NT Services 25-1

Understanding CWCS NT Services 25-1

About the NT TFTP Service 25-2

About the NT Telnet Service 25-2

About the NT Service APIs 25-3

About the NT RCP Service 25-3

About the CRMLogger Service 25-5

Using CWCS NT Services 25-6

Registering and Controlling NT Services 25-6

Writing Messages to Log Files 25-10

C H A P T E R 26 Using Device Center 26-1

Understanding Device Center 26-1
24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
What You Can Do With Device Center 26-2

About Device Center Launch Points 26-2

What’s Inside Device Center 26-2

About Device Center Dependencies 26-3

About the Device Center Runtime Structure 26-4

About the Device Center User Experience 26-4

Using Device Center With Your Application 26-5

Launching Device Center 26-5

Registering Your Application With Device Center 26-6

About the Device Center MST 26-7

Sample Device Center MST 26-10

MST XML-Schema 26-11

Creating and Registering the MST With CMIC 26-13

About Device Center Integration Tags 26-14

About UII Rendering Module 26-14

Providing Summary Information 26-15

Understanding PIDM 26-17

Bypassing PIDM Checks 26-17

C H A P T E R 27 Using Product Instance Device Mapping 27-1

Using the PIDM APIs 27-1

Creating the ProductToDeviceMapProxy Object 27-2

Mapping a Device or Marking a Device(s) as Managed 27-2

Unmapping a Device or Marking a Device(s) as Not Managed 27-2

Retrieving PIDM Information 27-2

Using the PIDM North-bound APIs 27-3

PIDM North-bound APIs 27-3

PIDM NBAPIs and Associated Tasks 27-3

Creating the APIExtraInfo Object 27-4

Creating the ProductToDeviceMapNBProxy Object 27-4

Mapping a Device or Marking a Device(s) as Managed 27-4

Unmapping a Device or Marking a Device(s) as Not Managed 27-5

Retrieving PIDM Information 27-5

C H A P T E R 28 Integrating Applications With Device Selector 28-1

UII Integration 28-2

Integration with Search feature 28-2

Configuring Property files 28-3

Integration with Advanced Search Feature 28-3
25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Integration with Tree Generator 28-5

Tree Generator Changes for Device Selector Nodes 28-5

Tree Generator Changes for Search Implementations 28-5

Tree Generator Changes for Group Customization and Group Ordering 28-5

About CWCS Per-Product Services

C H A P T E R 29 Using Per-Product Services 29-1

Understanding Per-Product Services 29-1

About the Per-Product Services Components 29-3

About the Object Grouping Service (OGS) Components 29-4

About the Common Services Transport Mechanism (CSTM) Components 29-4

About the Package Support Updater (PSU) Components 29-5

About the Common Incremental Device Support (CIDS) Component 29-5

About CWCS Licensing 29-6

About the User Interface Infrastructure 29-7

C H A P T E R 30 Using Object Grouping Services 30-1

Understanding OGS 30-2

About the OGS Components 30-2

Basic OGS Concepts 30-2

About OGS Groups 30-3

About OGS Group Types 30-4

About OGS Container Groups 30-5

About OGS Group Hierarchy 30-5

How Rules Are Constructed 30-6

Choosing to Implement OGS 30-6

Implementing OGS Servers 30-7

Getting Started with OGS Server 30-7

How OGS Server Works 30-8

Using the OGS Server APIs 30-8

Customizing OGS Server Interfaces 30-11

Creating a Custom OGS Event Processor 30-15

Handling OGS Exceptions 30-16

Creating OGS ASAs 30-17

Understanding ASA Infrastructure Modules 30-19

About the Rule Validator 30-20

About the Generic Schema 30-20

About the Rule Evaluator 30-21
26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
About the Mapping Schema 30-21

About the Rule Converter 30-21

About Node Rule Expressions 30-21

About Composite Rule Expressions 30-22

About the ASA Change Alerter 30-22

Customizing ASA Infrastructure Modules 30-22

Customizing the Rule Validator 30-23

Customizing the Generic Schema 30-23

Customizing the Rule Evaluator 30-26

Customizing the Mapping Schema 30-27

Customizing the Rule Convertor and Rule Expressions 30-36

Customizing the ASA Change Alerter 30-36

Running a Customized ASA 30-36

Registering the ASA with OGS 30-36

Creating the ASA Configuration File 30-38

Example: Using the Generic SQL ASA 30-40

Creating an OGS GUI 30-40

Using OGS Secure Views 30-43

How Secure Views Work 30-43

Implementing Secure Views 30-45

Installing Secure Views 30-45

Using OGS SecurityContext 30-45

Using Secure Views With DCR IDs 30-46

Using Secure Views with Object Selector 30-46

Using Secure Views With the OGS Administrative GUI 30-47

Customizing Your Secure Views Implementation 30-47

Specifying a Non-Default Implementation 30-48

Using Secure Views Without DCR IDs 30-48

Using OGS Common and Shared Groups 30-49

Configuring OGSServer.properties 30-49

Configuring SharedGroups.properties 30-49

Implementing the SharedGroupObjectMapperIf Interface 30-50

OGS Utility Class for Common and Shared Groups 30-50

Using OGS 1.3 Client Side Enhancements 30-51

About the Enhanced OGS 1.3 Classes and Data Structures 30-51

Controlling the Display of Wizard Steps 30-53

Integrating OGS 1.3 With Your Application 30-53

Using OGS 1.4 Enhancements 30-58

Integrating OGS 1.4 With Your Application 30-59
27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Integrating Configurable Display Name for Class Names Feature with Applications 30-67

C H A P T E R 31 Using the Common Services Transport Mechanism 31-1

Understanding CSTM 31-1

Installing CSTM 31-2

Installing Basic CSTM 31-2

Installing CSTM with the Tomcat Servlet Engine 31-3

Controlling CSTM Logging 31-3

Setting Up CSTM Logging 31-4

Setting the CSTM Logging Levels 31-4

Changing the CSTM Logging Destination 31-4

Starting a Log4j Server 31-5

Viewing the CSTM Log File 31-5

Publishing Objects 31-6

Publishing Objects Statically 31-6

Publishing Objects Dynamically 31-7

Handling Remote Objects 31-7

Registering Remote Objects Statically 31-7

Registering Remote Objects Dynamically 31-8

Publishing Remote Objects 31-8

Publishing Objects Securely 31-8

Unpublishing Objects 31-9

Accessing Published Objects 31-10

Using CTMClient 31-10

Using CTMClientProxy 31-11

Using CTMCall 31-13

Changing CTM Client Properties 31-14

Using CTMConstants 31-15

Using the CTM Configuration File 31-15

Handling CTM Exceptions 31-17

Handling Special Requirements 31-19

Implementing Secure CSTM Clients 31-19

Running Registry Server as a Separate Process 31-21

Registering the CSTM Port 31-21

Using SOAP Encoding With CSTM 31-21

Using the IMarshal Interface 31-22

Using marshalMethodAndArgs 31-23

Using unmarshalMethodAndArgs 31-23

Using unmarshalReturnValue 31-24
28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Using marshalReturnValue 31-24

Using IMarshal’s Register Method 31-24

Performing CSTM File Transfers 31-25

CTMFileTransfer Client Side Functionality 31-26

CTMFileTransfer Server Side Functionality 31-27

About CTMFileTransferException 31-27

Retrieving HTTP Errors 31-28

Using the CTMTest Tools and Samples 31-28

Creating a Custom Test File 31-29

Publishing a Test Object 31-29

Unpublishing a Test Object 31-29

Accessing a Test Method Using CTMClient 31-30

Accessing a Test Method Using CTMClientProxy 31-30

Accessing a Test Method Using CTMCall 31-31

Testing CSTM Communications 31-31

Using the Sample TestClass 31-32

Using the CSTM Samples 31-32

Testing Parameter Passing 31-33

Testing for Timeout Errors 31-33

Testing Multiple Clients 31-34

Guidelines for Using CSTM 31-34

C H A P T E R 32 Using Package Support Updater 32-1

Understanding PSU 32-2

Using PSU with Your Application 32-2

Integrating Applications 32-2

Adding New Tags in INFO Files 32-3

Registering with PSU 32-3

Implementing Package Adapter and Package Descriptor Interfaces 32-4

Using the PSU Command Line Tools 32-4

Backing Up the Server 32-5

Releasing Package Updates 32-6

Uninstalling Device Support Packages 32-6

Working with Software Center 32-6

Performing Software Updates 32-7

Performing Device Updates 32-8

Scheduling Device Downloads 32-9

Viewing Activity Logs 32-9

Scheduled Job Details 32-10
29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
Event Logs 32-10

C H A P T E R 33 Using Common Incremental Device Support 33-1

Understanding CIDS 33-3

SDI Component 33-3

Abstraction Groups 33-3

Runtime Architecture 33-4

C H A P T E R 34 Using the Licensing APIs 34-1

Understanding CWCS Licensing 34-1

Using Licensing UI 34-2

Understanding CWCS Licensing APIs 34-4

CWCS Licensing Classes 34-4

LicensedFeature 34-4

LicenseManager 34-5

LicensePAK 34-5

Error Codes Generated by APIs 34-5

Integrating CWCS Licensing APIs 34-6

JavaDoc 34-6

License Installation 34-6

PAK and PIN 34-7

Handling Multiple Licenses 34-7

Interpreting PIN 34-8

PIN Format 34-9

Understanding License Framework 34-10

Flowcharts 34-10

Using Licensing Framework With Applications 34-12

Install 34-12

CW Home Page 34-12

Runtime Calls 34-12

License SDK 34-13

Data Architecture 34-13

License File Format 34-13

License File Format for Common Services 3.0 34-15

Alternate License File Format 34-16

Proof-of-Purchase (POP) 34-17

License CLI 34-19
30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
G L O S S A R Y

I N D E X
31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Contents
32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL
Preface

This manual describes how to integrate your application with CiscoWorks Common Services (CWCS).
It provides an overview of CWCS, instruction in how to use individual CWCS components, API and CLI
summaries, and references to outside sources for more detailed information.

Audience
This guide is written for Cisco software engineers who want to integrate their web-based network
management applications or tools with CiscoWorks Common Services. These engineers should have a
working knowledge of Java, PERL, or another web-based programming language, and HTML. They
should also have some experience developing servlets and applets.

Conventions
This document uses the following conventions:

This guide also uses the following conventions:

 • If items such as buttons or menu options are grayed out on screens, it means that you do not have
permission to use these items.

 • Path names use the UNIX conventions. For Windows platforms, the path separator is '\' instead of '/'
and the elements of the class path are separated with ';' instead of ':'.

Item Convention

Commands and keywords boldface font

Variables for which you supply values italic font

Displayed session and system information screen font

Information you enter boldface screen font

Variables you enter italic screen font

Menu items and button names boldface font

Selecting a menu item Option > Network Preferences
33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Preface
Related Documentation
Command syntax notation conventions include the following:

Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the
publication.

Caution Means reader be careful. In this situation, you might do something that could result in equipment
damage or loss of data.

Related Documentation

Note Although every effort has been made to validate the accuracy of the information in the printed and
electronic documentation, you should also review the CWCS documentation on Cisco.com for any
updates.

The guides shown in Table 1 are available from the CWCS 3.0 SDK Portal.

Notation Description

Braces ({}) Indicate a required choice.

Brackets, square ([]) Indicate an optional element.

Vertical bars (|) Indicate separate, mutually exclusive elements.

Table 1 Documentation Available in the CWCS SDK

Book Name Description

SDK Documentation

SDK Developer’s Guide for CiscoWorks Common Services 3.0.5. Explanation of Common Services and how to integrate
with it. This document.

End-User Documentation

User Guide for CiscoWorks Common Services 3.0.5 Describes basic tasks provided by CWCS.

Installation and Setup Guide for Common Services 3.0 (Includes
CiscoView) on Windows

Describes the CWCS installation procedure for
Windows.

Installation and Setup Guide for CiscoWorks Common Services 3.0
(Includes CiscoView) on Solaris

Describes the CWCS installation procedure for Solaris
34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Preface
Document Organization
Document Organization
The SDK Developer’s Guide for CiscoWorks Common Services 3.0.5 is organized as follows:

Part 1, “About CWCS”

 • Chapter 1, “Introducing CWCS” provides an overview of CWCS and its SDK.

 • Chapter 2, “FAQs and Programming Hints” provides answers to frequently asked questions (FAQs)
about and tips for programmers using CWCS.

 • Chapter 3, “Understanding the CWCS Directory Structure” provides a detailed description of the
CWCS directory structure.

 • Chapter 4, “Understanding the CWCS Execution Environment” describes the CWCS execution
environment and provides guidelines for creating applications to run in this environment.

 • Chapter 5, “Getting Started with CWCS” provide basic information on how to integrate your
applications with CWCS.

Part 2, “Using Shared Services”

 • Chapter 6, “Using Shared Services” explains the concept of CWCS Shared Services and provides
basic information about the Shared Services components.

 • Chapter 7, “Using the CiscoWorks Home Page” describes how to integrate your application with the
CiscoWorks Home Page.

 • Chapter 8, “Using Web Servers and Servlet Engines” describe how to use the CWCS Web Server
and servlet engine with your CWCS-based applications.

 • Chapter 9, “Integrating Applications with CMIC” explains how to use CMIC to integrate your
application services and functions with services provided by other applications and components on
the network.

 • Chapter 10, “Using the Security System” explains how to integrate with CWCS authorization and
security features.

 • Chapter 11, “Using the Database APIs” explains how to create a custom database for your
application and use the CWCS database APIs to install and configure it.

 • Chapter 12, “Using Backup and Restore” explains how to use the CWCS database backup and
restore components.

 • Chapter 13, “Using the Core Client Registry” describes how to use CCR to manage installation,
upgrade, patching and uninstall of the MDC and Core modules.

 • Chapter 14, “Using the Device Credentials Repository” explains how to implement andshare
common repositories of device information.

 • Chapter 15, “Using the Core Logging API” provides guidelines on now to save and share MDC/Core
log and audit messages in shared files from both Java and C++.

 • Chapter 16, “Adding Online Help” describes the CWCS help engine and how to add help for your
application to the help system suite.

 • Chapter 17, “Using the Daemon Manager” explains how to use the Daemon Manager start, monitor
and restart processes, including long-running, dependent and transient processes.

 • Chapter 18, “Using the Job and Resource Manager” shows how to use JRM to schedule jobs and
track locked resources by name.

 • Chapter 19, “Using Event Services Software” explains how to use the ESS asynchronous messaging
service to enable distributed, loosely coupled interprocess communications.
35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Preface
Document Organization
 • Chapter 20, “Using the Event Distribution System” explains the deprecated EDS messaging service.

 • Chapter 21, “Using the Installation Framework” provides complete information on using CWCS’s
comprehensive set of application installation, uninstallation, and patching tools.

 • Chapter 22, “Using the Java Plug-in” explains how to speed up execution by using Sun’s Java
Plug-in with your application.

 • Chapter 23, “Using the Diagnostic and Support Utilities” describes how to use the CWCS Collect
Server Info, MDC Support, SNMP Set and Walk, Packet Capture and Logrot utilities.

 • Chapter 24, “Using SNMP Services” describes the SNMPv3 and SNMPv1/v2c support libraries
provided with CWCS.

 • Chapter 25, “Using NT Services” describes how CWCS supports on Windows the communication
services commonly available on UNIX. These services include TFTP, RCP, TELNETand Syslog.

 • Chapter 26, “Using Device Center” describes how to use the Device Center interface to organize all
information, tasks and reports for the device at a single location.

 • Chapter 27, “Using Product Instance Device Mapping” describes how to use the Product Instance
Device Mapping APIs and Product Instance Device Mapping North Bound APIs.

 • Chapter 28, “Integrating Applications With Device Selector” describes how to integrate the
applications with the new and enhanced Device Selector.

Part 3, “Using Per-Product Services”

 • Chapter 29, “Using Per-Product Services” explains the concept of CWCS Per-Product Services and
provides basic information about the Per-Product components.

 • Chapter 30, “Using Object Grouping Services” explains how to use OGS to create, manage and
share groups of objects.

 • Chapter 31, “Using the Common Services Transport Mechanism” provides detailed information on
using CSTM to handle all kinds of programmatic communications, including inter-process,
intra-process, and remote procedure calls.

 • Chapter 32, “Using Package Support Updater”explains how to use PSU to download and install
device packages and software updates for your application.

 • Chapter 33, “Using Common Incremental Device Support” explains how to use the CIDS and PSU
mechanisms to update your application’s device support without re-installation.

 • Chapter 34, “Using the Licensing APIs” shows how to use the CWCS licensing framework to
implement a licensing model for your application, and to install, update, and retrieve license
information.
36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Preface
Obtaining Documentation
Obtaining Documentation
Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several
ways to obtain technical assistance and other technical resources. These sections explain how to obtain
technical information from Cisco Systems.

Cisco.com
You can access the most current Cisco documentation at this URL:

http://www.cisco.com/techsupport

You can access the Cisco website at this URL:

http://www.cisco.com

You can access international Cisco websites at this URL:

http://www.cisco.com/public/countries_languages.shtml

Product Documentation DVD
The Product Documentation DVD is a library of technical product documentation on a portable medium.
The DVD enables you to access installation, configuration, and command guides for Cisco hardware and
software products. With the DVD, you have access to the HTML documentation and some of the
PDF files found on the Cisco website at this URL:

http://www.cisco.com/univercd/home/home.htm

The Product Documentation DVD is created monthly and is released in the middle of the month. DVDs
are available singly or by subscription. Registered Cisco.com users can order a Product Documentation
DVD (product number DOC-DOCDVD= or DOC-DOCDVD=SUB) from Cisco Marketplace at the
Product Documentation Store at this URL:

http://www.cisco.com/go/marketplace/docstore

Ordering Documentation
You must be a registered Cisco.com user to access Cisco Marketplace. Registered users may order
Cisco documentation at the Product Documentation Store at this URL:

http://www.cisco.com/go/marketplace/docstore

If you do not have a user ID or password, you can register at this URL:

http://tools.cisco.com/RPF/register/register.do

Documentation Feedback
You can provide feedback about Cisco technical documentation on the Cisco Technical Support &
Documentation site area by entering your comments in the feedback form available in every online
document.
37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.cisco.com/techsupport
http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/univercd/home/home.htm
http://www.cisco.com/go/marketplace/docstore
http://www.cisco.com/go/marketplace/docstore
http://tools.cisco.com/RPF/register/register.do

CISCO CONF IDENT IAL

Preface
Cisco Product Security Overview
Cisco Product Security Overview
Cisco provides a free online Security Vulnerability Policy portal at this URL:

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html

From this site, you will find information about how to do the following:

 • Report security vulnerabilities in Cisco products

 • Obtain assistance with security incidents that involve Cisco products

 • Register to receive security information from Cisco

A current list of security advisories, security notices, and security responses for Cisco products is
available at this URL:

http://www.cisco.com/go/psirt

To see security advisories, security notices, and security responses as they are updated in real time, you
can subscribe to the Product Security Incident Response Team Really Simple Syndication (PSIRT RSS)
feed. Information about how to subscribe to the PSIRT RSS feed is found at this URL:

http://www.cisco.com/en/US/products/products_psirt_rss_feed.html

Reporting Security Problems in Cisco Products
Cisco is committed to delivering secure products. We test our products internally before we release them,
and we strive to correct all vulnerabilities quickly. If you think that you have identified a vulnerability
in a Cisco product, contact PSIRT:

 • For emergencies only — security-alert@cisco.com

An emergency is either a condition in which a system is under active attack or a condition for which
a severe and urgent security vulnerability should be reported. All other conditions are considered
nonemergencies.

 • For nonemergencies — psirt@cisco.com

In an emergency, you can also reach PSIRT by telephone:

 • 1 877 228-7302

 • 1 408 525-6532

Tip We encourage you to use Pretty Good Privacy (PGP) or a compatible product (for example, GnuPG) to
encrypt any sensitive information that you send to Cisco. PSIRT can work with information that has been
encrypted with PGP versions 2.x through 9.x.

Never use a revoked encryption key or an expired encryption key. The correct public key to use in your
correspondence with PSIRT is the one linked in the Contact Summary section of the Security
Vulnerability Policy page at this URL:

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html

The link on this page has the current PGP key ID in use.

If you do not have or use PGP, contact PSIRT to find other means of encrypting the data before sending
any sensitive material.
38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html
http://www.cisco.com/go/psirt
http://www.cisco.com/en/US/products/products_psirt_rss_feed.html
mailto:security-alert@cisco.com
mailto:psirt@cisco.com
http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html

CISCO CONF IDENT IAL

Preface
Product Alerts and Field Notices
Product Alerts and Field Notices
Modifications to or updates about Cisco products are announced in Cisco Product Alerts and Cisco Field
Notices. You can receive Cisco Product Alerts and Cisco Field Notices by using the Product Alert Tool
on Cisco.com. This tool enables you to create a profile and choose those products for which you want to
receive information.

To access the Product Alert Tool, you must be a registered Cisco.com user. (To register as a Cisco.com
user, go to this URL: http://tools.cisco.com/RPF/register/register.do) Registered users can access the
tool at this URL: http://tools.cisco.com/Support/PAT/do/ViewMyProfiles.do?local=en

Obtaining Technical Assistance
Cisco Technical Support provides 24-hour-a-day award-winning technical assistance. The
Cisco Technical Support & Documentation website on Cisco.com features extensive online support
resources. In addition, if you have a valid Cisco service contract, Cisco Technical Assistance Center
(TAC) engineers provide telephone support. If you do not have a valid Cisco service contract, contact
your reseller.

Cisco Technical Support & Documentation Website
The Cisco Technical Support & Documentation website provides online documents and tools for
troubleshooting and resolving technical issues with Cisco products and technologies. The website is
available 24 hours a day at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support & Documentation website requires a Cisco.com
user ID and password. If you have a valid service contract but do not have a user ID or password, you
can register at this URL:

http://tools.cisco.com/RPF/register/register.do

Note Use the Cisco Product Identification Tool to locate your product serial number before submitting a
request for service online or by phone. You can access this tool from the Cisco Technical Support &
Documentation website by clicking the Tools & Resources link, clicking the All Tools (A-Z) tab, and
then choosing Cisco Product Identification Tool from the alphabetical list. This tool offers three search
options: by product ID or model name; by tree view; or, for certain products, by copying and pasting
show command output. Search results show an illustration of your product with the serial number label
location highlighted. Locate the serial number label on your product and record the information before
placing a service call.

Tip Displaying and Searching on Cisco.com

If you suspect that the browser is not refreshing a web page, force the browser to update the web page
by holding down the Ctrl key while pressing F5.

To find technical information, narrow your search to look in technical documentation, not the entire
Cisco.com website. On the Cisco.com home page, click the Advanced Search link under the Search box
39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://tools.cisco.com/RPF/register/register.do
http://tools.cisco.com/Support/PAT/do/ViewMyProfiles.do?local=en
http://www.cisco.com/techsupport
http://tools.cisco.com/RPF/register/register.do

CISCO CONF IDENT IAL

Preface
Obtaining Technical Assistance
and then click the Technical Support & Documentation radio button.

To provide feedback about the Cisco.com website or a particular technical document, click Contacts &
Feedback at the top of any Cisco.com web page.

Submitting a Service Request
Using the online TAC Service Request Tool is the fastest way to open S3 and S4 service requests. (S3 and
S4 service requests are those in which your network is minimally impaired or for which you require
product information.) After you describe your situation, the TAC Service Request Tool provides
recommended solutions. If your issue is not resolved using the recommended resources, your service
request is assigned to a Cisco engineer. The TAC Service Request Tool is located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests, or if you do not have Internet access, contact the Cisco TAC by telephone.
(S1 or S2 service requests are those in which your production network is down or severely degraded.)
Cisco engineers are assigned immediately to S1 and S2 service requests to help keep your business
operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411
Australia: 1 800 805 227
EMEA: +32 2 704 55 55
USA: 1 800 553 2447

For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity
To ensure that all service requests are reported in a standard format, Cisco has established severity
definitions.

Severity 1 (S1)—An existing network is “down” or there is a critical impact to your business operations.
You and Cisco will commit all necessary resources around the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or significant aspects of your
business operations are negatively affected by inadequate performance of Cisco products. You and
Cisco will commit full-time resources during normal business hours to resolve the situation.

Severity 3 (S3)—Operational performance of the network is impaired while most business operations
remain functional. You and Cisco will commit resources during normal business hours to restore service
to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product capabilities, installation, or
configuration. There is little or no effect on your business operations.
40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.cisco.com/techsupport/servicerequest
http://www.cisco.com/techsupport/contacts

CISCO CONF IDENT IAL

Preface
Obtaining Additional Publications and Information
Obtaining Additional Publications and Information
Information about Cisco products, technologies, and network solutions is available from various online
and printed sources.

 • The Cisco Product Quick Reference Guide is a handy, compact reference tool that includes brief
product overviews, key features, sample part numbers, and abbreviated technical specifications for
many Cisco products that are sold through channel partners. It is updated twice a year and includes
the latest Cisco channel product offerings. To order and find out more about the Cisco Product Quick
Reference Guide, go to this URL:

http://www.cisco.com/go/guide

 • Cisco Marketplace provides a variety of Cisco books, reference guides, documentation, and logo
merchandise. Visit Cisco Marketplace, the company store, at this URL:

http://www.cisco.com/go/marketplace/

 • Cisco Press publishes a wide range of general networking, training, and certification titles. Both new
and experienced users will benefit from these publications. For current Cisco Press titles and other
information, go to Cisco Press at this URL:

http://www.ciscopress.com

 • Packet magazine is the magazine for Cisco networking professionals. Each quarter, Packet delivers
coverage of the latest industry trends, technology breakthroughs, and Cisco products and solutions,
as well as network deployment and troubleshooting tips, configuration examples, customer case
studies, certification and training information, and links to scores of in-depth online resources. You
can subscribe to Packet magazine at this URL:

http://www.cisco.com/packet

 • Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering
professionals involved in designing, developing, and operating public and private internets and
intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

 • Networking products offered by Cisco Systems, as well as customer support services, can be
obtained at this URL:

http://www.cisco.com/en/US/products/index.html

 • Networking Professionals Connection is an interactive website where networking professionals
share questions, suggestions, and information about networking products and technologies with
Cisco experts and other networking professionals. Join a discussion at this URL:

http://www.cisco.com/discuss/networking

 • “What’s New in Cisco Documentation” is an online publication that provides information about the
latest documentation releases for Cisco products. Updated monthly, this online publication is
organized by product category to direct you quickly to the documentation for your products. You
can view the latest release of “What’s New in Cisco Documentation” at this URL:

http://www.cisco.com/univercd/cc/td/doc/abtunicd/136957.htm

 • World-class networking training is available from Cisco. You can view current offerings at
this URL:

http://www.cisco.com/en/US/learning/index.html
41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.cisco.com/go/guide
http://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco.com/packet
http://www.cisco.com/ipj
http://www.cisco.com/en/US/products/index.html
http://www.cisco.com/discuss/networking
http://www.cisco.com/univercd/cc/td/doc/abtunicd/136957.htm
http://www.cisco.com/en/US/learning/index.html

CISCO CONF IDENT IAL

Preface
Obtaining Additional Publications and Information
42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL
P A R T 1

About CWCS

CISCO CONF IDENT IAL

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 1

Introducing CWCS

CiscoWorks Common Services (Common Services) represents a common set of management services
including a collection of subsystems, execution environments, engines, and shared code libraries, and
serves as a software platform to web-based network management applications.

All CiscoWorks products use and depend on Common Services. Common Services provides a foundation
for CiscoWorks applications to share a common model for data storage, login, user role definitions,
access privileges, security protocols, as well as navigation. It creates a standard user experience for all
management functions. It also provides a common framework for all basic system-level operations such
as installation, data management including backup-restore and import-export, event and message
handling, and job and process management.

The CWCS SDK is for developers who want to create CWCS-based applications or update existing
applications to take advantage of new CWCS features.

The following topics introduce the main concepts of CWCS:

 • CWCS Release Model

 • Benefits of Using CWCS

 • What’s New in CWCS

 • What’s New in This Guide

 • Understanding the CWCS Structure

 • Using CWCS Components

 • How CWCS is Distributed

 • Third-Party Tools

 • Where to Find the CWCS SDK

 • For Further Assistance

CWCS Release Model
Every CWCS release is provided in these forms:

1. CWCS-R Release: This is essentially a replacement for the Common Management Foundation
(CMF)-based CD One. This release is a physical CD containing the CWCS-R installable image, plus
the latest versions of CiscoView and the Integration Utility (IU, formerly known as NMIM) as
optional installs. Developers can modify the installation wrapper to provide options for installing
Common Services alone, or Common Services plus either CiscoView or the Integration Utility (or
both). This is the standard installable image used by most application teams within NMTG.
1-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
CWCS Release Model
2. CWCS-SRC: The CiscoWorks Common Services source toolkit. This is a downloadable file
containing source code and binaries for integration with applications’ installable packages. It
contains CWCS components designated as “open source”, which includes the User Interface
Infrastructure (UII), Object Grouping Services (OGS), and the Common Services Transport
Mechanism (CSTM). This release is provided for the use of NMTG application teams creating
customized “CD-One-like” Common Services CDs.

The CWCS- R release is developed, tested, packaged and managed under the direct control of the CWCS
team. Key stakeholders set the requirements for each release, and releases take place on a defined
schedule agreed upon among the CWCS team and stakeholders. All fixes, patches, updates and other
coding are the responsibility of the CWCS team.

The CWCS-SRC release is developed by individual application teams as well as by dedicated groups
within the CWCS team. After delivery, SRC components may be modified by application teams to suit
their needs, and must be installed with individual applications on a per-product basis.

While some CWCS components delivered in CWCS-R are also designated as SRC, the instances of SRC
components delivered with and installed as part of CWCS-R are for the exclusive use of Common
Services. Application teams may not overwrite the shared, common version of the component with a
version of their own. For example: The Object Grouping Service (OGS) is an SRC component delivered
as part of CWCS-R. Application teams who want to use OGS must create one and install it with their
application.

CWCS-R releases follow a release train strategy to allow for phased delivery:

 • Major releases mark the beginning of a new release train. These releases contain major architectural
changes, are content-driven, and ship about once a year.

 • Minor releases continue a release train and may be shipped at other times.

 • Patches are provided for critical problems.

 • Numbered Service Packs are released when sufficient patches accumulate.

Each CWCS-R release train follows these assumptions:

 • One Concept Commit and one Execution Commit for the release.

 • One PRD, one program plan, and one system functional specification.

 • Detailed functional specifications for each major and minor feature.

 • External testing period prior to FCS with applications that use new features.

CWCS-SRC components are provided in at least one working version per CWCS-R release, at the time
of the CWCS-R release. Alternative or improved versions of SRC components may or may not be
available at other times, and may undergo design changes, fixes, re-coding and other updates without
reference to the CWCS-R schedule. Any modified versions of SRC components, and fixes or updates to
them, are the sole responsibility of the application teams modifying them; they are, in fact, deliverables
of the applications requiring them.

All third-party components are licensed to ship with CWCS-R and CWCS-SRC. Any distribution of
these components outside of CWCS may not be covered by the license. Any questions about licensing
should be sent to the cmf23-dev alias.
1-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Benefits of Using CWCS
Benefits of Using CWCS
Application development teams derive the following benefits from using CWCS:

 • Use of a common, unified infrastructure for next-generation network management products and
solutions allows for better integration across such products. For example, users see a single security
model, desktop GUI, and application launch across applications.

 • Enhanced flexibility for meeting special requirements by re-using SRC components in an “open
source” manner.

 • Existing, proven code has already been debugged and optimized, resulting in improved product
stability and performance.

 • Existing code can be reused, resulting in faster time-to-market for new applications.

 • Unnecessary duplication of effort is avoided, resulting in more efficient use of engineering
resources.

 • Significant leverage across Cisco and third-party development teams is possible.

What’s New in CWCS
This CWCS release provides the following new features and enhancements:

 • CiscoWorks Home Page (CWHP): Provides a central, customizable launch point for all installed
CWCS-based applications as well as non-Cisco application links with HTML-based login.

 • Common Services Home (CS Home): Serves as the dashboard for the Common Services application.
and provides launch points for the frequently used functions in Common Services application, status
summary of jobs, status of security configurations, backup schedule, Online User information and
information on DCA mode and number of devices.

 • Device and Credentials Repository (DCR): Provides shared device information and credentials for
CWCS-based applications running on multiple servers. It also supports standalone repositories.

 • CWCS Licensing Framework: Allows FlexLM-based licensing on a wide variety of models.

 • Cisco Management Integration Center (CMIC): Supplies a consolidated service registry that allows
applications to find and integrate with other applications and services residing outside the server
machine. It also allows customers to set up and launch third-party applications from the CiscoWorks
Home Page.

 • Online Help: Support for the UE-compatible version 2.0 of the Cisco online help engine.

 • LMS Setup Center: Allows you to configure the Security settings, System settings, Data Collection
settings, Data Collection Schedule settings, and Data Purge settings of all CiscoWorks applications
in a centralized place.

 • Software Center: Using the Common Incremental Device Support (CIDS) and Package Support
Utility (PSU) components, Software Center allows applications to automatically locate, download
and install device-support packages and software updates.

 • Device Center: Provides an interface to invoke any application tool on a selected device from a
single location. It also provides summary information needed to troubleshoot a selected device.

 • Installation Framework: Improved and streamlined, the Installation Framework is compatible with
the new Licensing Framework, and now supports workflow customization on Solaris. Support for
the little-used Express install and remote upgrade options has been withdrawn, and “Typical”
installs now support simpler options.
1-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
What’s New in CWCS
 • Security System: This important subsystem provides a single application interface for AAA
security, secure and encrypted communications between clients and servers and between servers and
devices, and libraries that enable encryption of data on a server.

 • Object Grouping Services: Now supports shared and common groups.

 • Backup and Restore Framework: Includes both Core and CMF-based backup and restore.
CMF-based backup-manifest file locations have been changed to support CWCS database
enhancements, and permit restore from previous versions of CMF, eliminating the need for Remote
Upgrade capabilities.

 • Job and Resource Manager (JRM): Now provides separate tracking for instances of a recurring job,
updated job control APIs, and publishes its events to ESS and EDS.

 • Diagnostic and Support Utilities: The JET, JT and Logrot tools have been added to the diagnostic
and support tools suite.

 • Third Party Components: Upgrades to most third-party components, including the Java Runtime
Environment and JPI, the Sybase database, TibcoRV, the XML parsers and associated tools, and
others. For a complete list of these tools and the versions supported in this release, see the
“Third-Party Tools” section on page 1-10.

 • Cumulative bug fixes and patches provided for all previous CWCS releases.

 • Support for:

 – Internet Explorer 6

 – Netscape 7.x and Mozilla 1.7. 13

 – Solaris 8 and 9.

 – Sybase 9.0.0.

 – Windows 2000 Professional

 – Windows 2000 Server

 – WIndows 2000 Advanced Server

 – Windows Server 2003

 – Windows 2003 R2 Server

 – SNMPv3 authNoPriv.

 – IPv6

 • As of this release, CWCS no longer supports:

 – Netscape 4.7x.

 – Solaris 7.

Caution Be sure to review the appropriate topics in this document to ensure that your code works with CWCS 3.0.
For an inventory of all new and changed components and their related documentation, see the “Using
CWCS Components” section on page 1-7.
1-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
What’s New in This Guide
What’s New in This Guide
This SDK Developer’s Guide contains the following new chapter:

 • Chapter 28, “Integrating Applications With Device Selector”

Updates have also been made to topics in other chapters, as well as to code samples included in the SDK
downloads.

Please refer to the CWCS SDK portal at https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537
for links to SDK downloads, documentation, and code samples.

This document does not include information that is available in:

 • The CiscoWorks Common Services 3.0.5 user documentation. To access this documentation set, see:

 – The online help for any installed CWCS-based application. To view the online help, launch the
application and select Help.

 – The HTML version of the user documentation, published internally at the following URL:
http://www.cisco.com/en/US/products/sw/cscowork/ps3996/products_user_guide_book09186
a00806feda7.html.

 • The User Interface Infrastructure SDK. To access this SDK, see the UE/UII web site at the URL
http://picasso, or download a copy from EDCS at http://wwwin-eng.cisco.com/Eng/ENM/UE_UII/.

Understanding the CWCS Structure
CWCS is designed as a multi-component framework, as shown in Figure 1-1.
1-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Eng/ENM/UE_UII/
http://picasso
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Understanding the CWCS Structure
Figure 1-1 CWCS Structural Overview

CWHP: Cisco Works Home Page Application Home Page

Web Server, Servlet Engine (HTTP/HTTPS)

UII: User Interface Infrastructure CSTM: Common Service
Transport Mechnaicsm

 UII

Security: Authentication,
Authorization, Session

Management

CMIC: Cisco Management
Integration Center

License Manager Update, view
Licenses

Product
Installation

Backup/Restore ,
Diagnostics/Support,

Self Test

Application Components

OGS: Object
Grouping Service

CCR: Core Client Registry

Retrieve, application context

Get adaptor
information

Get application
configuration,

resources

JRM: Job
and

Resource
Manager

Register product
HP, Management
Services, NB API
of admin functions

Retrieve,
Update

Credentials,
device list

Get Third
-

Party apps

Daemon
Manager

Start/Stop/ Monitor
registered services

CIDS: Common Incremental Device Support

Package Repository PSU

Third-party apps, Northbound API Caller

Connect to
device
SNMP,

SSH, Telnet

Network

DCR: Device list and
credentials repository

Schedule jobs

Job
Browser

Add, import
devices, edit
credentials,

manage
groups,
reports

Register,
retrieve

11
34

61
1-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Using CWCS Components
Using CWCS Components
CWCS provides the components shown in Table 1-1. Components that are new in this release of CWCS
appear at the beginning of the table and are highlighted in bold. Items present in CWCS, but not
documented in this Guide, are highlighted in italics.

The CWCS directory structure is described in Chapter 3, “Understanding the CWCS Directory
Structure”. Basic development information for all components is provided in Chapter 6, “Using Shared
Services” and in Chapter 29, “Using Per-Product Services”. Details on individual components are
documented in specific chapters listed within the Description in Table 1-1.

Table 1-1 CiscoWorks Common Services Components

Component Description

Cisco Management
Integration Center (CMIC)

CMIC is a repository that allows CWCS-based and third-party applications to register the
services they provide and look up the services provided by other applications. It allows
better integration among applications and services residing anywhere in the network. See
Chapter 9, “Integrating Applications with CMIC”.

CiscoWorks Home Page
(CWHP)

CWHP provides your customers with a single, user-customizable web page they can use log
in and launch your application, consolidate launch points for other applications, and add
links to sites they use frequently. See Chapter 7, “Using the CiscoWorks Home Page”.

Common Incremental Device
Support (CIDS)

CIDS provides applications with “drop in” support for new device types, eliminating the
need for your customers to re-install the entire application. See Chapter 33, “Using
Common Incremental Device Support”.

Device and Credentials
Repository (DCR)

DCR provides a secure, sharable repository of critical device ID and credentials
information. See Chapter 14, “Using the Device Credentials Repository”.

Device Center Device Center gives your customers a “device-centric” view of their installed application
suite by letting them run registered tasks from any application against a selected device.
Instead of needing to know in advance which application performs which task, customers
can select tasks arranged around the device in which they are interested. See Chapter 26,
“Using Device Center”.

Licensing Framework The licensing framework lets your application install, update and retrieve information about
customer licenses . The framework includes APIs and FLEXlm utilities that you can use to
implement a wide variety of licensing models. See Chapter 34, “Using the Licensing APIs”.

Package Support Updater
(PSU)

PSU lets your application check for software and device support updates, download them to
the CWCS server, and install them. See Chapter 32, “Using Package Support Updater”.

Backup and Restore
Framework

This framework provides separate database backup and restore frameworks for Management
Center (MC) applications and for all other applications. See Chapter 12, “Using Backup and
Restore”.

Common Services Transport
Mechanism (CSTM)

CSTM (formerly CTM) provides a consistent, simple, and platform-agnostic method for
handling all types of application-to-application communications. It follows non-proprietary
standards, and does not impose protocol, object model, or encoding restrictions on either
communicating application. See Chapter 31, “Using the Common Services Transport
Mechanism”.

CORBA Infrastructure The CORBA infrastructure allows for object-oriented client/server communication.

Daemon Manager Provides reliable, ordered execution services for server processes, desktop administrative
interfaces, and command-line interfaces (for debugging). See Chapter 17, “Using the
Daemon Manager”.
1-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Using CWCS Components
Database APIs Sybase Adaptive Server Anywhere (ASA) is bundled with CWCS. ASA functions as an
embedded relational database, and requires very little administration. A single CWCS
installation has the capability to support multiple databases for multiple applications.
Database access is provided by JDBC in Java, ODBC in C and C++, and DBI in Perl. See
Chapter 11, “Using the Database APIs”.

Diagnostic and Support
Utilities

This utility suite helps you and TAC staff diagnose and solve customer problems quickly.
Included are the Collect Server Info, MDC Support, SNMP Set and Walk, Packet Capture,
and logrot. See Chapter 23, “Using the Diagnostic and Support Utilities”.

Event Services Software (ESS) Handles all event messaging using a separate server bus (TibCo Rendezvous), a separate
client bus (LWMS), and a gateway that transfers messages between the two automatically.
See Chapter 19, “Using Event Services Software”.

Note The EDS event messaging system is deprecated. For reference purposes only, EDS
documentation has been retained in Chapter 17, “Using the Event Distribution
System”.

Hidden Tools (dbreader and log
file viewer)

 • dbreader:

http://server-name/dbreader/dbreader.html"eudora="cautourl"http://server-name/dbre
ader/dbreader.html

 • log file browser:

http://server_name:port/cgi-bin/searchLog.pl"eudora="autourl"http://server_name:po
rt/cgi-bin/searchLog.pl

Installation Framework Allows you to install, uninstall, and patch your application. See Chapter 21, “Using the
Installation Framework”.

Java Plug-in (JPI) Allows you to deploy Java 2-based applets on your CiscoWorks web pages on Windows-
and Solaris- based browsers. See Chapter 22, “Using the Java Plug-in”

Java Runtime Environment
(JRE)

CWCS provides both Java 1 and 2 Runtime Environments.

Java SNMP Engine The Java interface for the Simple Network Management Protocol (SNMP) is supported.

Job and Resource Manager Provides services for scheduling jobs to run in the background and also locking
functionality for network devices. See Chapter 18, “Using the Job and Resource Manager”.

NT Services These services provide support for Windows versions of the communication functions
commonly available on Solaris, including TFTP, RCP and Syslog. See Chapter 25, “Using NT
Services”

Object Grouping Services
(OGS)

OGS provides a generic means for creating, managing and sharing groups of objects of any
type. See Chapter 30, “Using Object Grouping Services”.

Online Help System Provides a customized help engine infrastructure, allowing applications to use a common
mechanism to provide online help to customers. See Chapter 16, “Adding Online Help”.

Perl Interpreter An interpreter for the Perl scripting language used in Web applications.

Security System This system allows you to protect data. applications and server-to-device communications
from inadvertent or malicious access. User-level security includes allocation of roles based
on defined task-execution privileges. See Chapter 10, “Using the Security System”.

SNMP Services These services provide access to SNMPv3’s enhanced security features, as well as
supporting the existing SNMPv1 and SNMPv2c functions. See Chapter 24, “Using SNMP
Services”.

Table 1-1 CiscoWorks Common Services Components (continued)

Component Description
1-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
How CWCS is Distributed
How CWCS is Distributed
You can distribute CWCS with your application using the “CD-One” CD bundled with your application.
In this case, you are delivering the CWCS-R+ distribution described in the “CWCS Release Model”
section on page 1-1. This is the standard method of delivering CWCS, used by nearly all NMTG
application teams.

This is the only supported option. If you need to discuss this option, contact the cmf23-dev alias.

Installation Interface Options
The CD One installation interface under the Custom install option presents the following choices:

 • CiscoWorks Common Services

 • CiscoView

 • Integration Utility

 • Typical Installation (all components)

For additional information on which packages are being installed, refer to the“Installing CWCS” section
on page 5-3.

CD Image Structure
The Windows and Solaris CD image structures are different. Generally, the CD contains one or more
installable units, suites, and the installer. Each installable unit publishes its properties, including names,
versions, dependencies, and so on. Some properties are provided by the build or appended while the CD
image is created. The installer is a separate application with its own release train.

For details about the Windows and Solaris CD structures, see the following topics:

 • CD Image Structure for Windows

 • CD Image Structure for Solaris

User Interface Infrastructure
(UII)

UII provides the servlets and APIs needed to implement the CiscoWorks Home Page and all
other CWCS user interface elements. See the SDK Developer’s Guide to UI Infrastructure,
accessible from the UE/UII web site at http://picasso, or
http://wwwin-eng.cisco.com/Eng/ENM/UE_UII/.

Web Server and Servlet Engine The CWCS web server and servlet engine use the Apache Web server on both UNIX and
Windows platforms to provide the infrastructure for client/server communication. The Web
server services HTTP requests from the client, and is also used to invoke CGI
scripts/programs, applets, and servlets. A common servlet engine, Tomcat, runs Java servlet
programs. See Chapter 8, “Using Web Servers and Servlet Engines”.

Table 1-1 CiscoWorks Common Services Components (continued)

Component Description
1-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://picasso
http://wwwin-eng.cisco.com/Eng/ENM/UE_UII/

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Third-Party Tools
CD Image Structure for Windows

The following components are part of the Windows CD:

 • Windows CD autorun configuration and executable

 • InstallShield runtime

 • Installer—Compiled installation scripts with the tool set that actually implements the functionality
specified in this document.

 • Table of contents—ASCII file that describes the contents of the CD, enumerates components
available on this CD, as well as defaults for installation. It also provides release-specific information
(for example, release name).

 • Each suite, installable unit and package contains:

 – Properties

 – Optional Install scripts (compiled versions of component hooks)

 – Package/installable unit specific tools required at installation time.

 • Compressed runtime tree (data1.cab file) for all packages.

CD Image Structure for Solaris

The following subdirectories are part of the Solaris CD:

 • info—package properties, installation descriptions, and package hooks

 • packages—Solaris packages

Solaris uses SVR4.

Third-Party Tools
Table 1-2 lists the third-party tools available with CWCS.

Caution Tools marked “obsolete and deprecated” are included for backward compatibility only. Do not use these
tools for future development.
1-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Third-Party Tools
Table 1-2 CWCS Third-Party Tools

Name Vendor Package Description

3Magic
Coffee Table
2.1.3

3Magic

http://www.3magic.com/
products/coffeetable/docs/
index.html

CSCOgrid Small, speedy, cross-platform and multi-VM Java components
for display of columnar data. Compatible with and optimized
for JDK 1.1 and 1.2. Includes Grid classes for Java.

Alfred XML
parser 1.2a

Open Text Corporation

http://www.jpackage.org/
rpm.php?id=540

CSCOxrts A small, fast, DTD-aware Java-based XML parser, especially
suitable for use in Java applets. You can add XML support to
your applets and applications without doubling their size.

Aelfred consists of only two core class files, with a total size
of about 26K, and requires very little memory to run. There is
also a complete SAX (Simple API for XML) driver available
in this distribution for inter-operability.

Apache Web
Server 1.3.31

Apache

http://www.apache.org/
httpd.html

apache Apache is a popular Web Server on the Internet. It is based on
open source that is publicly maintained by the Apache HTTP
Server project. Apacheweek is a useful reference for
information about Apache.

CWCS provides this Web Server on Solaris and Windows.

Apache Axis
1.1

Apache

http://ws.apache.org/axis/

CSCOweb Apache Axis is a SOAP engine framework used to implement
Java Web Services. It is Jakarta-based and works as a Tomcat
plug-in.

Blatmail for
NT 2.1

Open Source

http://sourceforge.net/
projects/blat

CSCOxrts Blat is a Win32 command line utility that sends eMail using
the SMTP or NNTP protocols.

DynAPI/
LGPL 2.5.6

Open Source

http://sourceforge.net/
projects/dynapi/

CSCOxrts DynAPI is a cross-browser Javascript library used to create
Dynamic HTML components on web pages.

FLEXLM
9.2

Macrovision

http://www.macrovision.com/
products/legacy_products/
flexlm/index.shtml

CSCOcore Software license management system and utilities used to
manage licenses available on a machine

IPC lib from
ACE 5.3

Open Source

http://www.cs.wustl.edu
/~schmidt/ACE.html

CSCOxrts Adaptive Communication Environment (ACE) is an
object-oriented C++ framework for developing multithreaded
applications that include network and inter-process
communications.

IPSecPol
1.22

Microsoft

http://www.microsoft.com/
windows2000/techinfo/reskit/
tools/existing/ipsecpol-o.asp

ipsec A CLI tool for creating large or complex Internet Protocol
Security (IPSec) policies in a local or remote registry. Can be
run in batch mode.
1-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/ipsecpol-o.asp
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.macrovision.com/products/legacy_products/
flexlm/index.shtml
http://sourceforge.net/projects/dynapi/
http://www.blat.net/
http://ws.apache.org/axis/
http://www.apache.org/httpd.html
http://www.apacheweek.com/
http://www.jpackage.org/
rpm.php?id=540
http://www.3magic.com/products/coffeetable/docs/index.html

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Third-Party Tools
Java 2
Runtime
Environment
13.1_06 and
1.4.2_04

Sun

http://www.sun.com/solaris/
jre/download.html

sunjre,
CSCOjre14

The JavaTM Runtime Environment (also known as the Java
Runtime or JRE) consists of the Java virtual machine, the Java
platform core classes, and supporting files. It is the runtime
part of the Java Development Kit that has no compiler, no
debugger, and no tools. The JRE is the smallest set of
executables and files that constitute the standard Java
platform.

Java Desktop
Suite 0.16.3

Sun

http://java.sun.com/

TBD TBD

Java
Extension
1.3

Sun

http://java.sun.com/

TBD TBD

Java Plug-In
1.4.2_10

Sun

http://java.sun.com/products/
plugin/

CSCOplug Permits applets to be run within a desktop browser. Part of the
Java 2 Runtime Environment.

JavaMail for
Solaris 1.2

Sun

http://java.sun.com/products
/javamail/

CSCOjre14 Provides a platform- and protocol-independent framework for
building mail and messaging applications.

JClass Chart
4.0.0.J

Quest Software

http://www.quest.com/jclass_
desktopviews/chart.asp

CSCOjchart Part of Quest’s JClass DesktopViews, JClass Chart provides
Java tools for business and scientific charts, rich text format
for customizing labels or mixing images and URLs with text.

jConnect for
JDBC 5.5

Sybase

http://www.sybase.com/produ
cts/middleware/jconnectforjdb
c

CSCOdb The jConnect for JDBC product provides high performance
native access to all Sybase products including Adaptive Server
Anywhere. It integrates with most popular Java RAD tools.

JDOM
1.0.8b

JDOM Project

http://www.jdom.org

jdom JDOM is a Java-based "document object model" for XML
files. JDOM serves the same purpose as DOM, but is easier to
use. It provides a complete, Java-based solution for accessing,
manipulating, and outputting XML data from Java code.

JFC Swing
classes 1.1,
1.2c

Sun

http://java.sun.com/j2se/1.4.2/
docs/guide/swing/index.html

CSCOswng2 The Swing classes are a set of class libraries provided as part
of the Java 2 Platform to support building graphic user
interfaces (GUIs) and graphics functionality for client
applications.

JGL 3.1 Open Source

http://www.recursionsw.com/j
gl.htm

CSCOjgl JGL is a generic collection library for Java, consisting of
eleven optimized Java collections and more than 50 general
purpose data algorithms. JGL-equivalent functionality is
available in Java 2 (aka JDK 1.2) today.

JMS 1.02b Sun

http://java.sun.com/products/
jms/

sunjre The Java Message Service (JMS) API is a messaging standard
that allows application components based on the Java 2
Platform to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable,
and asynchronous.

Table 1-2 CWCS Third-Party Tools (continued)

Name Vendor Package Description
1-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://java.sun.com/
http://java.sun.com/
http://java.sun.com/products/jms/
http://www.recursionsw.com/jgl.htm
http://java.sun.com/j2se/1.4.2/docs/guide/swing/index.html
http://www.jdom.org
http://www.sybase.com/products/middleware/jconnectforjdbc
http://www.quest.com/jclass/chart.asp
http://java.sun.com/products/javamail/
http://java.sun.com/products/plugin/
http://www.sun.com/solaris/jre/download.html

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Third-Party Tools
JOnAS 3.3.5 ObjectWeb Consortium

http://jonas.objectweb.org

CSCOxrts The Java Open Application Server (JOnAS) is a pure Java
open-source implementation of the EJB (Enterprise
JavaBeans) specification, supporting Java Web Services.

JScape
Widgets
1.5.1

http://www.jscape.com CSCOjawt A library of sophisticated, pre-built components for
assembling commercial-quality Java applications. The
product is written entirely in Java and the look, feel and
behavior is the same on all Java enabled environments.

JScape
Powersearch
1.5.1

http://www.jscape.com CSCOjpwr A pattern matching and search engine written entirely in Java.
Provides full support for the PERL 5 regular expression
syntax.

JSRS 1.0 Open Source

http://www.ashleyit.com/rs/m
ain.htm

CSCOxrts JavaScript Remote Scripting (JSRS) permits data transfers and
exchanges between a web application and a backend server
without embedding a Java applet in the web page or refreshing
the JSP.

log4cpp
0.2.5

Open Source (LGPL)

http://log4cpp.sourceforge.net

CSCOxrts Log For C++ (log4cpp) is a library of C++ classes for flexible
logging to files, syslog, IDSA and other destinations. It is
modeled after the Log4j Java library and follows its API
closely.

log4j 1.1.3,
1.2.8

Apache

http://jakarta.apache.org/
log4j/

log4j Log For Java (log4j) permits runtime logging from Java
applications without modifying binary. Log statements remain
in shipped code without incurring a heavy performance cost.
Logging behavior is controlled using a configuration file.

LotusXSL
0.16.3

Lotus

http://www.alphaworks.ibm.
com/tech/LotusXSL

CSCOxsl XSLT processor for transforming XML documents into
HTML, text, or other XML document types. Predecessor of
the Xalan XSLT processors.

Macromedia
Jrun 2.3.3

Macromedia TBD TBD

Microsoft
IPSecPol
1.22

Microsoft TBD TBD

mod_ssh
2.8.17

Apache

http://www.modssl.org/

CSCOxrts Provides strong cryptography for the Apache Web server.
Follows the Secure Sockets Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) protocols, and uses the Open Source
SSL/TLS toolkit OpenSSL.

OpenSSL
0.9.7a

Open SSL Project

http://www.openssl.org/

CSCOxrts Open Source toolkit for implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
protocols. Includes a full-strength general purpose
cryptography library. Basis of mod_ssl.

Oromatcher
1.0

Oro Inc.

http://www.savarese.org/oro/

CSCOxrts A set of regular expression pattern matching and utility classes
for Java.

Table 1-2 CWCS Third-Party Tools (continued)

Name Vendor Package Description
1-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.savarese.org/oro/
http://www.openssl.org/
http://www.modssl.org/
http://www.alphaworks.ibm.com/tech/LotusXSL
http://jakarta.apache.org/log4j/
http://log4cpp.sourceforge.net
http://www.ashleyit.com/rs/main.htm

http://www.jscape.com
http://www.jscape.com
http://jonas.objectweb.org

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Third-Party Tools
Perl
5.005_02

O’Reilly
http://www.perl.com/pub

CSCOperl Perl is a high-level programming language derived from the C
programming language and to a lesser extent from sed, awk,
the UNIX shell, and at least a dozen other tools and languages.

Perl’s process, file, and text manipulation facilities make it
well-suited for tasks involving quick prototyping, system
utilities, software tools, system management tasks, database
access, graphical programming, networking, and worldwide
web programming.

PowerSearch
1.5.1

TBD TBD TBD

SNMP V3
Library

TBD TBD TBD

Struts
Framework
1.0

Apache

http://jakarta.apache.org/struts
/

CSCOxrts Provides an open-source MVD framework for building Java
web applications. Basis of the Cisco User Interface
Infrastructure (UII) used in CWCS.

Sybase ASA
9.0.0

Sybase

http://www.sybase.com/produ
cts/anywhere/index.html

CSCOdb Sybase Adaptive Server Anywhere (ASA) is the CWCS
embedded SQL database engine. It provides access from Java
via JDBC, C/C++ via ODBC, and Perl via DBI. CWCS also
provides enhancements for monitoring the database
connection, integration with the Daemon Manager, and
backup and restore.

Tibco
Rendezvous
7.1.28

Tibco

http://www.tibco.com/softwar
e/enterprise_backbone/rendez
vous.jsp

CSCOess Supports the CWCS Event Services Software server-message
bus. Highly efficient, scalable, with APIs for load balancing
and fault tolerance.

Tomcat
4.1.33

Apache

http://jakarta.apache.org/
tomcat/

tomcat Tomcat is the CWCS servlet container, used to implement the
Java Servlet and JavaServer Pages technologies used
throughout CWCS.

UCS-SNMP
4.2.2,
NETPLUS
1.x.960.925

The NET-SNMP Project

http://www.net-snmp.org/

CSCOxrts A package of SNMP tools, including: An extensible agent and
a notification receiver; an SNMP library; tools to request or set
information from SNMP agents; tools to generate and handle
SNMP traps; SNMP- related perl modules; versions of the
UNIX netstat and df commands using SNMP; a Tk/perl mib
browser.

Visibroker
for Java
4.5.1;
Visibroker
for C++ 4.11

Borland

http://www.borland.com/
visibroker/

CSCOvorb VisiBroker for Java and C++ provides essential software for
developing, deploying, and managing robust, dynamic, and
scalable distributed object applications.

It is an implementation of the Common Object Request Broker
Architecture (CORBA) from Object Management Group
(OMG).

Xalan C++
1.3

Apache

http://xml.apache.org/xalan-c/
index.html

xalan An XSLT processor for transforming XML documents into
HTML, text, or other XML document types. Written in C++.
It works with the Xerces-C++ XML parser.

Table 1-2 CWCS Third-Party Tools (continued)

Name Vendor Package Description
1-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.tibco.com/software/enterprise_backbone/rendezvous.jsp
http://xml.apache.org/xalan-c/index.html
http://www.borland.com/visibroker/
http://www.net-snmp.org/
http://jakarta.apache.org/tomcat/
http://www.sybase.com/products/anywhere/index.html
unknown�package?�unknown

http://www.perl.com/pub
http://www.perl.com/pub

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
Where to Find the CWCS SDK
Where to Find the CWCS SDK
The CWCS Software Development Kits, along with links to all SDK-related documentation and code ,
are available via links on the CWCS 3.0 SDK Web Portal hosted by Cisco Engineering & Manufacturing
Connection Online (EMCO; the URL is http://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537).

The CWCS 3.0.5 SDK Web Portal is accessible to all Cisco staff working within Cisco networks. If you
have never accessed an EMCO web portal before, you will be asked to register online for an account.
There may be a short access delay while your registration is processed.

For Further Assistance
For assistance with running the software, reporting problems, or questions about the software, contact:
cs-ch-leads@cisco.com.

Note You can log bugs in the DDTS system, using CSC.embu; product=CWCS; component=sdk

Xalan Java
2.4.1.0

Apache

http://xml.apache.org/xalan-j/

xalan An XSLT processor for transforming XML documents into
HTML, text, or other XML document types. It works with the
the Xerces Java XML parser.

Xerces C++
1.5.1

Apache

http://xml.apache.org/
xerces-c/index.html

xerces A validating XML parser written in a portable subset of C++.
Parses, generates, manipulates, and validates XML
documents. It works with the Xalan C++ XSLT processor.

Xerces Java
1.4.4

Apache

http://xml.apache.org/
xerces-j/index.html

xerces A validating XML parser written in Java. Parses, generates,
manipulates, and validates XML documents. It works with the
Xalan Java XSLT processor.

XML4J
2.0.11

IBM

(http://www.alphaworks.ibm.
com/formula/XML)

CSCOxml4j A validating XML parser written in 100% pure Java.

Table 1-2 CWCS Third-Party Tools (continued)

Name Vendor Package Description
1-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://xml.apache.org/xerces-j/index.html
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537
http://xml.apache.org/xerces-c/index.html
http://xml.apache.org/xalan-j/
http://www.alphaworks.ibm.com/formula/XML

CISCO CONF IDENT IAL

Chapter 1 Introducing CWCS
For Further Assistance
1-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 2

FAQs and Programming Hints

Answers to frequently asked questions (FAQs) and programming hints are given into the following
topics:

 • General Topics

 • Daemon Manager

 • Online Help

General Topics
This topic addresses typical questions that do not apply to any particular CWCS component.

Q. How do I obtain the CWCS web protocol and port number from a JSP?

A. You can do this for an application running under Tomcat by querying the md.properties file located
at NMSROOT/lib/classpath/, using the following code:

 <%@ page import = "com.cisco.core.ccr.CCRInterface" %>
 <%@ page import = "java.util.Properties" %>
 <%@ page import = "java.io.FileInputStream" %>
 <%
 ccr = new CCRInterface();
 String propFile = ccr.getCCRData("CMFSSLInfoFile", "Custom");
 FileInputStream fis = new FileInputStream(propFile);
 Properties prop = new Properties();
 prop.load(fis);
 String port = prop.getProperty ("PX_PORT");
 String protocol = prop.getProperty ("PX_PROTOCOL");
 %>

Q. Can CWCS support applications that must manage devices using multiple community strings?

A. Yes. The SnmpOnJava library in CWCS contains a property and API calls that support multiple
SNMP credentials for IP ranges. The API and guidelines on implementing it, see the “Using CWCS
SNMP Services” section on page 24-3.
2-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 2 FAQs and Programming Hints
General Topics
Q. What do I need to know about casuser and upgrading?

A. If you are installing your application onto CiscoWorks for the first time, you do not need to worry
about the casuser. If you are upgrading an existing application, you need to review the
“Understanding and Implementing the casuser” section on page 21-21.

Remember that, because of the strengthening of security, you can only use port 1741. If you have
port 80 hard coded, you need to update your code.

Q. How is the CD structured and where can I locate information on it?

A. The CD comprises the following directories:

 • CodeSamples

 • printdocs

 • sdkhelp

 • image_nt or image_sol

 • readme_nt.txt or readme_unix.txt

Q. Can I pre-compile JSPs with CWCS? If so, how can I do it? What are the advantages of doing so?

A. A Java Server Page is normally compiled into its implementation class the first time a user accesses
the page. Pre-compiling JSPs improves their performance in first-time accesses, and also reveals any
syntax errors they may contain. You can precompile JSPs in a couple of ways:

 – During Build Time: You use ANT or JSPC scripts given with Tomcast to precompile the JSPs
into Java files, then use javac to compile them into class files and place them in the working
directories.

 – During Runtime/Install Time: You call each JSP with the pre-compiled option. The JSPServlet
will interpret the request and compile each JSP into a class file.

CWCS pre-compiles JSP during build time, by creating the Tomcast runtime structure and using the
JSPC script provided by Tomcat to compile into java files. It then changes the package of java files
into “org.apache.jsp”, compiles them into class files, and makes them part of the protopackages. All
these class files are copied into the working directory during installation.

The CWCS scripts are at /vob/ismg-core/install/image/extract/bin. The CWCS build script calls the
main precompile script prejsp.sh, which in turn uses jspc.sh and prejsp-build.sch. These scripts are
specific to Common Services, but you can follow the same approach using these scripts as a
reference.

Q. What do I enter during installation and when running commands on Windows platforms? This book
provides only UNIX references.

A. Enter C:\Progra~1\CSCOpx to reference the Windows platform directory. Do not spell out “Program
Files”, since this will cause installation and command errors.

Q. When running Java server-side applications, should we use the cwjava command or directly
reference the Java binaries?

A. Use the cwjava command. It provides a controlled runtime environment for CWCS-based Java
server applications. For more information about cwjava, see the “Launching a Java Application”
section on page 4-2.
2-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 2 FAQs and Programming Hints
General Topics
Q. When I try running cwjava, I get the error message, Unable to locate CW2000 installation
directory.

A. When running cwjava from the command line, you must provide the -cw parameter. For example:

cwjava -cw /opt/CSCOpx ...
cwjava -cw C:\Progra~1\CSCOpx\ ...

Note On Windows platforms, the install directory should be specified without spaces (as shown
above).

Q. When SSL is enabled on the server, the HTTP call from a device is blocked. Why does this happen?
How can I fix this?

A. When SSL is enabled on the CWCS WebServer, access to the webserver is through HTTPS only.
This means the HTTP port is blocked when SSL is enabled on the server. When the server is running
in SSL (https mode), any HTTP call will fail.

An API is provided to fix this problem. This API defines necessary rules in the webserver
configuration file by reading the list of entries (identified case-sensitive) from a file
(addSetEnvIf.txt) under disk1 of the application's image. This API provides http access to the URLs
of specified patterns.

SSL-complaint applications must identify scenarios where HTTP calls are made to the server, while
running in the SSL enabled mode. The applications should do the following:

1. Identify the list of unique patterns in the URLs which should be accessible via HTTP when SSL
is enabled.

2. If there are any such scenarios, create a file, addSetEnvIf.txt in disk1. This file should contain
all such patterns.

Note During the application install, the install framework will define the required rules in the
webserver configuration file based on the contents of addSetEnvIf.txt.

For example:

In RME’s SWIM module, some devices (CSS11000 and NAM) contact the server through HTTP for
image upgrading.

The format of the url would be http://servername:1741/swimtemp/c6nam.2- 1-2.bin.gz These
images reside under /opt/CSCOpx/htdocs/swimtemp. In SSL mode, the above url request fails since
port 1741 (used for HTTP connections) is blocked. In this case you have to allow the URLs that
contain swimtemp, for which the contents of the addSetEnvIf.txt should be: swimtemp

Q. I installed CWCS on my system, but I don’t see any database engine service running as part of
CWCS. What must I do to start this service?

A. Installing CWCS does not automatically start the CWCS database. The CWCS database engine is
only running when the CWCS System Services bundle is enabled.

To enable the CWCS System Services bundle, see the “Enabling New Service Bundles from the
Command Line” section on page 5-7 or “Using CMFEnable” section on page 5-9.
2-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 2 FAQs and Programming Hints
Daemon Manager
Q. When I create my application, what methods should I use to report errors?

A. The method you use to report errors depends on where the error occurs:

 • The UI component of an application should provide popup error dialog boxes.

 • Server components of an application should log errors to a log file. Log files are stored in the LOG
directory (see Chapter 3, “Understanding the CWCS Directory Structure”).

Q. Are the application IDs passed in CAM authorization and registered with CCR case-sensitive?

A. Yes. Authorization will fail if if the application ID in the CAM API doesn’t match exactly with the
application ID registered in CCR.

Q. How can I enable MICE debugging?

A. In the NMSROOT/MDC/tomcat/webapps/classic/WEB-INF/web.xml file, change the DEBUG
parameter value to read as follows:

<context-param>
<param-name>DEBUG</param-name>
<param-value>true</param-value>
<description>MICE debug enabling</description>
</context-param>

Daemon Manager
This topic answers typical questions about the Daemon Manager (also known as Process Manager).

Q. On Windows, we can integrate our GUI server with the Daemon Manager. It runs, but the GUI does
not appear. We registered Notepad as a test and that did not appear either.

A. The Daemon Manager's job is to run programs that are typically background processes, which do
not have a user interface, but takes up a lot of computing resources. In fact, part of the command
line that the Daemon Manager uses to start a process redirects the stdout and stderr outputs to log
files. If your application has both user interface and backend processing combined into one binary,
then you should not register it with the Daemon Manager. If the application is web-enabled (can run
in a browser), then you can register it with the desktop.

Q. Can I register a Windows NT Service using pdreg?

A. Yes. In order to register the service ServiceName with the Daemon Manager, you have to run: pdreg
-r ServiceName where ServiceName is the name used to register this service with NT Service
Manager.

Note The pdreg command allows you to register a process as a service, but you first have to create a Windows
NT service (by registering it with Windows NT Service Manager) and then register the service with the
Daemon Manager.

The Daemon Manager currently does not support Windows NT services completely: it will not restart
the Windows NT Service if it fails. The Daemon Manager does that for normal processes. This may be
a bug.
2-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 2 FAQs and Programming Hints
Online Help
Q. Where in my program should I define the “Process Name” defined in pdreg and pdshow ?

A. The process name you use to instantiate the Daemon Manager object is the process name that
appears in pdreg and pdshow command.For example, in Java, if you use dMgt theMgr = new
dMgt(myDaemon); then myDaemon is the process name used in pdreg and pdshow.

Q. Should I stop the Daemon Manager to register a new process?

A. No. You can register a process while the Daemon Manager is still running. However, the Daemon
Manager will not start the execution of the newly-registered process. You must run the pdexec
command to start this newly-registered process.

Q. If processes P2 and P3 depend on process P1, why do I have to run the pdexec for both P2 and P3
after P1 terminates?

A. After process P1 terminates, processes P2 and P3 will be brought down since they depend on P1.
Daemon Manager will restart the crashed process P1. However, Daemon Manager does not keep the
active process list when P1 terminates. Therefore, only P1 will be brought up again. P2 and P3 must
be brought up manually using pdexec.

Q. If I use kill -9 to kill a process, why is the process not restarted automatically by the Daemon
Manager?

A. This happens because signal -9 is the forced termination request issued by an operator.

Online Help
This topic answers typical questions about implementing online help.

Q. When the search engine displays the results, there is a blue column on the right that says
In:Unknown. I would like this to state the name of my book. Is there a parameter I can set that will
do this for me? I am implementing a client-only help system without any drop-ins.

A. Add the SEARCH line to your mapping file, as follows:

SEARCH, "YOUR APP NAME", "searchfile.sch"

Then you should see YOUR APP NAME instead of Unknown.

Q. Must the DROPINPLACE lines always reference the index.html file? Even if I have more than one
DROPINPLACE line in the mapping file? For example, I have three such lines in my help system’s
mapfile:

DROPINPLACE,"1","Server Configuration"
DROPINPLACE,"2","Server Configuration","What's New", /cmf/index.html
DROPINPLACE,"3","Server Configuration","Desktop", /cmf/index.html

A. Your DROPINPLACE lines can point to any file, even the same file. If you choose to have these lines
point to no file, make sure the line is a folder, just like your first example. Otherwise nothing
happens when a reader clicks on the node. For more information about mapping files, see the
“Understanding Mapping Files” section on page 11-14.
2-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 2 FAQs and Programming Hints
Online Help
2-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 3

Understanding the CWCS Directory Structure

The following topics describe the CiscoWorks Common Services (CWCS) directory structure:

 • About CWCS Directory Policies

 • About the CWCS Top-Level Runtime Directories

 • About CWCS File Permissions

 • About CWCS Property Files

 • About CWCS Log Files

About CWCS Directory Policies
Consider the following when creating runtime directories:

 • Follow the guidelines defined in this chapter.

 • Provide administrative options to relocate the folders that expand over time. Such folders will
contain files that grow as new applications are added.

 • Use the CWCS runtime structure explained in this chapter. This will allow your application to
maintain compatibility with CWCS and other applications using CWCS.

About the CWCS Top-Level Runtime Directories
The CWCS top-level runtime directories are located in two trees that determine all other directory paths:

 • NMSROOT contains the bulk of the product. This is the top-level install directory. The default
NMSROOT definition differs for Windows and UNIX systems:

 – On Windows: D:\Progra~1\CSCOpx, where D is the drive letter stored in the Windows SystemDrive
variable. CWCS uses the abbreviated DOS alias for Windows directory and file names. For example:
Progra~1 for the Program Files directory.

 – On UNIX: /opt/CSCOpx.

 • A directory that contains the logs and application-specific files created at run time. This is the
top-level runtime files directory.

A system that ships simultaneously on both UNIX and Windows can have separate runtime trees for each
platform, and these may look very different. Accordingly, the following topics describe both the
common and platform-specific organization and contents of the top-level runtime directories:
3-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About the CWCS Top-Level Runtime Directories
 • About the CWCS Common Directories

 • About the CWCS Solaris-Specific Directories

 • About the CWCS UNIX-Specific Directories

 • About the CWCS Windows-Specific Directories

About the CWCS Common Directories
The CWCS directories listed in Table 3-1 are common to all platforms.

Table 3-1 Common Directories

Common Name Directory path Contents

BACKUP NMSROOT/backup Location for database and directory manifest files.

BIN NMSROOT/bin Program startup scripts - non-binary batch files, shared binaries,
shared Windows DLLs.

CGI-BIN NMSROOT/cgi-bin cgi-bin 1.1 programs (web server can access this directory).

CLIENTINSTALL NMSROOT/cam_-repository Client-side install classes and control files.

CLIENT-JAVA NMSROOT/www/classpath Java class files for clients and those shared by client and server
(web server can access this directory).

CLIENT-JAVA-APPS NMSROOT/www/classpath/com
/cisco/nm/app_name

Java classes for application/CWCS shared server/client code
developed by Cisco. Application folders must contain all property
files associated with the application.

COLLECT NMSROOT/collect Collect Server Info scripts and output files.

CONF NMSROOT/conf Configuration data files.

DATABASES NMSROOT/databases Original or empty database versions.

DBMS NMSROOT/objects/db Install directory for database engine.

DBUPGRADE NMSROOT/dbupdate Database upgrade files.

ETC NMSROOT/etc Copyright, readme, .profile, .cshrc, … files.

HELP NMSROOT/htdocs/help Help file directory root.

HTDOCS NMSROOT/htdocs HTML tree used by the httpd server (web server can access this
directory).

HTDOCS-IMAGES NMSROOT/htdocs/images Shared image files, application directories at this level for
application specific images.

LIB NMSROOT/lib Shared libraries and directories of shared UNIX libraries (*.so).

MDC NMSROOT/MDC CWCS Core components.

NMIM NMSROOT/nmim Network Management Integration Utility Modules

OBJECTS NMSROOT/objects Install directory for non-Java and non-web server accessed
CWCS/application code.

OBJECTS-APPS NMSROOT/objects/app_name CWCS and application install directories.

SELFTEST NMSROOT/selftest Product self-test Perl scripts.

SERVER-JAVA NMSROOT/lib/classpath Server-only Java classes.
3-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About the CWCS Top-Level Runtime Directories
About the CWCS Solaris-Specific Directories
The CWCS directories listed in Table 3-3 are unique to Solaris systems.

About the CWCS UNIX-Specific Directories
The CWCS directories listed in Table 3-3 are unique to UNIX systems or typically not nested under the
NMSROOT tree on UNIX. They are common to all UNIX systems, including Solaris.

About the CWCS Windows-Specific Directories
The CWCS directories listed in Table 3-3 are unique to Windows or typically not nested under the
NMSROOT tree on Windows.

SERVER-JAVA-APPS NMSROOT/lib/classpath/com/ci
sco/nm/app_name

Java classes for application/CWCS server code developed by
Cisco. Application folders must contain property files associated
with this application unless otherwise defined in
CLIENT-JAVA-APPS.

SETUP NMSROOT/setup Install information and results.

Table 3-1 Common Directories (continued)

Common Name Directory path Contents

Table 3-2 Solaris-Specific Directories

Common Name Directory path Contents

DMCONFIG /etc/rc.config.d Solaris Daemon Manager config file.

DMSTARTUP /etc/init.d Solaris Daemon Manager startup files.

Table 3-3 UNIX-Specific Directories

Common Name Directory path Contents

FILES User-specified/CSCOpx/files Product data files. The default for User-specified is /var/adm.

INSTLOGS /var/tmp UNIX install logs.

LOG User-specified/CSCOpx/log Log files generated by CWCS components and apps. The default for
User-specified is /var/adm. Note that a few components and applications
create logs in other directories. For details, see the “About CWCS Log
Files” section on page 3-7.

MAN NMSROOT/man UNIX man files for product features.

TEMP /tmp/temp Default temporary directory.

Table 3-4 Windows-Specific Directories

Common Name Directory path Contents

FILES NMSROOT\files Enduser data.
3-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS File Permissions
About CWCS File Permissions
In general, the user casuser runs applications for Windows and UNIX platforms. Programs (binaries,
scripts, etc) should be executable only by the user casuser in user group casusers. All files should be
readable by users that belong to the group casusers.

 • On UNIX platforms, set the permissions to:

Executables: rwxr-x--- casuser casusers

All normal data files: rw-r----- casuser casusers

Log files: rw-rw---- casuser casusers

Directories: rwxrwxr-x casuser casusers

 • On Windows, set the access bits on the directories that contain the applications to allow execute and
access by user groups casusers and Administrators.

Note The user name casuser stands for “Cisco Application Server User”. Installation of CWCS on all
platforms creates the group casusers and adds the user casuser to that group automatically.

About CWCS Property Files
Table 3-5 lists all the CWCS property files, sorted alphabetically by the components they configure, with
their locations. All paths are relative to the top-level NMSROOT directory on each platform (see the
“About the CWCS Top-Level Runtime Directories” section on page 3-1).

INSTALL LOG system drive root (e.g., C:\) Windows install and uninstall log files. Filenames are of the form
Ciscoworks_setupxxx.log, where xxx is a number indicating the serial
order of the install or uninstall.

LOG NMSROOT\log Log files generated by CWCS components and applications. Note that a
few components and applications create logs in other directories. For
details, see the “About CWCS Log Files” section on page 3-7.

PROXY NMSROOT\proxy Proxy working directory.

TEMP NMSROOT\temp Default temporary directory.

TFTPBOOT NMSROOT\tftpboot TFTP directory.

Table 3-4 Windows-Specific Directories
3-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Property Files
Table 3-5 CWCS Property Files

 Component Directory Path(s) File(s) Description

CiscoWorks /lib/classpath/ apps-plugin.properties,
backupstatus.properties,
cam.properties,
javaplugin.properties,
jrmuser.properties,
md.properties, proxy.properties,
ss.properties; ssl.properties,
sso.properties

CiscoWorks configurations

/www/classpath/com/cisco/nm/c
mf/

debug.properties Sets debug levels for
MakerChecker, other application
modules

CiscoWorks Home
Page

/lib/classpath/com/cisco/nm/cmf
/servlet/

DesktopServlet.props Sets the URL for the Desktop
messagingbanner

/MDC/tomcat/webapps/cwhp/W
EB-INF/resources

cwhpadmin.properties CWHP Admin configuration

CMIC /conf/cmic/ log-cmic.properties Log4J logging configuration for
this component

Common Services
Home

/lib/classpath/ CSHP.properties,
log4j-cshp.properties,
setup-log4j.properties,
setup.properties,

Common Services Home
configuration

Database Services /www/classpath/com/cisco/nm/c
mf/dbservice

/DBServer.properties,
/orig/DBServer.properties,
/servlet/CommServlet.properties

CWCS Database configuration

/lib/classpath/ianywhere/ml/jdbc
odbc/

iresource.properties (and
national language variants such
as iresource_de.properties,
iresource_en.properties and
iresource_fr.properties)

Sybase SQL Anywhere
configuration

DCR /lib/classpath/com/cisco/nm/dcr/ log4j-dcr.properties,
log4j-dcrclient.properties

Log4J logging configuration

/MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

DCR_Implementation_Details.p
roperties

System configuration

/objects/dcrimpexp/Adaptors /HPOV6.x/Adaptor.properties,
/Netview7.x/Adaptor.properties

Import/Export adaptor
configurations

/objects/dcrimpexp/cnf DCRImpExp.properties Import/Export process
parameters

/objects/dcrimpexp/conf/ log-dcr.properties Log4J logging configuration for
this component
3-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Property Files
Device Center /conf/devicecenter/ log-devicecenter.properties Device Center logging

/lib/classpath/com/cisco/nm/pid
m/

log4j-pidm.properties Log4J logging configuration for
this component

/lib/classpath/com/cisco/nm/pid
m

PIDM_Registration_data Configuration data used for
PIDM bypass in Device Center

Device Selector /MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

DeviceSelector.properties Device Selector configuration

/MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

log4j-devsel.properties Log4J logging configuration for
Device Selector

EDS /www/classpath/com/cisco/nm/c
mf/eds/

display/realtimeDisplay.properti
es,
error/EDS_Error_Messages.pro
perties

gcf/gcf.properties

trap/trapReceiver.properties

ui/helpSupport.properties

EDS real-time display, error
messaging, trap support, GCF,
UI configuration.

ESS /NMSROOT/objects/ess/conf essproperties.conf ESS configuration

Javac /www/classpath/sun/tools/javac/
resources/

javac.properties Javac configuration

Job Scheduler /www/classpath/com/cisco/nm/c
mf/scheduler/

JobRegistration.properties,
JobScheduler.properties

Job registration and scheduling
configuration

JRE 1.4.1 /lib/jre/lib/ content-types.properties,
flavormap.properties,
font.properties (per language) ,
logging.properties,
psfontj2d.properties

JRE 1.4.1 content types,
flavormap, font properties,
logging

/setup/, /setup/dependency/ Various property files JRE 1.4.1 setup dependencies

Log4J /objects/licenses/ log4j-license.properties Log4J license

/MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

log4j.properties,
log4j.server.properties

Log4j server configuration

MDC /MDC/Sybase/Shared/Sun/jdk12
2/jre/lib/,
/MDC/Sybase/Shared/Sun/jdk12
2/jre/lib/images/cursors/

Various JDK 1.2.2 content type,
flavormap, font and cursor
support for MDC Sybase

/MDC/JRE/lib/ Various JRE 2content type, flavormap,
font and cursor support
configuration for MDC

/MDC/tomcat/conf/jk/ workers.properties Tomcat configurationfor MDC

Table 3-5 CWCS Property Files (continued)

 Component Directory Path(s) File(s) Description
3-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Log Files
About CWCS Log Files
Table 3-6 lists the filenames and locations of all logs produced by CWCS components.

The table refers to normal top-level log directories for each platform. These are NMSROOT/log on UNIX
and NMSROOT\log on Windows (see the“About the CWCS Top-Level Runtime Directories” section on
page 3-1). Nearly all CWCS components write their activity logs there. Paths to log files other than those
in the normal log directories are shown in the table relative to NMSROOT on each platform (e.g.: The
path to license.log is \Program Files\CSCOpx on Windows, /var/opt/CSCOpx/ on Solaris.).

OGS /MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

log4j-ogs.properties OGS logging properties for log4j

/MDC/tomcat/webapps/cwhp/W
EB-INF/classes/

OGSClient.properties,
OGSServer.properties,
SharedGroups.properties

OGS runtime configuration

/MDC/tomcat/webapps/cwhp/W
EB-INF/resources

OgsProviderGroup.properties Provider Group Name change
feature configuration

/lib/classpath/com/cisco/nm/cmf
/dbi/

dbi.properties, deldev.properties OGS group structure, device
deletion

PSU /lib/classpath/com/cisco/nm/xm
s/psu/conf/

log4j-psu.properties,
psu.properties, tag.properties

PSU runtime and logging
properties

Security /www/classpath/com/cisco/nm/c
mf/security/jaas/

Twofish.properties TwoFish encryption
configuration

Visibroker /etc/ Orb.properties Basic Visibroker ORBconfig

/lib/jre141/lib/endorsed/com/inp
rise/vbroker (and subdirectories)

Various Security, events, HIOP,
messages, names support for
Visibroker

/lib/jre141/lib/images/cursors/ Various JRE 1.4.1 cursor support for
Visibroker

/www/classpath/com/inprise/vbr
oker/

Various Visibroker support

Web Services /MDC/tomcat/webapps/cwhp/W
EB-INF/resources/work/

modules.properties
<could not find this file in the
directory structure>

Tomcat worker configuration

<These property
files are not
documented above>

/conf backup.properties,
log4j-smtp.properties,
/cam/acsmap.properties

/lib/classpath/com/cisco/nm/util cstm-registry-view.properties

/lib/classpath/com/cisco/nm/xm
s/vds

vds.properties

/MDC/tomcat/conf shared.properties

/MDC/tomcat/webapps/cwhp/W
EB-INF/classes

trans.properties

Table 3-5 CWCS Property Files (continued)

 Component Directory Path(s) File(s) Description
3-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Log Files
Table 3-6 CWCS Log Files

Component
/Module Directory Path File Description

Backup and
Restore

/MDC/tomcat/vms/maas/Data CLIBackup.log Core-based backup logs
(command-line interface)

/MDC/etc/backup-restore/debug-log BackupServerDebugOut.txt,
RestoreServerDebugOut.txt

Core-based backup and
restore debug logs

Normal top-level log directories dbbackup.log,
restorebackup.log

CMF-based backup and
restore logs

Core Admin
Module (CAM)

/MDC/log/ core* Logs for Authentication,
Authorization and
Accounting process

CRMLogger Normal top-level Windows log directory
only

sys log.log Syslogs received from
device/machine. Windows
only.

Normal top-level Windows log directory
only

syslog_debug.log CRMLogger debugging
information and messages
from device/machine.
Windows only.

CWCS General Normal top-level log directories error.log General CWCS errors

Normal top-level log directories perlerr.log Perl interpreter errors

Normal top-level log directories Proxy.log Proxy activity

Normal top-level log directories event.log CWCS events

Normal top-level Solaris log directory only daemons.log All Daemon
Manager-controlled
processes. Solaris only.

Database
Services

/databases/cmf/ cmf.log Database access.

Normal top-level log directories CmfDbMonitor.log Sybase database operations

Normal top-level log directories dbpwdChange.log Database password
changes

Normal top-level log directories dmgtDbg.log Daemon Manager
interactions with Sybase
database

/objects/db/win32/ dbcond8.log Database condition log

DCR Normal top-level log directories dcr.log DCR log

DCR Import
Export

Normal top-level log directories dcrimpexp.log,
DCRServer.log (Windows
Only),
daemons.log (Solaris Only)

DiskWatcher Normal top-level log directories diskWatcher.log DiskWatcher warnings

EDS Normal top-level log directories EDS-GCF.log, EDS.log All EDS activity

ESS Normal top-level log directories ESS.log, JavaDebug.log All ESS activity
3-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Log Files
JRM Normal top-level Windows log directory
only

jrm.log JRM server activity on
Windows only

Licensing APIs Normal top-level log directories LicenseServer.log License Server activity

Normal top-level log directories license.log Product license changes

LWMS Normal top-level log directories lwms.log Lightweight Messaging
Service activity

OGS Normal top-level log directories OGSClient.log
CMFOGSClient.log

OGS client module log

Normal top-level log directories CMFOGSServer.log OGSServer log (CWCS
OGS Server only)

PSU /lib/classpath/com/cicso/nm/xms/psu/conf/ psu.log All PSU activity

Visibroker Normal top-level Windows log directory
only

RmeGatekeeper.log RME Gatekeeper activity
from Visibroker vorb
package. Windows only

Web Services /MDC/Apache/logs/ access.log, error.log,
mod_jk.log, ssl.log

All Apache activity

/MDC/tomcat/logs/ jasper-YYYYMMDD.log,
servlet-YYYYMMDD.log,
stderr.log, stdout.log,

All Tomcat activities

Normal top-level log directories changeport.log Port change information

<List of other
logs that are not
documented>

dbupdate.log

CSRegistryServer.log

dcmaservice.log

deviceselector.log

EDS-TR.log

TomCatMonitor.log

Table 3-6 CWCS Log Files (continued)

Component
/Module Directory Path File Description
3-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 3 Understanding the CWCS Directory Structure
About CWCS Log Files
3-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 4

Understanding the CWCS Execution Environment

The following topics describe the CWCS execution environment and provide guidelines for creating
applications to run in this environment:

 • Understanding the Java Application Launch Process

 • Launching a Java Application

 • Using Servlets and JSPs with Tomcat

 • Using JavaBeans

Note As of this release, CWCS has dropped all support for Macromedia JRun/JSP. JRun is no longer included
in any version of the CWCS distribution.

Understanding the Java Application Launch Process
The CWCS Java runtime environment is similar to the standard Java2 environment, with the following
exceptions:

 • The bootstrap class path contains a Visibroker ORB implementation followed by standard JRE2
classes. This ensures that the VisBroker classes will be used to implement ORB.

 • The com.cisco.nm.cw2000.home system property is defined and points to the location of the CWCS
installation root.

 • The default user class path contains the CWCS server class hierarchy (lib/classpath) and the CWCS
client class hierarchy (www/classpath).

 • The current working directory is set to the CWCS installation root.

 • On UNIX platforms, the path for JNI code (the value of the LD_LIBRARY_PATH variable for
Solaris, and so on) contains the CWCS shared objects directory library.

 • On Windows platforms, it is assumed that cwjava resides in the same directory as the CWCS JNI
DLLs.

 • CWCS supports two JRE versions on the server side: 1.3.1_06 and 1.4.2_10. Version 1.4.2_10 is
available under NMSROOT/lib/jre. Version 1.3.1_06 is available under NMSROOT/MDC/jre.
4-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 4 Understanding the CWCS Execution Environment
Launching a Java Application
When cwjava launches a Java application in the CWCS runtime environment, it performs these
functions:

1. Sets CW2000 to the CWCS installation directory. The default value is the value of the NMSROOT
environment variable. To override the default, use the -cw option (see the “Launching a Java
Application” section on page 4-2).

2. Sets JRE to the Java Runtime Environment root directory. By default, it is NMSROOT/MDC/jre
(which means cwjava uses JRE 1.3.1_06 by default). To override the default, use the -cw:jre option.

3. Sets VB to the VisiBroker ORB path. By default, the path is

CW2000/www/classpath/vbjapp.jar:CW2000/www/classpath/vbjorb.jar.

To override the default, use the -cw:vb option.

4. Sets the value of com.cisco.nm.cw2000.home system property to CW2000.

5. Sets the current directory to the value of the -wd option. If -wd is omitted, it sets the current
directory to CW2000.

6. Processes the rest of the options as standard Java and launches the interpreter.

7. The following ORB options are automatically added by cwjava. You need not specify these in the
command line.

 – -Dorg.omg.CORBA.ORBClass=com.inprise.vbroker.orb.ORB

 – -Dorg.omg.CORBA.ORBSingletonClass=com.inprise.vbroker.orb.
ORBSingleton

 – -Djavax.rmi.CORBA.StubClass=com.inprise.vbroker.rmi.CORBA.
StubImpl

 – -Djavax.rmi.CORBA.UtilClass=com.inprise.vbroker.rmi.CORBA.
UtilImpl

 – -Djavax.rmi.PortableRemoteObjectClass=com.inprise.vbroker.
rmi.PortableRemoteObjectImpl

Launching a Java Application
Use this syntax to launch a Java application:

cwjava [options] class [argument ...]

cwjava [options] –jar file.jar [argument ...]

If the -jar option is specified, the first non-option argument is the name of the JAR archive containing
class and resource files for the application. The startup class is indicated by the Main-Class manifest
header.
4-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 4 Understanding the CWCS Execution Environment
Launching a Java Application
Table 4-1 summarizes the command line options that modify the runtime environment.

Table 4-1 cwjava Command Line Options

Option Description

-cw dir Sets the CiscoWorks installation directory to dir.

-cw:jre dir Sets the JRE directory root to dir. This directory should contain the standard hierarchy of JRE
files—the interpreter in the dir/bin and standard classes in the dir/lib. If the path name is not
absolute, it is relative to the CWCS Server installation directory. For example: cwjava -cw:jre
NMSROOT/MDC/jre.

-cw:vb vbfile The path containing VisiBroker library. Elements can be directories or JAR files. All non-absolute
elements are relative to the CWCS Server installation directory.

-cw:nojit

-cw:jit

Disables/enables the just-in-time (JIT) compiler. Unless the -Xdebug option is present, the JIT
compiler is enabled by default.

-cw:xrs This new option is applicable on Windows platforms only. It forces CWCS to ignore the
CTRL_LOGOFF_EVENT only. Use this option if:

 • Your application specifies JRE 1.3 or above, via the -cw:jre option.

 • The application runs as a Windows service.

 • The service aborts when a Windows user on the CiscoWorks Server logs off from the machine.

This option is a subset of the Java -Xrs option in its current definition. Use it instead of the Java -Xrs
option. If you use Java -Xrs, it will ignore other events and signals in addition to
CTRL_LOGOFF_EVENT. This will cause Ctrl-Break thread dumps to be unavailable, and will
force your code to be responsible for causing shutdown hooks to run.

-wd workingdir Sets the current directory to workingdir before launching the interpreter. All non-absolute elements
are relative to the CWCS Server installation directory.

-cp:a classpath

-cp:p classpath

Prepends/appends classpath to the class path. All non-absolute elements are relative to the CWCS
Server installation directory. These two options cannot be specified at the same time.

-cp:amf manifest_file

-cp:pmf manifest_file

Prepends/appends Manifest file containing directories, zip or jar files to the class path. All non-absolute
elements are relative to the CWCS Server installation directory. These two options cannot be
specified at the same time.

-classpath classpath

-cp classpath

Sets class path to classpath. All non-absolute elements are relative to the CWCS Server installation
directory.

-?

-help

Displays help information and exits.

-version Displays version information and exits.
4-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 4 Understanding the CWCS Execution Environment
Launching a Java Application
Table 4-2 summarizes the options that cwjava processes in the same manner as the Java tool from JRE2.

Table 4-2 cwjava JRE2 Options

Option Description

-Dproperty=value Sets a system property value.

-jar Runs a program encapsulated in a JAR file. The first argument is the name of a ‘JAR file
instead of a startup class name. For this option to work, the manifest of the JAR file must
contain a line of the form Main-Class: classname. Here, classname identifies the class
that contains this method, which serves as your application's starting point:

public static void main(String[] args)

When you use this option, the JAR file is the source of all user classes, and other user
class path settings are ignored.

-verbose

-verbose:class

Displays information about each class that is loaded.

-verbose:gc Reports on each garbage collection event.

-verbose:jni Reports information about the use of native methods and other Java Native Interface
activity.

-Xbootclasspath:bootclasspath Specifies a list of directories, JAR archives, and ZIP archives to search for boot class files.
These are used in place of the boot class files included in the JDK 1.2 software. Use with
care.

-Xdebug Starts with the debugger enabled. This option automatically disables JIT. The Java
interpreter prints out a password for jdb’s use.

-Xnoclassgc Disables class garbage collection.

-Xmsn Specifies the initial size of the memory allocation pool. This value must greater than
1000:

 • To multiply the value by 1000, append the letter k.

 • To multiply the value by 1 million, append the letter m.

The default value is 1m.

-Xmxn Specifies the maximum size of the memory allocation pool. This value must greater than
1000:

 • To multiply the value by 1000, append the letter k.

 • To multiply the value by 1 million, append the letter m.

The default value is 64m.

-Xrunhprof{:help |
:suboption=value,...}

Enables CPU, heap, or monitor profiling. This option is typically followed by a list of
comma-separated suboption=value pairs. Run this command to obtain a list of suboptions
and their default values:

cwjava -Xrunhprof:help

-Xrs Reduces the use of operating system signals.

-Xcheck:jni Performs additional checks for Java Native Interface (JNI) functions.

-X Prints help on java non-standard options
4-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 4 Understanding the CWCS Execution Environment
Using Servlets and JSPs with Tomcat
Using Servlets and JSPs with Tomcat
This version of CWCS ships with Tomcat 4.1.29. This version of Tomcat contains a reference
implementation of the Servlet 2.3 and JSP 1.2 specifications. To execute your Servlets and JSP under the
Tomcat Servlet Engine, please observe the following guidelines.

 • There are no special procedures needed to get Tomcat enabled and working with Apache. CWCS
installs and configures Tomcat and Apache for you.

 • Remember to include the package statement in the servlet code.

 • Before executing your servlets and JSPs, you must register your Servlet Context with the Tomcat
Servlet Engine. CWCS provides the UpdateTomcatMain API to register your servlet context with
Tomcat. During installation, call this API in your package’s post-install code. Calls to the
registration API have the following form:

UpdateTomcatMain(UrlPattern, RelPath, Mapping, AppID, IsUninstall);

Where:

 – URlPattern is the name of your Servlet Context (for example: “MDC/Servlet”). To refer to
"SampleServlet" in this context, you would call
http://server-name:port/MDC/Servlet/SampleServlet

 – RelPath is the document base for this Servlet Context. The path should be a relative path with
respect to the NMSROOT/MDC/tomcat directory (for example: “MDC/maas/servlet”).

 – Mapping is normally an empty string (for example: "").

 – AppID is the name of the application using this context (for example: "core").

 – IsUninstall is a flag indicating whether to add or remove the servlet context. To add the servlet
context, set the value to “false”. To remove it, set the value to “true”.

For example:

To register a typical Servlet Context on Windows:

UpdateTomcatMain("/MAAS/JSP", "vms/maas/JSP", "\"\"", "maas-jsp", "false");

To do the same thing on Solaris:

UpdateTomcatMain "/MAAS/JSP" "vms/maas/JSP" $EMPTY_STRING "maas-jsp" "false" ;

Using JavaBeans
For JavaBean classes used in a JSP file that runs within CWCS, follow these guidelines::

 • Place your JSP files in your webapp directory. The webapp directory needs to be specified while
adding your Servlet Context. The directory is the same as the RelPath value specified when you
call the UpdateTomcatMain API during installation (see the “Using Servlets and JSPs with Tomcat”
section on page 4-5). The RelPath value is a relative path; it must be converted into an absolute path
while placing the JSP.

 • If your application is using the Struts framework or the User Interface Infrastructure (UII), then JSP
files must be placed according to the framework specification.
4-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 4 Understanding the CWCS Execution Environment
Using JavaBeans
 • Place your JavaBean class file under the $WebAppDir/WEB-INF/classes directory. If your JavaBean
is in a JAR file, place it under the $WebAppDir/WEB-INF/lib directory.

 • In jsp:usebean, include the fully qualified classname. For example:

<jsp:useBean id= ‘myBean’ class=‘com.cisco.nm.example.Testbean’ scope=‘page'/>
4-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 5

Getting Started with CWCS

CWCS is a collection of subsystems, execution environments, engines, and shared code libraries. This
collection represents a software platform that provides services to web-based network management
applications. CWCS allows you to:

 • Create custom applications and add them to the desktop navigation tree.

 • Use the CWCS backend services to include additional functionality in your application.

 • Use the CWCS support services to manage your build environment or improve application startup
time.

The following topics provide basic information on how to integrate your applications with CWCS:

 • How CWCS Works

 • Installing CWCS

 • Enabling CWCS Services

 • Interacting with CWCS

How CWCS Works
When you install your application into CWCS, your application:

1. Integrates with the CiscoWorks Home Page (CWHP). CWHP provides:

 • User authentication by means of a single user login.

 • Launch points for tasks, tools and administrative interfaces, including other CWCS-based and
third-party applications.

 • Navigation between components in a suite of applications.

 • Registration of third-party applications not built with CWCS.

Note CWHP can be accessed using both Netscape and Microsoft Internet Explorer browsers.

2. Enables any necessary CWCS service layers (system, network, and core layers). For more
information about enabling CWCS service bundles, see the “Enabling CWCS Services” section on
page 5-3.

When you enable the system layer, remember that you are enabling only a specific service subset.
The only elements of the system layer that are documented in the SDK are the JRM and the database
engine.
5-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Installing CWCS
3. Integrates with the CWCS Daemon Manager (also known as the Process Manager). Applications and
CWCS backend services rely on the Daemon Manager for:

 • Initial startup following server boot or manual startup.

 • Restarting after a failure.

 • Starting only when the necessary prerequisite programs are up and running.

At runtime, your application can:

 • Perform security verifications.

 • Use other CWCS services as needed.

All interactions between CWHP and application services pass through the web server. Typically, clients
interact with the server using a URL, which points to a servlet or web application, or a static web page.
To add your application to CWCS, see the “Integrating Your Application with CWHP” section on
page 7-6.

Installing CWCS
To start working with the CWCS code, you must install Common Services 3.0.5. The prerequisite for
Common Services 3.0.5 is Common Services 3.0.3.

Use the CiscoWorks Common Services 3.0.3 (Includes CiscoView) Installation CD (commonly known
as “CD One”). This CD contains the base Common Services software, CiscoView and the Integration
Utility. This CD is commonly known as the CWCS “CD One” edition because it replaces the previous
CD One, which included CMF and CiscoView CWCS installation disk. All CiscoWorks applications
require the installation.

When you install, you must select one or more of the following three installation options:

1. CiscoWorks Common Services (CWCS): Installs CWCS, which including md, perl, xml4j, hlp, xsl,
web, tomcat, xrts, cam, jext, jcht, snmp, jgl and jre2.

2. CiscoView: Installs both CiscoView and Common Services.

3. Integration Utility: Installs the Integration Utility (formerly known as the Network Management
Integration Module, or NMIM).

Due to software dependencies, you must install option 1 if you install option 2. This selection is enforced
on Windows platforms automatically. On Solaris platforms, you must select each option manually.

After you have installed Common Services 3.0.3, mount the LMS 2.6 CD-ROM to install Common
Services 3.0.5. The LMS 2.6 CD-ROM has the software updates for all applications in the LMS Bundle.

The version of CWCS components included in SDK downloads are intended for developers who want to
create new CWCS-based applications. The downloads usually include only the CWCS base software,
plus source code (per-product SDK downloads will contain only the software and source for that
per-product component).

Related Topics

 • See CWCS Installation Guides:

 – Installation and Setup Guide for CiscoWorks Common Services 3.0.5 (includes CiscoView) on
Solaris.

 – Installation and Setup Guide for CiscoWorks Common Services 3.0.5 (includes CiscoView) on
Windows.
5-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Enabling CWCS Services
 • See Chapter 21, “Using the Installation Framework.”

Enabling CWCS Services
The following topics describe CWCS service bundles and how to use them to access various CWCS
services:

 • Understanding CWCS Service Bundles

 • Using CWCS Service Bundles

 • Registering for CWCS Services

 • Enabling New Service Bundles from the Command Line

 • Using CMFEnable

Understanding CWCS Service Bundles
CWCS services are grouped into the following service bundles:

 • CWCS Base Services: Basic CWCS components necessary to support a web-based application.
These components include the web server, CWCS security, the servlet engine, and JRE.

 • CWCS System Services: CWCS components that add services such as JRM and the database engine.

 • CWCS Network Services: CWCS components that enable ANI discovery and other network
services.

Note The Network Services layer is provided for backward compatibility with older applications
that require network services. ANI has been deprecated and is not included in CWCS 3.0.
Next Generation Discovery is available on a per-product basis as an ANI replacement. For
information, see the SDK Developer’s Guide for Next Generation Discovery 1.0,
EDCS-368448.

 • CWCS Core Services: CWCS components that enable VPN and security administration and the
TIBCO events engine.

At installation, the installation framework makes a call to the CWCS service bundles enabling
mechanism, CMFEnable (see the “Using CMFEnable” section on page 5-5). This call provides
CMFEnable with the list of CWCS service bundles required by the application suites that are being
installed. Note that these service bundles exist to support an always-installed/running-as-needed service
model. Applications that do not require all services can avoid wasting CPU cycles on them.

Using CWCS Service Bundles
The following are some tips you can use while working with CWCS services:

 • The CWCS Base Services are enabled by default; no explicit request for this bundle is required.

 • Network service bundles include System service bundles. If you enable Network services, all
System service bundles are also enabled.
5-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Eng/ENM/CMF/Common_Discovery/ngd10sdk.pdf@latest

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Enabling CWCS Services
 • If your application needs a system or network service, then you must register the required service
layer. For example, if your application needs the Sybase engine, then your application will need to
register the system services layer of CWCS. This layer may contain many other services that you do
not need, but you must register that layer to get any services from that layer (see the “Registering
for CWCS Services” section on page 5-4).

 • Application suites that have not registered for a CWCS service bundle at install time can use the
CWCS service bundles enabling mechanism, CMFEnable, to enable CWCS service bundles (see the
“Enabling New Service Bundles from the Command Line” section on page 5-5).

 • When a bundle is enabled, it remains enabled until

 – A bundle or suite that enabled those CWCS service bundles is uninstalled.

 – A service bundle is manually disabled using CMFEnable.pl

 • Note that installation of other products can reset the service registrations back to those registered
for a suite of applications installed on the service.

Registering for CWCS Services
At installation, use the packaging information file to register for CWCS service bundles.

To register for a service bundle at installation:

Step 1 Edit the tag.pkgpr file in the /install directory. This file is described in the “Getting Started with the
Installation Framework” section on page 21-4.

Step 2 Add a line that contains the CMFSERVICES keyword. This keyword has the valid token values System,
Network, and Core. For example:

 • The Campus Manager file includes the line:

CMFSERVICES=Network,System

Multiple tokens must be separated by a comma; spaces are not allowed.

 • The SLM file includes the line:

CMFSERVICES=System

 • If you are registering an MC application that requires explicity registration of Core services, the file
includes the line:

CMFSERVICES=Core

Note The following MC applications do not require explicit registration of the Core service layer:
PIXMC, QPM, IOSMDC, Router MC, IDSCFG, IDSMON, and AutoUpdate. If one of these
applications is installed and registered with the Core Client Registry, the CMFSERVICES line will
include a Core value.

Related Topics

 • Understanding CWCS Service Bundles, page 5-3

 • Adding Your Application to the CiscoWorks Home Page, page 5-8
5-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Enabling CWCS Services
Enabling New Service Bundles from the Command Line
Application suites that have not registered for a CWCS service bundle at the time of installation must
shut down both CWCS and all application services before enabling new CWCS services.

For example, to access the CWCS database engine service, you must enable the CWCS System Services
bundle. To start the System Services manually:

Step 1 Stop the Daemon Manager:

 • On a Solaris platform, enter:

/etc/init.d/dmgtd stop

 • On a Windows 2000 or Windows NT platform, enter:

net stop crmdmgtd

Step 2 Start the CWCS System Services bundle:

NMSROOT/bin/perl NMSROOT/conf/cmf/bin/CMFEnable.pl -FORCE system

where NMSROOT is the directory in which the product was installed.

Step 3 Start the Daemon Manager:

 • On a Solaris platform, enter:

/etc/init.d/dmgtd start

 • On a Windows platform, enter:

net start crmdmgtd

Step 4 In this example, to be sure that you have access to the CWCS database engine service, verify that the
CmfDbEngine and CmfDbMonitor processes are running:

NMSROOT/bin/pdshow

where NMSROOT is the directory in which the product was installed.

Caution If you start system services, you also disable network services. Also note that enabled service bundles
may be reset if you install a new product on the server.

Related Topics

 • Understanding CWCS Service Bundles, page 5-3

 • Using CMFEnable, page 5-5

Using CMFEnable
The CMFEnable Perl script enables CWCS service bundles. This script is used at install time and is also
available from the command line. For more information about services bundles, see the “Understanding
CWCS Service Bundles” section on page 5-3.
5-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Enabling CWCS Services
If CMFEnable finds that the Daemon Manager is still active, it displays a warning message which
contains the command the user must enter to shutdown the Daemon Manager. CMFEnable aborts after
displaying this warning message.

Caution If you start system services, you also disable network services.

For example, consider this installation model:

Step 1 Install CWCS.

Step 2 Then install Essentials.

Step 3 Then other applications.

Name CMFEnable.pl

Description Enables CMF service bundles

Syntax
 NMSROOT/lib/perl/install NMSROOT/conf/cmf/bin/CMFEnable.pl
{-FORCE|-INSTALL|-CURRENT} [arg1]

Syntax
Arguments

Name Description

force Enables a service bundle without verifying the system
configuration.

install Forecasts the packages to be installed. This information
is used by the installation facility.

current Enables and disables service bundles based on the
current system configuration.

arg1 • arg1 is a token of comma-separated service bundle
names.

 • With -force, if arg1 is missing, all services are
disabled.

 • Valid service bundle names are Network and
System.

 • No spaces are allowed in the token.

Output

0 Success

Non-zero Failure. Values >0 may contain other interesting
information depending on the routine.

Examples

 • To have ANI running, but not install the Campus Manager software to get this
functionality, use the following command to enable ANI services:

${NMSROOT}/conf/cmf/bin/CMFEnable.pl -INSTALL Network

 • To enable the database without ANI, use the following command to enable System
services:

${NMSROOT}/conf/cmf/bin/CMFEnable.pl -INSTALL System
5-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Interacting with CWCS
The INSTALL option is used to enable the service bundles before the Essentials packages are copied to
the system.

This CURRENT option is called by the installation framework after all packages are installed on the
system. The *.info files for all packages are examined to determine the required service bundles (System
or Network), and the corresponding action (enable or disable) is performed. For example:

 • If Network is required and the previous setup is System, then Network is enabled.

 • If none is required and the previous setup is System, then System is disabled.

Related Topics

Specifying Package Properties, page 21-6

Interacting with CWCS
The following topics describe the ways you and your application can interact with CWCS:

 • Designing the User Interface

 • Adding Your Application to the CiscoWorks Home Page

 • Using the Backend Services on the CWCS Server

 • Using the CWCS Support Tools

 • Getting Up to Speed Quickly

Designing the User Interface
Your application interface must present a consistent look and feel to the user. To help you achieve that
goal, CWCS supports the User Interface Infrastructure (UII). The CWCS team recommends that you use
the latest release of the User Interface Infrastructure (UII) to build your application interface. Version
6.1 and later of this UII are compatible with CWCS 3.0, and are available for download at http://picasso.

If you cannot use the UII, be aware that:

 • Many CWCS 3.0 features, such as the CiscoWorks Home Page, depend on the UII for effective
implementation. Implementing them without UII can be done, but is difficult, and should be
undertaken in consultation with the CWCS team.

 • Your interface should attempt to follow the User Experience guidelines, which are standard for
Cisco network managment applications, and useful for any application developer trying to write
intuitive, learnable, and usable user interfaces. The Guidelines are also available at http://picasso.
5-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://picasso
http://picasso

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Interacting with CWCS
Adding Your Application to the CiscoWorks Home Page
The CiscoWorks Home Page (CWHP) allows users to navigate between components in a suite of
applications, and serves as the launch point for both CWCS-based and third-party applications. To
integrate your application with the CWHP, start by learning more about the CWHP support files and
processes:

 • To understand how your application will launch, see Chapter 4, “Understanding the CWCS
Execution Environment.”

 • To determine where your application and tasks will appear, see Chapter 7, “Using the CiscoWorks
Home Page.”

 • To determine what user roles will be able to access your application tasks and ensure that users
authenticate before using your application, see Chapter 10, “Using the Security System.”

 • To determine how you will provide online help to your users, see Chapter 16, “Adding Online Help.”

Using the Backend Services on the CWCS Server
You can use the following backend services to add additional functionality to your application:

 • The Daemon Manager (also known as the Process Manager) ensures that your application handles
its own processes, as well as other CWCS-based processes, efficiently. It provides the following
services:

 – Initial startup following server boot or manual startup.

 – Restarting after a failure.

 – Starting only when the necessary prerequisite programs are up and running.

The Daemon Manager also includes the cwjava command, which provides a controlled daemon
environment for CWCS-based Java server applications. For more information about the Process
Manager, see Chapter 17, “Using the Daemon Manager.”

 • The CWCS database engine and management tools store data used by your application, including
license data, and provide backup and restore functions. For more information about data storage ,
see Chapter 11, “Using the Database APIs.” For more information about the backup and restore
functions, see Chapter 12, “Using Backup and Restore.” For more information about licenses, see
Chapter 34, “Using the Licensing APIs.”

 • Event Services Software (ESS) provides an XML-based, publish/subscribe messaging service
between client desktops and the CWCS Server. It replaces the Event Distribution Service (EDS). For
more information about the ESS, see Chapter 19, “Using Event Services Software.” (If you are still
using EDS, see Chapter 20, “Using the Event Distribution System,”)

 • Applications that use Job and Resource Management services can schedule an activity (a job) to
occur under several conditions ,including launch readiness, scheduling options, resource locks, and
event notification. For more information about the Job and Resource Manager, see Chapter 18,
“Using the Job and Resource Manager.”

 • CWCS also supplies backend tools to add specialized capabilities to your application:

 – A generic Object Grouping Service to help you group any kind of data item, from user IDs to
devices, into hierarchical picklists in your application. For more information on this service, see
Chapter 30, “Using Object Grouping Services.”

 – A fully distributed interprocess communication service called CSTM. For more information on
CSTM, see Chapter 31, “Using the Common Services Transport Mechanism”
5-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Interacting with CWCS
Using the CWCS Support Tools
Additional CWCS support services include installation tools, Java Plug-ins, and support utilities:

 • The installation framework tools are free and can save your team time. Using them:

 – Allows you to consider dependencies and features such as uninstallation, thus making it easier
for your package to work like other network management packages.

 – Helps you ensure that prerequisites, such as version dependencies, are set and followed.

For more information about this framework, see Chapter 21, “Using the Installation Framework.”

 • To improve applet startup time and reduce the time required to download class files into the browser
for each page, the Java Plug-in loads the following files locally on the client machine:

 – Java classes

 – Third-party libraries (such as JGL and Swing)

 – Images

 – Data files

For more information about the Java plug-in, see Chapter 22, “Using the Java Plug-in.”

 • CWCS provides support utilities to speed the process of customer problem resolution. For more
information about these utilities, see Chapter 23, “Using the Diagnostic and Support Utilities.”

Getting Up to Speed Quickly
CWCS represents a fairly extensive set of tools. Each engineer who is new to it will need time to match
its capabilities against application requirements .

If CWCS is completely new to you, here is one reliable path to getting oriented quickly:

1. Start by install CD One as indicated in this chapter. Then open your browser, and get to know
CWCS.

2. Read chapter 10 and get to know your security options.

3. Read chapter 32 to understand what the licensing APIs offer.

4. Skip around as needed until you feel you understand the basic CWCS design: A loosely coupled web
infrastructure with built-in security, database, and administration capabilities, and some network
features (such as discovery and device grouping) added in.

5. Begin planning your application, bearing in mind that it:

a. Should be implemented as a web application that plugs into the CWCS environment.

b. Must use some form of login and security.

c. Must use some form of licensing.

d. Should implement the User Interface Infrastructure, but must follow User Experience standards.
UII is an easy way to implement UE. But in any case, CWCS is intended to support application
suites, and customers expect to have a common user experience across applications.

6. Choose the other CWCS features you want to implement – database, backup and restore, the ESS
event bus, JRM, etc. -- as needed. Keep in mind the service bundles you will need, because some
services will run only if your application registers for the corresponding bundles.
5-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 5 Getting Started with CWCS
Interacting with CWCS
5-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL
P A R T 1

About CWCS Shared Services

CISCO CONF IDENT IAL

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 6

Using Shared Services

Shared Services are the foundation of every application based on CiscoWorks Common Services
(CWCS). They are shared among all the applications installed on a single server, and include all of the
essential components of Common Services.

The following topics explain Shared Services and their supporting components:

 • Understanding Shared Services

 • About the Shared Services Components

Understanding Shared Services
Shared Services form the foundation of the CiscoWorks family of network management products. By
“foundation”, we mean the complete set of essential services sufficient to meet basic feature
requirements of all CiscoWorks network management applications, regardless of application subject
area. Table 6-1 list these feature requirements and the Shared Services designed to meet them.

As the foundation of the CiscoWorks product family, Shared Services are part of every CiscoWorks
application (for example, Resource Manager Essentials, Campus Manager) and application bundle (for
example, LMS, VMS, ITEM, SNMS). All CWCS-supported applications installed on a single server
share the same set of Shared Services.

Because they are shared in this way, you cannot choose which Shared Services to install with your
application. You must install all of them. Your application installation must be intelligent enough to
detect whether these Shared Services are already installed on a target server before your application is
installed. If Shared Services do not yet exist on the target service, areyour application install must stop
and prompt the user to install CWCS first. If Shared Services are installed, your application installation
must not attempt to install them again.

Shared Services are included in the standard CWCS release train distribution. Unlike Per-Product
Services (see Chapter 29, “Using Per-Product Services”) they are not provided as part of the “open
source” (CWCS-SRC) distribution.
6-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
Understanding Shared Services
Table 6-1 Shared Services: Feature Requirements and Services Map

Category Requirement Description Shared Service

Devices Management Add, import, export, delete, and
synchronize devices

Device List and Credentials Repository (DCR). See the
“About the Device List and Credentials Repository (DCR)
Components” section on page 6-9.

Credentials Store and share device
credentials

Device List and Credentials Repository (DCR). See the
“About the Device List and Credentials Repository (DCR)
Components” section on page 6-9.

Lists Maintain and share device lists Device List and Credentials Repository (DCR). See the
“About the Device List and Credentials Repository (DCR)
Components” section on page 6-9.

Security AAA-ACS and
AAA-Non-ACS

AAA-secure interaction using
ACS or non-ACS servers

MICE/CAM components in the Security System. See the
“About the Security System Components” section on
page 6-7.

HTML Login Fast, lightweight, secure user
login

HTML-based user login screen (replaces the CMF applet).
See the “About the Security System Components” section
on page 6-7.

User Session Pass user session inform across
Tomcast engine sessions.

MICE component from Core supports session
management across different servlet engines. See the
“About the Security System Components” section on
page 6-7.

Key Encryption Encryption, key generation and
agreement, Message
Authentication Code (MAC)

Supported using Java Cryptography Extension (JCE). See
the “About the Security System Components” section on
page 6-7.

SNMP v3 support User keyauthentication per
device, encrypted
communications

Supports authNoPriv mode only. See the “About the
Security System Components” section on page 6-7.

Certificates Manage and store SSL, Java
and PKI certificates

See the “About the Security System Components” section
on page 6-7.

Database
Encryption

Secure and encrypt database,
including DB admin user name
and password.

Supported using Sybase version 8 features. See the “About
the Database Components” section on page 6-8.

MSP
Administration
role

Enable partitioning of customer
networks by device group

Supported using the MSP Admin role. See the “About the
Security System Components” section on page 6-7.

Graphic
User
Interface

CWHP Launch point for all
applications.

CiscoWorks Home Page now provides complete GUI
support, with integration down to the task level for
applications that are fully UII-compliant, as explained in
“About the CiscoWorks Home Page Component” section
on page 6-5.
6-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
Understanding Shared Services
Operations Process
Management

Control process startup and
shutdown.

See the “About the Daemon Manager Component” section
on page 6-12.

Job Scheduling Schedule and manage
scheduled jobs and processes.

Also provides resource locking. See the “About the Job
and Resource Manager (JRM) Component” section on
page 6-13.

Backup/Restore Backup and restore data and
processes.

See the “About the Backup and Restore Components”
section on page 6-8.

Application
Registry

Register installed applications
and configurations, check
runtime dependencies

See the “About the Core Client Registry (CCR)
Component” section on page 6-10.

Message
Cataloging

Log activity and errors See the “About Diagnostic and Support Components”
section on page 6-14.

Diagnostics Diagnose problems. See the “About Diagnostic and Support Components”
section on page 6-14.

Connectivity
Tools

Utilities for diagnosing
connectivity problems (e.g.,
Ping, Traceroute, NS Lookup)

See the “About Diagnostic and Support Components”
section on page 6-14.

Configuration
Management

Manage application
configurations.

See the “About the Core Client Registry (CCR)
Component” section on page 6-10.

Packaging and
Installation

Package and install
applications from a single CD
or set of CDs.

See the “About the Installation Framework Component”
section on page 6-14.

Integration Allow CWCS applications to
integrate with other network
management applications

See the “About the Cisco Management Integration Center
(CMIC) Component” section on page 6-6.

Resource locking Lock in-use processing
resources

Provided by JRM . See the “About the Job and Resource
Manager (JRM) Component” section on page 6-13

Headroom
monitoring

Monitor free system resources. Provided by JRM and CWCS Diskwatcher. See the “About
the Job and Resource Manager (JRM) Component” section
on page 6-13.

Table 6-1 Shared Services: Feature Requirements and Services Map

Category Requirement Description Shared Service
6-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Shared Services Components
The following topics provide basic information for each of the Shared Services components:

 • About the CiscoWorks Home Page Component

 • About Web Server and Servlet Engine Components

 • About the Cisco Management Integration Center (CMIC) Component

 • About the Security System Components

 • About the Database Components

 • About the Backup and Restore Components

 • About the Device List and Credentials Repository (DCR) Components

 • About the Core Client Registry (CCR) Component

 • About the Core Logging Component

 • About the Online Help Component

 • About the Daemon Manager Component

 • About the Job and Resource Manager (JRM) Component

 • About the Event Services Software (ESS) Component

 • About the Event Distribution System (EDS) Component

Other Database Basic application data storage. Sybase database with SQLAnywhere. See the “About the
Database Components” section on page 6-8.

Database
Administration

Start and stop Database
engines.

Does not provide database administration. See the “About
the Database Components” section on page 6-8.

Messaging Java messaging capability,
communicate events and
event-related notifications.

Provided on top of the Tibco event engine that is part of
ESS. See the “About the Event Services Software (ESS)
Component” section on page 6-13.

Web Server with
SSL Support

Standard web server for all
applications.

Apache is the standard. See the “About Web Server and
Servlet Engine Components” section on page 6-6.

Servlet Engine Supports Tomcat. See the “About Web Server and Servlet Engine
Components” section on page 6-6.

Secure Shell
(SSH)

Support for Secure Shell See the “About Web Server and Servlet Engine
Components” section on page 6-6.

IPSec IPSecPole support for
Core-based applications.

See the “About the Security System Components” section
on page 6-7.

NT Services Syslog, TTFP, RSH, and
CRMLogger support for
Windows

See the “About NT Service Components” section on
page 6-15.

Perl Perl interpreter support Perl version 5.00502 is supported throughout.

Online Help Online Help engine and files See the “About the Online Help Component” section on
page 6-12.

Table 6-1 Shared Services: Feature Requirements and Services Map

Category Requirement Description Shared Service
6-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
 • About the Installation Framework Component

 • About the Java Plug-in Component

 • About Diagnostic and Support Components

 • About SNMP Service Components

 • About NT Service Components

 • About Device Center Components

Each topic includes basic information about the component’s purpose and featues, pointers to guidelines
on using it, and a list of packages on which the component has a functional dependency.

For the same information on Per-Product components, see Chapter 29, “Using Per-Product Services”.

About the CiscoWorks Home Page Component
The CiscoWorks Home Page is a replacement for the CWCS Desktop that provides:

 • A lightweight, high-performance Web-based GUI compatible with the Cisco UE/UII standard.

 • Easy access to CiscoWorks applications via a simple, customizable “Home Page”.

 • Launch points for other (non-Cisco, third party, and customer-made) applications.

 • MICE sharing of session data across Tomcat and other web servlet engines.

 • A CMIC application registry.

For guidelines to follow when using CiscoWorks Home Page with your application, see Chapter 7,
“Using the CiscoWorks Home Page”. The CiscoWorks Home Page is functionally dependent on the
packages shown in Table 6-2.

Table 6-2 CiscoWorks Home Page Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjdom/jdom JDOM XML Processing Modules

CSCOlg4j/log4j Log4j Logging Framework

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache Web Server, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxml4j/xml4j IBM XML4J Parser

CSCOxrcs/xerces Apache Xerces XML Parser
6-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About Web Server and Servlet Engine Components
The Web Server and Servlet Engine components provide Web accessibility for all Common Services
components and applications based on them. For guidelines to follow when including Web Services with
your application, see Chapter 7, “Using the CiscoWorks Home Page”. Web Services components are
functionally dependent on the packages shown in Table 6-3.

About the Cisco Management Integration Center (CMIC) Component
CMIC lets installed applications register their task URLs, and discover the task URLs of other
applications installed on the same server. It allows these applications to discover each other and work
together to provide enhanced network management integration functions they cannot provide on their
own. CMIC also provides:

 • An extensive search capability, which makes the CMIC Registry a lookup service for management
tasks available to the user.

 • A UI that allows customers to register applications manually.

For guidelines on using CMIC with your application, see Chapter 9, “Integrating Applications with
CMIC”. CMIC is functionally dependent on the packages shown in Table 6-4 .

CSCOcore/core Core Modules

CSTM Common Services Transport Mechanism

UII User Interface Infrastructure

CSCOcwhp/CWHP CiscoWorks Home Page

CSCOcmic/CMIC Cisco Management Integration Center

Table 6-2 CiscoWorks Home Page Package Dependencies (continued)

Table 6-3 Web Server and Servlet Engine Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjawt/jawt JSCAPE JavaAWT for widgetd

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Apache Web Server, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser
6-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Security System Components
The Security System provides secure logon and user authentication for all applications based on The
Security System is non-hierarchical, session-oriented, and role-based, allowing applications to specify
which of their tasks are visible to each of the user roles. For guidelines to follow when using the Security
System with your application, see Chapter 10, “Using the Security System”. Security System
components are functionally dependent on the packages shown in Table 6-5.

Table 6-4 CMIC Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOlg4j/log4j Log4j Logging Framework

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

CSTM Common Transport Mechanism

UII User Interface Infrastructure

CSCOcwhp/CWHP CiscoWorks Home Page

CSCOcmic/CMIC Cisco Management Integration Center

Table 6-5 Security System Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOcsdb/ccsdb Core Database

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjdom/jdom JDOM XML Processing Modules

CSCOmaas/maas maas Application Administrative Server
6-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Database Components
The CWCS Database components provide APIs and utilities for installing, configuring and managing
custom databases for your application. Among other features, the Database components allow you to set
up and manipulate ODBC data sources, start and stop processes, identify versions, run scripts, and
maintain backup manifests (see the “About the Backup and Restore Components” section on page 6-8).
For guidelines to follow when using Database components with your application, see Chapter 11,
“Using the Database APIs”. Database components are functionally dependent on the packages shown in
Table 6-6.

About the Backup and Restore Components
The Backup and Restore components provide a complete backup and restore function for CWCS-based
applications. For guidelines to follow when including Backup and Restore with your application, see
Chapter 12, “Using Backup and Restore”. Backup and Restore features are functionally dependent on
the packages shown in Table 6-7.

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

IPSEC Windows IPSecPol Tool (exe and dlls)

Table 6-5 Security System Package Dependencies (continued)

Table 6-6 Database Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser
6-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Device List and Credentials Repository (DCR) Components
The DCR provides a common repository for CiscoWorks-based applications to share lists of managed
devices andtheir credentials. DCR:

 • Eliminates redundant storage of this information.

 • Reduces the need for application users to perform redundant maintenance operations when devices
and credentials change.

 • Provides a a central place where users add or import new devices

 • Provides for application management of this data automatically.

To use DCR with your application, see Chapter 14, “Using the Device Credentials Repository”. DCR is
functionally dependent on the packages shown in Table 6-8.

Table 6-7 Backup and Restore Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOcsdb/ccsdb Core Database

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjdom/jdom JDOM XML Processing Modules

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmaas/maas maas Application Administrative Server

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

Table 6-8 DCR Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files
6-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Core Client Registry (CCR) Component
CCR is the client registry component used by Core-based applications . It manages the installation,
upgrade, patching and uninstall of Multiple Device Contoller (MDC) modules and the Core module
itself. To use CCR with your application, see Chapter 13, “Using the Core Client Registry”. CCR is
functionally dependent on the packages shown in Table 6-9.

CSCOcsdb/ccsdb Core Database

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjpwr/jpwr JSCAPE Power Search Classes

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOjrm/jrm Job and Resource Manager

CSCOlg4j/log4j Log4j Logging Framework

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

CSTM Common Services Transport Mechanism

UII User Interface Infrastructure

CSCOcmic/CMIC Cisco Management Integration Center

Table 6-8 DCR Package Dependencies (continued)

Table 6-9 CCR Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

CSCOcsdb/ccsdb Core Database

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjdom/jdom JDOM XML Processing Modules

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmaas/maas MAAS Application Administrative Server

CSCOmd/dmgt Daemon Manager (Process Manager)
6-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Core Logging Component
The Core Logging API allows both the Core applicatios (such as Multiple Device Controllers) log error,
audit and application activity messages to a single file, from both C++ and Java applications. It is
intended for use with the Core Client Registry (CCR), which maintains information on log accessibility
and location (see the “About the Core Client Registry (CCR) Component” section on page 6-10). For
guidelines to follow when including Core Logging with your application, see Chapter 15, “Using the
Core Logging API”. The Core Logging API is functionally dependent on the packages shown in
Table 6-10.

CSCOperl/perl Perl Support

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

Table 6-9 CCR Package Dependencies (continued)

Table 6-10 Core Logging Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

CSCOcsdb/ccsdb Core Database

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjdom/jdom JDOM XML Processing Modules

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmaas/maas maas Application Administrative Server

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser
6-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Online Help Component
The Online Help components provide access to online help for CWCS-based applications. For guidelines
to follow when including Online Help components with your application, see Chapter 16, “Adding
Online Help”. CWCS Online Help is functionally dependent on the packages shown in Table 6-11.

About the Daemon Manager Component
The Daemon Manager (also known as the Process Manager) provides process control for applications
that must:

 • Monitor long-running processes.

 • Restart processes that terminate abnormally.

 • Start dependent processes in proper sequence.

 • Start and control transient processes.

For guidelines to follow when including Daemon Manager with your application, see Chapter 17,
“Using the Daemon Manager”. Daemon Manager is functionally dependent on the packages shown in
Table 6-12.

Table 6-11 Online Help Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOgrid/grid Grid

CSCOhlp/pxhlp CWCS Help (includes help engine)

CSCOhlpDM/cdone CWCS Help Files

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

UII User Interface Infrastructure

CSCOcwhp/CWHP CiscoWorks Home Page

CSCOcmic/CMIC Cisco Management Integration Center

Table 6-12 Daemon Manager Package Dependencies

Package Name Description

CSCOmd/dmgt Daemon Manager (Process Manager)

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail for NT)
6-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Job and Resource Manager (JRM) Component
The JRM provides a general-purpose interface for scheduling application jobs and maintaining a
shareable repository listing of the devices locked by particular jobs.

For guidelines to follow when including JRM with your application, see Chapter 18, “Using the Job and
Resource Manager”. JRM is functionally dependent on the packages shown in Table 6-13.

About the Event Services Software (ESS) Component
ESS is an asynchronous, publish-and-subscribe messaging service providing distributed, loosely
coupled interprocess communications. ESS is the standard CWCS service for event distribution.

The Event Distribution System (EDS; see Chapter 20, “Using the Event Distribution System”) is a
predecessor of ESS. EDS is maintained in Common Services for the convenience of applications using
it. ESS and EDS are disjoint systems and do not work together. EDS has been deprecated in favor of ESS.
EDS support will be withdrawn in a later version of CWCS.

For guidelines to follow when including ESS with your application, see Chapter 19, “Using Event
Services Software”. ESS is functionally dependent on the package CSCOess/ess.

About the Event Distribution System (EDS) Component
EDS provides a means for sending messages from one process to another in a distributed, networked
environment.

EDS is a predecessor of the standard event propogation service in CWCS: Event Services Software
(ESS) (see Chapter 19, “Using Event Services Software”. ESS and EDS are disjoint systems and do not
work together. EDS is also deprecated in favor of ESS. EDS support will be withdrawn in a later version
of CWCS.

For guidelines to follow when including EDS with your application, see Chapter 20, “Using the Event
Distribution System”. EDS is functionally dependent on the package CSCOeds/eds.

Table 6-13 JRM Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOeds/eds Event Distribution System

CSCOjava/java Core JRE 1.3.1 JARs

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOvorb/vorb Visigenics CORBA

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail)
6-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About the Installation Framework Component
The CWCS Installation Framework supplies a complete set of tools for creating full-featured installable
packages, including version- and product- dependency verification, compliance with platform standards
and formats, uninstallation, and patching.

For guidelines to follow when using the Installation Framework with your application, see Chapter 21,
“Using the Installation Framework”. The Installation Framework is functionally dependent on the
packages shown in Table 6-14.

About the Java Plug-in Component
The Java Plug-in is the Sun Microsystems product that allows Java 2 applets on CWCS web pages. This
is a basic enabling technology for all CWCS applications. See Chapter 22, “Using the Java Plug-in” for
specific guidelines to follow when including the Java Plug-in with an application. The Java Plug-in is
functionally dependent on the package CSCOplug/plug.

About Diagnostic and Support Components
CWCS diagnostic and support utilities help customers gather data on CWCS installations and the
applications installed with them. Cisco developers and customer support specialists can use this
information to resolve customer problems quickly. It provides basic tools for collecting CiscoWorks
Server information and packaging this information for delivery to Cisco. This edition of CWCS also
includes tools for diagnosing connectivity issues and maintain log files.

For guidelines to follow when including the Diagnostic and Support tools with your application, see
Chapter 23, “Using the Diagnostic and Support Utilities”. The Diagnostic and Support tools are
functionally dependent on the packages shown in Table 6-15.

Table 6-14 Installation Framework Package Dependencies

Package Name Description

ITOOLS [Windows] CWCS Installation Framework (Windows)

ITOOLS [SOL] CWCS Installation Framework (Solaris)

Table 6-15 Diagnostic and Support Package Dependencies

Package Name Description

CSCOperl/perl Perl Support

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger,
License files, dlls , libs, sync files, tibrv files)

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail)
6-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
About SNMP Service Components
CWCS SNMP Service components provide support for all basic SNMPv1, SNMPv2c, and SNMPv3
functions for both C++ and Java. For guidelines to follow when including SNMP Services components
with your application, see Chapter 24, “Using SNMP Services”. SNMP Services are functionally
dependent on the packages shown in Table 6-5.

About NT Service Components
The NT Service components provide Windows-native support for basic functions like RSH, FTP, and
Syslog. For guidelines to follow when including the NT Service components with your application, see
Chapter 25, “Using NT Services”. NT Services are functionally dependent on the packages shown in
Table 6-17.

About Device Center Components
CWCS Device Center provides a device-centric view for CiscoWorks applications. It provides
device-oriented navigation, and organizes all the application tasks and reports relevant to each device
around that device, making them tools launchable from a single location. Device Center can be started
from the CiscoWorks Home Page or from within an application context.

For guidelines to follow when including Device Center with your application, see Chapter 26, “Using
Device Center”. Device Center is functionally dependent on the packages shown in Table 6-18.

Table 6-16 SNMP Service Package Dependencies

Package Name Description

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOsnmp/snmp Java SNMP APIs

SNMPv3 support SNMPv3 Support (AuthNoPriv mode only)

C++ SNMPv3 library These Net-SNMP libraries are being used by SNMP Set/Walk and the
Management Station To Device Connectivity Tools in Device Center.
Net-SNMP 5.1.1 uses OpenSSL 0.9.7d to calculate MD5/SHA-1 digests.

Table 6-17 NT Service Package Dependencies

Package Name Description

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail)

IPSEC Windows IPSecPol Tool (exe and dlls)

Table 6-18 Device Center Package Dependencies/

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files

CSCOcsdb/ccsdb Core Database

CSCOess/ess Event Services Software (includes Tibco event bus)
6-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 6 Using Shared Services
About the Shared Services Components
CSCOjava/java Core JRE 1.3.1 JARs

CSCOjawt/jawt JSCAPE JavaAWT for widgetd

CSCOjre2/jre2 CWCS JRE 1.2.2

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOsnmp/snmp Java SNMP APIs

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOcore/core Core Modules (includes MDC, MICE, JDOM, CAM, CCR, corelogger, License
files, dlls , libs, sync files, tibrv files)

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail)

IPSEC Windows IPSecPol Tool (exe and dlls)

CSTM Common Services Transport Mechanism

UII User Interface Infrastructure

CSCOcwhp/CWHP CiscoWorks Home Page

CSCOcmic/CMIC Cisco Management Integration Center

CSCOdc/DVCR Device Center

Table 6-18 Device Center Package Dependencies/

Package Name Description
6-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 7

Using the CiscoWorks Home Page

The CiscoWorks Home Page (CWHP) is the user interface for CWCS-based network management
applications. It offers an improved user interface and navigation paradigm for multiple CiscoWorks
applications. It provides:

 • Launch points for local and remote Cisco Works applications and their major functions.

 • Easier navigation between CWHP and the applications presented on CWHP.

 • Support for applications that are based on the User Interface Infrastructure (UII) and that have their
own home pages.

 • Support for Common Services administration.

 • Launch points for external resources, including URLs on Cisco.com, custom tools and third-party
applications

 • Launch points for Cisco product updates.

The following topics describe CWHP and how to integrate it with your application:

 • Understanding CWHP

 • Integrating Your Application with CWHP

For basic information on CWHP, see the “About the CiscoWorks Home Page Component” section on
page 6-5.

For more information about CWHP, see:

 • CiscoWorks Home Page Functional Specification, EDCS-281825l

 • Use Cases and Behavior of CWHP, EDCS-284828

 • Triveni UII Integration with Core Security, EDCS-199291

 • Mjollnir CMF 2.3 PRD, EDCS-2634301

 • CMF 2.3 System Functional Specification, EDCS-283137

Understanding CWHP
CWHP is the primary user interface and launch point for all local and remote CWCS administration
application tasks. It is a Cisco User Interface Infrastructure (UII) application that displays banner
information and tool bar items in standard locations in a web browser.

The following topics provide essential background information about CWHP and how it works:

 • About the CWHP Interface
7-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Understanding CWHP
 • How CWHP Works

 • How CWHP Uses CMIC

 • How CWHP Handles Security

 • About the CWHP Runtime Structure

About the CWHP Interface
CWHP divides the standard UII Content Area into six main areas:

 • Common Services panel: Provides links to all CWCS-specific functions, including server and group
administration, device and credentials maintenance This comes built-in with Common Services.

 • Device Troubleshooting panel: Provides a launch point to the CWCS Device Center. This comes
built-in with Common Services.

 • Application panels: Display launch points for all CWCS-based applications installed on local or
remote servers. The name of each application panel serves as a link to the relevant application
homepage, which is launched in a new window when the user selects it.

 • LMS Setup Center panel: Provides a launch point to the LMS Setup Center where you can configure
the system settings for all the applictaions in one stop. This comes built-in with Common Services.

 • Resources panel: Provides launch points for external resources (including other CiscoWorks
resources, Cisco.com resources, third-party application links, and web-based custom tool links).

 • CiscoWorks Product Updates panel: Displays informative messages about CiscoWorks product
announcements, and help-related topics.

 • Tool Bar: Allows users to logout, access online help, or display “About” information (this includes
license information, version and patch level, installation date and copyright information).

Figure 7-1 shows the layout of a typical CWHP:

Figure 7-1 Typical CWHP Layout
7-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Understanding CWHP
CWHP uses the first three columns of the content area to display application panels. Applications get
onto application panels by being registered with CMIC. The CWHP application queries the CMIC
registry for all registered applications, both local and remote, at user login. It displays them based on the
order they appear in the CMIC MST file.

CWHP supports applications installed on multiple servers. If the same application is found on more than
one server, the instance of the application running on the local server is listed first. Instances of the
application found on other servers then appear in alphabetical order by the server name.

The title of each application panel displays the application’s name. The title also serves as a link to the
relevant application’s home page.The square expand/collapse icon shown to the right of the application’s
title expands/collapses the entire panel.

Application tasks are displayed as labels, in a hierarchical manner. Clicking on the label will launch the
URL associated with the item in a popup window. First- level tasks for each application are listed below
the title, and are shown in collapsed mode by default. Lower- level task labels are displayed only if the
user manually expands the first-level item by clicking on the “>” icon. The content of each panel is
limited to two levels, but there is no limit on the number of entries per level. These levels are mapped to
application home-page navigation levels.

When the user clicks a task label from the hierarchy, the CWHP link to the task launches the
application’s home page in a new window and then selects the task by default. If an instance of the
application home page is already displayed in a window, that window will be given focus and the new
task will be selected.

CWHP does not perform authorization of contents displayed in application panels. It is the responsibility
of applications to display proper error messages in cases where the user selects a task for which he is not
authorized.

CWHP uses the last column to display information about external resources. These include CiscoWorks
Resources, Cisco.com Resources, Custom Tools, Third Party Applications and Cisco Product Updates.
Using the CWHP Admin UI, this section can be turned off and used for application panels.

CWHP uses the Tree Window Component to render the UI for applications. This component uses the
The xbTreeWidgetStatic JavaScript tree implementation. The xbTreeWidgetStatic is open-source
software from Netscape and is a cross-browser JavaScript tree widget which allows flexible construction
of HTML tree widgets using a simple API and HTML. DHTML manipulation of the tree is possible in
browsers which support the Microsoft Internet Explorer-proprietary HTMLElement.innerHTML
property. For browsers which do not support this property, xbTreeWidgetStatic will generate a simple
hierarchical layout. XbTreeWidgetStatic is designed to be used before a page load event fires by writing
the HTML into the document. XbTreeWidgetStatic is static because it cannot modify the contents of the
Tree Widget after it has been written to the document. XbTreeWidgetStatic requires the use of JavaScript
1.2 in the implementation of its data structures.

How CWHP Works
CWHP processing involves the following steps:

1. A CWCS-based application is installed on the same server with an instance of CWCS Server. The
installation script calls the CMIC Register API, passing with the call the application’s MST template
URN, and its host, port, and protocol. This registers the application and its home page with CMIC.

CiscoWorks applications installed on other servers, third-party applications, and custom home-
grown tools are registered with CMIC by end users, using the CMIC Administration User Interface.

2. Based on the template URN, the CMIC registry fetches the application’s MST file from the MST
template store and updates it with the host, port, and protocol. It then replaces it in the MST template
store in serialized form for easy search.
7-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Understanding CWHP
3. During CWCS Server startup, CWHP loads a servlet that searches the CMIC registry for the
CWHP-related integration tags shown in Table 7-1. The servlet caches the CWHP-related CMIC
application and task information it finds.

4. Each successful user login after that will access CWHP and invoke the CWHP servlet. The CWHP
servlet, in turn, checks that it is still in sync with CMIC and, if not, recreates the CWHP cache. The
servlet then fetches the application and task information from its cache.

How CWHP Uses CMIC
The CMIC registry (see Chapter 9, “Integrating Applications with CMIC”) stores data about all
registered applications in the network. By querying the registry as needed, CWHP gets all the
information it needs to provide launch points to these registered applications.

Applications cannot be integrated unless they have been registered with CMIC. To do this, you must
create a CMIC MST template and tag your application URLs appropriately, using the task tags defined
by CWHP, and register the template with CMIC. Table 7-1 lists the integration tags used in the MST file
to identify application tasks to CMIC.

You need not create different templates for CWHP or Device Center. All your application tasks can be
part of a single template and registered with CMIC at one time.

Registration is a one-time process. You do not need to register your application again any time after
initial registration. Ideally, the registration code should be part of a post-installation script executed
immediately after your application is installed.

All CMIC MST templates are stored under $NMSROOT/data/cmic/mst-templates. You should copy your
template to this location and then pass the file name during CMIC registration.

Table 7-1 CWHP Integration Tags

CWHP Function CMIC MST Integration Tag Use this tag to show the task in

Cisco Works Applications
installed on the same server

CWHP_APP_TASK Relevant CWHP Application panel

Cisco Works Resources CWHP_CW_RSRC CWHP Cisco Works Resources panel

Cisco.com Resources CWHP_CSCO_RSRC CWHP Cisco.com Resources panel

Cisco Works Applications
installed on other servers

CWHP_OTHR_APPS CWHP Cisco Works Other Servers panel

Third Party Applications CWHP_THRD_PRTY CWHP Third Party Applications panel

Custom Tools CWHP_CSTM_TOOL CWHP Custom Tools panel

Common Services
Administration

CWHP_TASK Common Services Panel

Device Center DC_TOOLS Device Troubleshooting Panel

Setup Center systemSetup LMS Setup Center Panel

securitySetup

dataCollectionSettings

dataCollectionSchedule

dataPurge
7-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Understanding CWHP
How CWHP Handles Security
CWHP uses the UII security integration component, which integrates UII security with the CWCS
security system . Using this component, CWHP can redirect security requests to the CWCS security
system.

The request flow for authentication:

 • User points the browser to the CWCS URL.

 • The HTML login page is displayed.

 • Once login is successful, redirection to the CWHP web application (running under Tomcat) happens
through the help of the CMFLiaisonServlet. This servlet enables single sessions across servlet
engines. If the user bookmarks his CiscoWorks Home Page and then later goes to that URL, the UII
security authentication implementation will redirect the request to the HTML login page.

Authorization is required for rendering CWHP navigation menu items and this is handled by the
following UII Authorization guidelines:

 • Provide taskid information in the CWHP site map xml file

 • Implement the isAuthorized method of UIIAuthorizeImpl to handle the authorization relevant for
the CWCS security infrastructure

CWHP does not verify authorization for rendering application launch points; it assumes the user has
been verified by the login. CWHP also does not perform license verification while displaying application
links.

The HTML based login panel is generated through a JSP page. A JSP page renders the login panel based
on the login module that is selected. SSL is used as the secure transport mechanism. SSL port will be
open in non-SSL mode also, to accept login requests. The login page is served off the Tomcat servlet
engine and CWCS Web Server. The SSL certificate must be generated for the CWCS Web Server at
install time, as is done for CORE.

About the CWHP Runtime Structure
All CWCS shared components (such as cmic.jar) are installed under $NMSROOT/MDC/tomcat/lib/apps.
All shared class files are placed under $NMSROOT/MDC/tomcat/lib/apps/classes directory.

All CWCS modules that provide a user interface, including CWHP, are installed in folders below the
CWCS $NMSROOT/MDC/tomcat/webapps/cwcs folder under Tomcat. Table 7-2 shows where to find all
CWHP-specific runtime files.

Table 7-2 CWHP Runtime Files

For all CWHP-related See this folder under $NMSROOT/MDC/tomcat/webapps/cwhp

JSP files /screens/cwhp

UII action classes /WEB-INF/classes/com/cisco/nm/cmf/cwhp /ui/action

UII form bean classes /WEB-INF/classes/com/cisco/nm/cmf/cwhp /ui/form
7-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Integrating Your Application with CWHP
Integrating Your Application with CWHP
To integrate your application with the CiscoWorks Home Page, you must:

 • Register your application and its tasks with CMIC.

 • Implement security features.

 • Implement any special license checks you may require

 • Customize the content of the message area as needed

The following topics describe how to perform each of these tasks, as well as tips on how to proceed if
you cannot fully implement UII in your application:

 • Registering Your UII-based Application with CWHP

 • Implementing CWHP Security

 • Implementing Special License Checks

 • Handling CWHP Messages

 • Migrating to CWHP

Registering Your UII-based Application with CWHP
In most cases, users will use the CWHP application panels to access your application tasks. Therefore,
your first task in registering your application is to create a CMIC MST file that identifies the major tasks
in your application using the integration tag CWHP_TASK. Each task that you identify and tag in this
manner will appear in the application panel for your application.

If you are using UII sub-area bar menu items with screenids, you do not have to identify every subtask
on the menu in the MST. Instead, specify the sub-area bar menu item as a TASKGROUP and have the
TaskURL value set to the screenid of the sub-area bar menu item. When the application is launched in
the new window, the UII will take care of selecting the sub-area bar menu item and displaying the content
associated with it. This also works for TOC menu items.

We recommend that you also define the custom attribute “window_name”, with a consistent window
name as its value, within the CWHP_TASK integration tag. If you specify this custom attribute, CWHP
will use the same window instance for all of the application’s tasks. If you do not specify this attribute,
CWHP will assign unique window names for each task automatically, and each task will be displayed in
a different window.

Example 7-1 shows a snippet from the MST file for Campus Manager that identifies tasks to be displayed
on the Cisco Works Home Page in RME window. It uses both TASKGROUP and TaskURLs.

Example 7-1 Sample MST File

<TASKGROUP GroupName=”Devices”>
<TASKINFO TaskName=”Group Management” TaskIdentity=”t001” TaskDescription=”Group

Management” TaskCategory=”C” TaskSubCategory=”C/admin” SecurityTag=”nm.cm.admin”
TaskURL=”/rme/groupmanagement.do” SubmitMethod=”GET” IsAPI=”false”>

<INTEGRATIONTAG TagName=”CWHP_TASK”>
<ATTRIBUTE Name=”window_name” Value=”rmewin” />
</INEGRATIONTAG>

</TASKINFO>
7-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Integrating Your Application with CWHP
</TASKGROUP>

Once you have completed the application MST file:

 • Modify your application installation script to copy the MST file to
$NMSROOT/data/cmf/cmic/mst-templates. For information on installation scripts, see Chapter 21,
“Using the Installation Framework.”

 • Modify your application post-installation script to call the CMIC Register API and register this MST
file with CMIC. This requires writing a java wrapper to call the Register API in a way that allows
you to pass the MST file name to it. For information on the CMIC APIs, see Chapter 9, “Integrating
Applications with CMIC.”

Implementing CWHP Security
Applications using CWHP can handle user authorization and authentication via the Common Services
UII Security integration component, which provides a UII security implementation based on the CWCS
security system. This component is packaged as cs-uii-security.jar, and is included in the CWCS build
as an SDK tar file. It contains the following implementation classes:

 • UIIAuthenticateImpl (com.cisco.nm.cwcs.cwhp.uii.security: Redirects authentication requests to
CWCS security system.

 • UIIAuthorizeImpl: Redirects authorization requests to CWCS security system.

 • CAMSystem: A wrapper for the CWCS security system that provides UII application access to
CAM security APIs.

 • securityDBLoader: A servlet that loads UII Tasks into memory.

 • Task: The object representation for UII Tasks.

To provide full authentication and authorization services for your CWHP-based application:

1. Place cs-uii-security.jar in the root of the runtime structure for your application
(i.e.,$NMSROOT/MDC/Tomcat/webapps/$myapp) .

2. Specify UIIAuthenticationImpl and UIIAuthorizeImpl as your security implementation classes in
your application’s web.xml file.

3. Define TaskDefinition, RoleDefinition and CMFRoleDefinition RoleMap XML files required by the
CWCS security system’s CAM infrastructure. For details, see Chapter 10, “Using the Security
System.”

4. Register these TaskDefinition, RoleDefinition and CMFRoleDefinition RoleMap XML files with
CCR. For details, see Chapter 13, “Using the Core Client Registry.”

5. In the struts-config.xml or site map xml file, define page-level or component-level security and use
the task ID string from the TaskDefinition XML file.

Note that:

 • Your team must extend UIIAuthenticationImpl to support any special license requirements you may
have (see).

 • An additional UII TaskDefinition XML file is no longer needed. If you have provided a UII
TaskDefinition file, you must change the page-level and component-level definitions in the
struts-config.xml and site map.xml files, and the “taskid” attribute of <uii:button...> tags in JSP
pages, to use the task id string from your UII TaskDefinition file. If not, simply specify the CAM
infrastructure version instead.
7-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Integrating Your Application with CWHP
 • Logout.jsp is no longer part of the UII security integration component. In CWCS, the Logout toolbar
item is available only on the CiscoWorks Home Page. All application home pages have only a Close
toolbar item.

Implementing Special License Checks
CWCS provides a complete licensing framework. This framework offers FLEXlm based licensing,
which allows for a very wide range of licensing models and approaches, including feature and task-based
licensing. For more information on the licensing framework, see Chapter 34, “Using the Licensing
APIs.”

To integrate this smoothly with authentication, the UIIAuthenticationImpl class supports a license check
method that can be performed before generating the lightweight tree navigation. If the license is not
valid, the tree will not be generated.

Since the license-check is application specific, the method has been added to the UIIAuthenticationImpl
class:

public boolean doLicenseCheck(HttpServletRequest request, HttpServletResponse response,
ServletConfig config) {
 // default implementation provided by integration component is true
 return true;
}

The isAuthenticated method will call doLicenseCheck after successful authentication.

Please note that it is the application team’s responsibility to extend the UIIAuthenticationImpl class and
override this function based on your licensing requirements. Also be aware that, in this particular case,
your team must specify this classname as the value for the init-param "UIIAuthenticateImpl" in the
UIIController definition section of the web.xml file.

Handling CWHP Messages
The Product Updates panel displays product upgrades, tips, and other support information. The panel
displays two types of messages:

 • Standard messages: These messages are either read from the default message file or downloaded
from CCO.

 • Urgent messages: Urgent messages are read every 60 seconds and put at the beginning of the
message queue.

Customers can add urgent messages to the Product Updates panel. Bear in mind that user messages are
intended to be used by end users, not development teams. Cisco business units who want to add their
marketing messages for CWCS-compatible applications or suites to the standard message file should
forward their requirements to NMTG marketing.

Messages displayed in the Product Updates panel are read from files in the
NMSROOT/lib/classpath/com/cisco/nm/cmf/servlet/msgdir runtime directory.

The message servlet determines the type of message based on the name of the message file. Table 7-3
shows the files that can be contained in the message directory.
7-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Integrating Your Application with CWHP
Migrating to CWHP
CWHP supports full integration at the task level only with web-based applications that are
UII-compliant. If your application is web based (e.g., an applet, or JWS), but was not created using the
User Interface Infrastructure (UII), you can only integrate with CWCS by registering your application’s
base URL with CWHP.

We strongly recommend that your team consider a full implementation of UII, including redesign and
conversion of existing application pages, if you want to integrate with CWHP. If this is not possible, you
should at least try to implement the UII navigation features. Doing so will allow you to define tasks and
their navigation in the manner required to launch them directly from CWHP.

Table 7-3 Message Directory Files

File name Description

DefaultCcoMsgFile Used if CCO cannot be contacted to download live messages. This holds good for CWCS
installations on networks that are not connected to the internet.

Note To include messages about your application in the panel, work with the NMTG marketing
department to get your messages added to this file.

DownloadedCcoMsgFile Used to store messages downloaded from the CCO web site. The file is updated with a fresh
download from CCO every 24 hours by default. If there is an error downloading this file, then the
previously downloaded file is preserved and continues to supply messages to the panel.

The DefaultCcoMsgFile is used only if DownloadedCcoMsgFile has not been downloaded from
CCO, earlier.

.urgent Urgent messages are read by the message servlet every 60 seconds by default and then deleted.
Messages read from this file are given message-queue priority and show up in the panel
immediately. There can be a delay of up to 60 seconds between the time an .urgent file is written
and the time its messages appear in the message window. This is caused by the 60-second polling
interval in the browser and the 30-second scanning interval for .urgent files on the server.

UserMessageFile TBD
7-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 7 Using the CiscoWorks Home Page
Integrating Your Application with CWHP
7-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 8

Using Web Servers and Servlet Engines

Web servers and servlet engines provide basic access to all of the components that make up CiscoWorks
Common Services (CWCS). They are critical CWCS components, with special capabilities, limitations,
and functions.

The following topics describe how to use CWCS Web servers and servlet engines with your
CWCS-enabled applications:

 • Understanding the CWCS Web Server and Servlet Engine

 • Using CWCS Web Servers and Servlet Engines

 • Servlet Engines and Runtime Directory

 • Implications of HTML Based Login

For basic information on CWCS Web servers and servlet engines, see the “About Web Server and Servlet
Engine Components” section on page 6-6.

For more information about the CWCS Web Server and servlet engines, see:

 • Mjollnir - CMF 2.3 System Functional Specification: (EDCS-283137)

 • Mjollnir - CMF 2.3 PRD (EDCS-263430) l

Understanding the CWCS Web Server and Servlet Engine
CiscoWorks Common Services provides a single CWCS Web Server, on which the Tomcat servlet engine
runs. The CWCS Web Server uses the Apache Web Server (version 1.3.31.x or later), on both UNIX and
Windows platforms, to provide the infrastructure for client/server communication.

The CWCS Web Server services HTTP and HTTPS requests from clients, and is also used to invoke CGI
scripts/programs, applets, and servlets. It incorporates a customized access control module
(mod_access) that performs session-based access control on every HTTP request. A web request must
have a valid Servlet session in order to be processed, with certain exceptions allowed.

Previous versions of CWCS, such as CMF 2.2, supported components (such as the CMF Desktop and
the Security system) that required the JRun servlet engine. CMF 2.2 also provided the Tomcat servlet
engine for applications such as PIX MC and Kilner. All support for JRun has been dropped in this release
of CWCS, and all CWCS components now run under Tomcat only.

The MICE component used for transferring session information is still available to share single session
information across multiple servlet engines.
8-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
About the CWCS Web Server and SSL
The PSU component uses standard third- party products that are also used by other applications and
CWCS service components. This includes the Apache Web Server, Tomcat servlet engine, and the Struts
Framework. PSU has a dependency on VDS and the UII, and VDS is dependent on the CWCS Security
service.

About the CWCS Web Server and SSL
The CWCS Web Server supports SSL operation, and it is enabled by default. There is an option in CWCS
administration to disable or re-enable SSL mode. Note that, whenever SSL is enabled, all of the
applications installed on the CWCS Server must work in SSL mode. If any applications installed on the
server cannot work in SSL mode, then SSL must be disabled.

SSL is mandatory for the following applications:

 • User Login

 • MICE (CMFLiasonServlet)

 • VMS Bundle applications

Development teams should be aware that other applications using SSL will tend to enable this mode
when installed on the same server with your application. The VMS bundle, for example, automatically
enables SSL for the CWCS Web Server during installation. The VMS bundle will also disable the user
option to enable or disable SSL. Hence, as long as VMS is installed on a server, the server will work in
SSL mode only.

Other applications can work either with or without SSL, based on configuration. In these cases, the user
will have the option to enable or disable SSL. Note that a limitation of the Tomcat servlet engine and the
Servlet Specification will cause any system in non-SSL mode that exposes northbound APIs (carrying
user credentials) to also be in HTTP mode.

Using CWCS Web Servers and Servlet Engines
All CWCS components run under the Tomcat Servlet Engine.

About the JRE Version
This release of CWCS supports JRE versions 1.4.1_10 and 1.3.1_06.

Components running under Tomcat are compiled under JRE 1.3.1_06. One package (CSCOjre14) has
been added to allow new application code to take advantage of JRE 1.4.1_10.

JRE 1.4.1_10 is used to execute the Tomcat servlet engine.

Applications compiling for JRE 1.3.1_06 must verify compatibility with JRE 1.4.1_10. If you are
compiling in 1.4.1_10, then verification is not required.

About Apache Version and Access Control
This release of CWCS supports the same version of Web Server for Tomcat, as was done in CMF 2.2.
However, the versions of Apache/ModSSL/OpenSSL must be upgraded to include recent security fixes.
8-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Servlet Engines and Runtime Directory
CWCS provides custom enhancements to Apache's access control module (mod_access) to allow
session-based access control. These are servlet sessions created when a user logs into CiscoWorks
desktop. Except for certain resources, such as the login page, the modified access control module
prevents service of HTTP requests that do not have an authenticated session cookie.

Ordinarily, the access-control check will throw a "Forbidden" error page if an attempt is made to access
protected resources without logging in. However this was changed in CWCS based on a request from the
Okena team. Instead of throwing a forbidden error, the user will be redirected to the login page, if a valid
session is not present.

Servlet Engines and Runtime Directory
The runtime directory structure for CWCS components. The same structure can also be extended to CMF
3.0 based applications (e.g. RME 4.0, CM, etc).

For all Tomcat based components and applications, the runtime directory is as follows:

 • All the jar files that are common across webapps are located under
$NMSROOT/MDC/tomcat/lib/apps

 • All the class files that are common across webapps are located under
$NMSROOT/MDC/tomcat/lib/apps/classes

Each webapp defines a document base. The document base is a directory under which webapp-specific
files are located. The document base is a path relative to the Tomcat home directory:

 • Jar files specific for each webapp are placed under $NMSROOT/MDC/tomcat/$document_base/
WEB-INF/lib.

 • Class files specific for each webapp will be placed under
$NMSROOT/MDC/tomcat/$document_base/ WEB-INF/classes.

 • JSP files using UII are located under NMSROOT/MDC/tomcat/$document_base/WEB-INF/screens

 • JSP files not using UII are located under $NMSROOT/MDC/tomcat/$document_base/JSP

Runtime Structure for New Components
The fundamental runtime directory structure for this release of CWCS is the same as in CMF 2.2. All
components new in this release (such as DCR, CiscoWorks Home page, Device Center, and CMIC) use
the Tomcat servlet engine.

In CMF 2.2, the Tomcat root directory was $NMSROOT/MDC/tomcat. It would be ideal if the Tomcat
root directory referred to a generic name instead of MDC. However, changing the Tomcat root directory
to a new directory (such as $NMSROOT/NG) will involve impacts on all applications based on Tomcat,
including MDCs. Therefore, it was decided to address this in a future CWCS release.

CWCS 3.0 has two new webapps based on Tomcat. One webapp includes the CiscoWorks Homepage
and the user interfaces for CMIC and DCR. The other is for Device Center. All shared components are
placed under $NMSROOT/MDC/tomcat/lib/apps. For example, cmic.jar is deployed under
$NMSROOT/MDC/tomcat/lib/apps/. Similarly, any class files that need to be shared are placed under
$NMSROOT/MDC/tomcat/lib/apps/classes directory

The new structure is explained in more detail below. The generic structure is described followed by
details about individual modules. The structure is based on the Java Servlet Specification from Sun and
the directories mentioned follow the Web Application structure specified by Sun. Please refer to
http://java.sun.com/products/servlet/download.html to download the latest servlet spec.
8-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Servlet Engines and Runtime Directory
Existing Tomcat Based Components/Applications

The runtime structure is unchanged.

Note It is recommended that the existing Tomcat based components also move to the new runtime structure to
have uniformity. But this decision is to be made by respective components/application teams.

New Tomcat Based Components/Applications

The runtime directory structure mentioned in this document is referenced by the TOMCAT_HOME
environment variable (currently it is $NMSROOT/MDC/tomcat). This document assumes that each
application is developed and deployed as a separate webapp. All CWCS components are deployed under
a single webapp.

Note We do not recommended that you put any class or jar files under $NMSROOT/lib/classpath or
$NMSROOT/www/classpath. These directories will be phased out in future releases of CWCS .

It is not recommended to put any class/jar files under $NMSROOT/tomcat/lib as this directory is used
by Tomcat servlet engine.

It is left to the component/application teams to investigate further to find whether their components will
be deployed as an individual webapp or clubbed under a common webapp.

Applications deploy their files under webapps/$app_name/ directory.

WAR Files Used by Webapps

WAR files used by webapps are located in $NMSROOT/MDC/tomcat/webapps/

For example, CMF.war file will be deployed under $NMSROOT/MDC/tomcat/webapps/

Jar Files Used by a Single Webapp

Jar files used by a single webapp are located under
$NMSROOT/MDC/tomcat/webapps/$app_name/WEB-INF/lib

This could be SRC components used by a particular application. For example, RME using a particular
version of UII will be deployed under $NMSROOT/MDC/tomcat/webapps/rme /WEB-INF/lib/uii.jar

Class Files Used by a Single Webapp

Class files used by a single webapp are located under
$NMSROOT/MDC/tomcat/webapps/$app_name/WEB-INF/classes

For example, there are some inventory APIs used by various components in RME at
$NMSROOT/MDC/tomcat/webapps/rme/WEB-INF/classes/com/cisco/nm/rme/inventory

Jar Files Shared Between Multiple Webapps

These are all shared components (CMF-R) placed under $NMSROOT/MDC/tomcat/lib/apps

For example, cmic.jar, dcr.jar will be deployed under $NMSROOT/MDC/tomcat/lib/apps/
8-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Servlet Engines and Runtime Directory
Class Files Shared Between Multiple Webapps

These are class files belonging to shared components placed under

$NMSROOT/MDC/tomcat/lib/apps/classes directory

For example, LogViewer.class will be deployed under
$NMSROOT/MDC/tomcat/lib/apps/classes/com/cisco/core/maas/server

JSP Files for Webapps

JSP files for webapps are located under $NMSROOT/MDC/tomcat/webapps/$app_name/screens/

For example, JSP files for DCR are located in $NMSROOT/MDC/tomcat/webapps/cwcs/screens/dcr and
for CWHP in $NMSROOT/MDC/tomcat/webapps/cwcs/screens/cwhp and for CMIC in
$NMSROOT/MDC/tomcat/webapps/cwcs/screens/cmic.

Action and Form Bean Classes

All Action and Form bean classes for each webapp are placed under
$NMSROOT/MDC/tomcat/webapps/$app_name/WEB-INF/classes/com/cisco/nm /$app_name/ui.

Form beans are placed under /form and action classes under /action respectively.

Java Script/Images Files for Webapp

All Java script and images are placed under

$NMSROOT/MDC/tomcat/webapps/$app_name/js and
$NMSROOT/MDC/tomcat/webapps/$app_name/images

For example, for CiscoWorks Home Page, Javascript is placed under $NMSROOT/MDC/tomcat
/webapps/cwcs/js/cwhp and images under $NMSROOT/MDC/tomcat /webapps/cwcs/images/cwhp

Other Configuration, Properties and Data Files

Other configuration, properties and data files for each webapp are placed under
$NMSROOT/MDC/tomcat/webapps/$app_name/etc

For example, CWHP related config files are placed in $NMSROOT/MDC/tomcat
/webapps/cwcs/etc/cwhp

Other configuration, properties and data files common across webapps are placed under
$NMSROOT/MDC/etc/$component_name/

For example, DCR related config files/ preferences etc placed under $NMSROOT/MDC/etc /dcr

Runtime Structure for CiscoWorks Common Services Webapps
All CiscoWorks Common Services modules providing user interfaces are grouped under the CWCS
webapp under Tomcat. These include:

 • CiscoWorks Homepage UI, DCR UI, CMIC UI-related classes, JSP and JS files

 • CSTM files

 • UII files

JSP files related to CiscoWorks Common Services modules appear under subdirectories specific to the
modules. For example:
8-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Servlet Engines and Runtime Directory
 • $NMSROOT/MDC/tomcat/webapps/cwcs/screens/dcr

 • $NMSROOT/MDC/tomcat/webapps/cwcs/screens/cwhp

 • $NMSROOT/MDC/tomcat/webapps/cwcs/screens/cmic

All Action and Form bean classes are placed under the following directories:

 • $NMSROOT/MDC/tomcat/webapps/cwcs/WEB-INF/classes/com/cisco/nm/cmf/cwhp /ui

/action directory will contain CiscoWorks Homepage UI related action classes

/form directory will contain CiscoWorks Homepage UI related form bean classes

 • $NMSROOT/MDC/tomcat/webapps/cwcs/WEB-INF/classes/com/cisco/nm/cmf/dcr/ui

/action directory will contain DCR UI related action classes

/form directory will contain DCR UI related form bean classes

 • $NMSROOT/MDC/tomcat/webapps/cwcs/WEB-INF/classes/com/cisco/nm/cmf/cmic/ui

/action directory will contain CMIC UI related action classes

/form directory will contain CMIC UI related form bean classes

UII, CTM and OGS are all per product SRC components. So UII will be deployed under
$NMSROOT/MDC/tomcat/webapps/cwcs/WEB-INF/lib/uii.jar. Similarly CTM and OGS files (jar files)
will be placed under this directory.

Runtime Structure for DCR
DCR (Device Credentials Repository) will be accessed by other applications including RME, PIX MC,
IOS MC. DCR will run as a daemon. Therefore, it can be placed under $NMSROOT/lib/server/ or
$NMSROOT/objects/server or $NMSROOT/lib/server/dcrserver/dcrserver.jar

DCR Server jar will include OGS and CTM files.

Runtime Structure for CMIC
CMIC provides access mechanism through well-defined APIs that are part of the library files. All
components or applications access CMIC using library files. The CMIC registry (database) access is
taken care by library files and is transparent to the component users. Therefore, CMIC.jar will be placed
under $NMSROOT/MDC/tomcat/lib/apps for applications to use.

Runtime Structure for Device Center
Device Center will be a webapp under Tomcat: $NMSROOT/MDC/tomcat/webapps/devicecenter/

JSP files related to Device Center will be placed under:

 • $NMSROOT/MDC/tomcat/webapps/devicecenter/screens/devicecenter

All Action and Form bean classes are placed under:

 • $NMSROOT/MDC/tomcat/webapps/devicecenter/WEB-INF/classes/com/cisco/nm/cmf//devicecente
r/ui

/action directory will contain CMIC UI related action classes

/form directory will contain CMIC UI related form bean classes
8-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Implications of HTML Based Login
Implications of HTML Based Login
The previous applet-based login panel was a bottleneck in terms of the time it took to load the login page
and for the username and password fields to appear. The applet-based login used the heavyweight JAAS
GUI mechanism to render the login panel. There was a lot of customer feedback asking for a reduction
in the time taken for the login panel to appear.

For these reasons, the JAAS GUI mechanism was discarded and a simple HTML-based login panel,
generated via a JSP page, was substituted. A JSP page is required to render the login panel based on the
login module that is selected. Eliminating the JAAS GUI mechanism and the SPS transport eliminated
a bulky set of classes from the login panel.

To ensure secure transport of the login credentials, CWCS must use SSL while submitting login
information. The applet-based login panel used a proprietary secure-transport mechanism called SPS
(Secured Packet Stream) that did not require SSL. But for HTML login, the SSL port is open in non-SSL
mode also, to accept login requests. The HTML login panel requires the SSL port to be always open.
This means that an SSL certificate must be generated for the CWCS Web Server at install time.

However, asking the user for certificate information twice is not acceptable, so the Core Apache install
script has been changed to generate a certificate for CWCS.
8-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 8 Using Web Servers and Servlet Engines
Implications of HTML Based Login
8-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 9

Integrating Applications with CMIC

Cisco Management Integration Center (CMIC) is a registry or repository for management services,
enabling Cisco Management Servers to integrate with outside-world applications. CMIC acts as a
service lookup for any application trying to find a particular service or set of services provided by other
applications on in a network, thereby facilitating interaction amongst these application. CMIC takes care
of configuring the server to integrate with applications and services residing outside the box.

CMIC Registry replaces the CMF Desktop XML Registry. It allows you to:

 • Register services

 • Unregister services

 • Lookup services

The following topics describe how to use CMIC with your application:

 • Understanding CMIC

 • Using CMIC Services

For basic information on CMIC, see the “About the Cisco Management Integration Center (CMIC)
Component” section on page 6-6.

For more information about CMIC, see:

 • The CMF Product Requirement Document CMF 3.0 PRD, EDCS-205209

 • The CTM Functional Specification, EDCS-124878

 • The PSU Functional Specification, EDCS-110450

 • The CMIC Software Unit Design Specification, EDCS-137328.

Understanding CMIC
The CMIC registry provides a Java API for registration, unregistration, and lookup of management
services. These APIs are exposed via the Common Services Transport Mechanism (for details, see
Chapter 31, “Using the Common Services Transport Mechanism”) so that they can be accessed over a
network via North Bound (NB) APIs. All NBAPIs take the extra parameter UserCredentials, containing
user information, so accesses can be authenticated.

CMIC makes use of an XML template, called the Management Service Template (MST), to define in a
coherent, standardized way each management service supplied by an application or tool. Each MST
defines the attributes of the service that are relevant to other applications and services, such as the service
name, description, how to invoke the service, etc. The only difference between instances of the same
service is the host, port, and protocol of the instance where the service resides. The template collects all
9-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
the common information, and the information that changes based on the instance is given during the
CMIC service registration call. The MST file name serves as the service’s Uniform Resource Name
(URN); this URN is referred to in the API call for any subsequent registrations or unregistrations of the
service.

The CMIC registry provides a user interface to register the following different kinds of application
services:

 • Third-party applications or custom tools. The UI guides the user through a series of steps that create
a launch point for the application or tool from the Cisco Works Home page.

 • Cisco products with pre-defined, certified MSTs. The user can select a template and specify the
server on which the application is installed.

 • Imported registrations from another server. For this kind of service, the UI first prompts the user for
the name of the server hosting the service, along with the server's SSL port number. Once the user
selects a server, the UI displays a list of applications registered with that server, and the user can
then select applications that need to be registered with the local server. Imported applications
having the requisite integration tags for the CiscoWorks Home page will be displayed on the local
CiscoWorks Server.

 • All CiscoWorks applications residing in the same server as CMIC can register during their
installation by making an API call to CMIC registry. Applications not local to CW server (residing
in different server) can register themselves either through the UI or using the NB bound register API
exposed through CSTM.

Using CMIC Services
The following topics describe how to to use CMIC services with applications:

 • Registering Applications

 • Querying an Application

 • Calling an Application

 • Integrating CMIC with CWHP, Device Center, and Setup Center

 • About the CMIC APIs

 • About the Management Service Template

 • Component Interaction

 • About CMIC Registry Dependencies

 • Sample MST File

Registering Applications
Registering applications is the foremost pre-requisite to find any management service. All management
services, which intend to be called by other services need to first register with CMIC.

All services willing to register need to define a Management Service Template. The template is XML
based and has information about various parameters of a service like host, port, protocol, where the
service resides, URL to invoke the service etc.

The users create an MST. Once the MST is created, the user is provided with a URN that identifies the
MST. The name of the MST file is URN.xml
9-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
This URN is used by respective services in register API along with the host, port & protocol of the host
on which the service resides. CMIC registry stores all such registered services in a repository.

CMIC registry stores all such registered services in records.db repository available at
NMSROOT/objects/data/cmf/cmic/registry.

You can unregister or register applications to records.db file using command line options. This section
contains the following subsections:

 • Unregistering Applications Through Command Line

 • Registering Applications Through Command Line

Unregistering Applications Through Command Line

To unregister an application from CMIC, enter the following command:

$NMSROOT\MDC\JRE\bin\java.exe -cp
$NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\cwhp.jar;
$NMSROOT\\lib\classpath\cmic.jar;
$NMSROOT\MDC\tomcat\shared\lib\xerces.jar;
$NMSROOT\objects\log4j\1.1.3\log4j.jar;
$NMSROOT\MDC\tomcat\shared\lib\MICE.jar;
$NMSROOT\MDC\tomcat\shared\lib\NATIVE.jar;
$NMSROOT\lib\classpath;com.cisco.nm.cwcs.cwhp.applications.remove URN port protocol
hostname

where

 – NMSROOT is the directory in which your product is installed

 – URN is the name of the file representing the application without the .xml extension under
mst-templates directory ($NMSROOT\objects\data\cmf\cmic\mst-templates)

 – port is the port number used for registering the applications

 – protocol is the protocol used for registering the application

 – hostname is the name of host on which the service resides. If the host name is not specified, the
command line utility will consider the local host name as the default value. Verify the contents
of the registered templates directory ($NMSROOT\objects\data\cmf\cmic\)

Example

To remove the Device Troubleshooting link from CiscoWorks Home page, enter the following command:

$NMSROOT\MDC\JRE\bin\java.exe -cp
$NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\cwhp.jar;
$NMSROOT\\lib\classpath\cmic.jar;$NMSROOT\MDC\tomcat\shared\lib\xerces.jar;
$NMSROOT\objects\log4j\1.1.3\log4j.jar;
$NMSROOT\MDC\tomcat\shared\lib\MICE.jar;
$NMSROOT\MDC\tomcat\shared\lib\NATIVE.jar;

$NMSROOT\lib\classpath;com.cisco.nm.cwcs.cwhp.applications.devicecenter.1.0 1741 http afspcwsc001

Registering Applications Through Command Line

To register an application with CMIC, enter the following command:

$NMSROOT\MDC\JRE\bin\java.exe -cp
$NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\cwhp.jar;
$NMSROOT\\lib\classpath\cmic.jar;
$NMSROOT\MDC\tomcat\shared\lib\xerces.jar;
9-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
$NMSROOT\objects\log4j\1.1.3\log4j.jar;
$NMSROOT\MDC\tomcat\shared\lib\MICE.jar;
$NMSROOT\MDC\tomcat\shared\lib\NATIVE.jar;
$NMSROOT\lib\classpath;com.cisco.nm.cwcs.cwhp.applications.add URN port protocol hostname

where

 – NMSROOT is the directory in which your product is installed

 – URN is the name of the file representing the application without the .xml extension under
mst-templates directory ($NMSROOT\objects\data\cmf\cmic\mst-templates)

 – port is the port number used for registering the applications

 – protocol is the protocol used for registering the application

 – hostname is the name of host on which the service resides. If the host name is not specified, the
command line utility will consider the local host name as the default value. Verify the contents
of the registered templates directory ($NMSROOT\objects\data\cmf\cmic\)

Querying an Application
A query is made to CMIC to find a management service from the registered management services. This
query is based on certain search parameters

To find a particular or set of services the “query” API is used. CMIC supports query on various
parameters like Application Name, Vendor name, Application Category (Fault, Configuration,
Accounting, Performance, Security), Task Name etc. A query is constructed by the service requester
using one or more of the parameters and sent to CMIC registry. The query can be an “AND” or “OR” on
the parameters chosen for query.

Calling an Application
The query returns matched services to service requestor, the query results are processed and call to
respective services are made.

CMIC registry returns a list of services matching the query to the requester. The Service requestor can
process the result and launch the returned services or provide links to these services for the user to take
appropriate action.

Integrating CMIC with CWHP, Device Center, and Setup Center
CMIC MST files contain all the information needed to manage and display the tasks in the Cisco Works
Home Page Application Panel.

CWHP uses CMIC to register and query installed applications, Cisco Works Resources, Cisco.com
resources, Cisco Works Applications installed on other servers, 3rd party applications, Custom Tools.
CMIC registry has data about all registered applications in the users network, a snap shot of registry
would give CWHP all the information it needs to provide launch points to various applications with the
help of queries.

To integrate with CWHP, Device center, and Setup Center, you need to create a CMIC MST template and
tag URLs appropriately (with integration tags) as defined by CWHP and DC, then register the template
with CMIC.
9-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
You need not create different templates for CWHP, Device Center and Setup Center. All tasks can be a
part of single template and be registered with CMIC.

Registration is a one-time process and you do not need to register an application again after installation.
The registration code can be part of post-installation script when the application is installed.

All templates must be present under NMS-ROOT/object/data/cmf/cmic/mst-templates. Application
teams can drop their template at this location and then mention the URN (same as file name with out
the .xml extension) during their registration with CMIC. You can have only one MST file for an
application.

The following table describes the integration tags used by the CWHP:

Wrapper Java Code

During the application’s post install, you need to call the CMIC register APIs to register the MST file
with CMIC. This requires that you write a Java wrapper which will accept the MST file name. You can
use the following Wrapper Java Code to register the MST file with CMIC:

$NMSROOT/lib/jre/bin/java -classpath
$NMSROOT/lib/classpath/cmic.jar:$NMSROOT/MDC/tomcat/lib/apps/MICE.jar:$NMSROOT/MDC/tomcat/
lib/apps/NATIVE.jar:$NMSROOT/objects/log4j/1.1.3/log4j.jar:$NMSROOT/MDC/tomcat/lib/apps/xe
rces.jar com.cisco.nm.cmf.cmic.registry.CMICApplicationRegistry URN legacy action
[disable-option].

This code uses the arguments shown in Table 9-2.

Table 9-1 CWHP Integration Tags

CWHP Function CMIC MST Integration Tag Description

Cisco Works Applications
installed on the same server

CWHP_APP_TASK Use this tag for a task in the MST file to show the task
in the relevant application panel of CWHP.

Cisco Works Resources CWHP_CW_RSRC Use this tag of a task in the MST file to show the task
in the Cisco Works Resources panel of CWHP.

Cisco.com Resources CWHP_CSCO_RSRC Use this tag for a task in the MST file will show this
task in the Cisco.com Resources panel of CWHP.

Cisco Works Applications
installed on other server

CWHP_OTHR_APPS Use this tag for a task in the MST file will show this
task in the Cisco Works Other Servers panel of CWHP.

3rd Party Applications CWHP_THRD_PRTY Use this tag for a task in the MST file will show this
task in the Third Party Applications panel of CWHP.

Custom Tools CWHP_CSTM_TOOL Use this tag for a task in the MST file will show this
task in the Custom Tools panel of CWHP.

Device Center DC_TOOLS Device Troubleshooting Panel

Setup Center systemSetup LMS Setup Center Panel

securitySetup

dataCollectionSettings

dataCollectionSchedule

dataPurge
9-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
To register RME4.0 using Tomcat with default display option, use the following code in post install:

$NMSROOT/lib/jre/bin/java -classpath
$NMSROOT/lib/classpath/cmic.jar:$NMSROOT/MDC/tomcat/lib/apps/MICE.jar:$NMSROOT/MDC/tomcat/
lib/apps/NATIVE.jar:$NMSROOT/objects/log4j/1.1.3/log4j.jar:$NMSROOT/MDC/tomcat/lib/apps/xe
rces.jar com.cisco.nm.cmf.cmic.registry.CMICApplicationRegistry RME4.0 0 register.

To register RME4.0 using Tomcat with an option to display an application link, use the following code
in post install:

$NMSROOT/lib/jre/bin/java -classpath
$NMSROOT/lib/classpath/cmic.jar:$NMSROOT/MDC/tomcat/lib/apps/MICE.jar:$NMSROOT/MDC/tomcat/
lib/apps/NATIVE.jar:$NMSROOT/objects/log4j/1.1.3/log4j.jar:$NMSROOT/MDC/tomcat/lib/apps/xe
rces.jar com.cisco.nm.cmf.cmic.registry.CMICApplicationRegistry RME4.0 0 register all.

To unregister RME4.0 using Tomcat, use the following code in post remove:

$NMSROOT/lib/jre/bin/java -classpath
$NMSROOT/lib/classpath/cmic.jar:$NMSROOT/MDC/tomcat/lib/apps/MICE.jar:$NMSROOT/MDC/tomcat/
lib/apps/NATIVE.jar:$NMSROOT/objects/log4j/1.1.3/log4j.jar:$NMSROOT/MDC/tomcat/lib/apps/xe
rces.jar com.cisco.nm.cmf.cmic.registry.CMICApplicationRegistry RME4.0 0 unregister.

System Flow for CWHP using CMIC

1. Each Cisco Works Product like RME, CM as well as Cisco Works Resources and Cisco.com
resources installed on the same server where CWHP is installed, will call Register API of CMIC
passing template URN, host, port, protocol.

Cisco Products Installed on other servers, 3rd Party Applications, Custom home grown tools will be
created by the end user through a CMIC Administration User Interface.

2. Based on the template URN, CMIC Registry will fetch the template from MST Template Store and
updates the MST file with the host, port, and protocol. After registration, the MST template is stored
in two places in .xml format:

a. In Registered templates store in . xml format with host, port, protocol filled in.

b. In CMIC registry in serialized format with host, port, and protocol filled in.

Table 9-2 Register and Unregister Arguments

Arguments Description

URN URN of the application to be registered.

action Use register to register the application. Use this argument in the application’s post install code.

Use unregister for unregistering the application. Use this argument in the application’s post remove code.

legacy The argument indicates whether the application is a legacy application or a new application.

Use 0 for new applications running under the Tomcat servlet engine.

This argument helps in deciding the port and protocol for the application.

disable
option

(optional) This is used to specifiy whether the application should be hidden in the UI when displaying the list
of applications. This would help prevent the user from unregistering the application through UI.

self -- Do not show application link if the application is present. But show the link when it is imported from
other servers

all-- Do not show the application link anywhere.

none-- Default option. When unspecifed, shows the link irrespective of application location
9-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
3. During startup CWHP loads a Servlet that searches CMIC Registry on all CWHP related Integration
Tags.

4. CWHP Servlet store the CWHP related CMIC information in cache to improve CWHP performance.

5. User accesses CWHP page and this invokes CWHP Servlet which in turn calls CMIC to make sure
it is in sync with CMIC and if not recreate the Cache.

6. CWHP Servlet then fetches the information from Cache

7. CWHP Servlet then invokes CWHP Security UIIAuthorize Interface and returns the tasks authorized
for the user. The User see the CWHP page displayed with only authorized tasks for him.

About the CMIC APIs
The following APIs are supported:

Note: Please refer the CMIC Java doc for complete list of API signatures and definitions.

About the Management Service Template
Currently Cisco runs a partner program called Cisco Management Connection, which allows third party
Applications to add a launch point from CiscoWorks desktop. All such applications need to follow a
certification process for their links to appear in the desktop. A similar program will be introduced to
certify the MST’s. This will be driven from CCO, where individual applications will be guided to create
and update templates. The created template will be certified by a gatekeeper and made available to CMIC
registry through PSU. All Cisco Application services will follow the same process to create and update
their templates.

The information in Management Service Template is organized under various tags. The following table
describes the tags and attributes used by the MST:

Table 9-3 CMIC APIs

API Description

register() To register an application with CMIC.

unregister() To unregister an application with CMIC.

searchRegistry() To search for a specific or list of applications in
registry.

getAllRegisteredApplications() To get a list of all registered applications.

searchRegistryReturnTree() To look for a specific or list of applications in
registry and return in a hierarchical structure.

isRegistryUpdated() To check whether registry is updated with
reference to a time stamp.
9-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-nm.cisco.com/embueng/CMIC/javadoc-index.html

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
For more information on MST tags and attributes of each tag see, CMIC Software Design Specification,
EDCS-137328.

Component Interaction
The table provides informationon the components that participate in the interaction between various
components.

Table 9-4 CMIC MST Tags

Tag Description

APPLICATIONRECORD All attributes common to the application such as application name,
application version and description

VENDORINFO Vendor details are captured under this tag.

TASKGROUP Used for grouping of task information.

TASKINFO An application can have multiple tasks associated with it. Each task can
be associated with one or more ‘TASKGROUP’ (which has a
GroupName, GroupURL and GroupURLWindowName attributes) in a
nested structure, or you can leave the task without associating it to a
TASKGROUP.

INTEGRATIONTAG Each task can have multiple ‘INTEGRATIONTAG’ elements.
Applications that want to have a closer integration with other
applications, define an integration tag.

ATTRIBUTES A task can be associated with one or more integration tags. If an
application task requires few custom attributes, it can make use of the
‘ATTRIBUTES’ element to define the custom data.

WSDL Each task has ‘WSDL’ tag, the information captured here would be what
input a service takes, what output it results, the format of input & output.
This is defined using the Web Services Description Language (WSDL).

Table 9-5 CMIC Component Interaction

Components Description

CMIC User
Interface

Handles all user related registrations and unregistration. The user can also
browse through registry entries under various categories. The user interface
authorizes and authenticates each user with the security services before
displaying the UI.

CMIC API Interface through which services are registered, unregistered and queried in the
repository.

CSTM All external API calls (NB API) over the network will be routed through
Common Transport Mechanism (CTM). CTM is a service that accepts incoming
binary requests; typically the interface will authorize all such calls and pass the
request to corresponding service that handles the request (in this case CMIC).
CMIC process the request API and sends the result back to CTM, which in turn
sends it back to the caller.

For more details on CTM please refer to CTM functional specification.
9-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
About CMIC Registry Dependencies
The CMIC registry depends on the services shown in Table.

Sample MST File
The following file is used by RME to register launch points with CMIC:

<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- Copyright (c) 2003 Cisco Systems, Inc. -->

<!-- All rights reserved. -->

<!--**-->

<APPLICATIONRECORD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ws="http://schemas.xmlsoap.org/wsdl/" xsi:noNamespaceSchemaLocation="../cmic.xsd"

AppName="RME" AppVersion="4.0" TemplateVersion="1.0" AppDescription="Resource Manager

Essentials" IsCiscoCertified="false" IsCisco="false" Protocol="" Host="" Port="23"

ModifiedUser="Madan" ModifiedTime="12 " AppURL="/rme/goHome.do"

Security Services All authentication/authorization required by user interface and CTM interface
will be fetched from security services.

PSU Package Support Update is used to fetch MST template additions or updation to
existing templates from CCO. This component is not required in the first phase.

Template Store All downloaded MST templates from PSU will be stored here and is referred
whenever there is a register/Unregister call by CMIC API.

Table 9-5 CMIC Component Interaction

Components Description

Table 9-6 CMIC Dependencies

Service Description

Security Services Authentication and Authorization of users, API calls received over network.

Common Services
Transport Mechanism
(CSTM)

Enabling API calls to be made over the network.

Desktop Services Include UII, Web Server, and Tomcat.

Log and Trace Logging service for recording various events and debugging.

Locking Service For resource synchronization.

Backup and Restore CMIC registry will provide a hook, which will do the backing up of all
registered application data. The hook is called by the backup and restore
service.
9-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
AppURLWindowName="RME4.0" > <VENDORINFO VendorName="Cisco Systems" Address="170

West TasmanDr. San Jose, CA 95134 USA" Phone="(408)526-4000" Fax="(408)526-4000"

Email="tac@cisco.com" ContactURL="http://www.cisco.com"

SupportURL="http://www-tac.cisco.com"/>

<TASKGROUP GroupName="Resource Manager Essentials" GroupURL="/rme/goHome.do">

 <TASKINFO TaskName="Devices" TaskIdentity="a" TaskDescription="Device Management"

TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/deviceMgmtDflt.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

 <TASKINFO TaskName="Configuration" TaskIdentity="b" TaskDescription="Configuration

Management" TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/configurationDefault.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

 <TASKINFO TaskName="Image Management" TaskIdentity="c" TaskDescription="Image

Distribution" TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/swimDefault.do" SubmitMethod="POST" IsAPI="true">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

 <TASKINFO TaskName="Job Management" TaskIdentity="d" TaskDescription="Job Browser"

TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/JobMgmt.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

 <TASKINFO TaskName="Reports" TaskIdentity="e" TaskDescription="Report Administration"

TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/CriReportJob.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

 <TASKINFO TaskName="Tools" TaskIdentity="f" TaskDescription="RME Tools"

TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/toolsDefault.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>
9-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
 <TASKINFO TaskName="Admin" TaskIdentity="g" TaskDescription="Administration of RME

Server" TaskCategory="C" TaskSubCategory="C/admin" SecurityTag="nm.cm.admin"

TaskURL="/rme/adminDefault.do" SubmitMethod="POST" IsAPI="false">

 <INTEGRATIONTAG TagName="CWHP_TASK">

 </INTEGRATIONTAG>

 </TASKINFO>

</TASKGROUP>

</APPLICATIONRECORD>
9-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 9 Integrating Applications with CMIC
Using CMIC Services
9-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 10

Using the Security System

The CWCS Security system provides authentication and authorization services for CWCS-based
applications. The following topics explain how to use the CWCS security system with your application:

 • Understanding CWCS Security

 • Using CWCS Server Security

 • Integrating a New Application

 • Performing Encryption

 • Stopping Eavesdropping Using SSL

 • Configuring System Identity Setups

 • Configuring a Cisco.com User and Password

For more information about the security system or security in general, refer to the following resources:

 • SSL guideline document. (ENG 123901)

 • Bin:Bin Security Implementation (ENG 71441)

 • Common Management Foundation (CMF 1.2) System Functional Spec. (ENG 44513)

 • CMF 1.1 JEMAC Security Enhancement. (ENG 42923)

 • RME Security (JEMAC) System. (ENG 28649)

 • http://wwwin-eng.cisco.com/Eng/ENM/BG_10/Specs/RME_Security.doc

 • Java Servlet API Specification - Version 2.1 from the Sun website.
(http://java.sun.com/products/servlet/2.1)

 • The CWCS Server end-user online help.

Understanding CWCS Security
The CWCS Server software provides some of the security controls necessary for a web-based network
management system, but also relies heavily on the end user's own security measures and controls to
provide a secure computing environment for CiscoWorks applications.

The CiscoWorks Server requires three levels of security to be implemented to ensure a secure
environment:

 • About Client-to-Server Security

 • About Server Internal Security
10-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://wwwin-eng.cisco.com/Eng/ENM/BG_10/Specs/RME_Security.doc
http://java.sun.com/products/servlet/2.1

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Understanding CWCS Security
 • Using CWCS Single Sign-On

About Client-to-Server Security
The Client-Server environment is architected to split an application's processing across multiple
processors to gain the maximum benefit while minimizing the network traffic between machines. The
key phase is to split the application processing. In Client-Server mode, each processor works
independently but in cooperation with other processors .

About Server Internal Security
The shared secret system works by associating a secret character string with an alias name. If this alias
name matches an existing CiscoWorks user name, then the shared secret authenticated user obtains the
roles granted to the matching CiscoWorks user. If no matching CiscoWorks name exists, the
authenticated shared secret user (Peer Server Account Setup) is given whatever roles are assigned to the
guest user.

The secret tool shipped with CiscoWorks is a command line tool. The secretTool.pl file is located in the
NMSROOT/bin directory.

Name

secretTool.pl

Description

A command line tool for managing the shared secrets used by external applications to gain authenticated
access to CMF URLs.

Syntax

secretTool.pl [-add alias secret | -remove alias | -list | -removeSecret]

Input Arguments

Examples
/opt/CSCOpx/bin/secretTool.pl -add myApplication mySecret
/opt/CSCOpx/bin/secretTool.pl -remove myApplication
/opt/CSCOpx/bin/secretTool.pl -list
/opt/CSCOpx/bin/secretTool.pl -removeSecret

-add alias secret Adds a new alias to the database, or overwrite an existing one

-remove alias Remove an existing alias from the database

-list Lists all alias names configured in the database

-removeSecret alias secret TBD
10-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Understanding CWCS Security
User Name Length Restrictions
By default, the system will not allow a user to be created/authenticated when the user name length is less
than 5 characters. If you need to include user names with less than 5 characters, users can set the property
"validateUser=false" in NMSROOT\lib\classpath\ss.properties on Windows and
NMSROOT/lib/classpath/ss.properties on Solaris. The validation for usernames lesser than 5 character
will be skipped only when you set this property value to false.

Using CWCS Single Sign-On
CWCS provides a single sign-on mechanism. To use it, ensure you do the following for the initial setup:

1. Set up one of the CWCS servers as the authentication server.

2. Ensure there is trust built between the CWCS Servers using self-signed certificates. It is easier to do
this with with CSAMC since the certificates are rooted from the CSAMC CA. A certificate can be
made trusted by adding it in the trust key store of the server. The trust key store is maintained by the
certificate management framework in CWCS. It can be done using the “Add peer ciscoworks
certificate” user interface.

3. Set up a shared secret with the authentication server for each CWCS Server. The System Identity
Setup password is leveraged as a secret key for the single sign-on.

Figure 10-1 Login Protocol Path

The following is the path the protocol travels:

1. Visit link on a CWCS server. The server checks for a valid session.

2. The server redirects the browser to the authentication server, when there isn’t a valid session for the
server. The redirect URL contains a request ID and a HMAC hash using the shared secret.

CW
NM Apps

CW NM Apps,
3rd Part
NM Apps

 DCR GUI
Add
Modify
Delete
Import
Export

DCR Server

Events

Synchronization

DCR
Local
APIs

DCR
North
Bound
APIs

Other "Slave"
DCR Servers
(on different
machines)

6

7

5

3

8

4

2

1

11
33

14
10-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Understanding CWCS Security
3. Browser redirected to the CWCS Authentication Server (AS). In case the user has already logged
on, the browser has a valid session ID as cookie from AS. This session ID is sent with the redirect
request.

4. The authentication server validates the request from the CWCS server by verifying the HMAC hash.
An error message is thrown when validation fails. If the user has already logged on to the AS, the
AS uses the session ID to fetch the user’s session data, create an authentication ticket and redirect
the browser back to the requesting CWCS server and the processing will continue with step 7. If
there isn’t a valid session, the AS sends a login page to the user.

5. The user enter the username and password and submits the login. The authentication request is sent
to AS.

6. The AS authenticates the user and a user session is created. The AS generates the authentication
ticket with the user data.

7. Browser is redirected to the CWCS server with authentication ticket.

8. The CWCS server verifies the HMAC in the authentication ticket to validate the request from the
authentication server. On successful validation, the CWCS server generates a session context and
serves the URL the user was originally navigating.

SSL is used to provide confidentiality for the transactions between the CWCS server and the
authentication server. All transactions from steps 3 through 7 are protected via SSL.

How the Login Protocol Works
The login protocol works as follows:

1. The browser contacts a particular CWCS server (server1), if there are any cookies setup on the
browser by server1, the browser sends them to the server1. Server1 checks the cookies to validate
whether a valid session exists for the user. If a valid session does exist, then server1 sends back page
requested else it continues with Login protocol.

2. Server1 generates a request ID and saves the requested URL indexed by the request ID. Server1
sends a redirect request to browser, redirecting to the central CWCS authentication server (AS).
Redirect URL contains the request ID and HMAC hash based on shared secret as query parameters
of the redirect URL.

3. The browser contacts AS specified in redirect URL, using HTTPS. If there is any cookies previously
set by AS are stored at browser, browser sends them to server.

4. The AS checks whether there is a valid browser session based on the session ID in the cookie
information, there would be a valid session in case the user has already logged in, processing
continues to Step 5. In case there isn’t a valid session, the AS sends back login page asking for
username/password, user enters username and password and the AS verifies the username/password.
On successful authentication, a valid user session context is created.

5. The AS checks validates server1 by verifying the HMAC hash using the shared secret. On successful
validation, the AS generates the authentication ticket which contains the username, the request ID
sent by server1 and an HMAC hash generated using the shared secret. The AS will also add server1
to the list of authenticated servers, this information would be stored in the user context.

6. AS redirects browser back to server1 with the authentication ticket added as query parameter to the
end of the redirect URL.
10-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Understanding CWCS Security
7. Browser visits the URL on server1 with the authentication ticket encoded as query parameter.
Server1 validates the request from the authentication server by verifying the HMAC hash, it then
generates a valid session context from the user name contained in the authentication ticket and
retrieves the originally requested URL using the request ID. Server1 then proceeds to serve the
original request.

How the Logout Protocol Works
The login protocol works as follows:

1. The browser initiates logout by contacting CWCS Authentication Server.

2. The AS obtains a list of servers from the user context. It generates an HTML page with Javascript
containing links to logouts for each CWCS server that the user had logged into.

3. The browser executes the Javascript. The Javascript causes the browser connects to a URL for each
logged-in CWCS Server that initiates CWCS logout for that server .

4. The session with the AS is also terminated.

About Server-Imposed Security
The CWCS Server provides the following security mechanisms:

 • File ownership and permissions—CWCS must be installed by the system administrator and is
installed as the user casuser.

On UNIX systems all files and directories are owned by casuser with group equal to casusers.
Temporary files are created as the user casuser with permissions set to read-write for the user casuser
and read only for members of group casusers. The only exception to this rule is the log files created
by the CWCS web server. The CWCS web server must be started as root. Therefore, its log files are
owned by the user root with group equal to casusers.

All backend processes are executed with a umask value of 027. This means that all files created by
these programs are created with permissions equal to rwx r-x ---, with an owner and group of the
user ID and group of the program that created it. Typically this will be casuser and casusers.

The Windows user casuser is created at installation time and given a random password to which the
CWCS Daemon Manager has access. No user of the CWCS system should have to log into the
Windows system as the user casuser.

Files installed by CWCS are readable by anyone logged into the Windows system, but files created
in the NMSROOT\files folder can be read only by the casuser and administrator users.

 • Executable Permissions—On UNIX systems, CWCS backends are executed with permissions set to
the user ID of the binary file.

For example, if an executable file is owned by user “Joe”, it will be executed by the CWCS Daemon
Manager under the user ID of “Joe”.

The exception is the root user ID. To prevent a potentially harmful program from being executed by
the process manager with root permissions, the process manager will execute only a limited set of
CWCS programs that need root privilege. This list is not documented to preclude any user from
trying to impersonate these programs.

CWCS foreground processes (typically cgi-bin programs or servlets) are executed under the control
of the web server’s child processes. These processes run as the user casuser.
10-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
On Windows 2000 and Windows 2003, the runtime environment executes some backend processes
as system level processes, so there are some programs that run under the system account. These
programs are limited in number and controlled by entries in the Windows Registry. Only
administrators have write access to these Registry entries.

 • Off machine access—The CWCS process manager will not respond to requests to start, stop,
register, or show status for CWCS backend processes from computers other than the CWCS Server.

About Administrator-Imposed Security
To maximize CWCS Server security, follow these system administration guidelines:

 • Do not allow users who are not responsible for managing the network to have a login on the CWCS
Server.

 • Do not allow the CMF Server file systems to be mounted remotely with NFS or any other
file-sharing protocol.

 • Limit remote access (for example, FTP, RCP, RSH) to the CWCS Server to those users who are
permitted to log in to the CWCS Server.

 • Install CWCS on an NTFS file system because FAT file systems have no access controls.

About Server-to-Device Security
In CiscoWorks, the data is sent across in clear-text when the CiscoWorks server and devices
communicate with each other. This means if someone uses a sniffer on your network, they may be able
to get the device specific details (such as telnet password, and SNMP community strings) that are being
passed between CiscoWorks server and a device.

CWCS implements Secure Shell (SSH) to address this vulnerability.

About Secure Shell (SSH)
SSH (Secure Shell) is a program to logon to other computers or devices over the network, to execute
commands in the remote computer or device, and to move files from one computer or device to another.

It provides strong authentication and secure communications over insecure networks like internet.
Currently, there are two major SSH versions available, SSH version 1 and SSH version 2.

A few minor versions of SSH are also available. SSH version 1.5 is the most popular version, since it is
the only version supported in Cisco IOS. Therefore, the APIs have been written specifically for SSH
version 1.5. In this document, any reference to SSH means SSH version 1.5. (See ENG 167300 for
details about SSH implementation in CMF 2.1.)

Using CWCS Server Security
The CWCS security system is a non-hierarchical, session-oriented, role-based system that works using
registration and filtering. Each application specifies which of its tasks are visible to each of the user roles
via the XML encoded application registry files.

See the “Application Integration with CAM” section on page 10-7 for more details.
10-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
The operating system on which the server runs is designed to enable administrators to fully protect their
environment. The CWCS Server software relies on this operating system to protect its features from
unauthorized use. The CWCS Server provides some of the security controls that are necessary for a
web-based application server. However, it relies heavily on the end user’s own security measures and
controls to provide a secure computing environment for CWCS Server applications.

The CWCS Server provides and requires the following three levels of security:

 • General security that is partially implemented by the client components of CWCS-based
applications and by the system administrator.

 • Server security that is partially implemented by the CWCS Server’s operating system and by the
system administrator.

 • Application security implemented by the client and server’s operating system on which
CWCS-based applications reside.

About General Security
The CWCS Server provides an environment that allows the deployment of web-based network
management applications. Web access provides an easy to use and easy to access computing paradigm.
This is more difficult to secure than the traditional style of computing that requires a login to an
operating system before applications can be executed.

The CWCS Server provides the security mechanisms (authentication and authorization) needed to
prevent unauthenticated access to the CWCS Server and unauthorized access to CWCS Server
applications.

Since the CWCS Server applications are capable of changing the behavior and security of your network
devices, it is critical that access to the applications and servers be restricted to only those personnel who
need access to applications or the data that the applications provide. To ensure a high level of security,
you can:

 • Limit CWCS Server logins to just the system and network administrators.

 • Limit connectivity access to the CWCS Server by placing it behind a firewall. Network Services will
not work unless they are behind the firewall too.

The application must integrate with CAM for client-to-server security.

Application Integration with CAM
Applications that employ the next generation features provided by CWCS integrate with the CAM
infrastructure. The integration involves:

 • UII Integration with CAM

 • OGS Integration with CAM Device Caching.

 • Application Integration with CAM.

Application Integration with CAM requires applications to do the following:

1. Applications need to register tasks in CAM.

2. Servlets must be modified to work with UII. Validation sessions are not required for servelets in the
new UI/UE framework. UII also handles validation.
10-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
3. Components must modify the mechanism of checking authorization. There is a change in the
authorization model. The new authorization model is task based as opposed to the privilege-based
model in CWCS. Components must employ CAM APIs for authorization checks. The CAM APIs
check authorization transparently. Components need not be aware of the underlying AAA mode (i.e.
ACS or CWCS).

How CAM Cache works

CAM maintains two caches internally:

 • Device cache per JVM

 • User cache per user

When ACS is used, the DeviceCache object provides an interface to manipulate the local ACS cache.
CAM maintains this local cache so that it does not have to go to the ACS server for every authorization
request. The cache information is stored in the memory and is global to all clients.

To obtain the Device Cache created within the tomcat context:

DeviceCache dc = MICEKeys.getCAMObject().getDeviceCache();
 if (dc==null || !dc.isCacheInitialized()) {
 DeviceCache acsDevCache =
(com.cisco.core.mice.cam.DeviceCache)coreAdmin.getDeviceCache();
 acsDevCache.initDeviceCache() ;
 }

The cache can become stale when:

 • Device or device group modifications are made in the ACS server or the MDC application

 • User privilege changes on the ACS server

Sometimes, the user cache, which is not per session, may become stale when user privileges changes on
the ACS Server. So the user should explicitly logout from the browser session, when the privileges
changes. If the browser window is closed before the user logs out, the user cache may not be cleared and
the task-to-role mapping may not be synchronized between the ACS Server and the CiscoWorks Server.

You should configure cache updates to occur when:

 • Web server starts: Since the initial population of the group-to-device cache may take some time, you
should perform it when the web server starts up. You should create the group-to-group cache at this
time. Since this operation is common to all applications, MICE will populate the group-to-device
when it starts up.

 • A user logs in: When a user logs in, the application should resynchronize the group-to-device cache.
This ensures that the cache does not contain any stale data at the beginning of the user’s session.
Since this operation is common to all MDC applications, MICE will perform this re-synchronization
on behalf of the MDC applications.

Note Based on requirements, you canre-synchornise the device cache created by entering
dc.resynchDeviceCache();

 • The application is making authorization requests: CAM incrementally caches results of
authorization requests to ACS server. When the next authorization request on the same privilege
comes, the devices will be determined based on information in the cache. You can also choose to
build all of the user privilege information as soon as the user logs in, through initUserCache()

 • The user logs out: The user privilege cache should be cleared. MICE will perform this operation on
behalf of the MDC application.
10-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
API Level Details
The following is a list of CsAuthServlet APIs and equivalent CAM APIs.

Authorization Checking
The following two examples explain the authorization checks performed using CsAuthServlet in
previous versions of CWCS, and suggest the modifications to be made in order to integrate with CAM.

Assume that there is a component that allows a user to edit device configuration files. Typically this is
an activity that a network administrator performs. The following is an example of how authorization is
implemented in CWCS using CAM.

Foe more details and examples, see Guidelines for CW2k Applications to Integrate with the CAM
Infrastructure, EDCS-210589.

Example 10-1 Older CWCS Model

{
 if (!CsAuthServlet.checkRole(req, SA))
 {
 out.println("ERROR: Authorization Failure");
 out.close();
 return;
 }
Perform operation
}

CsAuthServlet API Name CWCS (CAM + CsAuthServlet)

GetAllUsers No equivalent call in CAM.

AddUser CsAuthServlet

RemoveUser CsAuthServlet

ModifyUser CsAuthServlet

AuthUser CoreAdmin - authenticate

GetSessionID CoreContentNexus - GetCoreID

CheckRole CoreAdmin - authorize

GetSessionData CoreContentNexus - GetSessionObject

GetRole CoreAdmin - GetRole

GetCurrentUser UserName Present in Session Object.

ValidSession CoreContentNexus - validConnection
10-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
Example 10-2 Current CAM Model

{
String editConfigTask = "Edit_Config";
 HashMap taskList = new HashMap ();
 taskList.put (editConfigTask, new Privilege (editConfigTask));
 PrivilegeTask privTask = new PrivilegeTask ("RME", taskList ,
NULL);
CoreAdmin coreAdmin = CoreAdminFactory.produce();
 CoreAdmin.authorize (username, privTask, NULL);
 Iterator i = privTask.getPrivileges().values().iterator();
 while (i.hasNext())
 {
 if (! ((Privilege) i.next()).getAuthorized())
 {
 out.println("ERROR: Authorization Failure");
 out.close();
 return;
 }
 }
Perform operation
}

Setting Up Server Internal Security
This topic discusses the setting up server internal security and administration of the shared secret
authentication mechanism built into CMF 1.2, including CiscoWorks. This mechanism allows external
programs to have authenticated access to CWCS URL-based APIs. This is accomplished by executing a
secure validation process based on a pre-shared secret sequence of characters. If a successful validation
occurs, the servlet session associated with the connection attempt is given the security attributes needed
to execute remote servlet API calls. This topic primarily covers the setup and administration of this
mechanism.

Using the Shared Secret Client API
The shared secret client side API is used by external applications to gain authenticated access to CWCS
server URLs. The application model is simple.

 • You instantiate a SecretClient object, then pass to the secretLogin() method the host address, the
secret alias name, and the secret string.

 • A synchronous logon proceeds and if successful, the logon returns a session cookie that should be
used in all subsequent URL calls to the host. If the login fails, some basic information is returned to
determine if the problem is with the code, the network, or an actual authentication error.

The client API is provided as an unsigned jar file named SecretClient.jar which is installed with CWCS
in the NMSROOT/www/classpath directory. That this jar file must be in the external program's classpath
in order for the shared secret mechanism to work (copy the SecretClient.jar file to whatever machine the
external program is running on if necessary).

The following code shows how to use the shared secret client API to create an authenticated session and
use the returned cookie in subsequent CWCS URL calls.
10-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
// This code will contact the SecretService running on the server, and //if everything
validates properly, it will return a valid cookie
// string. All subsequent calls to the CMF server should include this // cookie in their
requests, and this will allow server side
// authentication to operate normally.

String host = "http://xxx.xxx.x.x:xxxx";
String name = “foo”;
String secret = “bar”;

Note For SSL support, replace the above three lines with the following:
String host = "https://xxx.xxx.x.x:xxxx";
String name = “foo”;
String secret = “bar”;
com.cisco.nm.cmf.ssl.initssl.initialize (true);

SecretClient sc = new SecretClient();
String cookie = sc.secretLogon(host, name, secret);

if(cookie != null)
System.out.println("Returned cookie=" + cookie);

else
{

System.out.println("Returned error code=" +
sc.getErrCode() + ", " + sc.getErrReason());

return;
}

// This code will post the validSession command to the CMF CsAuthServlet as an example
// of how to call a URL using the cookie returned from secretLogon().

try
{

String servlet = host +
"/CSCOnm/servlet/com.cisco.nm.cmf.servlet.CsAuthServlet";
URLConnection cnn =

SecretClient.doPost(servlet, "cmd=validSession",
null, cookie);
System.out.print("Code returned from CsAuthServlet.validSession():");

SecretClient.dumpResponse(cnn.getInputStream());
}
catch(IOException e)
{

System.out.println("IOException " + e);
}
}

Client Side API Details
In your external applications, use the following shared secret methods to gain authenticated access to
CMF server URLs:

 • SecretClient.secretLogon

 • SecretClient.getErrCode

 • SecretClient.getErrReason
10-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
 • SecretClient.doPost

 • SecretClient.dumpResponse

SecretClient.secretLogon

public java.lang.String secretLogon(String host, String name, String secret);

Client service to submit a name and secret to a remote CMF host.

Input Arguments

Return Values

Examples
/opt/CSCOpx/bin/secretTool.pl -add myApplication mySecret
/opt/CSCOpx/bin/secretTool.pl -remove myApplication
/opt/CSCOpx/bin/secretTool.pl -list

SecretClient.getErrCode

public int getErrCode()

Get the last error code that occurred.

Return Values

The code returned will be one of the following integer constants:

host Server host to contact, such as “http://xxx.xxx.x.x:xxxx”

name Name associated with the secret on the server

secret Secret associated with the name on the server

Success Returns a validated session cookie.

Failure Returns null. The getErrCode() and getErrReason() functions may be queried for
more information.

SecretClient.OK No error.

SecretClient.DATA_ERROR Malformed data received due to error or possible tampering.

SecretClient.IO_ERROR Problem communicating with remote host due to network
error.

SecretClient.JRE_ERROR Problem with JRE, expected algorithm is missing from
provider.
10-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
SecretClient.getErrReason

public java.lang.String getErrReason()

Get any supplemental information available with the last error code.

Return Values

SecretClient.doPost

public static java.net.URLConnection doPost(
String host, String data, Object payload, String cookie)
throws MalformedURLException, IOException;

Optional helper method to execute post with handling of servlet parameters and a cookie.

Input Arguments

Return Values

Exceptions

 • Malformed URL exception if the specified host server URL was invalid.

 • IOException if there is a problem communicating with the remote host due to network error.

SecretClient.URL_ERROR The host server URL specified was invalid.

SecretClient.VALIDATION_ERROR Host did not validate supplied credentials.

The supplemental error string, which may be null.

host Server host to contact, such as “http://xxx.xxx.x.x:xxxx.”

data Any servlet parameters to post, i.n the format: “anydata=bar&alpha=zed”, or null

payload Serializable java object to send as the payload, or null.

cookie A single cookie to send, or null.

A URL connection object that can be used to read the response. Executes post
with optional cookie and optional payload of a serialized Java object, returns
connection.
10-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
SecretClient.dumpResponse

public static void dumpResponse(InputStream in) throws IOException;

Optional helper method to dump a response stream of text lines.

Input Arguments

Return Values

Setting Up Server-to-Device Security
Other applications use SSH APIs to establish secure connection between the device and CiscoWorks
server. A package named CSCOssh is provided for SSH. This package gets installed when you install
CMF 2.1. The class files are available at $NMSROOT/lib/classpath/com/cisco/nm/cmf/ssh

Five APIs are provided for the use of applications. SSHIO is the main class. You must initialize SSHIO
before using the APIs provided for SSH.

Connecting to Device

public boolean connect (String HostName, int PortNumber, String UserName, String Password)
throws SshPasswdException, SshCRCException, SshException

This API connects to SSH enabled device and goes into Normal User mode.

Input Arguments

in InputStream to read lines from until EOS

Dumps lines to System.out.

Syntax Description

public boolean connect Connects to a device

public string read Reads data from an SSH device

public void send Executes a command in the device

public void close Disconnects the SSH session and closes the socket

public void setDebug Enables or disables debugging

HostName Name of the device or IP address.

PortNumber TCP port number to connect. Normally SSH uses port number 22.

UserName UserName to be used to connect to the device

Password Password for the user.
10-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Using CWCS Server Security
Return Values

Exceptions

Reading From Device

public String read () throws SshCRCException

This API reads the data from SSH device. This API will be used when we want to See the Output of any
device commands. This will read from the device until a device prompt appears.

Return Values

Sending Command to a Device:

public void send (String Command)

This API executes the command in device.

Input Argument

Closing Connection

public void close()

This API disconnecs the SSH session and closes the socket.

Debugging

public void setDebug(boolean Debug)

This API is used to enable or disable debugging.

True If the connection is successful and the user name/ password combination is wrong

FalsE Something went wrong while establishing the connection

SshPasswdException Throws when the UserName/Password Combination is wrong

SshCRCException When Checksum of SSH packet fails

SshException General SSH exception.

String Returns the output of a command with device prompt

Command Command to be executed in device
10-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Integrating a New Application
Input Arguments

The following sample code shows how to use SSH APIs to establish a secure connection.

Example 10-3 Using SSH APIs to Establish Secure Connections

// This code contacts SSH enabled device and gets
// Startup Config
import com.cisco.nm.cmf.ssh.*;
class test
{
public static void main(String[] args)
{
String OP;
boolean verify= false;
SSHIO TS=null;
try
{
TS = new SSHIO();
TS.setDebug(true);
verify = TS.Connect("10.64.158.184",22,"test","test");
i
if (verify != false)
{
TS.ExecuteCommand("terminal length 0");
OP = TS.GetResult();
TS.ExecuteCommand("enable");
OP = TS.GetResult();
System.out.println(OP);
TS.ExecuteCommand("madras");
OP = TS.GetResult();
TS.ExecuteCommand("show conf");
OP = TS.GetResult();
System.out.println(OP);
TS.DisConnect();
}
else
{
System.out.println("Some thing wrong");
}
} catch (Exception e) {
System.out.println("Exception");
e.printStackTrace();
}
}
}

Integrating a New Application
Application integration is performed using CMIC. For details see the “Integrating CMIC with CWHP,
Device Center, and Setup Center” section on page 9-4.

Debug True / False
10-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Integrating a New Application
Securing Applications
Developers should secure their applications using CAM. For details, see Guidelines for CW2k
Applications to Integrate with the CAM Infrastructure, EDCS-210589.

The following is a deprecated mechanism of integration.

CMF provides user authentication and session tracking, but it is up to the applications to do authorization
verification using the CMF security APIs.

The following topics contain guidelines for securing

 • Java Servlets

 • Java Applets

 • Backend Perl Script

 • Java Server Pages (JSP)

Use this set of APIs in your applications to determine if an attempt to execute an application is valid.
This prevents users from by-passing the login process and attempting to execute applications directly.

If this code is not incorporated, users may be able to avoid the login/authentication process by entering
the URL from the desktop.

For additional Java documentation, refer to the following location on any installed CMF Server machine:
http://machine_name/javadocs/cmf/packages.html.

Securing Java Servlets

The CsAuthServlet provides the static checkRole() method for doing an authorization verification prior
to performing a task. Adding a call to this method in your servlet ensures that the HTTP request is from
a browser with a valid session and that the user logged in has the specified role.

Note These API's are deprecated. Please use corresponding APIs in CAM.

Securing Java Applets

The CMF CsAuthServlet provides a checkRole URL for applets to do an authorization verification
before starting. Calling this URL in your applet ensures that your applet is being shown in browser that
has a valid user session and that the user logged in has the specified role.

Backend Perl Script

Use the following guidelines to implement a backend Perl script. The checkRole function supports both
numbers and two-letter abbreviations.
10-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Integrating a New Application
Note These API scripts are deprecated.

Java Server Pages (JSP)

The CMF CsAuthServlet provides the static checkRole() method for doing an authorization verification
prior to performing a task. Adding a call to this method in your JSP page ensures that the HTTP request
is from a browser with a valid session and that the user logged in has the specified role.

Note If you are using UII, you should use UII security model to integrate with CAM. If you are not using UII,
you should call CAM APIs for authorization.

Creating Auto Login Pages
If you must provide access to an application URL from outside the desktop, use the AutoLogin
mechanism. A typical example of when to use this mechanism is when applications send email
notifications which include a URL that can be clicked on by the recipient to view a report inside CWCS.
The AutoLogin mechanism verifies that a valid session exists. If so, the specified URL is displayed. If
not, the CWCS login panel is displayed and the URL is shown only after the user logs in. The URL to
display must be URL encoded with the java.net. URLEncoder class or a similar function if URL
parameters are included in the URLtoDisplay.

Note Auto login is deprecated. Applications need to call the URL. The Apache web server will take care of
forwarding to the login panel, if the session is invalid.

The Windows 2000 and Windows 2003 casuser account must have a random initial password that is
never changed.

During an upgrade, the framework renames the old user, bin, to the new user, casuser. The user, casuser,
is created during a new install by the installation framework.

The casuser does not have admin privileges on Windows 2000 or Windows 2003. It is created with User
level privileges and the following additional privileges:

 • SeNetworkLogonRight

 • SeBatchLogonRight

Description Verifies the validity of a user’s role.

Syntax

BEGIN { push(@INC, "$ENV{'NMSROOT'}/cgi-bin/common/perl/wizard"); }
use wizSecurity;
…
&wizSecurity::checkRole("SA"); #Requires System Admin privileges.

Output

Verifies that a user has the appropriate privileges. If the user has privileges, the tasks
display. If the user does not have the appropriate privileges to use this task, the applet
displays the login panel.
10-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Performing Encryption
Performing Encryption
CWCS Security APIs can perform both symmetrical and asymmetrical encryption. The following topics
discuss how to use the CWCS Java encryption APIs to encode data in your applications.

 • Handling Symmetrical Encryption

 • Handling Asymmetrical (One-Way) Encryption

Handling Symmetrical Encryption
One problem frequently encountered by application developers is the need to encrypt sensitive data (such
as device credentials) when stored in a file or a database. CWCS provides the simple EncryptedObject
API for doing this type of symmetrical encryption. It provides very strong encryption
(Twofish/256/CBC) and the internal code is exempt from ITAR under the 15 CFR registered open source
exemption. Example 10-4 shows typical code using the EncryptedObject API.

Caution EncryptedObject encryption is only as strong as its key management. If you hard- code the symmetric
key into your code instead of obtaining it using interactive user input, a hacker could reverse- engineer
your key management and extract the key. This is still far better than XOR/Base64 encoding, which is
often used when tight security is not a priority.

Example 10-4 Symmetrical Encryption

import com.cisco.nm.cmf.security.EncryptedObject;

// To encrypt an object:

// Object to protect (NOTE: the object must be serializable!)
MyObject foo = new foo();

// Obtain the passphrase to protect access
byte[] pass = { 0, 1, 2, 3, 4, 5 ... }; // Use a decent length (32+)
// byte[] pass = passwordString.getBytes(); // Another way...

// Encrypt and encapsulate it in serializable EncryptedObject instance
EncryptedObject e = new EncryptedObject(foo, pass);

// Encrypted object e is now safe, do whatever with it including read/write to/from disk
...

// To unencrypted the object later:

// Obtain the passphrase to protect access
byte[] pass = { 0, 1, 2, 3, 4, 5 ... }; // Use a decent length (32+)
// byte[] pass = passwordString.getBytes(); // Another way...

// Obtain the encrypted object
EncryptedObject e = ...; // read from disk, e.g.

// Recover the encapsulated encrypted object
MyObject foo = (MyObject)e.getObject(pass);
10-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Stopping Eavesdropping Using SSL
Handling Asymmetrical (One-Way) Encryption
Use asymmetrical encryption when you do not need to recover encrypted data. A common use for this
type of encryption is for UNIX password files. Asymmetrical encryption is performed using a message
digest algorithm which is a secure one-way hashing function. To perform one-way encryption on a
string, the java.security. MessageDigest class can be used (available in Java 1.1). Example 10-4 shows a
typical implementation of this kind.

Example 10-5 Asymmetrical Encryption

import java.security.MessageDigest;

String myString = new String(“Data to encrypt”);
Byte[] encryptedData;

// instantiate and initialize MessageDigest object
try {
MessageDigest md = MessageDigest.getInstance(“SHA”);
}
catch(NoSuchAlgorithmException) {
 …
}
md.reset();

// set data to encrypt
md.update(myString);

// get encrypted data
encryptedData = md.digest();

Stopping Eavesdropping Using SSL
Using a network sniffer is a common practice among malicious hackers. Hackers look for decipherable
data transferring across the network that can be used to hack into unsuspecting networks or provide them
with confidential information. Data between a customer’s browser and CiscoWorks is in sent across the
network in clear-text. This means if someone uses a sniffer on your network they may be able to see any
data that is being passed between CiscoWorks and the user. This is detrimental due to the amount of data
in CiscoWorks that would be very useful to a malicious hacker (topology information, device passwords,
and so on).

Why Use SSL in CWCS?
One way customers can protect themselves from eavesdropping is through SSL (Secure Socket Layer).
SSL encrypts the transmission channel between the client and server.

Using SSL does come at a slight cost. The encryption technology used in SSL is math intensive, meaning
it can slow down the computer’s processor. Also, since the transmission needs to be encrypted/decrypted,
it can add latency to the connection.
10-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Configuring System Identity Setups
SSL Support in CWCS
CWCS provides secure access between the client browser and management server and also between the
management server and devices. It uses SSL encryption to provide secure access between the client
browser and management server, and Secure Shell (SSH) to provide secure access between the
management server and devices.

Users can enable or disable SSL from the CWCS desktop, depending on their need to use secure access
between the client browser and the management server. CWCS has provisions to manage security
certificates, both self-signed certificates and certificates issued by third-party certificate agencies (CA).
To learn more about enabling and disabling SSL, and the certificate management functions, see the User
Guide for CiscoWorks CommonServices.

What Kind of SSL Support is Available in CWCS?
All applications in CWCS support SSL. If the web server is SSL enabled, you can invoke the applications
through Hypertext Transfer Protocol Secure (HTTPS).

The web server supports SSL version 2, 3, and TLS version 1. We support strong 128-bit encryption to
enable customers to have maximum security. Since the export laws have recently been relaxed, the strong
128-bit encryption does not affect the exportability of CWCS.

Note If you have non-SSL compliant applications installed on the server, SSL cannot be enabled in CWCS.

SSL-Enabling Your Application
Though the the CWCS Web Server had the ability to support SSL connections (HTTPS) over port 1742
in addition to the default HTTP (over port 1741) from CMF version 1.2, the CiscoWorks code did not
work over this connection. However, there are provisions to make the CiscoWorks code work correctly
over the SSL session.

You can find the details for enabling your application to work over SSL in the document CW2000
applications over SSL Sessions, EDCS ENG-123901.

Configuring System Identity Setups
Applications use System Identity Setup to authenticate processes on remote CiscoWorks Servers.

Suppose there are two CiscoWorks servers A and B. You configure x, x1 and x2 as Peer Server Account
Setup on A and y, y1, and y2 as Peer Server Account Setup on server B. To set up a System Identity
Setup, you have to configure one Peer Server Account Setup in A, say x, as the System Identity Setup in
B.

The System Identity Setup should have the necessary privileges to perform the desired tasks. Also, the
System Identity Setup should be configured with the same password.

In ACS mode, the System Identity Setup needs to be configured with the required privileges in ACS.

Note During installation, CWCS prompts for setting up a System Identity Account username and password.
10-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 10 Using the Security System
Configuring a Cisco.com User and Password
The following is an example of CommonTrustUser API.

public String getCommonTrustUser () : Returns the system identity setup.

public void setCommonTrustUser (String username, String secret) :Sets the system identity
setup and writes into the file, Input : UserName and SecretKey

public char[] getCommonTrustUserKey () :Returns system identity setup key if it is
configured.

public String getCommonTrustUserAndKey (): Returns system identity setup and key in the
format username:key

Configuring a Cisco.com User and Password
Certain CWCS features require access to the cisco.com web site work. For example, CiscoWorks must
be configured with a cisco.com account to use when downloading new and updated packages. This user
account is also used with so-called CCO APIs, which allow your CWCS application to access cisco.com.
Example 10-6 shows some typical uses of CCO APIs

Example 10-6 CCO APIs

.

public String getCCOLogin() : Returns the CCO Login

public void setCCOUser (String username, String secret): Sets the cco user and writes into
the file Input : UserName and SecretKey

public String getCCOPassword (): Returns cco password if it is configured.

public String getCCOInfo (): Returns cco login and password in the format login:password
10-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 11

Using the Database APIs

CWCS database APIs are used primarily for installing and configuring custom databases. These APIs
hide the configuration, platform details, and database management processes from applications. They
allow applications to:

 • Manipulate ODBC data sources

 • Start and stop database processes and identify database versions

 • Run SQL scripts

 • Manipulate backup manifests

The following topics describe how to create a custom database and how to use the CWCS database APIs
in your applications:

 • Understanding the CWCS Database, page 11-2

 • Setting Up a New Database, page 11-6

 • Performing a Quick Integration, page 11-17

 • Using the Sybase Database, page 11-18

 • Debugging and Troubleshooting the Database, page 11-33

 • Database API Command Reference, page 11-37

For more information about the CWCS database APIs, refer to:

 • CMF 1.2 Database Functional Specification, EDCS ENG-54964

 • Database Security, EDCS ENG-80264

For details on backing up and restoring the database, see Chapter 12, “Using Backup and Restore.”

The Sybase SQL Anywhere Studio 9.0.0 Core Documentation Set is available online at
http://sybooks.sybase.com/onlinebooks/group-sas/awg0900e. Recommended titles in this set include:

 • Adaptive Server Anywhere Database Administration Guide

 • Adaptive Server Anywhere Getting Started

 • Adaptive Server Anywhere Programming Guide

 • Adaptive Server Anywhere SQL Reference Manual

 • Adaptive Server Anywhere SQL User's Guide

 • Introducing SQL Anywhere Studio

 • MobiLink Synchronization User’s Guide

 • Ultralite Database User’s Guide
11-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://download.sybase.com/pdfdocs/awg0900e/dbpgen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/dbrfen9.pdf
http://sybooks.sybase.com/onlinebooks/group-sas/awg0900e
http://download.sybase.com/pdfdocs/awg0900e/dbugen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/dbdaen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/dbbgen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/dbfgen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/dbmlen9.pdf
http://download.sybase.com/pdfdocs/awg0900e/ulfoen9.pdf

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Understanding the CWCS Database
Understanding the CWCS Database
The following topics describe various aspects of the CWCS database:

 • What’s New in This Release

 • Understanding the Tools

 • Database Access Methods

 • Understanding the NMTG Database Delivery Process

What’s New in This Release
The following changes have been implemented in this release:

 • JConnect Upgrade: Sybase declared JConnect 4.2 End-of-Life in December 2002, and no longer
supports it. Accordingly, CWCS 3.0 drops support for JConnect 4.2, and upgrades support for
JConnect 5.2 to JConnect 5.5.

 • Sybase Upgrade: The Sybase database engine on Solaris and Windows was upgraded to 9.0.0 + EBF.
The EBF versions as of release were 9.0.0.1364 (Solaris) and 9.0.0.1366 (Windows).

Understanding the Tools
These third-party tools are required to implement the CWCS database:

Tool Version Description

jConnect 5.5 JDBC commands use this Sybase component to access the database
engine.

JDBC 1.2 Java Database Connectivity—A set of Java APIs that provide universal
data access for the Java programming language.

ODBC 2.x ODBC,
3.510 of
ODBC
Driver
Manager

Open Database Connectivity—A standard call level interface
developed by Microsoft and based on the SQL AccessGroup CLI
specification.

ODBC is a database-independent C language API that consists of a
driver manager (supplied by the operating system) and drivers for each
database vendor.

SQL Database
Engine

V9.0.0 +
EBF

Adaptive Server Anywhere 9.0.0 is the current version of the Sybase
database present in CWCS. EBF versions as of release were
9.0.0.1364 (Solaris) and 9.0.0.1366 (Windows). This database
supports the ODBC API on UNIX and Windows platforms. Includes
access from Java via JDBC, C/C++ via ODBC, and Perl via DBI.

DBInternal CWCS
component

DBInternal is the link that Perl uses to access the database (on
Windows platforms only).
11-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Understanding the CWCS Database
Database Access Methods
CiscoWorks applications can communicate with the CWCS database using these methods: ODBC,
JDBC, and Perl. Figure 11-1 shows how each method accesses the CWCS database.

Figure 11-1 Database Access Applications

The following topics describe these access methods:

 • Types of Database Servers

 • JDBC Access Methods

 • ODBC Access Methods

 • Perl Access Methods

 • Connection Strings

Types of Database Servers

There are two types of database servers:

 • dbsrv9—The network version. This allows unlimited concurrent connections, provides multi-user
use, and supports client/server communication across a network.

 • dbeng9—The personal version. This allows up to 10 concurrent connections. Use this simpler
version when:

 – The CWCS Server is down, and therefore no other connection is on.

 – A simple task such as restore or backup needs to connect to the database to check the data.

JDBC Application

 dbservice2

JAVA/JDBC

NT
ODBC
Driver
Manager

jConnect

Third-Party
Applications

Sybase
Components

Cisco
Applications

ODBC Application Perl Application

 DBInternal

DBI

DBD
ASAny

ASAn
Engine
(dbsrvn)

ASAn
Database

UNIX
ASAn Driver
dbodbcn.so

NT
ASAn
Driver

86
00

0

User ID/
Password
Encryption
11-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Understanding the CWCS Database
JDBC Access Methods

JDBC (Java Database Connectivity) is a set of Java APIs that provide universal data access for the Java
programming language. JDBC provides a standard interface between your application and the database
server.

The JDBC commands use the Sybase component, jConnect, to access the database engine. When an
application makes a database connection, the classes in dbservice2 retrieve the connection the
information from the DbServer.properties file, including the database user ID and password, to construct
the JDBC URL.

The dbservice2 Java classes also provide commonly-used JDBC methods. Use these Java methods,
which sit on top of the JDBC APIs, instead of the JDBC API to shield any database-related changes from
high-level applications.

Related Topics

See:

 • The “About the Database Property Files and Settings” section on page 11-12.

 • Sun’s Java training site at the following URL:
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

ODBC Access Methods

ODBC (Open Database Connectivity) is a standard call level interface (CLI) developed by Microsoft and
based on the SQL AccessGroup CLI specification. An industry standard, ODBC is a
database-independent C language API that consists of a driver manager (supplied by the operating
system) and drivers for each database vendor.

The Sybase Adaptive Server Anywhere database engine supports the ODBC API on UNIX and Windows
platforms (see Figure 11-1). To access ODBC functions, the applications must be compiled and linked
with the appropriate import library file. The Sybase ODBC driver makes the connection using the
database user ID and password stored in the .odbc.ini file on UNIX platforms or the system registry on
Windows platforms.

Related Topics

See Microsoft’s online SDK site at the following URL:
http://msdn.microsoft.com/downloads/sdks/platform/database.asp

Perl Access Methods

DBI is the Perl ODBC interface. It defines a set of methods, variables, and conventions that provide a
consistent database interface, independent of the actual database being used. DBI does not access any
particular database; instead, it locates and loads the applicable driver modules.

The database user ID and password are stored in the .odbc.ini file on UNIX platforms or the system
registry on Windows platforms.

Perl applications use the following drivers to access the database:

 • On Windows platforms, Perl applications use the DBInternal driver (see Figure 11-1) to connect to
the DBI module.
11-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://msdn.microsoft.com/downloads/sdks/platform/database.asp
http://msdn.microsoft.com/downloads/sdks/platform/database.asp
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Understanding the CWCS Database
 • On Solaris platforms, Perl applications use the DBD driver. The DBD (Database Driver) modules
contain the vendor libraries and can access the actual databases; there is one DBD module for every
database. For example, the driver for the Adaptive Server Anywhere database is DBD::ASAny.

Related Topics

See the Comprehensive Perl Archive Network (CPAN) web site at the following URL:
http://www.perl.com/CPAN-local/README.html

Connection Strings

Applications need to establish a connection to the database before they can interact with the database. A
connection requires, at a minimum, the user ID, password, and database name. For SqlAnywhere
databases and ODBC programs, this information is specified as a single parameter in the form of a
connection string:

 • SqlAnywhere connection strings—Used for any registered or unregistered database.

SqlAnywhere databases use the form ENG=xx;CWEUID=xx;CWEPWD=xx, where:

 – ENG is the database engine name

 – CWEUID is the encrypted database user ID

 – CWEPWD is the encrypted database password

This connection string can be made more specific by adding the DBN parameter to refer to a
database attached to the database engine.

Note If the encryption flag is ON, applications must use the encrypted user ID and password
keywords, CWEUID and CWEPWD. If, however, the application still uses the plain text user
ID and password (the encryption flag is OFF), the old connection string format that uses UID
and PWD will still work.

 • ODBC connection strings—Used only if the database is registered.

ODBC connection strings use the form DSN=xx;CWEUID=xx;CWEPWD=xx, where the DSN
parameter refers to a data source that contains a detailed definition of the data source. This includes
the name of the database engine, engine start up parameters, the path to the database root file, and
so on.

The data source can also store the user ID and password. In this case, the connection string can be
just DSN=xx. The data source information is kept in the registry on Windows platforms, and in the
.odbc.ini file on UNIX systems.

Understanding the NMTG Database Delivery Process
Table 11-1 provides a summary of the database files that require special handling during the delivery
process. If you are not using ClearCase and the NMTG installation processes, you will need to create a
similar process for delivering these files.
11-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.perl.com/CPAN-local/README.html
http://www.perl.com/CPAN-local/README.html

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Setting Up a New Database
The following topics describe the files, settings, and processes required to create a new database:

 • Creating the ODBC Database Definition File

 • Creating the Backup Manifest Files

 • About the Database Property Files and Settings

 • Managing the Database Engine

If you want to set up a new database quickly, see the “Performing a Quick Integration” section on
page 11-17.

Table 11-1 NMTG Database Delivery Phases and Files

Delivery Phase Special Files

Create these files
and place them in
the ClearCase vob.

These files will be copied to the CD by the build process:

 • $NMSROOT/databases/orig/odbc.tmplorig: Contains the factory password for the initial database
(db_name.dborig), the user ID and password, the engine name, and the port ID. The odbc.tmplorig
file must be duplicated to the odbc.tmpl file during installation.

 • $NMSROOT/databases/orig/db.dborig: Contains the default database for your module. To create a
database, use the dbinit command.

Refer to later sections for details on using the dbinit command and changing the default
username/password for this database.

During installation The CWCS database is registered and System Services are enabled by default. The registration and
installation process:

 • On Solaris only: Renames the .odbc.tmpl file to .odbc.ini and populates it with the user ID,
password, and other database information for each database engine.

 • Renames the database template files (db.dborig) and copies them to $NMSROOT/databases/dsn.db.
For example, $NMSROOT/databases/cmf/orig/cmf.dborig is renamed and copied to
$NMSROOT/databases/cmf/cmf.db.

 • On Solaris systems: Populates the dmgtd.conf file with the database engine command for each
database. It also adds the database monitor command for each database.

 • Updates the DBServer.properties file with the URLs for the installed suites as well as the database
credential information.

 • On Windows only: Updates the Windows registry (if applicable) with the ODBC service
information.

After installation The following files have been modified:

 • Windows registry—For Windows platforms. Contains the ODBC services for the database engine.

 • .odbc.ini—For Solaris systems. Contains the ODBC services for the database engine.

 • dmgtd.conf—A Daemon Manager file that contains the database engine and database monitor
commands.

 • DBServer.properties—Contains the JDBC URL for the installed database.
11-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Creating the ODBC Database Definition File
The ODBC DSN uses the database definition file, .odbc.ini, to provide database-specific information to
ODBC applications. This file contains the user ID, password, and other database information.

 • On Windows platforms, the ODBC definition is located under the Windows Registry. For example,
the registry key for CWCS is:

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\cmf

The key CWEUID contains the encrypted user ID, and the key CWEPWD contains the encrypted
password.

 • On Solaris platforms, the ODBC definition is located under $NMROOT/.odbc.ini. The environment
variable ODBCINI=$NMROOT/.odbc.ini is defined by the Daemon Manager.

The following topics describe the procedures for creating a database template file:

 • Creating the Database Template File

 • Creating the odbc.tmplorig Template File

 • Enabling Database Password Encryption

Creating the Database Template File

The registration and configuration process uses the database template file, .odbc.tmplorig, to create the
to create the odbc.tmp and .odbc.ini files on Solaris, and the registry entries on Windows:

 • On Solaris platforms, it renames the .odbc.tmpl file to .odbc.ini and populates it with the user ID,
password, and other database information for each database engine.

 • On Windows platforms, the .odbc.ini file does not exist. Instead, the odbc.tmpl file is used to
populate the Windows registry with the user ID, password, and other database information for each
database engine.

Note If you are a developer working inside NMTG, follow the procedure in the “Creating the
odbc.tmplorig Template File” section on page 11-7.

Creating the odbc.tmplorig Template File

If you are a developer working inside NMTG, create an odbc.tmplorig database template file. The
automated build processes use this file to create the corresponding .odbc.ini file on the target system.
Use the following procedure to create the odbc.tmplorig file.

Step 1 Create the odbc.tmplorig file using these conventions:

 • File Name: odbc.tmplorig

 • ClearCase Location: /vob/enm_cmf/share/databases/cmf/

Step 2 Include the following lines (on Solaris platforms, expand the file names to their full path):

UID=cmfDBA
PWD=c2kY2k
Start=dbsrv9
DatabaseName=cmfDb
EngineName=cmfEng
11-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
CommLinks=tcpip{HOST=localhost;DOBROADCAST=NO;ServerPort=43441}
CWENCRYPTION=YES
AutoStop=yes
note __ values are not passed through for odbc registration
These __ values are skipped by odbcdsn.pl.
These __ values are used for configuring db engine startup parms.
__Cache=8
__DbNTSvcLongName=CiscoWorks Cmf database engine
JdbcDriver=com.sybase.jdbc2.jdbc.SybDriver
DmPrefix=Cmf

The JdbcDriver line populates the JdbcDriver entry in DBServer.properties. For more information about
this entry, see the “Creating the Database Template File” section on page 11-7. To register with custom
switches, or specify a JDBC driver, see the “Customizing the odbc.tmpl File” section on page 11-8.

Step 3 Make these changes:

 • Line 1: Replace cmfDBA with your user ID.

 • Line 2: Replace c2kY2k with your password.

 • Line 3: Replace dbsrv9 with the database engine name.

 • Line 4: Replace cmfDB with your database name. Do not include the absolute path; the full path is
constructed and inserted into the .odbc.ini file. For more information about this process, see the
“Understanding the NMTG Database Delivery Process” section on page 11-5).

 • Line 5: Replace cmfEng with your engine name.

 • The CommLinks line contains database engine command line parameters. Replace “43441” with the
port ID for your database. To determine which port ID number to use, see the “Managing the
Database Engine” section on page 11-13.

 • If you do not want to enable database password encryption, remove the line,
CWENCRYTPTION=YES (see the “Enabling Database Password Encryption” section on
page 11-9).

 • Adjust other lines as needed:

 – The Cache line is a database engine command line parameter that defines the size of the cache
(default = 8 M).

 – The __DbNTSvcLongName defines the Windows Service name to be the CiscoWorks database
engine.

 – The JdbcDriver line populates the JdbcDriver entry in DBServer.properties.

 – The Dmprefix is the prefix registered for this database in the CWCS Daemon Manager.

Customizing the odbc.tmpl File

If you want to register your database with custom flags, you need to include the -Switches entry in
odbc.tmpl, with the additional switches you want specified on the same line as the property name.

If the _Switches property is not present, the database will be registered with the following default
switches on:

 • On Windows platforms: -m -ti 0 -gm 100

 • On Solaris platforms: -q -m -ti 0 -gm 100
11-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Note that if you specify custom switches and also want the default switches, you must include both on
the _Switches line.

The following will always be present and need not be included on the _Switches line:

 • -c for cache size (this is taken from the _Cache line) .

 • -n for the engine name and database file name

 • On Solaris only: The option -s $ENV{PX_FACILITY} is always added. You need not enter it with your
custom switches.

For example:

CWEUID=r0wicBlFHWg=
CWEPWD=vJa9p8EtilQ=
Start=dbsrv9
DatabaseName=cmfDb
EngineName=cmfEng
CommLinks=tcpip{HOST=localhost;DOBROADCAST=NO;ServerPort=43441}
AutoStop=yes
CWENCRYPTION=YES
note __ values are not passed through for odbc registration
These __ values are skipped by odbcdsn.pl.
These __ values are used for configuring db engine startup parms.
__Cache=8
__Switches= -u -p
__DbNTSvcLongName=CiscoWorks Cmf database engine
DmPrefix=Cmf

You also have the option to specify any compatible JDBC driver. To do so, add the following entries in
the odbc.tmpl file:

"JdbcDriver=myDriver"
"DataSourceUrl=MySource"

When the database is registered using configureDb.pl, these entries will be added to
DBServer.properties. If these entries are absent, Jconnect will be used by default.

Enabling Database Password Encryption

The encrypted password and username are stored in the .odbc.ini file on Solaris and the registry entry
on Windows. It is also stored in the odbc.tmpl and DBServer.properties files.

To enable password encryption, add the CWENCRYPTION flag to the odbc.tmpl file. For example:

UID=cmfDBA
PWD=c2kY2k
Start=dbsrv9
DatabaseName=cmfDb
EngineName=cmfEng
CWENCRYPTION=YES
CommLinks=tcpip{HOST=localhost;DOBROADCAST=NO;ServerPort=43441}
AutoStop=yes
__Cache=8
__DbNTSvcLongName=CWCS Cmf database engine

The CWENCRYPTION flag:

 • Indicates that an application wants to encrypt its identification information.

 • Has two possible values, YES or NO. The default is NO.

We strongly recommend that all applications call the following command during installation:
11-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
$NMSROOT/objects/db/conf/ChangeDbPasswd.pl dsnname newpwd

Put this command in the following location:

 • On Solaris platforms: postinstall

 • On Windows platforms: the rul file

You can call ChangeDbPasswd.pl before or after the database is installed.

ChangeDbPasswd.pl validates passwords. Valid passwords must:

 • Have a minimum of five and a maximum of 128 characters.

 • Use alphanumeric characters (a-z, A-Z, 0-9) only. No special characters (e.g., #, $, %) or spaces are
allowed.

 • Not have a number as the first character.

If you are setting a new database password during the application install, we recommend that you
validate the submitted password. If your install submits an invalid password, ChangeDbPasswd.pl will
generate an appropriate information message and will not change the password.

Related Topics

See the:

 • “Creating the Database Template File” section on page 11-7.

 • “Creating the odbc.tmplorig Template File” section on page 11-7.

Creating the Backup Manifest Files
Backup manifest files are ASCII text files used by the CWCS backup and restore framework. These files
contain a list of the database files or directories to be backed up.

There are two types of backup manifest files:

 • The database backup manifest file contains a list of database file names. The backup.pl script uses
this list to determine which database files to back up. The database backup manifest file is stored in
the directory $NMSROOT/backup/manifest/suite/database/orig/dsn.txt, where:

 – $NMSROOT is the directory in which the product will be installed.

 – suite is the name of your application or suite. Often, this is the same as the dsn. For example:
For CWCS, the suite and dsn are both “cmf”, but for Campus Manager, the suite is “campus”
and the dsn is “ani”.

 – dsn is the the data source (database) name.

 • The application backup manifest file contains a list of directories and files where
application-specific data is stored. The backup.pl script uses this list to determine the application
data to back up. The application backup manifest file is stored in the directory
$NMSROOT/backup/manifest/suite/app/orig/datafiles.txt, where:

 – $NMSROOT is the directory in which the product will be installed.

 – suite is the name of your application or suite, as for the database backup manifest file.

 – app is the name of the application or module within the suite. These usually vary. For example:
For Resource Manager Essentials, the suite is “rme”, but the app may be “configArchive”.

The following topics explain how to create both types of backup manifest files:

 • Creating the Database Backup Manifest File
11-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
 • Creating the Application Backup Manifest File

Note Use of the CWCS backup and restore framework requires that Campus Manager, ACLM, and DFM
developers change their application backup manifest directory structure. For details, see the “CWCS
Backup” section on page 12-1.

Related Topics

See the:

 • “Enabling the CWCS Database Engine” section on page 11-37.

 • “Using CWCS Backup” section on page 12-1.

 • “Running CWCS Backups” section on page 12-3.

 • “backup.pl” section on page 12-10.

Creating the Database Backup Manifest File

Use the following procedure to create the backup manifest files for your database:

Step 1 Create a dsn.txt file, where dsn is the name of your database.

Step 2 Include the following lines in dsn.txt, replacing all occurrences of “cmf” with your database name:

[cmf]
root=$ENV{NMSROOT}/databases/cmf/cmf.db

Step 3 Copy the dsn.txt file to the following directory in the runtime tree:
$NMSROOT/backup/manifest/suite/database/orig/dsn.txt

Where:

 • $NMSROOT is the directory in which the product was installed.

 • suite is the name of your application or suite. This is sometimes the same as the dsn. For example:
For CWCS, the suite and dsn are both “cmf”, but for Campus Manager, the suite is “campus” and
the dsn is “ani”. When you install CWCS, the cmf.db database is loaded and enabled by default.

 • dsn is the name of your database.

The final runtime location of this file will be $NMSROOT/backup/manifest/suite/database/ (that is, the
/database subdirectory that is the parent of /orig).

Creating the Application Backup Manifest File

Use the following procedure to create the backup manifest file for your application’s files:

Step 1 Create a datafiles.txt file.

Step 2 On separate lines, list the application paths and files to be backed up. For example:

$ENV{NMSROOT}/lib/classpath/com/cisco/nm/cmf/servlet/cwpass

$ENV{NMSROOT}/lib/classpath/sso.properties

$ENV{NMSROOT}/lib/classpath/com/cisco/nm/dcr/dcr.ini
11-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
$ENV{NMSROOT}/lib/eds/filter/namedfilter.str

The $ENV(NMSROOT) value must precede each line (the configureDb.pl action=install call will
replace it with the actual installation directory).

Step 3 Copy datafiles.txt to the following directory in the runtime tree:

$NMSROOT/backup/manifest/suite/app/orig/datafiles.txt

Where:

 • $NMSROOT is the directory in which the product was installed.

 • suite is the name of the suite containing your application (often, this is the same as the dsn).

 • app is the name of your application. Often, this is the same as suite, especially for standalone
applications.

The final runtime location of this file will be $NMSROOT/backup/manifest/suite/app/ (that is, the /app
subdirectory that is the parent of /orig).

About the Database Property Files and Settings
The following topics describe the two types of database property files:

 • About the Database Server Property File

 • About Private Property Files

About the Database Server Property File

DBServer.properties is the database server properties file. It contains the configuration parameters for
Java Database Connectivity (JDBC) application database functions such as various debug levels,
timeouts, and sleep periods, the port the database service module listens to for socket-based requests,
the maximum number of database connections, and so on.

Typically, you should not change the contents of the DBServer.properties file; the information in this file
is created by CMFEnable.pl. For each registered database, the CMFEnable script adds several lines to
this file. For example, these lines were appended for the CMF database:

dbconnection for cmf
DBConnection.userName.cmf=cmfDBA
DBConnection.password.cmf=c2kY2k
DBConnection.dataSourceUrl.cmf=jdbc:sybase:Tds:localhost:43441?SERVICENAME=c
mfDb
DBConnection.jdbcDriver.cmf=com.sybase.jdbc2.jdbc.SybDriver

You might, however, need to modify this file to change:

File Name DBServer.properties

Runtime Location $NMSROOT/www/classpath/com/cisco/nm/cmf/dbservice (where $NMSROOT is
the directory in which the product was installed).

ClearCase Location enm_cmf/share/classes/client/com/cisco/nm/cmf/dbservice/orig

Example To see an example of the DBServer.properties file, refer to the CodeSamples
directory on the CWCS SDK CD.
11-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
 • The JDBC connection information

 • The jConnect tuning parameters

 • Any debug level, sleep, or timeout values

To make changes to the DBServer.properties file:

Step 1 Use an ASCII editor such as Notepad to update the file.

Step 2 Stop the database engine process.

Step 3 Restart the database engine process.

Related Topics

 • “Enabling the CWCS Database Engine” section on page 11-37.

 • “Starting a Database Engine” section on page 11-25.

 • “Stopping a Database Engine” section on page 11-27.

About Private Property Files

Some applications include the database password in a private, application-specific property file. For
CWCS to recognize this password, these applications must adhere to the following conventions:

 • Add the location of the private property file to the odbc.tmplorig file. The key name is PropertyFile.
The value must include the path of its private property file relative to $NMSROOT, the directory in
which the product was installed. For example, the odbc.tmplorig file for ANI includes this line:

PropertyFile=etc/cwsi/ANIServer.properties

 • The key name for the database password in its property file must be “DB.password”. For example,
the ANIServer.properties file includes this line:

DB.password=cwsiPWD

Related Topics

 • “Creating the ODBC Database Definition File” section on page 11-7.

Managing the Database Engine
The following topics describe some important database engine management tasks:

 • Understanding Port IDs

 • Creating a Database Port

 • Changing the Database Port

 • Dynamically Allocating a Port ID
11-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Understanding Port IDs

Because CWCS uses a database that supports cross-network operations, every database engine must have
its own port ID. Every network server must define a unique port ID as a TCP/IP parameter.

At install time, the Installer framework makes a call to the CWCS service bundles enabling mechanism,
CMFEnable.pl. This Perl script uses the values in the CommLinks line in the database template file,
.odbc.ini, to assign each database engine its own port ID. For more information about the database
template file, see the “Creating the ODBC Database Definition File” section on page 11-7.

All newly-developed databases must define a CommLinks value. The format of the CommLinks
definition is:

CommLinks=tcpip{HOST=localhost;DBBROADCAST=NO;ServerPort=portid}

As part of the database registration process, CMFEnable.pl reads the .odbc.ini file and populates the port
ID from the CommLinks entry to several places:

 • Database Server Command Line

A network server is started with a TCP/IP protocol. The command line is stored in the following
locations in the runtime tree:

 – On Solaris Platforms, it is stored in:

$NMSROOT/conf/dmgt/dmgtd.conf

 – On Windows platforms, it is stored under this Windows system entry:

HKEY_LOCAL_MACHINE \\SYSTEM\\CurrentControlSet\\Services

 • The ODBC connection parameters

The ODBC driver detects a database RPC protocol and port ID from entry CommLinks. This entry
is defined:

 – On Solaris Platforms, in this file:

$NMSROOT/.odbc.ini

 – On Windows platforms, in the Windows system registry entry with this key:

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\dsn\CommLinks

 • The JDBC URLs

For both Windows and UNIX platforms, the JDBC application reads the database URL definition
from this file:

$NMSROOT/www/classpath/com/cisco/nm/cmf/dbservice/DBServer.properties

The CWCS installation code checks to see if the port ID is available, and gives a warning if it is not. This
warning, however, does not stop the installation process.

The following topics describe how CWCS allocates port IDs:

 • Creating a Database Port

 • Changing the Database Port

 • Dynamically Allocating a Port ID

Related Topics

See the “Enabling the CWCS Database Engine” section on page 11-37.
11-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Creating a Database Port

CWCS reserves ports 43441 through 43549 for database servers. Table 11-2 shows the ports
permanently allocated to CWCS and existing applications. To permanently allocate a database port for
your application, contact the CWCS database team via the support alias, embu-db-interest@cisco.com.

If you are using Solaris platforms and CWCS-supplied scripts like configureDB.pl, the scripts will check
for and select a free port automatically, as follows:

1. If you specified a port in odbc.tmpl, the scripts will check /etc/services to see if this port is already
in use. Then:

a. If there is no entry for the port in /etc/services, the scripts will assume the port is free and will
select it.

b. If there is an entry for the port, the script will:

 – Assume that another application is using it.

 – Pick a port from the dynamic range 43461-43480.

 – Check to see if that port is free. It will select the first port in that range for which there is no
entry in /etc/services.

 – If none of the ports in the range 43461-43480 are free, the script returns an error.

2. If there is no port specified in odbc.tmpl, a free port from the range 43461-43480 is picked up and
selected.

3. The scripts enter the selected port in /etc/services. For example:

cscocmfdb 43441/tcp # CSCO NM cmf database

Note that port checking and /etc/services updates are not available if you are using Windows platforms
or non-CWCS configuration scripts. For details, consult DDTS defects CSCsa09950 and CSCsa11233.

Table 11-2 Permanently Allocated Database Server Ports1

Port Application Contact

100332 IDS MC Patti Abkowitz (abkowitz)

100332 Sec Mon Patti Abkowitz (abkowitz)

100332 PIX MC Joel Klein (jfklein)

100332 AUS Jared Smith (jarsmith)

100332 QPM Oren Fridler (ofridler)

100332 Router MC Yardena Meymann (ymeymann)

43441 CWCS Vikram Rao (vikram)

43442 RME Vivi Zhang (vzhang)

43443 Campus (ANI) Suresh Pathamadai (pssuresh)

43444 Service Level Manager Sajan Mathew (samathew)

43445 Kilner (FH) Pavan Kumar Mirla (pavankm)

43446 Kilner (Inventory) Pavan Kumar Mirla (pavankm)

43447 Kilner (EPM) Pavan Kumar Mirla (pavankm)

43448 Kilner (AMA) Shiva Shankar (shaj)
11-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Setting Up a New Database
Changing the Database Port

To use another port number for your database engine, you can use the configureDb utility from the
command line to assign a new port ID. Use this utility only when:

 • The Daemon Manager is down.

 • The database is registered and enabled.

Caution Use this utility with caution. It is not intended to provide another interface for database registering, and
should be called only after the subsystem is registered. For more information about the configureDb
utility, see the “configureDb.pl” section on page 11-53.

To change the port number:

Step 1 At the command line, enter (all on one line):

/bin/perl $NMSROOT/objects/db/conf/configureDb.pl action=upgrade dsn=$dsn portid=$portid

Where:

 • $NMSROOT is the directory in which the product was installed.

 • $dsn is your database name.

 • $portid is the new port ID you want to assign.

The utility updates all required files and Windows system registry entries.

43449 PIF Shiva Shankar (shaj)

434503 PIF HTTP Server Shiva Shankar (shaj)

43451 WAN Performance Utility Mathangi Kuppusamy (mathangi)

43453 Performance Monitor Wei W. Wang (weiwa)

43454 Security Auditor Mark Lu (malu)

43455 RME NG Venunadh Veerala (vveerala)

43458 CVM Auro Dharmapuram (auro)

43459 Pairpoint Subbu Chandrasekaran (csubrama)

44341 IPM Pavan Kumar Mirla (pavankm)

1. For the most current list, see http://wwwin-embu.cisco.com/embueng/database_ports.htm.

2. These databases share the same database server (SqlCoreDBServer).

3. Not a database, but this port is permanently allocated to the application specified.

Table 11-2 Permanently Allocated Database Server Ports1 (continued)

Port Application Contact
11-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-embu.cisco.com/embueng/db/database_ports.htm

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Performing a Quick Integration
Dynamically Allocating a Port ID

Database port IDs can be assigned dynamically during installation. Dynamic port ID assignments,
however, can increase development and troubleshooting times dramatically.

For example, when you are working in a network environment, one machine may already have three
installed databases and another only has two databases. When you add another database without
specifying a port ID, the machines each assign the next available port ID number. This means your new
database now has two different port ID numbers. If your network has more than just two machines, the
problem is exponentially more difficult.

If the database does not come up on one machine, you cannot merely look at another machine and
compare settings. This is because it is possible that one file has an old port ID or the port ID is missing.
This happens most often during the initial development phase when most settings are manually entered.

The preferred method for allocating a port ID is to coordinate your port ID assignments with the CWCS
database group by sending a request to the embu-db-interest alias.

Performing a Quick Integration
The CWCS database property and other files permit flexible configuration for a wide range of
application data-storage needs. However, if you plan to follow the basic CWCS database configuration
(whether or not you plan to include backup and restore), it is a relatively simple task to create a new
database for your application and integrate it with CWCS.

The following procedure describes the minimum set of steps you must perform to get a new database set
up and integrated. It summarizes all of the tasks described in detail in the topics under the “Setting Up
a New Database” section on page 11-6.

Step 1 Create the following files (per the guidelines given in the “Creating the ODBC Database Definition File”
section on page 11-7 and the “Creating the Backup Manifest Files” section on page 11-10):

$NMSROOT/databases/dsn/orig/odbc.tmplorig

$NMSROOT/databases/dsn/orig/odbc.tmpl

$NMSROOT/databases/dsn/orig/dsn.dborig

$NMSROOT/backup/manifest/suite/database/orig/dsn.txt

Where:

 – dsn is the data source (database) name.

 – suite is the name of your application or suite. Often, this is the same as the dsn. For example:
For CWCS, the suite and dsn are both “cmf”, but for Campus Manager, the suite is “campus”
and the dsn is “ani”.

For example, for a VMS database with “vms” as the suite and dsn, you would create the following
files:

$NMSROOT/databases/vms/orig/odbc.tmplorig
$NMSROOT/databases/vms/orig/odbc.tmpl
$NMSROOT/databases/vms/orig/vms.dborig
$NMSROOT/backup/manifest/vms/database/orig/vms.txt
11-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Step 2 Edit the database backup manifest file (dsn.txt) so that it points to your database path, as follows:

[dsn]
root=$ENV{NMSROOT}/databases/dsn/dsn.db

For example, for the VMS database, the database backup manifest contents would look like this:

[vms]
root=$ENV{NMSROOT}/databases/vms/vms.db

Step 3 Add any other databases to the database backup manifest file. For example, RME's rmeng.txt file looks
like this:

[rme]
root=$ENV{NMSROOT}/databases/rmeng/rmeng.db
SyslogFirst=$ENV{NMSROOT}/databases/rmeng/SyslogFirst.db
SyslogSecond=$ENV{NMSROOT}/databases/rmeng/SyslogSecond.db
SyslogThird=$ENV{NMSROOT}/databases/rmeng/SyslogThird.db

Step 4 Run the following commands to install, register, and create a DbMonitor process for your database:

$NMSROOT/objects/db/conf/configureDb.pl action=install dsn=dsn
$NMSROOT/objects/db/conf/configureDb.pl action=reg dsn=dsn dmprefix=<ur_dmprefix>

For example, to install and register the VMS database, you would run these commands:

$NMSROOT/objects/db/conf/configureDb.pl action=install dsn=vms
$NMSROOT/objects/db/conf/configureDb.pl action=reg dsn=vms dmprefix=<ur_dmprefix>

Note If you do not want include your database in the CWCS backup and restore processes, you can
simply delete the backup manifest file $NMSROOT/backup/manifest/suite/database/dsn.txt.
This file is created from $NMSROOT/backup/manifest/suite/database/orig/dsn.txt when you run
the configureDb.pl action=install/action=reg commands.

Using the Sybase Database
The following topics describe some of the typical database tasks you might perform:

 • Before You Begin

 • Setting Up Your Environment

 • Initializing a New Database

 • Creating a New Database

 • Updating the Database Password

 • Starting and Stopping Database Engines

 • Creating and Closing Database Connections

 • Examining the Contents of a Database

 • Backing Up Your Database
11-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
For more information, refer to:

 • The wrapper classes in dbservice2. DBClient.ExecuteUpdate and DBClient.ExecuteSelect are two
database manipulation classes for the update, delete, query and create functions.

 • Sybase Adaptive Server Anywhere Reference Manual, Chapter 4, “Database Administration
Utilities.”

 • Sun's JDBC manual.

Before You Begin
When you create a Perl application that interfaces with the database APIs, follow these guidelines:

 • Use “my” variables whenever possible—These variables have a true local scope; a local variable in
Perl is not truly local as in the C language.

 • Always specify “use strict”—This generates errors at compile time for any variables not properly
defined in scope and any typos in variables masquerading as null values.

 • Always run Perl using perl -w {your script}—This generates warnings at runtime for variables
that have not been initialized prior to being used.

 • Always check for errors from every DBI call.

 • Do not confuse DBI with dbi.pl—dbi.pl contains code specific to the Resource Manager Essentials
(RME) database only, and its routines are primarily used in reports. DBI is a general-purpose public
domain API contained in DBI.pm.

For guidelines when creating JDBC or ODBC applications, refer to the third-party manuals for those
interfaces.

Setting Up Your Environment
Before you can initialize your database or run any Sybase utilities, you must set up your environment:

 • On Windows platforms, if you have installed CMF 1.2 or higher, your environment settings have
already been created. The only settings you may need to update will be those that apply to any
custom databases.

 • On Solaris platforms, set the following environment variables:

setenv SATMP /tmp/.SQLAnywhere
setenv ASANY $NMSROOT/objects/db
setenv LD_LIBRARY_PATH $NMSROOT/objects/db/lib:$NMSROOT/lib
setenv PATH ${PATH}:$NMSROOT/bin:$NMSROOT/objects/db/bin

where $NMSROOT is the directory in which the product was installed.

Initializing a New Database
Follow the procedure appropriate for your database platform.

On Windows Platforms

To initialize a database on Windows:
11-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Step 1 Log in as a local administrator and open a DOS window.

Step 2 Enter:

cd $NMSROOT/objects/db/win32

where $NMSROOT is the directory in which the product was installed.

Step 3 Initialize the database:

dbinit –j [-b] [-c] [-p page-size] dbName.db

For example, the CWCS database is initialized using this command:

dbinit –j –b -c -p 1024 cmf.db

On Solaris Platforms

To initialize a database on Solaris:

Step 1 Log in as root.

Step 2 From the command line, set the environment variables (see the“Setting Up Your Environment” section
on page 11-19).

Step 3 Enter:

cd $NMSROOT/objects/db/bin

where $NMSROOT is the directory in which the product was installed.

Step 4 Initialize the database:

dbinit –j [-b] [-c] [-p page-size] dbName.db

For example, the CWCS database is initialized using this command:

dbinit –j –c –b –p 1024 cmf.db

Related Topics

 • For more information about the dbinit utility, see the “dbinit” section on page 11-54.

 • See the Sybase Adaptive Server Anywhere Reference Manual, Chapter 4, “Database Administration
Utilities,” section “The Initialization Utility.”

Creating a New Database
After you have initialized the database, make the following changes to this file:

Step 1 Change the user ID and password. The default database user ID is DBA and default password is SQL.

Warning If you do not change these values, you will create a security hole.

This procedure is described in the “Step 1: Change the User ID and Password” section on page 11-21.
11-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Step 2 Create and populate DbVersion and DbVersionHistory.

This procedure is described in the “Step 2: Create and Populate DbVersion and DbVersionHistory”
section on page 11-21.

Step 3 Copy the database file to the required directory locations.

This procedure is described in the “Step 3: Install the Database Files” section on page 11-23.

Related Topics

See the “Initializing a New Database” section on page 11-19.

Step 1: Change the User ID and Password

Use the changepwd.sql script to change the user ID and password. An SQL script that must run within
the Sybase dbisqlc utility, changepwd.sql, changes only the password in the database, not the passwords
in related configuration files such as obdc.ini and odbc.tmplorig. A copy of this script is included in the
CodeSamples directory on the SDK CD.

Follow the procedure appropriate for your database platform.

On Windows Platforms

To change the user ID and password on Windows:

Step 1 Log in as a local administrator and open a DOS window.

Step 2 Enter (on one line):

dbisqlc -q -c “uid=DBA;pwd=SQL;dbf=newdb.db” read changepwd.sql newuid newpwd

On Solaris Platforms

To change the user ID and password on Solaris:

Step 1 Log in as root.

Step 2 Set the environment variables (see the “Setting Up Your Environment” section on page 11-19).

Step 3 Enter (on one line):

dbisqlc -q -c “uid=DBA;pwd=SQL;dbf=newdb.db” read changepwd.sql newuid newpwd

Step 2: Create and Populate DbVersion and DbVersionHistory

Database restore and upgrade utilities require some means of identifying installed device families and
the current database version. Two tables track the schema version, dropins and incremental device
support:

 • DbVersion—This table contains the latest or most recent entries. The schema for this table is:
11-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
create table DbVersion (
Componentvarchar(30) not null,
subComponentvarchar(30) not null
VersionStringvarchar(20)
Descriptionvarchar(50)
InstallDatetimestamp not null default current timestamp,
Primary key (component, subComponent)

);

The information in DbVersion table is updated when IDs are added to the system.

 • DbVersionHistory—This table contains a history of the changes to the database. The schema for this
table is:

create table DbVersionHistory (
Componentvarchar(40) not null,
subComponentvarchar(30) not null
VersionStringvarchar(20)
Descriptionvarchar(50)
InstallDatetimestamp,
Primary key (component, subComponent, InstallDate)

);

The DbVersionHistory table is updated with an update/delete trigger on the DbVersion table without
requiring applications to insert rows into the DbVersionHistory table.

The content of the DbVersion and DbVersionHistory tables is controlled by individual applications.
Although it might not seem very useful when a new application is developed, you can use the
Component, subComponent, and VersionString fields to distinguish databases from several application
versions.

Follow the procedure appropriate for your platform.

On Windows Platforms

To create and populate the DbVersion and DbVersionHistory tables on Windows:

Step 1 Log in as a local administrator and open a DOS window.

Step 2 Enter:

dbisqlc -q -c “uid=newuid;pwd=newpwd;dbf=newdb.db” read dbversion.sql

On Solaris Platforms

To create and populate the DbVersion and DbVersionHistory tables on Solaris:

Step 1 Log in as root.

Step 2 Set the environment variables (see the “Setting Up Your Environment” section on page 11-19).

Step 3 Enter:

dbisqlc -q -c “uid=newuid;pwd=newpwd;dbf=newdb.db” read dbversion.sql
11-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Step 3: Install the Database Files

After you have initialized the database, changed the user ID and password, populated the DbVersion and
DbVersionHistory tables, you are ready to install the database.

To install the database files:

Step 1 Copy the database file to the database directory. This directory contains the working database.

 • Database file name: dsn.db

 • Location: $NMSROOT/databases/suite

where $NMSROOT is the directory in which the product was installed.

 • Example: $NMSROOT/databases/cmf/cmf.db

Step 2 Copy the database file to the /orig database directory. This directory contains a copy of the original
database, which can be used to reinitialize a corrupted database.

 • Database file name: dsn.dborig

 • Location: $NMSROOT/databases/suite/orig

 • Example: $NMSROOT/databases/cmf/orig/cmf.dborig

Note If you are an NMTG developer, just copy the dsn.dborig file to the backup (/orig) directory. The
automated build processes use this file to create the corresponding .db file on the target system.

Also be sure you have set up the backup manifest files, as explained in “Creating the Backup Manifest
Files” section on page 11-10.

Step 3 Once you have set up the database files, you can use configureDb.pl to installand register database:

 • To install the database, run the following command

perl configureDb.pl action=install <dsn=database>

This command copies the database file from the /orig directory to the runtime directory.

 • To register the database, run the following command:

perl configureDb.pl action=reg <dsn=database> <dmprefix=prefix>

This command registers the database with the Daemon Manager, including populating the .odbc.ini
or Windows odbc registry, updating dmgtd.conf or the Windows services registry, and updating the
DBServer.properties file.

Step 4 If needed, you can use the same script to re-install, uninstall, register or unregister the database:

 • To reinstall the database, run the following command

perl configureDb.pl action=install <dsn=database>

 • To uninstall the database, run the following command

perl configureDb.pl action=uninstall <dsn=database>

This command removes the database file from the runtime directory.

 • To re-register the database, run the following command:

perl configureDb.pl action=reg <dsn=database> <dmprefix=prefix>

 • To unregister the database. run the following command:
11-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
perl configureDb.pl action=unreg <dsn=database> <dmprefix=prefix>

This command unregisters the database with Daemon Manager.

Related Topics

See the:

 • “Restoring a Corrupt Database” section on page 12-18

 • “Reinitializing a Database” section on page 11-35.

Updating the Database Password
Use the dbpasswd.pl utility at runtime to change the database password. This utility will replace the old
password in the odbc.tmpl file and populate the new password to:

 • The .odbc.ini file

 • The Windows registry

 • The DbServer.properties file

 • If the entry already exists, any customer-specified Java property file

Note that dbpasswd.pl validates submitted passwords. Valid passwords must:

 • Have a minimum of five and a maximum of 128 characters.

 • Use alphanumeric characters (a-z, A-Z, 0-9) only. No special characters (e.g., #, $, %) or spaces are
allowed.

 • Not have a number as the first character.

Follow the procedure appropriate for your platform.

On Windows Platforms

To change the password on Windows:

Step 1 Log in as a local administrator and open a DOS window.

Step 2 Stop the Daemon Manager by entering:

net stop crmdmgtd

Step 3 Run the dbpasswd.pl utility (see the “dbpasswd.pl” section on page 11-57).

Step 4 Enter the new password.

Step 5 Verify the new password.

Step 6 Start the Daemon Manager by entering:

net start crmdmgtd
11-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
On Solaris Platforms

To change the password on Solaris:

Step 1 Log in as root.

Step 2 Set the environment variables (see the “Setting Up Your Environment” section on page 11-19).

Step 3 Stop the Daemon Manager by entering:

/etc/init.d/dmgtd stop

Step 4 Run the dbpasswd.pl utility (see the “dbpasswd.pl” section on page 11-57).

Step 5 Enter the new password.

Step 6 Verify the new password.

Step 7 Start the Daemon Manager by entering:

/etc/init.d/dmgtd start

Starting and Stopping Database Engines
The SqlAnywhere embedded API does not provide database auto-start and auto-stop capabilities.
Therefore, when Perl DBI applications are run on Solaris platforms, the database must be started
explicitly.

The following topics explain how to start and stop a database engine from a Perl application:

 • Starting a Database Engine

 • Stopping a Database Engine

Starting a Database Engine

You can start the database engine from the CWCS Desktop, on Windows or on Solaris. Follow the
procedure appropriate for your platform, below.

From the CWCS Desktop

Typically, you would start the database engine (or any other process) from the CWCS desktop:

Step 1 Select Server Configuration > Administration > Process Management > Start Process.

The Start Process dialog appears.

Step 2 Select the name of the database engine from the list box (for example, CmfDbEngine).

Step 3 Click Finish.
11-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
On Windows Platforms

When creating a new database using a Windows machine, you might have to change the registry entries
before starting the database engine. To change the registry entries and start the database engine:

Step 1 Log in as local administrator.

Step 2 You can use these dialogs in the Control Panel window to add or modify registry entries:

 • To start, stop, and configure services (the database engine is registered as a service), select Start >
Settings > Control Panel > Services.

 • To maintain the ODBC data sources and drivers, select Start > Settings > Control Panel > ODBC
Data Sources > System DSN.

Step 3 Or, you can set the Windows registry values directly. The registry entries are located in two places:

 • The registry entry used by Windows systems is at:

My Computer/HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ Services/CmfDbEngine

 • The registry entries used by the Daemon Manager are located at:

My Computer/HKEY_LOCAL_MACHINE/SOFTWARE/Cisco/ResourceManager/
CurrentVersion/Daemons/*

There is one registry entry for each application that uses the Daemon Manager.

Step 4 To start the database engine, open a DOS window and enter (all on one line):

-x tcpop{HOST=localhost;DOBROADCAST=NO;ServerPort=portID} -m -ti 0 -gm 100 -c 8M -n
yourdbEng $NMSROOT\databases\yourdb\yourdb.db -n yourdbDb

where:

 • $NMSROOT is the directory in which the product was installed.

 • portID is the port number assigned to your database.

For example, to start the CWCS database engine, enter:

-x tcpop{HOST=localhost;DOBROADCAST=NO;ServerPort=43441} -m -ti 0 -gm 100 -c 8M -n cmfEng
$NMSROOT\databases\cmf\cmf.db -n cmfDb

On Solaris Platforms

When creating a new database on a Solaris machine, you can use this procedure during the prototyping
phase to start the database engine:

Step 1 Log in as root.

Step 2 Set the SATMP, SQLANY, and LD_LIBRARY_PATH environment variables (see the “Setting Up Your
Environment” section on page 11-19).

Step 3 To start the database engine process, enter (all on one line):

$NMSROOT/objects/db/bin/dvsrv9 -x tcpip{HOST=localhost;DOBROADCAST=NO;ServerPort=portID} -q -s local0 -m -ti
0 -gm 100 -gc 5 -c 8M -ht -gss 9900 -n yourdbEng $NMSROOT/databases/yourdb/yourdb.db -n yourdbDb

where:

 • $NMSROOT is the directory in which the product was installed

 • yourdb is the name of your database engine.

 • portID is the port number assigned to your database.
11-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
For example, to start the CWCS database, enter (all on one line):

$NMSROOT/objects/db/bin/dvsrv9 -x tcpip{HOST=localhost;DOBROADCAST=NO;ServerPort=43441} -q -s local0 -m -ti 0
-gm 100 -gc 5 -c 8M -ht -gss 9900 -n cmfEng $NMSROOT/databases/cmf/cmf.db -n cmfDb

Note The engine name and database name must be used in the connection string to connect to the
specific database.

The first transaction against the database creates the transaction log.

Related Topics

See the “Connection Strings” section on page 11-5.

Stopping a Database Engine

You can stop a database engine from the CWCS Desktop, on Windows or on Solaris. Follow the
procedure appropriate for your platform, below.

From the CWCS Desktop

To stop the database engine from the CWCS desktop:

Step 1 Select Server Configuration > Administration > Process Management > Stop Process.

The Stop Process dialog appears.

Step 2 Select the name of the database engine from the list box (for example, CmfDbEngine).

Step 3 Click Finish.

On Windows Platforms

To stop the database engine on Windows:

Step 1 Log in as a local administrator and open a DOS window.

Step 2 To stop the database engine process, use one of these options:

 • If the SqlAnywhere Console is present, click Shutdown.

 • If the database is running as a service, use the Windows service control manager. To access this
dialog, select Start > Control Panel > Services.

Caution DO NOT use the Windows Task Manager unless the process is hanging.
11-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
On Solaris Platforms

To stop the database engine on Solaris:

Step 1 Log in as root.

Step 2 Set the SATMP, SQLANY, and LD_LIBRARY_PATH environment variables (see the “Setting Up Your
Environment” section on page 11-19).

Step 3 Stop the database engine process:

$SQLANY/bin/dbstop -s uid=username;pwd=password;eng=dbEngineName;dbn=dbName

Caution Do not use the kill command unless the process is hanging.

Creating and Closing Database Connections
Once the database engine is started, there are separate procedures for connecting to and disconnecting
from the database. Connection parameters are specified using connection strings. For more information
about connection strings, see the “Connection Strings” section on page 11-5.

The following topics describe how to connect to a database:

 • Connecting to a Database

 • Closing a Database Connection

Connecting to a Database

You can connect to a database from a Java application, C or C++ application, or Perl script. Follow the
procedure appropriate for your application, below.

In a Java Application

 • Use this call to load the JDBC 5.5 driver, com.sybase.jdbc2.jdbc.SybDriver:

Class.forName(com.sybase.jbdc2.jdbc.SybDriver)

 • The JDBC Sybase component jConnect uses a URL-style syntax:

jdbc:sybase:Tds:localhost:42341?SERVICENAME=dbName

where dbName is the name of the database.

In a C or C++ Application

SQLConnect is the simplest ODBC connection function. It accepts the following connection strings
format:

“uid=xxx;pwd=yyy;dsn=ddd”

SQLDriverConnect can be used to replace SQLConnect. It supports data sources that require more
connection information than the arguments in SQLConnect, and data sources that are not defined in the
system information. One advantage of using SQLDriverConnect is that we can provide
“con=myConnectionName” as part of the connection string to identify the connection. This is useful for
debugging and performance analysis.
11-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Instead of using either of these functions, however, your applications can use the SQLSecureConnect
connection API. SQLSecureConnect acts as a wrapper around SQLDriverConnect to accept and process
connection strings that have an encrypted username and password (the custom tokens CWEUID,
CWEPWD). It reads the .odbc.ini or registry entry to get either the encrypted or plain text user
information. It decodes this information and passes the user ID and password to SQLDriverConnect.

Note If encryption is disabled (ENCRYPTION=NO), you can continue to use SQLDriverConnect.
SQLSecureConnect, however, supports both encrypted and plain text user IDs and passwords.

If the connection string contains the user ID and password, SQLSecureConnect passes the connection
string directly to SQLDriverConnect. If the user ID and password are missing, DSN must be present in
the connection string. Other parameters in the connection string are carried over.

SQLSecureConnect uses the following syntax:

#include “dbencrypt.h”
SQLRETURN SQLSecureConnect(
 SQLHDBC hdbc,
 SQLHWND hwnd,
 SQLCHAR ODBCFAR * szConnStrIn,
 SQLSMALLINT cbConnStrIn,
 SQLCHAR ODBCFAR * szConnStrOut,
 SQLSMALLINT cbConnStrOutMax,
 SQLSMALLINT ODBCFAR * pcbConnStrOut,
 SQLUSMALLINT fDriverCompletion)

(The syntax and semantics of this API are identical to SQLDriverConnect. See the SQLDriverConnect
documentation for details.)

For example, the following SQL statements allocate memory for an environment handle, initialize the
ODBC call level interface, allocate memory for a connection handle, and use SQLSecureConnect to
connect to the database:

SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN retcode;
char * newconn = (char *)malloc(MAX_DSN_LEN);

/*Allocate environment handle */
retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 /* Set the ODBC version environment attribute */
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,
 (void*)SQL_OV_ODBC3, 0);

 if (retcode == SQL_SUCCESS ||
 retcode == SQL_SUCCESS_WITH_INFO) {
 /* Allocate connection handle */
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 if (retcode == SQL_SUCCESS ||
 retcode == SQL_SUCCESS_WITH_INFO) {
 /* Set login timeout to 5 seconds. */
 SQLSetConnectAttr(hdbc, (void*)SQL_LOGIN_TIMEOUT, 5, 0);

 /* Connect to data source */
 retcode = SQLSecureConnect(
 hdbc,
 0,
11-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
 (SQLCHAR*)”dsn=cmf”,
 SQL_NTS,
 (SQLCHAR*)newconn,
 MAX_DSN_LEN,
 &len,
 SQL_DRIVER_NOPROMPT);

 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO){
 /* Allocate statement handle */
 retcode = SQLAllocHandle(SQL_HANDLE_STMT,
 hdbc, &hstmt);

 if (retcode == SQL_SUCCESS
 || retcode == SQL_SUCCESS_WITH_INFO) {
 /* Process data */
 ;
 ;
 ;

 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 }
 SQLDisconnect(hdbc);
 }
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
…

In a Perl Application

Use SqlAnywhere strings (such as Isql, dbstop, and dbvalid):

“uid=xxx;pwd=yyy;eng=engName;dbn=dbname;”

For example, the following Perl code fragment connects to the CWCS database:

use DBI;
my $dbh = DBI->connect (“,‘uid=DBA;pwd=SQL;dsn=cmf’,”,‘Sqlany’);

In this example, DBI will resolve the user ID and password in both encryption modes:

use DBI;
my $dbh = DBI->connect (“,‘dsn=cmf’,”,‘Sqlany’);

The last argument is the DBD driver to be loaded. This parameter is ignored on Windows.

Closing a Database Connection

You can close a database connection from a Java application, C or C++ application, or Perl script. Follow
the procedure appropriate for your application.

In a Java Application

Use dbc.close.

In a C or C++ Application

The following SQL statements close the database connection, release the connection handle, free all
memory allocated for the handle, close the ODBC driver, and release all memory associated with the
driver:
11-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
SQLDisconnect (dbc);
SQLFreeConnect (dbc);
SQLFreeEnv (env);

In a Perl Application

Use $dbh->disconnect();

Examining the Contents of a Database
You can access your data using the Sybase utility, dbisqlc, or the dbreader utility:

 • The Sybase utility, dbisqlc, is more difficult to use but does not require installing CWCS. For
information about using dbisqlc, refer to the Sybase documentation.

 • The dbreader utility requires that you first install CWCS.

The following topics describe how to use the dbreader utility to access your database:

 • Creating a DSN

 • Accessing Your Data

Creating a DSN

The dbreader utility uses ODBC to access your database. Before you can use dbreader to access your
data, you must create a data source name (DSN) from the ODBC Manager using the steps below.

Note If you have CWCS installed on your desktop, the DSN was created at install time; you can skip this
procedure.

Step 1 Launch the Windows Control Panel.

Step 2 Click ODBC Data Source.

Step 3 Click tab-System DSN.

The name of your database engine should not appear.

Step 4 Click Add.

Step 5 Click CiscoWorks Embedded Database.

Step 6 Click Finish.

The ODBC Configuration for Adaptive Server Anywhere dialog box appears.

Step 7 Enter the name of your database engine in the Data Source Name field.

Step 8 Click Login.

Step 9 Enter your user ID and password.

Step 10 Click the Database tab.

Step 11 Complete the following fields:

 • Server name: enginenameEng

 • Database name: enginenameDb

 • Database file: $NMSROOT/databases/enginename/enginename.db
11-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Using the Sybase Database
Step 12 Click OK.

Accessing Your Data

After you have created a data source name, you can access the contents of your database:

Step 1 Start CiscoWorks and log in with the appropriate user ID and password.

Step 2 In your browser’s address or location bar, enter the following URL:

http://hostname:portid/dbreader/dbreader.html

The Ad-hoc Retrieval of Database dialog box appears.

Step 3 Enter the database user ID and password. (Do not confuse them with the CWCS admin user ID and
password.)

Step 4 Enter the database name (for example, cmf, rme, or ani).

Step 5 To read the database, perform one of the following options:

 • Leave SQL statement to execute blank, then select Get Database Tables. This option retrieves all
the Cisco tables in that database. Click on the table name to drill down to the table data.

 • Enter SQL statements in SQL statement to execute, then select Execute SQL Statement.

Backing Up Your Database
CWCS provides two different backup options:

 • Back up now

To run a backup immediately, select Server Configuration > Admin > Backup > Back Up Data
Now.

 • Scheduled backup

To schedule a backup, select Server Configuration > Admin > Backup > Schedule Backup.

When you use either option, all installed application groups are backed up; you are not allowed to select
specific application groups.

For more information about using these dialogs, click Help at the bottom of the dialog box.

You can also use the backup.pl script to back up the database and all installed application groups. The
backup.pl script also uses the backup manifest files to determine which files and directories to back up.
For more information on this script, see the “backup.pl” section on page 12-10.

Related Topics

See the:

 • “Using the Sybase Database” section on page 11-18.

 • “Creating the Backup Manifest Files” section on page 11-10.
11-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Debugging and Troubleshooting the Database
Debugging and Troubleshooting the Database
The following topics describe how to use the database utilities to troubleshoot database problems:

 • Managing Database Log Files

 • Ensuring Sufficient Temporary Space

 • Optimizing Query Processing

 • Verifying a Database

 • Reinitializing a Database

 • Cleaning Up Other Application Files

For information about backing up and restoring a database, see Chapter 12, “Using Backup and Restore.”

Managing Database Log Files
There are two database files that, while transparent to the user, may require attention from the engineer
during database development:

 • Transaction log—Contains a record of the database transactions for this session.

This file is erased whenever the database engine shutdown process is successful and the database
server is running with the -m option. When an exception occurs, however, this file remains. You can
use the contents of this file to help troubleshoot database problems.

 • Temporary files—Used for intermediate result sets, and stored in the $SATMP or %TMPDIR% directory.

These files are erased during typical database operations. They do require a certain amount of swap
space, however, which may be overrun during debugging and testing cycles. When exceptions occur
during database development and testing, consider cleaning these directories only if you are certain
that CWCS is the only application using them.

Ensuring Sufficient Temporary Space
The Sybase version supplied with this release of CWCS introduced the temp_space_limit_check
option. When temp_space_limit_check=on and there is insufficient temp space for a database
connection, the connection will fail. If this option is set off and there is insufficient temp space for a
connection, the database server will crash.

This option is set on for the CWCS database by default. To set this option on for your database, run the
SQL statement set option public.temp_space_limit_check=’on’. To check the option setting, run
select connection_property(’temp_space_limit_check’).

Optimizing Query Processing
The Sybase option OPTIMIZATION_GOAL controls how query processing is optimized. It has two allowed
values:

 • first-row: Returns the first row as quickly as possible.

 • all-rows: Minimizes the cost of returning the complete result set
11-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Debugging and Troubleshooting the Database
In previous versions of CWCS, the default setting was first-row. In this release, the default setting is
all-rows.

If you create your CWCS database using older Sybase binaries and rebuilding them to the Sybase 9.x
format, you will retain first-row as the default OPTIMIZATION_GOAL setting. If you create your
database file using Sybase 9.x binaries, the default setting will be all-rows.

We recommend that you:

1. Determine which OPTIMIZATION_GOAL setting your application is using. To do so, run the SQL
statement select connection_property(‘OPTIMIZATION_GOAL’).

2. Evaluate the preformance of the modules in your application under that setting.

3. Change to the opposite setting and evaluate its performance. To change the setting, run set option
public.OPTIMIZATION_GOAL=’all-rows’ or set option
public.OPTIMIZATION_GOAL=’first-row’.

4. Based on your test results, choose whether to change this option setting for your database, as needed.

You can find additional information in the following Sybase documentation:

 • Sybase Adaptive Server Anywhere Database Administration Guide: See the section
“Optimization_Goal option” on page 613.

 • Sybase Adaptive Server Anywhere SQL Reference: See the “FROM clause” section on page 445.
This section discusses the FASTFIRSTROW table hint.

Verifying a Database
Use the dbvalid script to validate the integrity of a database. To run dbvalid, enter:

cd $NMSROOT/databases/dbfile
dbvalid -c uid=$uid;pwd=$pwd;dbf=dbfile

where:

 • $NMSROOT is the directory in which the product was installed.

 • $uid and $pwd are the user ID and password for your database.

 • dbfile is the database engine name.

The dbvalid utility returns one of the following responses:

 • No problem.

 • One or more tables have been corrupted.

See the “Restoring a Corrupt Database” section on page 12-18.

 • Cannot bring up the database engine

If you have a log file, try this:

rm –f rme.log
dbeng9 -f rme.db

This forces the RME database to start up without a transaction log file. Then call dbvalid to
revalidate the database.

You can also try running the configureDb/dbvalid command without passing the entire connection
string as an argument.
11-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://sybooks.sybase.com/onlinebooks/group-sas/awg0900e/dbdaen9/
http://download.sybase.com/pdfdocs/awg0900e/dbrfen9.pdf

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Debugging and Troubleshooting the Database
Related Topics

See the:

 • “Types of Database Servers” section on page 11-3.

 • “dbvalid” section on page 11-60.

 • “configureDb.pl” section on page 11-53

Reinitializing a Database
If the data in a database is totally corrupted or not important, you can copy a clean database from the
orig directoryover the existing database. You will lose the application data. However, this can be useful
if your application database is the only problem the application is having, since you will not need to
re-install the application.

When run, dbRestoreOrig.pl prompts for user confirmation, warning that all data will be lost. If your
application is using this script internally and you do not want this prompt to appear, add the opt=y
argument to the dbRestoreOrig.pl call. For example:

$NMSROOT/bin/dbRestoreOrig.pl dsn=cmf dmprefix=Cmf opt=y

You can also use the call to dbRestoreOrig.pl to clean up application configuration and other data stored
in the file system. For details, see the “Cleaning Up Other Application Files” section on page 11-36.

If the data in the database is important, and you have been using a backup framework for regular
maintenance, you can use a the corresponding restore framework to recover it. For information about the
restoring a database from a regularly made backup, see the “Using CWCS Restore” section on page 12-4.

On Windows Platforms

To reinitialize the database on Windows:

Step 1 Stop the Daemon Manager by entering:

net stop crmdmgtd

Step 2 Enter on one line:

NMSROOT/bin/dbRestoreOrig.pl dsn=dsn dmprefix=dmprefix

where:

 • NMSROOT is the directory in which the product was installed.

 • dbn is your database name.

 • dmprefix is the prefix registered for this database in the CWCS Daemon Manager.

On Solaris Platforms

To reinitialize the database on Solaris:

Step 1 Stop the Daemon Manager by entering:

/etc/init.d/dmgtd stop
11-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Debugging and Troubleshooting the Database
Step 2 Enter:

NMSROOT/bin/dbRestoreOrig.pl dsn=$dbn dmprefix=$dmprefix

where:

 • NMSROOT is the directory in which the product was installed.

 • dsn is your database name.

 • dmprefix is the prefix registered for this database in the CWCS Daemon Manager.

Cleaning Up Other Application Files
The script dbRestoreOrig.pl (see the “dbRestoreOrig” section on page 11-59) lets you reinitialize a
corrupt database without touching the application’s file system. For example, if MyApp has
configuration files, logs, archives, or images stored outside of the database, all of these files will still be
in the same locations after you reinitalize MyApp’s database using dbRestoreOrig.pl.

If you want to eliminate these file system leftovers at the same time you reinitialize the database, you
can create a script to do so and get dbRestoreOrig.pl to execute it, as follows:

1. Define a script to be executed after the database is reinitialized.

The script must implement a Cleanup::doCleanup() function that meets your requirements, and
should return zero for success and a non-zero value for failure (see Example 11-1).

2. Store the script as Cleanup.pm in$NMSROOT/databases/dsn/scripts/(where dsn is your application’s
data source name).

3. Run dbRestoreOrig.pl with the appropriate dsn. The utility will restore the orig database.

4. Before exiting, dbRestoreOrig.pl will look for the Cleanup.pm file. If the utility finds this file, it will
execute the Cleanup.pm file’s Cleanup::doCleanup() as its last act.

Example 11-1 Cleanup.pm Script

sub doCleanup{

LogError("Inside CMF Cleanup\n") ;

add your code here

return 0 for success and non-zero for failure

return 0 ;

}

1

11-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Database API Command Reference
The following topics describe how to integrate your database into CWCS:

 • Enabling the CWCS Database Engine

 • Using JDBC API Wrappers

 • Using CWCS Perl APIs

 • Using the Database Utilities

Enabling the CWCS Database Engine
Your custom database runs independently from the CWCS database engine. When using CWCS,
however, you will also be using the CWCS database engine.

The database engine is part of the Common Services, but it is not enabled by default. You must enable
it before you can use it. If your application requires services from the CWCS database engine, remember
to register for this service at installation.

For instructions, refer to the “Registering for CWCS Services” section on page 5-4. If you prefer to
request services after installation, refer to the “Enabling New Service Bundles from the Command Line”
section on page 5-5.

Note If you have installed the CWCS database but have not enabled it, you will not have access to any ODBC
or JDBC commands. Perl also uses ODBC commands, so it will not work either.

Compiling and Running a Database
When you are developing new applications, remember that:

 • Client and client-server Java classes are stored in $NMSROOT/www/classpath

 • Server-only Java classes are stored in $NMSROOT/lib/classpath

Use the procedure appropriate for your platform.

On Windows Platforms

To compile an application that accesses a database on Windows, enter:

$dev:\enm_jdk\jdk1.2.1\NT\bin\javac -classpath
$NMSROOT\lib\classpath;$NMSROOT\www\classpath appname.java

where:

 • $dev is the location of the JDK.

 • $NMSROOT is the directory in which the product is installed.

 • appname is the name of your application

To run an application that accesses a database on Windows, enter:

$NMSROOT\lib\jre2\bin\java -classpath
.;$NMSROOT\www\classpath;$NMSROOT\lib\classpath test
11-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
On Solaris Platforms

To compile an application that accesses a database on Solaris, enter (all on one line):

java -classpath .:$NMSROOT/www/classpath:$NMSROOT/lib/classpath testappContent-Type:
text/plain; charset=”us-ascii”
Content-Disposition: attachment; filename=”compile.sh”

where $NMSROOT is the directory in which the product was installed.

To run an application that accesses a database on Solaris, enter (all on one line):

javac -classpath
.:$NMSROOT/lib/classpath:$NMSROOT/www/classpath:$NMSROOT/lib/jre/lib/rt.jar testapp.java

Related Topics

See:

 • Chapter 3, “Understanding the CWCS Directory Structure.”

 • The “Understanding the Java Application Launch Process” section on page 4-1.

Code Samples
The following topics contain assorted code samples that illustrate various database tasks:

 • Using Java to Read a Database

 • Using ODBC to Access a Table

 • Using Perl to Access a Database

Using Java to Read a Database

The following example shows how to use these JDBC API wrappers from the dbservice2 package:

 • DBClient—Connect a database engine and perform database-level and SQL statement-level
operations.

 • DBResult—Examine the query results.

 • DBException—Handle exception cases.

For more information about these wrappers, see the “Using JDBC API Wrappers” section on page 11-41.

Example 11-2 Using Java to Read a Database

import java.io.*;
import java.util.*;
import com.cisco.nm.cmf.dbservice2.*;
import java.sql.*;

public class testapp {
 static DBClient dbc = null;
 static DBResult dbr1 = null; // data base results from select and update operations
 static Vector row;

 public static void main(String args[]) {
 System.out.println(“test application for DB”);
11-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference

 try {
 dbc = new DBClient(“testapp”, “rme”, 1);

//appName, debugLevel (1 means turn on debug messages)
// gets the URL from the property file and connects to the database.
// Also creates an SQL statement handle.

 } catch (DBException ex) {
 System.out.println(“Error Message: “ + ex.getMessage());
 if (ex.isSqlError()) {
 System.out.println(“SQL ERROR CODE: “ + ex.getSqlErrorCode());
 System.out.println(“SQL STATE: “ + ex.getSqlErrorCode());
 }
 System.out.println(“test application failed at: “);
 ex.printStackTrace();
 return;
 } catch (ClassNotFoundException ex) {
 System.out.println(“Error Message: “ + ex.getMessage());
 System.out.println(“test application failed at: “);
 ex.printStackTrace();
 return;
 }

try {
 dbr1 = dbc.executeSelect(“select * from dbversion”);
 if (dbr1 == null) {
 System.out.println(“no data”);
 } else {
 dbr1.toFirst();

 int count = 0;
 String Component;
 String SubComponent;
 String VersionString;
 String Description;
 String InstallDate;
 while ((row = dbr1.getRow()) != null) { //iterate through all the test results
 Component = row.elementAt(0).toString();
 SubComponent = row.elementAt(1).toString();
 VersionString = row.elementAt(2).toString();
 Description = row.elementAt(3).toString();
 InstallDate = row.elementAt(4).toString();
 System.out.println(Component + “ " + SubComponent + “ "
 + VersionString + “ " + Description + “ "
 + InstallDate + “\n\n”);
 count++;
 }
 }
 } catch (DBException ex) {
 System.out.println(“Error Message: “ + ex.getMessage());
 if (ex.isSqlError()) {
 System.out.println(“SQL ERROR CODE: “ + ex.getSqlErrorCode());
 System.out.println(“SQL STATE: “ + ex.getSqlErrorCode());
 }
 System.out.println("test application failed at: ");
 ex.printStackTrace();
 }
 try {
 dbc.close();
 } catch (DBException ex) {
 System.out.println(“Error Message: “ + ex.getMessage());
 if (ex.isSqlError()) {
 System.out.println(“SQL ERROR CODE: “ + ex.getSqlErrorCode());
 System.out.println(“SQL STATE: “ + ex.getSqlErrorCode());
 }
 System.out.println(“test application failed at: “);
11-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
 ex.printStackTrace();
 }
 System.out.println(“test application finished. “);
 }
}

Using ODBC to Access a Table

The following code fragment shows how to use ODBC calls to access a device group table.

Example 11-3 Using ODBC Calls to Access a Device Group Table

strcpy((char *)connStr, “uid=DBA;pwd=SQL;dsn=rme”;
if (SQLAllocEnv(&henv) != SQL_SUCCESS) { /* handle error */
if (SQLAllocConnect(henv, &hdbc) != SQL_SUCCESS) {

print_error(); exit(1); }
rc = SQLSecureConnect(hdbc, 0, connStr, SQL_NTS,

outBug, 256, &outBufLen, SQL_DRIVER_NOPROMPT);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) { ... }

/* read and print from dev_group table */
rc = SQLAllocStmt(hdbc, &hstmt);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) { ... }
sqlStr = (UCHAR *) “select * from dev_group”;
if (SQLExecDirect (hstmt, sqlStr, SQL_NTS) != SQL_SUCCESS) { ... }
SQLNumResultCols(hstmt, &nresultcols);

for (i = 0; i < nresultcols; i++) {
SQLDescribeCol(hstmt, i + 1, colname, (SWORD) sizeof(colname),

...
}

Using Perl to Access a Database

The following code fragment shows how to use Perl to fetch data from the database.

Example 11-4 Using Perl to Access a Database

use CRM;
use lib “$ENV{NMSROOT}/lib/perl/install”;
use InstallUtility;
use lib “$ENV{NMSROOT}/lib/perl/db”;
use Cisco::DbUtils;
use dbinternal;

 my $dbh;
 my $cur;
 my $dsn = “cmf”;
 my @data;
 my $Component, $SubComponent, $VersionString, $Description, $InstallDate;
 $dbh = &dbinternal::connect(“dsn=$dsn”);
 if (!defined($dbh)) {
11-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
 print “\n\n ERROR testdb.pl:Couldn't connect to the database $dsn\n”;
 return 0;
 }

 $cur = $dbh->prepare(“SELECT * from DbVersion”);
 if($cur) {
 $cur->execute();
 while (@data = $cur->fetchrow) {
 ($Component,$SubComponent,$VersionString,$Description,$InstallDate) = @data;
 print “$Component,$SubComponent,$VersionString,$Description,$InstallDate \n”;
 $cnt++;
 }
 $cur->finish;
 } else {
 print STDERR "Unable to select items from DB :$DBI::errstr”;
 }

 $dbh->disconnect;
1;

Using JDBC API Wrappers
The dbservice2 package contains six classes. You can write a JDBC application by referencing three of
them:

 • DBClient allows you to connect to a database engine and perform database-level and SQL
statement-level operations.

 • DBResult lets you examine the query results.

 • DBException handles exception cases.

We strongly recommend that you use the DBUtil.getDBConnection(java.lang.String dbName) API to get
a java.sql.Connection object. While it is still supported, the existing DBConnection class (see the
“DBConnection” section on page 11-44) is being deprecated.

DBClient

This topic describes the DBClient constructor and its public methods.

DBClient Constructor Summary

public DBClient (String dbName) throws ClassNotFoundException,
DBException.

Same as (“noAppName”, dbName, DBUtil.getDBServiceProperties(), 0);

This class is a wrapper for the java.sql.Connection and java.sql.Statement
classes. It extracts JDBC connection information from the DBServer.properties
file and creates a connection. It also creates java.sql.Statement objects so the
application can perform the java.sql.Statement operation.
11-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
DBResult

The DBResult class is a wrapper for ResultSet. This topic provides a summary of its constructors and
public methods.

DBResult Constructor Summaries

Table 11-3 DBClient Method Summary

Returns Syntax and Description

synchronized
void

close () throws DBException

A wrapper for Connection.close. It also closes the statement it owns.

synchronized
void

commit () throws DBException

A wrapper for Connection.commit.

void createPreparedStatement (String sql) throws DBException

Creates a PrepareStatement object.

void disableRetryOnLockedRow ()

Disallows retry on locked row.

void enableRetryOnLockedRow (Integer maxTryCount, Long tryInterval)

Allows retry on locked row. If RetryOnLockedRow is true, an SQL statement will try up to maxTryCount
or until the statement is executed successfully.

synchronized
DBResult

executeSelect (String sql) throws DBException

A wrapper for Statement.executeQuery. Tries to rebuild a connection if the old connection is dropped. If
it fails, it retries up to MaxTryCount if RetryOnLockedRow is true.

synchronized
DBResult

executeUpdate (String sql) throws DBException

A wrapper for Statement.executeUpdate. Tries to rebuild a connection if the old connection is dropped.
If it fails, it retries up to MaxTryCount if RetryOnLockedRow is true.

synchronized int getDebugLevel () throws DBException

Gets the debug level.

void reOpenStaleConnection (Boolean reOpenStaleConnection) throws DBException

Reconnects to a database if the connection drops for any reason by setting the reOpenStaleConnection
flag to true.

synchronized
void

rollback () throws DBException

A wrapper for Connection.rollback.

synchronized
void

setAutoCommit (boolean autoCommit) throws DBException

A wrapper for Connection.setAutoCommit.

synchronized
void

setDebugLevel (int debugLevel) throws DBException

Sets the debug level.

synchronized
void

setTransactionIsolation (int ti) throws DBException

A wrapper for Connection.setTransactionIsolation.

synchronized
void

setTransactionIsolation (Integer ti) throws DBException

A wrapper for Connection.setTransactionIsolation.

public DBResult (int rowsAffected)

A wrapper for ResultSet.
11-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Class DBUtil

The DBUtil class loads the JDBC property file. Table 11-5 contains a summary of its public methods.

public DBResult (ResultSet resultSet) throws SQLException,
DBException

Copies and stores data in private storage.

public DBResult (ResultSet resultSet, int storageType) throws
SQLException, DBException

Copies and stores data in private storage.

Table 11-4 DBResult Method Summary

Returns Syntax and Description
int getAffectedRows() throws DBException

Returns the number of updated records after an update operation.

int getColCount() throws DBException

Returns column count.

int getColDisplaySize (int col) throws DBException

Given a column position, returns a column display size by fetching column metadata stored in this object.

int getColType (int col) throws DBException

Given a column position, returns a column type by fetching column metadata stored in this object.

Vector getResultVector() throws DBException

Returns all records.

synchronized
Vector

getRow()

Moves the cursor down and fetches the next record.

int getRowCount() throws DBException

Returns the number of records after a fetch operation.

void toFirst()

Moves the cursor to the first row in result set.

void toPrintWriter (PrintWriter pw) throws IOException

Sends formatted result set to an output stream.

String toString ()

Converts the object to string with “\t” as element delimiter and “\r\n” as line delimiter.

String toString (String elementDelimiter, String lineDelimiter, String beginDelimiter, String
endDelimiter)

Converts the object to string-supplied delimiters.

Table 11-5 DBUtil Method Summary

Returns Syntax and Description

static void debugPrint (String app, String catg, String message)

Prints formatted message with arguments.

static
String

extractStackTrace (Exception ex)

Prints stack.

static
Properties

getDBServiceProperties() throws DBException

Returns an object of class Properties with a pair of (name, value) as (_DBS__PROPS,
“com/cisco/nm/cmf/dbservice/DBServer.properties”).
11-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
In CS3.0 SP2, two flavors of the new API, executeSqlStmt() have been created.

One takes default delimiter (;), and the other takes the customized delimiter.

Flavor A

The executeSqlStmt() API is used to execute a bunch of SQL statements septarated by the customized
delimiter.

@param dsn—The DSN for the database

@param schemaFileName—The file containing the schema to create the tables. It uses
getResourceAsStream to locate the file. Hence this file must be present in the classpath.

@param component—The name of the component/product eg. Kilner/Campus

@param subComponent—The name of the subcomponent eg. OGS/DCR

@param versionString— The version number of the release eg: 1.0/1.1

@param description—A brief description of the module/schema

@param delimiter—Delimiter for the SQL Statements.

@return—Throws an exception if the operation fails for any reason

Flavor B:

The executeSqlStmt() API is used to execute a bunch of SQL statements separated by the default (;)
delimiter. This API takes all the parameters spcified in the Flavor A, except the delimiter. Here, the
default delimiter is semicolon (;). This API does not support to create procedures

DBConnection

One instance is constructed in the DBClient construct method. An application developer can choose to
skip this section.

The DBConnection construct gets the URL from the JDBC property file and establishes a connection to
a database engine (default = rme). This topic summarizes the constructor and its public methods.

DBConnection Constructor Summary

static
String

getPropertiesFileName()

Returns the value of environment variable BG_DBPARAMS if it is defined. Else it returns bgdbparam.ini.

static
Properties

loadPropertiesFromFile (String propertiesFile) throws IOException, FileNotFoundException

Loads the class Properties from DBConst._DBS_PROPS.

static void printExceptionDetails (Exception e)

Prints contents of the exception object.

static void printExecuteDebugStmt (long startTime, long stopTime, String sql)

Prints formatted message with arguments.

Table 11-5 DBUtil Method Summary

Returns Syntax and Description

public DBConnection (String dbName) throws SQLException, DBException,
FileNotFoundException, IOException, ClassNotFoundException

Builds a connection with dbName.
11-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Table 11-6 DBConnection Method Summary

Returns Syntax and Description

void activate (String client)

Activates a client by adding the client name to the internal hash table.

void clearWarnings() throws SQLException

A wrapper for Connection.clearWarnings

void close() throws SQLException

A wrapper for Connection::close();

void commit() throws SQLException

A wrapper for Connection::commit();

Statement createStatement() throws SQLException

A wrapper for connection::createStatement();

boolean getAutoCommit() throws SQLException

A wrapper for Connection::getAutoCommit();

String getCatalog() throws SQLException

A wrapper for Connection.getCatalog

String getClientName()

Returns a client name.

int getDebugLevel() {

Gets the Cisco debug level.

DatabaseMetaData getMetaData() throws SQLException

A wrapper for Connection::getMetaData();

int getTransactionIsolation() throws SQLException

A wrapper for Connection.getTransactionIsolation

SQLWarning getWarnings() throws SQLException

A wrapper for Connection.getWarnings

void inactivate()

Deactivates a client by removing the client name from the internal hash table.

boolean isClosed() throws SQLException

A wrapper for Connection:: isClosed();

boolean isReadOnly() throws SQLException

A wrapper for Connection.isReadOnly

String nativeSQL (String sql) throws SQLException

A wrapper for Connection:nativeSQL(sql);

CallableStatement prepareCall (String sql) throws SQLException

A wrapper for Connection.prepareCall(sql);

PreparedStatement prepareStatement (String sql) throws SQLException

A wrapper for connection::prepareStatement(sql);

void rollback() throws SQLException

A wrapper for Connection::rollback();

void setAutoCommit (boolean autoCommit) throws SQLException

A wrapper for Connection::setAutoCommit(autoCommit);

void setCatalog (String catalog) throws SQLException

A wrapper for Connection.setCatalog

void setClientName (String client)

Sets a client name.
11-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Using CWCS Perl APIs
The database APIs are implemented in Perl for portability between platforms. Because these APIs are
primarily used by install and database administration scripts such as backup and restore, they will not be
implemented in other languages.

Programming Tips for Perl APIs

 • All applications that use these APIs must include this line at the beginning of their file:

use Cisco::DbUtils;

 • These APIs return 0 for success and 1 for error. The variable Cisco::Dbutil::errstr is null if the
return value is 0 and contains the error string if the return value is 1.

 • For more information about connection strings, see the “Connection Strings” section on page 11-5.

Perl API Summaries

The following tables summarize the Perl APIs.

void setDebugLevel (int debugLevel)

Sets the Cisco debug level.

void setReadOnly (boolean readOnly) throws SQLException

A wrapper for Connection.setReadOnly.

void setTransactionIsolation (int ti) throws SQLException

A wrapper for Connection.setTransactionIsolation

Table 11-6 DBConnection Method Summary (continued)

Returns Syntax and Description

Table 11-7 Database Process and File Management Perl APIs

Returns Syntax and Description

int CheckDb ($connstr);

Checks if the specified database accepts connections. This is done by opening a connection to the database.

int StartDb ($connstr, $cacheSize, $timeout, $numRetries)

Starts the database engine as a process on the specified database.

int StopDb ($connstr, $timeout, $numRetries);

Stops the specified database engine process. Programs must be sure there are no active connections to the
database.

Table 11-8 Miscellaneous Perl APIs

Returns Syntax and Description
int addManifestFiles (“SUITE=xxx;SWITCH”, \@parm2, \$manifestPath);

Creates the manifest files used by the backup, restore, and move database utilities. This routine works in one
of two ways, depending on the SWITCH field of the first parameter.

int check_create ($Dir)

Verifies the existence of the specified directory and creates it if it does not exist.
11-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
addManifestFiles

$ret = addManifestFiles (“SUITE=xxx;SWITCH”, \@parm2, \$manifestPath);

Creates the manifest files used by the backup, restore, and move database utilities. This routine works
in one of two ways, depending on the SWITCH field of the first parameter.

Input Arguments

int deleteDbVersionData ($dbh, $component, $subComponent);

Using the database handle and the primary keys, this routine deletes a row from the DbVersion table.

int deleteManifestFiles (“SUITE=xxx;SWITCH”, \$manifestPath);

Deletes the datafiles.txt or the appropriate dbfiles.txt file.

int getDbVersionData ($dbh, $comp, $subcomp, $rhDdata);

Using the database handle and the primary keys, this routine retrieves a row from the DbVersion table. The
complete row entry is returned in $rhData.

int getManifestFiles (“SUITE=xxx;SWITCH”, \@parm2, \$manifestPath);

Retrieves the contents of the datafiles.txt or dbfiles.txt file.

int setDbVersionData ($dbh, $rhData);

Writes a row to the DbVersion table.

int unloadDbVersionData ($dbh, $file);

Unloads the contents of the DbVersion table into the specified file.

Table 11-8 Miscellaneous Perl APIs (continued)

Returns Syntax and Description

SUITE Name for a group of applications. Used for backup and restore purposes.

SWITCH • APP—Application directory name. Indicates the location of the datafiles.txt file.

 • DSN—The ODBC data source name of the database. Indicates the location of the
dbfiles.txt file.

@parm2 • If SWITCH = “APP=xxx” then @parm2 is a pointer to a list of paths required by
the application for backup.

In this case, the routine creates a file called datafiles.txt in the directory
$NMSROOT/backup/manifest/suite/app, where $NMSROOT is the directory in
which the product was installed.

The contents of the file will be the contents of @parm2 (the list of paths
containing files to be backed up).

 • If SWITCH = “DSN=xxx” then @parm2 is a pointer to an array of database file
paths. In this case, the routine creates a file called dbfiles.txt in
$NMSROOT/backup/manifest/suite/database. The contents of the file will be the
DSN value followed by the contents of @parm2 (the list of database files).

$manifestPath The complete path of the manifest file. This path information is used to register the
file with the UNIX packaging mechanisms.
11-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
check_create

$ret = check_create ($Dir);

Verifies the existence of the specified directory and creates it if it does not exist.

Input Arguments

Return Values

checkDb

$ret = CheckDb ($connString);

Checks to see if the specified database accepts connections. This is done by opening a connection to the
database. If the connection is opened (the routine is successful), the connection is immediately closed.

Input Arguments

Return Values

deleteDbVersionData

$ret = deleteDbVersionData ($dbh, $component, $subComponent);

Deletes a row, defined by the database handle and primary keys, from the database.

$Dir The name of the directory.

0 Directory exists or was created successfully.

1 Directory cannot be accessed or failed to create directory.

$connString SQL style: ENG=xx;DBN=xx;UID=xx;PWD=xx

where ENG, DBN, UID, PWD are the database engine
name, database name, database user ID and password.

ODBC style: DSN=xx

where the engine corresponding to the ODBC data source
xx is checked.

0 Connection accepted.

1 Connection refused.
11-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Input Arguments

deleteManifestFiles

$ret = deleteManifestFiles(“SUITE=xxx;SWITCH”, \$manifestPath);

Deletes the manifest files used by the backup, restore and move database utilities. This routine works in
one of two ways, depending on the SWITCH field of the first parameter.

Input Arguments

getDbVersionData

$ret = getDbVersionData ($dbh, $comp, $subcomp, $rhDdata);

Returns the complete row entry in the Schema Version tracking table, identified by the database handle
and primary keys, in a hash table.

Input Arguments

$dbh Database handle.

$component A primary key into the Schema Version tracking table in
the database.

$subcomponent A primary key into the Schema Version tracking table in
the database.

SUITE Name for a group of applications. Used for backup and
restore purposes.

SWITCH • If SWITCH = “DSN=yyy” then the dbfiles.txt file in the
$NMSROOT/backup/manifest/suite/database is deleted.

$NMSROOT is the directory in which the product was
installed.

 • If SWITCH = “APP=yyy” then the datafiles.txtfile in the
directory $NMSROOT/backup/manifest/suite/app is
deleted.

$manifestPath The complete path of the manifest file. This path information
is used to register the file with the UNIX packaging
mechanisms.

$dbh Database handle.
11-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Output Arguments

Example
$dbh = DBI->connect(‘DSN=xx’, undef, undef, ‘Sqlany’);
$ret = getDbVersionData($dbh, ‘Main’, ‘Baseline’, $rhData);

where $rhData is a pointer to a hash whose definition looks like this:

$rhData = {‘Component’ => ‘Main’, ‘SubComponent’ => ‘Baseline’,
 ‘VersionString’ => ‘208’,
 ‘Description’ => ‘Database Schema Model Version’,
 ‘InstallDate’ => ‘08/21/1998’};

getManifestFiles

$ret = getManifestFiles (“SUITE=xxx;SWITCH”, \@parm2, \$manifestPath);

Places the contents of either the datafiles.txt or the dbfiles.txt file into an array. This routine works in
one of two ways, depending on the SWITCH field of the first parameter.

Input Arguments

$comp Component—a primary key into the Schema Version
tracking table in the database.

$subcomp Subcomponent— a primary key into the Schema Version
tracking table in the database.

$rhDdata Pointer to a hash table containing column name and value
pairs.

SUITE Name for a group of applications. Used for backup and
restore purposes.

SWITCH • APP—Application directory name. Indicates the
location of the datafiles.txt file.

 • DSN—The ODBC data source name of the database.
Indicates the location of the dbfiles.txt file.

@parm2 • If SWITCH = “APP=xxx” then @parm2 contains the
contents of the datafiles.txt file, which is the list of
file paths containing the files to be backed up.

 • If SWITCH = “DSN=yyy” then @parm2 contains the
contents of the dbfiles.txt file.

$manifestPath The complete path of the manifest file. This path
information is used to register the file with the UNIX
packaging mechanisms.
11-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
setDbVersionData

$ret = setDbVersionData ($dbh, $rhData);

Adds or modifies a row in the DbVersion table.

Input Arguments

StartDb

$ret = StartDb ($connString, $cacheSize, $timeout, $numRetries);

Starts the database specified in the connection string. The connString argument must have dsn=xxx
component.

Input Arguments

Example

This example starts the database with a cache size of 16M.

$ret = StartDb(“eng=upgrade; dbn=Essentials; dbf=/opt/CSCOpx/objects/db/px.db; uid=sa;
pwd=c2Ky2k”, “16”);

StopDb

$ret = StopDb ($connString, $timeout, $numRetries);

Stops the specified database engine process. Programs must be sure there are no active connections to
the database.

$dbh Database handle.

$rhData Contains the row to be inserted or updated.

$connString SQL style: “ENG=xx;DBN=xx,UID=xx;PWD=xx”

where ENG, DBN, UID, PWD are the database engine name, database
name, database user ID, and password.

ODBC style: “DSN=xx”.

where the engine corresponding to the ODBC data source xx is stopped.

$cacheSize Size (in megabytes) of the database engine. Default = 16M.

$timeout Number of seconds the routine waits for the database to start on each try.
Default = 5 seconds.

$numRetries Number of times the routine attempts to start the database before
returning an error. Default = 10 retries.
11-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Input Arguments

unloadDbVersionData

$ret = unloadDbVersionData ($dbh, $file);

Writes the contents of the DbVersion table into the specified file. Use this routine for backing up data
and restoring utilities to match database versions.

Input Arguments

Output Arguments

Using the Database Utilities
The following topics describe the available database utilities:

$connString SQL style: ENG=xx;UID=xx;PWD=xx

where ENG, UID, PWD are the database engine name, database user ID,
and password.

ODBC style: DSN=xx

where the engine corresponding to the ODBC data source xx is stopped.

$timeout Number of seconds the routine waits for the database to stop on each try.
Default = 5 seconds.

$numRetries Number of times the routine attempts to stop the database before returning
an error. Default = 10 retries.

$dbh Database handle.

$file Complete path to the file.

Utility Name Description

backup.pl Backs up the database file to a specified directory. It also backs up the files that are
listed in manifest files into specific directory locations. For details, see backup.pl,
page 12-10.

configureDb.pl Performs several functions, including installing and uninstalling the database.

dbinit Creates an empty database, assigns the default user ID and password, and specifies
various options.

dbMonitor Ensures that a database can accept connections.

dbpasswd.pl Changes the password field in the database configuration files.

DBPing Ensures that multiple database engines can accept connections at startup.
11-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
configureDb.pl

This utility has several functions:

perl configureDb.pl action={install|uninstall} <dsn=database>

If action=install, copies the database file from the /orig to the runtime directory. If
action=uninstall, removes the database file.

perl configureDb.pl action=rebuild dsn=database

Rebuilds database files to 9.0.0 format. Can be called during upgrade from older versions.

perl configureDb.pl action={reg|unreg} dsn=database dmprefix=prefix

If action=reg, registers the database, including populating the .odbc.ini or Windows odbc registry,
updating dmgtd.conf or the Windows services registry, and updating the DBServer.properties file. If
action=unreg, unregisters the database.

perl configureDb.pl action=upgrade dsn=database portid=number

Checks the database version and upgrades to 9.0.0 format.

perl configureDb.pl action=upgradeall

Upgrades every database to 9.0.0 format.

perl configureDb.pl action=validate dsn=database

Use the dbvalid utility to validate the specified database.

perl configureDb.pl action=reg dsn=database dmprefix=prefix dbmonitor=no

Do not register dbMonitor as the default database monitor. This option is intended for use only when
you want to substitute your own database monitor, such as DBPing.

dbreader.pl A web-based Perl database query and manipulation utility intended to supplement
the Sybase dbisqlc.

dbRestoreOrig The dbRestoreOrig utility restores a canned database from the orig directory.

dbvalid A Sybase utility that determines if the database is valid.

restorebackup.pl Restores a previous backup. For details, see restorebackup.pl, page 12-11.

runIsql Runs the SqlAnywhere ISQL utility on the database identified by the connection
string. The SQL commands are read from the script file.

Utility Name Description
11-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Input Arguments

dbinit

dbinit -j [-b] [-c] [-p page-size] dbName.db

Note This procedure should be performed by developers only.

The dbinit utility is a Sybase utility that:

 • Creates an empty database with a system catalog and system stored procedures.

 • Assigns the following default user ID and password: DBA, SQL.

 • Specifies the page size, transaction log file, case sensitivity and blank padding options.

Prerequisites

 • CMF 1.2 or higher must be installed.

Input Arguments

Switches

Use dbinit -help for additional help with switches.

dsn The data source name (for example, cmf or rme)

dmprefix The system name (for example, CWCS or Essentials). For example, to register the
Essentials database, enter:

perl configureDb.pl action=reg dsn=rme dmprefix=Essentials

The configureDb.pl script always validates dmprefix against the dmprefix value in
odbc.tmpl. If the two do not match, the script will throw a warning and use the odbc.tmpl
value . If there is no dmprefix entry in odbc.tmpl, the given entry is used and added to
odbc.tmpl.

To find the value of dmprefix:

 • On Solaris platforms, go to $NMSROOT/objects/dmgt/dmgtd.conf and look for
{$dmprefix}DbEngine.

 • On Windows platforms, use regedit to access HKEY_LOCAL_MACHINE >
SYSTEM > Current ControlSet > Services > {$dmprefix}DbEngine.

portid The port ID number. This must be a 16-bit integer smaller than 65535.

dbName The name of the new database. The .db extension is required.

-j Do not install runtime Java classes.

-b Pads blanks in strings for comparisons.
11-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
dbMonitor

dbMonitor dsn -app daemon_registered_name -dbserver database_registered_server_name
[-sterror “start_error_interval“] [-stretry “start_retry_number”]
[-sleep “sleep_interval”] [-error “ error_sleep_interval”]
[-retry “error_retry_number”][-debug] [-nodisplay]

DbMonitor is the default database-engine process monitor. It ensures that a database can accept
connections and avoid race conditions in database connections during engine startup, and periodically
monitors the database to ensure that the connection is still available. Each database requires a separate
DbMonitor process to monitor it. For example, all CWCS applications depend on the DbMonitor for the
CWCS database; an application with its own database will require an additional DbMonitor instance for
that database, and only that application will be dependent on that instance. Only the ODBC version of
DbMonitor is used. See the “DBPing” section on page 11-56 for an alternative database monitor.

DbMonitor performs these functions:

 • On startup, DbMonitor attempts to connect to the database and periodically selects from a common
database table. If successful, it notifies the Daemon Manager to start the dependent applications.

 • After the initial startup, DbMonitor periodically monitors the database by attempting selects from
the common table. If it is unsuccessful, it sends a message to the front end and notifies the Daemon
Manager to terminate the dependent applications.

 • Important: All daemons dependent on the database should place a dependency on the corresponding
DbMonitor and not on the database. This is because Daemon Manager does not accurately reflect
the state of the database, but DbMonitor does.

 • A DbMonitor entry is automatically created for each database that is registered using the
configureDb.pl utility.

Input Arguments

Switches

-c Enforces case sensitivity for all string comparisons.

Note Case sensitivity cannot be changed later.

-p page-size Sets the page size.

Note Page size cannot be changed later.

dsn Data source name (for example, cmf).

-app Registered process name (for example, CmfDbMonitor).

-dbserver Registered database server name (for example, CmfDbEngine).

-sterror Number of seconds to sleep before next connection try. Optional.

-stretry Number of times to try to make a connection. Optional.

-sleep Number of seconds to sleep before checking the database engine. Optional.
11-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
DBPing

$NMSROOT/bin/cwjava com.cisco.nm.cmf.dbservice2.DBPing -name daemon_registered_name -dsn
database_server_name_list [-maxtry tries] [-timeout time] [-debug]

DBPing is an alternative to dbMonitor. It ensures that all specified database engines are successfully
initialized at startup. It does not poll the databases for connectivity thereafter. If all database engines are
up and responding, the DBPing process notifies Daemon Manager that DBPing itself is up and running;
otherwise, it will notify Daemon Manager that DBPing is down. All other daemons requiring database
operations should register themselves as dependent on DBPing.

DBPing performs these functions:

 • On startup, DBPing attempts to connect to each database in the -dsn list. If all of these attempts are
successful, it notifies the Daemon Manager to start any dependent applications. If any of them are
down, DBPing will generate an error

 • Important: All daemons dependent on the databases in the -dsn list should place a dependency on
DBPing.

 • You can use DBPing only if you use the the configureDb.pl utility’s dbmonitor=no option.

Input Arguments

Switches

-error Number of seconds to sleep before next fetch for a valid connection. Optional.

-retry Number of times to try a fetch before declaring the connection is down. Optional.

-debug Flag to send more debug information to log file. Optional.

-nodisplay Flag to disable all log information. Optional.

-name Registered DBPing process name (for example, DFMDbMonitor).

-dsn A comma-delimited list of database server names (for example: DFMDbEngine,
CmfDbEngine).

-maxtry Number of times toattempt to make a connection with each of the database servers
named in the -dsn list. Optional.

-timeout Amount of time (in milliseconds) between attempts to make a connection with each of
the database servers named in the -dsn list. Optional.

-debug Flag to send more debug information to log file. Optional.
11-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Remarks

DBPing provides a monitor that can verify the status of multiple database engines at startup. It is
intended for situations where your application has multiple databases, and you want to ensure that all
database engines are fully initialized before Daemon Manager starts up any processes that depend on
them. To use DBPing for this purpose:

1. Register each of your application databases using the dbmonitor=no option of configureDb.pl. This
will prevent automatic creation of a DBMonitor instance for each of these databases. For example:
perl configureDb.pl action=reg dsn=MyAppDB1 dmprefix=prefix dbmonitor=no
perl configureDb.pl action=reg dsn=MyAppDB2 dmprefix=prefix dbmonitor=no

2. During your application installation, install and register with Daemon Manager a process that makes
use of DBPing. Make sure you:

a. Assign your DBPing process a unique -name value. For example: $NMSROOT/bin/cwjava
com.cisco.nm.cmf.dbservice2.DBPing -name MyAppDBMon -dsn MyAppDB1, MyAppDB2

-maxtry 10 -timeout 5000 -debug. You must use this same name (for example, MyAppDBMon)
when registering the DBPing process with Daemon Manager.

b. Use a DmgrRegisterWR (for C and C++) or DmgrRegisterJavaWR (for Java) call to register the
DBPing process with Daemon Manager. Both registration calls allow you to specify a -timeout
value for the DBPing process. For more information, see the “DmgrRegister” section on
page 21-51.

c. Pass with your registration call a -timeout value that is less than the combined value of your
DBPing process -maxtry and -timeout values. For example, if your DBPing process call
specifies -maxtry 10 and -timeout 5000, your DmgrRegisterWR or DmgrRegisterJavaWR
-timeout value should be less than 50000.

3. Set all other processes that depend on the databases in the DBPing -dsn list with a dependency on
your DBPing process.

4. Unregister the DBPing process if the application is uninstalled.

dbpasswd.pl

This utility changes the password field in the following database configuration files:

 • The odbc.tmpl file.

 • The ODBC registry (.odbc.ini for Solaris, or the registry for Windows).

 • The database service property file (DBServer.properties) and, if specified, the private property file.

You can use this utility in a variety of ways, as shown below.

Table 11-9 dbpasswd.pl Usage Summary

Format Action

dbpasswd.pl all Changes all database passwords.

dbpasswd cfile=configurefile Overrides database settings based on the configuration file
specified.

dbpasswd.pl listdsn Lists all available data sources in the product.

dbpasswd.pl dsn=odbc_datasource Changes the database password.

dbpasswd.pl dsn=odbc_datasource npwd=new_password Changes the database password to new_password.
11-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Prerequisites

 • Daemon Manager must be shut down.

 • On UNIX platforms, you must be logged in as root.

 • On Windows platforms, you must be logged in as part of the local administrator group.

 • This utility assumes that the databases and data sources are properly configured.

Input Arguments

Remarks

Since dbpasswd.pl also tries the password in the odbc.tmplorig file if the value in the ODBC registry
fails, it can be run as the last manual step in the existing database repair schemes that require copying
the factory database from the orig directory.

The dbpasswd.pl utility validates passwords. Valid passwords must:

 • Have a minimum of five and a maximum of 128 characters.

 • Use alphanumeric characters (a-z, A-Z, 0-9) only. No special characters (e.g., #, $, %) or spaces are
allowed.

 • Not have a number as the first character.

Related Topics

See the “Updating the Database Password” section on page 11-24.

dbpasswd.pl dsn=odbc_datasource encryption=yes Encrypts the database password.

dbpasswd.pl dsn=odbc_datasource encryption=yes
npwd=new_password

Changes the database password to new_password and encrypts
the database password.

Table 11-9 dbpasswd.pl Usage Summary

Format Action

all Validates all registered databases and changes the password for each database.

cfile Overrides the database settings as specified in the configuration file mentioned

dsn Contains the ODBC data source name (DSN) of the database whose password will be
changed. If the dsn argument is present, change the password for the specified
database.

encryption Encrypt the user name and password for the specified database. Possible values: YES,
NO (default). The values are not case sensitive.

npwd Optional. If present, replace the password in the registry entry, odbc.tmpl, and the
property file with new_password.

listdsn If present, this must be the only argument. Lists all data source names in the Solaris
.odbc.ini or Windows registry and quits. To be included in this list, a database must
be enabled.
11-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
dbreader.pl

This is a web-based Perl database query and manipulation utility intended to supplement the Sybase
dbisqlc.

Note Dbreader cannot be invoked from the command line; it can only be run from a browser.

For information about using dbreader, see the “Examining the Contents of a Database” section on
page 11-31.

Runtime Location

$NMSROOT/htdocs

dbRestoreOrig

dbRestoreOrig.pl dsn=dsnname dmprefix=dmprefixname [npwd=newpassword]

The dbRestoreOrig utility:

 • Restores the pre-canned database from the orig directory.

 • Changes the file permissions.

 • Populates the encrypted or plain-text user ID and password to .odbc.ini or the registry entry.

 • Populates the user ID and password to the property file for JDBC access (CWCS 2.2 and later).

Note This utility was first introduced in CWCS 2.2. The JDBC property files were included in
previous CWCS releases.

Input Arguments

dsnname Data source name (for example, cmf).

dmprefixname Used to construct the database engine process name. For example:

 • For CWCS: dmprefix is Cmf and the CWCS database engine name is
CmfDbEngine.

 • For RME: dmprefix is Essentials, and the RME database engine name is
EssentialsDbEngine.

The dmprefix argument is initially configured using configureDb.pl. To determine the
value of dmprefixname, see the “configureDb.pl” section on page 11-53.

Caution There is a check to validate this argument against the dmPrefix property in
odbc.tmpl. If this property is absent, the user is prompted for action.

newpassword Optional. If present, replace the contents of the current password with newpassword.
11-59
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
dbvalid

dbvalid -c “uid=$uid; pwd=$pwd; dbf=$dbf”

If a process cannot bring up the database engine and settings are okay, run this Sybase utility to
determine if the database is valid. If the database is not totally corrupted, it might be possible to recover
some of the data.

This script is located in $NMSROOT/objects/db/bin, where $NMSROOT is the directory in which the
product is installed.

Note This is a Sybase utility. configureDb.pl provides a wrapper to use this utility by providing only the dsn
name as an argument. configureDb.pl will invoke dbvalid with the correct connection string.

Prerequisites

On Solaris platforms, set the environment variables first (see the “Setting Up Your Environment” section
on page 11-19).

Switches

Input Arguments

runIsql

runIsql ($scriptFile, $connString);

Runs the SqlAnywhere ISQL utility on the database identified by the connection string. The SQL
commands are read from the script file.

-c Connection string.

uid User ID

pwd User password

dbf Database file
11-60
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
Input Arguments

$scriptFile Complete path name to the script file that contains the SQL commands.

$connString SQL style: ENG=xx;DBN=xx;UID=xx;PWD=xx

where ENG, DBN, UID, PWD are the database engine name, database name,
database user ID and password. Connection string must be complete or this
routine will fail.

ODBC style: DSN=xx

Contains either the DSN or the DSN plus the user ID and password. In either
case, it is converted to SQL-style before the ISQL call.
11-61
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 11 Using the Database APIs
Database API Command Reference
11-62
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 12

Using Backup and Restore

This release of CWCS provides a database backup and restore framework based on the classical CMF
backup and restore infrastructure. This framework is used by all CWCS-based applications, including
RME, Campus, DFM, DFMfh and ACLM.

As of release 3.0, this framework can also restore the backup data from CMF 2.1 and CMF 2.2. Restoring
a backup from a CMF release earlier than 2.1 is not supported.

CORE-based backup and restore is no longer supported.

The following topics describe using the CWCS backup and restore framework:

 • Using CWCS Backup

 • Using CWCS Restore

 • CWCS Backup and Restore API Command Reference

 • Restoring a Corrupt Database

For more information about CWCS backup and restore features, refer to CMF2.3 Restore Framework
Software Design Specification, ENG-306868.

Using CWCS Backup
The following topics describe using the CWCS backup framework:

 • CWCS Backup

 • How CWCS Backups are Stored

 • Running CWCS Backups

 • Offline Backup

CWCS Backup
There is no change in the backup program for CWCS 3.0. However Campus Manager, ACLM, and DFM
applications must change their application backup manifest directory structure as shown in Table 12-1.
12-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Backup
How CWCS Backups are Stored
The CWCS backup and restore framework creates backup locations of the form
backupdir/generationnumber/suite/directory/filename

Where:

 • backupdir is the root directory where all backups are to be stored.

 • generationnumber is the number of the backup. Directories are created in serial order, with the
highest number representing the latest backup. For example: 1, 2, and 3, where 3 is the latest
database backup.

 • suite is the name of your application or suite. Often, this is the same as the data source (database)
name. For example: For CWCS, the suite and database name are both “cmf”, but for Campus
Manager, the suite is “campus” and the database name is “ani”.

Table 12-1 Application Manifest Directory Changes for CWCS 3.0

Application Backup Directory

Campus Manager $NMSROOT/backup/manifest/campus

Note Campus has its own restore adaptor:
$NMSROOT/bin/RestoreTools/campus/restore.pm.

Note If the backup is based on CMF 2.2, access the backup files under
TEMP_FOLDER/cmf/campus, TEMP_FOLDER/cmf/ut and
TEMP_FOLDER/cmf/ani.

Note If the backup is based on CWCS 3.0, access the backup files under
TEMP_FOLDER/campus.

ACLM $NMSROOT/backup/manifest/aclm

Note ACLM has its own restore adaptor:
$NMSROOT/bin/RestoreTools/aclm/restore.pm.

Note If the backup is based on CMF2.2, access the backup files under
TEMP_FOLDER/rme/aclm.

Note If the backup is based on CWCS 3.0, access the backup files under
TEMP_FOLDER/aclm.

DFM $NMSROOT/backup/manifest/dfm

Note DFM has its own restore adaptor:
$NMSROOT/bin/RestoreTools/dfm/restore.pm

Note Irrespective of the version of CMF or CWCS, access the DFM data from
TEMP_FOLDER/dfm.

In CWCS 3.0, DFMfh is a module under DFM.

Note If the backup is based on CMF 2.1 or CMF 2.2, access the DFMfh data
under TEMP_FOLDER/dfmfh.

Note If the backup is based on CWCS 3.0, access the DFMfh data under
TEMP_FOLDER/dfm/dfmfh.
12-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Backup
 • directory is the the database directory being backed up. Directories include the database directory
and any suite application’s data directories. It can also include the database template file, the CWCS
(or CMF) version information, and filebackup.tar (which is the archive of all application
configuration data files listed in the application backup manifest file datafiles.txt).

 • filename is the name of the files that have been backed up. These files include database (.db), log
(.log), the dsn.txt file, and database version file (dsn_DbVersion.txt). Application directories will
contain only the copy of datafiles.txt from the backup manifest-specified locations.

Running CWCS Backups
To run a CWCS backup, each application must:

Step 1 Create the backup manifest directory structure $NMSROOT/backup/manifest/suite (see the “Creating the
Backup Manifest Files” section on page 11-10).

Step 2 Under that structure, create the /database/orig subdirectory and place the dsn.txt file there. The dsn.txt
file contains the information required to back up the suite database (see the “Creating the Database
Backup Manifest File” section on page 11-11).

For example: For the CWCS suite, the database backup manifest file cmf.txt goes in
$NMSROOT/backup/manifest/cmf/database/orig.

Step 3 Also under the$NMSROOT/backup/manifest/suite, create the /app/orig subdirectory for each application
module to be backed up and place its matching datafiles.txt file there. Each datafiles.txt file contains the
list of files to be backed up for that application module (see the “Creating the Application Backup
Manifest File” section on page 11-11)

For example, the configArchive module of Resource Manager Essentials must place its datafiles.txt file
under $NMSROOT/backup/manifest/rme/configArchive/orig.

Step 4 Configure the database backup manifest by running the following command:

$ENV{"NMSROOT"}/bin/perl $ENV{"NMSROOT"}/objects/db/conf/configureDb.pl action=install

dsn=dsn

Where dsn is your database name (e.g., for CWCS, cmf).

The script will copy the suite’s dsn.txt file from the /orig directory to its parent /database directory, and
replace $ENV{"NMSROOT"} with the actual directory path. For example: For CWCS, the cmf.txt file will
be copied from $NMSROOT/backup/manifest/cmf/database/orig to
$NMSROOT/backup/manifest/cmf/database.

Step 5 Configure the application backup manifest by running the following command:

$ENV{"NMSROOT"}/bin/perl $ENV{"NMSROOT"}/objects/db/conf/configureDb.pl action=install

app=app

Where app is your application module (e.g., for RME, configArchive).

The script will copy the application module’s datafiles.txt file from its /orig directory to its parent /app
directory, and replace $ENV{"NMSROOT"} with the actual directory path. For example: For RME, the
datafiles.txt file will be copied from $NMSROOT/backup/manifest/rme/configArchive/orig to
$NMSROOT/backup/manifest/rme/configArchive

Step 6 The database and applications are now registered for CWCS backup and restore. To back them up, run
the backup utility backup.pl (see the “backup.pl” section on page 12-10). The utility will find out what
to back up from the database and application backup manifest files.
12-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Restore
Related Topics

See the “configureDb.pl” section on page 11-53.

Offline Backup
Applications may require offline backup to avoid inconsistencies between the flat files and databases. If
any of the application requires offline backup, then you can configure the backup mode as offline by
specifying the value of BACKUP_OFFLINE parameter as YES in the backup.properties file under
$NMSROOT/conf/. It should be done in respective applications install flow and should not be exposed
to end-users.

If the offline backup is configured, then

 • CiscoWorks Home page urgent message will be sent to all the users who are currently logged in
before stopping daemon manager

 • A JMS Event with the subject cisco.mgmt.cw.cmf.backup will be published before stopping
daemon manager. Applications can listen for this event and can act accordingly.

 • Daemons will be stopped during the backup process and will be started again after the backup is
completed.

Using CWCS Restore
The following topics describe using the CWCS restore framework:

 • CWCS Restore: Changes for CWCS 3.0

 • Understanding the CWCS Restore Framework

 • Running CWCS Restores

 • Guidelines for Writing CWCS Restore Application Adaptors

 • Sample CWCS Restore Application Adaptor

CWCS Restore: Changes for CWCS 3.0
For the CWCS 3.0 release:

 • In previous releases, CMF applications placed their database files in the <Application>/database
folder in the backup archive. Now, the restore framework:

 – Copies the files in the backup archive to the TEMP_FOLDER/tempBackupData/<Application>
folder.

 – Extracts the filebackup.tar of each application to
TEMP_FOLDER/tempBackupData/<Application>/CSCOpx (irrespective of the original
$NMSROOT where it was backed up). This temporary directory structure is the same for
Solaris and Windows.

 • The Remote Upgrade tools are no longer available because restoring data from previous versions is
incorporated into the restore programs. You can use the CWCS backup and restore programs to
restore to CWCS 3.0 your data from older CMF 2.1 or 2.2.

 • The Per-Product Restore feature is no longer available due to data inconsistencies caused by the
replacement of the database during restore.
12-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Restore
Understanding the CWCS Restore Framework
In previous versions of the CWCS backup and restore framework, applications registered their files and
folders to be backed up and restored in the file, datafiles.txt. The new framework extracts the backup
data to a temporary directory, then calls the application’s restore adaptors. Using the APIs and facilities
provided by the framework, the adaptors handle the data conversion and store it in the runtime location.

Note New restore framework applications are required to write their own restore adaptors.

The new restore framework:

1. Extracts the backup data to a temporary location. For applications installed in the system that have
data in the backup archive, it:

a. Copies the backup data of these applications to
TEMP_FOLDER/tempBackupData/<AppName>

b. Extracts the filebackup.tar of the applications to
TEMP_FOLDER/tempBackupData/<AppName>/CSCOpx folder. On Solaris platforms, the
non-$NMSROOT files are extracted to the TEMP_FOLDER/tempBackupData/<AppName>
folder.

Note The default location of the temporary directory is $NMSROOT/tempBackupData. You can
use the -t option of the restore program to specify a different temporary directory.

2. For each of the following steps, the application restore adaptors are called in this pre-defined order:
CMF/CWCS, Campus, RME, ACLM, and DFM.

a. Run preRestore() functions for all application adapters.

b. Run doRestore() functions for all application adapters.

c. Run postRestore() functions for all application adapters.

Note The application’s restore adaptors are loaded from
$NMSROOT/bin/RestoreTools/<AppName>/restore.pm.

3. Removes the temporary folder TEMP_FOLDER/tempBackupData.

The applications have knowledge of their data and the conversion logic. Therefore, the application’s
adaptor (restore.pm) will:

1. Extract the backup data from these locations:

 – TEMP_FOLDER/tempBackupData/<AppName/CSCOpx

 – TEMP_FOLDER/tempBackupData<AppName>

Note Applications access their archive data from this temporary directory. To find the location of
this directory, application adaptors should use the getTempFolder() API.

2. Do the conversion if needed.
12-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Restore
3. Apply the converted file to the running machine.

Running CWCS Restores
To run a CWCS restore operation, each application must:

Step 1 Write a Perl adaptor that takes care of applying application data to the runtime structure (see the
“Guidelines for Writing CWCS Restore Application Adaptors” section on page 12-6).

Step 2 Register the application with CWCS restore by placing the restore adaptor (the Perl module) in

$NMSROOT/bin/RestoreTools/<Application Name>

Step 3 Run the restore utility (see the “restorebackup.pl” section on page 12-11).

Guidelines for Writing CWCS Restore Application Adaptors
For CWCS 3.0, the new restore framework requires that all applications using the framework write their
own application adaptors. When you write an application adaptor, follow these guidelines:

 • All application adaptors must beimplemented as Perl modules. To implement a restore program in
Java or any other language, supply a Perl module to call the non-Perl application.

 • All application adaptors must be named restore.pm.

 • Use the APIs provided by the CWCS backup and restore framework (see the “CWCS Backup and
Restore API Command Reference” section on page 12-9).

 • Place the restore.pm files in subdirectories of the RestoreTools folder in the bin directory. They will
be identified based on the directory in which they are placed.

$NMSROOT/bin/RestoreTools/<Application>/restore.pm.

For example, RME’s application adaptor is stored in:

$NMSROOT/bin/RestoreTools/rme/restore.pm

 • All application restore modules must contain four functions. These functions are called by the
restore framework.

 – preRestore(). The preRestore() function should not make any changes in the running machine
that breaks the applications. Follow this principle: if even one application adapter’s preRestore()
fails, restore the system to the state it was in before the restore program was run.

Note This function can be empty but must be declared.

 – doRestore(). Applications should use only the doRestore() function to apply data to the
machine.

 – postRestore(). The postRestore() function cannot terminate the restore. This function is used to
do fine tuning after the restore.

Note This function can be empty but must be declared.
12-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Restore
 – UNLOAD_restore(). The UNLOAD_restore() function removes the functions defined in this
restore.pm from memory.

Note If applications are using any other functions in their restore.pm, they should add an
entry for those functions to this list.

 • The last line of the restore.pm must be "1;" to indicate the end of the module.

 • When writing the application adapter, use the format shown in Example 12-1.

Example 12-1 CWCS Restore Application Adapter Format

sub preRestore
{
 # Code for pre restore of this application;
 return 0; # But on error should return non-zero.
 # Returning non-zero will stop the restore.
}
sub doRestore
{
 # Code for the actual restore.
 return 0; # But on error should return non-zero.
 # Returning non-zero will stop the restore.
}
sub postRestore
{
 # Code for post restore operation
}
sub UNLOAD_restore
{
 # This function removes the functions defined in this restore.pm from memory.
 # The following three entries are required. If applications are using any
 # other functions in their restore.pm, they should add an entry for
 # those functions here.
 undef &preRestore;
 undef &doRestore;
 undef &postRestore;
}
1;

 • Before calling the application’s module, the restore framework redirects the STDOUT and STDERR
to the restorebackup.log file. Therefore, applications can print their messages to STDOUT using
print statements, which will be captured in restorebackup.log. This is the default behavior.

However, this means that none of an application’s messages will be displayed in the CLI. To add
user input to a restore adapter:

 – Before calling user input functions, call the redirectToScreen () API (see the “redirectToScreen”
section on page 12-16). This redirects further outputs of STDOUT to print on the screen.

 – After calling the user input functions, call the redirectToLog () API (see the “redirectToLog”
section on page 12-17). This will redirect further outputs of STDOUT back to the restore log
file.

 • When reporting errors, follow these guidelines:
12-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Using CWCS Restore
 – The modules should not use Perl's exit() function to exit the program. They should return to their
respective methods with the appropriate return values.

 – The preRestore() functions should return zero for success and non-zero for any error.

 – The doRestore() functions should return zero for success and non-zero for any error.

 – The return status of the postRestore() function is ignored by the framework.

Related Topics

See the:

 • “Sample CWCS Restore Application Adaptor” section on page 12-8.

 • “CWCS Backup and Restore API Command Reference” section on page 12-9.

Sample CWCS Restore Application Adaptor
Example 12-2 assumes that the backup archive for CMF2.1, CMF2.2, and CWCS 3.0 contains the
following files for this application:

 • CMF2.1

 – d:\program Files\CSCOpx\conf\file1.conf

 – d:\Program Files\CSCOpx\etc\file2.data

 • CMF2.2

 – d:\CW2000\conf\file1.conf

 – d:\CW2000\etc\file2.data

 – d:\CW2000\etc\file3.data

 • CWCS 3.0

 – d:\CW2000\conf\file1.conf

 – d:\CW2000\etc\file2.data

 – d:\CW2000\etc\file3.data

In this example:

 • file1.conf is not changed between the three versions.

 • file2.data of CMF2.1t needed conversion when restored in CWCS 3.0.

 • file3.data was introduced in CMF2.2 and does not need any conversion in CWCS 3.0.

Example 12-2 Sample restore.pm File

sub preRestore {return 0;}
sub doRestore
{
 if (getCMFVersion() eq "2.1")
 {
 if (CopyFileToNMSROOT("conf\file1.conf")!=0) {return -1;}
 if (convertData2()!=0) {return -1;}
 }
 elsif (getCMFVersion() eq "2.2")
 {
12-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
 if (CopyFileToNMSROOT("conf\file1.conf")!=0) {return -1;}
 if (CopyFileToNMSROOT("etc\file2.data")!=0) {return -1;}
 if (CopyFileToNMSROOT("etc\file3.data")!=0) {return -1;}
 }
 elsif (getCMFVersion() eq "3.0")
 {
 if (CopyFileToNMSROOT("conf\file1.conf")!=0) {return -1;}
 if (CopyFileToNMSROOT("etc\file2.data")1=0) {return -1}
 if (CopyFileToNMSROOT("etc\file3.data")1=0) {return -1;}
 }
 return 0;
}
sub convertData2
{
 my $NMSROOT, $d, $APP, $TEMP_FOLDER;
 $NSMROOT= getNMSROOT(); $d= getFolderSeperator();
 $TEMP_FOLDER = getTempFolder(); $APP="cmf";
 SourceFile=TEMP_FOLDER+$d+$APP+$d+"CSCOpx"+$d+"etc"+d$+"file2.dat;
 DestinationFile=$NMSROOT+$d+"CSCOpx"+$d+"etc"+d$+"file2.dat;
 SourceHandler = OpenFile(SourceFile,<Read Mode>);
 DestinationHandler = OpenFile(DestinationFile, <Write Mode>);
Read content of SourceHandler, convert, write to DestinationHandler
close SourceFileHandler, DestinationFileHandler
Return 0 for success, -1 for any errors.
}

sub postRestore { }
sub UNLOAD_restore
{
 undef &preRestore; undef &doRestore; undef &convertData2;
 undef &postRestore;
}
1;

CWCS Backup and Restore API Command Reference
The following topics describe the utilities and APIs provided by the CWCS framework.

Use these utilities to backup and restore your databases:

 • backup.pl

 • restorebackup.pl

Use these APIs when you write CWCS restore adaptors for your applications:

 • copyFileToNMSROOT

 • copyFolderToNMSROOT

 • getCMFVersion

 • getCMFPatchVersion

 • getNMSROOT

 • getArchiveNMSROOT

 • getFolderSeperator

 • getLogFileName

 • getTempFolder
12-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
 • isWindows

 • redirectToLog

 • redirectToScreen

 • restoreDatabase

 • StandardDbRebuild

backup.pl
$NMSROOT/bin/perl $NMSROOT/bin/backup.pl backdir logfilename numberGen

Backs up the database file to a specified directory. It also backs up the files that are listed in the backup
manifest files into specific directory locations.

The backup script requires the following information:

 • The location of the databases

The database backup manifest file contains a list of database file names. The backup.pl script backs
up all specified database files.

 • A list of directories containing data files

The application backup manifest file contains a list of directory names. The backup.pl script backs
up all files in the specified directories.

Input Arguments

Remarks

 • You must specify the full path to both perl and the backup.pl script. You must also use the version
of Perl supplied with CWCS.

 • You can run this script from the CWCS desktop by selecting Server Configuration > Admin >
Backup. This option lets you run a backup immediately or schedule it for a later date and time.

backdir Backup (target) directory. Must be writable. The full directory path is
required. The directory will be created if it does not exist.

logfilename The name of the backup log file. When run from the command line: If
specified, the full path is required and the parent directory must exists and be
write-enabled (if not, it will not create the directory and will throw the
message Error: Cannot save STDERR to the log file). If not specified,
the log will be written to STDOUT. From the GUI: The log is written to
$NMSROOT/log/dbbackup.log; there is no option to specify a log file.

numberGen Number of backup archives to retain in the directory. Must be an integer value
or blank. If blank, it creates or overwrites archive 0 and keeps all other
archives. If specified, it creates a new archive and keeps only that number of
archives. For example: You have 100 backups; archive 1 is the oldest and 100
is the newest. If numberGen is 5, backup.pl creates a new archive 101, deletes
archives 1-96, and keeps archives 97-101. On the next run with the same
numberGen value, it creates new archive 102 and deletes archive 97.
12-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
 • If a backup fails due to a previous backup being aborted or interrupted, you will see the following
error message

“…/backup.LOCK file exists. Most probably another backup process is running”

If you are sure that no another backup process is running, you can delete the backup.LOCK file. The
purpose of this file is to prevent more than one instance of the backup process.

Related Topics

See the “Creating the Backup Manifest Files” section on page 11-10.

restorebackup.pl
perl restorebackup.pl -d backupdir [-t tempdir] [-gen generation]

Restores a previous backup. This script is run on demand from the command line with root privileges.
The script will verify that no applications are running when it is invoked.

Note Shut down the Daemon Manager before starting this utility.

Runtime Location

$NMSROOT/bin

Switches

For example, to restore the fourth backup of Campus Manager from the MyDir directory, enter:

perl restorebackup.pl -d /MyDir –gen 4

Remarks

 • This script restores the database files to the location specified in the appropriate {dsn}.txt file in the
manifest directory for the database. This ensures that the database is restored to the proper location
if the database is moved after a backup.

 • This script uses the tar command to untar filebackup.tar for the data files indicated in the datafiles.txt
file for the application. The datafiles.txt file is located in the following directory path:

$NMSROOT/backup/manifest/<Application Name>/<module Name>

-d backupdir Path to the backup directory. Required.

-gen generation Generation to be restored. By default, restores the latest generation.
Optional.

-t tempdir Specifies a different temporary directory. Optional.

The restore framework uses a temporary directory to extract the contents of
the backup archive. By default the temporary directory is
NMROOT/tempBackupData.
12-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
 • For Windows platforms, the untar command gets a “Permission denied” error if the original backup
directory and its files do not have read permission to the current user. Therefore, application data
files must be readable.

Related Topics

See the “Guidelines for Writing CWCS Restore Application Adaptors” section on page 12-6.

copyFileToNMSROOT
Copies the specified file from the backup archive to $NMSROOT.

Note Call this function only when there are no data conversions for the file.

Syntax
copyFileToNMSROOT (String <Application>, String <FileName>)

Input Arguments

Return Values

copyFolderToNMSROOT
Copies the complete folder from the backup archive to NMSROOT.

Syntax
copyFolderToNMSROOT (String <Application>, String <Folder>)

Application The name of the application suite (for example, “RME”).

FileName File to be copied from the backup archive.

Do not include $NMSROOT. For example, if the file to be restored is:

d:\program files\CSCOpx\cmf\objects\web\conf\ssl.conf

<FileName> should contain:

cmf\objects\web\conf\ssl.conf

0 Success

non-zero Failure
12-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
Input Arguments

Return Values

getCMFVersion
Returns the CMF or CWCS version of the backup data.

Syntax
getCMFVersion()

Input Arguments

None

Return Values

getCMFPatchVersion
Returns the PATCHVER of the CWCS.

Note This API is valid for CWCS 3.0 only; it cannot detect the patch version for CMF 2.1 or CMF 2.2.

Syntax
getCMFPatchVersion()

Input Arguments

None

Application The name of the application suite (for example, “RME”).

Folder Folder to be copied from the backup archive.

Do not include $NMSROOT.

0 Success

non-zero Failure

CMF version The CMF version of the backup data. Possible values:

“2.1” for CMF2.1

“2.2” for CMF2.2

“3.0” for CWCS 3.0
12-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
Return Values

getNMSROOT
Returns the current $NMSROOT.

Syntax
getNMSROOT()

Input Arguments

None

Return Value

getArchiveNMSROOT
Returns the $NMSROOT of the backup data.

Syntax
getArchiveNMSROOT()

Input Arguments

None

Return Value

getFolderSeperator
Returns the folder separator depending on the OS in which CWCS 3.0 is running.

Syntax
getFolderSeperator()

Input Arguments

None

PATCHVER The patch version of CWCS. Possible values are “1”, “2”, and so on.

path The current $NMSROOT (the path where CiscoWorks is installed).

path The $NMSROOT of the backup data (relative to the path where CiscoWorks
is installed).
12-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
Return Values

getLogFileName
Returns the full path of the restorebackup.log.

Syntax
getLogFileName()

Input Arguments

None

Return Values

getTempFolder
Returns the temporary directory.

Syntax
getTempFolder()

Input Arguments

None

Return Values

isWindows
Returns the OS type.

Syntax
isWindows()

separator Folder separator. Possible values:

"/" for Solaris

"\\" for Windows

filename The location of the log file, restorebackup.log.

folder name By default, the temporary directory for restore is
$NMSROOT/tempBackupData.

However, if the temporary path has been customized (using the -t parameter),
the user-specified temporary path is returned.
12-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
Input Arguments

None

Return Values

redirectToScreen
Reverses the redirectToLog() API, restoring STDOUT and STDERR to their default values. Reverses the
redirectToLog() API,

Note Applications should not use this API unless they need user inputs.

Syntax
redirectToScreen()

Input Arguments

None

Return Values

Example

By default, all messages produced by the applications are redirected to restorebackup.log. However, if
an application adaptor needs to display some information on the screen to get input from a user, it should
use the redirectToScreen() and redirectToLog() APIs. For example:

sub doRestore()
{
 ...
 print "<some print message>; # this will be redirected to the log
 redirectToScreen();
 print "<Print the message which should be displayed on the screen,

which is used for confirmation by users (y/n) >";
 # the above print message will be printed on the screen.
 redirectToLog();
 # Any subsequent print statements will be redirected to the log only
 print "<other print messages>"; # will be redirected to the log
}

Related Topics

See the “redirectToLog” section on page 12-17.

OS type The operating system type. Possible values are “0” for Windows, “1” for
Solaris

0 Success

non-zero Failure
12-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
CWCS Backup and Restore API Command Reference
redirectToLog
Directs STDOUT and STDERR to the restore log file. Subsequent outputs of STDOUT and STDERR
are captured in the log file.

Note Applications should not use this API unless they need user inputs.

Syntax
redirectToLog()

Input Arguments

None

Return Values

Related Topics

See the “redirectToScreen” section on page 12-16.

restoreDatabase
The restoreDatabase API performs the following operations:

 • Copies the backup database to the current database.

 • Uses the password of the database being restored and updates all files accordingly.

 • If the backup database password is not encrypted, it is encrypted and stored during the restore
process (provided the current database configuration supports database password encryption).

 • If the restore is across CMF versions (and therefore across application versions), the database is
rebuilt to the current Sybase file format.

Any other operations must be handled in the application wrapper.

Syntax
restoreDatbase(<dsn>,<dmprefix>,[<suite>])

Input Arguments

0 Success

non-zero Failure

dsn Database data source name.
12-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Restoring a Corrupt Database
Return Values

StandardDbRebuild
Upgrades the database file format for a given suite or database data source name. This API unloads the
data, creates a new database file, and loads the data back into this file.

This API is called internally in restoreDatabase() API when a restore across versions is detected.
Applications can use it as necessary , but are not required to call it separately during a restore operation.
For more information, see the “configureDb.pl” section on page 11-53.

Syntax
InstallUtility::StandardDbRebuild(<suite>)

Input Arguments

Return Values

None.

Restoring a Corrupt Database
If the database has been corrupted, choose one of these solutions:

 • Option 1: Restoring a Corrupt Database from a Previous Backup

 • Option 2: Recovering Part of a Corrupt Database

 • Option 3: Abandoning a Corrupt Database

dmprefix The daemon manager prefix. This is the prefix that is used to register the
database with the Daemon Manager.

suite Application suite as registered with the backup framework.

If the dsn and the suite are different, then the suite name must be provided. If
the suite name is not provided, the dsn is assumed to be the suite name.

The suite name and dsn are usually the same, with some exceptions such as
Campus Manager, where the suite is “campus” and the dsn is “ani”.

0 Success

1 Error

suite Database data source name or the suite name
12-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Restoring a Corrupt Database
Restoring a Corrupt Database from a Previous Backup
Use the backup and restore utilities for regular database maintenance.

Note Be sure to back up your database regularly.

Related Topics

 • See the “backup.pl” section on page 12-10.

 • See the “restorebackup.pl” section on page 12-11.

Recovering Part of a Corrupt Database
If only part of a database is corrupted, perform the following steps to save your data. Use the procedure
appropriate to the platform:

Recovering Part of a Corrupt Database On Windows Platforms

Step 1 Log in as local administrator.

Step 2 To stop the Daemon Manager, enter:

net stop crmdmgtd

Step 3 Copy the database files, including any log files, to a save directory. Always back up the original data.

Step 4 If the dbvalid utility reports that one or more tables are corrupted, try replacing just those tables.

For example, assume that the Essentials (RME) syslog tables SLG_MSG_UMGD and SLG_MSG are
corrupted, which means that the data in these tables is gone. All you can do is remove the bad tables and
replace them with the copies in the /orig directory. Then rerun dbvalid:

rm $NMSROOT/objects/db/syslog.db
copy $NMSROOT/objects/db/orig/syslog.dborig $NMSROOT/objects/db/.
dbeng8 –f rme.db
dbvalid -c “uid=dba;pwd=c2kY2k;dbf=rme.db”

where $NMSROOT is the directory in which the product was installed.

Step 5 If replacing the corrupted tables doesn’t work, try extracting the data from the database and reloading it
into a new database. Using the same example from Step 4:

cd $NMSROOT/databases/rme
dbunload -c “uid=dba;pwd=c2kY2k;dbf=rme.db” savedir

Notice the file reload.sql under the current directory and the *.data files under savedir.

Now create the rme.db and syslog.db files, then rerun dbvalid:

rm -f rme.db, syslog.db, rme.log
dbinit -p 4096 rme.db
dbisqlc -c “uid=dba;pwd=sql;dbf=rme.db” -q read reload.sql

The reload utility reloads the database and restores the old user ID and password values.
12-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Restoring a Corrupt Database
Note The reload process might take a long time. Depending on the size of the database, reloading may
run for several hours.

Then rerun dbvalid:

dbvalid -c “uid=dba;pwd=c2kY2k;dbf=rme.db”

Step 6 To restart the Daemon Manager, enter:

net start crmdmgtd

Step 7 Optional: Use dbreader to examine the contents of the database (see the “Examining the Contents of a
Database” section on page 11-31).

Recovering Part of a Corrupt Database On Solaris Platforms

Step 1 Log in as root.

Step 2 To stop the Daemon Manager, enter:

/etc/init.d/dmgtd stop

Step 3 Copy the database files, including any log files, to a save directory. Always back up the original data.

Step 4 Set the environment variables (see the “Setting Up Your Environment” section on page 11-19).

Step 5 Create a directory to keep the data:

mkdir savedir
dbunload -c “uid=$uid;pwd=$pwd;dbf=$dbfile.db” savedir

where $uid and $pwd are the user ID and password for your database.

Notice the file reload.sql under the current directory and the *.data files under savedir.

Step 6 To create the $dbfile.db file, enter:

rm -f $dbfile.db $dbfile.log

Step 7 To initialize the $dbfile.db file, enter:

dbinit -p 4096 $dbfile.db
dbisqlc -c “uid=$uid;pwd=$pwd;dbf=$dbfile.db” -q read reload.sql

where $uid and $pwd are the default user ID and password values (dba and sql).

The reload utility reloads the database and restores the old user ID and password values (used in Step 4).

Step 8 Optional: Use dbvalid to determine if the database is valid (see the “dbvalid” section on page 11-60).

Step 9 To restart the Daemon Manager, enter:

/etc/init.d/dmgtd start

Step 10 Optional: Use dbreader to examine the contents of the database (see the “Examining the Contents of a
Database” section on page 11-31).
12-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Restoring a Corrupt Database
Abandoning a Corrupt Database
If the data in the database is not important, or the database is totally corrupted, you can copy a clean
database from the orig directory. Assuming that the database file is the only problem, this, at least, will
allow you to avoid a reinstallation.

To reinitialize the database, use the dbRestoreOrig.pl script (see the “dbRestoreOrig” section on
page 11-59).
12-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 12 Using Backup and Restore
Restoring a Corrupt Database
12-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 13

Using the Core Client Registry

The Core Client Registry (CCR) manages the seamless installation, upgrade, patching and uninstall of
Multiple Device Contoller (MDC) modules and the Core module itself.

The following topics describe how to use CCR to manage these tasks:

 • Understanding CCR, page 13-23

 • About the CCR Components, page 13-24

 • About CCR System Flow, page 13-27

 • About CCR Data Structures, page 13-28

 • Using the CCR C++ API, page 13-31

 • Using the CCR API: Example, page 13-46

 • Using the CCRAccess Client, page 13-47

 • Scripting CCRAccess, page 13-49

 • Using the CCRAccess DLL, page 13-50

 • Using the CCR Java Interface, page 13-51

 • Encrypting and Decrypting CCREntry Values, page 13-52

For more information about CCR, refer to the Core Client Registry Software Unit Design Specification,
EDCS ENG-129945.

Understanding CCR
The Core Client Registry:

 • Tracks overlaps in module requirements to prevent addition of modules that already exist.

 • Maintains these requirements when modules are removed that are still needed for execution of other
modules.

 • Stores information needed to instantiate and run a module properly.

CCR tracks:

 • Application locations.

 • Application configurations.

 • MDC client extension libraries.

 • Namespaces.
13-23
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About the CCR Components
 • Initialization information.

 • Registry and environmental entries.

CCR can:

 • Add entries.

 • Update configuration files.

 • Remove entries.

 • Track entry references.

 • Increment references.

 • Decrement the references.

You can access CCR from both C++ and Java applications, usually in the form of a servlet. CCR uses:

 • XML to store the data.

 • Generic C++ libraries and STL to allow porting to other operating systems.

 • JNI to create a bridge from C++ to Java.

 • Xerces to manage the DOM tree.

Note CCR is an information container only. It does not define the meaning of the content; this is up to the
component developer. For example, an application can register user roles and the Core Admin Module
(CAM) will pick them up. CCR will not understand the format and information needed for this kind of
entry. The contract is between CAM and applications.

About the CCR Components
CCR has five major components, which are described in the following topics:

1. CCR Local System Data (LSD) Component

2. CCRProcess Component

3. CCRInterface Component

4. CCREntry Component

5. CCRResponse Component

CCR Local System Data (LSD) Component
LSD is the data structure that contains the registration information. It is the repository for all the entries
tracked by the CCR. It is in the form of an XML file and is loaded by the CCRprocess. The XML file
contains one root element called CCRRoot. CCRRoot will always have an element called resources that
contains all of the resources that have been added to an MDC. All of the other elements under CCRRoot
are MDCs.
13-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About the CCR Components
Resources

If any resources are added to CCR, then CCRRoot will have a Resources element. Elements within
Resources must adhere to specific rules. Each element is followed by a number that allows
differentiation of the resources.

All immediate children of Resources will be called either Library, Custom, ApacheConf, or
InitializationInfo followed by a number. For example, Custom1, Library2, ApacheConf5,
InitializationInfo7.

These elements are:

 • Library—describes any kind of library.

 • InitializationInfo—describes any initialization information for the MDCs.

 • ApacheConf—describes a change to an Apache configuration file.

 • Custom—describes any other kind of resources.

All other elements under CCRRoot are assumed to be MDC elements:

 • ExtensionLibraries.

 • Configurations.

 • Java.

 • Notifications (this is deprecated).

 • Logging.

All these elements (except for Logging) will contain children that conform to the Resources child
element rules (Custom, Library, etc.).

All of these four types of child elements can have the following types of children.

 • <name>value</name>

 • <data>value</data>

 • <location>value</location>

 • <custom_name>value</custom_name>

These can be changed by privileged users.

The Logging child will have only one of the following elements:

<Location>log_file_name_w_location</Location>

However, it can have any number of these elements:

<categoryname priority=“priority value”/>

Where the priority value can be DEBUG, INFO, WARN, ERROR, FATAL.
13-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About the CCR Components
CCRProcess Component
This is the heart of CCR. It includes the code that loads the XML file as well as the code that manipulates
the elements.

This is the thread that waits for requests to act on the LSD. Upon instantiation, the CCRProcess will
either load up the existing LSD into a DOM tree, or if one is not available, it will create a new skeleton
LSD that will become the new default one. It also makes backups of the LSD at certain intervals to
prevent information from being lost or corrupted. It also creates backups when the LSD has been updated
to allow recovery of previous versions if necessary.

There should only be one instance of CCRProcess per process. It uses the sync libraries to prevent
deadlocking when multiple CCRInterfaces access the CCRProcess.

CCRInterface Component
The CCRInterface allows modules to modify the data based on their needs (like installation, removal).
It is the access point for all CCR functionality. The CCRInterface starts the CCRProcess (if it has not
been started already) and it also communicates requests to it. JNI is used to provide the servlets with a
means to access the daemon from Java.

C++ client uses a CCRInterface object to interact with the CCR.

Two objects are primarily used with CCRInterface: CCREntry and CCRResponse.

CCREntry Component
Most CCRInterface functions will involve the addition, subtraction, or manipulation of CCREntry
objects. These basically contain a list of std::string objects that will allow the CCRProcess to find
entries or to properly place the entries with the LSD. It is important to use std::string objects as this
will provide for easy translation between Java and C++. CCREntry also provides encryption &
decryption capabilities

There are three important fields that help CCR find a CCREntry object within the DOM tree.

 • rootElement–This field describes either the name of the MC, or it is resources. It has getter/setter
methods.

 • subElement–This field describes the child element of the rootElement. If the root is an MC it could
be Libraries, etc. If it was Resources then it could be Custom1, etc.

 • type–This field is one of the allowable child types for Resources.

CCRResponse Component
This contains the response information for many of the CCRInterface retrieval function calls. It has a
Java corollary.

It contains a success value and a vector full of CCREntry objects that were retrieved.
13-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About CCR System Flow
About CCR System Flow
This topic provides an overview of the major functions of CCR:

 • Adding an LSD Entry (Installation)

 • Removing an LSD Entry (Uninstall)

 • Modifying an LSD Entry (Patching/Upgrading)

 • Retrieving an LSD Entry

Adding an LSD Entry (Installation)
The requesting process determines whether or not the CCRProcess has been started.

It creates an CCREntry with the following fields:

 • Rootcomponent: The tree within the LSD where the new entry should reside.

 • Subdirectory: The subdirectory where the entry will reside within the rootcomponent.

 • Resourcetype: The type of resource that is being stored.

 • Resourcedata: An actual string representation of the resource.

The CCREntry is passed to the CCRInterace method that handles the addition of entries.

The existing references are searched to determine whether the entry already exists. If it does, it is added,
and the resource reference count is incremented. If it does not exist, it is added, and the resource is also
added with the new reference and reference count of 1.

Removing an LSD Entry (Uninstall)
The requesting process determines whether or not the CCRProcess has been started.

It creates an CCREntry with the following fields:

 • Rootcomponent: The tree within the LSD where the entry resides.

 • Subdirectory: The subdirectory where the entry resides within the rootcomponent.

 • resourcetype: The type of resource that is being removed.

The CCREntry is passed to the CCRInterace method that handles the removal of entries. If the resource
is referenced by only one rootcomponent, then it is completely removed. Otherwise the resource’s
reference count is decremented by one and the actual reference of the component below the resource is
removed.

Modifying an LSD Entry (Patching/Upgrading)
The requesting process determines whether or not the CCRProcess has been started. The requesting
process then locates the entry to be updated. It either creates or is given the entry information.

The entry is updated. First the current entry is removed. If the old entry was the last reference to the
resource, that resource is removed.
13-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About CCR Data Structures
The existing references are searched to determine whether the entry already exists. If it does, it is added,
and the resource reference count is incremented. If it does not exist, it is added, and the resource is also
added with the new reference and reference count of 1.

Retrieving an LSD Entry
Pertinent information in the retrieval of the entry is entered into an CCREntry.

The retrieval request is submitted. If the information in the entry correlates to more than one entry in the
repository, several entries will be returned in a std::list object. Otherwise the std::list object will
only contain one entry. If no entry is found, the std::list object will be empty.

About CCR Data Structures
This topic describes the data structures for the following:

 • Local System Data (LSD) Data Structure

 • CCREntry Data Structure

 • CCRResponse Data Structure

Local System Data (LSD) Data Structure
The LSD is an XML document that will contain all of the relevent registration information. There will
be a root element which will contain:

 • Core registration information

 • MDC registration information

 • Resources element

All of the leafs of the Core and MDCs will refer to elements within the resources subtree. These include
location data, Apache configuration data, library data, initialization data, Java libraries, logging
information, notification information, and any custom data that an MDC might need. The resources
subtree will maintain the data, location, reference count, and the specific reference of each resource.

Whenever a new resource is to be added to the Core or an MDC, the resource subtree should be checked
to see if there is a duplicate resource already available. If the resource is already available, the reference
in the Core or MDC branch should point to the existing resource, the reference count of the resource
should be incremented and the MDC that is referencing the resource should be added as a child of the
resource. Otherwise, a new resource is added and the MDC or Core will point to that.

- <CCRRoot>
- <Resources>
- <Library1>

 <Name>ite-nosd.dll</Name>
 <Location>c:\ismg\core\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <Core />
 </References>

 </Library1>
- <Library2>

 <Name>rulesd.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
13-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About CCR Data Structures
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library2>
- <Library3>

 <Name>configured.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library3>
- <Library4>

 <Name>populated.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library4>
- <Library5>

 <Name>sosd.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library5>
- <Library6>

 <Name>statusd.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library6>
- <Library7>

 <Name>pixd.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library7>
- <Library8>

 <Name>translationd.dll</Name>
 <Location>c:\ismg\PIX\libs</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <PIX />
 </References>

 </Library8>
- <Custom1>

 <Name>CustomResourceOne</Name>
 <Location>d:\ismg\core</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <Core />
 </References>

 </Custom1>
- <Custom1>

 <Name>CustomResourceTwo</Name>
 <Location>d:\ismg\core</Location>
13-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
About CCR Data Structures
 <ReferenceCount>1</ReferenceCount>
- <References>
 <Core />
 </References>

 </Custom1>
- <Custom2>

 <Name>CustomResourceThree</Name>
 <Location>d:\ismg\core</Location>
 <ReferenceCount>1</ReferenceCount>
- <References>
 <Core />
 </References>

 </Custom2>
 </Resources>
- <Core>

 <Location>d:\ismg\core</Location>
 <Configurations />
 <Libraries />
- <ExtensionLibraries>
 <Library1 />
 </ExtensionLibraries>
 <InitializationInfo />

- <Custom>
 <Custom1 />
 <Custom1 />
 <Custom2 />
 </Custom>

 <Java />
 <Notifications />
- <Logging>

 <Location>d:\ismg\core\log\core.log</Location>
 <axiom priority="DEBUG" />
 <eta priority="DEBUG" />
 <coreagent priority="DEBUG" />

 </Logging>
 </Core>
- <PIX>

 <Location>d:\ismg\PIX</Location>
 <Configurations />
 <Libraries />
- <ExtensionLibraries>
 <Library2 />
 <Library3 />
 <Library4 />
 <Library5 />
 <Library6 />
 <Library7 />
 <Library8 />
 </ExtensionLibraries>
 <InitializationInfo />
 <Custom />
 <Java />
 <Notifications />
 <Logging />

 </PIX>
</CCRRoot>
13-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
CCREntry Data Structure
CCR::CCREntry are strings that contain the information to specify an entry as well as string-based
custom key value pairs.

std::string rootelement;
std::string subelement;
std::string resourcetype;
std::string resourcedata;
std::string resourcename;
std::string resourcelocation;

CCRResponse Data Structure
CCR::CCRResponse is a simple data structure that the CCRInterface will return that describes the result
of a function execution.

int responsecode;
std::string description;
std:list<CCREntry*> returnedValues;

static final int SUCCESS = 0;
static final int FAILURE = 1;
static final int EXISTS = 2;

Using the CCR C++ API
This topic describes the functions for these components:

 • CCRInterface Functions

 • CCREntry Functions

 • CCRResponse Functions

For the corresponding Java functions, see the “Using the CCR Java Interface” section on page 13-51.

CCRInterface Functions
The functions and fields of the CCRInterface component are:

Cn::SharedPtr<CCRProcess> theProcess

The process to which the interface will talk.

CCRInterface::CCRInterface()

Creates an interface. The CCRProcess:: StartProcess() function will be called in order to retrieve the
process.

CCRInterface::CCRInterface(std::string fileName)

Creates an interface. The CCRProcess::StartProcess(fileName) function will be called in order to
retrieve the process.
13-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
CCRInterface::CCRInterface(Cn::SharedPtr<CCRProcess> theProcess)

Creates an interface with an already existing process. As the interface should be the only one connecting
to the process, this constructor might not be necessary, desired, or needed.

CCRResponse CCRInterface::addEntry(CCREntry* theEntry)

Adds a new entry to the registration repository. If the entry exists, its reference count gets incremented.
It takes the following parameters:

CCRResponse CCRInterface::removeEntry(CCREntry* theEntry)

Removes an entry from the repository. If it is the last reference to that entry, it is removed. Otherwise,
the reference count is decremented. It takes the following parameters:

CCRResponse CCRInterface::updateEntry(CCREntry* theEntry, CCREntry* newEntry)

Updates an entry in the repository. It takes the following parameters:

CCRResponse CCRInterface::retrieveEntry(CCREntry* theEntry)

Retrieves the complete info for an entry. It takes the following parameters:

CCRResponse CCRInterface::retrieveEntriesOfType(CCREntry* theEntry)

Retrieves all entries of the specific type. If there is no rootelement value, it should return the entries from
the resources directory. It takes the following parameters:

Parameter Name Type Purpose

theEntry CCREntry* The new entry to be added.

Return CCRResponse The response to the addEntry request.

Parameter Name Type Purpose

theEntry CCREntry* The entry to be removed.

Return CCRResponse The response to the removeEntry request.

Parameter Name Type Purpose

theEntry CCREntry* The entry to be updated.

newEntry CCREntry* The new entry information. Exisiting references
should be checked and reference counts should be
decremented/ incremented accordingly.

Return CCRResponse The response to the updateEntry request.

Parameter Name Type Purpose

theEntry CCREntry* The entry to retrieve.

Return CCRResponse The response to the retrieveEntry request.
13-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
CCRResponse CCRInterface::applyTomcatConfiguration(CCREntry* theEntry)

Will apply the tomcatconfig entry to the appropriate Tomcat config file. It takes the following
parameters:

CCRResponse CCRInterface::removeTomcatConfiguration(CCREntry* theEntry)

Will remove the tomcatconfig entry from the appropriate Tomcat config file. It takes the following
parameters:

boolean CCRInterface::entryExists(CCREntry* theEntry)

Determines whether or not an entry already exists in the repository. It takes the following parameters:

int CCRInterface::getEntryReferenceCount(CCREntry* theEntry)

Determines the number of reference counts of a particular entry. It takes the following parameters:

CCRResponse* CCRInterface::addNotification(std::string mdc, std::string location,

std::string protocol)

Adds a notifcation entry to an MDC in the CCR. It takes the following parameters:

Parameter Name Type Purpose

theEntry CCREntry* The entry type to return.

Return CCRResponse The response to the retrieveEntriesOfType request.

Parameter Name Type Purpose

theEntry CCREntry* The entry that describes the proper tomcatconfig.

Return CCRResponse The response to the applyTomcatConfiguration
request.

Parameter Name Type Purpose

theEntry CCREntry* The entry that describes the proper tomcatconfig.

Return CCRResponse The response to the removeTomcatConfiguration request.

Parameter Name Type Purpose

theEntry CCREntry* The entry to examine.

Return boolean True if it exists. Otherwise, false.

Parameter Name Type Purpose

theEntry CCREntry* The entry to examine.

Return int The number of references of the entry.
13-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
CCRResponse* CCRInterface::addMDC(CCREntry* theEntry)

Adds a new MDC to the CCR. It takes the following parameters:

CCRResponse* CCRInterface::setLoggingLocation(std::string mdc, std::string location)

Sets the location and file name for logging messages within an MDC. It takes the following parameters:

CCRResponse* CCRInterface::addLoggingCategory(std::string mdc, std::string name,

std::string priority)

Adds a new category for logging within an MDC. It takes the following parameters:

CCRResponse* CCRInterface::updateLoggingCategory(std::string mdc, std::string name,

std::string priority)

Updates a category’s priority within an MDC. It takes the following parameters:

Parameter Name Type Purpose

mdc std::string The MDC that will have the new notification.

location std::string The notification source.

protocol std::string The protocol that the notification will use.

Return CCRResponse The response to the addEntry request.

Parameter Name Type Purpose

theEntry CCREntry* The new MDC to be added.

Return CCRResponse The response to the addMDC request.

Parameter Name Type Purpose

mdc std::string The MDC that will have the new logging location.

location std::string The logging source. Should include the file name and full
path.

Return CCRResponse The response to the setLoggingLocation request.

Parameter Name Type Purpose

mdc std::string The MDC that will have the new logging category.

name std::string The name of the new category.

priority std::string The priority that the new category will use.

Return CCRResponse The response to the addLoggingCategory request.

Parameter Name Type Purpose

mdc std::string The MDC that will have the updated logging category.

name std::string The name of the category.
13-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
std::string CCRInterface::getClassPath(std::string MDCName)

Returns a ";" separated classpath for an MDC. It takes the following parameters:

std::string CCRInterface::getLibraryPath(std::string MDCName)

Returns a ";" separated path for an MDC’s libraries. It takes the following parameters:

std::string CCRInterface::getExtensionLibraryNames()

Returns a ";" separated list of all of the extension libraries, used primarily for loading purposes. It takes
the following parameter:

std::string CCRInterface::getMDCNames()

Returns a ";" separated list of the MDC names within the CCR. It takes the following parameter:

std::string CCRInterface::getMDCLoggingCategories(std::string mdc)

Returns a ";" separated list of all logging categories of an MDC. It takes the following parameters:

std::string CCRInterface::getLoggingLocation(std::string mdc)

Returns the logging location for an MDC. It takes the following parameters:

priority std::string The priority to which the category will be updated.

Return CCRResponse The response to the updateLoggingCategory request.

Parameter Name Type Purpose

Parameter Name Type Purpose

MDCName std::string The MDC that will have its classpath returned.

Return std::string A ";" separated list of Java libraries and directories.

Parameter Name Type Purpose

MDCName std::string The MDC that will have its library path returned.

Return std::string A ";" separated list of libraries.

Parameter Name Type Purpose

Return std::string A ";" separated list of libraries.

Parameter Name Type Purpose

Return std::string A ";" separated list of MDC names.

Parameter Name Type Purpose

mdc std::string The MDC that will have its logging categories returned.

Return std::string A ";" separated list of of logging categories for an MDC.
13-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
void CCRInterface::writeTree()

Writes and saves the CCR.

CCREntry Functions
The functions and fields of CCREntry are:

private std::string rootElement

Describes the root element that contains the entry.

private std::string subElement

Describes the sub element that contains the entry.

private std::string resourceType

Describes the type of the resource.

private std::string resourceData

Describes the data that the resource might contain.

private std::string resourceName

Describes the name of the resource.

private std::string resourceLocation

Describes the location of the resource.

private CustomTagTable customTags

A hashtable that describes any custom keys and values of the resource.

private PasswordTable customPwds

A hashtable that describes the passwords for any encrypted custom keys.

6. private std::string m_dataEncryptPwd

The password for an encrypted data value.

7. private std::string m_locationEncryptPwd

The password for an encrypted location value.

8. private std::string m_nameEncryptPwd

The password for an encrypted name value.

9. CCREntry::CCREntry()

Default constructor that sets all of the values of the entry to “”.

Parameter Name Type Purpose

mdc std::string The MDC that will have its logging location returned.

Return std::string A MDC’s logging location.
13-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
10. CCREntry::CCREntry(std::string stringForm)

Constructor that creates a CCREntry from one that was created to a std::string using the toString
method.

11. CCREntry::CCREntry(std::string rootelement, std::string subelement, std::string

resourcetype, std::string resourcedata)

Constructor that sets all of the values of the entry to to the argument’s values.

12. std::string CCREntry::getRootElement()

Getter function for the root element value.

13. std::string CCREntry::getSubElement()

Getter function for the sub element value.

14. std::string CCREntry::getResourceType()

Getter function for the resource type value.

15. std::string CCREntry::getResourceData()

Getter function for the resource data value.

Parameter Name Type Purpose

rootelement std::string The new value of the root element.

subelement std::string The new value of the sub element.

resourcetype std::string The new value of the resource type.

resourcedata std::string The new value of the resource data.

Parameter Name Type Purpose

Return std::string The root element value.

Parameter Name Type Purpose

Return std::string Returns the sub element value.

Parameter Name Type Purpose

Return std::string Returns the resource type value.

Parameter Name Type Purpose

Return std::string The resource data value.
13-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
16. std::string CCREntry::getResourceLocation()

Getter function for the resource location value.

17. std::string CCREntry::getResourceName()

Getter function for the resource name value.

18. CustomTagTable CCREntry::getTagTable()

Getter function for the resource custom tags and values (in a hashtable).

19. bool CCREntry::isDataEncrypted()

Determines whether the data value has been encrypted.

20. bool CCREntry::isLocationEncrypted()

Determines whether the location value has been encrypted.

21. bool CCREntry::isNameEncrypted()

Determines whether the name value has been encrypted.

Parameter Name Type Purpose

Return std::string The resource location value.

Parameter Name Type Purpose

Return std::string The resource name value.

Parameter Name Type Purpose

Return CustomTagTable The resource hashtable of custom tags and values.

Parameter Name Type Purpose

Return bool Indicates whether or not the data value is an encrypted
value.

Parameter Name Type Purpose

Return bool Indicates whether or not the location value is an encrypted
value.

Parameter Name Type Purpose

Return bool Indicates whether or not the name value is an encrypted
value.
13-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
22. bool CCREntry:: isCustomKeyValueEncrypted (std::string key)

Determines whether the value reference by the key has been encrypted.

23. CCREntry::setRootElement(std::string value)

Setter function for the root element value.

24. CCREntry::setSubElement (std::string value)

Setter function for the sub element value.

25. CCREntry::setResourceType (std::string value)

Setter function for the resource type value.

26. CCREntry::setResourceData(std::string value)

Setter function for the resource data value.

27. CCREntry::setResourceLocation(std::string value)

Setter function for the resource location value.

Parameter Name Type Purpose

key std::string The key of the value to be checked.

Return bool Indicates whether or not the value reference by the key
has been encrypted

Parameter Name Type Purpose

value std::string The new root element value.

Parameter Name Type Purpose

value std::string The new sub element value.

Parameter Name Type Purpose

value std::string The new resource type value.

Parameter Name Type Purpose

value std::string The new resource data value.

Parameter Name Type Purpose

value std::string The new resource location value.
13-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
28. CCREntry::setResourceName(std::string value)

Setter function for the resource name value.

29. CCREntry::setDataEncrypt(std::string value)

Setter function for the resource data value encryption password.

30. CCREntry::setLocationEncrypt(std::string value)

Setter function for the resource location value encryption password.

31. CCREntry::setNameEncrypt(std::string value)

Setter function for the resource name value encryption password.

32. int CCREntry:: getCustomTagCount()

Returns the number of custom tags in the resource.

33. std::string CCREntry:: getCustomTagKey(int index)

Returns the custom key at the index.

Parameter Name Type Purpose

value std::string The new resource name value.

Parameter Name Type Purpose

value std::string The new resource data value encryption password.

Parameter Name Type Purpose

value std::string The new resource name value encryption password.

Parameter Name Type Purpose

value std::string The new resource name value encryption password.

Parameter Name Type Purpose

return int The number of custom tags.

Parameter Name Type Purpose

index int The location of the key.

return std::string The key value.
13-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
34. std::string CCREntry:: getCustomTagEntry(int index)

Returns the custom value at the index.

35. CCREntry::addCustomTag(std::string key, std::string value, std::string password = “”)

Setter for the resource data value. If the password value is not “”, then that value is encrypted.

36. std::string CCREntry::toString ()

Converts an entry to a string representation. Used for the JNI interface.

37. int CCREntry::encryptName ()

Encrypts the name value.

38. int CCREntry::encryptData()

Encrypts the data value.

39. int CCREntry::encryptLocation()

Encrypts the location value.

Parameter Name Type Purpose

index int The location of the key.

return std::string The value.

Parameter Name Type Purpose

key std::string The new resource custom key value.

value std::string The new resource custom value.

Parameter Name Type Purpose

return std::string A string representation.

Parameter Name Type Purpose

return int The length of the string that was encrypted.

Parameter Name Type Purpose

return int The length of the string that was encrypted.

Parameter Name Type Purpose

return int The length of the string that was encrypted..
13-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
40. int CCREntry::encryptCustomKeyValue(std::string key)

Encrypts the key’s value.

41. std::string encrypt(std::string toEncrypt, std::string password)

Converts a string to an encrypted value based on the password.

42. std::string CCREntry::decryptData(std::string toDecrypt, int size)

Decrypts a string based on the data password key.

43. std::string CCREntry::decryptName(std::string toDecrypt, int size)

Decrypts a string based on the name password key.

44. std::string CCREntry::decryptLocation(std::string toDecrypt, int size)

Decrypts a string based on the location password key.

Parameter Name Type Purpose

key std::string The key whose value will be encrypted.

return int The length of the string that was encrypted..

Parameter Name Type Purpose

toEncrypt std::string The string to be encrypted.

password std::string The password to the will be the encryption key.

return std::string A string representation.

Parameter Name Type Purpose

toDecrypt std::string The string to decrypt.

size int The intended size of the decrypted string.

return std::string A decrypted string.

Parameter Name Type Purpose

toDecrypt std::string The string to decrypt.

size int The intended size of the decrypted string.

return std::string A decrypted string.

Parameter Name Type Purpose

toDecrypt std::string The string to decrypt.

size int The intended size of the decrypted string.

return std::string A decrypted string.
13-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
45. std::string CCREntry::decryptKeyValue(std::string toDecrypt, std::string key, int

size)

Decrypts a string based on the key’s password key.

CCRResponse Functions
The functions and fields of CCRResponse are:

private std::string description

Provide the response’s description.

private id responseID

Describes the ID of the reponse. Possible values: SUCCESS, FAILURE, or EXISTS.

std:vector<CCREntry*> returnedValues;

Describes the entry or entries that returned with the response.

static final int SUCCESS = 0;

The ID of a successful response.

static final int FAILURE = 1;

The ID of an unsuccessful response.

static final int EXISTS = 2;

The ID of a response where the entry exists.

CCRResponse::CCRResponse()

Default constructor. The response ID and description are not set; use the setter functions.

CCRResponse::CCRResponse(int type, std::string description)

Constructor that sets the ID and description.

Parameter Name Type Purpose

toDecrypt std::string The string to decrypt.

key std::string The key whose password key will be used.

size int The intended size of the decrypted string.

return std::string A decrypted string.

Parameter Name Type Purpose

type int The response’s type. Possible values: SUCCESS, FAILURE,
or EXISTS.

description std::string The response’s description. Explains the type.
13-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
CCRResponse::CCRResponse(std::string stringForm)

Constructor that creates a response object from one that was converted into a string.

std::string CCRResponse::getDescription()

The getter function for the description value.

46. int CCRResponse::getResponseID()

The getter function for the response’s type value.

47. std::vector<CCREntry*> CCRResponse::getReturnedValues()

The getter function for the response’s returned entries.

48. CCRResponse::setDescription(std::string description)

The setter function for the description value.

49. CCRResponse::setResponseID(int type)

The setter function for the type value.

50. CCRResponse::setReturnedValues(std::vector<CCREntry*> values)

The setter function for the type value.

Parameter Name Type Purpose

stringForm std::string The representation of a CCRResponse object in a string form.

Parameter Name Type Purpose

Return std::string Returns the description value.

Parameter Name Type Purpose

Return int Returns the type value.

Parameter Name Type Purpose

Return std::vector<CCREntry*> Returns the entries that are part of the response.

Parameter Name Type Purpose

description std::string The new value of the description.

Parameter Name Type Purpose

type int The new value of the type.
13-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR C++ API
51. CCRResponse::addReturnedValue(CCREntry* value)

The setter function for the type value.

52. boolean CCRResponse::success()

A convenience function that will tell the caller whether the response is a success response or not.

53. boolean CCRResponse::failure()

A convenience function that will tell the caller whether the response is a failure response or not.

54. boolean CCRResponse::exists()

A convience function that will tell the caller whether the response is a exists response or not.

55. std::string CCRResponse::toString()

Converts a CCRResponse object to a string form. Can be reconstituted using the constructor that takes
a string as an argument.

Parameter Name Type Purpose

values std::vector<CCREntry

*>

The new value of the entries that belong with the
response.

Parameter Name Type Purpose

value CCREntry* A new CCREntry to be added with the response.

Parameter Name Type Purpose

Return boolean True if the response type is SUCCESS. Otherwise,
false.

Parameter Name Type Purpose

Return boolean True if the response type is FAILURE. Otherwise, false.

Parameter Name Type Purpose

Return boolean True if the response type is EXISTS. Otherwise, false.

Parameter Name Type Purpose

Return std::string The string form of the CCRResponse object.
13-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR API: Example
Using the CCR API: Example
The following procedure shows how you can use the CCR API to modify and access the CCR.

Step 1 Initialize the CCR.

To access and modify the CCR, you must create a CCRInterface object. When this object is constructed,
either an existing CCR will be loaded, or a new one will be created.

CCRInterface* theCCRInterface = new CCRInterface();

Step 2 Create an MDC.

In order to create a new MDC, first a CCREntry object should be created where the root element is the
name of the MDC, and the location value is where the MDC is located. Then the addMDC method is
called on the CCRInterface object.

CCREntry* newMDCEntry = new CCREntry();
newMDCEntry->setRootElement(“NewMDCName”);
newMDCEntry->setResourceLocation(“d:\mdclocation”);
theCCRInterface->addMDC(newMDCEntry);

Step 3 Create entries for extension libraries.

When the MDC is created, extension libraries pertaining to the MDC must be added. They are located
in the MDC element and under the ExtensionLibraries element. The name of each entry will be the name
of the library, and the location of the entry is where the library is located. Also, the entry type will be set
to Library.

CCREntry* newExtensionLibrary = new CCREntry();
newExtensionLibrary->setRootElement(“NewMDCName”);
newExtensionLibrary->setSubElement(“ExtensionLibraries”);
newExtensionLibrary->setResourceName(“mylibrary.dll”);
newExtensionLibrary->setResourceType(“Library”);
theCCRInterface->addEntry(newExtensionLibrary);

Step 4 Add a new logging location for the MDC.

You must specify the MDC that will be changed as well as the complete path of the file in which you
want to track the logs.

theCCRInterface->setLoggingLocation(“TheMDC”, “d:\mymdc\logs\mymdc.log”);

Step 5 Add a new logging entry for the MDC.

You must add the MDC name, the category name, and the priority level. Priority levels can be DEBUG,
INFO, WARN, ERROR, or FATAL.

theCCRInterface->addLoggingCategory(“TheMDC”, “NewLoggingCategory”, “DEBUG”);
13-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCRAccess Client
Using the CCRAccess Client
CCRAccess is a command-line client that allows easy initialization and manipulation of the CCR. This
is an executable and should be the primary way to enter information into CCR. To use CCRAccess, enter
the following on the command line:

CCRAccess [-options] [-commands]

Where:

[-options] is one or more of the options or wildcards shown in Table 13-1.

[-commands] is one of the commands shown in Table 13-2.

Note that this client is also available as a DLL (see “Using the CCRAccess DLL” section on page 13-50).

Table 13-1 CCRAccess Options and Wildcards

Option/Wildcard Description
? -help Print this help message.

-new Create a new Registration Daemon (CCR).

-location <file> Specify an existing CCR saved in a file.

-script <file> Load commands for the CCR from a script file.

/e:<encryptionkey Encrypts data, name, location, or custom tag value of resource. If the key is in
a file, encryptionkey should be file:<filename>. Otherwise, enter the string.
This should be directly before the data, location, or name that you want to
encrypt or before the tag of the custom value that you want to encrypt.

/d:<encryptionkey Decrypts data, name, location, or custom tag value of resource. If the key is in
a file, encryptionkey should be file:<filename>. Otherwise, enter the string.
This should be directly before the data, location, or name that you want to
decrypt or before the tag of the custom value that you want to decrypt.

Table 13-2 CCRAccess Commands

Command Description

-addResource Adds a resource. This command must be followed by <RootElement>
<SubElement> <ResourceType> <ResourceData> <ResourceLocation>

<ResourceName>. Custom values and keys can be added at the end. They must
be added in pairs. Empty strings should be entered as "".

-addNotification Adds a new notification entry to the CCR. This command must be followed
by <MDCName> <Location> <Protocol>. No empty strings are allowed.

-addLog Adds a new logging entry to the CCR. This command must be followed by
<MDCName> <Name> <Priority>. No empty strings are allowed.

-addLogLocation Adds the log location for an MDC. This command must be followed by
<MDCName> <Location>. No empty strings are allowed.

-updateLog Updates a new logging entry to the CCR. This command must be followed by
<MDCName> <Name> <Priority>. No empty strings are allowed.

-addMDC Adds a new MDC to the CCR. This command must be followed by <MDCName>
<MDCLocation>. No empty strings are allowed.
13-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCRAccess Client
-removeMDC Removes an MDC from the CCR. This command must be followed by
<MDCName>. No empty strings are allowed.

-removeResource Removes a resource. This command must be followed by <RootElement>
<SubElement> <ResourceType> <ResourceData> <ResourceLocation>

<ResourceName>. Custom values and keys can be added at the end. They must
be added in pairs. Empty strings should be entered as "".

-getClasspath Gets the classpath of the MDC. This command must be followed by
<MDCName>. No empty strings are allowed.

-getLibraryPath Gets the library path of the MDC. This command must be followed by
<MDCName>. No empty strings are allowed.

-getLogCategories Gets the logging categories of the MDC. This command must be followed by
<MDCName>. No empty strings are allowed.

-getLogLocation Gets the logging file location of the MDC. This command must be followed
by <MDCName>. No empty strings are allowed.

-getELNames Gets the extension libraries in CCR.

-getMDCNames Gets the name of the MDC in CCR.

-getResource Retrieves a resource. This command must be followed by <RootElement>
<SubElement> ResourceType> <ResourceData> <ResourceLocation>

<ResourceName>. Custom values and keys can be added at the end. They must
be added in pairs. Empty strings should be entered as "".

-getData Retrieves a resource's data. This command must be followed by
<RootElement> <SubElement> <ResourceType> <ResourceData>

<ResourceLocation> <ResourceName>.Custom values and keys can be added
at the end. They must be added in pairs. Empty strings should be entered as "".

-getLocation Retrieves a resource's location. This command must be followed by
<RootElement> <SubElement> <ResourceType> <ResourceData>

<ResourceLocation> <ResourceName>. Custom values and keys can be
added at the end. They must be added in pairs. Empty strings should be
entered as "".

-getName Retrieves a resource's name. This command must be followed by
<RootElement> <SubElement> <ResourceType> <ResourceData>

<ResourceLocation> <ResourceName>. Custom values and keys can be
added at the end. They must be added in pairs. Empty strings should be
entered as "".

-getCustom Retrieves a resource's custom tags and values. This command must be
followed by <RootElement> <SubElement> <ResourceType>
<ResourceData> <ResourceLocation> <ResourceName>. Custom values and
keys can be added at the end. They must be added in pairs. Empty strings
should be entered as "".

-getCustomTagValue Retrieves a resource's tag's value. This command must be followed by
<TagName> <RootElement> <SubElement> <ResourceType>

<ResourceData> <ResourceLocation> <ResourceName>. Custom values and
keys can be added at the end. They must be added in pairs. Empty strings
should be entered as "".

Table 13-2 CCRAccess Commands (continued)

Command Description
13-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Scripting CCRAccess
Scripting CCRAccess
CCRAccess can load and run scripts, allowing you to perform “bulk” manipulation of the CCR. Scripts
are simple, separated lines, with each line a CCRAccess command or option.

For example:

-addMDC NewMDCName d:\mymdclocation;
-addResource NewMDCName ExtensionLibraries Library EMPTYSTRING d:\mymdclocation\libs
mylibrary.dll;
-addLogLocation TheMDC d:\mymdc\logs\mymdc.log;
-addLog TheMDC NewLoggingCategory DEBUG

This information can be stored in a file called mdcsetup.script. The following procedure is an example
illustrating how you can use the CCRAccess command line interface and its scripting capabilities.

Step 1 Use CCRAccess commands. For example:

CCRAccess -addMDC NewMDCName d:\mymdclocation;
CCRAccess -addResource NewMDCName ExtensionLibraries Library EMPTYSTRING
d:\mymdclocation\libs mylibrary.dll;
CCRAccess -addLogLocation TheMDC d:\mymdc\logs\mymdc.log;
CCRAccess -addLog TheMDC NewLoggingCategory DEBUG

Step 2 Load a script. For example:

CCRAccess –script mdcsetup.script

-getResourcesOfType Retrieves a group of resources. This command must be followed by
<RootElement> <SubElement> <ResourceType> <ResourceData>

<ResourceLocation> <ResourceName>. Custom values and keys can be
added at the end. They must be added in pairs. Empty strings should be
entered as "".

-entryExists Checks if a resource exists. This command must be followed by
<RootElement> <SubElement> <ResourceType> <ResourceData>

<ResourceLocation> <ResourceName>. Custom values and keys can be
added at the end. They must be added in pairs. Empty strings should be
entered as "".

-getEntryRefCount Gets the number of MDCs that reference the resource. This command must
be followed by <RootElement> <SubElement> <ResourceType>
<ResourceData> <ResourceLocation> <ResourceName>. Custom values and
keys can be added at the end. They must be added in pairs. Empty strings
should be entered as "".

Table 13-2 CCRAccess Commands (continued)

Command Description
13-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCRAccess DLL
Using the CCRAccess DLL
CCR includes ccraccess.dll, a dynamic link library that provides all of the same functionality as the
ccraccess.exe client described in the “Using the CCRAccess Client” section on page 13-47. The DLL
version is significantly quicker to call (by approximately four seconds per call) than the EXE version.
CCRAccess is often called during product installations, so developers who need to trim install times will
find it useful to replace existing ccraccess.exe calls with ccraccess.dll calls.

The CCRAccess DLL interface is defined with the following prototype:

int EXPORTED ccraccess(char* commandLineInputString, char* resultFileName);

Where:

 • commandLineInputString is one or more of the command-line arguments available for
ccraccess.exe, which are listed in Table 13-2 on page 13-47. Multiple commands can be
distinguished using the '|' variable separator

 • resultFileName is the name of the file where the result of execution is to be dumped.

Calls to ccraccess.dll always return a zero on success and non-zero on failure.

Follow the steps below to call ccraccess.dll from a Windows-platform install (rul) file. Example 13-1
shows sample code that follows all of these steps.

Step 1 Prepare a commandLineInputString parameter by setting it to a string containing the previously used
ccraccess.exe's command line parameters. Concatenate each parameter with '|' in place of the space
separator. For example: "-addResource|Core|Custom|Custom|…. "

Step 2 Prepare a resultFileName parameter by setting it to an empty string (if you are writing into CCR using
-addResource) or to a valid file name (if you will be reading from CCR using -getResource).

Step 3 Load the library by calling the install library's utility function loadCcrDll(). Check for a zero return
value to confirm that CCRlibrary is loaded properly.

Step 4 Make the call : return_value = ccraccess.ccraccess(commandLineInputSting ,
resultFileName);, where return_value holds the status of the call.

Step 5 If you are reading from CCR using -getResource, parse the output file to retrieve the results.

Step 6 Unload the library using the install library's utility function UnloadCcrDll().

Example 13-1 Using ccraccess.dll

function MODULENAME_postinstall()
{

#define CMD_CCR_CUSTOM_PREFIX_DLL "-addResource|Core|Custom|Custom"
#define CMD_CCR_REG_HTTP_PORT_DLL
CMD_CCR_CUSTOM_PREFIX_DLL+"|"+G_Port+"|"+"EMPTYSTRING|HttpPort"
STRING resultFileName;

//loading CCRDLL and reporting in case of error

if (loadCcrDll() != 0) then
 szTit="CCRaccess Dll's Not Found";
 SetDialogTitle (DLG_MSG_INFORMATION,szTit);
13-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Using the CCR Java Interface
 MessageBox("ccraccess Dll's are not found. Installation will
abort",SEVERE);
 SureDeleteFile(WINDISK+"\\CMFLOCK.TXT");
 abort;
 endif;

// Calling CCRDLL API to set
nCcrVal=ccraccess.ccraccess(CMD_CCR_REG_HTTP_PORT_DLL, resultFileName);

// More lines using the ccraccess.dll.

UnloadCcrDll();

}

Using the CCR Java Interface
The Java interface for CCR is virtually identical to the functions and fields described in the “Using the
CCR C++ API” section on page 13-31. However, it does rely heavily on the toString() functionality of
CCRResponse and CCREntry. Java users should use com.cisco.core.ccr.CCRInterface when
manipulating CCR.

com.cisco.core.ccr.CCREntry

This class is identical to the CCREntry C++ class, with obvious language differences. The changes are
as follows:

 • std::string changes to java.lang.String

 • CustomTagTable and PasswordTable change to java.util.Hashtable

 • std:vector changes to java.util.Vector

Encryption is slightly different as the algorithms for this are on the C++ side. CCRInterface provides
methods to handle this.

com.cisco.core.ccr.CCRInterface

This class is identical to the CCRInterface C++ class with obvious language differences.

The changes are as follows:

 • std::string changes to java.lang.String

 • CustomTagTable and PasswordTable change to java.util.Hashtable

 • std:vector changes to java.util.Vector

Access to the CCR via Java should be done through this class.

There are some additional methods to handle decryption of a CCREntry:

 • public CCREntry decryptData(CCREntry entry, int size)

This method will decrypt the data value based on the entry’s data password. You will need to know
the size of the original data value.

 • public CCREntry decryptName(CCREntry entry, int size)

This method will decrypt the name value based on the entry’s name password. You will need to know
the size of the original name value.
13-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
 • public CCREntry decryptLocation(CCREntry entry, int size)

This method will decrypt the location value based on the entry’s location password. You will need
to know the size of the original location value.

 • public CCREntry decryptKeyValue(CCREntry entry, String key, int size)

This method will decrypt the key’s value based on the entry’s key password. You will need to know
the size of the original key value.

com.cisco.core.ccr.CCRResponse

This class is identical to the CCRResponse C++ class, with obvious language differences. The changes
are as follows:

 • std::string changes to java.lang.String

 • CustomTagTable and PasswordTable change to java.util.Hashtable

 • std:vector changes to java.util.Vector

JNICCRInterface

com.cisco.core.ccr.CCRInterface uses this class to bridge the Java/C++ gap via JNI. It is possible to
use this class for the interface, but it is recommended that you use the CCRInterface class in
com.cisco.core.ccr.

Encrypting and Decrypting CCREntry Values
You can encrypt and decrypt CCREntry name, data, location, and custom entry values. You must provide
a key in the form of a file name or string value in order to encrypt or decrypt a value. The following
topics show how to perform encryption and decryption using all of the available access methods:

 • Encrypting Entry Names

 • Decrypting Entry Names

 • Encrypting Entry Data

 • Decrypting Entry Data

 • Encrypting Entry Locations

 • Decrypting Entry Locations

 • Encrypting Custom Entries

 • Decrypting Custom Entries

Encrypting Entry Names
You can encrypt entry names via the C++, Java, or CCRAccess interfaces.

To encrypt an entry name using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setNameEncrypt with the key (password) with which you want to encrypt the name value.

Step 3 Call addEntry via CCRInterface.
13-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
The entry will be added to the CCR with its name value encrypted.

To encrypt an entry name using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setNameEncrypt with the key (password) with which you want to encrypt the name value.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with its name value encrypted.

To encrypt an entry name using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –addResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData
MyResourceLocation /e:mykey MyResourceName <Any custom tag pairs>

The entry will be added to the CCR with its name value encrypted.

Decrypting Entry Names
You can decrypt entry names via the C++, Java, or CCRAccess interfaces.

To decrypt an entry name using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setNameEncrypt with the key (password) with which you want to encrypt the name value. The name
value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted name value if the password was correct.

To decrypt an entry name using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setNameEncrypt with the key (password) with which you want to encrypt the name value. The name
value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted name value if the password was correct.
13-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
To decrypt an entry name using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –getResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData
MyResourceLocation /d:mykey “” <Any custom tag pairs>

The entry retrieved will have the decrypted name value if the password was correct.

Encrypting Entry Data
You can encrypt entry data via the C++, Java, or CCRAccess interfaces.

To encrypt an entry’s data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setDataEncrypt with the key (password) with which you want to encrypt the data value.

Step 3 Call addEntry via the CCRInterface.

The entry will be added to the CCR with its data value encrypted.

To encrypt an entry’s data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setDataEncrypt with the key (password) with which you want to encrypt the data value.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with its data value encrypted.

To encrypt an entry’s data using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –addResource MyMDC MyResourceSubdirectory MyResourceType /e:mykey MyResourceData
MyResourceLocation MyResourceName <Any custom tag pairs>

The entry will be added to the CCR with its data value encrypted.
13-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
Decrypting Entry Data
You can decrypt an entry’s data via the C++, Java, or CCRAccess interfaces.

To decrypt an entry’s data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setDataEncrypt with the key (password) with which you want to encrypt the data value.

The data value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted data value if the password was correct.

To decrypt an entry’s data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setDataEncrypt with the key (password) with which you want to encrypt the data value.

The data value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted data value if the password was correct.

To decrypt an entry’s data using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –getResource MyMDC MyResourceSubdirectory MyResourceType /d:mykey “”
MyResourceLocation MyResourceName <Any custom tag pairs>

The entry retrieved will have the decrypted data value if the password was correct.

Encrypting Entry Locations
You can encrypt an entry’s location data via the C++, Java, or CCRAccess interfaces.

To encrypt an entry’s location data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setLocationEncrypt with the key (password) with which you want to encrypt the location value.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with its location value encrypted.
13-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
To encrypt an entry’s location data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setLocationEncrypt with the key (password) with which you want to encrypt the location value.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with its location value encrypted.

To encrypt an entry’s location data using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –addResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData /e:mykey
MyResourceLocation MyResourceName <Any custom tag pairs>

The entry will be added to the CCR with its location value encrypted.

Decrypting Entry Locations
You can decrypt an entry’s location data via the C++, Java, or CCRAccess interfaces.

To decrypt an entry’s location data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call setLocationEncrypt with the key (password) with which you want to encrypt the location value.

The location value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted location value if the password was correct.

To decrypt an entry’s location data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call setLocationEncrypt with the key (password) with which you want to encrypt the location value.

The location value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry retrieved will have the decrypted location value if the password was correct.
13-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
To decrypt an entry’s location data using CCRAccess:

Step 1 Consider your key to be “mykey”.

Step 2 Call:

CCRAccess –getResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData /d:mykey
“” MyResourceName <Any custom tag pairs>

The entry retrieved will have the decrypted location value if the password was correct.

Encrypting Custom Entries
You can encrypt custom entry data via the C++, Java, or CCRAccess interfaces.

To encrypt custom entry data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call addCustomTag with the key (password) with which you want to encrypt the key value as the third
argument.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with the custom tag value encrypted.

To encrypt custom entry data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call addCustomTag with the key (password) with which you want to encrypt the key value as the third
argument.

Step 3 Call addEntry via CCRInterface.

The entry will be added to the CCR with the custom tag value encrypted.

To encrypt custom entry data using CCRAccess:

Step 1 Consider your key to be “mykey”, the custom tag to be “MyCustomKey”, and the value to be
“MyCustomKeyValue”.

Step 2 Call:

CCRAccess –addResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData
MyResourceLocation MyResourceName /e:mykey MyCustomKey MyCustomKeyValue

The entry will be added to the CCR with its custom tag value encrypted.
13-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 13 Using the Core Client Registry
Encrypting and Decrypting CCREntry Values
Decrypting Custom Entries
You can decrypt custom entry data via the C++, Java, or CCRAccess interfaces.

To decrypt custom entry data using the C++ interface:

Step 1 Create a valid CCREntry.

Step 2 Call addCustomTag with the key (password) with which you want to decrypt the key value as the third
argument.

The custom tag’s value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry will be retrieved from the CCR with the custom tag value decrypted.

To decrypt custom entry data using the Java interface:

Step 1 Create a valid CCREntry.

Step 2 Call addCustomTag with the key (password) with which you want to decrypt the key value as the third
argument.

The custom tag’s value should be “”.

Step 3 Call retrieveEntry via CCRInterface.

The entry will be retrieved from the CCR with the custom tag value decrypted.

To decrypt custom entry data using CCRAccess:

Step 1 Consider your key to be “mykey” and the custom tag to be MyCustomKey MyCustomKeyValue.

Step 2 Call:

CCRAccess –getResource MyMDC MyResourceSubdirectory MyResourceType MyResourceData
MyResourceLocation MyResourceName /d:mykey MyCustomKey
“”

The entry retrieved will have the decrypted key value if the password was correct.
13-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 14

Using the Device Credentials Repository

The Device Credentials Repository (DCR) is a common repository of devices, their attributes and their
credentials. An DCR system consists of one or more DCR Servers that store and distribute device
information, applications using DCR APIs to access this information, and the Device & Credentials
Admin GUI accessible from the CiscoWorks Home Page.

When implemented, DCR provides:

 • Easier, centralized access to device and credentials data.

 • Secure device-data persistence, access and transport.

 • Rationalized and controlled replication of device information, with less user-level reconciliation.

 • Better integration with third-party and Cisco network-management applications.

Note DCR stores device information. It does not communicate with devices directly. The code that interacts
directly with devices and fetches their data for storage in DCR is the responsibility of your application.

The following topics describe how to integrate DCR with your application:

 • Understanding DCR

 • Using DCR

For more information about DCR, see:

 • Device List and Credentials Repository Server Functional Specification, EDCS-283571

 • DCR Deployment Scenarios, Use Cases and Guidelines for Applications, EDCS-283285

 • Device List and Credentials Repository Master/Slave Functional Specification, EDCS-283284

 • Device list and Credentials Repository Import Export Software Functional Specification,
EDCS-285702

Note CiscoWorks users know DCR by the acronym DCA, after the Device & Credentials Admin GUI they use
to update DCR device lists. Some developers also use the DCA acronym to refer to DCR.
14-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Understanding DCR
All network management applications need to store basic attributes of the devices they manage. This
includes device credentials, such as SNMP community strings consisting of a user ID-and-password pair.

Devices and their credentials represent a special data management problem. They must be both:

 • Shared: Multiple copies of device data are wasteful. If there is no single device data store that can
be shared, users of multiple network management applications must waste resources reconciling the
data, either via manual means or via automated tools they must build and maintain.

 • Secure: Independent copies of credentials are insecure by definition, as they must be manually
copied among applications, or transmitted using insecure means. Insecure credentials are dangerous,
as anyone with access to credentials may reconfigure devices in destructive ways.

The DCR solution enables multiple applications to share device lists and credentials using a client-server
mechanism, with secure storage and communications.

The following topics present basic information on DCR and how it works:

 • About DCR Features and Benefits

 • How DCR Works

 • About the DCR Modes

 • About the DCR Components

 • How DCR Masters and Slaves Interact

 • How DCR Secures Device and Credentials Data

 • About DCR Data Storage

 • Integrating DCR with OGS

 • Integrating DCR with ACS

 • About DCR Events

About DCR Features and Benefits
DCR offers the following capabilities:

 • DCR stores device attributes and credentials, permits users to attach custom data to devices, and
permits default grouping of devices.

 • DCR supports proxy device attributes, storage of IPv6 and SNMP v3 device and credential
information, and assigns a unique, internally generated DCR Device ID to every device.

 • DCR supports “unreachable devices” — devices known to be “on the shelf” and not yet deployed,
or “phone home” devices in transit to their location during initial deployment. DCR allows users to
import these devices and retain credentials for them even though some critical information about
them may not be available at first.

 • DCR supports device pre-provisioning. Applications often do not know essential attributes of
pre-provisioned devices, such as their host names or IP addresses. Using the DCR device_identity
attribute, applications can uniquely identify pre-provisioned devices.

 • Clients can add, modify, and delete DCR devices using the DCA GUI. DCR also permits users to
populate the database via import from many sources, and to export device data for use with
third-party products like HP OpenView and Netview.
14-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • DCR uses several attributes to detect and stop the creation of duplicate devices. If a new device has
(or an update causes an existing device to change to) a display_name or fully-qualified DNS name
(i.e., host_name + domain_name) that is the same as an existing device, the operation will fail.

 • DCR data distribution is flexible, scalable, reliable, using a network of Master/Slave servers. All
server-to-server communications take place using CSTM (see Chapter 31, “Using the Common
Services Transport Mechanism”).

 • DCR data is secure. DCR encrypts credential data using a static encryption scheme that must be
hard-coded into the methods used for encryption (considered acceptable by the security team).

 • DCR communications are secure. Access to device data via API calls or the DCA GUI is performed
only by secured channel (HTTPS) and authorized clients. DCR sends events to applications using
ESS (see Chapter 19, “Using Event Services Software”).

 • DCR supports a full range of administrative features, including the DCA GUI, change logs and
reports, and full compatibility with CWCS backup and restore.

How DCR Works
Figure 14-1shows the DCR system flow:

1. DCR provides a database structure to store device lists, the attributes for each device, and device
credentials.

2. DCR provides north-bound APIs to allow remote applications to add, update and manage the data.
It also provides Java APIs for local CiscoWorks network management applications.

3. A DCR Server in Master or Standalone mode (see the “About the DCR Modes” section on
page 14-4) provides the DCA GUI to administer device data. Users can use this GUI to add or import
devices and credentials, modify device credential data, or delete devices. Note that only the Master
and Standalone modes provide access to DCA. CiscoWorks applications using a DCR Server in
Slave mode cannot use DCA.

4. Cisco Works applications residing on the same machine as DCR can access or modify the data using
local Java APIs (most CiscoWorks applications) or north-bound APIs (e.g., C++ CiscoWorks
applications). Third-party network management applications can also access or modify the data
using the secure north-bound APIs.

5. Changes in DCR data (whether the DCR Server is in Master or Slave mode) are broadcast to network
management applications on that server as Event Services Software (ESS) events. Third-party
applications who register with DCR can also receive HTTP- based broadcasts of these events.

6. DCR clients (any Cisco Works application) may choose to listen to these events. Upon receiving
these events, the application can ignore any events that are of no interest to it (e.g, applications may
want to filter out updates about devices they do not support). Upon filtering the data, the application
can get the device details from DCR through APIs.

7. DCRs in Slave mode reside on other CWCS Servers installed on different machines.

8. A DCR in slave mode synchronizes its data with that of its master automatically every 45 seconds
(the default) or whenever there is a change in the master data (the slave must be set to listen for and
receive sync events from the master). During synchronization, the slave fetches all newly updated
data from the Master and updates its local database accordingly.
14-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Figure 14-1 DCR System Flow

About the DCR Modes
Any instance of DCR can run in Master, Slave, or Standalone mode:

 • In Master mode, DCR hosts the authoritative, or master, list of all devices and their credentials. All
other DCRs in the same management domain which are running in Slave mode will normally share
this list. There can be only one DCR running in Master mode in a single management domain. All
Slave DCRs update the Master DCR before updating themselves, and changes to the Master DCR
device data are propagated to Slave DCRs using CWCS CSTM. The Master always contains the
most up-to-date device data in the management domain.

 • In Slave mode, DCR maintains an exact replica of the data managed by the Master DCR for the
management domain. There can be multiple Slave DCRs per management domain. When a client
application updates device data in a Slave DCR, that Slave DCR will first send the update to the
Master DCR, and then update itself from the Master. Since it is possible for a Slave to miss some
updates, Slaves can also initiate synchronization with the Master DCR.

 • In Standalone mode, DCR maintains an independent repository of device list and credential data.
It does not participate in a management domain and its data is not shared with any other DCR. It
does not communicate with or contain registration information about any other Master, Slave, or
Standalone DCR.

CW
NM Apps

CW NM Apps,
3rd Part
NM Apps

 DCR GUI
Add
Modify
Delete
Import
Export

DCR Server

Events

Synchronization

DCR
Local
APIs

DCR
North
Bound
APIs

Other "Slave"
DCR Servers
(on different
machines)

6

7

5

3

8

4

2

1

11
33

14
14-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
When considering DCR modes, remember that:

 • DCR is a shared component, so there is only one DCR Server per CWCS Server. All client
applications installed on that CWCS Server use the local DCR Server running on that machine,
regardless of mode.

 • The DCR Server mode is transparent to applications.

 • DCR is not fault tolerant. It does not ensure that client applications receive update notifications, and
does not validate the repository data. It relies on DCR clients to update repository data.

 • DCR currently supports only one Master per management domain, with multiple Slaves. It does not
support multiple Master DCR Servers in the same domain.

 • All newly-installed DCR Servers start in Standalone mode by default. Users set it to Master or Slave
mode using the DCA GUI or via the DCR CLI (see “Using the DCR Command-Line Interface”
section on page 14-46).

About the DCR Components
An instance of DCR consists of the following components:

 • Repository: Stores and maintains device and credentials data in the CWCS database. It includes all
relevant database server functions, including the APIs providing access to the data, duplicate-device
detection, and maintenance of time stamps.

The Repository also includes DCR-specific functions. These include generating the unique DCR
Device IDs used to identify each device on both Masters and Slaves, information about the DCR
Server’s current mode, and synchronization information.

 • Registry: Maintains the information needed to contact corresponding DCR Servers. For a Master
DCR Server, it stores the URL and port number of each of its Slaves; for a DCR Slave, it stores the
URL and port of the Master.

 • Notifier: Active only on Master DCR Servers, it notifies Slaves of changes in Repository data
whenever such changes occur. The Notifier uses the Registry to get the contact details for all of the
Slaves. DCR uses CSTM (see Chapter 31, “Using the Common Services Transport Mechanism”) to
send the notifications.

 • Receiver: Active only on Slaves, it processes notifications from the Master about Repository data
changes. To keep Slave data tightly coupled with the Master, Slaves generate events for these update
notifications and send the events to applications using the Slaves (note that notifications are only
exchanged among servers; applications only receive events). Applications are responsible for
filtering out events for devices in which they are not interested, using the DCR Device ID (and other
details, such as the sysObjectID) contained in the event.

 • Synchronizer: Lets Slave DCRs get updates from their respective Masters on a regular basis, and
in response to update notifications from the Master.

 • Event Generator: Generates events for the applications installed on and sharing a local DCR on a
single CWCS server. The Event Generator runs regardless of the DCR mode (see the “How DCR
Masters and Slaves Interact” section on page 14-6). The generated events notify subscribing
applications that there is modified, new or deleted device or credentials information in the
repository. Each event carries enough information for the subscribing application to determine if it
does or does not want the new information, and if so, to formulate a query to retrieve it. Applications
are responsible for subscribing to these events, and can receive them either via ESS or HTTP (see
the “About DCR Events” section on page 14-15).
14-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
How DCR Masters and Slaves Interact
Figure 14-2 shows an example of a DCR Master/Slave setup. In this example, several CiscoWorks
applications are installed on different CWCS Servers. Each server has one local DCR Server. The
applications installed on each CWCS Server interact with the local DCR Server only. For example: PIX
MC and IDS MC on Server 1 interact with the DCR Server in Slave mode on Server 1; DFM and Campus
Manager interact with the DCR Server in Slave mode on Server 2; RME interacts with the DCR Server
in Master mode on Server 3.

The Master sends notifications of any changes in its repository to both Slaves. The Slaves in turn make
synchronize with the Master to get its device attribute and credential updates. Both the Master and the
Slaves also broadcast events to applications via ESS (they also publish events via HTTP to subscribed
third-party applications).

Figure 14-2 Example DCR Master/Slave Setup

The interactions among this Master and its Slaves vary depending on the kinds of operations being
performed and the DCR Server mode. The following topics explain what happens in each case:

 • How DCR Adds Devices

 • How DCR Modifies Devices

 • How DCR Deletes Devices

Server 2

2

Server 3

- RME

CWCS - DCR Master

DCR Management UI

CWCS - DCR Slave

Notify
changes

CWCS - DCR Slave

App2 - IDS MC

Notify
changes

Import/Export
devices and
credentials

Add//Delete
devices,
update

Pull updated devices
and credentials via
NB API (in response
to Notification,
periodically, startup)

App1

Fetch/Update
devices and
credentials

Fetch/Update
devices and
credentials

Fetch/Update
devices and
credentials

Notify DCR slaves for
Add, Update, Delete

devices and credentials

Server1

11
33

16

App1 - PIX MC App1 - DFM App2 - Campus
14-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
How DCR Adds Devices

Users whose application resides on the same CWCS server with a DCR Master can use the local DCR
APIs or the DCA GUI to add a new device directly to that Master. When this happens:

1. The DCR Master checks whether the device is a duplicate or not. If it is a duplicate, the operation
fails.

2. If the new device is not a duplicate,tThe DCR Master adds the device to the repository.

3. The DCR Master then:

a. Sends an update notification to all of its DCR Slaves.

b. Sends “New Device Added” events to all applications using the Master.

4. Each DCR Slave receiving update notification from its Master then:

 – Synchronizes with its Master to get the device details.

 – Sends “New Device Added” events to all applications using that DCR Slave.

Users whose application resides on the same CWCS Server with a Slave can use the application UI or
the DCR local API to add a new device. When this happens:

1. The Slave calls the Master to add the device to the Master’s Repository.

2. If the DCR Master is down, the new device is a duplicate, or there is another problem, the Master
returns an error to the Slave. The Slave returns an error to the application, and no updates take place
on the Master or the Slave.

3. If there are no problems, the DCR Master adds the device to its repository.

4. The DCR Master then:

a. Sends an update notification to its DCR Slaves.

b. Sends “New Device Added” events to the applications using that DCRMaster.

5. Each DCR Slave receiving update notification from its Master then:

 – Synchronizes with its Master to get the device details.

 – Sends “New Device Added” events to all applications using that DCR Slave.

How DCR Modifies Devices

Users whose application resides on the same CWCS server with a DCR Master can use the local DCR
APIs or the DCA GUI to update devices on that Master. When this happens::

1. The DCR Master checks whether the modifications will turn the modified device into a duplicate of
another device in the repository. If it is a duplicate, the operation fails.

2. If the device update is not a duplicate, the DCR Master udpates the device in the repository.

3. The DCR Master then:

a. Sends an update notification to its DCR Slaves.

b. Sends “Device Updated” events to all applications using the Master.

4. Each DCR Slave receiving the update notification from its Master then:

 – Synchronizes with its Master to get the device details.

 – Sends “Device Updated” events to all applications using that DCR Slave.
14-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Users whose application resides on the same CWCS Server with a Slave can use the application UI or
the DCR local API to update an existing device. When this happens:

1. The Slave calls the Master to modify the device in the Master’s Repository.

2. If the DCR Master is down, the updated device is a duplicate, or there is another problem, the Master
returns an error to the Slave. The Slave returns an error to the application, and no updates take place
on the Master or the Slave.

3. If there are no problems, the DCR Master adds the device to its repository.

4. The DCR Master then:

a. Sends an update notification to its DCR Slaves.

b. Sends “Device Updated” events to all applications using the Master.

5. Each DCR Slave receiving update notification from its Master will:

 – Synchronize with its Master and get the device details.

 – Send “Device Updated” events to all applications using that DCR Slave.

How DCR Deletes Devices

Applications cannot delete devices directly. Only administrators using the DCA GUI or the DCR CLI on
a DCR Server in Master or Standalone mode can delete devices. When this happens, the Master:

1. Deletes the device from the Master repository.

2. Sends “Device Deleted” notifications to its DCR Slaves .

3. Sends “Device Deleted” events to all applications using that DCR Master.

4. Each DCR Slave receiving the “Device Deleted” notifications from its Master will:

 – Synchronize with its Master.

 – Send “Device Deleted” events to all applications using that DCR Slave.

How DCR Secures Device and Credentials Data
DCR allows access to device and credentials data only by authenticated, authorized users. DCR provides
a basic level of security by storing device credentials as encrypted data (other attribute data is in plain
text), and by using secure communications protocols.

DCR also uses the following security keys:

 • Username: The user name of the accessing user.

 • Password: The accessing user’s password.

 • Secret Key: A password supplied by the administrator during CWCS installation, or specified using
the Security > Server >System Identity Setup option on the CiscoWorks Home Page. Note that
there is also a Secret User associated with this Secret Key.

How DCR uses these security keys varies with the kind of communication taking place:

 • Master Notifications to Slaves: These notifications receive no extra security. A DCR Master calls
Slave APIs only to notify its Slaves that changes have occurred in its repository. The notifications
do not contain credentials data or attributes other than the internal DCR Device IDs. Slaves must
call the Master to get the updated attribute or credentials data.
14-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • Slave Calls to Master: These occur during synchronization, in response to a notification from a
Master, and when applications use a Slave to add or update devices and credentials. All such Slave
requests must pass either the Secret Key or Password to authenticate, and the User Name to
authorize, access to the Master. Note that third-party applications calling a DCR Master remotely
via northbound API may pass the Secret Key only.

 • DCR Events to Applications: These events receive no extra security. DCR sends events to
applications only to notify them that devices or credentials data in its repository has been updated.
The events do not contain credentials, or anything but basic device identifiers. Applications must
call DCR to receive the updated device or credentials data.

 • Application Calls to DCR: Applications on the same server as the called DCR use the DCR local
APIs. DCR assumes the client was successfully authenticated before the call, and requires only the
user name to authorize access. Applications residing on a remote server can call DCR via
northbound APIs, but must provide the user name and password. DCR authenticates and authorizes
using the user name and password.

About DCR Data Storage
The following topics explain how DCR stores device lists, their attributes and credentials:

 • About the DCR Device ID

 • How DCR Stores Attributes

 • How DCR Stores Credentials

 • How DCR Stores Proxy Device Data

 • How DCR Stores Enable-Mode Passwords

 • About User-Defined Fields

Note DCR and its APIs do not communicate with devices directly. The code that interacts directly with
devices and fetches their data for storage in DCR is the responsibility of the application.

About the DCR Device ID

For every device, DCR maintains an internally generated, unique, sequential number called the DCR
Device ID. This ID identifies the device's record in the DCR database. Your application must use this ID
when communicating with DCR about a specific device and its data. DCR does not re-use deleted DCR
Device IDs. Whenever an administrator deletes a DCR device using the DCA GUI or the DCR CLI, all
information for that device, including the DCR Device ID, is removed from DCR.

Be sure not to confuse the DCR Device ID with other attributes used to identify the device in the
network, such as the host_name or sysObjectID (for a complete list of these other attributes, see the
“How DCR Stores Attributes” section on page 14-10).

If your application maintains its own set of device identifiers, you will need to create and maintain tables
that map your application’s device identifiers to the DCR Device IDs (see the “Guidelines for DCR
Application Development” section on page 14-38).
14-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
How DCR Stores Attributes

In DCR, an attribute is all device data other than credentials (see the “How DCR Stores Credentials”
section on page 14-10). Attribute data consists of displayable strings of printable ASCII characters.
Attributes are considered unique to each device (e.g., host_name and management_ip_address).

DCR stores values for the attributes shown in Table 14-1 for all standard devices. Some proxy devices
store additional attributes (see the “Integrating DCR with OGS” section on page 14-13)

How DCR Stores Credentials

DCR credentials are the attribute values that applications use to access and operate on devices. For
example, if the device has SNMP enabled, the SNMP read-only and read-write community strings used
to access that device are considered DCR credentials. All credentials are encrypted and not displayable
in encrypted form.

DCR associates the credentials shown in Table 14-2 with all standard devices, DSBU Clusters and
DSBU Cluster Members. Some proxy devices use a different mix of credentials (see the “How DCR
Stores Proxy Device Data” section on page 14-11).

Table 14-1 DCR Device Standard Attributes

Attribute Description

host_name Device host name.

domain_name Domain name of the device.

management_ip_address The IP address used to access the device. Both IPv4 and IPv6 address types
are supported. Required if host_name is not specified.

display_name The name the user wants the device to have in reports or graphical
displays. This value can be derived from host_name or
management_ip_address. Required.

sysObjectID1

1. You cannot leave both of these attributes blank, but you can specify either one or both of them as “unknown”. DCR will
determine the sysObjectID value automatically if only the mdf_type is specified, and vice versa. If you enter both, DCR will
not check that they map properly.

A string with the sysObjectID value. This attribute is required, but DCR
will fill in the value automatically if the mdf_type is specified.

mdf_type1 A normative name for the device type, taken from Cisco's Meta Data
Framework (MDF) database. This attribute is required, but DCR will fill
in the value automatically if the sysObjectID is specified.

dcr_device_type2

2. You must specify a value for dcr_device_type when adding a new device. The dcr_device_type and DCR Device Category
are different terms for the same construct (e.g., the value of a device’s dcr_device_type is set when you call the
SetDCRDeviceCategory method on that device).

Note If for any of the attributes, the value is modified to an empty string, the attribute itself will not
be disassociated from the corresponding device. Instead, the attribute will be stored with an
empty value. If a device is added in DCR without an IP address, then DCR returns
null for the attribute, management_ip_address. But if IP address is removed (ie,

set to empty) from an existing DCR device, then DCR returns empty string.

A name for the device type to be used in DCR. It has meaning only in the
DCR context. This is not the actual network device attribute.
14-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
The following credentials and attributes are added as part of Common Services 3.0 Service Pack 1
(CS3.0 SP1)

How DCR Stores Proxy Device Data

For standard network devices, DCR stores the attributes and credentials listed in the “How DCR Stores
Attributes” section on page 14-10 and in the “How DCR Stores Credentials” section on page 14-10.
Some proxy devices use different attribute and credential schemes. DCR supports these devices with
attributes and credentials appropriate to them, as follows:

 • DSBU Clusters: Each DSBU cluster has its own database record, which represents a “logical”
DSBU cluster. This record does not point to any one physical device in the cluster, and stores the
credentials of the DSBU Commander. For DSBU Clusters, DCR stores the attributes and credentials
used for standard devices.

Table 14-2 DCR Device Standard Credentials

Credential Description

primary_username The primary user name used to access the device.

primary_password The password for the primary_username.

primary_enable_password The device’s primary “enable password” or “enable secret” password.
See the “How DCR Stores Enable-Mode Passwords” section on
page 14-13.

snmp_v2_ro_comm_string The device’s SNMP V2 read-only community string.

snmp_v2_rw_comm_string The device’s SNMP V2 read/write community string.

snmp_v3_user_id The device’s SNMP V3 user ID.

snmp_v3_password The device’s SNMP V3 password.

snmp_v3_engine_ID The device’s SNMP V3 engine ID.

snmp_v3_auth_algorithm The SNMP V3 authorization algorithm used on the device (i.e., MD5
or SHA-1).

rxboot_mode_username The device’s diagnostic user ID.

rxboot_mode_password The device’s diagnostic password.

Table 14-3 Credential and Attributes Added in CS 3.0 SP1

Credential/Attribute Description

http_username HTTP Username

http_password HTTP password

http_port HTTP Port

https_port HTTPS Port

http_mode Current transfer mode (http or https)

cert_common_name Common name attribute value in the server's certificate
14-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • DSBU Cluster Members: Each DSBU Cluster Member has its own host_name, sysObjectID, and
mdf_type value, and uses the same credentials as the DSBU Cluster. For DSBU Cluster Members,
DCR stores the same attributes and credentials as for standard devices, plus the credentials shown
in Table 14-4.

 • AUS Devices: For the AUS device itself, DCR stores the same attribute data used for standard
devices, but does not use standard credentials. Instead, it stores the credentials shown in Table 14-5.

 • AUS- Managed Devices: For each device managed by an AUS device, DCR stores the same
attributes as for standard devices, plus the additional device_identity attribute. It does not use
standard credentials; instead, it stores the credentials shown in Table 14-6.

The following are supported from CS3.0 SP1.

 • CNS Configuration Engine(CNS Server):

For the CNS Server, DCR stores the same attribute data used for standard devices.

 • CNS Managed Devices:

For the CNS Server, DCR stores the same attribute data used for standard devices. In addition to
this, it will have the parent_cns_id attribute

Table 14-4 Additional DSBU Cluster Member Credentials

Credential Description

dsbu_member_numbe
r

The number of the DSBU Cluster member. This number represents the order
in which the device was added to the cluster.

parent_dsbu_id The DCR Device ID of the parent DSBU Cluster device.

Table 14-5 AUS-Specific Credentials

Credential Description

aus_url The URL for the AUS device.

aus_port The port number of the AUS service running on the AUS device.

aus_username The user login providing access to the AUS device.

aus_password The password for the corresponding aus_username.

Table 14-6 AUS-Managed Device: Additional Attribute and Device-Specific Credentials

Attribute/Credential Description

device_identity This attribute is a string uniquely identifying the AUS-managed device.

aus_username The user login providing access to the AUS-managed device.

aus_password The password for the corresponding aus_username.

parent_aus_id The DCR Device ID of the managing AUS device.
14-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
How DCR Stores Enable-Mode Passwords

Most managed devices feature “enable password” and “enable secret” commands. Both permit an Enable
Mode password to be set and stored within the configuration for a managed device. Only administrators
who know this password can change the device configuration. The “enable secret” command adds an
extra layer of protection by encrypting the stored password, preventing anyone from discovering the
password by examining the device configuration or a copy of it.

DCR retains only one Enable Mode password. If the Enable Mode password was set using the “enable
password” command only, then DCR will store only that password. If an “enable secret” command has
been used as well as (or instead of) the “enable password” command, the “enable secret” password will
take precedence.

If you are importing device data from a product that does not use DCR, you may find a user database
where both the “enable password” and “enable secret” have been set. In this case, the “enable password”
should be discarded, and the “enable secret” password moved into the new DCR database. If only one
of the values is populated in the source database, then only that value should be migrated.

About User-Defined Fields

The DCR database allows users to specify up to 10 user-defined fields. These fields, once specified by
a user, become part of the device record structure and their values are stored as part of device records.
While application developers can access data in user-defined fields for reporting and other purposes,
they cannot add or change user-defined fields programmatically. User-defined fields are for users only,
and must be added using the DCA GUI only.

Integrating DCR with OGS
To enable operations on groups of devices, DCR provides the following pre-defined groups:

 • System Defined: Includes all devices, arranged by mdf_type value.

 • User Defined: Includes all devices, arranged by user-specified attribute values.

OGS (see Chapter 30, “Using Object Grouping Services”) incorporates these DCR Groups and provides
the underlying shared and secured device grouping services to DCR.

The Device Selector provided with the CiscoWorks Home Page (see Chapter 7, “Using the CiscoWorks
Home Page”) performs basic filtering of devices based on IP address, host name, display name,
user-defined attributes, etc. Once the DCR filtering is done, the DCR Device Selector will show the
filtered device list within the predefined DCR Groups provided by OGS.

Table 14-7 CNS Managed Devices Specific Device Credentials

Attribute/Credential Description

parent_cns_id Device ID of the parent CNS server (CNS Configuration Engine)

cns_config_id CNS Config ID of the device.

cns_event_id CNS Event ID of the device.

cns_image_id CNS Image ID of the device.
14-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Integrating DCR with ACS
When DCR starts and the CWCS Server is in ACS mode, DCR will register all known devices in its
repository with CAM. This registration process enables DCR APIs to authorize the devices for the user
appropriately. DCR also registers devices with CAM whenever device(s) are added, as part of the “add”
operation, and updates CAM appropriately whenever DCR devices are modified.

Each DCR device is mapped to an ACS device based on the device’s IP address in both DCR and ACS.
If a DCR device has no IP address, then its DCR display name is mapped to an ACS host name.

The DCR APIs authorize the user at the task level at all times, using the DCR and ACS Task IDs shown
in Table 14-8 (this table ignores DCR-related ACS tasks that cannot be triggered by DCR API calls). See
Table 14-9 for the list of default DCR Task-to-Role mappings; this table includes some DCR-related
ACS tasks that can only be triggered using the DCR GUI.

Device-level authorizations are applied only when the CWCS Server is in ACS mode. Note that an
application running on the same server as the CWCS Server can disable task- and device-level
authorization for local DCR access. If your application uses the APIs to perform DCR tasks, and
authorizes their use by particular users based on role, be sure that your application-level authorizations
match those used by the DCR API tasks.

Table 14-8 DCR APIs and Associated Tasks

DCR API DCR Task ACS Task

addDevice, addDevices ADD_DEVICE_TASK Add

getDCRDomainID None None

getDCRID None None

getDCRUpdates VIEW_CREDENTIAL_TASK View

getDeletedDevices(DeviceId[]
managedDeviceids, APIExtraInfo apiExtraInfo)
throws DCRException // all devices

VIEW_CREDENTIAL_TASK View

public synchronized Device[]
getDeletedDevices(long
transactionId,APIExtraInfo apiExtraInfo) // all
devices

VIEW_CREDENTIAL_TASK
Deprecated. Do not use this API.

View

getDevice, getDevices VIEW_CREDENTIAL_TASK View

getDeviceIdentifiers VIEW_DEVICE_TASK View Devices

getDevices(DeviceId [] id, APIExtraInfo
apiExtraInfo)

VIEW_CREDENTIAL_TASK View

getDevices(DeviceId[] id, String[] attList,
APIExtraInfo apiExtraInfo)

VIEW_CREDENTIAL_TASK View

Device[] getDevices(long timeStamp,
APIExtraInfo apiExtraInfo) throws
DCRException // all devices

VIEW_CREDENTIAL_TASK View

getIdentityAttributes VIEW_DEVICE_TASK View Devices

getMasterDCRID None None

getMatchingDevices VIEW_DEVICE_TASK View Devices

getMaxTransactionID None None
14-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
About DCR Events
DCR uses CWCS Event Services Software (ESS) (see Chapter 19, “Using Event Services Software”) to
broadcast events to all applications on the same CWCS Server. DCR clients listening to these events can
choose to filter out unwanted data or events of no interest (e.g., events for classes of devices the
application does not support). When filtering data, applications can query DCR for additional device
details using the DCR APIs.

getMissingDCRDevicesinACS VIEW_DEVICE_TASK View Devices

getNewDevices VIEW_CREDENTIAL_TASK View

getUnAuthorizedDevices VIEW_DEVICE_TASK View Devices

getUpdatedDevices VIEW_CREDENTIAL_TASK View

isMasterDCR None None

isMasterDCRRunning None None

isRunning None None

registerForHTTPEvents REG_APP_TASK Register/Unregister 3rd Party
Application in DCR

unregisterForHTTPEvents REG_APP_TASK Register/Unregister 3rd Party
Application in DCR

updateDevice, updateDevices UPDATE_DEVICE_TASK Edit

Table 14-9 DCR Task-to-Role Mapping

Task/Role Help Desk Approver
Network
Operator

Network
Administrator System Administrator

Add X X X

Edit X X

Delete X X

Reports X X X X X

View X X X

View Devices X X X X X

Change Mode X X

Add User Defined Fields in DCR X X

Modify User Defined Fields in DCR X X

Delete User Defined Fields from DCR X X

Export X X

Bulk Import X X

Table 14-8 DCR APIs and Associated Tasks (continued)

DCR API DCR Task ACS Task
14-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Applications that cannot use ESS can receive DCR events via HTTP. An application wanting to use this
alternative method must first use the DCR API to register its HTTP URL with DCR. DCR will then use
this URL to send events to the non-ESS application.

The DCR Server never listens to events broadcast by applications.

DCR generates:

 • Device events whenever there is a change in the attributes or credentials of devices stored in the
DCR repository (e.g, device additions, imports, etc.) For details, see the “About DCR Device
Events” section on page 14-17.

 • Process events when the DCR Server starts, stops, or changes modes. For details, see the “About
DCR Process Events” section on page 14-19.

 • Restore events whenever DCR data is restored from backup. For details, see the “About DCR
Restore Events” section on page 14-21.

The normal process of database backup and restore can also generate combinations of these events and
accompanying notifications. For a summary of these, see the “About DCR Events During Backup and
Restore” section on page 14-22.

In Master/Slave implementations, the DCR Notifier generates synchronization and update notifications,
so DCR Slaves can get device updates from Masters. These notifications are not broadcast to DCR client
applications. The events include all significant repository changes, such as device additions, deletions,
credential updates, etc.

Note that events are not the same as notifications sent from a DCR Master to a Slave (see the “About the
DCR Components” section on page 14-5). With DCR Servers in Standalone mode, events are generated
directly and sent to applications who use that DCR. When a DCR Master’s devices are updated, it
generates events directly to applications using it, and then sends notifications to its Slaves. These Slaves,
in turn, get their updates from the Master, and then generate events for the applications using the Slaves.

The details of event generation for DCR Slaves are the same as in DCR Master. From the application's
perspective:

 • It will receive events from DCR when there is an update in DCR. The events can be for new, existing,
or deleted devices in DCR.

 • The application can fetch device lists and credentials data from DCR as needed.

When a new application (that does not contain any device credential data) is installed, the application
can get the device list available from DCR and present the devices in a pick list. The user can then select
the devices from the list for management.

About the DCR Domain ID and Transaction ID

The Master DCR Server in every Master/Slave DCR setup has its own DCR Domain ID. The DCR
Domain ID identifies the logical DCR domain in which the Master and its Slaves participate. Your
application must:

 • Maintain the DCR Domain ID as part of its data.

 • Check to see if the DCR Domain ID has changed:

 – At application startup. You can do this by calling getDCRDomainID() during startup.

 – Whenever the application receives a DCR_DATA_RESTORED or
DCR_DATA_RESTORED_FROM_DIFFERENT_DOMAIN event. You can do this by
comparing the DCR Domain ID contained in the event with the DCR Domain ID stored in the
application database.
14-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • If the DCR Domain ID has changed with a DCR_DATA_RESTORED event, update the DCR
Domain ID in the application database.

 • If the DCR Domain ID has changed with a
DCR_DATA_RESTORED_FROM_DIFFERENT_DOMAIN event:

 – Update the DCR Domain ID in the application database.

 – Clean up and refresh the device list.

Every DCR Server update of any kind (e.g., device additions, deletions, updates, etc.) has a transaction
ID, which is simply a serial number. The DCR Transaction ID is the ID of the last transaction (e.g.,
device update, deletion, addition, etc.) an application conducted with its DCR Server. This transaction
ID is maintained in the application database, and allows the application to determine whether updates
occurred while the application was offline. To make use of it, your application must

 • Maintain the DCR Transaction ID in its own database.

 • At application startup, check to see if the last (or maximum) transaction ID recorded on the DCR
Server is greater than the DCR Transaction ID recorded in the application database. You can get the
last transaction ID for the Server by calling getMaxDcrTransactionId() during startup.

 • If the transaction ID on the server is higher than the DCR Transaction ID stored in the application:

 – Update the DCR Transaction ID in the application database.

 – Get all the device updates since the last transaction recorded in the application.

For examples of code making use of the Domain ID and the Transaction ID, see the “Using DCR Domain
and Transaction IDs” section on page 14-44.

About DCR Device Events

In addition to events for DCR changes (see the “About DCR Process Events” section on page 14-19) and
data restores (see the “About DCR Restore Events” section on page 14-21), DCR broadcasts events
whenever devices are updated (including addition or deletion).

A DCR device event contains the event’s:

 • Subject (also treated as the event ID). For example: Event Subject Name =
"cisco.mgmt.cw.cmf.dcr";.

 • Data, which consists of:

 – The type of device change. For example: DEVICE_ADDED.

 – Identifying details for the device(s) affected by the event. For example: the Device ID,
sysObjectID, etc.

 – The event Timestamp.

Table 14-10 shows the data for all types of device events. Applications can use this data to decide
whether to process the event or not, and to query DCR for details about the target device(s).
14-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Table 14-10 DCR Device Update Event Data

Device Change Event Data

 Added <DCREvent>
 <EventType>DEVICES_ADDED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
 <Devices>
 <Device>
 <DeviceId>14</DeviceId>
 <SysObjectId>222</SysObjectId>
 <IpAddress>sds</IpAddress>
 <HostName>null</HostName>
 <DisplayName>sd44s</DisplayName>
 <TransactionId>556598</TransactionId>
 <MDFID>12345</MDFID>
 </Device>
 </Devices>
</DCREvent>

 Added in Bulk <DCREvent>
 <EventType>BULK_DEVICES_ADDED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Deleted <DCREvent>
 <EventType>DEVICES_DELETED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
 <Devices>
 <Device>
 <DeviceId>14</DeviceId>
 <SysObjectId>222</SysObjectId>
 <IpAddress>sds</IpAddress>
 <HostName>null</HostName>
 <DisplayName>sd44s</DisplayName>
 <TransactionId>null</TransactionId>
 <MDFID>12345</MDFID>
 </Device>
 </Devices>
</DCREvent>
14-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
About DCR Process Events

DCR broadcasts process events whenever the DCR Server starts, which is a common event. It also
broadcasts events when the server changes modes, which happens much less often. A DCR process event
consists of the event’s:

 • Subject (also treated as the event ID).

 For example: Event Subject Name = "cisco.mgmt.cw.cmf.dcr";.

 • Data, which consists of:

 – The type of change. For example: MASTER_CHANGED_TO_SLAVE.

 – Identifying details for the DCR affected by the event. For example: “DCR Server 1”.

Deleted in Bulk <DCREvent>
 <EventType>BULK_DEVICES_DELETED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Updated <DCREvent>
 <EventType>DEVICES_UPDATED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
 <Devices>
 <Device>
 <DeviceId>14</DeviceId>
 <SysObjectId>222</SysObjectId>
 <IpAddress>sds</IpAddress>
 <HostName>null</HostName>
 <DisplayName>sd44s</DisplayName>
 <TransactionId>null</TransactionId>
 <MDFID>12345</MDFID>
 </Device>
 </Devices>
</DCREvent>

Updated in Bulk <DCREvent>
 <EventType>BULK_DEVICES_UPDATED</EventType>
 <EventSource>
 <AppName>DCRUI</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Table 14-10 DCR Device Update Event Data (continued)

Device Change Event Data
14-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Example 14-1 shows the event data for the only normal process event, a DCR Server start. Table 14-11
shows event data for the uncommon DCR mode-change process events. All of these events are broadcast
because applications (such as OGS Server) need to know about them. Most applications can ignore
process events unless they are also accompanied by a “data restored” event, in which case applications
must receive and process them (see the “About DCR Restore Events” section on page 14-21).

Example 14-1 DCR Server Start Event Data (continued)

<DCREvent>
 <EventType>DCR_SERVER_START</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Table 14-11 DCR Mode-Change Event Data

Mode Change Event Data

Standalone to
Master

<DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType>STANDALONE_CHANGED_TO_MASTER</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Standalone to
Slave

<DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType> STANDALONE_CHANGED_TO_SLAVE</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Slave to Master <DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType> SLAVE_CHANGED_TO_MASTER</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>
14-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
About DCR Restore Events

DCR sends the restore events shown in Table 14-12 when DCR data is changed due to specific DCR
mode changes or a data restore from backup. The restore events are sent in different conditions:

 • DCR DATA RESTORED FROM DIFFERENT DCR DOMAIN: DCR will send this event when:

 – A DCR Server in Standalone or Master mode changes to Slave mode. The new Slave-mode DCR
Server receives this event before it begins receiving DCR DATA RESTORED events.

 – A DCR Server in Slave mode is reassigned to a DCR Master in a different domain.

 – A DCR Server in Slave mode has its DCR Master change its host name.

 – A CWCS restore is performed and the restore contains different domain data.

Applications receiving this event must:

 – Alert the application administrator to act appropriately.

 – Clean up the application-managed device list.

 – Call getDCRUpdates() to refresh the application device list.

Slave to
Standalone

<DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType>SLAVE_CHANGED_TO_STANDALONE</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Master to Slave <DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType>MASTER_CHANGED_TO_SLAVE </EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Master to
Standalone

<DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType>MASTER_CHANGED_TO_STANDALONE </EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Slave to New
Master

<DCREvent>
 <DCRDomainID>Group123456</DCRDomainID>
 <EventType>SLAVE_CHANGED_TO_NEW_MASTER</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Table 14-11 DCR Mode-Change Event Data (continued)

Mode Change Event Data
14-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • DCR DATA RESTORED: DCR will send this event when:

 – A DCR Server in Standalone or Master mode changes to Slave mode. The new Slave-mode DCR
Server receives this event after the DCR DATA RESTORED FROM DIFFERENT DCR
DOMAIN event, and continues to receive it until the Slave-mode Server syncs with its new
Master.

 – When a DCR Server in Master mode changes its port and the user re-registers with a Slave with
this Master.

 – When a DCR Server in Slave mode changes its port and the user re-registers with this Slave with
its Master.

 – When DCR Server in Slave mode changes to Standalone or Master mode.

Applications receiving this event are expected to call getDCRUpdates() to get all new, updated, or
deleted devices from DCR.

About DCR Events During Backup and Restore

DCR uses the CWCS backup and restore framework (see the Chapter 12, “Using Backup and Restore”)
to protect the DCR data stored in the main CWCS database and the DCR configuration file.

Data changes are a normal part of any restore from a backup. However, because DCR is a distributed
system with varying modes, it is also possible for any restored DCR to:

 • Change modes (see the “How DCR Masters and Slaves Interact” section on page 14-6). For
example, a Standalone DCR can be set after a backup to act as a Slave. When the restore is
performed, it will be reset to Standalone mode.

 • Change master/slave relationships. For example: A DCR Slave may be using Master A at the time a
backup is taken. Later, the domain will be changed to use Master B, and the Slave reset to use Master
B. When the restore is performed, the Slave will attempt to use Master A.

Table 14-12 DCR Restore Events

Restore
Event Event Data

Data
restored
from
different
domain

<DCREvent>
<DCRDomainID>Group123456</DCRDomainID>
<EventType>DCR_DATA_RESTORED_FROM_DIFFERENT_DCR_DOMAIN
 </EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>

Data
restored
from
same
domain

<DCREvent>
<DCRDomainID>Group123456</DCRDomainID>
<EventType>DCR_DATA_ RESTORED</EventType>
 <EventSource>
 <AppName>DCR Server</AppName>
 <AppVersion>1.0</AppVersion>
 <AppHostName>server1</AppHostName>
 </EventSource>
</DCREvent>
14-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
 • Change management domains. For example: A DCR Slave using a Master in domain A can be reset
to become a Slave of a Master in domain B. When the restore is performed, the Slave will attempt
to replicate with the Master in domain A.

Because any restore can involve a combination of data, mode, master/slave and domain changes, DCR
provides special processing functions to handle:

 • Domain Changes: DCRs running in Master or Slave mode always have an associated DCR Group
ID that indicates the Server’s management domain. This Group ID is generated when a DCR is set
to Master mode, and communicated to all Slaves later assigned to that Master. The restore process
checks the DCR Group ID for appropriate action. If the Group ID changes due to the restore, then
DCR broadcasts a “DCR DATA RESTORED FROM DIFFERENT DCR DOMAIN” event. If the
DCR Group ID does not change, DCR assumes that no domain change took place, and broadcasts a
“DCR DATA RESTORED” event.

 • Mode and Master/Slave Changes: These vary according to the individual DCR’s working or
pre-restore mode (the mode at the time the restore process is started), its end or post-restore mode
(the mode after the restore is finished), and its existing Master/Slave relationships. Mode changes
for DCR Servers in Master mode also generate “DCR MASTER MODE CHANGE” events.
Table 14-13 summarizes all possible mode and master/slave changes for restored DCRs and the
actions they take in response.

Applications will need to process domain, mode, and master/slave change notifications from DCRs
appropriately, as well as processing data change events. This includes:

 • Synchronizing with the DCR during application startup.

 • Making provision for the fact that, during a restore, the application may be down for a significant
period and may not have a chance to process restore-related events.

 • Querying DCR, using DCR Device IDs, for information about deleted and updated devices.
Applications that persist any device identity attributes must also pass them to DCR so that DCR can
identify whether the device information is modified. DCRProxy provides several APIs to detect
deleted and updated devices, including getDeletedDevices() and getDCRUpdates() (see the “How
DCR Masters and Slaves Interact” section on page 14-6).
14-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Understanding DCR
Table 14-13 DCR Restore Behavior

If the
Post-Restore
(End) Mode is:

And the Pre-Restore (Working) Mode was:

Standalone Slave Master

Standalone If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends
a DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

After restore, the former Slave
unregisters from the old Master
and deletes old Master
information. If the former Slave
could not unregister and the old
Master sends it notifications, it
ignores them (as it is now in
Standalone mode).

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends
a DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

After restore, the former Master
sends DCR MASTER MODE
CHANGED events to all its former
Slaves. These Slaves delete the
Master contact information.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends a
DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

Slave After restore, the server is in
Master mode. We do this to
preserve the device context1. To
finish conversion to Slave mode,
use the GUI or CLI commands.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends
a DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

After restore, if the DCR Group
ID is different, then the server
moves to Standalone mode, and
sends a mode change event and a
DCR DATA RESTORED FROM
DIFFERENT DCR DOMAIN
event.

If the DCR Group ID is same and
Master is different, then the DCR
will unregister with the old
Master, delete all data it took from
the old Master, register and sync
with the new Master, and send a
“DCR DATA RESTORED” event.
Applications must process these
events and query DCR to get
updates.

After restore, the server is in Slave
mode. It sends a DCR MASTER
MODE CHANGED event to all
former Slaves. These Slaves delete
the contact information for the
former Master.

The new DCR Slave uses the
restored Slave configuration
information to contact, re-register
and sync data with its Master.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends a
DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.
14-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Using DCR
The following topics provide guidelines on and examples of how to integrate DCR with your application:

 • Getting Started With DCR

 • DCR Tasks to Perform During Application Startup

 • Using the DCR APIs

 • Responding to DCR Events

 • Using DCR Domain and Transaction IDs

 • Using the DCR Command-Line Interface

 • Enhancing DCR Performance

Master After restore, the server is in
Master mode. Some Slave
information may be invalid2, so
the new DCR Master will delete
all Slave information.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends
a DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

After restore, the server is in
Master mode. Some Slave
information may be invalid2, so
the new Master will delete all
Slave information. It also deletes
all Master contact information left
over from Slave mode.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends
a DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

After restore, the server is still in
Master mode. It compares
information about its Slaves that
comes from the backup with the
Slave information from pre-restore
operations. It retains Slaves that
exist in both and deletes all others.

If the DCR Group ID is different,
DCR sends a DCR DATA
RESTORED FROM DIFFERENT
DCR DOMAIN event. If the DCR
Group ID is the same, DCR sends a
DCR DATA RESTORED event.
Applications must process these
events and query DCR to get
updates.

1. Suppose we have a DCR Server in Standalone mode, and restore it using Slave data, If we convert directly to Slave mode (retain the Slave configuration
from the backup) then the context of the devices known to the applications using the Standalone server will be different from the devices in the Slave.
Since Slave and Master data are tightly coupled, the risk is high that all the restored Slave data will be overwritten or lost as soon as communications with
the Master begin.

2. Some of the Slaves included in the backup information for this Master may have moved to another Master.

Table 14-13 DCR Restore Behavior (continued)

If the
Post-Restore
(End) Mode is:

And the Pre-Restore (Working) Mode was:

Standalone Slave Master
14-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Getting Started With DCR
Use the following steps to create and populate a standalone DCR Server.

Step 1 Install CiscoWorks Common Services (CWCS).

DCR Server is included in this version of CWCS, and will be installed automatically. Upon conclusion
of the installation, the CWCS Daemon Manager will start a local DCR Server. The DCR Server will run
in Standalone mode, so it will not be part of a management domain or share devices with any other DCR.

If you need to manually control the DCR Server at any time after installation, enter the following at the
command line:

 • To stop DCR, enter pdterm DCRServer

 • To start DCR, enter pdexec DCRServer

Step 2 Log on to CWCS.

Point your browser to the CWCS installation at http://server_ip_address:1741. Log into CiscoWorks by
providing a username and password (the default for both is admin).

Step 3 Start populating the local DCR Server by manually entering data for a few devices, as follows:

a. On the Common Services application panel, select Device & Credentials Admin > Device
Management. CiscoWorks displays the Device Management screen.

b. Click Add to begin adding devices. CiscoWorks displays a Device Properties page.

c. Enter the required device Display Name and select the Device Type.

d. Enter one of the following required attributes: IP address, Host Name, or AUS Device ID (only if
the device is AUS-managed).

e. Click Add to list to add the device to DCR.

f. Repeat steps a through e for the other devices you want to add to DCR.

g. When you have added all the devices you want, click Next to specify credentials for them.

h. When you have added all the credentials needed, click Next to specify user-defined fields.

i. When you are finished, click Finish.

Step 4 If you want a large number of devices, you can use the DCR Export feature to create a CSV file, and edit
the CSV file to add all the other devices you want. Then use the Import feature to load the updated CSV
file. For example:

a. On the Device Management screen, click Export to export to a CSV file the devices you have
already added.

b. Select File, specify the file name, and then click Export.

c. When the export operation is completed, edit the CSV file as needed. You can use an ASCII text
editor to do this.

Alternatively, you can use a spreadsheet application to create a CSV file from scratch, using the
exported CSV file as a model for your entries. You can then load it using the following steps.

d. On the Device Management screen, click Import.

e. Select File, specify the file name of the CSV file you edited, and then click Import.
14-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
DCR Tasks to Perform During Application Startup
Every application using DCR should be sure to complete the following tasks at startup:

Note After start-up, your application should not process DCR events sent before the DCR_SERVER_START
event. Ideally, your application should set a Daemon Manager dependency on DCRServer to avoid this.

1. Get the current DCR transaction ID stored in the application database.

2. If the transaction ID is zero, then this is the first time the application has been started. In this case:

a. Call the getNewDevices() API and get the device list from DCR.

b. Update the application-managed device list from the DCR device list.

c. Get the DCR Domain ID and store it in the application database.

d. Derive the maximum transaction ID from the device list and update it in the application
database.

3. If the transaction ID is not zero, fetch the current DCR Domain ID from the DCR Server and
compare it with the DCR Domain ID stored in the application database.

4. If the Server and application DCR Domain IDs are different:

a. If necessary, clean the application-managed device list, or perform any other required
application-specific action.

b. Set the application transaction ID to zero.

c. Call the getNewDevices() API and get the device list from DCR.

d. Update the application-managed device list from the DCR device list.

5. If the Server and application DCR Domain IDs are identical:

a. Call the getDCRUpdates() API and get the device updates from DCR

b. Update the application-managed devices from the DCR device updates.

For an example of startup code that performs all of these tasks, see the “Using DCR Domain and
Transaction IDs” section on page 14-44.

Using the DCR APIs
Once you have set up a working DCR Server as described in the “Getting Started With DCR” section on
page 14-26, you can begin using the DCR APIs to interact with it.

To do this, your application must instantiate an object of class DCRProxy. DCRProxy is the main DCR
abstraction. It provides the methods you need to access DCR device data, and hides communication and
request details.

The following topics provide guidelines and examples for using DCRProxy and other DCR API classes
and methods in application development:

 • About the DCR APIs

 • Creating the DCRProxy Object

 • Creating the APIExtraInfo Object

 • Adding Devices to DCR
14-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 • Updating a DCR Device

 • Adding and Updating Devices in Bulk

 • Retrieving DCR Device Objects

 • Retrieving DCR Devices in Bulk

 • Retrieving Data From a Device Object

 • Comparing Two Device Objects

 • Registering Third-Party Applications with DCR

 • Guidelines for DCR Application Development

 • DCR Error Codes and Interpretations

About the DCR APIs

In addition to DCRProxy, DCR provides the classes shown in Table 14-14.

Note that:

 • All DCR APIs write APIs (e.g., addDevice, updateDevice) use CSTM to access DCR. The DCR read
APIs (e.g., getDevice, getDevices) communicate directly with CWCS database processes.

 • You cannot delete devices from DCR using API calls. Only the administrator can delete devices, and
using the DCA interface from the CiscoWorks Home Page.

 • All DCR access involving credentials information must be user-authenticated and task-authorized.
To assist with this security processing, pass APIExtraInfo with your DCRProxy method calls.

 • All credentials data is encrypted while stored and during transport, and DCRProxy decrypts and
parses them before passing them to the calling process.

 • The DCR APIs are SOAP-enabled, so any non-Java application can make a request using SOAP.

All DCR classes are installed in $NMSROOT/CSCOpx/lib/classpath/com/Cisco/nm/dcr. All of them
share the com.cisco.nm.dcr Java package name.

For DCR API Javadocs, see the CWCS 3.0 SDK portal.

Table 14-14 DCR API Classes

Class Description

APIExtraInfo Used with the classes AppID, SourceContext, and SecurityContext to store
information about the application that initiated a DCRProxy API call and the
form of authentication and authorization each API call will request.

AppId Stores the name, version and the host name of the machine running the
application that initiated the DCRProxy API call.

Attribute Abstracts a single device attribute and its value, with a complete set of Get
and Set methods.

DCRException Encapsulates standard error/exception handling for all DCR operations.

DCRReturnValues Represents the return values for bulk Add and Update operations.

DCRUpdates Encapsulates new, updated and deleted device information.

Device Abstracts a single device and all of its attributes. This class has a complete
set of Get and Set methods.
14-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Creating the DCRProxy Object

DCRProxy is the main DCR class. An object of class DCRProxy:

 • Represents a DCR Server instance to the application.

 • Provides all the methods needed to access and modify data in the DCR Server instance.

 • Conceals whether the call is local or remote.

 • Provides the CSTM client used to handle communications between DCR and applications.

 • Permits registration of HTTP clients.

To start using DCR, your application should instantiate a single DCRProxy object, as shown below:

DCRProxy dcrProxy = new DCRProxy() ;

Note that creating only a single instance of DCRProxy in the application or session eliminates the
overhead required to establish socket-level communication with a local DCR Server.

Also note that DCRProxy uses CSTM classes for logging via log4j. Your application may do so as well.
In order for CSTM to log its messages using log4J, either your application or DCRProxy must load the
log4J message categories for CSTM (for more on interactions between CSTM and log4j, see the
“Controlling CSTM Logging” section on page 31-3).

The log4j framework permits message categories to be loaded only once per JVM, and in one class
loader. This requirement applies irrespective of the number of consumers for CSTM classes. For
example: Since both the DCRProxy class and the application-related classes that use CSTM will be
loaded in one JVM, the log4J categories for CSTM classes must be loaded either by DCRProxy or by
your application class – not by both. If both load the log4J categories for CSTM, then the categories
loaded last are the only active categories. If this occurs, log4J will throw exceptions whenever an inactive
category object is used for logging, and all logged messages may go to different destinations.

To help you avoid these situations, DCRProxy provides an integer argument that controls the loading of
log4J categories for DCR and CSTM classes. You specify this argument at instantiation; for example:

DCRProxy dcrProxy = new DCRProxy(0) ;

Table 14-15 shows the possible values for the argument and when to use them.

DeviceId Represents the internal DCR Device ID. Applications use the DCR Device
ID in string format.

SecurityContext Stores the user name, password, Secret Key and Secret User information
needed to authenticate or authorize a DCRProxy API call.

SourceContext Stores information about the application making the DCRProxy API call.

Table 14-14 DCR API Classes (continued)

Class Description

Table 14-15 Controlling log4j Category Loading

Use When You Want DCR Proxy to Load

DCRProxy(0)

;

The categories for both CSTM and DCR classes. Use this option if your application
does not use or load the log4J categories for CSTM classes.
14-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Note that DCRProxy(2) will not work for any web-based application context that runs under Tomcat. In
this case, the application will not be able to load the categories for DCR classes because the DCR classes
are loaded via the class loader, which is different from an application context-specific class loader. If
your application runs under Tomcat, use either DCRProxy(0) or DCRProxy(1), depending on whether or
not you are having the application load the log4J categories for CSTM classes.

If you pass any value other than those shown in Table 14-15 to this constructor, DCRProxy will reset the
argument value to 0 and load the categories for both CSTM and DCR classes. The default constructor,
DCRProxy(), assumes the argument value is 0 and loads the categories for both CSTM and DCR classes.
Use the default constructor if your application does not use or load the log4J categories for CSTM
classes.

Creating the APIExtraInfo Object

Most DCRProxy API calls accept objects of class APIExtraInfo in addition to their regular arguments.
APIExtraInfo encapsulates:

 • The AppID. This object is the unique ID of your application, and establishes your application name,
version number, and host information for use in the SourceContext object.

 • The SourceContext. This object establishes your application and its context as the source of the
DCRProxy API call.

 • The SecurityContext. This object contains the information needed to authenticate or authorize the
DCRProxy API request. Applications residing on the same machine as the DCR Server have access
to the local version of the DCR APIs, and need pass only the requesting username. Applications on
remote servers must use the remote (or “north-bound”) versions of the DCR APIs, and must pass the
requesting username and password.

Example 14-2 shows a modifiable code fragment that specifies this information. You will need to change
this code before using it (i.e., comment out one of the two SecurityContext alternatives, and choose to
pass either the password or secret key value, but not both, for remote API calls).

Example 14-2 Instantiating APIExtraInfo

AppId Myapp = new AppId("Device Manager", //unique AppID and application name
 "1.3.2", //application version number
 "192.168.1.15"); // host on which the application is running
SourceContext source = new SourceContext(Myapp) ;
// For Local API calls
SecurityContext security = new SecurityContext("username");

// For North-Bound API calls
SecurityContext security = new SecurityContext("username",
 "password",

DCRProxy(1)

;

The categories for DCR classes only. It will not load the categories for CSTM classes.
Use this option if your application uses CSTM and loads the log4J categoris for CSTM
classes.

DCRProxy(2)

;

No categories at all. This option assumes that your application loads the categories for
both the DCR and CSTM classes.

Table 14-15 Controlling log4j Category Loading

Use When You Want DCR Proxy to Load
14-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 "secretKey")
//Wrapper for Source and Security information:
APIExtraInfo extraInfo = new APIExtraInfo(security,
 source);

Adding Devices to DCR

Example 14-3 shows sample code for adding a standard (non-proxy) device to DCR using the
addDevice() call.

Example 14-3 Adding a Standard Device

Device device = new Device();
device.SetDCRDeviceCategory(Device.STANDARD_DEVICE);
device.SetAttribute("display_name", "Bldg X Floor Y Switch 1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "1234567");
// set other attributes
DeviceId id = null;
try
{
id = dcrProxy.addDevice(device,extraInfo);
}
catch (DCRException de)
{

System.out.println("Error in adding Device " +
 de.getMessage());

// Handle any error from DCR
}
catch (Exception e)
{

System.out.println("Error in adding Device " +
 e.getMessage());

// Do application-specific things
}
System.out.println("ID for New Device = "+ id.getValue());
// This is the value that the application will retain

:

To add other types of devices using the same call, simply change the SetDCRDeviceCategory and
SetAttribute portions of the code as appropriate for each device, as shown in the following examples.

Example 14-4 Adding an AUS Device

Device device = new Device();
device.SetDCRDeviceCategory(Device.AUS_DEVICE);
device.SetAttribute("display_name", "AUS 1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "UNKNOWN");
// set other attributes
DeviceId id = null;
...
14-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Example 14-5 Adding an AUS-Managed Device

Device device = new Device();
device.SetDCRDeviceCategory(Device.STANDARD_DEVICE);
device.SetAttribute("parent_aus_id", "999999");// Set the parent AUS id
device.SetAttribute("display_name", "AUS Managed Device 1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "1234567890");
// set other attributes
DeviceId id = null;
...

Example 14-6 Adding a DSBU Cluster

Device device = new Device();
device.SetDCRDeviceCategory(Device.DSBU_DEVICE);
device.SetAttribute("display_name", "DSBU-Cluster 1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "UNKNOWN");
device.SetAttribute("mdf_type","278283831");
// set other attributes
DeviceId id = null;
...

Example 14-7 Adding a DSBU Cluster Member

Device device = new Device();
device.SetDCRDeviceCategory(Device.STANDARD_DEVICE);
device.SetAttribute("parent_dsbu_id", "110");// Where "110" is the parent DSBU Cluster ID
device.SetAttribute("display_name", "DSBU-Cluster Managed Device 1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "122333");
// set other attributes
DeviceId id = null;
...

Example 14-8 Adding a CNS Configuration Engine (CNS Server)

Device device = new Device();
device.SetDCRDeviceCategory(Device.CNS_DEVICE);
device.SetAttribute("display_name", "CNS_Server_1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "UNKNOWN");
device.SetAttribute("mdf_type","277587376");

// set other attributes
DeviceId id = null;
...
14-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Example 14-9 Adding a CNS managed device

Device device = new Device();
device.SetDCRDeviceCategory(Device.STANDARD_DEVICE);
device.SetAttribute("parent_cns_id", "110");// Where "110" is the parent CNS Server ID
device.SetAttribute("display_name", "CNS_managed_1");
device.SetAttribute("management_ip_address", "1.2.3.2");
device.SetAttribute("sysObjectID", "UNKNOWN");

// set other attributes
DeviceId id = null;
...

Updating a DCR Device

You can use code like that shown in Example 14-10 to update attributes or credentials for any existing
DCR Device.

Example 14-10 Updating a DCR Device

DeviceId deviceID = new DeviceId("<known-device-id>");
Device device = new Device(deviceID);
// Set new attribute values
device.SetAttribute("display_name", "Device 2 New");
// set other attributes

try
{

dcrProxy.updateDevice(device,extraInfo);
}
catch (DCRException de)
{

System.out.println("Error in updating Device " +
 de.getMessage());

// Do application specific things
}
catch (Exception e)
{

System.out.println("Error in updating Device " +
 e.getMessage());

// Do application specific things
}

Adding and Updating Devices in Bulk

These two APIs let you add or update more than one device object at a time:

 • public DCRReturnValues addDevices(Device[] devices, APIExtraInfo apiExtraInfo)

throws DCRException

 • public DCRReturnValues updateDevices(Device[] devices, APIExtraInfo apiExtraInfo)

throws DCRException
14-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Both APIs return an object of class DCRReturnValue, which holds all information about the operation
on each device. The information is stored in two arrays: one for the DeviceId objects, and the second for
operation error codes. The length of each array is always same as the number of Device objects you pass
in the API call. The objects in these arrays correspond to each Device object in the devices array that
you pass.

To get this information from the appropriate arrays in DCRReturnValue, use the following methods:

 • public DeviceId getDeviceId(int index) returns the DeviceId object at the index you pass. Use
this method after the addDevices call to retrieve and process all the newly created Device IDs.

 • public int getErrorCode(int index) returns the error code associated with the operation on the
Device object at the index you pass.

Example 14-11 shows typical code for a bulk addition. A bulk update would use the different method
but have essentially the same structure.

Example 14-11 Adding Devices in Bulk

 DCRReturnValues drv = null;

// Call add API and collect its output in above DCRReturnValues object

…

int nErrorCode;
if(drv != null)

{
for(int nLoop = 0; nLoop < numberOfDevicesAdded; nLoop ++)
{

// check if device was added successfully
// If return array contains valid DeviceId, this means that device was added successfully

if(drv.getDeviceId(nLoop) != null) continue; // Valid DeviceId returned

// Otherwise retrieve error code
nErrorCode = drv.getErrorCode(nLoop);

// The error code represents the ID of DCRException.

// Handle the error here …

}// end for
}// end if

Retrieving DCR Device Objects

Example 14-12 demonstrates how to retrieve selected DCR Device Objects and their data using a list of
DCR Device IDs supplied by an update event.

Example 14-12 Retrieving Device Objects

DeviceId[] deviceIDs = <populate device ids...>

String[] requiredAttributes = { "display_name",
 "management_ip_address",
14-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 "snmp_v2_ro_comm_string"
};

Device[] devices = null;

try
{

devices = dcrProxy.getDevices(deviceIDs,
 requiredAttributes,extraInfo);
}
catch (DCRException de)
{

System.out.println("Error in getting Devices " +
 e.getMessage());

// Do application-specific things
}
catch (Exception e)
{

System.out.println("Error in getting Device " +
 e.getMessage());

// Do application specific things
}

Retrieving DCR Devices in Bulk

Example 14-13 demonstrates how to fetch a large number of DCR Devices at once. This code follows
the guidelines given in the “Enhancing DCR Performance” section on page 14-49, specifically those for
for h andling groups of devices with more than 5,000 members. Note that the DeviceIdIterator is a class
in the package com.cisco.nm.dcr.

Example 14-13 Retrieving Devices in Bulk

 DeviceId[] deviceIDs = <the array of DeviceId to be fetched>
 …
 Device[] devices = null;
 Vector v = null;

 try
 {
 DeviceIdIterator it = new DeviceIdIterator(deviceIDs);
 DeviceId[] onlyFewDeviceIDs = null;

 while(it.hasNext())
 {
 onlyFewDeviceIDs = it.next();
 devices = _dcrProxy.getDevices(onlyFewDeviceIDs, attributes, aei);
 if(devices != null)
 {
 if(v == null) v = new Vector();
 v.addAll(Arrays.asList((Object[])devices));
 }
 }// end while
 }
 catch(DCRException ex)
 {
 // Handle exception
 }
 catch(Exception ex)
14-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 {
 // Handle exception
 }

 if(v == null) return null;
 v.trimToSize();
 if(v.size() <= 0) return null;

 devices = new Device[v.size()];
 v.toArray(devices);

 // Here the devices object contain all the devices

Retrieving Data From a Device Object

Example 14-14 shows a couple of ways to get specific device data from a device object. This example
assumes you have already retrieved one or more device objects using code such as the example shown
in the“Retrieving DCR Device Objects” section on page 14-34.

Example 14-14 Retrieving Specific Device Data

Device device = <fetched device via DCR API …>
//Get a single Attribute or Credential value
Attribute attr = device.GetAttribute("snmp_v2_ro_comm_string");
// Note that attribute object may be null
if(attr != null)
{

String strValue = attr.getValue();
…

}
// Alternate code: Get a single Attribute or Credential value
if(device. isAttributeAvailable("snmp_v2_ro_comm_string"))
{
Attribute attr = device.GetAttribute("snmp_v2_ro_comm_string");

String strValue = attr.getValue();
…

}
//Alternate code: Get all attributes for each device
Iterator it = device.GetAttributes();
//Then use the it iterator to cycle through all the attributes for the current device

Two methods you can use for retrieving specific device data will return special codes:

 • public int GetDCRDeviceCategory() returns the device category of a device added with any valid
value for dcr_device_type. The possible return values are:

 • 0 for a standard device

 • 1 for a Logical DSBU Cluster

 • 3 for an Auto Update Server (AUS)

 • 4 for a CNS Configuration Engine (CNS)

 • public int GetDeviceAccessType() returns an integer indicating how the device is or should be
accessed. The possible return values are:
14-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 • 0 means no access type, or the device is a standard device, or the access information is not
available.

 • 1 means the device is part of a DSBU cluster and can be accessed as a member of a DSBU
cluster. Such device objects will also have a 'parent_dsbu_id' attribute that is the Device ID of
a logical DSBU cluster in DCR.

 • 3 means the device is accessed via AUS. Such device objects will also have a parent_aus_id
attribute that is device ID of a Auto Update Server in DCR.

 • 4 means the device is accessed via CNS. Such device objects will also have a parent_cns_id
attribute that is device ID of a CNS Server in DCR.

Note that this method assumes that complete device information (specifically, the parent DSBU and
AUS ID attributes) have been fetched from DCR. If not, this method will always return 0.

Comparing Two Device Objects

The following code fragment shows how to compare two device objects. Note that two DCR devices are
equal if their DCR Device ID values are the same and their attributes and attribute values are the same.

DeviceId id = device.GetID();
device.equals(device2Object);

Registering Third-Party Applications with DCR

Although CWCS-based applications use ESS to get events indicating updates to DCR devices,
third-party applications must listen for events using HTTP. Example 14-15 shows how to register a
third-party application so DCR will send events to it.

Example 14-15 Registering to Receive DCR Events Via HTTP

try
{

dcrProxy. registerForHTTPEvents (appID,
 "<application-URL-to-receive-events>"
 extraInfo);
}
catch (DCRException de)
{

System.out.println("Error in registering app " +
 e.getMessage());

// Do application specific things
}
catch (Exception e)
{

System.out.println("Error in registering app " +
 e.getMessage());

// Do application specific things
}

14-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Guidelines for DCR Application Development

Keep the following guidelines in mind when creating applications that use data from DCR:

 • DCR never communicates with devices directly.

 • DCRProxy conceals all communications details. You do not need to now the DCR Server modeor
any other communications details to use DCRProxy successfully.

 • Your application must be listening for DCR events in order to receive them.

 • Your application is responsible for filtering events for devices that are not applicable to it. DCR
itself performs no filtering.

 • When filtering, do not rely solely on the sysObjectID or mdf_type value contained in the event to
identify the device for you. Since DCR relies on many applications to populate its device list, these
attributes cannot be guaranteed to have values other than “unknown”. Your application should test
for situations where these attributes have the value “unknown”, and attempt to identify the device
either by calling the device directly or by other means.

 • Your application is not allowed to delete the devices in DCR. In Master/Slave setups, these device
deletions are propagated to all DCR Slave applications, which can seriously affect the operation of
other applications sharing the DCR data.

 • Your application may cache device credentials in memory, but for security reasons, should never
persist or save credentials to disk.

 • Your application should always check the availability of DCR for updates before performing critical
operations, such as changing device credentials.

 • DCR APIs do not validate the values of attributes and credentials while adding and updating devices.

 • You cannot leave both sysObjectID and mdf_type attributes blank, but you can specify either one or
both of them as “unknown” DCR will determine the sysObjectID value automatically if only the
mdf_type is specified, and vice versa. If you enter both, DCR will not check that they map properly.

 • If you maintain an application-specific store of device information, including device references and
other data, remember:

 – You will need to maintain a mapping between your application-specific device identifiers and
the DCR Device IDs. This is required because your application can only fetch device details
from DCR by using the DCR Device ID.

 – Your application must maintain a “last updated” timestamp value for each device in its
application-specific device store. This is needed so that your application can get device updates
from DCR using the getNewDevices() API call.

 – Your application should always filter incoming DCR events before populating the
application-specific device list with new entries or presenting it to users.

DCR Error Codes and Interpretations

The DCR error codes and what they stand for are as follows:

Table 14-16 DCR Error Codes and Interpretations

Error Number Error String Meaning

0 NO_ERROR No error.

-1 UNKNOWN_EXCEPTION Unknown error occured.
14-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
-3 NO_ID_ATTRIBUTES_SPECIFIED Atleast one mandatory attribute was not specified.

-4 MORE_PARENT_IDS_SPECIFIED More than one Parent ID was specified.

-5 DEVICE_RECORD_EXISTS Duplicate device. Record for specified device already
exists.

-6 DUPLICATE_DEVICE_NAME Specified device name already exists.

-7 UNSUPPORTED_ARGUMENT_VALUE Argument value is not supported.

-8 NO_SUCH_DEVICE Specified device does not exist in records.

-9 DEVICE_EXCLUDED Device is marked as excluded.

-10 DEVICE_ID_FORMAT_ERROR Invalid device ID format.

-11 DEVICE_ID_COUNT_ERROR Internal error during device ID count.

-12 DUPLICATE_DEVICE_NAME_UNDER_PAR
ENT

Duplicate device ID under the same Parent.

-13 NO_DEVICE_NAME No device name specified.

-15 DUPLICATE_ATTRIBUTE User defined field with the same name already exists.

-16 INVALID_APP_ID Invalid application ID.

-17 APP_ID_COUNT_ERROR Internal error during application ID count.

-18 DUPLICATE_DEVICE_RECORD Duplicate record found for this device.

-19 AUTHENTICATION_FAILED User is not authenticated.

-20 DEVICE_AUTHORIZATION_FAILED User is not authorized to perform this task on the device.

-21 EXCLUDE_FILE_LOAD_ERROR Error in loading exclude file. Check the file name and
path.

-22 SYSOID_VALUE_ERROR Must specify sysObjectID/MDF type.

-23 CTM_COMM_ERROR Error in communicating with DCA Server.

-24 NO_DSBU_MEMBER_NUMBER_SPECIFIED DSBU Cluster member number not specified.

-25 INVALID_ATTRIBUTE_INFO Invalid attribute specified.

-26 DUPLICATE_MEMBER_UNDER_PARENT DSBU Cluster member number already exists.

-27 DCR_MODE_IS_NOT_SLAVE The DCR mode is not set as Slave.

-28 DCR_MODE_IS_NOT_MASTER The DCR mode is not set as Master.

-29 MASTER_DATA_RESTORED Master data is restored.

-30 INVALID_SLAVE The specified slave is not valid.

-31 NUM_ATTRIBUTE_LIMIT Attribute limit .

-33 TASK_AUTHORIZATION_FAILED User is not authorized to perform this task .

-34 CAM_EXCEPTION Internal error occured during security checks.

-35 AUS_DEVICE_ID_NOT_SPECIFIED AUS device ID is not specified.

-36 INVALID_ATTR_VALUE One of the attribute values is invalid.

-37 ERROR_IN_OPENING_EXCLUDE_FILE Error in opening exclude file. Check file name and path

Table 14-16 DCR Error Codes and Interpretations (continued)

Error Number Error String Meaning
14-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Responding to DCR Events
Example 14-16 shows code for a sample application that can respond to DCR Device and DCR
RESTORE Events.

Note This code is incomplete. It is provided as an illustration of application-side DCR event processing only.

Example 14-16 Responding to DCR Device and RESTORE Events

-38 ERROR_IN_PARSING_EXCLUDE_FILE Error in parsing exclude file. Please check the format of
the file.

-39 CANNOT_CHANGE_MASTER Error in configuring the slave because domain IDs of the
slave and master are the same. Change mode to
Standalone first and then change it to Slave.

-40 CANNOT_CONFIG_MASTER Error in configuring the slave because domain IDs of the
slave and master are the same .

-41 INVALID_DCR_DEVICE_TYPE The specified device type is not valid.

-42 INVALID_ATTR_VAL_LENGTH The attribute value length is not valid.

-43 INVALID_CRED_VAL_LENGTH The crdential value length is not valid.

Database Related

-101 DATABASE_EXCEPTION Error in database.

-102 PRIMARY_KEY_NOT_UNIQUE Primary key specified already exists.

-103 SQL_SYNTAX_ERROR Syntax error in the SQL statement.

CSTM related

-201 DCR_SERVER_NOT_RUNNING_ERROR DCA Server is not running.

-202 CSTM_INTERNAL_ERROR Internal error in communication channel.

-203 ERROR_IN_COMM_WITH_SERVER Error in communicating with Peer Server. Ensure that
self-signed certificate is generated or copied correctly and
System Identity Setup is done correctly.

-211 PEER_DCR_SERVER_NOT_RUNNING_ERR
OR

Peer DCA Server is not running.

-213 ERROR_IN_COMM_WITH_PEER_SERVER Error in communicating with Peer Server. Ensure that
self-signed certificate is generated or copied correctly and
System Identity Setup is done correctly.

-221 PEER_DCR_SECURITY_SERVER_NOT_RUN
NING_ERROR

Peer DCR security server is not running.

-223 ERROR_IN_COMM_WITH_PEER_DCR_SEC
UIRTY_SERVER

Error while communicating with Peer DCR Security
Server.

Table 14-16 DCR Error Codes and Interpretations (continued)

Error Number Error String Meaning
14-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
public class DCREventReceiver {

 // Instantiate Tibco receiver and subscribe to "cisco.mgmt.cw.cmf.dcr" event
 public DCREventReceiver() {

 try {
 _parser = SAXParserFactory.newInstance().newSAXParser();
 _handler = new SXP();
 log.info("INFO: Creating SAX Parser object");
 } catch (Exception ex) {
 log.fatal("Error creating: " + ex.getMessage());
 }

 try {
 TopicConnectionFactory factory;
 factory = new TopicConnectionFactoryImp();
 _con = factory.createTopicConnection();
 _session = _con.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 } catch (JMSException e) {
 log.fatal(
 "ERROR: cannot connect to Topic for receiving events.");
 log.fatal(MoMUtils.getStackTrace(e));
 return;
 }

 log.info("Listening on the topic: " + "cisco.mgmt.cw.cmf.dcr");
 try {
 Topic topic = _session.createTopic("cisco.mgmt.cw.cmf.dcr");
 _sub = _session.createSubscriber(topic);
 _sub.setMessageListener(this);
 } catch (JMSException e) {
 log.fatal("ERROR: Cannot create the Topic listener.");
 }
 }

 public void processEvents() {
 try {
 _con.start();
 log.info("INFO: Starting to receive message");
 } catch (JMSException e) {
 log.fatal("ERROR: cannot process events from topic");
 log.fatal(MoMUtils.getStackTrace(e));
 }
 }

 public void onMessage(Message jmsMsg) {
 log.info("Calling on mesage to create a thread.... ");
 try {
 TextMessage text = null;
 if (jmsMsg instanceof TextMessage) {
 text = (TextMessage) jmsMsg;
 } else {
 log.debug("Message is not TextMessage: " + jmsMsg);
 return ;
 }

 String xmlData = text.getText();
 log.info("Inserting event in queue: " + xmlData);
 processMessage(xmlData);
 } catch(Exception exception) {
 log.fatal("Problem in onMessage " + exception);
 }
 }
14-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 // process the Event data
 //
 void processMessage(String txt) {
 dcrDeviceVec.clear();
 dcrEventType = "";
 byte[] txtBytes = txt.getBytes();
 ByteArrayInputStream bis = new ByteArrayInputStream(txtBytes);
 try {
 _parser.parse(bis, _handler);
 } catch (Exception ex) {
 log.fatal("Error parsing event data: " + txt
 + ". Reason: " + ex.getMessage());
 return;
 }

 for (int i = 0; i < dcrDeviceVec.size(); i++) {
// Device data

 }

 log.info("Event type is"+ dcrEventType);
 }

 class SXP extends DefaultHandler {
 public void startDocument() throws SAXException {
 log.info("SXP: StartDocument method is called");
 }

 public void endDocument() throws SAXException {
 log.info("SXP: EndDocument method is called");
 }

 public void startElement(String namespaceURI, String sName,
 String qName, Attributes attrs) {
 log.info("SXP: StartElement method is called ");
 log.info("SXP: NameSpaceURI is = " + namespaceURI);
 log.info("SXP: simple Name is = " + sName);
 log.info("SXP: Qualified Name is = " + qName);

 for (int i = 0; i < attrs.getLength(); ++i) {
 log.info("SXP: Local Name is = "
 + attrs.getLocalName(i));
 log.info("SXP: QName is = "
 + attrs.getQName(i));
 log.info("SXP: Attribute value is = "
 + attrs.getValue(i));
 }

 if (qName.equalsIgnoreCase("Device")) {
 processDevice = true;
 }
 }

 public void endElement(String namespaceURI, String sName, String qName) {
 log.info("SXP: EndElement method is called ");
 log.info("SXP: NameSpaceURI is = " + namespaceURI);
 log.info("SXP: simple Name is = " + sName);
 log.info("SXP: Qualified Name is = " + qName);

 // for now, ignore bulk events, restore events etc.

 if (dcrEventType.equals("BULK_DEVICES_ADDED") ||
 dcrEventType.equals("BULK_DEVICES_DELETED") ||
 dcrEventType.equals("BULK_DEVICES_UPDATED") ||
 dcrEventType.equals("DCR_DATA_RESTORED_FROM_DIFFERENT_DOMAIN") ||
14-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 dcrEventType.equals("DCR_DATA_RESTORED")) {
 processDevice = false;
 return;
 }

 if (!processDevice)
 return; // ignore devices we do not want

 for (int i = 0; i < dcrEventFieldNames.length; i++) {
 dcrDeviceFields[i] = "";
 if (qName.equalsIgnoreCase(dcrEventFieldNames[i])) {
 if (value != null && !value.equals(""))
 dcrDeviceFields[i] = value.toString();
 }
 if (qName.equalsIgnoreCase("SysObjectId")) {

// Is the device is supported by the application
//

 if (! applicationSupportedType(dcrDeviceFields[i])) {
 processDevice = false;
 return;
 }
 }
 // skip if the device id is not in our database
 // for a delete event.
 if (qName.equalsIgnoreCase("DeviceId")) {
 if (dcrEventType.equals(DCR_DEVICES_DELETED)) {
 synchronized(application.deviceIdsHash) {
 if
(!application.deviceIdsHash.containsKey(dcrDeviceFields[i])) {
 processDevice = false;
 return;
 }
 }
 }
 }
 }

 if (qName.equalsIgnoreCase("Device") && processDevice) {
 // store all device attributes in an array
 dcrEventType = dcrDeviceFields[0];
 String dcrDeviceId = dcrDeviceFields[1];
 String sysObjectId = "";
 String ipAddress = "";
 String hostName = "";
 String displayName = "";
 long dcrTransactionId = 0;
 if (!dcrEventType.equals("DEVICES_DELETED")) {
 // delete event has only dcrId.
 sysObjectId = dcrDeviceFields[2];
 ipAddress = dcrDeviceFields[3];
 hostName = dcrDeviceFields[4];
 displayName = dcrDeviceFields[5];
 dcrTransactionId = Long.parseLong(dcrDeviceFields[6]);
 }

// Application-specific processing here...
 }
 }

 public void characters(char[] ch, int start, int length) {

 log.info("SXP: Characters method is called");
 String s = (new String(ch,start,length)).trim();
 log.info("SXP: The value is " + s);
14-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 if (value == null) {
 value = new StringBuffer(s);
 } else {
 value.append(s);
 }
 }

 } // End of Inner class - SXP

 //Vector to store the list of device Info
 Vector devDataVec=null;
 StringBuffer value=null;
 String dcrEventType = null;

 // parsing specifc variables
 DefaultHandler _handler = null;
 SAXParser _parser = null;

 public static final Class _Class = DCREventReceiver.class;

 private TopicConnection _con = null;
 private TopicSession _session = null;
 private TopicSubscriber _sub = null;
 private SharedQueue _queue = null;
 Vector dcrDeviceVec = null;
 boolean processDevice = false;
 String[] dcrDeviceFields = null;
 Logger log;
}**

Using DCR Domain and Transaction IDs
Example 14-17 shows code for a sample application that checks the Domain and Transaction at startup.

Note This code is incomplete. It is provided as an illustration of application-side DCR event processing only.

Example 14-17 Using the DCR Domain and Transaction IDs During Startup

//initiate the process of listening for events from the DCR
 dcrEventListner = new DCREventReceiver();
 dcrEventListner.processEvents();

// get the latest transaction ID from the application database
 public long getMaxDcrTransactionId() {

}
// Filter device IDs; get only application-specific device IDs from DCR
public Vector getFilteredDcrDevices(String action, DeviceId[] dcrDevices) {
for (int i = 0; i < dcrDevices.length; i++) {
 DeviceId meDev = dcrDevices[i];
 if (action.equals("DEVICES_DELETED")) {
 // only device ID will be in the event
 String dcrDeviceId = meDev.getValue();
 } else { // extract more event details from payload
 find out sysObjectId or mdf_type of the device...
14-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
 find out whether application supports this specific device
 }

}
 return devicesVec;
 }

/** this routine reads DCR data upon startup and syncs up data **/
/** in preparation for startup synching with DCR to catch any offline updates **/

 getDCRUpdatesOnStartup(long MaxDcrTransactionId){

 Device dcrDev = new com.cisco.nm.dcr.Device();
 DeviceId[] ids = null;
 Vector allIdsVec = new Vector();
 Vector newDevicesVec = null,
 updatedDevicesVec = null,
 deletedDevicesVec = null;

 String dcrDomainId = dcr.getDCRDomainID(extraInfo);

StringoldDcrDomainId = get dcrDomainId from application datatbase

 if (oldDCRDomainId not availble in application database) // first time
store dcrDomainId in application database

 } else {
 if (!oldDCRDomainId.equals(dcrDomainId)) {

clean application database and start resync DCR data or
indicate application about the change
application specific action

 }
 }
 }

 if (appMaxDcrTransactionId == 0) { //first time startup -
get devices from DCR through

Devices[] devices = getNewDevices(appMaxDcrTransactionId,extraInfo)
 filteredDevices = getFilteredDcrDevices("DEVICES_ADDED",
updateInfo.getNewDevices());

update application managed list
return ;

 }

 // If not, check if DCR transaction ID is different
 // If DCR transaction ID is different, adds/deletes/updates took
 // place when application was offline. Get these changes now.
 // Load existing information from application database.

//
 long maxDcrTransactionId = dcr.getMaxTransactionID(extraInfo);
 if (maxDcrTransactionId == appMaxDcrTransactionId)
 return null;

} else (if appMaxDcrTransactionId < maxDcrTransactionId) {

 // Otherwise, there were updates when application was offline.
 // Retrieve the current device IDs from application and then start sync.

 DCRUpdateData updateInfo = dcr.getDCRUpdates(appMaxDcrTransactionId,
 dcrDomainId, dcrDeviceIds, extraInfo);
 newDevicesVec = getFilteredDcrDevices("DEVICES_ADDED",
updateInfo.getNewDevices());
 deletedDevicesVec = getFilteredDcrDevices("DEVICES_DELETED",
updateInfo.getDeletedDevices());
 updatedDevicesVec = getFilteredDcrDevices("DEVICES_UPDATED",
updateInfo.getUpdatedDevices());
// Updated application managed list based on the new, deleted and updated data from DCR.
14-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
}
 }
/**
main method for the application.
**/
public static void main(String[] args) throws Exception {
// initialize first: Start new thread to listen to DCR events, and push to the queue.
startDCREventListener();
 long MaxDcrTransactionId = application.getMaxDcrTransactionId();
// Now start threads to handle all device processing.
 syncWithDCRAtStartup(MaxDcrTransactionId);
 }
}

Using the DCR Command-Line Interface
The DCR command-line intepreter allows you to conduct via the command line most of the important
tasks normally accessible only via the DCR API or the GUI. As with the GUI, all CLI commands must
be executed on the same machine on which the target DCR server is running.

Table 14-17 shows the commands and their usage.

To start the DCR command line interpreter:

1. Change to the NMSROOT/bin folder

2. Execute dcrcli.

3. At the prompt, enter a valid Cisco Works user ID and password. When dcrcli finishes authenticating
this user name, it displays the dcrcli> prompt.

Table 14-17 DCR CLI Commands

Command Syntax & Description

add add ip=value hn=value di=value dn=value -a attname=value

Adds the specified device to the DCR server’s device list. You must specify an IP address (ip), host name (hn)
or device Identity(di). You must also specify the the Display Name (dn) and the Attribute name (-a attname).
The attribute sysObjectID is mandatory. You can specify as many comma-separated attribute name=value pairs
as needed.

For example:

add ip=1.1.1.1 hn=device1 dn=cisco.com -a sysObjectID=1.3.6.1.4.1.9.1.6

mod mod id=value ip=value hn=value di=value dn=value -a attname=value

Modifies the specified device. You must enter the following:

1. Enter the Device ID (id).

2. Enter either the IP Address (ip), Hostname (hn), or Device Identity (di).

3. Enter the Display Name (dn) and the Attribute name (-a attname). You can add multiple attributes.

For example:

mod id=54341 ip=2.2.2.2 dn=cisco.com -a display_name=new_name
14-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
del del id=value

Deletes the specified device. You must specify the Device ID (id).

For example:

del id=256666989

impAcs mpACS ot=OS Type hn=ACS Server Name or IP address un=ACS admin user name pwd=ACS admin password
prt=port number cr=conflict resolution option

Import sdevice information directly from a remote ACS system.

You must specify Operating System Type [ot], ACS Server Name or IP address [hn], ACS admin user name
[un], ACS admin password [pwd] and port number [prt].

The default port number is 2002.

Conflict resolution option in dcrcli that helps to override dcr data from import source file,rnms,nms,acs).
dcrcli will have an extra cr (conflict resolution) option added to the end of all the import commands. This
option will take two values viz. dcr for keeping the dcr data and {file, nms, rnms, acs} for keeping the data
from import source.

If we are not specifying cr option explicitly, dcr will be taken as the default value for cr option for all the
import commands.

Example:

impAcs ot=WIN2K hn=1.2.3.4 un=acsadmin pwd=acspwd prt=2002

impFile impFile fn=file name ft=file type cr=conflict resolution option

Imports device information from a file. You must specify a filename(fn) with complete path, and the file type
(ft). CSV and XML are the valid values for file type.

Conflict resolution option in dcrcli that helps to override dcr data from import source file,rnms,nms,acs).
dcrcli will have an extra cr (conflict resolution) option added to the end of all the import commands. This
option will take two values viz. dcr for keeping the dcr data and {file, nms, rnms, acs} for keeping the data
from import source.

If we are not specifying cr option explicitly, dcr will be taken as the default value for cr option for all the
import commands.

Example:

impFile fn=d:/mypath/myImportFile.xml ft=xml cr={dcr|file}

impNms impNms nt=NMS type il=Installation location cr=conflict resolution option

Imports device information directly from a local NMS.

You must specify the NMS type [nt]. Valid values for NMS Type are are HPOV6.x and Netview7.x.

Conflict resolution option in dcrcli that helps to override dcr data from import source file, rnms, nms, acs).
dcrcli will have an extra cr (conflict resolution) option added to the end of all the import commands. This
option will take two values viz. dcr for keeping the dcr data and {file, nms, rnms, acs} for keeping the data
from import source.

If we are not specifying cr option explicitly, dcr will be taken as the default value for cr option for all the
import commands.

Example:

impNms nt=HPOV6.x il=/opt/OV

Table 14-17 DCR CLI Commands (continued)

Command Syntax & Description
14-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
impRNms impRNms nt=NMS type hn=hostname un=Remote User Name il=Installation location ot=OS Type cr=conflict
resolution option

Imports device information directly from a remote NMS.

You must specify the NMS type [nt], Remote Host Name or IP address [hn], Remote User Name [un],
Installation location of the NMS [il], and OS Type[ot].

Valid values of NMS Type are HPOV6.x and Netview7.x. You can specify your OS types as HPUX, AIX, or
SOL.

Conflict resolution option in dcrcli that helps to override dcr data from import source file, rnms, nms, acs).
dcrcli will have an extra cr (conflict resolution) option added to the end of all the import commands. This
option will take two values viz. dcr for keeping the dcr data and {file, nms, rnms, acs} for keeping the data
from import source.

If we are not specifying cr option explicitly, dcr will be taken as the default value for cr option for all the
import commands.

Example:

impRNms nt=HPOV6.x hn=1.2.3.4 un=root il=/opt/OV ot=SOL

exp exp fn=filename ft={csv|xml}

Exports the current DCR device list to a file in CSV or XML format. You must specify a filename with
complete path, and whether the file type is in CSV or XML format. For example:

exp fn=d:/mypath/myExportFile.xml ft=xml

lsids lsids {all|dn=displayName|ip=IPAddress}

Lists the DCR device ID for devices stored on the DCR Server. It will list all devices if you specify no
additional parameters [KR: or must you specify lsids all in order to list all?], or only the device ID for the
device with the specified display name or IP address. If several devices share the same IP address, the
command will list the device IDs for all of them. For example:

lsids ip=168.192.1.20

detail detail id=deviceID

Lists all the details about the device with the ID you have specified.

For example:

detail id=89992921023

lsattr lsattr

This lists Attribute Name, Attribute Description, and Attribute Type.

Attribute Type is a constant that identifies an Attribute Name. For example, Attribute Type 1072 identifies the
attribute name display_name. For example, Attribute Type 1072 identifies the attribute name display_name.

lsmode lsmode

Lists the DCR ID, the DCR Group ID, the current DCR mode, and the associated Master or Slaves.

setmaster setmaster

Sets the DCR server to Master mode. The command takes no parameters.

setstand setstand

Sets the DCR server to Standalone mode. The command takes no parameters.

Table 14-17 DCR CLI Commands (continued)

Command Syntax & Description
14-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Enhancing DCR Performance
A number of DCR APIs can cause performance problems under certain circumstances. To help you avoid
these problems, the CWCS team makes the following recommendations:

1. Avoid the getDevices(ApiExtraInfo extranifo) method.

This paricular method returns the complete details of all attributes and credentials of all devices in DCR.
This API should be used only very rarely, if at all, since there are very few cases when an application
will want to retrieve that much information with a single call. If your DCR server contains a very large
number of devices, use of this API can consume large amounts of memory, and increase the risk of
CSTM errors, serialization/deserialization issues, and database-connection time out errors. This is
compounded if several applications are using the same DCR, and all call this API at or near the same
time.

Instead, use other DCR APIs that return only requested devices, such as getDevices and
getIdentityAttributes (see recommendation 3, below). Most of these APIs require you to specify
DCR Device IDs as arguments. Your application can retrieve the Device ID for DCR devices using the
getDeviceIdentifiers() API call.

2. Observe a 5,000-device limit on API calls.

All DCR APIs that return an “Array of Device objects” or take as arguments an “Array of DeviceId
objects” (such as addDevices and updateDevices) are subject to the potential performance problems and
risk described in recommendation 1, above.

To avoid this, do not use these APIs for more than 5,000 devices in a single call. If your application needs
to call the API for more than 5, 000 devices, segment the list of devices and call the API multiple times.
Since all applications have a wrapper around the DCR APIs, this logic should be fairly easy to
implement.

This is especially important because performance and scaling for multiple applications making
simultaneous DCR API calls can not be easily handled. Large add or update operations can block API
calls from other applications. It is the responsibility of applications making such calls to yield control
so other applications can effectively use the DCR APIs.

3. Use the getIdentityAttributes() API as much as possible.

Use this API in preference to getDevices() wherever possible. This API returns a device object that
contains only the following attributes: display_name, management_ip_address, host_name,
domain_name, device_identity (if it is an AUS device), SysObjectId and mdf_type. Most of the time,
application needs for device information, especially for display purposes (such as in the Device
Selector), are satisfied by this subset of attribute data. In addition, this API executes much more quickly.
For example: To process 1,000 devices, getDevices takes approximately 10 seconds, while
getIdentityAttributes takes about 500 milliseconds.

setslave setslave master=DCRGroupID port=portNumber

Sets the DCR server to Slave mode. You must specify the DCR Group ID for the new Master with which this
slave will communicate. You must also specify the Master’s port number if it is anything except 443 (443 is
the default Master port). For example:

setslave master=DCRMaster221 port=1099

exit Exits the DCR command line interpreter shell.

Table 14-17 DCR CLI Commands (continued)

Command Syntax & Description
14-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 14 Using the Device Credentials Repository
Using DCR
Note that recommendation 2, above, also applies to getIdentityAttributes (that is, do not use it to
fetch more than 5,000 devices at a time).

4. Use DCR Server status-check APIs.

Before making some API calls, you will want to ensure you are not generating useless traffic by checking
that the DCR Server is actually running. DCR provides two APIs to check the status of the DCR Server:

 • isRunning checks the status of the local DCR Server. Most of the time, you will want to use this call
to check DCR Server status.

 • isMasterDCRRunning checks the status of the Master DCR server in the domain.

5. Ensure you have sufficient JVM thread stack and heap allocations.

Large numbers of device objects require large amounts of memory. If your Java application will process
large numbers of device objects on a regular basis, you should adjust the JVM thread and heap
parameters accordingly. Based on tests, large groups of DCR device objects typically require the
following memory spaces:

6. Call the DCRProxy close() API at the end.

The DCRProxy class provides a close() method to clean up and free resources, including any open DB
connections, when you are finished using it. Make sure that your code calls the close() method on each
proxy object once you are done using the proxy object.

7. Use the proper DCRProxy constructor.

You need to ensure that you use the proper DCRProxy object constructor: the default, or one that controls
the loading of log4J categories for DCR and CSTM classes . For more information, see the “Creating the
DCRProxy Object” section on page 14-29.

Objects Memory

1,000 3.9MB

2,000 6.3MB

5,000 13.4MB

10,000 24.6MB

20,000 47.7MB

50,000 115MB
14-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 15

Using the Core Logging API

The Core Logging API (CLA) allows both the Core (the object repository) and MDCs (Multiple Device
Controllers) to save logging messages as well as auditing messages. It also allows Core and other MDCs
to log to the same file from both Java and C++, and to be accessed seamlessly from either language.
MDCs also use CLA to write to logs wherever necessary.

The Core Logging API (CLA) is accessible from both Java and C++. The Core Client Registry (CCR)
contains information for each MDC that pertains to accessibility of certain types of logs as well as
auditing. It also contains location information for the logs. The CLA accesses the information in the
CCR.

Log4cpp is used as the logging API and simple static methods are created for users of the CLA to call.
The Log4cpp API remains hidden to users of the CLA. A very simple java JNI interface is created to call
the static CLA methods.

The following topics describe the CLA:

 • About the Core Logging API Structure

 • Using the Core Logging API

 • About the Core Logging API Interface Design

About the Core Logging API Structure
The Core Logging API consists of four parts:

1. CoreLogger: Communicates with the CCR to determine categories, priorities, and locations for
MDC logs. Appropriate appenders are created for each MDC, depending on the location. They are
attached to each category of the MDC with the specified priority. Priority levels are (ranked from
lowest to highest):

 – DEBUG

 – INFO

 – WARNING

 – ERROR

 – FATAL

AUDIT priority is used to separate levels from each other.

2. Logger API: Contains a series of simple static methods, which CLA users call to create logs. It is
the access point for the CLA into the Log4cpp API.
15-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
Using the Core Logging API
3. JavaLogger API: Identical to the Logger API, but accessible from Java.

4. Auditlog API: A wrapper over JavaLogger which provides only the JavaLogger auditing feature.
Your application can use this API if your code is compiled with JDK1.4 and above.

Using the Core Logging API
The following topics explain how to use each of the main CLA functions:

 • Initializing the Core Logging API

 • Creating Debug Messages

 • Creating Information Messages

 • Creating Warning Messages

 • Creating Error Messages

 • Creating Fatal Messages

 • Creating Auditing Messages

 • Altering Priority for Category

 • Adding Logging Location to CCR

 • Adding Logging Category and Priority to CCR

Initializing the Core Logging API
To initialize the CLA, use:

Call Logger::LoadCategories()

For Java:

call JavaLogger.LoadCategories()

Creating Debug Messages
The following information is required: MDC to which the message belongs, its category, the message,
and its ID.

Call Logger::Debug(mdc, category, message, id)

For Java:

call JavaLogger.Debug(mdc, category, message, id)

Creating Information Messages
The following information is required: MDC to which the message belongs, its category, the message,
and its ID.

Call Logger::Info(mdc, category, message, id)
15-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
Using the Core Logging API
For Java:

call JavaLogger.Info(mdc, category, message, id)

Creating Warning Messages
The following information is required: MDC to which the message belongs, its category, the message,
and its ID.

Call Logger::Warn(mdc, category, message, id)

For Java:

call JavaLogger.Warn(mdc, category, message, id)

Creating Error Messages
The following information is required: MDC to which the message belongs, its category, the message,
and its ID.

Call Logger::Error(mdc, category, message, id)

For Java:

call JavaLogger.Error(mdc, category, message, id)

Creating Fatal Messages
The following information is required: MDC to which the message belongs, its category, the message,
and its ID.

Call Logger::Fatal(mdc, category, message, id)

For Java:

call JavaLogger.Fatal(mdc, category, message, id)

Creating Auditing Messages
Auditing messages can be created using Java by using:

call JavaLogger.audit(userName, flag, taskid, appid, message)

Auditing functionality is not available from C++.

Altering Priority for Category
You can alter the priority level of a category within an MDC using:

Call Logger::AlterPriority(mdc, category, newPriority)
15-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
About the Core Logging API Interface Design
For Java:

call JavaLogger.AlterPriority(mdc, category, newPriority)

Adding Logging Location to CCR
From a CCRInterface object, you can use:

call addLoggingCategory(mdc, category, priority)

From CCRAccess, you can use:

CCRAccess addLog mdc category priority

Adding Logging Category and Priority to CCR
From a CCRInterface object, you can use:

call setLoggingLocation(mdc, location)

From CCRAccess, you can use:

CCRAccess addLogLocation mdc location

About the Core Logging API Interface Design
The following topics describes the functions, fields, methods and arguments of the main Core Logging
API components:

 • About the Logger Interface

 • About the JavaLogger Interface

 • About the Auditlog Interface

About the Logger Interface
1. public static void LoadCategories();

Initializes the CLA.

2. public static void AlterPriority(std::string mdc, std::string category, std::string

priority);

Alters a category’s priority.

Parameter Type Purpose

mdc std::string The MDC to which the category belongs.

category std::string The category in the MDC whose priority will be altered.

priority std::string The new priority value.
15-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
About the Core Logging API Interface Design
3. public static void Debug(std::string mdc, std::string category, std::string message,

std::string id);

Posts a debug message if DEBUG priority is enabled.

4. public static void Info(std::string mdc, std::string category, std::string message,

std::string id);

Posts an info message if INFO priority or less is enabled.

5. public static void Warn(std::string mdc, std::string category, std::string message,

std::string id);

Posts a warning message if WARNING priority or less is enabled.

6. public static void Error(std::string mdc, std::string category, std::string message,

std::string id);

Posts an error if ERROR priority or less is enabled.

Parameter Type Purpose

mdc std::string The MDC to which the message belongs.

category std::string The category in the MDC to which the message belongs.

message std::string The message.

id std::string The message ID.

Parameter Type Purpose

mdc std::string The MDC to which the message belongs.

category std::string The category in the MDC to which the message belongs.

message std::string The message.

id std::string The message ID.

Parameter Type Purpose

mdc std::string The MDC to which the message belongs.

category std::string The category in the MDC to which the message belongs.

message std::string The message.

id std::string The message ID.

Parameter Type Purpose

mdc std::string The MDC to which the message belongs.

category std::string The category in the MDC to which the message belongs.

message std::string The message.

id std::string The message ID.
15-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
About the Core Logging API Interface Design
7. public static void Fatal(std::string mdc, std::string category, std::string message,

std::string id);

Posts a fatal message if FATAL priority or less is enabled.

About the JavaLogger Interface
1. public static synchronized void LoadCategories();

Initializes the CLA.

2. public static synchronized void AlterPriority(string mdc, string category, string

priority);

Alters a category’s priority.

3. public static synchronized void Debug(string mdc, string category, string message,

string id);

Posts a debug message if DEBUG priority is enabled.

4. public static synchronized void Info(string mdc, string category, string message,

string id);

Posts an info message if INFO priority or less is enabled.

Parameter Type Purpose

mdc std::string The MDC to which the message belongs.

category std::string The category in the MDC to which the message belongs.

message std::string The message.

id std::string The message ID.

Parameter Type Purpose

mdc string The MDC to which the category belongs.

category string The category in the MDC whose priority will be altered.

priority string The new priority value.

Parameter Type Purpose
mdc string The MDC to which the message belongs.

category string The category in the MDC to which the message belongs.

message string The message.

id string The message ID.

Parameter Type Purpose

mdc string The MDC to which the message belongs.

category string The category in the MDC to which the message belongs.
15-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
About the Core Logging API Interface Design
5. public static synchronized void Warn(string mdc, string category, string message,

string id);

Posts a warning message if WARNING priority or less is enabled.

6. public static synchronized void Error(string mdc, string category, string message,

string id);

Posts an error message if ERROR priority or less is enabled.

7. public static synchronized void Fatal(string mdc, string category, string message,

string id);

Posts a fatal message if FATAL priority or less is enabled.

8. public static synchronized void audit(string userName, byte flag, int taskid, string

appid, string message)

Sends an auditing event to be logged.

message string The message.

id string The message ID.

Parameter Type Purpose

Parameter Type Purpose

mdc string The MDC to which the message belongs.

category string The category in the MDC to which the message belongs.

message string The message.

id string The message ID.

Parameter Type Purpose

mdc string The MDC to which the message belongs.

category string The category in the MDC to which the message belongs.

message string The message.

id string The message ID.

Parameter Type Purpose

mdc string The MDC to which the message belongs.

category string The category in the MDC to which the message belongs.

message string The message.

Id string The message ID.
15-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 15 Using the Core Logging API
About the Core Logging API Interface Design
9. public static synchronized void audit(string userName, AccountParam params)

Sends an auditing event to be logged

.

About the Auditlog Interface
1. public static synchronized void audit(string userName, byte flag, int taskid, string

appid, string message)

Sends an auditing event to be logged. Auditlog.java is part of the com.cisco.core.nm.util package.

Parameter Type Purpose

userName string The user name that posted the auditing message.

flag byte The flag of the event to be logged

taskid int The task ID.

appid string The application ID.

message string The auditing message.

Parameter Name Type Purpose
userName string The user name that posted the auditing message.

params AccountParam The parameters of the audit log.

Parameter Type Purpose

userName string The user name that posted the auditing message.

flag byte The flag of the event to be logged

taskid int The task ID.

appid string The application ID.

message string The auditing message.
15-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 16

Adding Online Help

CWCS uses a customized Cisco help engine to display online help. The Cisco help engine produces a
help system suite, composed of one or more help systems that you can install or uninstall when you need
them. When you add a new application to CWCS:

 • The help system for your application is added to the help system suite.

 • Your application name appears in the main help contents page and index.

 • The application name is linked to your help system’s default page.

The following topics describe the CWCS help engine and how to add help for your application to the
help system suite:

 • Overview of Online Help

 • Implementing Help: Engineering Tasks

 • Implementing Help: Writing Tasks

 • Adding Drop-In Help Systems

For more information about the Cisco help system, refer to the Cisco Online Help support website
(http://wwwin-olh-support.cisco.com/index.html). This website provides access to templates, APIs, and
many process documents, including:

 • EMBU Help System (Client/Web Server) 2.0 System Functional Specification, EDCS-126498

 • Online Help System for CMF 2.3 System Functional Specification, EDCS-238093

 • Creating Cisco Online Help Using FrameMaker and WebWorks, ENG-104742

 • Creating Online Help Using Native HTML, EDCS-298882

 • Creating Online Help Using XML, EDCS-357012

 • Guidelines for Writing Single-Sourced Manuals, ENG-70452

 • Editing Guidelines for Writing Documentation, EDCS-280677

Note The Cisco help system no longer supports authoring in RoboHelp. Authors creating online help for
CiscoWorks applications should convert existing RoboHelp projects to native HTML, using the methods
detailed in EDCS-298882.

This release of CWCS uses Cisco help system version 2.0, which incorporates the following major
changes from version 1.0:
16-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://wwwin-olh-support.cisco.com/index.html
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/help-spec-clt-svr.fm@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/Creating_Cisco_Online_Help_Using_XML.pdf@latest
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/help-spec-cmf-2.3.doc@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/sstips.pdf@latest
http://wwwin-eng.cisco.com/Eng/ENM/EMBU-Doc/Process/Writing_and_Editing/EMBU_style.fm@latest

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Overview of Online Help
The major changes for Online Help since Version 1.0 includes the following:

 • The help system supports the Cisco UE/UII look and feel. This includes access to PDF files and
Glossary topics as topics within the help system, rather than links from banner buttons.

 • The table of contents and index display using HTML and Javascript only.

 • The banner navigation elements display using HTML tables instead of gif files.

Cisco help consists of:

 • Help window layouts defined by several special HTML files.

 • A help engine that:

 – Links context-sensitive help buttons to the appropriate topic.

 – Creates a master table of contents and index for the installed help systems.

 – Provides information required by the search engine.

 – Handles error conditions.

 • A search engine and search index files that support full-text searches across one or all installed help
systems.

 • Special mapping files that match help tags in your application to help topics.

The following topics describe these components:

 • How Help Is Displayed

 • Understanding the Help Engine

 • Understanding the Search Engine

 • Understanding Mapping Files

How Help Is Displayed
The Cisco help engine displays help files in a separate browser window.

To organize the content of a suite of help systems, the help engine creates a top-level help page that
contains links to the help system for each installed application. Figure 16-1 shows an example of the
Main Help Window for a help system suite.
16-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Figure 16-1 Help Suite: Main Page Layout

For this top-level page in a help suite, the help window contents and functions are as follows:

 • The Banner frame contains two navigation links on the far right:

 – The Main link reloads the master table of contents page with its associated default topic, closing
any open folders in the contents tree.

 • The Contents frame provides access to the contents, index and search functions for the help system
suite. The Contents frame contains three tabs:

 – The Contents tab contains entries for all installed help systems, in expanding and collapsing
folders (represented by book icons). The contents are organized by product suite or other
groups. This organization helps users quickly find the help for an application in the suite.

 – The Index tab contains a link to the first index page of each installed help system. These entries
are organized alphabetically, by application name. Each application index entry takes you to an
alphabetized list of links to all the topics in the selected help system.

 – The Search tab loads a search page in the Topic frame. You can search the individual help
system or all the help systems in a help system suite.

 • The Topic frame contains the actual help information. The default topic for the master help system
is “Using Help.”

These frames are created by a file called index.html. For a help system suite, there is one index.html file
per help system as well as a master, or main, index.html file.

The look of individual pages with only one help system is nearly identical to Figure 16-1. The only
differences are:

 • The Contents tab contains entries only for the single help system topics.

 • The Index tab contains alphabetized links to all the topics in the help system, rather than to the first
page of the index for each help system.

Banner

Contents

Topic

11
54

37
16-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Understanding the Help Engine
The Cisco help engine is a customized Java application that displays help topics in a separate browser
window. This help engine:

 • Displays help topics associated with the navigation tree entries in the CWCS desktop

 • Links context-sensitive help buttons to the appropriate topic

 • Creates a master table of contents and index for all installed help systems

 • Handles error conditions

The following topics describe these help engine functions:

 • Displaying Help Topics

 • Linking Context-Sensitive Help Buttons

 • Creating the Main Help Contents and Index

 • Handling Error Conditions

 • Summarizing the Display Process

Displaying Help Topics

The Cisco help engine uses the following behaviors to display help topics associated with the navigation
tree options in the CWCS desktop:

 • If the user clicks the desktop Help button and no folder or task is selected, the help engine displays
the Main Help page (see the “How Help Is Displayed” section on page 16-2). This page displays the
“Using Help” page in the Topics frame and a list of all installed help systems in the Contents frame.

 • If the user clicks the desktop Help button and selects a folder in the navigation tree, the help engine
displays the first page for that help system (usually the overview) in the Topics frame. The Contents
frame contains the contents for that application’s help system.

The first page of a help system also appears when you select Help from the toolbar (where the
application has toolbar), then chooses the option for this application.

 • If the user selects a task in the navigation tree, the help engine displays the help page for that task
in the Topics frame. The Contents frame contains the contents for that application’s help system.

Linking Context-Sensitive Help Buttons

To support context-sensitive help, each dialog box requires a link to its associated help topic. Therefore,
for each dialog box, the engineer must add an engineering tag to the code. Mapping files correlate these
engineering tags to corresponding help file paths. Mapping files are described in the “Understanding
Mapping Files” section on page 16-9.

Note Each application, regardless of whether the writer creates the help topics using a Native HTML
project or a FrameMaker file, must have a separate mapping file. These mapping files must be
located in a special directory at run time (see the “Packaging the Help Files” section on
page 16-16).

When the user opens the help system from a context-sensitive link, such as a Help button on a dialog
box, the help engine creates a URL to display the topic specified in the mapping file.
16-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Creating the Main Help Contents and Index

The Cisco help engine creates the master table of contents and index files for the installed help systems.

The help engine reads special DROPIN and DROPINPLACE lines in each mapping file. Using this
information, it creates a top-level help page that contains links to the help files for all installed
applications, including in-house and third-party drop-ins. If no DROPIN or DROPINPLACE lines are
present in any mapping files, the help system does not create the top-level help page.

Related Topics

 • Understanding Mapping Files

 • Adding Drop-In Help Systems

Handling Error Conditions

The Cisco help engine handles context-sensitive links when the target file is not available. The Cisco
help engine reads all the mapping files, looking for a match to the engineering tag sent by the application.

 • If no match for the engineering tag is found, the Cisco help engine loads a standard error page in the
Topic frame.

 • If a match is found for the engineering tag, but the index.html file for the help system is missing, the
engine displays the help topic anyway, using a default index.html file and the help topic filepath.

Summarizing the Display Process

Figure 16-2 illustrates the process the Cisco help engine API uses to display the help topics.
16-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Figure 16-2 Help API Process Overview

Understanding the Search Engine
The search engine allows the user to search all files in the help system or the help files for a single help
system. The search engine consists of several parts, discussed in the following topics:

 • Displaying the Search Dialog Box

 • Searching the Files and Displaying the Search Results

 • Summarizing the Search Process

Tag found?

Check for match
in mapping files

File found?

Call to help
from desktop

Mapping files
modified or first use? Read DROPIN

lines in all
mapping files

Create top TOC and
index files, push them

to all web servers

Open error page

Open top level
index.html file.
display context

help topic.

Open index.html
display context

help topic.

Open default
index.html

Find index.html
file for help system

YesNo

Yes
Tag=DEFAULT?

No

No

No Yes

Yes

11
54

38

Mapping
files
16-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Displaying the Search Dialog Box

When the reader clicks the Search button in the banner frame, HelpSearchServlet.java displays the
search dialog box in the topic frame. Figure 16-3 shows a sample search dialog box.

Figure 16-3 Sample Search Dialog Box

Mapping files define the scope of the search for each help system. A special SEARCH line in each
mapping file defines:

 • The search scope list displayed in the search page. For example, in Figure 16-3, the search scope is
“CiscoWorks Common Services”.

 • The search index files to be searched when the user selects that entry. The search engine reads the
search index files instead of opening, reading, and closing every topic file in a help system. Each
line in the search index file contains the text in one topic file.

Note Each application must have a separate search index file. These search index files must be located
in a special directory at run time (see the “Packaging the Help Files” section on page 16-16).

Related Topics

 • Understanding Mapping Files

 • Maintaining the Search Index File

Searching the Files and Displaying the Search Results

After the user has entered the search parameters, HelpSearchServlet.java looks for matches in the search
index files and displays the results. Figure 16-4 shows a sample search results page. When the user clicks
a link in the search results page, the search engine displays the associated help topic.

11
54

39
16-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Figure 16-4 Sample Search Results Page

Summarizing the Search Process

Figure 16-5 illustrates the process the search engine uses to find and display its results.

11
54

40
16-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Figure 16-5 Search Process Overview

Understanding Mapping Files
Mapping files are an integral part of the help display process. The Cisco help engine API uses mapping
files to:

 • Display help topics associated with navigation tree entries in the desktop

 • Link context-sensitive help buttons to the appropriate topic

 • Create a master table of contents and index for the help system suite

The search engine also depends on mapping files to define:

 • The entry in the search scope list that is displayed in the search dialog box

 • The search index files to be searched when the user selects that entry

The following topics contain more information about mapping files:

 • Mapping File Conventions and Requirements

No

No

No

Yes

Yes

Yes

Tag=ALL?

Write results to
topic fame.

HelpSearchServlet.java

HelpSearchServlet.java

Perform search

11
54

41

Mapping
files

Get SEARCH
name field from
all mapping files

User clicks Search button
(args: cmd, text, type, group)

Search files
modified or first use?

Preselect
package name

User clicks Search
in banner (arg: cmd, group)

Get SEARCH
name and search
index files from
all mapping files

Write results in
topic frame

Mapping files
modified or first use?
16-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
 • Mapping File Line Types

 • Sample Mapping File

Mapping File Conventions and Requirements

The conventions shown in Table 16-1must be used by all mapping files for the Cisco help engine API to
work properly:

Mapping File Line Types

Table 16-2 summarizes the available mapping file line types. These line types allow you to:

 • Implement context-sensitive help

 • Add an entry to the main help contents

 • Determine the order of the entries in the main help page contents

Table 16-1 Mapping File Conventions

File Name Because all mapping files are installed in a single directory at run time, each mapping file must have a unique
name. Use the following naming convention:

productSubsystem.hlp

where:

 • product is the product acronym

 • Subsystem is the subsystem name or acronym

 • .hlp is the required file extension

Example: CRMCmf.hlp

Runtime
Location

The Cisco help engine looks for mapping files in the following runtime location:

NMSROOT/htdocs/help/mappingfiles

where NMSROOT is the directory in which the product was installed.

Guidelines All mapping files must follow these conventions:

 • Each tag entry must be contained within one line.

 • Tags must be unique across all installed mapping files.

 • The tag and filepath must be separated by at least one blank space.

 • The filepath must include all directories under /help; the /help directory is assumed by the Cisco help
engine.

 • The # indicates a comment line.

 • Level names and order# fields must be contained within double quotes.

 • Level names and order# fields cannot contain embedded double quotes.

 • Filepath must be preceded by a backslash (/). The top-level “/help” directory is assumed.

 • DROPIN, DROPINPLACE, SEARCH, and SEARCHALL keywords must be left-justified.

 • If the application is available from the desktop navigation bar, the engineer must add the help tag to the
application registry file.

 • At run time all mapping files must be installed in the ../help/mappingfiles directory.
16-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
 • Define the entry in the search scope list

 • Define the search index files to be searched

 • Define the text for searching “all” help systems

Table 16-2 Mapping File Line Types

Line Type Description

Tag/helpfile The tag/filepath pair used to implement context-sensitive help.

tag /filepath

where:

tag is a help tag name. It must be unique among all installed mapping files.

/filepath is the path name of the HTML file. The Cisco help engine assumes the top-level directory is
/help.

Comment Refers to any comment or description

<any text>

DROPIN Adds an entry to the contents in the main help page.

DROPIN, “level 1 name” [,“level x name”] [...] [, /filepath]

where:

level x name defines a contents structure (books and pages; books can contain other books or pages)

/filepath is the path name of the HTML file that corresponds to the last entry in the list. If /filepath
is not present, level x name is added to the contents but no link is created.

The number of level x name entries in the DROPIN line determines the location of the link in the
contents hierarchy. Use DROPIN lines to add a link in the main help page contents to your help system
when the order in which the help system entry appears in the list of book entries is not important.

You can put DROPIN lines anywhere in the file, but it is best to put them before any tag/filepath pairs.

DROPINPLACE Forces the last level x name entry to the top or end of the list in the main help page contents.

DROPINPLACE, “order#”, ”level 1 name” [, “level x name”] [...] [, /filepath]

where:

order# is the order in which these entries appear. For details on how the help system uses this value to
order the main help page contents, see the “Defining the Main Help Page Contents and Index” section
on page 16-24.

level x name defines a contents structure.

/filepath is the path name of the HTML file that corresponds to the last entry in the list. If /filepath is
not present, level x name is added to the contents but no link is created.

Use DROPINPLACE lines to force book or page entries for a help system to appear in a specific location
in that book in relation to other entries at the same level.

You can put DROPINPLACE lines anywhere in the file, but it is best to put them at the top, before any
tag/filepath pairs, for easy access.
16-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Overview of Online Help
Sample Mapping File

Example 16-1 shows a typical mapping file.

Example 16-1 Sample Mapping File

###
MyApp Manager Mapping file (MyAppmgr.hlp)
for context-sensitive help.
#
Last modified 02/31/2004
#
Copyright (c) 1997-2004 by Cisco Systems, Inc.
All rights reserved
###
########################
Top-level TOC entry
########################
DROPIN,"Server Configuration","Administration","Process Management",/myappmgr/index.html
SEARCH,"Process Management", "myappmgr.sch"

#-------------------------
TOP-LEVEL FOLDER
#-------------------------
This is for the MyApp Server > Administration > Process Management
procmgr_folder /myappmgr/myappmgr_overv.html

#------------------------
PROCESS ADMIN OPERATIONS
#------------------------
this page would start a single process or system
myapp_mgr_start_processes /myappmgr/ad_procs_start.html

SEARCH Defines the entry in the search scope list that is displayed in the search page and the search index files
to be searched when the user selects that entry.

SEARCH, ”search scope”, ”app.sch”[, ”app.sch”...]

where:

search scope is the name you want to appear in the search drop-down box. If this field is not present, the
search results page displays “Unknown” in the application name column for any hits to this help system.

app.sch is the name of the search index files you want the search utility to look at when the user selects
this option. You can specify multiple search files. For example, if you want to search your help topics
and the glossary, make sure there is a search index for the glossary, then add that filename to this line.
For example:

SEARCH, “Management Connection”,“mngconnect.sch”, “glossary.sch”

SEARCHALL Special line that defines the text to search “all” help systems.

SEARCHALL “all_name”

If SEARCHALL is not specified in any installed mapping file, the search engine uses the default text
“All.”

Table 16-2 Mapping File Line Types (continued)

Line Type Description
16-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Engineering Tasks
this page would stop a single process or system
myapp_mgr_stop_processes /myappmgr/ad_procs_stop.html

this page would display myapp.log with selected process
myapp_mgr_myapp_log

this page would display the status of processes
myapp_mgr_process_status /myappmgr/ad_procs_status.html

this page would display process properties
myapp_mgr_process_report /myappmgr/ad_procs_detail.html

#-------------------------- EOF -------------------------#

Implementing Help: Engineering Tasks
Implementing help for a new application typically requires effort on the part of both the development
engineers and the writers. These tasks must be performed by the engineer:

1. Installing the Help Packages—The online help and search engine class files must be installed in the
classpath. You can do this by installing the appropriate CWCS help engine packages.

2. Adding a Call to the Help Engine—Each code module that creates a dialog box with a Help button
must include a call to the Cisco help engine servlet.

3. Updating the Mapping File—The engineer must help the writer keep the mapping file current.

4. Packaging the Help Files—For the Cisco help engine API to work, help files must be installed in
predetermined locations in the runtime environment.

Installing the Help Packages
CWCS supplies the help and search engine class files as part of the pxhlp (Windows) and CSCOhlp
(Solaris) packages. To install the Help system, include these packages in your install. If performed
correctly, the following files should appear in your classpath:

com\cisco\nm\help\ClientServerHelpAPI.class
com\cisco\nm\help\ConfigReadWrite.class
com\cisco\nm\help\CvHelpApiIf.class
com\cisco\nm\help\DataHandler.class
com\cisco\nm\help\HelpCache.class
com\cisco\nm\help\HelpCacheServlet.class
com\cisco\nm\help\HelpConstants.class
com\cisco\nm\help\HelpEngine.class
com\cisco\nm\help\HelpSearch.class
com\cisco\nm\help\HelpSearchServlet.class
com\cisco\nm\help\HelpTree.class
com\cisco\nm\help\HelpTreeNode.clas
com\cisco\nm\help\ListenerServlet.class
com\cisco\nm\help\PopHelp.class
com\cisco\nm\help\PostSearch.class
com\cisco\nm\help\PreSearch.class
com\cisco\nm\help\SearchHelpServlet.class
com\cisco\nm\help\ServerHelpEngine.class
com\cisco\nm\help\ServerSearchEngine.class
com\cisco\nm\help\SystemUtils.class
16-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Engineering Tasks
For a complete list of required files, see the pxhlp.bom file in the ClearCase VOB for the version of
CWCS you are using.

Adding a Call to the Help Engine
The following topics describe how to call the Cisco help engine:

 • Calling Help From a Java Application

 • Calling Help From an HTML-Based Application

Calling Help From a Java Application

Use the Java class ClientServerHelpAPI summarized in Table 16-3 to start the help system from your
Java application. Each code module that creates a dialog box with a Help button must include a call to
this servlet.

Table 16-3 ClientServerHelpAPI Summary

Name ClientServerHelpAPI

Description Wraps the Cisco help engine call into a convenient API. This version starts the help system only from a
web server-based Java applet. Starts the help system only if the applet passed is not null and the parameter
is valid. This API does not work when run as a “file://” call.

Parameters Syntax Action

TAG=some_help_tag Opens a browser window and displays the correct help context.

TAG=DEFAULT Displays the help system’s top-level table of contents.

URL=some_url Opens a browser window and displays the URL “some_url”, where some_url
is a complete valid URL. (See java.net.URL for information on URL
formatting.) Typically used to display third-party help systems.

All other parameters Throws an exception and does not display the help system.

Example For each code module that creates a dialog box with a Help button, add the import statement and the call
to the servlet:

import com.cisco.nm.help.ClientServerHelpAPI;
...
public class MyApplet extends Applet
{
...

public handleHelp(...)
{
 ...
 try{
 ClientServerHelpAPI.launchHelp(getApplet(),
 "<parameter>");
 }catch(MalformedURLException e){}
 catch(Exception e){}
 ...
 }
 ...
}

16-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Engineering Tasks
Calling Help From an HTML-Based Application

Use the JavaScript function pophelp to start the help system from your HTML-based application. This
function exists in the parent window (the CWCS desktop). Each HTML dialog box that includes a help
button must include a call to this function.

Updating the Mapping File
To implement context-sensitive help, the engineer must work closely with the help writer. Although the
writer typically creates and maintains the mapping file, the engineer is responsible for:

 • Inserting the engineering tags into the source code.

 • Adding the engineering tags to the application registry files.

 • Notifying the writer of any new dialog boxes. Each new dialog box requires adding an engineering
tag/filepath pair to the mapping file for that application.

 • Notify the writer of any changes to existing tags (for example, deleted dialog boxes).

Note All engineering tags must follow the conventions described in the “Mapping File Conventions and
Requirements” section on page 16-10.

Table 16-4 Pophelp Function Summary

Name pophelp

Description Wraps the Cisco help engine call into a convenient API. This version starts the help system from a web
server-based HTML application. This API does not work when run a a “file://” call.

Parameters Syntax Action

TAG=some_help_tag Opens a browser window and displays the correct help context. If no help tag
is passed, displays the top-level table of contents for the help system.

TAG=DEFAULT Displays the help system’s top-level table of contents.

All other parameters Displays the help system’s top-level table of contents.

Example (all on one line):

<input type=”button” name="_Help" value="Help"
onclick="parent.pophelp('TAG=some-help-tag');">

Function Listing If you cannot access the CWCS desktop version, add this code to your HTML file. Note that the path
/CSCOnm? may change depending on how your web server is configured.

<SCRIPT LANGUAGE="JavaScript">
<!--
function pophelp(tag) {
 if(!tag) {
 tag = "DEFAULT";
 }
 window.open("/CSCOnm/servlet/com.cisco.nm.help.ServerHelpEngine?tag=" + tag,
 "HelpSystem",
"toolbar=yes,location=no,directories=no,status=yes,menubar=yes,resizable=yes,scrollbars=y
es,width=700,height=575");
}
//-->
</SCRIPT>
16-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Engineering Tasks
Packaging the Help Files
The required runtime structure, shown in Figure 16-6, includes all help systems and any shared help
resources.

Figure 16-6 Required Help Runtime Structure

Table 16-5 describes each directory and lists the required files that should be installed in each directory.

For a complete list of required files, see the pxhlp.bom file in the ClearCase VOB for the version of
CWCS you are using.

../help

shared search app1, app2...mappingfilesgraphics

global
shared
topics

icons
application
help HTML
and project
files

images

32
20

4

Table 16-5 Help System Runtime Structure

Directory Description, Path, and Required Files

Help root
directory

The top level of the help structure.

Path: NMSROOT/htdocs/help, where NMSROOT is the directory in which the product was installed.

Required files:

config.js
errorfile.html
helpconfig.txt
ind.js
index.html

nav.html
pophelp.html
toc.js
toolbar.html
utils.js
16-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Engineering Tasks
shared Contains all resources that are shared globally across all help systems.

Path: NMSROOT/htdocs/help/shared

Required files:

ban.html
banner.html
before_login.html
cco_login.html
content.css
content_ns.css
cw2000.html
footer.html
global.css
global_ns.css
global_ns_sol.css
help_tips.html
ind.html
index.html
indexframe.html
leftframe.html
login.html
menu.html
menu.js

more_info.html
nav.html
pdf_gloss.js
ref_help.html
searchframe.html
sel_dev.html
sel_opt.html
sel_url.html
shared.hhc
shared.hhk
sp.html
style_1.css
sync.js
toolbar.html
tree.js
utils.js
WebHelp.jar
WHIEInd.htm
WHIEToc.htm
WHnonIE4.css

graphics Contains graphics that are shared globally across all the products.

Path: NMSROOT/htdocs/help/graphics

Required files:

Admin.gif
caution.gif
CiscoLogo.gif
footer_left.gif
gloss.gif
gloss_over.gif
help.gif
help_over.gif
main.gif
main_over.gif
Operators.gif
pdf.gif
pdf_over.gif
search.gif
search_over.gif
bg_vert_dash.gif
blank.gif
blank_minus.gif
blank_plus.gif
book_c_sel.gif
book_closed.gif
book_o_sel.gif
book_open.gif
footer_left.gif
help_doc.gif
help_doc_mo.gif
help_doc_sel.gif

hlp_bg.gif
hlp_bg_nml.gif
hlp_bg_sel.gif
hlp_bg_lt.gif
hlp_bg_lt_nml.gif
hlp_bg_lt_sel.gif
hlp_bg_rt.gif
hlp_bg_rt_nml.gif
hlp_bg_rt_sel.gif
img_vert_green.gif
join.gif
joinbottom.gif
jointop.gif
lgo_cisco.gif
line.gif
minus.gif
minusbottom.gif
minusonly.gif
minustop.gif
plus.gif
plusbottom.gif
plusonly.gif
plustop.gif
spacer.gif
vert_top.gif

Table 16-5 Help System Runtime Structure (continued)

Directory Description, Path, and Required Files
16-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Implementing Help: Writing Tasks
Implementing and maintaining online help typically requires that the writer perform these tasks:

Step 1 Selecting an Authoring Tool—Cisco help was designed to allow writers to use any native HTML editor
(such as HTML Help Workshop), FrameMaker/Webworks, or an XML editor (like XMetal) as their
authoring application.

Step 2 Setting Up Your Authoring Environment—Using a directory structure that closely resembles the runtime
directory will make testing and delivering the help system easier.

Step 3 Creating the Help Topic Files—The Cisco writer’s guides contain procedures for creating help topics in
both authoring environments.

Step 4 Maintaining Your Help System’s Mapping File—All help systems must have a mapping file. If one does
not exist, the help writer must create one. If new dialog boxes are created, the mapping file must be
updated.

Step 5 Maintaining the Search Index File—Any time the contents of your help system change, you must update
the search index file to reflect these changes.

Step 6 Delivering Your Help System—Depending on the authoring environment, some cleanup tasks may be
required.

mappingfiles Contains the mapping files for all installed help packages.

Path: NMSROOT/htdocs/help/mappingfiles

Additional required files:

shared.hlp

search Contains the search index files for all installed help packages.

Path: NMSROOT/htdocs/help/search

Additional required files:

CMFshared.sch
PreSearch.html
search.html

search.sch
SearchTemplate.html
searchtips.html

app1, app2, ... Contains the help files for each application. Any images that are only referenced by this application are stored
in the images subdirectory for that application.

Path: NMSROOT/htdocs/help/appname

Notes:

 • Be sure to install and deinstall the help for the application or device package with the application or
device.

 • If you are installing an upgrade, there may not be a one-to-one correspondence to the old help files. Be
sure your install program deletes the target directory first to ensure that no old files are left on the system.

Table 16-5 Help System Runtime Structure (continued)

Directory Description, Path, and Required Files
16-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Selecting an Authoring Tool
Cisco help was designed to allow for more than one authoring method. You can use any of the following
methods to create online help:

 • Native HTML Authoring: Writers use a native HTML authoring tool, such as HTML Help
Workshop, to create topics, contents, and index, save to HTML, then convert to Cisco Online Help
format. Writers using a native HTML authoring tool should download the following document from
the Cisco Online Help support website: Creating Online Help Using Native HTML, EDCS-298882.

 • XML Authoring: Writers use an XML authoring tool, such as XMetal, to create topics, contents,
and index, save to XML, then convert to Cisco Online Help format. Writers using an XML authoring
tool should download the following document from the Cisco Online Help support website:
Creating Online Help Using XML, EDCS-357012.

 • FrameMaker/WebWorks Authoring: This method permits “single-source” authoring. Writers
create text in FrameMaker using the Cisco corporate online help FrameMaker templates.These
documents can be printed as manuals for the product and posted to Cisco.com and the
documentation CD. Then the writer creates HTML help using Quadralay’s WebWorks Publisher and
a custom WebWorks template, and includes the output in the product as online help. Writers using
the FrameMaker/WebWorks authoring method should download the following documents from the
Cisco Online Help support website:

 – Creating Cisco Online Help Using FrameMaker and WebWorks, ENG-104742

 – Guidelines for Writing Single-Sourced Manuals, ENG-70452

Note Authoring in RoboHelp is no longer supported. Authors should convert existing RoboHelp projects to
native HTML and then use the native HTML authoring process, as explained in EDCS-298882.

Setting Up Your Authoring Environment
The structure of your local writing environment is determined by the authoring tool you have selected.
These topics describe the recommended environment for each authoring tool:

 • Setting Up the Native HTML Authoring Environment

 • Setting Up the XML Authoring Environment

 • Setting Up the FrameMaker/WebWorks Authoring Environment

Setting Up the Native HTML Authoring Environment

Use the instructions in the following document to set up your writing environment: Creating Online Help
Using Native HTML, EDCS-298882.

When your environment is set up, (typically, on your local machine), it should look like Figure 16-7.
16-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/Creating_Cisco_Online_Help_Using_XML.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/sstips.pdf@latest

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Figure 16-7 Local Native HTML Writing Environment

Each of the subdirectories under the main help directory contains specific files:

 • shared—Contains resources shared globally across help systems, such as the login and Using Help
topics and style sheets.

 • graphics—Contains all graphics shared globally across help systems, such as the gifs used in the
banner frame.

 • search —These subdirectories are not required in a typical local writing environment unless you
have also downloaded the help or search engine files and are using them to test your help files. They
do, however, allow you to keep the mapping and search index files separate from your topic files and
reflect the runtime environment:

 – mappingfiles—Contains the mapping file for this help package.

 – search—Contains the search index file for this help package.

 • appname—where appname is the name you are using for this help system. Contains the help files
for this application. Any images that are only referenced by this application are stored in the images
subdirectory.

If you are working on help for more than one application and therefore have more than one native HTML
project, you can add application subdirectories for each help system and share the other subdirectories
(search, shared, graphics, and so on). In this case, your search and mappingfiles subdirectories will
contain one .sch and one .hlp file for each help system.

Setting Up the XML Authoring Environment

Use the instructions in the following document to set up your writing environment: Creating Online Help
Using XML, EDCS-357012.

When your environment is set up, (typically, on your local machine), it should look like Figure 16-7.

your help
directory

shared graphics search mappingfiles
appname1

application help
HTML and topic

files

.hlp file.sch fileglobal
icons

global
shared

files

appname2

44
73

1

16-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/Creating_Cisco_Online_Help_Using_XML.pdf@latest

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Figure 16-8 Local XML Writing Environment

Each of the subdirectories under the main help directory contains specific files:

 • shared—Contains resources shared globally across help systems, such as the login and Using Help
topics and style sheets.

 • graphics—Contains all graphics shared globally across help systems, such as the gifs used in the
banner frame.

 • search and mapping files —These subdirectories are not required in a typical local writing
environment unless you have also downloaded the help or search engine files and are using them to
test your help files. They do, however, allow you to keep the mapping and search index files separate
from your topic files and reflect the runtime environment:

 – mappingfiles—Contains the mapping file for this help package.

 – search—Contains the search index file for this help package.

 • appname—where appname is the name you are using for this help system. Contains the help files
for this application. Any images that are only referenced by this application are stored in the images
subdirectory.

If you are working on help for more than one application and therefore have more than one XML project,
you can add application subdirectories for each help system and share the other subdirectories (search,
shared, graphics, and so on). In this case, your search and mappingfiles subdirectories will contain one
.sch and one .hlp file for each help system.

Setting Up the FrameMaker/WebWorks Authoring Environment

Use the instructions in the following document to set up your writing environment: Creating Cisco
Online Help Using FrameMaker and WebWorks, ENG-104742.

When your development environment is set up (typically, on your local machine), it should look like
Figure 16-9.

your help
directory

shared graphics search mappingfiles
appname1

application help
HTML and topic

files

.hlp file.sch fileglobal
icons

global
shared

files

appname2

44
73

1

16-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Figure 16-9 Local FrameMaker/WebWorks Writing Environment

Each of the subdirectories under the main help directory contains specific files:

 • shared—Contains resources shared globally across help systems, such as the login and Using Help
topics and style sheets.

 • graphics—Contains all graphics shared globally across help systems, such as the gifs used in the
banner frame.

 • search and mappingfiles—These subdirectories are not required in a typical local writing
environment unless you have also downloaded the help or search engine files and will be using them
to test your help files. They do, however, allow you to keep the mapping and search index files
separate from your topic files and reflect the runtime environment:

 – mappingfiles—Contains the mapping file for this help package.

 – search—Contains the search index file for this help package.

 • Output—Contains the help files for this application. Any images that are only referenced by this
application are stored in the images subdirectory.

Store your FrameMaker source files, WebWorks template file (wfp), and illustrations in the top-level
help directory. When you run WebWorks, it will automatically copy your help topics and supporting files
to the Output subdirectory.

Caution If you are working on help for more than one application, do not try to share the subdirectories (search,
shared, graphics, and so on). If you try to share subdirectories, WebWorks will overwrite the Output
directory each time you run it. Instead, set up a separate directory structure for each help system.

Creating the Help Topic Files
Use these manuals to help you create your help topics:

 • Native HTML authors: Creating Online Help Using Native HTML, EDCS-298882.

 • XML authors: Creating Online Help Using XML, EDCS-357012.

 • FrameMaker/WebWorks authors: Creating Cisco Online Help Using FrameMaker and WebWorks,
ENG-104742, and Guidelines for Writing Single-Sourced Manuals, ENG-70452.

In addition, use these guidelines when working in your local authoring environment:

your help
directory

shared graphics search mappingfiles
Output

application help
HTML and topic

files

.hlp file.sch fileglobal
icons

global
shared

files

44
73

0

16-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/Creating_Cisco_Online_Help_Using_XML.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/sstips.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
 • Native HTML and XML authors: Before testing or delivering your files, run the Cisco Online
Help Generator to convert your files into Cisco Online Help.

 • FrameMaker/WebWorks authors: The Output subdirectory (see Figure 16-9) will contain all the
files you need for your online help. FrameMaker/WebWorks authors do not need to run the Cisco
Online Help Generator.

Note Authoring in RoboHelp is no longer supported. Authors should convert existing RoboHelp projects to
native HTML and then use the native HTML authoring process, as explained in EDCS-298882.

Maintaining Your Help System’s Mapping File
Mapping files require either inputs from both the engineer and the writer, or an agreement that the writer
will create the engineering tags in the mapping file and the engineer will add these tags to the source
code.

The following topics describe how to create and maintain your mapping file:

 • Creating the Mapping File

 • Defining the Main Help Page Contents and Index

 • Adding Search Support

Creating the Mapping File

Note If you are using FrameMaker and WebWorks, follow the instructions for inserting markers to create a
mapping file in Creating Cisco Online Help Using FrameMaker and WebWorks, ENG-104742. You can
download a copy from the Cisco Online Help support website.

If you are using Native HTML or XML authoring, follow this procedure to create a mapping file for your
help system:

Step 1 Create the mapping file manually using a text editor. You can download a template from the Cisco Online
Help support website.

Step 2 Name your mapping file. The file name must be unique and use the .hlp suffix. Follow the naming
conventions described in the “Mapping File Conventions and Requirements” section on page 16-10.

Step 3 Add a tag/filepath pair for each dialog box that has a Help button. Follow the conventions described in
the “Mapping File Conventions and Requirements” section on page 16-10.

Step 4 Add a DROPIN or a DROPINPLACE line to define the entry for your help system in the main help
contents. For more information about these tags, see the “Defining the Main Help Page Contents and
Index” section on page 16-24.

Step 5 Add a SEARCH line to define the entry in the search scope list and the search index files to be searched
when the user selects that entry. For more information about implementing search, see the “Adding
Search Support” section on page 16-27.

Step 6 If you are using the NMTG ClearCase processes, run the BOM file creation utility, createbom.exe, to
add the mapping file to the BOM.
16-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/native_guide.pdf@latest
http://wwwin-eng.cisco.com/Corporate/CDC/Cisco_Online_Help/WebWorks.pdf@latest
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-olh-support.cisco.com/index.html
http://wwwin-olh-support.cisco.com/index.html

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
If you are not using the NMTG ClearCase processes, copy the mapping file to the following runtime
directory:

NMSROOT/htdocs/help/mappingfiles

where NMSROOT is the directory in which the product is installed.

Defining the Main Help Page Contents and Index

The Cisco help engine reads the DROPIN and DROPINPLACE lines in the mapping files to create the
Main Help page index and contents.

 • The index contains links, in alphabetic order by application, to the default page of each installed help
system.

 • The Main Help page contents can have multiple levels, represented by expanding and collapsing
folders represented by book icons. The Cisco help engine, by default, alphabetizes the contents entries
in each level.

Figure 16-10 shows the contents for a sample Main Help page.

Figure 16-10 Main Help Page Contents

Although the order of the index entries is fixed, the writer can determine the order in which the contents
entries appear.

The DROPIN and DROPINPLACE lines in the mapping files determine the entries that appear in the
main help contents and their relative locations. The following topics discuss these special lines:

 • Adding Contents Entries in the Default Order

 • Adding Contents Entries in a Specific Order

Adding Contents Entries in the Default Order

Use DROPIN lines to add a link in the Main Help page contents to your help system when the order in
which the help system entry appears in the list of book entries is not important.

Book

Page

Topic

11
54

42
16-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Note You can put DROPIN lines anywhere in the file, but it is best to put them before any tag/filepath
pairs.

The DROPIN line requires this syntax:

DROPIN, “level 1 name” [,“level 2 name”] [...] [, /filepath]

The number of level name entries in the DROPIN line determines the location of the link in the contents
hierarchy. The following examples illustrate different ways to use the DROPIN line:

Example 1

DROPIN,“Server Configuration”,“Desktop”,/CWCS/index.html

Because this DROPIN line contains two entries, “Server Configuration” and “Desktop,” the Cisco help
engine will create a book called “Server Configuration” that contains the page, “Desktop.”

Example 2

DROPIN,“Server Configuration”,“Administration”,“Basic Administration”,/admin/index.html

This DROPIN line contains three entries: “Server Configuration,” “Administration,” and “Basic
Administration.” The Cisco help engine will create a book called “Server Configuration” that contains a
second book called “Administration.” The book “Administration” will contain the page, “Basic
Administration.”

Example 3

DROPIN,“Resource Manager Essentials”,“24-Hour Reports”,“Software Upgrade Report”,

/swim/sw_hist_24hr.html

(all on one line)

You can also create a book in the contents that contains links to topics from many different help systems.
This DROPIN line creates a book in the “Resource Manager Essentials” book called “24-Hour Reports”
and adds the page, “Software Upgrade Report” to this book. Other help systems that must add an entry
to the “24-Hour Reports” book can add a similar line to their mapping files. For example, in its mapping
file, the Syslog help system adds the report “Syslog Messages” to the “24-Hour Reports” book:

DROPIN,"Resource Manager Essentials","24-Hour Reports","Syslog Messages",

/syslog/sa_uinfo.html

(all on one line)

Note Because the file names in these examples are not index.html, the report will appear in the right
frame instead of replacing the entire window; the top-level contents will remain in the left frame.

Related Topics

 • Understanding Mapping Files

 • Adding Contents Entries in a Specific Order

Adding Contents Entries in a Specific Order

Use the DROPINPLACE keyword to force book or page entries for a help system to appear in a specific
location in that book in relation to other entries at the same level.
16-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Note You can put DROPINPLACE lines anywhere in the file, but it is best to put them at the top,
before any tag/filepath pairs, for easy access.

The DROPINPLACE line requires this format:

DROPINPLACE,“order#”,”level 1 name”[,“level 2 name”][...][, /filepath]

The Cisco help engine applies the order# field to all entries at the same tree level. The order number
default value is 999. Order numbers lower than 999 will appear before book and page entries that use the
default. Order numbers higher than 999 will appear after book and page entries using the default.
Table 16-6 illustrates this logic.

Use these guidelines when adding a DROPINPLACE line to your mapping file:

 • To force entries to the top of the list, assign the order# field values 1, 2, 3...

 • To force entries to the bottom of the list, assign values greater than 999.

 • The Cisco help engine applies the order number to the last entry in the list of level names. In this
example, the order number “1” applies to the “Using Campus Manager” entry:

DROPINPLACE, “1”, “Campus Manager”, “Using Campus Manager”, /CMcore/UGuide/index.html

(all on one line)

 • The Cisco help engine applies the DROPINPLACE order numbers to all entries in a book at the same
level.

 • To control the order of the top-level book entries, add another DROPINPLACE line to any mapping
file. For example, the following line will ensure that the “Server Configuration” book always
appears first in the list of top-level books:

DROPINPLACE, “1”, “Server Configuration”

(all on one line)

 • If more than one DROPINPLACE line per tree level contains the same order number, those names
will be displayed in alphabetic order.

The order number you use determines the location of your link. The following examples illustrate
different ways to use the DROPINPLACE line:

Table 16-6 Order Number Logic

Order
Number Location

1 First in list

2 Second in list

3... Third in list ...

999 Default level when no DROPINPLACE tag is used

1000 Third to last in list

1001 Second to last in list

1002... Last in list ...
16-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
Example 1

User guides should appear at the top of the entries for a product suite. To add the user guide for Campus
Manager, add the following line to the Campus Manager user guide mapping file:

DROPINPLACE, “1”, “Campus Manager”, “Using Campus Manager”, /CMcore/UGuide/index.html

(all on one line)

The number 1 tells the Cisco help engine to place the “Using Campus Manager” entry at the top of the
Campus Manager contents entries.

Example 2

To move the 24-Hour Reports book to the bottom of the Resource Manager Essentials list, add the
following line to the RMcore mapping file:

DROPINPLACE, “1001”, “Resource Manager Essentials”, “24-Hour Reports”

(all on one line)

The number 1001 tells the Cisco help engine to place this entry at the bottom of the list of Resource
Manager Essentials entries (books and pages). Because this is a book in the contents, a filepath is not
required.

Related Topics

 • Understanding Mapping Files

 • Adding Contents Entries in the Default Order

Adding Search Support

To implement search for a new help system:

Step 1 If you are using the Native HTML or XML authoring tools to create online help, you will need to convert
it to a Help project using the Cisco Online Help Generator tool. See the Creating Cisco Online Help
Using Native HTML or Creating Cisco Online Help Using XML documents for details on the conversion.

Step 2 If you are using the WebWorks authoring tool to create online help, the search index file is created as
part of the WebWorks project. See “Creating the Initial WDT” section for your help engine in the
Creating Cisco Online Help Using FrameMaker and WebWorks document if you want to customize your
search parameters.

The new search index file has an .sch file extension. The default name is your mapfile name; for example,
avmgr.sch.

Step 3 Ensure you move the search index file to the search directory.

Step 4 If you are using NMTG Clearcase processes, ensure the BOM file is where it should be at runtime
(default is install_path/help/search).

If you are not using the NMTG ClearCase processes, copy the search index file to the following runtime
directory:

NMSROOT/htdocs/help/search

where NMSROOT is the directory in which the product is installed.

Step 5 Ensure the SEARCH line is in the mapping file.

For example, the search line for the Availability help system would look like this:

SEARCH,”Availability”,”avmgr.sch”
16-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Implementing Help: Writing Tasks
In this example, when the user selects Availability from the search scope list, the search engine looks at
the Availability search index file.

Related Topics

 • Understanding Mapping Files

 • Maintaining the Search Index File

Maintaining the Search Index File
When the contents of your help system change, you must update the search index file to reflect these
changes. Each authoring tool updates the search index file by re-reading all the help topics for your
application and replacing the old file with a new search index file.

To update the search index file:

Step 1 If you are using native HTML or XML, regenerate your help files with your authoring tool. Then use the
Cisco Online Help Generator to convert the regenerated files.

Step 2 If you are using WebWorks, you need to regenerate your output.

Step 3 Ensure you copy the search index file to the search directory to replace the old file.

Delivering Your Help System
When you deliver your files—whether that means adding them to ClearCase or copying them directly to
the build machine or putting them in a location that the build engineer can access—you should
understand the help runtime environment requirements.

When you copy your files, follow these guidelines. Refer to Figure 16-6 for the help runtime directory
structure, and Figure 16-7, Figure 16-9 and Figure 16-8 for the local development directory structures.

 • Copy the contents of your help topic directory (appname or Output), including the images
subdirectory, to the help appname runtime directory.

Note FrameMaker/WebWorks authors—do not name the runtime directory “Output.” The runtime
directory name must be unique.

 • Copy your mapping file (.hlp) from your mappingfiles directory to the corresponding help runtime
directory.

 • Copy your search index file (.sch) from your search directory to the corresponding runtime
directory.

 • Unless you are setting up the shared and graphics directories, do not copy any files from your local
system to these help runtime directories.
16-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Adding Drop-In Help Systems
Adding Drop-In Help Systems
“Drop-in help” refers to online help for in-house or third-party products that are not part of the
CiscoWorks software release, but for which access from the main help window is required. For example,
a customer who wants access to HP OpenView online help can add this functionality to the installed help
system.

Merging in-house and third-party drop-in help into the main help system requires, at a minimum:

 • Supplying a help system that can be viewed in a web browser (HTML-based help)

If possible, rename the first page of the drop-in help system to index.html. If the first page uses this
name, the Cisco help engine replaces the main help page with the drop-in help system. If the first
page is not called index.html, the drop-in help system appears in the right frame of the help window.

 • Supplying a mapping file

Even if the drop-in help system does not supply context-sensitive help or uses a different method,
you must supply a mapping file that contains a DROPIN line. This line defines the location of the
link to the help system in the main help page contents and index (see the “Updating the Mapping
File” section on page 16-15.

Note The user still has access to the drop-in help system’s existing context-sensitive help even if
a link is not added to the main help page.

 • Asking the engineer to add the HELPURL tag to the application registry file for the drop-in
application. This allows the user to select the application task from the desktop navigation tree and
click Help to directly access the help system for that task without browsing the main help page.

The HELPURL tag in the application registry file accepts either a tag or a filepath. For drop-ins,
enter the filepath for the help system in this field.
16-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 16 Adding Online Help
Adding Drop-In Help Systems
16-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 17

Using the Daemon Manager

The CWCS Daemon Manager provides the following services:

 • Maintains the startup dependencies among processes

 • Starts and stops processes based on their dependency relationships

 • Restarts processes if an abnormal termination is detected

 • Monitors the status of processes

The Daemon Manager is useful to applications that have long-running processes that must be monitored
and restarted, if necessary. It is also used to start processes in a dependency sequence and to start
transient jobs.

The following topics describe the Daemon Manager and how to use it in your applications:

 • Understanding the Daemon Manager—Explains the basic concepts of the Daemon Manager and
what it can do.

 • Using the Daemon Manager—Provides guidelines on using the Daemon Manager in CLI, C, C++,
and Java environments.

 • Daemon Manager Command Reference—Describes the Daemon Manager CLI, C, C++, and Java
methods and commands.

For more information about the Daemon Manager, refer to the engineering specification (EDCS
document number ENG 21240).

This specification is also available at the following URL:

http://wwwin-eng.cisco.com/Eng/ENM/BG_10/Specs/BG1PRocessMgrSpec.doc

Understanding the Daemon Manager
Applications use a programmatic interface to the Daemon Manager to register and control processes. The
Daemon Manager provides interfaces from C, C++, and Java, and through a set of command line utilities.
CWCS also provides a GUI for process monitoring, shutdown, and startup.

A process opens a socket connection with the Daemon Manager to:

 • Provide status information to the server

 • Receive messages concerning changes to the CWCS Server environment

The Daemon Manager can create and start processes:

 • Automatically, at startup time: These are called regular processes (or regular daemons), which
means they run all the time.
17-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://wwwin-eng.cisco.com/Eng/ENM/BG_10/Specs/BG1PRocessMgrSpec.doc	

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Using the Daemon Manager
 • As needed (for example, by using inetd): These are called transient processes (or transient
daemons).

Applications obtain and save run-time configuration information using a standard set of environment
variables. The full set of predefined variables is defined in ENG-21240.

Using the Daemon Manager
You can access the Daemon Manager either from the command line or by using an API written in C,
C++, or Java. The following topics describe how to create an application that uses the Daemon Manager:

 • Starting and Stopping the Daemon Manager

 • Using the Daemon Manager Command Line Interface

 • Using the Daemon Manager Application Programming Interface

 • Using the Daemon Manager C++ Interface

 • Using the Daemon Manager Java Interface

 • Using a Ready File to Ensure Process Dependencies are Met

 • Writing Messages to Log Files

Starting and Stopping the Daemon Manager

On a UNIX Platform

Step 1 Log in as root.

Step 2 To start the Daemon Manager, enter

/etc/init.d/dmgtd start

Step 3 To stop the Daemon Manager, enter

/etc/init.d/dmgtd stop

Note You cannot start the Daemon Manager if there are non-SSL compliant applications installed with
the web server running in SSL-enabled mode.

On a Windows Platform

Step 1 Open a DOS window.

Step 2 To start the Daemon Manager, enter

net start CRMdmgtd

Step 3 To stop the Daemon Manager, enter

net stop CRMdmgtd
17-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Using the Daemon Manager
Using the Daemon Manager Command Line Interface
The Daemon Manager provides several command line interface (CLI) commands. These commands,
which are typically used at install time or for debugging purposes, allow you to query the status of a
process. They also help you to stop, start, register, or unregister a process.

The CLI commands can be run from a command line interface or using a web browser. They are
summarized in the“Daemon Manager Command Line Utilities” section on page 17-6.

Note The commands to register and unregister a process are only available from the command line interface.
They cannot be accessed using a web browser.

Using the Daemon Manager Application Programming Interface
To use the Daemon Manager API:

Step 1 Include the header dmgt.h in your C, C++, or Java application.

Step 2 After your application has finished its initialization and before it goes into its main loop, instantiate the
connection to the Daemon Manager.

 • The C and C++ commands are summarized in the “Daemon Manager ANSI C and C++ Commands”
section on page 17-11.

 • The Java methods are summarized in the “Daemon Manager Java Methods” section on page 17-17.

Step 3 Send a status message (such as the initialization completed successfully or initialization failed and the
reason for the failure).

Step 4 Update your main loop to process messages from the Daemon Manager. If you are not interested in any
messages, redirect all messages to the default message handler routine.

Step 5 If the status of your application changes, send a new message to the Daemon Manager so that users can
be warned about any problems. This may duplicate some status messages that are already being sent to
the system logging service. However, this helps serviceability because the “Last” status message is
easily retrieved via the Daemon Manager interface.

Use these guidelines when you register your process under the Daemon Manager:

 • Programs should not fork or execute themselves.

 • Programs should exit when they receive SIGTERM from the Daemon Manager.

 • Programs should create core files only in well-known locations. The Daemon Manager starts
processes from the directory where the executables reside.
17-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Using the Daemon Manager
Using the Daemon Manager C++ Interface
Follow these guidelines when you create a C++ application that interfaces with the Daemon Manager:

 • Instantiate the C++ singleton object after completing program initialization. The instantiation
should exist as long as the program is active.

 • Any message loop that is created must listen to the Daemon Manager and deal with any messages.
Send any messages not processed by the application to the default handler dMgr::ProcessMsg().

 • The program must not fork or execute itself.

 • The program must not perform daemon actions, such as trying to restart itself after it fails. Only the
Daemon Manager should do this.

 • After initializing, run the command, SendOkMsg() (see the “SendOkMsg” section on page 17-22).

Related Topics

 • The ANSI C and C++ commands are summarized in the “Daemon Manager ANSI C and C++
Commands” section on page 17-11.

 • For examples that use the C++ interface, refer to these files in the CodeSamples directory on the
SDK CD:

 – daemon1.cpp

 – sample1.dsp

 – sample1.cpp

Using the Daemon Manager Java Interface
The cwjava command provides a controlled run-time environment for CWCS-based Java server
applications. For information about launching a Java application, see:

 • Understanding the Java Application Launch Process, page 4-1

 • Launching a Java Application, page 4-2

Related Topics

 • The methods you can use to manage processes in Java applications are summarized in the “Daemon
Manager Java Methods” section on page 17-17.

 • For examples that use the Java interface, see these files in the CodeSamples directory on the SDK
CD:

 – daemon1.java

 – sample1.java

Using a Ready File to Ensure Process Dependencies are Met
If you have a process that takes a long time to start up, and has many dependent processes that start up
quickly, you may experience problems with Daemon Manager starting the dependent processes before
the underlying process has completed initialization.
17-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
In cases like these, call dMgtCreateReadyFile (for C and C++ processes) or CreateReadyFile (for Java)
immediately after the underlying process’ initialization code segment. Daemon Manager will wait until
the API is called and the Ready file created before starting up any dependent processes. For more
information on these Daemon Manager APIs, see the “dMgtCreateReadyFile” section on page 17-12 and
the “CreateReadyFile” section on page 17-18.

If you want to use a Ready file to ensure startup dependencies are met, you must also specify a timeout
value for the Ready file creation process when it first registers with Daemon Manager. You can do this
using DmgrRegisterWR (for C and C++ processes) or DmgrRegisterJavaWR (for Java processes) . For
more information on these installation APIs, see the “DmgrRegister” section on page 21-51.

Ensuring that underlying processes are fully initialized is especially important if your application uses
multiple database engines on which other processes depend. To ensure that this is possible, the CWCS
database APIs provide an alternative database monitor class, DBPing. For more information about how
to use DBPing in combination with the Ready file creation and special “WR” registration APIs, see the
“DBPing” section on page 11-56.

Writing Messages to Log Files
There are two types of log files:

 • The Daemon Manager log contains information regarding process start, termination, and Daemon
Manager warning and error messages.

 • The Application log stores information logged by an application. To write a message to the
application log, direct the output to stderr/stdout.

The location of the log files is determined by the operating system:

 • On Windows platforms:

 – The Daemon Manager log is located under NMSROOT/log/syslog.log.

 – Each application has its own application log under NMSROOT/log.

 – The application log has same name as the application with the extension “.log”.

 • On UNIX platforms:

 – The Daemon Manager log is located at /var/adm/CSCOpx/log/dmgtd.log.

 – All applications share the same application log: /var/adm/CSCOpx/log/daemons.log.

Daemon Manager Command Reference
The Daemon Manager provides these interfaces:

 • Daemon Manager Command Line Utilities

 • Daemon Manager ANSI C and C++ Commands

 • Daemon Manager Java Methods
17-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Daemon Manager Command Line Utilities
Use the CLI commands shown in Table 17-1 to query the status of a process and perform other tasks.

pdexec

pdexec AppName

Starts a process.

Before starting a process, the Daemon Manager examines the dependencies of the starting process and
if they have not already been started, starts those processes first.

If the process is being restarted after a shutdown, any dependent processes registered with the Daemon
Manager is not automatically restarted. Dependent processes are automatically restarted only when the
Daemon Manager itself is restarted.

Arguments

Return Values

Usage Guidelines

Normal process startup may occur in two ways:

 • If the process enables autostart (the default), the server invokes the process when the server is
started.

 • If the operator invokes a command or runs a shell script to start the application.

pdrapp

pdrapp AppName

Table 17-1 Daemon Manager CLI Commands

Syntax Description
pdexec AppName Starts a process

pdrapp AppName Establishes root access for an application

pdreg -r AppName -e PathName -f flags -d OtherAppName -n -t code
pdreg -l AppName
pdreg -u AppName

Register, list, or unregister a process

pdshow AppName Monitors all registered processes

pdterm AppName Shuts down a process

AppName [string] Application name.

OK Starts the process.

Error Prints an error message on stderr and syslog.
17-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Establishes root access for an application. This command adds the application name to the file
rootapps.conf so the application can be launched as root.

Arguments

Return Values

pdreg

pdreg -r AppName -e PathName -f flags -d OtherAppName -n -t code -w timeout
pdreg -l AppName
pdreg -u AppName

The pdreg command provides three functions:

 • Register a process (-r)—A process must be registered before it can be monitored or controlled by
the Daemon Manager.

 • Unregister a process (-u)—You must unregister a process if you no longer want the process be
managed by the Daemon Manager. The process must be registered again to bring it back under the
control of the Daemon Manager.

 • Display the registration information of a registered process(-l).

Note After a process is registered, all administrative tasks performed on the process must use the
Daemon Manager; otherwise the Daemon Manager information will become unreliable,
resulting in an unstable system. When a process is registered, stop it using the pdterm
command; do not terminate it directly.

Arguments

AppName [string] Application name.

OK Appends the application name in the file.

Application name is already present in the file Prints “appname already exists” on stderr and syslog.

-r AppName [string] A descriptive name for the application.

-e PathName [string] Fully qualified path name to where the program exists.

-f flags [integer] Any startup flags required by the application.
17-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

Usage Guidelines

 • If the program being registered is autostart, start the process now.

-d OtherAppName [string] List of application names that must be started before AppName.

 • On UNIX platforms, use a comma-separated list. For example:

/opt/CSCOpx/bin/pdreg -r Daemon1 -e /opt/CSCOpx/bin/Daemon1.os -d
Daemon2,Daemon3 -f -debug^1^-trace^0 -n

 • On Windows platforms, group within quotes. For example:

Pdreg -r Daemon1 -e D:\Progra~1\CSCOpx\bin\Daemon1.os -d “Daemon2
Daemon3” -f “-debug 1 -trace 0" -n

-n [string] Do not automatically start this application when the Daemon Manager
is started. Default: Daemon Manager starts the application.

-t returnCode [string] Specifies the normal return code of a transient process. Upon the
termination of a process, its return code is checked against the normal
returnCode. The process is restarted immediately by the Daemon Manager if
they do not match. The returnCode can be one of the following values:

0—Normal return code is zero (default)

n—Normal return code is a negative value.

p—Normal return code is a positive value.

o—Return code is not checked. No restart is required.

-l AppName [string] Displays the registry contents for an application, the registered
processes, and their attributes.

-u AppName [string] Unregisters a process.

If a server that is being stopped and unregistered is needed by other applications
(as specified in the dependency list) the effect is to cascade the shutdown of
those servers as well. Dependencies on unregistered (unknown) applications are
ignored.

-w timeout [integer] Specifies the maximum amount of time (in milliseconds) that Daemon
Manager should wait for the process to finish initialization.

This timeout value can be passed to pdreg during installation using a
DmgrRegisterWR or DmgrRegisterJavaWR API call (see the “Registering and
Unregistering CWCS Daemons” section on page 21-51).

OK -r—Process is registered.

-l—Registry contents (PathName, flags, OtherAppName, etc.) are displayed.

-u—Process is unregistered.

Error Prints an error message on stderr and syslog.
17-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
 • A dependency list defines other programs that must be running for this program to be successfully
invoked. If the dependency list is valid, other programs are started if they are not already running.

 • Specify dependencies on other servers as a comma-separated list with no blanks. For example:

pdreg -r MyServer -e /bin/ls -d AppName1,AppName2

 • Registering an existing name returns an error. To change an entry, first unregister the process.

 • Invalid or nonexisting application names can be registered; they are ignored on startup.

 • To register more than one command line flag, or one that requires spaces, use the caret (^) instead
of spaces. For example:

On UNIX platforms, enter (all on one line):

/opt/CSCOpx/bin/pdreg -r Daemon1 -e /opt/CSCOpx/bin/Daemon1.os -d Daemon2,Daemon3 -f
-debug^1^-trace^0 -n

On Windows platforms, enter (all on one line):

Pdreg -r Daemon1 -e D:\Progra~1\CSCOpx\bin\Daemon1.os -d “Daemon2 Daemon3” -f “-debug
1 -trace 0" -n

After registration, the Daemon Manager tries to start the autostart process if the dependency
requirement has been met.

 • Java programs should use the cwjava executable, which is the CWCS Java2 wrapper. For example,
to register a JRM process, use the following statement:

 – On UNIX platforms, enter (all on one line):

pdreg -r jrm -e /opt/CSCOpx/bin/cwjava -d CmfDbMonitor,RmeOrb,EDS -f
com.cisco.nm.cmf.jrm.Server

 – On Windows platforms, enter (all on one line):

pdreg -r jrm -e C:\PROGRA~1\CSCOpx\bin\cwjava.exe -d “CmfDbMonitor RmeOrb EDS” -f
com.cisco.nm.cmf.jrm.Server

Where com.cisco.nm.cmf.jrm is the jrm package path and Server.class is the main program.

To check the possible cwjava options, enter the following statement:

 – On UNIX platforms, enter:

/opt/CSCOpx/bin/cwjava -cw /opt/CSCOpx -help

 – On Windows platforms, enter:

C:\PROGRA~1\CSCOpx\bin\cwjava.exe -cw C:\PROGRA~1\CSCOpx -help

Where -cw option is used to specify your CiscoWorks2000 installation directory.

pdshow

pdshow AppName

Generates a list of all registered processes, their current state (“up”, “down,” and so on), and the
attributes used while registering a process.

Arguments

AppName [string] Application name.
17-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

Usage Guidelines

If no name is supplied, a list of current applications and their status is sent to stdout. The output detects
if the environment is Web-based and displays the status in HTML markup or straight text to a TTY
display.

pdterm

pdterm AppName

Shuts down a process.

Note Any processes registered with the Daemon Manager as dependents of this process are also shut down.
However, if the process is then restarted after a shutdown, these dependent processes are not
automatically restarted. Dependent processes are automatically restarted only when the Daemon
Manager itself is restarted.

Arguments

Return Values

Usage Guidelines

 • Normal shutdown of a process may occur in two ways:

 – The operator issues a shutdown to the Daemon Manager for a particular server.

 – The server (if transient) sends a request to the Daemon Manager to shut down.

The Daemon Manager then kills the application.

 • Processes that are registered with the Daemon Manager and started manually and are then connected
to the Daemon Manager to report that status cannot be stopped with pdterm. The pid value is shown
as zero.

OK Lists all registered processes and their current state.

Error Prints an error message on stderr and syslog.

AppName [string] Application name.

OK Shuts down the process.

Error Prints an error message on stderr and syslog.
17-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Daemon Manager ANSI C and C++ Commands
Use the ANSI C and C++ programming interfaces shown in Table 17-2 to query the status of a process
and perform other tasks. The C++ features are defined in the C++ class wrapper.

dMgtClose

int dMgtClose (const dMGTHDL dHandle)

Closes the connection to the Daemon Manager.

Table 17-2 Daemon Manager ANSI C and C++ Commands

Returns Syntax and Description
int dMgtClose (const dMGTHDL dHandle)

Closes a connection

int dMgtCreateReadyFile (char *AppName, char *errmsg)
Creates a Ready file after an underlying process (on which other processes depend) has initialized.

const char *const dMgtErr (const dMGTHDL hdl)

Retrieves the error code after Daemon Manager has returned an error (-1).

int dMgtGetMsg (const dMGTHDL hdl)

Reads the Daemon Manager message and places it in the application’s buffer.

int dMgtInit (dMGTHDL *pdHandle, const char *pszAppName)

Establishes connection to the Daemon Manager. The Daemon Manager returns a handle (dMGTHDL)
to be used by the client application in subsequent requests.

int dMgtIsShutdown (const dMGTHDL hdl)

Checks the incoming request to determine if it is a STOP command.

void dMgtProcessMsg (const dMGTHDL hdl)

Processes Daemon Manager requests.

int dMgtSendStatus (const dMGTHDL hdl,
dMGT_STATE state,
const char *pszStatusMsg)

Sends a message and changes the status of the application.

char* GetConFile (char *pszConfile)

Gets the Daemon Manager configuration filename.

int GetDescriptor (const dMGTHDL hdl)

Gets the socket descriptor for the I/O port.

int GetDmgtHostAndPort (char **ppHost,
short *psPort,
char **ppErrMsg)

Gets the name of the Daemon Manager host and port number. This information is defined in the
environment variable PX_DMGTHOST. If PX_DMGTHOST is not set, then “localhost” (127.0.0.1) is
used.

int ValidatePgmPath (char *pszPgm,
char **ppErrMsg)

Checks to determine if the pszPgm is a fully qualified path to a program (that is, /path/filename).
17-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Input Arguments

Return Values

dMgtCreateReadyFile

int dMgtCreateReadyFile (char *AppName, char *errmsg)

Creates a Ready file after an underlying process (on which other processes depend) has initialized. The
Daemon Manager checks the Ready file to ensure that the underlying process has met the dependency
requirements before starting the dependent processes.

Input Arguments

Output Arguments

Return Values

dMgtErr

const char *const dMgtErr (const dMGTHDL hdl)

Retrieves the error code after Daemon Manager has returned an error (-1).

Input Arguments

dHandle [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application
uses dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on
page 17-13).

0 OK.

-1 Invalid handle, message error, etc.).

AppName [char] Client application name.

errmsg [char] ASCII string.

0 OK.

-1 Error (failed to open file, etc.).

hdl [dMGTHDL] Handle to the client application that encountered the error condition.
dMGTHDL is defined when the application uses dMgtInit to connect to the Daemon Manager
(see the “dMgtInit” section on page 17-13).
17-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

dMgtGetMsg

int dMgtGetMsg (const dMGTHDL hdl)

Reads the Daemon Manager message and places it in the application’s buffer.

Output Arguments

Return Values

dMgtInit

int dMgtInit (dMGTHDL *pdHandle, const char *pszAppName)

Establishes connection to the Daemon Manager. The Daemon Manager returns a handle (dMGTHDL) to
be used by the client application in subsequent requests.

Input Arguments

Output Arguments

Return Values

Error code Error code.

“no details on
error”

No error code is available.

hdl [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application uses
dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on page 17-13).

0 OK.

-1 Invalid handle, read error, etc.

pszAppName [char] Client application name in ASCII format.

pdHandle [dMGTHDL] Handle to the client application.

0 OK.

-1 Error.
17-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
dMgtIsShutdown

int dMgtIsShutdown (const dMGTHDL hdl)

Checks the incoming request to determine if it is a STOP command.

Output Arguments

Return Values

dMgtProcessMsg

void dMgtProcessMsg (const dMGTHDL hdl)

Processes Daemon Manager requests.

Output Arguments

Return Values

None

dMgtSendStatus

int dMgtSendStatus (const dMGTHDL hdl,
dMGT_STATE state,
const char *pszStatusMsg)

Sends a message and changes the status of the application.

hdl [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application uses
dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on page 17-13).

0 Incoming request is NOT a STOP command.

1 Incoming request is a STOP command.

-1 Invalid handle, message error, etc.

hdl [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application uses
dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on page 17-13).
17-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Input Arguments

Output Arguments

Return Values

GetConFile

char* GetConFile (char *pszConfile)

Gets the Daemon Manager configuration filename.

Output Arguments

Return Values

GetDescriptor

int GetDescriptor (const dMGTHDL hdl)

Gets the socket descriptor for the I/O port.

Output Arguments

state [dMGT_STATE] Application status. Allows these values:

 • DMGT_READY: Application is OK.

 • DMGT_FAILED: Application failed to initialize.

 • DMGT_BUSY: Application does not respond to server message.

pszStatusMsg [char] Application message in ASCII format. Maximum size is 120 characters.

hdl [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application uses
dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on page 17-13).

0 Operation successfully executed.

-1 Invalid handle, invalid state, failed to write to message buffer.

pszConfile [char] Pointer to the Daemon Manager configuration file.

pszConfile Pointer to the Daemon Manager configuration file.

hdl [dMGTHDL] Handle to the client application. dMGTHDL is defined when the application uses
dMgtInit to connect to the Daemon Manager (see the “dMgtInit” section on page 17-13).
17-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

GetDmgtHostAndPort

int GetDmgtHostAndPort (char **ppHost,
short *psPort,
char **ppErrMsg)

Gets the name of the Daemon Manager host and port number. This information is defined in the
environment variable PX_DMGTHOST. If PX_DMGTHOST is not set, then “localhost” (127.0.0.1) is
used.

Note The caller has to free the memory pointed to by ppHost, using free().

Output Arguments

Return Values

ValidatePgmPath

int ValidatePgmPath (char *pszPgm,
char **ppErrMsg)

Checks to determine if the string to be validated is a fully qualified path to a program (that is,
/path/filename).

Input Arguments

socket descriptor Socket descriptor for I/O port.

-1 Invalid handle, read error, etc.

ppHost [char] Pointer to Daemon Manager host name.

psPort [short] Pointer to Daemon Manager port number.

ppErrMsg [char] ASCII string to indicate any error.

0 OK.

-1 Invalid handle, read error, etc.

pszPgm [int] String to be validated.
17-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Output Arguments

Return Values

Daemon Manager Java Methods
Use the public Java interfaces shown in Table 17-3 to query the status of a process and perform other
tasks.

ppErrMs [char] ASCII string to indicate any error.

0 OK.

-1 Invalid handle, read error, etc.

Table 17-3 Daemon Manager Java Methods

Returns Syntax and Description

int CreateReadyFile (String AppName)
Creates a Ready file after an underlying process (on which other processes depend) has initialized.

int GetCmdType ()

Gets the command type exacted from the message.

Socket GetDescriptor ()

Gets the Socket object to listen for messages from Daemon Manager.

String GetErr ()

Gets the current “last error text” from the Daemon Manager. This routine is usually called when an error
condition is returned from the Daemon Manager.

boolean GetMsg ()

Retrieves a Daemon Manager message from the IP stack.

boolean GetServerInfo (String hostname, Integer portinfo)
Gets the Daemon Manager server name and port number.

String GetStatusMsg ()

Gets the status of the process from Daemon Manager.

boolean IsShutdownRequest ()

Checks to determine if the incoming request is a STOP command.

void ProcessMsg ()

Processes Daemon Manager requests.

int ReqStatus (String appName)
Asks Daemon Manager to report the status of the process specified by appName.

int SendBusyMsg (String StatusMsg)
Notifies Daemon Manager that it is ready and running. Also tells the Daemon Manager not to send any broadcast
messages to this process. The input string StatusMsg appears in the pdshow output.

int SendErrMsg (String StatusMsg)
Notifies Daemon Manager that the process failed to run. The input string StatusMsg is the reason for the failure
and appears in the pdshow output.

int SendOkMsg (String StatusMsg)
Notifies Daemon Manager that it is ready and running. The input string StatusMsg appears in the pdshow output.
17-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
CreateReadyFile

int CreateReadyFile (String AppName)

Creates a Ready file after an underlying process (on which other processes depend) has initialized. The
Daemon Manager checks the Ready file to ensure that the underlying process has met the dependency
requirements before starting the dependent processes.

Input Arguments

Return Values

GetCmdType

int GetCmdType ()

Gets the command type exacted from the message.

Arguments

None

Return Values

Returns the command type.

GetDescriptor

Socket GetDescriptor ()

Gets the Socket object to listen for messages from Daemon Manager.

Arguments

None

int StartProcess (String appName))
Asks Daemon Manager to start another process specified by appName.

int StopProcess (String appName)
Asks Daemon Manager to stop another process specified by appName.

int Status ()

Gets current dMgt object status after the dMgt constructor is called.

Table 17-3 Daemon Manager Java Methods (continued)

Returns Syntax and Description

AppName [string] Application name.

0 OK

-1 Error (failed to open file, etc.).
17-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

GetErr

String GetErr ()

Gets the current “last error text” from the Daemon Manager. This routine is usually called when an error
condition is returned from the Daemon Manager.

Arguments

None

Return Values

Returns the current “last error text” associated with this process.

GetMsg

boolean GetMsg ()

Retrieves a Daemon Manager message from the IP stack. This routine waits (blocks) if no data is
pending.

Arguments

None

Return Values

GetServerInfo

boolean GetServerInfo (String hostname, Integer portinfo)

Gets the Daemon Manager server name and port number.

Input Arguments

Success Returns the Socket object.

Failure Null.

True Message retrieved.

False Message not retrieved. Call GetErr() to examine the reason for the failure.

portinfo [integer] The port number to be used for the DMGTD connection.
17-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Output Arguments

Return Values

Always returns true.

GetStatusMsg

String GetStatusMsg ()

Gets the status of the process from Daemon Manager.

Arguments

None

Return Values

Returns the current status text associated with this process.

IsShutdownRequest

boolean IsShutdownRequest ()

Checks to determine if the incoming request is a STOP command.

Arguments

None

Return Values

ProcessMsg

void ProcessMsg ()

Processes Daemon Manager requests.

Arguments

None

Return Values

None

hostname [string] The host name where the DMGTD is located.

0 Incoming request is not a STOP command.

1 Incoming request is a STOP command.

-1 Invalid handle, message error, etc.
17-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
ReqStatus

int ReqStatus (String appName)

Asks Daemon Manager to report the status of the process specified by appName.

Input Arguments

Return Values

SendBusyMsg

int SendBusyMsg (String StatusMsg)

Notifies Daemon Manager that it is ready and running. Also tells the Daemon Manager not to send any
broadcast messages to this process. The input string StatusMsg appears in the pdshow output (see the
“pdshow” section on page 17-9).

Input Arguments

Return Values

SendErrMsg

int SendErrMsg (String StatusMsg)

Notifies Daemon Manager that the process failed to run. The input string StatusMsg is the reason for the
failure and appears in the pdshow output (seethe “pdshow” section on page 17-9).

Input Arguments

appName [String]—Application name.

0 Success. Status report sent.

-1 Failure. Status report not sent.

StatusMsg [string] Status message, “Program not listening to dmgtd.”

0 Success

-1 Failure

StatusMsg [string] Status message, “Application failed to initialize.”
17-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Return Values

SendOkMsg

int SendOkMsg (String StatusMsg)

Notifies Daemon Manager that it is ready and running. The input string StatusMsg appears in the pdshow
output (seethe “pdshow” section on page 17-9).

Input Arguments

Return Values

StartProcess

int StartProcess (String appName))

Asks Daemon Manager to start another process specified by appName.

Input Arguments

Return Values

StopProcess

int StopProcess (String appName)

Asks Daemon Manager to stop another process specified by appName.

0 Success

-1 Failure

StatusMsg [string] Status message, “Program initialized ok.”

0 Success

-1 Failure

appName [string] Application name.

0 Success. Start request sent.

-1 Failure. Start request was not sent.
17-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
Input Arguments

Return Values

Status

int Status ()

Gets current dMgt object status after the dMgt constructor is called.

Arguments

None

Return Values

appName [string] Application name.

0 Success. Stop request sent.

-1 Failure. Stop request was not sent.

0 Success. Constructor completed.

-1 Failure. Constructor not completed.
17-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 17 Using the Daemon Manager
Daemon Manager Command Reference
17-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 18

Using the Job and Resource Manager

The Job and Resource Manager (JRM) provides a general-purpose interface that allows applications to:

 • Schedule jobs—Jobs are general-purpose and application-defined.

 • Lock resources by name—Resource locking is done by name and is advisory; that is, JRM is
intended to be a repository of the currently locked devices; it does not lock a device.

Note JRM locking is meant to aid cooperating applications so they can prevent simultaneously
updating the same device.

The following topics describe JRM and how to use it in your applications:

 • Understanding JRM Services

 • Understanding the JRM Architecture

 • Enabling JRM

 • Using JRM from a Java Application

 • Using JRM from a Web Browser

 • Customizing the Job Browser Button Behaviors

 • Using JRM from the Command Line

 • JRM Command Reference

For more information about the Job and Resource Manager, see the Job and Resource Management
Functional Specification (BG 1.0/Rigel), ENG 21104.

This document reflects the information found in Revision L of the JRM functional specification, Job and
Resource Management Functional Specification (BG 1.0/Rigel), ENG 21104. For the most recent
updates to the JRM, refer to the current release of this specification.
18-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Understanding JRM Services
Applications that use Job and Resource Management services can schedule an activity, or job, to occur
based on several conditions, including:

 • Launch readiness— Only one instance of a periodic job can be running at any given time. You need
to check whether the job been approved and enabled. Also whether there are any dependent jobs still
running. All dependent jobs must finish successfully or new jobs cannot start.

Using JRM, you can schedule a job to run pending approval. For example, device image update
operations are often scheduled by network administrators, but must be approved by a manager.

In this case, the network administrator can schedule an update, but it will be run by the time it is
scheduled to run only if it has been approved by a manager. Anyone on the list of authorized
approvers can review the jobs that require approval and either approve or reject them.

 • Scheduling options—You can schedule jobs to run once or periodically.

Applications often provide users with the means to schedule a task for a given time. SWIM, for
example, lets the user specify when to update a device image. In this case, the application runs on a
server, downloads the image to the specified device, and reboots the device. Normally software
update tasks are run when the traffic on the device is minimal—for example, 2:00 a.m. Sunday
morning. Using JRM services, SWIM can let users schedule a job to run at a specific time.

Another application might need to periodically obtain and analyze device configuration information.
Using JRM services, the application can schedule a job to run once a day, once an hour, only on
Friday at 3:00 p.m., and so on. JRM also provides the functionality to browse the list of scheduled
jobs.

 • Tracking job instances—JRM helps you track each instances of a recurring job separately. Each
instance of the execution of the job will have a unique entry in the job browser. Results of all
instances are retained and tracked through entries in the job browser. The instances and the results
can be individually purged. The purge policy applies to the instances rather than the entire job.

 • Resource locks—A resource lock secures a device or device subnode, making it inaccessible for a
period of time while a job is performed. Resource locks provide a way to serialize access to a device.

Note JRM is intended to be a repository of the currently locked devices; it does not lock a device.
JRM locking is meant to aid cooperating applications so they can prevent simultaneously
updating the same device.

 • Event notification—Job Management uses the Event Distribution System to post job state and
resource state events to other applications. Events can include when a job is started or when it ends;
when a job has been canceled, approved or rejected; when a resource has been locked or unlocked;
and so on.

JRM also provides job and resource lock attributes that allow applications to create their own customized
functionality.

The following topics describe how JRM schedules a job and locks resources:

 • Managing JRM Services

 • Scheduling Jobs

 • Locking Resources

 • Locking Resources from Another Application

 • Locking Parts of a Device
18-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Managing JRM Services
JRM services use the following logic to schedule and run a job:

1. A job is scheduled (for example, upgrade device image or change device configuration).

2. The job is created and scheduled to run, optionally after approval.

3. At the scheduled time, JRM:

a. Determines if the conditions for this job have been met (see the “Understanding JRM Services”
section on page 18-2)

b. Creates a task to run the job

c. Locks resources as it needs to work with them. Locking a resource prevents other jobs that also
use JRM's locking functionality from simultaneously updating the same device. When a job is
done with a device, it unlocks it explicitly.

Automatic lock release and time-based locking prevent a rogue job from locking the device
indefinitely.

d. Optionally, reports its progress and sets its completion status.

Scheduling Jobs
A job can be scheduled to run if it is enabled and approved (or does not require approval), and its start
time is in the future. Jobs can be scheduled to run once or periodically.

When the scheduled time arrives, the Job Manager checks for the following conditions before running
the job:

 • The job has been approved and enabled.

 • The job is not running. Only one instance of a periodic job can be running at any given time.

 • Even if a periodic job does not begin because the start conditions were not satisfied, the job for the
next start time will be scheduled anyway.

Table 18-1 summarizes the job scheduling options.

Table 18-1 Job Scheduling Options

Schedule Type Frequency Description

Run-once Start time Time job is to start.

Periodic Calendar-based Specifies the day the job is to be run next. The units can be:

 • Days: Run job every n days.

 • Weeks: Run job on the given day of the week every n weeks.

 • Month: Run job on the given day of the month every n months.

 • Month-end: Run job on the last day of the month every n months.

 • Month-weekday: Run job on the given day of the first/second/third/fourth/last week
every n months.

Time-based • Start time: Start the next job at a fixed time after the start of the previous invocation.

 • End time: Start the next job at a fixed time after the finish of the previous invocation.
18-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding JRM Services
Locking Resources
Resource locks provide a way to ensure exclusive access to a device. A resource lock secures a device
or device subnode, making it inaccessible to other cooperating applications using JRM for a period of
time while a job is performed.

Note JRM serves as a repository of the currently locked devices—an application can ask whether a device it
is about to update is being used by another application. JRM does not lock a device, which means an
application can use a device by just ignoring the fact that it failed to lock the device first. Resource
locking is meant to be a means to aid cooperating applications so that they can prevent a situation where
two applications are simultaneously updating the same device.

When JRM receives a request to lock a resource, it checks the name of the resource against existing locks
and performs one of these actions:

 • If a resource can be locked, it is added to the locks list.

 • If a resource is leased (that is, locked for a certain duration), when the lease expires the resource is
unlocked.

 • If a resource cannot be locked, the return code indicates this state.

Resources are locked for a certain period of time. When a job cannot estimate how long it will need a
resource, it can either:

 • Periodically renew the lock.

or

 • Lock the resource, specifying infinite time.

Locking a resource for infinite time is not recommended. A lock can be “stuck,” but that only
happens when

 – A job that locked it is does not end (when a job ends, JRM automatically releases all its locks).

 – A resource was locked by an application that is not a job. When a resource is stuck, the only
remedy is for you to force the lock using the JRM browser.

The resource is unlocked when:

 • The job explicitly asks JRM to unlock the resource.

 • The lock expires.

 • The job that locked the resource has ended.

Locking Resources from Another Application
Although resources are typically locked by jobs run by the JRM server, they can be locked by any
application. An application that wants to lock a resource must establish a connection with the JRM
CORBA object and request a resource lock by providing the resource path and its ID string.

There are two differences between Job Manager and application resource locks:

 • IDs used by the jobs are string representations of the job ID numbers. An ID supplied by an
application should start with alphabetic character to avoid ID conflicts.
18-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
 • JRM automatically unlocks all locks owned by a job on job termination. For applications not locked
by JRM, the Job Manager cannot sense that the application ended. Therefore, all the resources
locked by an application without specifying a lock time (locked forever) must be explicitly unlocked
by that application.

Locking Parts of a Device
Applications that use JRM might need to serialize access to certain parts of the device without
necessarily locking the whole device. The device associated with the particular resource must also be
easily identified.

JRM’s resource naming scheme allows resources to form a hierarchy. The top-level nodes of the
hierarchy are fully qualified device names (for example, nm7501.cisco.com) and the subnodes
correspond to the parts of the device (for example, card0). Each lock is identified by its resource path,
starting from the top level (nm7501.cisco.com/card0).

Locking a particular node prevents other applications from locking any nodes below it and all the nodes
on the path to it. For example, if there is a lock for nm7501.cisco.com/card0:

 • nm7501.cisco.com/card1 can be locked.

 • nm7501.cisco.com cannot be locked.

 • nm7501.cisco.com/card0/port0 cannot be locked.

Understanding the JRM Architecture
The following topics describe the JRM architecture:

 • An Overview of the JRM Architecture

 • Understanding the JRM Server

 • Understanding the Job Browser

 • How JRM Relates to Other CWCS Components

An Overview of the JRM Architecture
The following figure shows the relationship between JRM, its components, and its clients.
18-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Figure 18-1 JRM Architecture

JRM consists of the following components:

 • The JRM server provides job and locking services to the following clients:

 – Applications that schedule jobs

 – Jobs that JRM creates in response to a schedule request

 – Applications that lock and unlock resources

 – The JRM servlet

 – The command reference interfaces, jobcli and lockcli, that expose JRM to non-Java applications
such as Perl and C++

To learn more about the JRM server, see the “Understanding the JRM Server” section on page 18-7.

 • The JRM servlet—Provides a URL interface to the JRM server process. Since there is no easy way
to use CORBA calls directly from a web browser, this intermediary piece of code runs on the server
and communicates with the JRM server via CORBA to execute the commands it receives from the
web browser. All responses from the JRM servlet are XML-encoded.

The JRM servlet:

 – Accepts HTTP requests from the Job Browser and other customized applets and translates them
into CORBA calls to the JRM server.

 – Accepts JRM server responses, translates them into HTTP responses, and sends them back to
the Job Browser or applet.

For information about using the JRM servlet, see the “Using JRM from a Web Browser” section on
page 18-21.

 • The Job Browser—A configurable applet that displays the current jobs and locked resources and
allows the users to stop, terminate, and remove jobs. The Job Browser applet runs on the web
browser and communicates (exchanges XML documents) with the JRM server via the JrmServlet.
The Job Browser can be embedded into HTML pages to provide a GUI for browsing and managing
JRM jobs and resources.

To learn more about the Job Browser, see the“Understanding the Job Browser” section on
page 18-10.

CORBA

HTTP
requests

Application A

Schedule
job

Lock
resource

JRM components

Application B Custom
applets

Job browser

JRM servlet

JRM serverJRM-generated
job jobcli

lockcli

31
95

1

18-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
 • Applets and Java components—Used to design custom HTML pages. Since there is a wide variation
in GUI requirements for creating and editing different job types, individual applications must
provide screens for creating, editing, and displaying details of their job types. To assist in these
efforts, JRM provides applets to prompt for the date or time, display the JRM job panel, and display
various types of JRM schedules.

For information about designing custom HTML pages, see the “Customizing the Job Browser
Button Behaviors” section on page 18-22.

 • jobcli and lockcli applications—Provide a command-line interface for scheduling jobs and locking
resources. These applications, which are primarily used for debugging purposes, also provide a JRM
interface for non-Java applications such as Perl or C++.

For information about using command line applications, see the “Using JRM from the Command
Line” section on page 18-24.

Understanding the JRM Server
The JRM server provides job and locking services to various clients, including applications that schedule
jobs or lock and unlock resources, jobs that JRM creates in response to a schedule request, the JRM
servlet, and the command reference interfaces.

The following topics describe the JRM server components:

 • About Jobs and Resources

 • About JRM Server Classes

 • About the IDL Interface

 • About the Helper API

 • About JRM Events

About Jobs and Resources

The two fundamental JRM entities are jobs and resource locks:

 • Using JRM, you can schedule a job to run, pending approval. Job information consists of:

 – The command to be run

 – The schedule (run immediately, once, or periodically)

 – An approval flag (approval is required or not required before the job can run)

 – A status string that can be set by the job

Job information is stored in a database table, where each row represents a single job. On startup,
JRM reads the table and creates job objects. While running, JRM automatically updates the
corresponding row to reflect every change in a job object. When a new job is created, a new row is
added to the table. When a job is deleted, the corresponding row in the table is deleted.

 • JRM locks resources as it needs to work with them. Resource locks provide a way to ensure
exclusive access to a device. Resource lock information consists of:

 – The resource path

 – The owner (a job or any process)

 – The expiration time
18-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Note Resource information is not kept in a database. If JRM is stopped, all resource information is
lost.

About JRM Server Classes

The JRM server application class performs these functions:

 • Reads configuration files, such as the XML column and action configuration files for the Job
Browser.

 • Starts various threads. For example, when a job is about to run, it is added to the launch queue. The
LaunchQueue thread dequeues the job and invokes the Daemon Manager to run the job.

 • Keeps pointers to these JRM implementation classes:

 – JobManagerImpl—A facade to the Jobs class, a singleton containing everything related to jobs.
It contains the following inner classes:

Jobs.JobTable
Jobs.LaunchQueue
Jobs.Terminator

 – LockManagerImpl—A facade to the Locks class, a singleton containing everything related to
locks. It contains the inner class, Locks.Lock.

 – AlarmQueue—Maintains the timer queue, runs the timer thread, and invokes a handler when the
node timer expires.

 – DBConnection—Provides an interface to database-related functions.

 – DMConnection—Runs a thread that listens to Daemon Manager events and provides a listener
interface.

 – EDSConnection—Runs a thread that sends events to EDS.

 – Client—A simplified JRM communication interface for jobs running under JRM (see the
“About the Helper API” section on page 18-9).

 • Provides utility functions.

About the IDL Interface

The JRM server implements two objects: JobManager and LockManager. Enumeration interfaces are
implemented by the iterator objects, JobIter and LockIter. The JRM IDL (Interface Definition Language)
file includes the interfaces of the objects supplied by the JRM server.

Related Topics

 • For an example of the JRM IDL file, refer to the jrm.idl file in the CodeSamples directory on the
CWCS SDK CD.

 • For more information about CORBA, refer to:

 – Object Management Group website, http://www.omg.org

 – OMG’s CORBA website, http://www.corba.org
18-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.corba.org
http://www.omg.org

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
About the Helper API

The Client class provides a collection of static methods that might be helpful for clients that manipulate
jobs and resources. The methods can be categorized by the main class and several inner classes:

 • The top-level class, Client, implements Constants. Use this class to return printable representations
of the schedule string or the job’s run and schedule states. These methods can be used by any client.

The Client class contains these methods, which can be used by any client:

 – Return a printable representation of the schedule string

 – Return a printable representation of the job’s run and schedule states

 – Initialize the ORB and locate servers

 • The inner class, MyJob, is a collection of static methods that can be used only by a job running under
JRM control. This class provides methods to:

 – Set a job's completion state (success, success with info, failed)

 – Set a job's progress string

 – Lock resources

 – Unlock resources

 – Unlock all a job's resources

 – Get job information

Related Topics

See the “About the Helper API Methods” section on page 18-49.

About JRM Events

JRM can use Event Services Software (ESS) and the Event Distribution System (EDS) to publish events
of interest to applications. JRM sends events when:

 • A job starts.

 • A job ends.

 • A job start fails.

 • A job is canceled.

 • A job is rejected or approved.

 • A resource is locked or unlocked.

 • A process has ended.

These events belong to the event category status (EventCategory_Status). The event and resource atoms
are listed in com.cisco.nm.cmf.jrm.JrmEdsAtomDev.java.

JRM publishes the following topics using ESS:

 • cisco.mgmt.cw.cmf.jrm.EventJobReject

 • cisco.mgmt.cw.cmf.jrm.EventJobEnd

 • cisco.mgmt.cw.cmf.jrm.EventJobStart

 • cisco.mgmt.cw.cmf.jrm.EventJobCancel

 • cisco.mgmt.cw.cmf.jrm.EventLock
18-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
 • cisco.mgmt.cw.cmf.jrm.EventJobApprove

 • cisco.mgmt.cw.cmf.jrm.EventDaemonEnd

 • cisco.mgmt.cw.cmf.jrm.EventJobLaunchFail

 • cisco.mgmt.cw.cmf.jrm.EventUnlock

JRM publishes the following topics using EDS:

 • EventJobStart

 • EventJobEnd

 • EventJobCancel

 • EventJobApprove

 • EventJobReject

 • EventDaemonEnd

 • EventLock

 • EventUnlock

JRelated Topics

See:

 • Chapter 19, “Using Event Services Software.”

 • Chapter 20, “Using the Event Distribution System.” Note that EDS is deprecated.

Understanding the Job Browser
The Job Browser is a configurable Java applet that you can embed in HTML pages to provide a GUI for
browsing and managing JRM jobs and resources. The Job Browser uses XML files to specify:

 • Job and resource table column names, sizes, and visibility.

 • URLs to call that carry out the actions entered by the user.

Figure 18-2 shows the Job Browser interface, which provides the user actions shown in Table 18-2.

Figure 18-2 Sample Job Browser Dialog Box
18-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Understanding the JRM Architecture
Figure 18-3 Sample Job Resource Dialog Box

Table 18-3 Job Browser User Actions

Related Topics

 • Customizing the Job Browser Button Behaviors, page 18-22

 • About the Helper API Methods, page 18-49

How JRM Relates to Other CWCS Components
JRM relies on:

 • The built-in CWCS database to maintain job states. JRM lists a database as a dependency. Therefore,
the Daemon Manager starts JRM only after the database is running. For more on the CWCS
database, see Chapter 11, “Using the Database APIs.”

 • The built-in CWCS Daemon Manager to run and control jobs. JRM jobs run as processes under the
CWCS Daemon Manager. For more on the CWCS Daemon Manager, see Chapter 17, “Using the
Daemon Manager.”

Table 18-2 Job Browser User Actions

Action Description

Stop Calls the corresponding JRMserver method. Select a Job ID, then click Stop.

Delete Calls the corresponding JRMserver method. Select a Job ID, then click Delete.

Click a Job ID Uses the URL registered in the JrmButtonActions.xml file for the selected job type
to show job details for the application that owns the job.

Button Default Action

Free Resource... • Explicitly frees resources without waiting for the associated job to end.

 • Frees orphaned resources that no longer have an associated job that is running.

Shown only when user has administrative privileges.

Note Using this button is not recommended unless resource is orphaned.
18-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Enabling JRM
Enabling JRM
JRM is part of CWCS System Services. Since CWCS release 3.0, JRM services are enabled by default.
If your application requires services from JRM, remember to register for this service at installation. For
instructions, refer to the “Registering for CWCS Services” section on page 5-4. If you prefer to request
services after installation, refer to the “Enabling New Service Bundles from the Command Line” section
on page 5-5.

Using JRM from a Java Application
To use JRM from a Java application, you must, for example, know how to establish a connection with
the Job Manager, create a job, and set the status of the job. The following topics describe some typical
job and lock management tasks:

 • Establishing a Connection

 • Creating a Job

 • Setting the Job Status

 • Getting Job Descriptions

 • Handling an Unapproved Job

 • Enabling a Disabled Job

 • Handling a Crashed Job

 • Locking and Unlocking a Device

 • Handling an Unavailable Resource

 • Accessing a Locked Device

For a description of the JRM APIs, see the “JRM Command Reference” section on page 18-26.

Establishing a Connection
Example 18-1 shows how to establish a connection with the Job Manager. The host where the JRM
server is running is passed as a parameter.

Note This example disables automatic rebinding. If automatic rebinding is enabled and the JRM server aborts
for any reason, the ORB will try to find another JRM server and reconnect to it. This is not a desirable
action.

Example 18-1 Connecting with Job Manager

import java.lang.*;
import java.net.*;
import com.cisco.nm.cmf.jrm.*;
import com.cisco.nm.cmf.util.CmfException;
import com.cisco.nm.cmf.util.Util;
18-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
import org.omg.CORBA.*;
import com.inprise.vbroker.CORBA.BindOptions;
import java.util.*;
public class testJpp {
public static void main (String[] args) {
 JrmServiceManager jrm=null;
 JobManager jm=null;
 String nmsroot;
 String host;

 try {
 Util.loadBGProperties("md.properties");
 nmsroot=System.getProperty("NMSROOT");
 System.out.println("NMSROOT is "+nmsroot);
 } catch(CmfException cmf) {
 System.out.println("unable to load md.properties");
 }

 try {

 host=(InetAddress.getLocalHost()).getHostName();
 System.out.println("host = " + host);

 Properties ORBProperties = Client.getOrbConnectionProperties();
 ORBProperties.put("org.omg.CORBA.ORBClass","com.inprise.vbroker.orb.ORB");
 org.omg.CORBA.ORB orb =
(com.inprise.vbroker.CORBA.ORB)com.cisco.nm.util.OrbUtils.initORB(null,ORBProperties);
 jrm = JrmServiceManagerHelper.bind(orb,Client.getJrmName(),host,null);

 System.out.println("Connected to JRM service Manager.");
 LoginInfo loginInfo = new LoginInfo("admin","admin","");
 jm = jrm.getJobHandle(loginfInfo);
 } catch (org.omg.CORBA.SystemException e){
 e.printStackTrace();
 System.err.println(e.toString());
 return;
 } catch (Exception e) {
 e.printStackTrace();
 System.err.println(e.toString());
 return ;
 }

 if (jm == null) {
 System.out.println("Job Manager not bound");
 return;
 }

 //Foll code to create a job

 long start=System.currentTimeMillis()+20000;
 int type=Constants.SCHTYPE_S_Minutes;
 int increment=3;
 Schedule sch=new Schedule(start,type,increment);

 int precedents[]={};

 JobInfo ji =new JobInfo(0,// id
 "TestJob",// type
 new String("Test job"),// description
 "D:\\progra~1\\mkstoo~1\\mksnt\\sleep.exe 30",
 sch,// schedule
 precedents,// dependencies
 Constants.RUNST_NeverRan,// state
 Constants.SCHST_Enabled,// enabled
18-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
 System.currentTimeMillis(),// Time created
 System.currentTimeMillis(),// Time modified
 0,// Start
 0,// Stop
 "Scheduling Job",// Progress
 host,// Host default=localhost)
 new String("system"),// Account (default=system)
 new String("Reference"),// Reference
 "admin",// Owner
 ""// Approver
);

 IntHolder jid=new IntHolder(0);

 if(ji == null) {
 System.out.println("Job info is null");
 System.exit(1);
 }

 int status=jm.job_create_hist(ji,jid);

 if(status != Constants.STATUS_Ok) {
 System.out.println("Failed to create Job");
 System.exit(-1); // job creation failed
 } else {
 System.out.println("Job "+jid.value+" created sfly.");
 }
}

Creating a Job
Example 18-2 shows how to create a job with these attributes:

 • It will run the Java application whose main class is myJavaClass and use a standard Java classpath
(that is, the same one that was used to run the JRM server) to locate the classes.

 • The job’s ID will be passed as a command-line option. A job uses this ID to communicate its
progress and completion status to JRM.

 • The job’s type is ACLM.

 • The job requires approval before it can be run.

 • The job will run in one minute.

Example 18-2 Creating a Job

// Create a job
JRM.Schedule sch =

new Schedule(System.currentTimeMillis()+60*1000,// Start in a minute
SCHTYPE_Once,
SCHINC_Months,// Doesn’t matter
0);
int precedents[] = {};
JRM.JobInfo ti =
new JobInfo(0,// id
“ACLM”,// type
“Description”,// description
18-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
“$JP –cp $JC $JJ myJavaClass”,// command:
// run myJavaClass
sch,// schedule
precedents,// dependencies

 RUNST_NeverRan,// state
SCHST_RequiresApproval // Approval state:
| SCHST_AM_WAITING // requires approval,
| SCHST_ENABLED,// enabled

 0,// Time created
 0,// Time modified
 0,// Start
 0,// Stop
 “”,// Progress
 “”,// Host default=localhost)
 “”,// Account (default=system)
 “”,// Reference
 “”,// Owner
 “”// Approver
);

// Create holder for the returned value
IntHolder h_id = new IntHolder(0);

// Create a job, test its status
try {

int stat = job_manager.job_create(ti,h_id);
if (STATUS_Ok == stat) {

System.out.println(“Created job with id = “, h_id.value);
}
else {

…
}
catch (org.omg.CORBA.SystemException e) {
// Attempt to reconnect explicitly
}

}

Setting the Job Status
The following code fragment tells JRM that the job has ended successfully and sets its progress string
(which will become the completion string) to “Download successful”:

import com.cisco.nm.cmf.jrm.Client;
…

Client.MyJob.set_completion_state(Client.RUNST_Succeeded);
Client.MyJob.set_progress(“Download successful”);

You need to keep the following in mind:

 • Execute this code from a job executing under JRM.

 • Add $JJ to the command line that starts this job (see the “About the Job and Resource Lock
Attributes” section on page 18-26).

The displayed job status is a dynamic attribute of the job. JRM calculates the status based on the job’s
run state, scheduled state attributes, and the current time.

 • For run-once jobs, the displayed job status reflects either:

 – The job’s scheduling state (if the job’s scheduled time is in the future)

 – The job’s run result (if the job’s scheduled time is in the past).
18-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
 • For periodic jobs, the displayed job status displays the result of the last run and the scheduling state
of the next run.

The job status values for both run-once and periodic jobs are summarized in the tables in the “About
Displayed Job Status Values” section on page 18-28.

Getting Job Descriptions
Example 18-3 shows how to get the job descriptions for all scheduled jobs.

Example 18-3 Getting Job Descriptions

jrm.JobIterHolder iter = new JobIterHolder();
jrm.JobInfoHolder job_info = new JobInfoHolder();

try
{

//Get the job enumerator
int status = job_manager.job_enum(iter);
if (STATUS_Ok == status)
{

while (STATUS_EOF != iter.value.next(job_info))
{

System.out.println(job_info.value.szDescription);
}
iter.value.release();

}
}
catch (org.omg.CORBA.SystemException e)
{
//
}

Handling an Unapproved Job
Use the code fragment in Example 18-4 when a job that requires approval is scheduled and has not been
approved by the scheduled time. The job execution is abandoned, and the job deleted if it is not periodic.

Example 18-4 Handling Unapproved Jobs

jrm.JobInfoHolder job_info = new JobInfoHolder();
// Find out the job details corresponding to the job.
int status = job_manager.job_get_info(idJob,job_info);

// If the job is still waiting for approval, then execution of the
// job is abandoned.
if ((STATUS_Ok == status)&&(SCHST_AM_Waiting == (SCHST_AM_Masks &
job_info.value.sch_state)))
{

System.out.println (“Still waiting for approval, so can’t start now”);
jrm.ScheduleHolder schedule = new ScheduleHolder();
18-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
// Get the job schedule
int stat = job_manager.job_get_schedule(idJob,schedule);

// Check the schedule type.If the job is not periodic, delete the job
if (STATUS_Ok == stat)
{
if ((SCHTYPE_Immediate == schedule.value.type)||(SCHTYPE_Once == schedule.value.type))

{
System.out.println (“Now deleting the job”) ;
job_manager.job_delete(idJob);
}

}
}

Enabling a Disabled Job
Example 18-5 shows how to create a job in the disabled state, do some operations, and then enable the
job.

Example 18-5 Enabling a Disabled Job

// Create a job
jrm.Schedule sch = new Schedule(0,

SCHTYPE_Immediate,
SCHTYPE_Monthly //Ignored for SCHTYPE_Immediate
);

int precedents[] = {};

// Create the JobInfo structure with appropriate values
jrm.JobInfo job_info = new JobInfo(0,// id

“ACLM”,// type
“Description”, // description
“$JP -cp $JC $JJ myJavaClass”,// command:
// run myJavaClass
sch,// schedule
precedents, // dependencies
RUNST_NeverRan,// state
SCHST_AM_Approved,// Approval state:
0, // Time created
0, // Time modified
0, // Start
0, // Stop
“”, // Progress
“”, // Host default=localhost)
“”, // Account (default=system)
“”, // Reference
“”, // Owner
“” // Approver
);

// IntHolder for holding the JobId
org.omg.CORBA.IntHolder h_id = new org.omg.CORBA.IntHolder(0);
// Create a job, test its status
try
{

int stat = job_manager.job_create(job_info,h_id);
18-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
if (STATUS_Ok == stat)
{

System.out.println(“Job created with id = “+ h_id.value);
}
else
{

System.out.println(“Job creation failed “);
System.exit(0);

}
//Perform some operations involving the newly created job

//

// Now enable the job
int status = job_manager.job_set_resume(h_id.value,true);
if (STATUS_Ok != status)
{

System.out.println(“Job resumption failed”);
}

}
catch (org.omg.CORBA.SystemException e)
{

System.out.println(“Exception while job creation “);
System.exit(0);

}

Handling a Crashed Job
Example 18-6 shows how to get a job’s current running state and delete a crashed job.

Example 18-6 Handling a Crashed Job

org.omg.CORBA.IntHolder result = new org.omg.CORBA.IntHolder();

int status = job_manager.job_get_result(idJob, result);
if (STATUS_Ok == status)
{

if (result.value == RUNST_Crashed)
{

// Delete the job
status = job_manager.job_delete(idJob);
if (STATUS_Ok != status)
{
System.out.println(“No such job exists”);
}

}
}
else
{

System.out.println(“ Getting the run state failed!”);
}

18-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
Locking and Unlocking a Device
In Example 18-7, a job locks a device, does some processing, and releases the lock.

Example 18-7 Locking and Unlocking a Device

LockManagerImpl lock_manager = new LockManagerImpl(“TEST”);

int status = lock_manager.lock(“device1”, “my_app”, 1000);

/* If no job has locked device1 yet, then status = STATUS_Ok */
if (STATUS_Ok == status)
{

System.out.println(“No lock exists now for the device “);
//... do some processing....

lock_manager.unlock(“device1”,”my_app”);
}

Handling an Unavailable Resource
In Example 18-8, a job is enabled and approved and then, at the scheduled time, it tries to lock a resource
and fails.

Example 18-8 Handling an Unavailable Resource

int status = 0;
jrm.JobInfoHolder job_info = new JobInfoHolder();

try
{

 // Find out the job details corresponding to the job.
 status = job_manager.job_get_info(idJob,job_info);

}
catch (org.omg.CORBA.SystemException e)
{

System.exit(0);
}

//If the job is approved and is enabled then try to run the job
if ((STATUS_Ok == status)&& (SCHST_AM_Approved == (SCHST_AM_Masks &
job_info.value.sch_state))&&

 (SCHST_Enabled == (job_info.value.sch_state & SCHST_Enabled)))
{

try
{

//Lock the required devices
 status = lock_manager.lock(“device name”,”owner”,1000);

// If locking failed
if (STATUS_Ok != status)
{

jrm.ScheduleHolder schedule = new ScheduleHolder();
// Get the job schedule
int stat = job_manager.job_get_schedule(idJob,schedule);
18-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Java Application
if (STATUS_Ok == stat)
{
// If the job is not periodic, then delete the job

if ((SCHTYPE_Once == schedule.value.type) ||
(SCHTYPE_Immediate == schedule.value.type))
{
System.out.println (“Now deleting the job”);
job_manager.job_delete(idJob);
}

}
}
// Run the job
else
{

status = job_manager.job_run(idJob);
if (STATUS_Ok != status)
{
System.out.println (“job run failed”);
}

}
}
catch(org.omg.CORBA.SystemException e)
{
System.exit(0);
}

}

Accessing a Locked Device
In Example 18-9, a job is trying to lock a device that is already locked by another job. The code finds
the information about the other job and, if that job is not running, releases all resources locked by it.
Then it tries to lock the device. After the device is locked, the job does some processing and then releases
the lock.

Example 18-9 Accessing a Locked Device

/* Current job is trying to lock a device device1 */
int status = lock_manager.lock(“device1”, “my_app”, 2000);

/* If some job has already locked device1, then status = STATUS_Exists */
if (STATUS_Exists == status)
{

/* Find out the complete Lock_info for device1 */
jrm.LockInfoHolder lock_info = new LockInfoHolder();
status = lock_manager.get_lock(“device1”,lock_info);
/* If Lock_info found for device1, status = STATUS_Ok */
if (status==STATUS_Ok)
{

Integer int_id = new Integer(lock_info.value.szJob);
int job_id = int_id.intValue();
jrm.JobInfoHolder job_info = new JobInfoHolder();
// Find out the job details corresponding to the job id obtained.
status = job_manager.job_get_info(job_id,job_info);
if (status==STATUS_Ok)
{

if (job_info.value.run_state != RUNST_Running)
{

18-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from a Web Browser
// Release all resources locked by the job
lock_manager.unlock_job(lock_info.value.szJob);
status = lock_manager.lock(“device1”,”my_app”, 1000);
// ... do some processing....
lock_manager.unlock(“device1”,”my_app”);
}

}
else
System.out.println(“No job exists”);

}

Using JRM from a Web Browser
The JRM servlet provides the URL interface to the JRM server process. The servlet communicates with
the JRM server via CORBA to execute the commands it receives. All responses from the JRM servlet
are XML-encoded.

Table 18-4 summarizes the URL commands which the JRM servlet supports via HTTP POST and GET
requests.

Table 18-4 JRM Servlet URL Commands

URL Command Description

getJobAndResourceList Returns an XML-encoded list of currently scheduled jobs and locked resources.

Example:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?cmd=getJobAndResou
rceList

stop Requests that the specified job be stopped. Returns “true” if successful, “false: error message”
otherwise, where error message provides the message to display to the user.

For job history jobs, “instance id” and a boolean variable “stop instance” is used. The “stop
instance” should be true if the user selects “Stop this instance only” and false if the user selects
“Stop all instances”.

Example:

For jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=stop&jobid=
1001&instanceid=2&stopinstance=true

For jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=stop&jobid=
1001&instanceid=2&stopinstance=true
18-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Customizing the Job Browser Button Behaviors
Customizing the Job Browser Button Behaviors
To customize the behavior of the buttons in the Job Browser dialog box, modify the action configuration
file summarized in Table 18-5. The action configuration file contains the tags listed in Table 18-6.

kill Requests that the specified job be killed. Returns “true” if successful, “false: error message”
otherwise where error message provides the message to display to the user.

For job history jobs, “instance id” and a boolean variable “stop instance” is used. The “stop
instance” should be true if the user selects “Stop this instance only” and false if the user selects
“Stop all instances”.

Example:

jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=kill&jobid=
1001&instanceid=2&stopinstance=true

jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=kill&jobid=
1001&instanceid=2&stopinstance=true

remove Removes specified job from JRM scheduler. Returns “true” if successful, “false: error message”
otherwise where error message provides the message to display to the user.

Instance id is also passed with the jobid.

Example:

For jobs that maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=remove&jobi
d=1001&instanceid=2

For jobs that do not maintain job history:

http://server:1741/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet?button=remove&jobi
d=1001&instanceid=2

Table 18-4 JRM Servlet URL Commands (continued)

URL Command Description

Table 18-5 Job Browser Action Configuration File

Name JrmButtonActions.xml

Description When the user selects a job and clicks one of the buttons in the Job Browser dialog box,
JrmJobApplet uses this file to determine the URL to be called. All action URLs are
invoked via an HTTP GET request.

Runtime
Location

$NMSROOT/htdocs/jrm/JrmButtonActions.xml

where $NMSROOT is the directory in which the product was installed.

Guidelines/
Restrictions

Applications that do not want the default JRM actions must add the action URLs for their
job type to this file.
18-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Customizing the Job Browser Button Behaviors
Return values for the BUTTON and URL tags shown in Table 18-6 is as follows:

 • details: Returns an application-specific HTML page that displays the job details. The application
must display any error messages.

 • remove, stop, kill: Returns “true” if the operation initiated successfully (does not mean it
completed); “false:Error Message” if an error occurred. A dialog box displays the error message.

Example 18-10 shows the default Job Browser action configuration file.

Example 18-10 Default Job Browser Action Configuration File

<?xml version=”1.0"?>

<ACTIONS>
 <JOBTYPE ID="Test">
 <ACTION BUTTON="details" URL="/jrm/TestDetails.html" />
 <ACTION BUTTON="stop" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 <ACTION BUTTON="kill" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 <ACTION BUTTON="remove" URL="/CSCOnm/servlet/com.cisco.nm.cmf.jrm.JrmServlet" />
 </JOBTYPE>

Table 18-6 Job Browser Action Configuration File Contents

Tag Attributes Description

ACTIONS Container for all button actions.

JOBTYPE Container for a job type.

ID A string identifying the job type and subtypes (for example,
SWIM:update.)

ACTION Defines the URL that is called when the user requests an action.

BUTTON Allowed values:

 • details—Invoked when the user clicks Job Details. The details
button URL is displayed in a separate browser instance.

 • remove—Invoked when the user clicks Remove Job.

 • stop or kill—When the user clicks Stop Job, the Job Browser
presents two options:

 – Stop the job (finish gracefully).

 – Kill the job unconditionally.

URL The URL to be called to perform an action.

 • details—If there is no URL in the actions file for the selected job
type, an error dialog box is displayed.

 • remove—Default action is to call the JRM servlet to remove the
job.

 • stop or kill—Default action for both stop and kill is to ask the
Daemon Manager to kill the job.

Note A stop action can be specified for a particular job type
without specifying a kill action and vice versa.
18-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from the Command Line
 <JOBTYPE ID="NetConfigJob">
 <ACTION BUTTON="stop"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="kill"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="remove"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="details" URL="/netconfig/netconfig.jsp" />
 </JOBTYPE>

 <JOBTYPE ID="NetConfigPurge">
 <ACTION BUTTON="remove"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="kill"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 <ACTION BUTTON="stop"
URL="/CSCOnm/servlet/com.cisco.nm.config.netconfig.server.NetConfigUIServlet" />
 </JOBTYPE>
</ACTIONS>

To customize the Job Details and Stop Job buttons but rely on the default JRM action for the Remove
Job button for the ACL Manager, add the following element to the action configuration file:

<JOBTYPE ID=”acl”>
<ACTION VERB=”details” URL=”/acl/editjob”/>
<ACTION Verbosity” URL=”/acl/stopjob”/>

</JOBTYPE>

Using this action configuration, if the user selects an ACL job with Id=42 and clicks “Job Details”, the
JRM browser will issue the following GET request and display the result in a new browser window:

http://server:1741/acl/editjob?jobid=42&button=details

If the user clicks “Stop Job” and selects “stop” (not “kill”) from the dialog box, the JRM browser will
issue the following GET request:

http://server:1741/acl/stopjob?jobid=42&button=stop

If the response is “true,” a dialog box is displayed indicating that the operation was initiated successfully.
If the response is “false: device not responding” (for example), a dialog box will be displayed with the
text, “device not responding.”

Using JRM from the Command Line
JRM includes two command line applications, jobcli and lockcli, that provide a command language
interface for scheduling jobs and locking resources. These applications are used for debugging purposes
and to provide a JRM interface for non-Java applications such as Perl or C++.

The following topics describe jobcli and lockcli:

 • Job Command Line Interface

 • Lock Command Line Interface

Related Topics

See the “Using the Job Command-Line Commands” section on page 18-59
18-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
Using JRM from the Command Line
Job Command Line Interface
The job command line application, jobcli (shown in Table 18-7), is a Java application that provides a
simple job manipulation command language.

Lock Command Line Interface
The lock command line application, lockcli (shown in Table 18-8), is a Java application that provides a
simple lock manipulation command language.

.

Table 18-7 Jobcli Interface

Name com.cisco.nm.cmf.jrm.jobcli

Description Provides a simple command language that allows you to:

 • Create or create and run a job

 • Approve or reject a job

 • Cancel, delay, delete, suspend, or resume a job

 • Change job schedule

You can provide inputs to jobcli using either:

 • Standard input

 • A file of commands

The jobcli commands are described in the “Using the Job Command-Line
Commands” section on page 18-59.

Syntax jre -cp classpath com.cisco.nm.cmf.jrm.jobcli [-f clifile]

Arguments Name Description

classpath Environment variable that tells the interpreter where to look for
user-defined classes.

-f clifile Reads commands from clifile. If –f option is missing, commands
are read from standard input.

Outputs Sent to stdout/stderr.

Table 18-8 Lockcli Interface

Name com.cisco.nm.cmf.jrm.lockcli

Description Provides a command language that allows you to lock and unlock a single or several
resources for the owner running outside JRM.

Note There is no automatic unlocking. If you lock a resource without specifying
the lock duration, be sure you unlock it.

Syntax jre –cp classpath com.cisco.nm.cmf.jrm.lockcli {-l | -u} owner
resource[@duration]…
18-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
JRM Command Reference
JRM provides interfaces from Java, IDL, and servlets, and via command line utilities. These topics
describe the reference information for these interfaces:

 • About the Job and Resource Lock Attributes

 • About Displayed Job Status Values

 • About the Job Manager Methods

 • About the Lock Manager Methods

 • About the Helper API Methods

 • About the JRM Java Constants

 • Using the Job Command-Line Commands

About the Job and Resource Lock Attributes
Table 18-9 describes the available job attributes.

Arguments Name Description

-l or -u Lock or unlock resource(s).

owner Resource owner. Should contain at least one alphabetic character
to distinguish it from jobs run under Job Browser.

resource Specifies resource path. If followed by @duration:

 • If duration is greater than zero, resource will be locked for
duration seconds.

 • If duration is less than or equal to zero, an error message will
be displayed.

 • If no duration is specified, resource will be locked until it is
explicitly unlocked by its owner.

Duration is ignored when unlocking.

Output Success = 0

Error = >0 and stderr contains a diagnostic message.

Examples The following example locks switch1.cisco.com for 30 seconds and
switch2.cisco.com until explicitly unlocked on behalf of swim1 job:

jre –cp … com.cisco.nm.cmf.jrm.lockcli -l swim1 switch1.cisco.com@30
switch2.cisco.com

The following example unlocks switch2.cisco.com:

jre –cp … com.cisco.nm.cmf.jrm.lockcli -u swim1 switch2.cisco.com

Table 18-8 Lockcli Interface
18-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-9 Job Attributes

Attribute Description

ID A unique number assigned to this job at creation time. This number is never reused.

InstanceID A unique number that is incremented for every instance of job history jobs. For jobs without multiple
instances, value is 0.

Type String identifying the job type and job subtypes (for example, SWIM:update.)

Description String that describes the job.

Command line The command line to start the job. JRM performs the following parameter substitutions on the command
line:

String/Result

$JC — Java classpath. Prefix with –cp.

$JI — Job ID.

$JJ — Sets nm.jrm.jobid Java property to the job ID; equivalent to -Dnm.jrm.jobid=$JI.

$II — Instance ID.

$IJ — Sets nm.jrm.instanceid Java property to the instance ID; equivalent to -Dnm.jrm.instanceid=$II.

$JP — Path to Java interpreter.

$JR — RME installation root directory.

$: — Path separator, the value of the path.separator system property (':' on UNIX, ';' on Windows).

$/ — File separator, the value of the file.separator system property ('/' on UNIX, '\' on Windows).

Host Machine name or IP address where the job will run. (For future extensions. Currently, the job is always
started on the local machine.)

Account Account under which the job is run. (For future extensions.)

Schedule How often this job will run. Options include: run immediately, run once, run on a calendar basis
(periodic), run on a time-start basis, or run on a time-stop basis.

Dependencies A list of the Job IDs that must complete successfully. (Not currently implemented.)

Completion state Describes the current state or last run result of the job. Job states include: running, never, suspended,
wait for approval, scheduled (pending), rescheduled, completed succeeded, failed, crashed, canceled,
rejected, or ERROR.

Schedule state Determines if the job can be scheduled to run based on whether it is enabled, requires approval, or has
already been approved.

Start and stop
times from last run

Time stamps from the last time the job was run or attempted to run.

Progress status Updates or diagnostic information.

Reference An application-specific string. May contain the URL of job results.

Owner Account of the person that created the job.

Creation time Time the job was created.

Last modification
time

Time the job was last modified.

Approver Account of the approver. Valid only if approval is required.
18-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-10 summarizes the available resource lock attributes.

About Displayed Job Status Values
Displayed job status value vary according to how often the job is run and whether approval is required.

Table 18-11 summarizes the displayed job status for run-once, approval-required jobs.

Table 18-12 summarizes the displayed job status for run-once, no-approval-required jobs.

Table 18-10 Resource Lock Attributes

Field Description

Resource path String defining the device name and any subnode.

Owner Job ID represented as a string.

Time stamp Time the lock was established.

Expiration time Time the lock expires.

Table 18-11 Run-Once Approval-Required Job Status Values

Schedule vs.
Current Time Run State Enabled

Approval
State

Displayed
Schedule Status

Displayed Completion
Status

Future Never N Suspended

Future Never Y Wait for
approval

Wait for
approval

Future Never Y Approved Scheduled
(pending)

Future Never Y Rejected Rejected

Future Canceled Canceled

Past Never N Suspended

Past Never Y Wait for
approval
—
rejected

Rejected

Past Never Y Approved ERROR

Past Canceled Canceled

Past All others Same as run state

Table 18-12 Run-Once No-Approval Job Status Values

Schedule vs. Current
Time Run State Enabled Displayed Schedule Status

Displayed
Completion Status

Future Never N Suspended

Future Never Y Scheduled (pending)

Future Canceled Canceled
18-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Table 18-13 summarizes the displayed job status for periodic, approval-required jobs.

Table 18-14 summarizes the displayed job status for periodic, no-approval-required jobs.

About the Job Manager Methods
Use the Job Manager methods summarized in Table 18-15 to add JRM scheduling functionality to your
application. These methods return Java constants described in the “About the JRM Java Constants”
section on page 18-56.

Past Never N Suspended

Past Never Y ERROR

Past Canceled Canceled

Past All others Same as run state

Table 18-12 Run-Once No-Approval Job Status Values (continued)

Table 18-13 Periodic Approval-Required Job Status Values

Run State Enabled Approval State
Displayed Schedule
Status

Displayed Completion
Status

* N Suspended Same as Run state

Canceled Y Canceled Canceled

All others Y Wait for approval Wait for approval Same as Run state

All others Y Approved Scheduled (pending) Same as Run state

All others Y Rejected Rejected Same as Run state

Table 18-14 Periodic No-Approval Job Status Values

Run State Enabled Displayed Schedule Status Displayed Completion Status

N Suspended Same as Run State

Canceled Y Canceled Canceled

All others Y Scheduled Same as Run State

Table 18-15 Job Manager Method Summary

Returns Syntax and Description
int job_cancel(int idJob);

Cancels a running job

int job_cancel_instance(int idJob, int instanceId, boolean cancelAllInstances);

Cancels a running job with instance ID.

int job_cancel_event(int idJob);

Cancels a running event
18-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
int job_cancel_instance_event(int idJob, int instanceId, boolean cancelAllInstances);

Cancels a running job with instance ID, and specified whether to cancel the instance alone or the entire job

int job_create(JobInfo job_info, org.omg.CORBA.IntHolder idJob);

Creates a job

int job_create_hist(JobInfo jiJob, org.omg.CORBA.IntHolder idJob);

Creates a job with job history

int job_delete(int idJob);

Deletes a job

int job_delete_instance(int idJob, int instanceId, boolean delFlag);
Deletes a job with the given id, instance id.

int job_enum(JobIterHolder job_iter);

Creates a job enumerator

int job_enum_hist(JobIterHist job_iter);
Creates a job enumerator

int job_get_info(int idJob, JobInfoHolder job_info);

Gets information about a job

int job_get_info_hist(int idJob, int instanceId, JobInfoHistHolder jiJobHist);

Adds job information history about a job

int job_get_result(int idJob, IntHolder status);

Gets job run state

int job_get_schedule(int idJob, ScheduleHolder schedule);

Fills schedule with job schedule

int job_get_schedule_string(int idJob, StringHolder schedule);

Gets job schedule information

int job_run(int idJob);

Runs a job immediately

int job_set_approved(int idJob, boolean bApproved, String szApprover)

Approves or rejects a job

int job_set_info(JobInfo job_info);

Updates job information

int job_set_info_hist(JobInfoHist jiJobHist);

Updates job information

int job_set_progress_string(int idJob, String szStatus);

Sets progress string

int job_set_reference(int idJob, String szReference);

Sets job reference attribute

int job_set_result(int idJob, int state);

Sets job run state

int job_set_resume(int idJob, boolean bResume);

Enables or disables a job

int job_set_schedule(int idJob, Schedule schedule);

Sets job schedule

int next(JobInfoHolder job_info);

Fills job_info with job information

Table 18-15 Job Manager Method Summary (continued)

Returns Syntax and Description
18-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
job_cancel

int job_cancel (int idJob);

Cancels a job if it is running. The job sends a request to stop.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_instance

int job_cancel_instance (int idJob, int instanceId, boolean cancelAllInstances);

Cancels an instance job if it is running.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

int next_n(int max_jobs, JobInfoSequenceHolder job_seq);

Fills job_seq with job descriptions

int release();

Releases an iterator

Table 18-15 Job Manager Method Summary (continued)

Returns Syntax and Description

idJob [int] Unique number assigned to a job at creation time.

STATUS_Ok Job was canceled or is not running.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

idInstance [int] Unique number assigned to an instance at creation
time.

cancelAllInstances [boolean] Indicates whether you want to cancel all future
instances or just this instance
18-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_event

int job_cancel_event (int idJob)

Cancels a job if it is running. Sends a cancel event to the running job. The job should process the event
and stop the event by itself.

Note JRM only issues the request. It does not wait until the process actually stops.

Input Arguments

Return Values

Usage Guidelines

To cancel a running job, send a request to the Daemon Manager to stop the process.

job_cancel_instance_event

int job_cancel (int idJob, int instanceId, boolean cancelAllInstances);

Cancels an instance of an event if it is running.

Note JRM only issues the request. It does not wait until the process actually stops.

STATUS_Ok Job instance was canceled or is not running.

STATUS_NotFound No such instance.

idEvent [int] Unique number assigned to an event at creation
time.

STATUS_Ok Event was canceled or is not running.

STATUS_NotFound No such Event.
18-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

Usage Guidelines

To cancel a running instance of the job, send a request to the Daemon Manager to stop the process.

job_create

int job_create (JobInfo job_info, org.omg.CORBA.IntHolder idJob);

Creates a job. The ID field and all fields related to the last job execution are ignored.

Input Arguments

Output Arguments

Return Values

job_create_hist

int job_create_hist (JobInfo jiJob, org.omg.CORBA.IntHolder idJob);

Creates a job. The ID field and all fields related to the last job execution are ignored.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to a job instance at creation
time.

cancelAllInstances [boolean] Indicates whether you want to cancel all future
instances or just this instance

STATUS_Ok Instance of the job was canceled or is not running.

STATUS_NotFound No such job instance.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

id_Job [org.omg.CORBA.IntHolder] Unique number assigned to a job at creation time.

STATUS_Ok Success. On return, idJob contains the unique job ID.

STATUS_NotFound Job not found.
18-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_delete

int job_delete (int idJob);

Deletes the job with the given ID.

Input Arguments

Return Values

job_delete_instance

int job_delete_instance (int idJob, int instanceId, boolean delFlag);

Deletes the job with the given ID.

Input Arguments

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

id_Job [org.omg.CORBA.IntHolder] Unique number assigned to a job at creation time.

STATUS_Ok Success. On return, idJob contains the unique job ID.

STATUS_NotFound Job not found.

idJob [int] Unique number assigned to a job at creation time.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to an instance of a job at
creation time.

delFlag [boolean] Indicates whether you want to delete all
instances or just this instance.
18-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_enum

int job_enum (JobIterHolder job_iter);

Creates the job enumerator.

Output Arguments

Return Values

Example

Use this method with the next and release methods to retrieve the next job.

JobIterHolder jih = new JobIterHolder ();
JobInfoHolder jobinfo = new JobInfoHolder ();
/* Get the JobIter and browse through it */
if (STATUS_Ok == job_manager.job_enum(jih))
{

while (STATUS_Ok == jih.value.next(jobinfo))
{
// do the required operations on JobInfo
}

}
//Calling the release of JobIter
jih.value.release();

The functions next (), next_n() and release() are to be called on the JobIter reference, which can be
obtained by calling the job_enum API.

job_enum_hist

int job_enum_hist (JobIterHist job_iter);

Creates the job enumerator.

Output Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

job_iter [JobIterHolder] Object used to retrieve the next job.

STATUS_Ok Success.

job_iter [JobIterHolder] Object used to retrieve the next job.
18-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

Use this method with the next and release methods to retrieve the next job.

JobIterHolder jih = new JobIterHolder ();
JobInfoHolder jobinfo = new JobInfoHolder ();
/* Get the JobIter and browse through it */
if (STATUS_Ok == job_manager.job_enum(jih))
{

while (STATUS_Ok == jih.value.next(jobinfo))
{
// do the required operations on JobInfo
}

}
//Calling the release of JobIter
jih.value.release();

The functions next (), next_n() and release() are to be called on the JobIter reference, which can be
obtained by calling the job_enum API.

job_get_info

int job_get_info (int idJob, JobInfoHolder job_info);

Fills the job information data structure with information about a given job.

Input Arguments

Output Arguments

Return Values

job_get_info_hist

int job_get_info (int idJob, int instanceId, JobInfoHistHolder jiJobHist);

Fills the job information data structure with information about a given job.

STATUS_Ok Success.

idJob [int] Unique number assigned to a job at creation time.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.
18-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_get_result

int job_get_result (int idJob, IntHolder status);

Retrieves the current run state of a job.

Input Arguments

Output Arguments

Return Values

job_get_schedule

int job_get_schedule (int idJob, ScheduleHolder schedule);

Fills the schedule data structure with the job’s scheduling information.

idJob [int] Unique number assigned to a job at creation time.

instanceId [int] Unique number assigned to an instance of a job at
creation time.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

status [IntHolder] Current run state.

STATUS_Ok Success.

STATUS_NotFound No such job.
18-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

Return Values

job_get_schedule_string

int job_get_schedule_string (int idJob, StringHolder schedule);

Puts a displayable representation of the job schedule into the string contained in schedule.

Input Arguments

Output Arguments

Return Values

job_run

int job_run (int idJob);

Runs the job immediately.

Input Arguments

idJob [int] Unique number assigned to a job at creation time.

schedule [ScheduleHolder] Job scheduling information. The Schedule structure, which is
defined in the IDL file (see the “About the IDL Interface” section on page 18-8),
includes the next time to start, the type of schedule, and the time increment.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

schedule [StringHolder] Displayable representation of the job’s schedule.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.
18-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_set_approved

int job_set_approved (int idJob,
boolean bApproved,
String szApprover)

Approves or rejects a job. This method approves or rejects a job and records the approver name.

Input Arguments

Return Values

Usage Guidelines

If a nonperiodic job that requires approval has not been approved by the time it is scheduled to run, it is
automatically rejected.

job_set_info

int job_set_info (JobInfo job_info);

Replaces all job information.

Input Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

bApproved [boolean] True = approve job. False = reject job.

szApprover [String] Account of the approver.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).
18-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

job_set_info_hist

int job_set_info_hist (JobInfoHist jiJobHist);

Replaces all job information.

Input Arguments

Return Values

job_set_progress_string

int job_set_progress_string (int idJob, String szStatus);

Sets the progress string with update or diagnostic information.

Input Arguments

Return Values

job_set_reference

int job_set_reference (int idJob, String szReference);

Sets the job’s reference attribute.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfo] Job information. The JobInfo structure is defined in the IDL file (see the “About
the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

szStatus [String] Updates or diagnostic information.

STATUS_Ok Success.

STATUS_NotFound No such job.
18-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

job_set_result

int job_set_result (int idJob, int state);

Sets the job’s current run state. The only states the application is allowed to set are Succeeded,
SucceededWithInfo, or Failed.

Input Arguments

Return Values

job_set_resume

int job_set_resume (int idJob, boolean bResume);

Resumes or suspends a job. When a previously suspended job is resumed, it is scheduled to run according
to its schedule type (run once or periodic) provided that it is approved or does not require approval.

Input Arguments

idJob [int] Unique number assigned to a job at creation time.

szReference [String] An application-specific string. May contain the URL of the job results.

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

state [int] Current run state.

STATUS_Ok Success.

STATUS_NotFound No such job.

STATUS_BadArgument State was not Succeeded, SucceededWithInfo, Never
Ran, Canceled, CanceledInstance, or Failed

idJob [int] Unique number assigned to a job at creation time.

bResume [boolean] True = resume job. False = suspend job.
18-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Usage Guidelines

You can use the following technique when a job needs to be run immediately but only after certain
actions are performed by the job creator:

 • Create a job with schedule specifying to run it immediately but in the suspended state. You now have
a job ID.

 • Perform whatever actions are needed that reference job ID.

 • Enable (resume) the job. If approved, the job will run immediately.

job_set_schedule

int job_set_schedule (int idJob, Schedule schedule);

Sets the job’s schedule to schedule.

Input Arguments

Return Values

next

int next (JobInfoHolder job_info);

Returns the JobInfo instance for the next task entry.

Output Arguments

STATUS_Ok Success.

STATUS_NotFound No such job.

idJob [int] Unique number assigned to a job at creation time.

schedule [Schedule] Job scheduling information. The Schedule structure, which is defined in the IDL
file (see the “About the IDL Interface” section on page 18-8), includes the next time to start,
the type of schedule, and the time increment.

STATUS_Ok Success.

STATUS_NotFound No such job.

job_info [JobInfoHolder] Job information. The JobInfo structure is defined in the IDL file (see the
“About the IDL Interface” section on page 18-8).
18-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

See the“job_enum” section on page 18-35.

next_n

int next_n (int max_jobs, JobInfoSequenceHolder job_seq);

Fills the job holder array with the next group of jobs.

Input Arguments

Output Arguments

Return Values

Example

See the “job_enum” section on page 18-35.

release

int release();

Releases the iterator and makes it unavailable to the clients.

Arguments

None

Example

See the “job_enum” section on page 18-35.

STATUS_Ok Filled job_info.

STATUS_EOF No more entries.

max_jobs [int] Maximum number of jobs that can be returned in the job holder array.

job_seq [JobInfoSequenceHolder] An array of objects that allows you to retrieve the next max_jobs
jobs.

STATUS_Ok Put at least one element into job_seq.

STATUS_EOF No more jobs.
18-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
About the Lock Manager Methods
Use the Lock Manager methods summarized in Table to add JRM resource locking functionality to your
application. These methods return Java constants described in the “About the JRM Java Constants”
section on page 18-56.

enum_job_locks

Status enum_job_locks (String szJob, LockIterHolder lock_iter);

Creates an iterator for all the locks for this job or process.

Input Arguments

Output Arguments

Table 18-16 JRM Lock Manager Method Summary

Returns Syntax and Description
int enum_job_locks(String szJob, LockIterHolder lock_iter);

Creates an iterator

int find_lock(String szResource, LockInfoHolder lock_info);

Finds a lock entry

int get_lock(String szResource, LockInfoHolder lock_info);

Gets lock information

int lock(String szResource, String szOwner, int duration);

Locks a resource

int lock_n(LockRequest[] Locks, String szOwner);

Locks multiple resources

int next(LockInfoHolder lock_info);

Fills lock_info

int next_n(int max_locks, LockInfoSequenceHolder lock_seq);

Fills lock_seq

int release();

Releases an iterator

int unlock(String szResource, String szOwner);

Unlocks a resource

int unlock_job(String szJob);

Unlocks all locks for a job

int unlock_n(String[] szResource, String szOwner);

Unlocks multiple resources

szJob [String] For a job, the string representation of the job ID.
For a process, the name known to the Daemon Manager.

lock_iter [LockIterHolder] Object used to retrieve the next lock.
The LockIter structure is defined in the IDL file (see the
“About the IDL Interface” section on page 18-8).
18-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

Example

Use this method with the next and release methods to retrieve the next lock.

LockIterHolder lih = new LockIterHolder ();
LockInfoHolder lockInfo = new LockInfoHolder ();
/* Get the LockIter and browse through it */
if (STATUS_Ok == lock_manager.enum_job_locks(lih))
{

while (STATUS_Ok == lih.value.next(lockInfo))
{
// do the required operations on LockInfo
}

}
//Calling the release of LockIter
lih.value.release();

find_lock

Status find_lock (String szResource, LockInfoHolder lock_info);

Finds the lock entry that prevents a device from being locked. Unlike get_lock, which returns the lock
information for a specific device, find_lock returns the lock information for the device that is preventing
another resource from being locked.

For more information about the locking hierarchy, see the “Locking Parts of a Device” section on
page 18-5.

Input Arguments

Output Arguments

Return Values

get_lock

Status get_lock(String szResource, LockInfoHolder lock_info);

STATUS_Ok Success. lock_iter is returned.

STATUS_NotFound No such owner.

szResource [String] Device name and any subnode.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file
(see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such resource.
18-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Returns lock information for a device. This method differs from find_lock, which finds the lock entry
that is preventing a device from being locked.

Input Arguments

Output Arguments

Return Values

lock

Status lock (String szResource, String szOwner, int duration);

Locks the resource for duration seconds. If the job already owns this resource, this method will change
the lock expiration time.

Input Arguments

Return Values

lock_n

Status lock_n (LockRequest[] Locks, String szOwner);

Locks multiple resources.

szResource [String] Device name and any subnode.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file (see
the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success.

STATUS_NotFound No such resource.

szResource [String] Device name and any subnode.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

duration [int] Time (seconds) for which the resource is to be locked.

STATUS_Ok Success (job was killed or is not running).

STATUS_Exists The lock for that resource already exists.
18-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Return Values

next

Status next (LockInfoHolder lock_info);

Fills the lock holder with the lock entry information and advances to the next lock entry in the locks list.

Output Arguments

Return Values

Example

See the “enum_job_locks” section on page 18-44.

next_n

Status next_n (int max_locks, LockInfoSequenceHolder lock_seq);

Fills the lock holder array with the next group of locks.

Input Arguments

Locks [LockRequest] An array of objects that allows you specify the resources to be locked.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success. (All resources have been successfully locked.)

STATUS_Exists At least one resource could not be locked.

lock_info [LockInfoHolder] Lock information. The LockInfo structure is defined in the IDL file
(see the “About the IDL Interface” section on page 18-8).

STATUS_Ok Success (job was killed or is not running).

STATUS_EOF End of iteration.

max_locks [int] Maximum number of locks that can be returned in LockInfoSequence.
18-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Output Arguments

Return Values

Example

See the “enum_job_locks” section on page 18-44.

release

Status release();

The release method releases an iterator and makes it unavailable to the clients.

Arguments

None

Example

See the “enum_job_locks” section on page 18-44.

unlock

Status unlock (String szResource, String szOwner);

Unlocks the specified resource.

Input Arguments

Return Values

lock_seq [LockInfoSequenceHolder] An array of objects that allows you to retrieve the next
max_locks locks. The LockInfo structure is defined in the IDL file (see the “About the IDL
Interface” section on page 18-8).

STATUS_Ok Success (at least one element put into lock_seq).

STATUS_EOF No more elements.

szResource [String] Name of the resource to be unlocked.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success.

STATUS_NotFound Resource was not locked.
18-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
unlock_job

Status unlock_job (String szJob);

Release all locks for the specified job.

Input Arguments

Return Values

unlock_n

Status unlock_n (String[] Resource, String szOwner);

Unlocks all the resources in the specified list.

Input Arguments

Return Values

About the Helper API Methods
The Helper API consists of the class Client and the inner class of Client, MyJob. Only jobs running under
JRM can use the helper methods in the MyJob class. These methods return Java constants described in
the “About the JRM Java Constants” section on page 18-56.

Related Topics

 • About the Helper API

 • About the JRM Java Constants

 • Parsing ESS Messages

szJob [String] For a job, the string representation of the job ID. For a process, the name known to the
Daemon Manager.

STATUS_Ok Success. Resources released successfully or there were no resources locked by this job.

Resource [String] Array of device names and any subnodes.

szOwner [String] For a job, the string representation of the resource owner. For a process, the name
known to the Daemon Manager.

STATUS_Ok Success. Released resources.

STATUS_NotFound At least one resource was not locked.
18-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Location com.cisco.nm.cmf.jrm.Client

Client Class Constructor Summary

public class Client implements Constants

This class is a collection of helper functions that can be called by JRM clients. It contains two groups
of functions:

 • Those usable by any client.

 • Those usable only by jobs running under JRM.

Client Class Method Summary

Returns Syntax and Description

static String getScheduleString (Schedule sch)

Returns a printable representation of the schedule string. Defines SCHTYPE
constants.

static void getStateStrings (JobInfo ji, StringHolder h_szRunState, StringHolder
h_szSchState)

Returns a printable representation of a job’s run and schedule states.

Properties getOrbConnectionProperties()

Initializes the ORB and locates servers.

MyJob Class Constructor Summary

public static class MyJob

This inner class is a collection of the static methods that can be used only from jobs running under JRM.

The methods in MyJob automatically establish connection with ORB. They obtain the value of Job Id
(which they need to communicate to the JRM) from the nm.jrm.jobid property.

The easiest way to set this property is to add the $JJ parameter to the job's command line (see the
“About the Job and Resource Lock Attributes” section on page 18-26).

Table 18-17 MyJob Class Method Summary

Returns Syntax and Description

int get_job_id();

Gets the job ID

int get_job_instance_id();

Gets the job instance ID

int get_job_info(JobInfoHolder h_ji);

Fills h_ji with job information

int get_job_info_hist(JobInfoHistHolder h_ji);

Fills h_ji with job information with additional parameters for req_hist and instance_id
18-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
get_job_id

static int get_job_id();

MyJob method returns the job ID by retrieving the value of nm.jrm.jobid property. This property is set
by adding $JJ on the job’s command line.

Arguments

None

Return Values

get_job_instance_id

static int get_job_instance_id();

MyJob method returns the job instance ID by retrieving the value of nm.jrm.jobinstanceid property. This
property is set by adding $JJ on the job’s command line.

Arguments

None

int get_lock_info(string szLockPath, LockInfoHolder h_li);

Fills h_li with lock information

boolean is_server_running();

Checks server status

int lock(string szLockPath, int duration);

Locks the resource for the current job

int lock_n(LockRequestSequence Locks);

Locks multiple resources

int set_completion_state(int run_state);

Sets the running job’s status

int set_progress(string szProgress);

Sets the running job’s progress string

void unlock(string szLockPath);

Unlocks the resource

int unlock_all();

Unlocks all resources for the current job

Table 18-17 MyJob Class Method Summary (continued)

Returns Syntax and Description

0 Called outside the running job.

an integer Job ID.
18-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

get_job_info

static int get_job_info (JobInfoHolder h_ji);

MyJob method sets h_ji.value to JobInfo of self.

Output Arguments

Return Values

get_job_info_hist

static int get_job_info_hist (JobInfoHistHolder h_ji);

MyJob method sets h_ji.value to JobInfoHist of self.

Output Arguments

Return Values

get_lock_info

static int get_lock_info (string szLockPath, LockInfoHolder h_li);

MyJob method that returns lock information for this lock if the resource szLockPath is locked.

Input Arguments

0 Called outside the running job.

an integer Job Instance ID.

h_ji [JobInfoHolder] Contains job information.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

h_ji [JobInfoHistHolder] Contains job history information.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

szLockPath [string] Device name and any subnode.
18-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Output Arguments

Return Values

getOrbConnectionProperties

static public Properties getOrbConnectionProperties()

Initializes the ORB and locates servers.

Arguments

None

Returns

getScheduleString

static String getScheduleString (Schedule sch)

Returns a printable representation of the schedule string. Defines SCHTYPE constants.

Input Arguments

Returns

getStateStrings

static void getStateStrings (JobInfo ji, StringHolder h_szRunState, StringHolder
h_szSchState)

Returns a printable representation of a job’s run and schedule states.\

h_li [LockInfoHolder] Contains lock information.

STATUS_Ok Success.

STATUS_NotFound Lock not found.

Properties [Properties] Server properties (host, port number)

sch [Schedule] Schedule object, which includes:

 • sch.start—Next time to start

 • sch.increment—Increment amount

szFormat [String] Printable schedule string
18-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Input Arguments

Output Arguments

is_server_running

static boolean is_server_running();

MyJob method that checks to see if the server is running.

Arguments

None

Return Values

lock

static int lock (string szLockPath, int duration);

MyJob method that locks the resource for the current job for duration seconds.

Input Arguments

Return Values

ji [JobInfo] JobInfo structure

h_szRunState [StringHolder] Run state

h_szSchState [StringHolder] Schedule state

True Server is running.

False Server is not running.

szLockPath [string] Device name and any subnode.

duration [int] Number of seconds to lock the resource.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

STATUS_Exists szLockPath cannot be locked.
18-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
lock_n

static int lock_n (LockRequestSequence Locks);

MyJob methods that locks multiple resources.

Input Arguments

Return Values

set_completion_state

static int set_completion_state (int run_state);

MyJob method that sets the running job’s status (completed successfully, failed, canceled).

Input Arguments

Return Values

set_progress

static int set_progress (string szProgress);

MyJob method that sets the running job’s progress string.

Input Arguments

Locks [LockRequestSequence] An array of objects that allows
you to specify the resources to be locked.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

STATUS_Exists At least one resource cannot be locked.

run_state [JobRunState] Current run state.

STATUS_Ok Success. If some of the resources were not locked, they
are ignored.

STATUS_NotFound Not called from job.

szProgress [string] Updates or diagnostic information.
18-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Return Values

unlock

static void unlock (string szLockPath);

MyJob method that unlocks a resource.

Input Arguments

Return Values

unlock_all

static int unlock_all();

MyJob method that releases all the resources for the current job.

Arguments

None

Return Values

About the JRM Java Constants
This section describes the symbolic constants for Java applications. These constants are initialized in the
IDL file (see the “About Displayed Job Status Values” section on page 18-28).

STATUS_Ok Success.

STATUS_NotFound Not called from job.

szLockPath [string] Device name and any subnode.

STATUS_Ok Success.

STATUS_NotFound No such job or no such lock.

STATUS_Ok Success.

STATUS_NotFound Not called from job.

Table 18-18 JRM Java Method Return Codes

Constant Description

STATUS_Ok Success
18-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
.

STATUS_Exists Entry already exists

STATUS_NotFound Entry not found

STATUS_EOF End of iteration

Table 18-19 JRM Job Completion States

Constant Description

RUNST_NeverRan The task was never run

RUNST_Running The task is currently running

RUNST_Succeeded Task completed successfully

RUNST_SucceededWithInfo Task completed successfully, returning
information

RUNST_Failed Task ran and failed

RUNST_Crashed Crashed (“core dump”)

RUNST_LaunchFailed Job Manager could not start the task for this job

RUNST_Canceled Canceled by client

RUNST_CanceledInstance Canceled Instance by client

Table 18-20 JRM Schedule State Bits

Constant Description

SCHST_RequiresApproval Set if job requires approval.

SCHST_Enabled Job is enabled.

SCHST_AM_Mask Mask for the job approval state. Use (schedule_state &
SCHST_AM_Mask) to compare with values below.

SCHST_AM_Waiting Waiting for approval.

SCHST_AM_Approved Approved.

SCHST_AM_Rejected Rejected.

Table 18-21 JRM Schedule Types

Constant Description

SCHTYPE_Immediate Run job immediately

SCHTYPE_Once Run job once

SCHTYPE_Daily Run every n days

SCHTYPE_Weekly Run every n weeks1

SCHTYPE_Monthly Run every n months2

SCHTYPE_MonthLastDay Run on the last day of the month every n months

Table 18-18 JRM Java Method Return Codes
18-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Note Some calendar options can produce impossible values (for example, run on the 31st of every month or
on the 5th Friday of every month). Those impossible dates will be skipped. For example, the job
scheduled to run on the 31st of the month will run only for the months that have 31 days.

Parsing ESS Messages

Use the helper class EssMessageCreator to parse and read the variables in the ESS message. After
reading the message, your application can create an EssMessageCreator object using the constructor
EssMessageCreator(String message). This will parse the details in the message. Your application can
then get the values for variables using the member variable of the object. The member variables are
shown in Table 18-22.

SCHTYPE_MonthSameXday Run on the given day (Sunday/Monday/…) of the first/second/…
week of the month every n months3

SCHTYPE_MonthLastXday Run on the given day of the last week of the month every n months4

SCHTYPE_S_Seconds Run every n seconds

SCHTYPE_S_Minutes Run every n minutes

SCHTYPE_S_Hours Run every n hours

SCHTYPE_E_Seconds Run n seconds after the previous run ended

SCHTYPE_E_Minutes Run n minutes after the previous run ended

SCHTYPE_E_Hours Run n hours after the previous run ended

1. Start date day of the week.

2. Start date day of the month.

3. Start date week number and the week day.

4. Start date week day.

Table 18-21 JRM Schedule Types

Table 18-22 ESS Member Variables

Member Variable Description

Public String Action; Provides commands such as start, end, etc.

public String szProgress; Job progress status for all events,. For approve and reject events, this
contains approver comments.

public int idJob; Contains the Job ID.

public int rc; Return code for some jobs.

public int signalNo; Contains the signal number for daemon jobs,

public int runState; Contains the run state value.

public String resource; Identifies the locked resource.

public String owner; Identifies the owner who locked or unlocked the resource.

public int instanceid; Stores the instance ID for job-history jobs.
18-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Using the Job Command-Line Commands
Use jobcli, the job command-line application, to run JRM functions. Table 18-23 summarizes the jobcli
commands.

Related Topics

 • Understanding the JRM Architecture, page 18-5

 • Using JRM from the Command Line, page 18-24

approve

approve jobId approver

Approves the job jobId.

Input Arguments

Table 18-23 jobcli Command Summary

Syntax and Description

approve jobId approver

Approves a job

cancel jobId

Cancels a job

create cmd=command [,descr=description] [,owner=user] [,type=string] [, schedule]

Creates a job

delay cmd=command [,descr=description] [,owner=user] [,type=string]

Creates and suspends a job

delete jobId

Deletes a job

reject jobId rejecter

Rejects a job

resume jobId

Resumes a job

run cmd=command [,descr=description] [,owner=user] [,type=string]

Creates and runs a job

schedule jobId schedule

Reschedules a job

suspend jobId

Suspends a job

getnextschedule jobId

Prints the next shcheduled run time for the job details on clicking on the command link

jobId [integer] Unique number assigned to a job at creation time.

approver [string] Account of the person who approved the job. Valid only if approval is required.
18-59
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
cancel

cancel jobId

Cancels the job jobId.

Input Arguments

create

create cmd=command [,descr=description] [,owner=user] [,type=string] [, schedule]

Creates a job.

Input Arguments

delay

delay cmd=command [,descr=description] [,owner=user] [,type=string]

jobId [integer] Unique number assigned to a job at creation time.

cmd [string] Command required to identify the job.

descr [string] Describes the job.

owner [string] Account of the person who created the job.

type [string] Identifies the job type and subtypes (for example, SWIM:update.)

schedule [string] List of comma-separated fragments that specify when the job will be run
initially, how often it is repeated, and the initial schedule state:

 • at {date | +minutes}

date specifies the start datetime as a string. Alternatively, +minutes can be used
to start the job in minutes minutes from the current time.

 • repeat {weekly | monthly | daily | month Last Day | monthSameXday |
monthLastXday} [(n)]

Schedule the job to run periodically on a calendar basis.

 • repeat every n {h | m | s}

 • repeat after n {h | m | s}

Schedule a job to run periodically on a time basis. Using the “every” option, the
job will run every N hours/minutes/seconds. Using the “after” option, the job
will run N hours/minutes/seconds after the end of the previous execution.

 • schst= {W | A | R}

Sets the state to Waiting for approval / Approved / Rejected.
18-60
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Creates a job for immediate execution but in the suspended state. The effect is that the job will be run
once it is enabled with the resume command.

Input Arguments

delete

delete jobId

Deletes the job jobId.

Input Arguments

getnextschedule

getnextschedule jobId

Prints the next shcheduled run time for the job when the Instance of Job is scheduled for the future.

Input Arguments

reject

reject jobId rejecter

Rejects the job jobId.

Input Arguments

resume

resume jobId

cmd [string] Command required to identify the job

descr [string] Describes the job

owner [string] Account of the person who created the job

type [string] Identifies the job type and subtypes (for example, SWIM:update)

jobId [integer] Unique number assigned to a job at creation time.

jobId [integer] Unique number assigned to a job at creation time.

jobId [integer] Unique number assigned to a job at creation time.

rejecter [string] Account of the person who rejected the job. Valid only if approval is required.
18-61
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 18 Using the Job and Resource Manager
JRM Command Reference
Resumes the job jobId so it can be scheduled.

Input Arguments

run

run cmd=command [,descr=description] [,owner=user] [,type=string]

Creates a job and runs it immediately.

Input Arguments

schedule

schedule jobId schedule

Reschedules the job jobId.

Input Arguments

suspend

suspend jobId

Suspends the job jobId so it will not be scheduled until it is resumed.

Input Arguments

jobId [integer] Unique number assigned to a job at creation time.

cmd [string] Command required to identify the job

descr [string] Describes the job

owner [string] Account of the person who created the job

type [string] Identifies the job type and subtypes (for example, SWIM:update)

jobId [integer] Unique number assigned to a job at creation time.

schedule [string] See “cancel.”

jobId [integer] Unique number assigned to a job at creation time.
18-62
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 19

Using Event Services Software

Event Services Software (ESS) is an asynchronous messaging service that provides a messaging
infrastructure based on a publish-and-subscribe paradigm. It enables distributed, loosely coupled
interprocess communications.

ESS is one of two event messaging components supplied with CWCS. The other – the Event Distribution
System (EDS) – is a means for sending messages from one process to another in a distributed, networked
environment. These two components are disjoint systems and do not work together.

Note ESS is the preferred messaging service. EDS (see Chapter 20, “Using the Event Distribution System”)
has been deprecated, and support for it will be withdrawn in a future CWCS release. Cisco urges
developers to avoid new development with EDS and begin using ESS as soon as possible.

The following topics explain ESS and how to use it:

 • Understanding ESS Subsystems

 • How Does ESS Work?

 • How Is ESS Organized?

 • Using Tibco’s Rendezvous

 • About Subject Names and Event Formats

 • Using the Lightweight Messaging Service

Understanding ESS Subsystems
The two main subsystems of ESS are Tibco’s Rendezvous and the Lightweight Messaging Service
(LWMS). Both contain implementations of the Java Messaging Service (JMS) API.

For information on using Tibco’s Rendezvous, see the “Using Tibco’s Rendezvous” section on
page 19-2. For information on using LWMS, see the “Using the Lightweight Messaging Service” section
on page 19-8 .
19-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
How Does ESS Work?
How Does ESS Work?
Messages are asynchronous requests, reports, or events that contain precisely formatted data that
describe specific actions, queries, or declarations. Through the exchange of these messages, applications
with distributed processes in a networked environment can coordinate with and track the progress of
other applications in the network. Messaging services are synonymous with event services.

Messages are published to subjects. An event bus is the logical channel that carries these messages.
These messages are sent with a specified message format:

SubjectTIBCO = TopicJMS = MailboxLWMS

Subjects are essentially logical message addresses that provide a virtual connection between distributed
processes. Subscribers register listeners on subjects and receive asynchronous callbacks as messages
arrive. Publish/subscribe messaging is considered loosely coupled because publishers and subscribers
may be anonymous and the data to be shared between the distributed processes is formatted into
messages that provide a type of buffering mechanism.

A publisher simply pushes a message to a subject name and does not generally know or care who or how
many subscribers receive its message. Similarly a subscriber generally does not know what process or
processes are sending messages on a given subject. This architecture allows a great deal of flexibility for
future changes since it makes few assumptions on who, where, when or how another process will use an
event.

Developers need to create unique subject names. In order to decide what their project’s namespace
should be, you need to know the current recommendation which provides a segregation of subject names
so you can independently decide the subject names for your applications without colliding with different
application subject names. For recommendations and more information on subject names, see Next
Generation Foundation Event Services (ESS) Developer's Guide (ENG-112035).

How Is ESS Organized?
The ESS architecture is divided into two main subsystems:

 • A Server Event Bus (SEB) is used between backend processes that perform the actual network
management computing functions and is implemented with Tibco Software Inc.'s Rendezvous
product.

 • A Client Event Bus (CEB) is used for messaging with CiscoWorks web client front ends and is
implemented by the internally developed LWMS.

A gateway between the SEB and CEB transparently and automatically forwards messages between the
two event buses.

If you need additional information on these ESS subsystems, see Event Services Software (ESS) Primer
and Overview in EDCS (ENG-110601).

Using Tibco’s Rendezvous
Application developers must use Tibco’s Rendezvous product to communicate between backend
processes such as your application’s processes and other interested processes. The TibcoRV version 7.1
is used for this release of CiscoWorks Common Services.

For more information, see:
19-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
About Subject Names and Event Formats
 • Event Services Software (ESS) Primer and Overview in EDCS (ENG-110601)

 • Next Generation Foundation Event Services (ESS) Developer’s Guide (ENG-112035), Section 7,
sample code for Rendezvous and LWMS

 • TB/RV Overview (ENG-110810)

About Subject Names and Event Formats
This section contains the following topics:

 • How Subject Names are Structured

 • Choosing Subject Names and Namespaces

 • Subscribing with Wildcards

 • About ESS Event Formats

 • About Reserved Subject Names

How Subject Names are Structured
This section explains the general structure of Subject names. For specific recommendations, see the
“Choosing Subject Names and Namespaces” section on page 19-3.

Each subject name is a dotted string. For example, cisco.mgmt.vms.vhm.alarm.voiceGateway.

The subject namespace forms a hierarchical structure with a prefix portion (the first three dotted
elements) that is centrally administered by CANA (Cisco Assigned Numbers Authority). This is mainly
to avoid namespace collisions. The remaining part of the subject name is defined by application
developers, as shown here:

cisco.mgmt.<systemId>.<subsystemId>...<eventClass>.<topic>
 cisco.mgmt.<systemId>.<subsystemId>...<eventClass>.<eventSubclass>.<topic>
 <--CANA Registered--> <------------organization defined--------------->

The subsystemId element identifies the subsystem within the management server.

The eventClass element can be used to define a general class of events used within an application. For
consistency we will track the event class element names used within EMBU and reuse them whenever
possible. For more on Event Classes, see.

The eventSubclass element, if present, can be used if there are a large number of events in the event class
and further partitioning would be helpful.

The final element topic should be used to identify as clearly as possible the type of events that will be
published on the complete subject name.

Choosing Subject Names and Namespaces
Follow the subject namespace guidelines shown in Table 19-1 to decide on a subject name that will not
cause your application’s subject name to collide with other applications.

These guidelines take into account the fact that events may be used for communication in a variety of
environments, including between components or services:

a. Within one product on the same machine.
19-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
About Subject Names and Event Formats
b. Within the same product on different machines.

c. Within different products on the same

d. Within different products on different machines.

For example, multiple servers on the same subnet, all with ESS-based network management applications
installed on them, can pose a problem for situations like that in (a) above, if broadcast is used instead of
multicasting. Unless subject names are chosen carefully, events from one product may be passed to
another product on a different server unintentionally. One way to prevent this is to include the IP address
of the server in the subject name. If this convention is adopted, each product can subscribe to messages
from the services on the same server only.

When choosing subject names, be aware of the following:

 • Generate a dotted name hierarchy for all of your subject names such that related events are grouped.
This allows convenient subscription using wildcards.

 • Create a unique new subject name for each event group to which subscribers might want to
selectively subscribe. For example, if most subscribers are likely to be interested in all events in a
given group, put them all under a common subject name. If many or most of the subscribers are
likely to be interested only in specific event types then give them each a unique subject name.

 • Subject names are case sensitive.

 • Limit subject names to less than 100 characters.

Table 19-1 Subject Namespace Guidelines

For Use the Subject Name Prefix

CWCS shared services cisco.mgmt.cw.<IPAddress_with_underscores>.cmf.<service name>.<event-class>

CWCS per-product services cisco.mgmt.cw.<IPAddress_with_underscores>.<product-name>.<service
name>.<event-class>

Where:

cw stands for CiscoWorks.

<product-name> is the name of the product which uses one instance of a service. In
case, different applications in a given product use different instances of a service,
then <product-name> should qualify such an application rather than the product
itself.

An example for <product-name> is RME. If RME applications A and B use two
different instances of a service, then <product-name> should be of the form
<RME-A> and <RME-B>, to ensure separation among the events between the service
as used by application A and the service used by application B.

<IPAddress_with_underscores> is the IP address of the host server in the string form
"%d.%d.%d.%d" with the dots (".") replaced by underscores ("_"). This can be
achieved using the methods in the class com.cisco.nm.cmf.ess.utils.Namespace.

Interproduct communication cisco.mgmt.cw.<product name>

Where<product-name> is the identifier of a product which is the source or publisher
of the event.

Communication across multiple
product instances (of same or
different product types)

cisco.mgmt.cw. <cluster id>.<product name>
19-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
About Subject Names and Event Formats
 • Do not use the reserved subject names listed in the “About Reserved Subject Names” section on
page 19-5.

Subscribing with Wildcards
Tibco Rendezvous supports two wildcard characters: the asterisk (*) and greater-than symbol (>). The *
character matches one single whole element, but not a partial substring of characters, within an element.
The > character matches one or more trailing elements to the right. The semantics of listening to
wildcard subjects are shown in Table 19-2.

About ESS Event Formats
ESS supports two types of message body content:

 • Text: This can be an unstructured string, or structured ASCII text (such as XML).

 • Java Object: The content must implement the java.io.Serializable interface.

About Reserved Subject Names
The following Subject Names are in use and reserved by NMTG:

 • subsystemId Element Identifiers:

 – cisco.mgmt.trx.

 – inventory

Table 19-2 Wildcard Subject Semantics1

1. This table is taken from the Tibco/RV Concepts Manual.

Listening to this
wildcard name

Matches messages with names
like these:

But does not match messages with names
like these (reason):

RUN.* RUN.AWAY

RUN.away

RUN.run.run(extra element)

Run.away (case differs)

RUN (missing element)

Yankees.vs.* Yankees.vs.Red_Sox

Yankees.vs.Orioles

Giants.vs.Yankees (position)

Yankees.beat.Sox (beat used instead of vs2)

Yankees.vs (missing element)

2. LWMS also supports subscriptions with wildcard characters with the single limitation that the publisher must be on the SEB
Tibco/Rv side of the event bus.

.your. Amaze.your.friends

Raise.your.salary

Darn.your.socks

your (missing elements)

pick.up.your.foot (position)

RUN.> RUN.DMC

RUN.RUN.RUN

RUN.SWIM.BIKE.SKATE

SWIN.RUN (position)

Run.away (case differs)

RUN (missing element)
19-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
About Subject Names and Event Formats
 • eventClass Element Identifiers:

 – .<eventClass>.

 – alarm

 – status

 – test

 – debug

 – command

 • Legacy Subject Names:

 – cisco.mgmt.cmf.

 – cisco.mgmt.cmf.events.ltGateway.control

 – cisco.mgmt.cmf.events.ltGateway.allSubjects

 – cisco.mgmt.vhm.

 – cisco.mgmt.vhm.alarm.summary

 – cisco.mgmt.vhm.alarm.vhmserver

 – cisco.mgmt.vhm.alarm.dfmserver

 – cisco.mgmt.vhm.alarm.status

 – cisco.mgmt.vhm.alarm.gershwin

 – cisco.mgmt.vhm.invupdate.summary.add

 – cisco.mgmt.vhm.invupdate.summary.delete

 – cisco.mgmt.vhm.invupdate.summary.update

 – cisco.mgmt.vhm.invupdate.status.add

 – cisco.mgmt.vhm.invupdate.status.delete

 – cisco.vpnsc

 – cisco.cns

Support for Map Messages
From Common Services 3.0 Service Pack 1, map messages are supported. Publish and subscribe can
happen via map messages. A map message is a message whose body contains a set of name-value pairs
where names are Strings and values are Java primitive types. This map message feature is not supported
for LWMS and JMS.

Sample code for Map message Publisher:
import com.cisco.nm.cmf.jms.*;
import java.io.*;
import javax.jms.*;

public class EssJtibMapPub{
 private static String subject = "cisco.mgmt.cw.cmf.jrm";
 private TopicConnectionFactory Factory;
 private TopicConnection conxn;
 private Topic topic;
 private TopicSession session;
 private TopicPublisher publisher;
19-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
About Subject Names and Event Formats
 private MapMessage msg;

 public static void main(String args[]){

 new EssJtibMapPub().start();
 }
 private void start(){

 try{
 Factory = new TopicConnectionFactoryImp();
 conxn = Factory.createTopicConnection();
 session = conxn.createTopicSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

 topic = session.createTopic(subject);
 publisher = session.createPublisher(topic);

 msg =session.createMapMessage();
 msg.setString("map","I am a Tibco MAP message !!!!!.");
 msg.setJMSReplyTo(new TopicImp("mapreply"));
 msg.setJMSDestination(topic);

 msg.setJMSPriority(7);
 publisher.publish(msg);

 }
 catch(Exception ex){ ex.printStackTrace();};
 }
}

Sample code for Map message Subscriber:
import java.io.*;
public class EssJtibMapSub implements javax.jms.MessageListener {

 private static String subject = "cisco.mgmt.cw.cmf.jrm";
 private static boolean isFileBased = true;
 private javax.jms.TopicConnectionFactory Factory;
 private javax.jms.TopicConnection conxn;
 private javax.jms.Topic topic;
 private javax.jms.TopicSession session;
 private javax.jms.TopicSubscriber subscriber;

 public static void main(String args[]){
 new EssJtibMapSub().start();
 }

 private void start(){

 try{

 Factory = new com.cisco.nm.cmf.jms.TopicConnectionFactoryImp();
 conxn = Factory.createTopicConnection();
 session = conxn.createTopicSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

 topic = session.createTopic(subject);
 subscriber= session.createSubscriber(topic);
 subscriber.setMessageListener(this);
 conxn.start();
 }catch(Exception ex) { ex.printStackTrace();};
 }

 public void onMessage(javax.jms.Message msg){
javax.jms.MapMessage mapmsg;

 try{
if (!(msg instanceof javax.jms.MapMessage)) return;
19-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
 mapmsg = (javax.jms.MapMessage)msg;
String map_msg = mapmsg.getString("map");
return;

 }
 catch(Exception ex) { ex.printStackTrace(); }
 }
}

Using the Lightweight Messaging Service
The Lightweight Messaging Service (LWMS) is a light weight XML-based messaging service used
primarily between client desktops and the Common Services server. The client desktops are
authenticated before sending messages.

The LWMS service provides:

 • XML message format (without requiring an XML parser on the client)

 • HTTP transport (for traversing firewalls)

 • A zero-administration client—No administration configuration is required to create mailboxes or
send or receive messages

 • Native API and Java Messaging Service (JMS) API support

 • A small client footprint:

 – Less than 50 KB (using native LWMS API)

 – Less than 90 KB (using JMS API)

 • Message send queues, with high and normal priorities

 • Efficient message filtering (using JMS message selectors)

 • Support for publish/subscribe and point-to-point messaging models:

 – Publish/subscribe messaging services are a type of distributed interprocess communication
(IPC) generally intended for loosely coupled asynchronous communications between software
processes. Publish/subscribe messaging is useful for one-to-many, many-to-one, and
many-to-many communication relationships.

 – Point-to-point (P2P) messaging is a special case of publish/subscribe messaging where there is
a single publisher and a single subscriber.

The following topics describe the Lightweight Messaging Service and how to use it in your applications:

 • Understanding LWMS

 • Configuring LWMS

 • Using the LWMS API

 • Using the JMS API

 • LWMS Command Reference

For more information, see:

 • CMF Lightweight Messaging Service (LWMS) Functional Specification, ENG-58367

 • CMF Lightweight Messaging Service (LWMS) Overview Presentation, ENG-72595

 • JMS (Java Messaging Service) 1.0.2 API Specification at Sun’s web site
19-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Understanding LWMS
The following topics describe the components and features of the Lightweight Messaging Service
(LWMS):

 • About the LWMS Components

 • How LWMS Works

 • About LWMS Message Queues

 • About JMS API Support

 • About LWMS Server Logging

 • About LWMS Usage Assumptions

About the LWMS Components

LWMS consists of two main components:

 • LwmsClient: Provides the client interface for creating mailboxes and sending and receiving
messages. The Java class that implements this interface can be used by applets in the desktop client
web browser environment to send and receive messages with an LwmsServer.

 • LwmsServer: Runs as part of the CWCS server infrastructure and handles XML message
distribution.

Two more components provide additional services:

 • LwmsMailbox: Stores and manages messages and message forwarding.

 • LwmsMessage: Simplifies and controls creation of XML messages.

Figure 19-1 shows how all of these components work together.
19-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Figure 19-1 LWMS Usage Example

How LWMS Works

LWMS supports three primary operations:

1. Creating mailboxes

2. Publishing messages to mailboxes

3. Listening for new messages to mailboxes.

An LWMS mailbox may have one or more senders and one or more receivers; internally, LWMS makes
no distinctions between these usage types. A named mailbox simply receives messages sent to it, time
stamps and ages them according to the time-to-live (TTL) field in each message, and forwards copies of
new messages to each polling client.

Each LwmsClient keeps track of the last message it has seen for a given mailbox. On subsequent polls
only messages later than this are forwarded to the client.

ANI Topo
Discovery

Topology
Display App

LwmsClient
(Class)

LwmsClient
(Class)

JMS API
(optional)

HTTP or
Static

LwmsServer
Servlet and
helper classes

LwmsMailbox

LwmsMailbox

LwmsMailbox

HTTP

XML
Messages

Voice Health
and Fault App

LwmsClient
(Class)

JMS API
(optional)

Topology
Display App

LwmsClient
(Class)

JMS API
(optional)

JMS API
(optional)

CMF server CW2K Web clients

44
73

6

19-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
About LwmsClient

To provide the client interface for creating mailboxes and sending and receiving messages, the
LwmsClient:

 • Makes a single URL connection to the CWCS Server.

 • Uses HTTP to send messages to the LwmsServer.

 • Uses prioritized message queues (see the “About LWMS Message Queues” section on page 19-12).

 • Performs the following for each mailbox with a registered listener:

 – Uses HTTP to poll the LwmsServer every N seconds to request new messages.

 – Remembers the latest message time sta.mp that it has seen and requests new messages from that
point in the message stream.

 – Forwards new messages to registered listeners.

 – Supports non-blocking, asynchronous listener registration (callbacks).

 • Allows the user to:

 – Set the maximum send-queue size.

 – Set the receive polling interval (the default is 1.5 seconds; the configurable range is from 0.5 to
30 seconds).

 – Set the send push interval for normal-priority messages (the default is 1 second; the
configurable range is from 0.5 to 30 seconds).

 – Set the maximum number of messages returned by a server per request.

About LwmsServer

To handle message distribution, the LwmsServer:

 • Maintains a set of named mailboxes that store messages until they expire.

 • Timestamps new messages and adds them to the mailbox.

 • Returns any new messages to clients when polled.

About LwmsMailbox

The LwmsMailbox component stores and manages messages and handles message forwarding. An
LwmsMailbox:

 • Receives the messages sent to it.

 • Ages messages according to the value in the TTL (time-to-live) field in the message header.

 • Forwards copies of new messages to each polling client

Each LwmsClient keeps track of the latest time stamp it has seen for a given mailbox. On subsequent
polls, only messages later than this time stamp are forwarded to its client.

 • Supports filtering based on message header fields

An LwmsMailbox may have one or more senders and one or more receivers.

About LwmsMessage

The LwmsMessage component simplifies and controls the creation of XML messages. The body of an
LwmsMessage may be either:
19-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
 • A string. The string may be structured (normally, XML) or unstructured.

 • An object. The object must be Base64-encoded on wire, and the receiver can cast back to the original
object type.

LwmsMessage supports extensible message header elements via the msg.addHeaderElement() class.
For example:

msg.addHeaderElement(“deviceType”, “Cat6000”);

In this example, the client application could perform filtering operations based on the contents of the
message header.

For more information about LWMS message formats, see CMF Lightweight Messaging Service (LWMS)
Functional Specification, ENG-58367.

About LWMS Message Queues

LWMS supports two priority levels for sending messages:

 • NORMAL: LWMS bundles and sends messages with normal priority periodically, at a predefined
push interval (for example, once every second). Normal-priority messages are always received in the
order they are sent, are the most efficient to transmit, and provide the best throughput for large bursts
of messages.

 • HIGH: LWMS sends high-priority messages to the LwmsServer message server immediately. This
priority level provides the lowest message latency but has a higher overhead, so use it only when
necessary.

By default there is only one high priority push thread per LWMS client, which preserves the message
sending order. If, however, there is more than one thread, high-priority messages may be received
out of order. Multiple high priority pusher threads are recommended when higher throughput
performance is required (see the “Configuring Client Properties” section on page 19-13).

Note A maximum rate limit is enforced when sending high-priority messages. If this rate is
exceeded, the sending thread is blocked until the high-priority send queue and send
thread-pool load drops to a lower threshold.

About JMS API Support

LWMS supports messaging via the Java Messaging Service API, Version 1.0.2. For a list of the subset
of JMS services that LWMS supports, see the “JMS to LWMS Mappings” section on page 19-21.

About LWMS Server Logging

The LWMS Server outputs exceptions and important status information to the file lwms.log in the CWCS
log directory.

About LWMS Usage Assumptions

LWMS was designed to meet the following usage limits:

 • Typical throughput: less than 100 messages/second

 • Typical fan in (number of publishers): less than 10
19-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
 • Typical fan out (number of subscribers): less than 25

About Tibco-LWMS Gateway Support

LWMS implements the Client Event Bus (CEB) in the CWCS event architecture. There is also a Server
Event Bus (SEB) which is currently implemented by Tibco's Rendezvous product.

When messages need to transit on both the CEB and the SEB buses, a gateway is required between
LWMS and Tibco. The gateway handles message traffic in both directions:

 • Gateway publishing to LWMS (Tibco to LWMS)

LWMS provides control messages on a specified topic that notify the gateway about the topics in
the LWMS bus that have active listeners. The gateway forwards messages published on these topics
on the Tibco bus to LWMS.

Control messages are sent to the gateway when:

 – A listener is added to a topic that was not in the previous control message.

 – A topic no longer has any registered listeners (as determined by specific listener deregistration
or listener table aging).

 • Gateway subscribing to LWMS (Tibco from LWMS)

The gateway subscribes to a special topic that will forward all messages published in the LWMS
domain. This special topic is designed to prevent messages that were published earlier by the
gateway from echoing back to the gateway. This is similar to the JMS NoLocal option.

Configuring LWMS
Two configuration files are loaded at startup to provide operating properties to LWMS. The following
topics describe how to modify these files to configure your LWMS implementation:

 • Configuring Client Properties

 • Configuring Server Properties

Configuring Client Properties

To configure the LWMS client properties, use an ASCII editor to edit the LwmsClientProperties file.

The client properties file uses the tags shown in Table 19-3.

Runtime Location $NMSROOT/lib/classpath/com/cisco/nm/cmf/lwms/LwmsClientProperties.xml

where NMSROOT is the directory in which the product is installed. This directory
also contains the supporting files.
19-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Example 19-1 shows a typical LWMS client configuration file.

Example 19-1 LWMS Client Configuration File

<?xml version=”1.0”?>
<lwmsClientProperties>

<serverPollInterval VALUE=”1500” /> # server mailbox polling interval in ms
<normalMsgPushInterval VALUE=”1000” /> # push normal messages to server, in ms
<numHighPriorityPusherThreads VALUE=”1” /> # set to 1 to preserve message order.

Higher values may increase throughput
<maxHighPriorityMsgQueueSize VALUE=”500” /> # next sender is blocked if queue is full
<useGZIPioStreams VALUE=”false” /> # compress applet-servlet streams

</lwmsClientProperties>

Note Changes to client properties take effect on the next applet startup or reload in the client browser.

Configuring Server Properties

To configure the LWMS Server properties, use an ASCII editor to edit the LwmsServerProperties file.

The server properties file uses the tags shown in Table 19-4.

Table 19-3 LwmsClientProperties.xml File Tags

Tag Attributes Default Description

serverPollInterval VALUE 1500 Server mailbox polling interval, in
milliseconds.

normalMsgPushInterval VALUE 1000 Pushes normal messages to server, in
milliseconds.

numHighPriorityPusherThreads VALUE 1 Set to 1 to preserve message order. Higher
values may increase throughput.

maxHighPriorityMsgQueueSize VALUE 500 Blocks next sender if queue is full.

useGZIPioStreams VALUE False Compresses applet-servlet streams.

Runtime Location $NMSROOT/lib/classpath/com/cisco/nm/cmf/lwms/LwmsServerProperties.xml

where NMSROOT is the directory in which the product is installed. This directory
also contains the supporting files.

Table 19-4 LwmsServerProperties.xml File Tags

Tag Attributes Default Description

msgAgeingInterval VALUE 60 Message aging interval, in seconds.

tempMailboxAgeingInterval VALUE 30 Temporary mailbox aging interval, in seconds.
Also used for the Tibco-LWMS Gateway.
19-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Example 19-2 shows a typical LWMS Server configuration file.

Example 19-2 LWMS Server Configuration File

<?xml version=”1.0”?>
<lwmsServerProperties>
 <msgAgeingInterval VALUE=”60” />
 <tempMailboxAgeingInterval VALUE=”30” />
 <maxMsgsPerPoll VALUE=”500” />
 <autoCreateMailboxes>
 <create NAME=”cisco.mgmt.ani.event” TTL=”0” />
 <create NAME=”JmsTestTopic” TTL=”0” />
 </autoCreateMailboxes>
</lwmsServerProperties>

Note Server properties are read in on the first access to the LWMS servlet after the servlet engine starts.
Therefore, after changing any server properties, you must restart the servlet engine.

Using the LWMS API
The following topics describe how to use the native LWMS API to perform typical messaging tasks:

 • Creating a Mailbox with LWMS

 • Posting a Message to a Mailbox with LWMS

 • Polling Mailboxes for New Messages with LWMS

 • Removing a Message Listener with LWMS

 • Filtering Messages with LWMS

Creating a Mailbox with LWMS

Use the following code to get a reference to an LwmsClient singleton object and create a mailbox:

import com.cisco.nm.cmf.lwms.*;
LwmsClient lc= LwmsClient.getInstance("http://server:1741”,cookie_value,user,is_cli);
lc.createMailbox(“mbox”);

maxMsgsPerPoll VALUE 500 This value divided by client poll interval
determines maximum throughput.

autoCreateMailboxes NAME (none) Mailboxes created at LWMS Server startup
time. If TTL (time-to-live)=“0” then the
mailbox is persistent (useful for JMS).

Table 19-4 LwmsServerProperties.xml File Tags

Tag Attributes Default Description
19-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Posting a Message to a Mailbox with LWMS

To create a message in LWMS, set the message properties and send the message:

LwmsMessage msg = new LwmsMessage();
msg.setToMailbox (“mbox”);
msg.setMsgBody(“Hello Gang”);

lc.sendMsg(msg);

To get a reply, add these lines:

 • Create a replyMailbox:

lc.createMailbox(“Replymbox”);

 • Set the replyTo field in the message:

msg.setReplyTo(“Replymbox”);

 • Listen on that mailbox:

lc.addMsgListener(“Replymbox”, this);

Polling Mailboxes for New Messages with LWMS

To register a message listener with LWMS:

lc.addMsgListener(“mbox”, this);

where the current object:

 • Implements the LwmsMsgListener interface

 • Has a public newMessage(LwmsEvent) method

Removing a Message Listener with LWMS

To unregister a message listener with LWMS:

void removeMsgListener(String mailbox, LwmsMsgListener msgListener);

Filtering Messages with LWMS

An LWMS message consumer may optionally specify a message filter for each mailbox at listener
registration time. This filter has the form of a Boolean expression containing equality, relational, or
logical operators. Each message that evaluates to true based on the filter criteria will be returned to the
listener. Filters check only the standard and extended headers.

Table 19-5 summarizes the filter operator types LWMS supports.

Table 19-5 LWMS-Supported Filter Operators

Operator Types

Equality =, <> (equal to, not equal to)

Relational >, <, >=, <= (greater than, less than, greater than or equal to, less than or equal to)

Logical AND, OR
19-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Base Filter Expression (bfe) Syntax

The base filter expression uses this format:

match_string operator literal_value

where:

 • The white space before and after the operator field is required.

 • The match_string field must begin with a ‘<’ and end with either:

 – A ‘>’ for a standard XML element header field

 – An ‘=’ for an attribute in an XML empty element header field

 • The match_string field identifies a message header field and is of one of the following two forms:

 – <tag>—identifies a standard XML element value

 – <tag VALUE=—identifies an XML element attribute

 • If match_string ends in “>”, then its value is a substring extraction up to the next “<” character.

For example, a subscriber with

filter = “<foo> = ‘bar’”

would receive messages with an extended header <foo>bar</foo>.

 • If match_string ends in “=”, then its value is a substring extraction from the first quote mark up to
the next quote mark.

For example, a subscriber with

filter = “<foo VALUE= < 7”

would receive messages with an extended header of <foo VALUE=”5”/> (or any value less than 7).

 • The operator is one of: =, <>, >, <, >=, <=.

 • String and character literals are enclosed in single quotes (for example, ’stringValue’).

 • Each base filter expression evaluates to Boolean true or false.

Filter Strings Syntax

Filter strings supplied to the listener registration call use this syntax:

String filter= “bfe [AND bfe | OR bfe]“;

where:

 • Additional base filter expression terms enclosed in brackets are optional.

 • Additional base filter expression terms must be preceded by either AND or OR.

Evaluation Rules

LWMS evaluates filter rules as follows:

 • Base filter expression evaluation order is left to right. Parentheses are not supported.

 • If the LwmsServer cannot parse the filter, it is ignored and all new messages on the mailbox are
returned.

Sample Filters

Here are two separate examples of typical filters:

String filter_1= “<from> = ‘AniServer’”;
19-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
String filter_2= “<deviceType> = ‘Cat6000’ AND <deviceResets> > 5”;

Using the JMS API
The following topics describe how to use the JMS APIs to perform typical messaging tasks:

 • Creating a Mailbox with JMS APIs

 • Posting a Message to a Mailbox with JMS

 • Polling Mailboxes for New Messages with JMS

 • Removing a Message Listener with JMS

 • Using JMS Message Selectors

Creating a Mailbox with JMS APIs

To start a connection and a session and get a topic publisher using the JMS API:

import com.cisco.nm.cmf.lwms.jms.*;
import javax.jms.*;
TopicConnectionFactory tcf=

new TopicConnectionFactoryImp (protocol, hostName, port);
TopicConnection tc= tcf.createTopicConnection();
TopicSession sess=

tc.createTopicSession (false, DUPS_OK_ACKNOWLEDGE);
Topic pubTopic= new lwms.jms.TopicImp (“JmsTestTopic”);
TopicPublisher publisher= pubSession.createPublisher (pubTopic);
tc.start();

Posting a Message to a Mailbox with JMS

To post a message to a topic using the JMS API:

javax.jms.TextMessage message= sess.createTextMessage();
 message.setText (“Hello from LWMS/JMS”);
 message.setJMSDestination (pubTopic);
publisher.publish (message);

Polling Mailboxes for New Messages with JMS

To subscribe to a topic using the JMS API:

import com.cisco.nm.cmf.lwms.jms.*;
import javax.jms.*;

TopicConnectionFactory tcf=
 new TopicConnectionFactoryImp (protocol, hostName, port);
TopicConnection tc= tcf.createTopicConnection();
TopicSession sess= tc.createTopicSession (false, DUPS_OK_ACKNOWLEDGE);
Topic subTopic= new lwms.jms.Topic (“JmsTestTopic”);
TopicSubscriber subscriber= sess.createSubscriber (subTopic);
subscriber.setMessageListener (this);
tc.start();

Removing a Message Listener with JMS

To unregister a JMS message listener:
19-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
TopicSubscriber.setMessageListener(null)

Using JMS Message Selectors

LWMS supports JMS message selectors. The JMS message-selector syntax is identical to the LWMS
message filter syntax (see the “Filtering Messages with LWMS” section on page 19-16).

LWMS Command Reference
These topics provide reference information about LWMS and JMS API calls:

 • LWMS Native API Messaging Methods

 • JMS to LWMS Mappings

LWMS Native API Messaging Methods

The following tables list the public Java interfaces needed to create a mailbox, send a message, and
perform other messaging tasks.

Table 19-6 LwmsClient Public Methods

Returns Syntax and Description

Setup

Boolean checkMailboxExists (String mailbox);
Returns true if named mailbox already exists on LwmsServer.

Boolean createMailbox (String mailbox);
Creates a mailbox on server.

Boolean createMailbox (String mailbox, int ttl);

Creates a temporary mailbox on server, will be deleted after TTL (time-to-live) seconds.
For a permanent mailbox, set TTL=0.

Returns success.

Sender (Message Producer)

void sendMsg (LwmsMessage msg);
Sends a message to server. Note: Message object should not be mutated after calling.

Receiver (Message Consumer)
void addMsgListener (String mailbox, LwmsMsgListener listener);

Registers a message listener.

void addMsgListener (String mailbox, LwmsMsgListener listener, String filter);
Registers a message listener with a filter specification.

void removeMsgListener (String mailbox, LwmsMsgListener msgListener)
19-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
Table 19-7 LwmsMessage Message Creation Methods

Returns Syntax and Description

void addHeaderElement (String name, String value);

Adds “<name>value</name>”.

void setFrom (String from);

void setPriority (int priority);
Allowed values:

 • LwmsMessageIF.HIGH

 • LwmsMessageIF.NORMAL

void setMsgBody (String msgBody);

void setMsgBody (java.io.Serializable msgBody);
Object will be serialized and Base64 encoded.

void setMsgName (String msgName);

void setMsgType (String msgType);

void setReplyTo (String replyToMailbox);

void setSenderTimeStamp (long senderTimeStamp);

void setTimeToLive (long timeToLive);
Messages TTL in seconds.

void setToMailbox (String toMailbox);

Table 19-8 LwmsMsgListener Interface

Returns Syntax and Description

void newMessage (LwmsMsgEvent event);
Callback method in listener.

Table 19-9 LwmsMsgEvent Methods

Returns Syntax and Description
String[] getExtendedHeaderElementNames();

String getExtendedHeaderElementValue (String name);

String getFrom();

long getMboxTimeStamp();

String getMsg();

Returns whole XML message.

Object getMsgBody();

Returns message body:

 • If MsgBodyType== STRING then cast as String.

 • If MsgBodyType== OBJECT then cast as appropriate for your application.

String getMsgBodyType();

String getMsgID();

String getMsgName();

String getMsgType();
19-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
JMS to LWMS Mappings

The following tables list significant mappings between the JMS and LWMS APIs and message fields.

For a complete list of JMS to LWMS mappings, see the CMF Lightweight Messaging Service (LWMS)
Functional Specification, ENG-58367.

int getPriority();

String getReplyToMailbox();

long getSenderTimeStamp()

long getTimeToLive();

String getToMailbox();

Table 19-9 LwmsMsgEvent Methods (continued)

Returns Syntax and Description

Table 19-10 JMS to LWMS API Mappings

JMS LWMS

publisher.publish(msg);
publisher.publish(topic,
msg);
publisher.publish(msg,
deliveryMode,

priority, ttl);
publisher.publish(topic, msg,

deliveryMode, priority,
ttl);

Converts JMS Message to a LWMS Message per the mappings in
Table 19-11 and then calls LwmsClient.sendMsg().

If publish() is called with TTL (time-to-live), the TTL should be
set to at least two times the client polling interval.

If ttl=0 (in JMS, this means the message never expires), LWMS
sets the message’s TTL to one hour; this is done because LWMS
architecture specifies that messages must expire eventually.

Table 19-11 JMS to LWMS Message Field Mappings

JMS LWMS

Body body

JMSCorrelationID If present, this field is mapped to an extended header field named
JMSCorrelationID.

JMSDeliveryMode LWMS supports the equivalent of the JMS NON_PERSISTENT
delivery mode

JMSDestination:Topic (topic
name string is used)

toMailbox

JMSExpiration Mapped to an extended header field of the same name. Calculated as
the sum of the TTL (time-to-live) value in the publish() method call
and the client’s current time.

JMS Message Properties LWMS Message Extended Header fields

JMS Message types:

TextMessage or ObjectMessage

msgBodyType (TYPE=”STRING” or TYPE=”OBJECT”)

JMSMessageID LWMS msgID
19-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 19 Using Event Services Software
Using the Lightweight Messaging Service
JMSPriority

LWMS —> JMS

Normal —> 2

High —> 7

Priority

JMS —> LWMS

0-4 —> Normal

5-9 —> High

JMSRedelivered not mapped

JMSReplyTo:Topic (topic name
string is used)

replyToMailbox

JMSTimeStamp senderTimeStamp

The LWMS-JMS client generates this time stamp in the client VM
when the publisher.publish() method is called.

JMSType If present, this field is mapped to an extended header field named
JMSType.

Time-to-live (TTL) value from
publish() method call, or default
value of 60 seconds if not
specified

timeToLive

no direct JMS equivalent from

no direct JMS equivalent msgName

no direct JMS equivalent mboxTimeStamp

Table 19-11 JMS to LWMS Message Field Mappings (continued)

JMS LWMS
19-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 20

Using the Event Distribution System

The Event Distribution System (EDS) was the event-distribution software supplied with CMF, the
predecessor system of CWCS. For backward compatibility, it is also supplied with this release of CWCS.
EDS provides a means for sending messages from one process to another in a distributed, networked
environment.

EDS is one of two event messaging components supplied in this release of CWCS. The other – Event
Services Software (ESS) – is an asynchronous messaging service providing a publish-and-subscribe
infrastructure and allowing distributed, loosely coupled interprocess communications. These two
components are disjoint systems and do not work together.

Note EDS has been deprecated in favor of ESS (see Chapter 19, “Using Event Services Software”). CWCS
currently supports EDS for applications that are still using it, but this support will be withdrawn in a
future release. Cisco urges developers to avoid new development with EDS and begin using ESS as soon
as possible.

This following topics describe EDS and how to use it:

 • About the EDS Components

 • Using the EDS Programmatic Interface

 • Using EDS to Publish Events

For more information about EDS, see the EDS v1.1 System Functional Specification, EDCS ENG-25706.

About the EDS Components
The following topics discuss each of the EDS components:

 • About the EDS Event Server

 • About the EDS Event Message

 • About the EDS Atom Service

 • About the EDS Manager

 • About the EDS Class Loader

 • About the EDS New Event Message Fields

 • About the EDS Event Logger

 • About the EDS Event Logger Display
20-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
About the EDS Components
 • About the EDS Named Event Filter Service

 • About the EDS Event to Trap Converter

 • About the EDS Trap to Event Converter

About the EDS Event Server
The Event Distribution System (EDS) is used to distribute event messages from the creator of the events,
the Event Source (ES), to the recipient of the events, the Event Consumer (EC). The event is a data packet
or message that contains pertinent information associated with an incident in the things being monitored
or managed. Each EC registers an Event Profile (EP) or filter, with the EDS that describes the events in
which the EC is interested.

The EC defines a Java boolean function that is used to evaluate the events as they come in. If the boolean
function returns true, the event is passed to the EC.

About the EDS Event Message
The Event Message is implemented as a Java class. For C++ event sources, the event message is an IDL
data structure. This IDL data structure is sent to EDS. The event sources can provide a Java class that
can read the IDL data structure and create an instance of the Event Message Java class. For Java event
sources, they can create the Event Message Java class and send that directly. After the event Java class
is initialized, it is serialized and sent through the EDS. It is de-serialized in the EDS and sent through
the event filter. If the event passes the filter, the serialized event is sent to the interested EC. The Java
class is de-serialized in the EC and then the event is processed in the EC. Not only is syntactical
information sent with the event message, such as event creation time and event ID, but semantical
information can also be sent, such as methods to display user readable messages or conversion to useful
traps.

About the EDS Atom Service
The EDS Atom Service maintains the definition of the atoms used to define the elements of the events.
Atoms are packages of information that associate an integer value atom number with a string atom name,
description, and a locale dependent message. An atom may also have a hierarchical relationship with
other atoms. The main purpose of an atom is to let a small piece of data (integer) flow in the event,
instead of a much larger stream of data such as a text string. It also allows for internationalization of
these text strings.

The Atom Service keeps the definition of each atom as well as a locale-correct message that can be
displayed about the atom. It can be dynamically updated so that the system does not have to be stopped
and started to define new atoms that appear in the event message.

About the EDS Manager
The EDS Manager keeps track of all the CORBA objects that are part of the EDS system. It allows the
EDS system to be administered.
20-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
About the EDS Components
About the EDS Class Loader
Since the filters provided by the event consumers and the event messages themselves are instances of
Java classes, a class loader is needed to ensure that EDS and the event consumers can get access to the
Java class files.

About the EDS New Event Message Fields
New fields added to event messages are delivery type, time to live and chain pointer.

About the EDS Event Logger
The Event Logger (EL) maintains the current event messages that flow through EDS. This component
provides search capability on these events. Searching and grouping of historical events aids in problem
determination.

About the EDS Event Logger Display
The Event Logger Display (ELD) is used to display events received from EDS as well as events from the
event logger.

About the EDS Named Event Filter Service
The Named Event Filter Service provides the ability for the user to define event filters that can be used
by other components of the network management system. These event filters are given a name. The
Event Logger and Event to Trap facility will use the Named Event Filter Service.

About the EDS Event to Trap Converter
The Event to Trap Converter (ETC) is used to send traps to an NMS such as HP OpenView. After the
events are received, the event to trap converter calls the toTrap() method of each event class. It then
constructs a trap from the returned information of that method, and then sends it to the configured NMS.

About the EDS Trap to Event Converter
The EDS Trap to Event component is used to convert incoming traps to events that can be used by other
event consumers.
20-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Using the EDS Programmatic Interface
Each EDS component has its own API. The APIs for the EDS are defined as Java classes for both event
sources and event consumers. There are C++ APIs for event sources and event consumers. The Event
Logger Display provides Java constructors so that it can be instantiated from within another Java
application. All the other APIs are in the CORBA IDL.

The following topics discuss the EDS interface components:

 • About EDS Events

 • Formatting EDS Events

 • Defining and Registering EDS Event Atoms

 • Using the EDS Atom Definition File

 • Using the Atom Service Executables

 • Using the EDS Java Interface Classes

 • Registering EDS Application Events

 • Using the EDS Trap to Event Service

 • Using the EDS Trap Receiver Framework

 • Using the Generic Consumer Framework

About EDS Events
EDS events must have a required set of attributes to permit generic processing of the event data.
Allowing event creators to provide the data in any format they choose makes it is harder for users to
specify the events they want to view. For example, if the user wants to see all the events pertaining to a
router named “MainRouter.enterprise.com”, it will be difficult to filter on or search for them if one event
creator calls the attribute that contains the router name “DeviceName”, while another chooses “Device”
and yet another chooses “resource”. The same can be said for event categories, such as security events.
If we have only a huge list of all events, the user will have to iterate through that list to find all the
security events, and are likely to miss at least some of the security events in which they are interested.

In the CWCS event model, the resource each event concerns is defined in a resource list. Each resource
in the list has a type and a unique name. Each resource in the list provides details defining what the event
is about. Each event must have a resource list and have at least three resources defined: the device, the
device component, and the device resource. The device must also contain the IP address of the device.
These fields should be populated. If these fields are not filled in, it will impossible to search on these
events in the event logger, and the user will not be able to tell what object the event refers to when shown
in the event log display. If it is not possible to set the resource list to anything, it can be set to null.

Most of the data in the event can be defined as integers, with mappings between each integer and its
meaning. An atom registry is required to define these integer mappings. The integers need to be defined
company-wide and assigned by an “event police” group. The event atom registry allows retrieval of
display messages given an integer mapping, and also provides updates to currently running systems.

Some event situations may not permit you to populate all the required fields. In these situations, set the
fields to an empty value, such as 0 for an atom value or a string with a value of “”. Do not use a null
string; EDS uses CORBA for interprocess communications and IIOP does not permit sending null
strings. Be aware that your users will be able to see the contents of all events, and will set filters and
20-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
perform searches on those events. The better the required fields are filled in, theeasier it is for users to
understand what is happening in the network, since they will be applying their filters or queries to a more
complete group of events.

Most events will have additional data that describe what the event is about. This data is defined as
attributes in the Java class that extends the event base class and as an IDL data structure. This data
should be described using metadata.

Formatting EDS Events
The required event fields are listed here. A detailed explanation of each field follows the list.

 • Event Category: Category of this event

 • Event ID: Unique identifier of the event in this category

 • Event Severity: Severity of this event

 • Resource List: List of resources

 • Time Stamps: GMT time the event was created and sent

 • Time to Live: Time to live for this event

 • Delivery Type: Delivery type for this event

 • Chain Pointer: Unique identifier of related event

 • Event UID: Unique identifier of the instance of this event

 • Object ID: CORBA object reference of the service that is responsible for managing what this event
is about

 • Application UID: Unique identifier of the instance of the application sending this event

 • Meta-data: Generic definition of the unique data included with this event.

 • URL List: List of URLs to provide additional information about this event

Defining and Registering EDS Event Atoms
CWCS needs a service to give definition to atoms. For example, event categories, event IDs, resource
types and address types (not a complete list) can all be defined using these atoms. Then, by using the
atoms in the event, the size of the event can be minimized. Applications must have a way to define these
atoms and update them dynamically when the application is running.

Atom definitions use the following defined hierarchy to allow them to be grouped (the location in the
event where this value should appear is given in parenthesis):

 • Event Atoms

 • Event Category

 • Threshold (eventCategory)

event IDs

 – Security (eventCategory)

event IDs

 – Status (eventCategory)

event IDs
20-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
 – Topology (eventCategory)

event IDs

 – Configuration (eventCategory)

event IDs

 – Service (eventCategory)

event IDs

 – Informational (eventCategory)

event IDs

 – Control (eventCategory)

event IDs

 • Event Severity

 – Critical (eventSeverity)

 – Major (eventSeverity)

 – Minor (eventSeverity)

 – Informational ((eventSeverity)

Using the EDS Atom Definition File
Atoms are defined in an atom definition file. A utility is provided to parse the atom definition file,
populate the atom service, and (optionally) generate Java and C++ code that defines “constants” to be
used in creating the event sources and consumer applications. The keywords and format of the atom
definition file are as follows:

INCLUDE atom_defintion_file
atomname
LOCALE locale_name
MESSAGE “user readable message”
DESCRIPTION “some description”
= { parent_atomname atomnumber}

where:

 • atomname is the assigned atom name

 • atomname is the assigned atom number

 • parent_atomname is the name of the parent atom (to define the hierarchy)

 • atom_definition_file is the file that defines the parent atom

 • locale_name is one of the following keywords, used to define the locale of this message:

 – INCLUDE - include this atom definition file for defining parent names

 – LOCALE - locale value for this message

 – MESSAGE - the user understandable message

 – DESCRIPTION - description of this message

The atom definition file for the base atom definitions is BaseAtomDef.atom.

The main Java class that parses the atom definition file is com.cisco.cmf.eds.atom.ParseMain. It has the
following usage statement:
20-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
java com.cisco.cmf.eds.atom.ParseMain [-J] [-C] [-U [-R]] [-I include_dirs …] -F
atom_definition_file.atom -h

where:

 • -J generates a Java file.

 • -C generates a C++ include file.

 • -U updates the atom service.

 • -R replaces the atom definition in the atom service (if it exists).

 • -I looks in the include_dirs for include files.

 • -F specifies the file that contains the atom definition file (atom_definition_file).

 • -h prints a usage message.

The generated Java file defines attributes for each atom in the atom definition file. These are defined as
follows:

public class atom_definition_file {
public static final atomname = #;
}

Java “constants” of the form atom_definition_file.atomname can be used in Java event sources and in
event consumers.

The generated C++ include file defines attributes for each atom in the atom definition file. These are
defined as follows:

class atom_definition_file {
public:
enum atom_definition_fileEnum {

atomname = #
};

};

C++ “constants” of the form atom_definition_file::atomname can be used in C++ event sources.

The atom service uses Java Resource Bundles to access the atom information. The program receiving
the event should use the getBundle() static method, passing in as the base name
“com.cisco.nm.cmf.eds.atom.EventAtomBundle”. Then, turn the atom integer value into a string, and
use that as the key in the getString() and getStringArray() instance methods of the bundle. The following
keys values are defined:

key - get message, if the message is not defined, return the key value
key.name - get atomname
key.description - get atom description
key.fields - get string array of keys defined under this key in the hierarchy

Note key is the string value of the integer passed in the event. key.name is the key value with the string
“.name” appended on the end (ie. key+”.name”). key, key.name and key.description return strings
and key.fields returns a string array.

See JDK information for exact method syntax and exceptions thrown for using Resource Bundles.
20-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Using the Atom Service Executables
The main Java class for the atom service is com.cisco.cmf.eds.atom.Main. It has the following runtime
options:

java com.cisco.cmf.eds.atom.Main [-D dir_name] [-h]

where:

 • dir_name is the name of directory where the atom service stores its data. It is stored in a file called
atom.src. If no directory is specified, the directory where the atom service is started is used.

 • -h prints usage message.

The atom service stores its data in a file called atom.str in the atom service’s working directory. If the
store file is not there, or if the atom service has a problem reading the store file, all atom definition files
(files that end with *.atom) are read in to initialize the service.

When a new network management application is installed, it should copy its *.atom definition file into
the atom service working directory. It should then make sure the atom service is running and then run
the atom parse program using the -U and if necessary, the -R option to update the atom service with the
new atoms used by the application.

Using the EDS Java Interface Classes
Java classes are provided for both the event source and event consumer to interface with EDS. These
classes are defined in the com.cisco.cmf.eds.system.* package. They are as follows:

public final class EventSource {
// Public Constructor
public EventSource(String name);
public EventSource(String name, String hostname);
public EventSource(String name, int queuesize);
public EventSource(String name, String hostname, int queuesize);
public EventSource(String name, EventSourceCallbackInterface callback);
public EventSource(String name, int queuesize,
EventSourceCallbackInterface callback);
public EventSource(String name, String hostname, int queuesize,
EventSourceCallbackInterface callback);
// Public Instance Variables
public boolean init;
// Public Instance Methods
public EventUID sendEvent(EventBase event);
// send event
public EventUID sendEventNoBlock(EventBase event)
throws QueueFullException;
//send event, do not block
//if queue is full, throw
// exception if queue is full
public void setCallback(EventSourceCallbackInterface callback);
// set callback interface
public void deleteConnection();
// delete connection to
// EDS
}
public interface EventSourceCallbackInterface {
public void eventSent(EventBase event, Exception ex);
// this event has been sent if the
// event was sent, ex was null if
// there was an exception and this
20-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
// event was unable to be sent, ex
// will not be null
}
public final class FilteredEventConsumer {
// Public Constructor
public FilteredEventConsumer(String name);
public FilteredEventConsumer(String name, EventCallbackInterface
Eventcallback);
public FilteredEventConsumer(String name, String hostname, EventCallbackInterface
eventcallback);
// Public Instance Methods
public void setCallback (EventCallbackInterface eventcallback);
// used to define java callback
// interface
public void setClassInstance (EventFilterInterface object) throws
com.cisco.nm.cmf.eds.exceptions.InvalidInterface, java.io.IOException;
// use to define the filter class
// instance
public void setClassSource(String class_name, String class_source) throws
com.cisco.nm.cmf.eds.exceptions.InvalidInterface,
com.cisco.nm.cmf.eds.exceptions.CompilerError;
// used to define the filter class
// source
public void setQueryFilter(String filter_string) throws
com.cisco.nm.cmf.eds.exceptions.InvalidInterface,
com.cisco.nm.cmf.eds.exceptions.CompilerError,
com.cisco.nm.cmf.eds.exceptions.QueryParseException;
// used to define a “query” to be
// used to evaluate events for
// possible interest by this
// consumer
public void setFilterName(String filtername) throws
com.cisco.nm.cmf.eds.exceptions.FilterNameNotFound;
// used to set a named filter to be
// used to evaluate events for this
// consumer
public void setEventFilter(EventFilter filter) throws java.io.IOException;
// used to set a filter straight from
//the event filter repository
public void deleteConnection();
// delete connection to EDS
}
public interface EventCallbackInterface {
public void eventReceived (EventBase event, EventData s_event);
// after the FilteredEventClass
// has received an event, it calls
// this method of the registered
//callback interface
}
public interface EventFilterInterface {
public boolean evaluateEventData(EventBase event);
// the filter class must implement
// this interface. The consumer
// connector will call this method
// for every event received
}

20-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Registering EDS Application Events
All event source applications need to register the events they plan on sending. This registration allows
a more detailed and complete filtering of events generated in the system. The event sources need to
instantiate a “dummy” copy of events it plans on sending. An exhaustive list of events is required that
encompasses all the variations of Java event classes, Event Categories, Event IDs, Event Severities,
Resource Types and Resource ID Types.

This is the Java class that interfaces to the event repository:

public class EventHash extends java.util.Hashtable{
//Public Constructor
.public EventHash();
//Public Instance Methods
.public Object put(EventBase event);
//add “dummy” event to event repository
}

To store and access events in the repository, an instance of the EventHash class must be created. The
defined hash methods can then be used to access the events. If the application is going to store the events
in the repository, it must use the defined put() method above.

Using the EDS Trap to Event Service
EDS includes a generic trap receiver that receives SNMP traps and then acts on those traps. The trap
receiver supports receiving SNMP traps from a defined port (the default is the SNMP trap port 162), or
by connecting to an NMS product . The connection to the NMS is via a native interface using the Java
Native Interface protocol. The connection to the NMS is dependent upon the types of APIs provided by
the NMS for receiving event information.

The supported platforms are:

 • HP OpenView on HPUX

 • HP OpenView on Solaris

 • HP OpenView on NT

 • NetView on AIX

 • NetView on NT

 • SunNet Manager

 • MicroSoft Trap Service

Using the EDS Trap Receiver Framework
Upon startup, the Trap Receiver Framework loads a trap receptor that is responsible for connecting to an
NMS and receiving the traps. The trap receptor is used to identify the source for the incoming traps.
Once loaded, the trap receptor receives traps and passes them onto the main trap receiver component.
The trap receiver then determines what actions to take upon receipt of the trap.

The Trap Receiver can receive up to 2,000 traps within 30 seconds and process them all within a
200-second window. In conjunction with the TrapToEDS action, the generated events can be produced
at a rate of 10 events per second in sustained mode. Note that performance numbers will be gated by the
rate at which the NMS provides the traps to the Trap Receiver Framework.
20-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
The Trap Receiver ties into other standard EDS utilities, including:

 • The standard debug/logging facility for logging of trace messages

 • The CWCS Daemon Manager, for graceful startup/shutdown.

The following topics explain the Trap Receiver Framework:

 • Using the Trap Receptor

 • Using the Trap Receiver Configuration File

 • Using TrapInclude/TrapExclude Statements

 • Creating Trap Actions

 • Matching Trap Records

 • Using the TrapToEDS Converter

 • How the TrapToEDS Conversion Table is Used

 • Using the TrapLaunch Action

 • Using the TrapEcho Action

 • Setting Trap Receiver Properties

Using the Trap Receptor

The trap receptor provides the interface for communicating with specialized NMS products and
receiving traps. The trap receptor is extensible, so other NMS products can be integrated at a later time.
Specialized TrapReceptor classes are provided to communicate with many different types of trap sources
(such as HP Openview on trap port 162).

Loading of the TrapReceptor often involves loading native libraries for interfacing to proprietary NMS
trap APIs.

The TrapReceptor class must extend the following class:

public abstract class TrapReceptor {
public abstract void startListening(); // start the receptor
public void registerListener(TrapListener listener);
}

The TrapListener is an interface provided between the receptor and the remainder of the Trap Receiver
Framework. The TrapReceptor, upon receiving a trap from the NMS (or any source), will make
appropriate calls on the TrapListener to send the trap.

The TrapReceptor to be loaded is determined via a variable in the TrapReceiver’s property file. Since
loading trap receptors typically involves loading native libraries, any modification of the trap receptor
requires a restart of the trap receiver.

The properties file can be configured to define the behaviour that the TrapReceptor should perform if the
NMS is not running or has stopped sending events. The default is that the TrapReceptor will enter a
retry/delay state while attempting to connect to the NMS. Once the retries have been exhausted, the
TrapReceiver will terminate.
20-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Using the Trap Receiver Configuration File

The trap receiver reads a configuration file that identifies the actions to be performed upon receipt of a
trap. The format identifies the actions to be performed, and for those actions, the TrapBlock defining
the traps to send to that action. A TrapBlock specification of “-“ indicates that all traps should be sent.
Specifying a TrapBlock on an action line that does not exist will result in an error, and the action line
will be discarded. Example 20-1 shows a sample trap receiver configuration file.

Example 20-1 Sample Trap Receiver Configuration File

Action> <ActionName> <TrapBlock> <Action Class> <Args>
#
Action TrapToEDS EDSTraps com.cisco.nm.cmf.eds.trap.TrapToEDS.class
Action MyApp MyAppTraps
com.cisco.nm.cmf.eds.trap.TrapLaunch.class/usr/bin/myApp $1 $2 $3
Action TrapEcho com.cisco.nm.cmf.eds.trap.Echo.class
#
TrapBlock <ActionName> {
TrapInclude <trapName> <oid> <generic> <specific>
TrapExclude <trapName> <oid> <generic> <specific>
}
#
Traps to send to the TrapToEDS action
This says to send all traps, but exclude any traps that matchs an EDS trap.
TrapBlock EDSTraps {
TrapInclude AllTraps 1.3.6.1.4.1.* * *
TrapExclude EDSTrap 1.3.6.1.4.1.9.1.1.1.1 6 1
}
traps to send to the MyApp action
TrapBlock MyAppTraps {
TrapInclude MyTrap .1.3.6.1.4.1.9.2.2.2.2 6 100
}
All traps will be sent to the TrapEcho action because it has no TrapBlock specification.

Using TrapInclude/TrapExclude Statements

TrapInclude and TrapExclude statements in the Trap Receiver configuration file identify the traps to be
passed to an action. For a trap to be passed to an action, the trap must satisfy the equation:

(Match any TrapInclude statement) AND NOT (Match any TrapExclude statement)

The configuration file format allows for easily extending the TrapReceiver’s actions without affecting
other registered actions.

The order in which the TrapInclude and TrapExclude statements are provided in a trap block has no
bearing on whether a received trap will match (it will match according to the above formula). However,
it can affect performance. When a trap is received, it is compared against the TrapInclude statements in
sequential order. When a TrapInclude statement matches, the remainder of the TrapInclude statements
are ignored. After a match for a TrapInclude has been determined, a similar match in sequential order is
performed against the TrapExclude statements. If a match is found for a TrapExclude, the trap is
discarded, and no further matching is performed.
20-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Creating Trap Actions

Actions are Java classes that perform specific functions based upon receipt of a trap. All actions must
extend the following class:

public interface TrapBaseAction {
public void processTrap(TrapPDU trap,
String args[]);
}

When a trap is passed to an action, a list of translatable “dollar” variables, ($), can be specified as
arguments to the action. These variables are provided as a convenience for processing information
contained within the trap. The specification for the variables is modeled after the $-vars used in HP Open
View. Strings that do not start with a $, or that start with a $ but do not match the list of variables shown
in Table 20-1 and Table 20-2, are passed verbatim to the processTrap action command.

The notation $n implies the Nth variable contained within the trap, where 1 represents the first variable
contained within the trap.

At startup, the trap receiver creates a single instance of each action to process all trap requests; it does
not create a new action object as each trap is received. A single action object will be created at startup,
and the action’s processTrap() method will be invoked to process the trap. This facilitates actions, such
as TrapToEDS, that need to open a persistent communication channel for the passing of event
information.

Table 20-1 Trap Information Variables

Variable Description

$# Number of variables in the variable binding list

$* All variable bindings in the format of: [1] name (type): value [2] name (type): value ….

$n The nth variable’s value, printed as a string

$-n Print the nth variable as: [n] name (type): value

$+n Print the nth variable as: name: value

Table 20-2 Trap Header Information Variables

Variable Description

$A Print the Agent address from the trap as a hostname, if possible. Otherwise, print the IP
address.

$a Print the Agent address as an IP address.

$C Print the community string contained within the trap.

$E Print the Enterprise OID as a translated oid name, if possible.

$e Print the Enterprise OID as a dotted decimal string.

$G Print the Generic trap number.

$S Print the Specific trap number.

$T Print the trap’s SysUptime timestamp.
20-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
A TrapAction may be loaded multiple times if it is associated with unique actions in the configuration
file. For instance, the TrapLaunch.class listed above provides unique, separate TrapLaunch functions for
invoking separate commands.

Matching Trap Records

When a trap is received, it is compared against the TrapInclude and TrapExclude statements. For a trap
to be passed to an action, the trap must match at least one TrapInclude statement, and it must not match
any TrapExclude statements.

Wildcards (the ‘*’ character), can be used at the end of an OID value, or in place of generic or specific
trap numbers. If no wildcard is specified in the OID, then the OID must match exactly.

Using the TrapToEDS Converter

The TrapToEDS Converter action is an EDS Event Source that will convert an SNMP trap into an EDS
event. A new event, called TrapEvent, will be created to contain the trap information. The TrapEvent will
then be sent to EDS for distribution to any registered event consumers. The conversion of the trap to the
TrapEvent is performed as shown in Table 20-3.

.

How the TrapToEDS Conversion Table is Used

The mappings shown in Table 20-4 equate traps generated by Cisco devices to appropriate EDS events.
Each arriving trap will be matched against its OID, generic number, and specific number for a match into
the lookup table. When found, the corresponding EventID, Event Category, and Event Severity will be
retrieved from the table. Also contained within the table lookup will be a variable number of Resource
Item records defined for each trap. These records will be used for the assignment of the ResourceList
contained within the event. Each ResourceItem will consist of a 3-tuple that will contain:

 • ResourceType

 • Resource IDType

 • Resource IDValue

Table 20-3 TrapToEDS Conversion

Event Attribute Action

EventID See the “How the TrapToEDS Conversion Table is Used” section on page 20-14

Event Category See the “How the TrapToEDS Conversion Table is Used” section on page 20-14

Event Severity See the “How the TrapToEDS Conversion Table is Used” section on page 20-14

ApplicationUID “TrapToEDSConverter”

EventCreateTime Compute current timestamp

Resource List See the “How the TrapToEDS Conversion Table is Used” section on page 20-14

Event Data {trap OID,
generic number,
specific number,
sysUpTime,
Community string,
Varbinds}
20-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
The ResourceType and Resource IDType are integer values that map to atoms created with the atom
service. The ResourceIDValue is a string value that can be specified via a literal string, or the $-variables,
to retrieve information from the trap.

By default, every event has one resource item with a ResourceType equal to Device. If one is not
specified in the table lookup, then one will be provided with the following assignments

 • ResourceType = Device

 • ResourceIDType = IP Address

 • ResourceIDValue = IP address contained within the trap

To further support complete control over the conversion of a trap into a specific event, an alternative
format can be specified in the lookup table, where the name of a conversion class is specified. This class
can be loaded and used for converting the trap to an event upon matching an OID, generic number and
specific number. A single instance of this class will be created, and will be called for converting all traps
to events that match its trap signature. This class must extend the following class:

public interface class TrapConverter {
public EventBase convertToEvent(TrapPDU trap);
}

If the trap is not found within the lookup table, then the following algorithm is used:

EventID:
Coldstart Trap:BaseAtomDef.Coldstart_Trap
Warmstart Trap:BaseAtomDef.Warmstart_Trap
Linkdown Trap:BaseAtomDef.LinkDown_Trap
Linkup Trap:BaseAtomDef.LinkUp_Trap
Auth Trap:BaseAtomDef.Authentification_Trap
EGP Neighbor:BaseAtomDef.EGPNeighborLoss_Trap
Enterprise Trap:BaseAtomDef.Enterprise_Trap

Event Category:BaseAtomDef.SNMPTrap
Event Severity:BaseAtomDef.EventSeverity_Informational

Using the TrapLaunch Action

The TrapLaunch action allows launching a separate application based upon receipt of a trap. The first
argument to the action will be the name of the application to be invoked. All of the arguments are passed
on the command line to the application. The TrapLaunch action will be invoked a single time, (as are
all trap actions). However, the nature of the TrapLaunch is to invoke a command upon receipt of a trap.
Therefore, for each trap sent to the TrapLaunch action, the action will invoke a new command.

Using the TrapEcho Action

The TrapEcho action takes the incoming trap and sends it to a specified trap port. This allows for the
operation of the TrapReceiver with other products that want to receive traps on a given port.

Table 20-4 TrapToEDS Mappings

Trap Name OID Value
Generic
number

Specific
Number Event ID

Event
Category Event Severity

Resource
Item #1

Resource
Item #n

Reload Trap Cisco 6 0 ReloadTrap SNMP Trap Informational 3-tuple 3-tuple

TCP Conn Close Cisco 6 1 TcpConnClose SNMP Trap Informational 3-tuple 3-tuple
20-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Setting Trap Receiver Properties

You can modify the Trap Receiver properties shown in Table 20-5.

Using the Generic Consumer Framework
The Generic Consumer Framework (GCF) provides a mechanism for providing generic event-consumers
with a pluggable interface for receiving events. Using the Named Filter API, you can register a set of
event consumers with the GCF. Generic event consumers use a different named filter for the reception
of their events.

While your application can produce a standard event consumer for receiving EDS events, doing so
requires you to write a filter mechanism and a specification for the associated filter. Using the GCF
allows you to write a generic event consumer that only needs to focus on event processing; the filter work
is part of the Framework. This interface also allows you to easily update the filter to be associated with
a consumer and the events that it should receive.

The following topics explain the GCF:

 • Using the GCF Configuration File

 • Using the GCF Admin Display

 • Creating Generic Consumers

 • Using the Event to Trap Converter with Generic Consumers

Using the GCF Configuration File

The GCF configuration file specifies the generic consumers and the named filters registered for each
consumer. The GCF will register with EDS on behalf of the consumers and then pass the appropriate
events to the consumers.

A GUI interface exists to aid in updating the TrapReceiver’s configuration file. Also, an IDL interface
to the TrapReceiver is provided for receiving, and updating named filter information.

#
Sample Generic Consumer Framework Configuration file
#
Action <ActionName> <NamedFilter> <Generic Event Consumer> <Args>
Action EventToTrap - com.cisco.nm.cmf.eds.trap.EventToTrap.class

The use of the string “-“ as a named filter equates to a filter that indicates to receive all events.

Table 20-5 Settable Trap Receiver Properties

To set the Modify this property

Trap port for the UDPTrapReceptor to listen on trap_port=162

Name of configuration file trap_config_file=filename

Trap port for the TrapEcho command to send traps trap_echo_port=5000

Class that identifies the TrapReceptor to be
loaded

trap_receptor=com.cisco.nm.cmf.eds.trap.So

meTrapReceptor

Number of retries to perform for connecting to
NMS, or UDP port

trap_receptor_connection_retry=10000

Number of seconds to delay between retries trap_receptor_connection_delay=300
20-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using the EDS Programmatic Interface
Using the GCF Admin Display

The GCF administrative display permits configuring the named filters to be associated with generic
consumers. It also displays the description of the selected filter. These features aid the administrator in
choosing the correct named filter.

The GCF Admin Display exists as an HTML interface. Upon selecting appropriate information, the GCF
Admin display interfaces to web servlets communicating on the backend for updating the GCF
information.

Creating Generic Consumers

Generic consumers are consumers to be registered with the GCF. Generic consumers have no knowledge
of the filters associated with them. After startup, the GCF passes events to those generic consumers
whenever the event passes their associated filter.

All generic consumers must extend the following class:

public interface GenericEventConsumer{
// Pass the event to the consumer.
public void processEvent(EventBase event, String args[]);

}

When passed an event via the processEvent() method, a list of $-translatable variables can be specified
as arguments to the generic event consumer. These variables permit information to be obtained from the
event without having to access the event object itself.

Using the Event to Trap Converter with Generic Consumers

The Event to Trap Converter (ETC) service plugs into the GCF, allowing generic consumers to receive
EDS events. The named filter associated with the service determines the events that the EventToTrap
service receives. Once the events have been converted into a trap, the traps will then be forwarded to a
network management station via a destination hostname and port.

Upon startup, the ETC will read a startup file containing hostname and destination port settings for
forwarding traps. If no port is specified, the standard SNMP trap port, 162, is assumed.

When an event passes the ETC filter, the event’s toTrap() method is called to return a TrapClass object
for the event. The TrapClass object supports all features needed to convert the event into a trap:

public abstract class TrapClass {
public abstract String getEnterpriseOid();
public abstract int getGenericTrapNumber();
public abstract int getSpecificTrapNumber();
public abstract String getCommunity();
public abstract String getIPAddr();
public abstract long getSysUpTime();
public abstract SnmpVarbindList getVarbindList();

}

Upon receiving the TrapClass object, the ETC will call the appropriate methods to create the TRAP PDU
and then send the PDU to the specified NMS hosts. By overriding the TrapClass object that is returned
via the toTrap() method for an event, an event writer can define its own Event-To-Trap conversions.

In the case where an event does not provide a conversion, a DefaultTrapClass() converter object will be
used. Your application can extend the DefaultTrapClass() if you want to modify some aspect of its
functionality. The base DefaultTrapClass conversion produces the results shown in Table 20-6.
20-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using EDS to Publish Events
The EventToTrap converter reads a property file containing various startup parameters. The property file
consists of the following:

list of hosts to receive trap information
gcf_trap_receivers=hostname:port,hostname:port

community string to use within traps
community=public

Using EDS to Publish Events
The CWCS Job and Resource Manager (JRM) uses EDS to publish events of interest to CWCS-based
applications. These events belong to the “status” event category (EventCategory_Status). The EDS event
and resource atoms are listed in com.cisco.nm.cmf.jrm.JrmEdsAtomDev.java.

The following topics explain how EDS publishes events and how to receive them:

 • About the EDS-Published Event Types

 • About the EDS-Published Severity Codes

 • Registering Your Application with EDS

Table 20-6 DefaultTrapClass Conversion Results

Attribute Value

OID 1.3.6.1.4.1.9.9.127.2.0

Generic trap number 6

Specific trap number Critical event: 1
Major event: 2
Minor event: 3
Informational: 4

Agent Addr Inspect resource list for an IP address, or Hostname, otherwise IP address of
hostname where Converter resides.

Community string Default from EDS property file

SysUpTime Uptime for Event Consumer

Varbind 1 Event ID number

Varbind 2 Event ID name

Varbind 3 Event Category number

Varbind 4 Event Category name

Varbind 5 Event Created Time

Varbind 6 Event Sent Time

Varbind 7 Application name

Varbind 8 Event Class name

<Repeated> Event Resource Information

<Repeated> Unique Data name/value
20-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using EDS to Publish Events
About the EDS-Published Event Types
Table 20-7 summarizes the typical JRM-related event types published via EDS.

About the EDS-Published Severity Codes
Table 20-8 summarizes the JRM event severity codes used with EDS-published events.

Table 20-7 JRM Events Published Via EDS

Event Type Description

Job-related All job events are the instances of the com.cisco.nm.cmf.jrm.JobEvent class. The event's
resource list always contains two resources: ResourceList_Job_Type and
ResourceList_Job_Id. The event's unique data contains four members:

 • Job szProgress field at the time the event was recorded.

Note For the approve/reject events szProgress will contain an approver's comments.

 • Job run_state field.

 • Return code (for EventJobEnd event).

 • Approver name (for EventJobApprove and EventJobReject).

Lock-related Lock/unlock events do not have unique data. The resource list contains two resources:

 • ResourceList_Address_Hostname contains the resource name.

 • ResourceList_Job_Id contains the job name.

Process- end Process end events are instances of the class com.cisco.nm.cmf.jrm.DaemonEndEvent. The
resource list contains a single resource of type ResourceList_Job_Id. The event’s unique data
contains the return code and signal code of the process.

Table 20-8 JRM Event Severity Codes Published Via EDS

Severity Level Codes

EventSeverity_Information EventLock
EventUnlock
EventJobStart
EventJobEnd (if completion code is RUNST_Succeeded)
EventJobCancel
EventJobApprove
EventJobReject
EventDaemonEnd

EventSeverity_Minor EventJobEnd (if completion code is RUNST_SucceededWithInfo)

EventSeverity_Major EventJobEnd (if completion code is RUNST_Failed)
EventJobLaunchFailed
20-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 20 Using the Event Distribution System
Using EDS to Publish Events
Registering Your Application with EDS
To send and receive EDS events, you must subscribe to the events you want to view.

The SampleEventConsumer.java file, located in the CodeSamples directory on the CWCS SDK CD,
shows how to subscribe to EDS events. This example shows:

 • How to create an instance of a filter

 • How to create the source code for a filter

It also displays two lists:

 • The top list displays events received from one filter.

 • The bottom list displays events received from a second filter.
20-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 21

Using the Installation Framework

CWCS supplies several tools for application installation, uninstallation, and patching. Because each
platform has its own set of standards, formats, and issues, you will need different tools. But the basic
installation concepts are similar.

Note Cisco encourages developers to leverage the installation framework discussed in this chapter.
The tools for user interface and installation integration are free and will save your team time.

The installation framework allows you to consider dependencies and features such as uninstallation,
which makes it easier for your package to work like other network management packages. The
installation framework can help ensure that prerequisites such as version dependencies are set and
followed.

Cisco recommends that you use both the build environment and the installation framework. The build
environment is tuned to enforce Cisco procedures and policies. The installation framework facilitates a
common look-and-feel and the required CWCS bundle behavior. However, the installation framework
does not require using the build environment.

The following topics describe the installation framework and associated processes:

 • About the Installation Framework

 • Getting Started with the Installation Framework

 • Using the Installation Framework

 • Windows Installation Reference

 • Solaris Installation Reference

For information on installing CiscoWorks Common Services itself, refer to the “Installing CWCS”
section on page 5-2.

About the Installation Framework
This section discusses the following topics:

 • What’s New in This Release

 • Understanding the CWCS Installation Framework

 • Understanding Installation Team Responsibilities

 • Understanding Developer Responsibilities
21-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
About the Installation Framework
What’s New in This Release
New or changed features in this release of the CWCS installation framework include:

 • Express mode is no longer supported. The only installation modes are Typical and Custom.

 • Remote upgrade is no longer supported. This has been replaced by the CWCS migration framework.

 • The installation framework is now compatible with the new CWCS licensing framework, vastly
simplifying the work applications need to do (see the “Providing Licensing Information During
Installation” section on page 21-22).

 • Advice on reducing installation time has been added (see the “Reducing Windows Installation
Time” section on page 21-36).

 • Solaris installation now supports limited workflow customization (see the “Customizing the
Installation Workflow on Solaris” section on page 21-104)

 • The new command pkgchk permits package verification before or after Solaris installs (see the
“Verifying Packages on Solaris” section on page 21-105).

Understanding the CWCS Installation Framework
The CiscoWorks Common Services (CWCS) runtime environment provides shared functionality for
applications when they are running. It provides services such as scheduling, process management, and
database storage and retrieval so that your applications can perform their tasks. The CWCS installation
framework provides shared functionality for individual applications so that they can install on different
kinds of systems with similar interfaces and consistent install semantics.

The goals of the installation framework are:

 • To isolate the installation process and tools (as much as possible) from the application so the
application only needs to worry about application-specific install issues.

 • To allow applications to specify hardware and software requirements as well as dependencies,
regardless of the target operating system.

 • To support the orderly uninstallation of applications.

 • To facilitate a common user experience for all CiscoWorks products.

 • To allow the user to install the package easily, regardless of the target operating system or
application being installed.

 • To update package file ownership settings during the build/installation on Solaris.

The installation framework provides an installer, an uninstaller, and a set of functions that facilitate
installation-specific tasks.

The installation team and the developer have separate roles to play in the process of adding packages for
installation:

 • The installation team is responsible for ensuring that the main installation script and build tools (the
installation framework) are available and working (see the “Understanding Installation Team
Responsibilities” section on page 21-3).

 • The developer is responsible for specifying what objects should be installed, where they should be
installed, and how they should be installed (see the “Understanding Developer Responsibilities”
section on page 21-3).
21-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
About the Installation Framework
Understanding Installation Team Responsibilities
The installation team is responsible for the main installation script. This script is the same for
CiscoWorks, Resource Manager Essentials, Campus Manager, and other CWCS-based products. It does
not change (on Windows platforms, the main installation script can be customized; for details, see the
“Customizing the Installation Workflow for Windows” section on page 21-76). It is important to use the
installation framework to allow for the following:

 • Component sharing: Enables several packages within the product to share functionality without
installing packages more than once.

 • Dependencies: Includes source and target, version, backward compatibility, and uninstallation.

 • Optional components: installation of optional components based on requirements or dependencies.

 • Development: Allows individual business units or third-party developers to produce components.

 • Delivery: Allows individual business units or third-party developers to release their products as part
of a major or minor release or drop-in.

 • Maintenance: Provides for backward compatibility, upgrades, and patches that are consistent.

 • Security: Allows CiscoWorks applications to use the same file ownerships and permissions schema as CWCS
(see the “Understanding and Implementing the casuser” section on page 21-21).

The installation team is also responsible for the tools that create the installable CD image, which are
discussed in the “Getting Started with the Installation Framework” section on page 21-4. Developers
outside of NMTG can use their own build tools and build environment to produce their executable files,
but should use the installation tools to build CDs. NMTG developers should use internal build and
installation tools.

For assistance with running the installation framework software, reporting problems, or questions about
the software:

 • Refer to the Installation Framework team web site:
https://mco.cisco.com/ubiapps/portal/servlet/EEngPortalDispatcher?EVENT=ProjectPortalDisplay
Event&portal_id=1975

 • Contact: cmf-install-dev@cisco.com

Related Topics

See the:

 • “Understanding Developer Responsibilities” section on page 21-3.

 • “Understanding the CWCS Installation Framework” section on page 21-2.

Understanding Developer Responsibilities
The CWCS installation framework is provided by the installation team, but can be used in different ways
depending on your requirements:

 • If you are a developer working outside NMTG (either in another business unit or as a third-party
partner), you should use the installation framework to enable better integration, improve look and
feel, and take advantage of features such as uninstallation.

 • If you are a developer working inside NMTG, in addition to using the installation framework you
must use the automated build processes to create protopackages. Your build process has the build
tools to automatically create protopackages.
21-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Related Topics

See the “Understanding Installation Team Responsibilities” section on page 21-3.

Getting Started with the Installation Framework
The Installation Framework is supported on Windows and Solaris platforms. It follows the server
platform-support requirements for CWCS, but can be customized for other Windows and Solaris
platforms. For other platform enquiries, contact the installation team (cmf-install-dev@cisco.com).

Main installation script and build tools for the CWCS installation framework are available from the
CWCS 3.0 SDK Portal at https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537.

This section discusses the following topics:

 • Third-Party Tools for Installation Framework

 • Understanding Install Component and Image Structures

 • Preparing Installation Protopackages

Third-Party Tools for Installation Framework
The following tables describe the required third-party tools for Windows and Solaris:

Understanding Install Component and Image Structures
CWCS software is divided into a set of components that reflect the logical structure of the software. In
this document, the following terms are used to describe the package structure:

 • package—The smallest piece of software processed by the installation framework. Packages are
defined by a set of properties. All runtime files belong to packages.

Table 21-1 Third-Party Tools for Windows

Name Description

InstallShield 5.53 Professional only Installs packages and files. Purchase from InstallShield
Software Corporation. The Maintenance Pack 3 for the
InstallShield 5.5 is required.

InstallShield PackageForTheWeb
version 4.x

Packages CD image into the self-extracting .EXE file.
Download from InstallShield Software Corporation. See
http://www.installshield.com.

MKS Toolkit 6.1 or higher Builds an image from protopackages. Purchase from the
Mortice Kern Systems Inc., Tel: (519) 884-2251,
http://www.mks.com

Table 21-2 Third-Party Tools for Solaris

Name Description

Perl version 5.5 or higher Builds an image from protopackages. Shareware/public
domain software located at http://www.perl.com/pub.
21-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://www.installshield.com
http://www.installshield.com
http://www.mks.com
http://www.mks.com
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=2537
http://www.perl.com/pub
http://www.perl.com/pub

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
 • installable unit—A group of packages that are always installed or uninstalled simultaneously. A
package can only belong to one installable unit (or can belong to no installable unit). An installable
unit is also defined by a set of properties; on Solaris it cannot directly include runtime files.

 • suite—A group of packages or installable units that define a product or an application, usually as
required by marketing.

 • component—A package, installable unit or suite.

 • protopackage—A protopackage is a tar file that contains a component of the product. This
component has a name, version, and other properties. It also contains the runtime and
installation-related information. A protopackage is used to prepare an input to the installation
framework. Typically, protopackages are created automatically by the build tools after compilation,
linking, etc.

 • tag—Protopackages are identified by a tag. This tag is the short internal name, which is the same as
the first word in the name of the protopackage file. For example, the cmf.runtime.tar protopackage
has this tag: cmf.

 • image—A set of files that contains one or more products ready for installation. An image can be
directly burnt on a CD. It contains the installer as well as all product components. Each image
contains the Table of Contents file (disk.toc) that specifies the metadata about the image, as well as
some instructions for the installer.

The following topics describe the process to follow in building installable images, and the package
components and image structures:

 • Building an Installable Image

 • Selecting Package Names

 • Specifying Package Properties

 • Understanding the Package Properties File

 • Understanding Suite Properties

 • Creating the Table of Contents

Building an Installable Image

Use the following process to build an installable image:

Step 1 Select the package name (see the “Selecting Package Names” section on page 21-6) .

Step 2 Specify properties for packaging (see the “Specifying Package Properties” section on page 21-6).

Step 3 Write scripts to specify installation requirements and enforce constraints:

 • For Windows, write InstallShield scripts (see the “Writing Windows Scripts” section on
page 21-33).

 • For Solaris, write Bourne shell scripts (see the “Writing Solaris Scripts” section on page 21-90).

Step 4 Prepare the Table of Contents (see the “Creating the Table of Contents” section on page 21-11).

Step 5 Create protopackages that include the runtime files, package properties, scripts, and Table of Contents
created in the previous steps (see the “Preparing Installation Protopackages” section on page 21-19).

Step 6 Build and debug CDs (see the “Using Solaris Build Tools” section on page 21-103).
21-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Selecting Package Names

A package name, or tag, is a short internal name that is used programmatically. Normally it is not
presented to the end user.

Windows Package Names

For Windows platforms, the package name must match the name of .pkgpr file, for example ut.pkgpr
must have PKG=ut. The following table describes the Windows package name requirements.

Solaris Package Names

For Solaris, the package name must begin with CSCO followed by up to five characters. The following
table describes the Solaris package name requirements.

Specifying Package Properties

Use the package properties file (tag.pkgpr) to specify the component properties for each package. The
package properties file contains name-value pairs for the platforms your package supports and specifies
the properties for each platform.

Any platform-specific name value pairs should be specified in the package properties file using the
following line immediately before the pairs appear in the file:

PLATFORM_NAME:

Note Remember to always use a colon to separate any platform names or to complete the end of a line.

The platform names are represented as:

 • NT: for Windows

 • SOL: for Solaris

Table 21-3 Windows Package Name Requirements

Requirements Description

Naming Conventions Eight character limitation, CSCO prefix is not
required. For example, ut.

Package name must
match pkgpr files

Required. Example, ut.pkgpr.

Names must be unique Required, but only within CiscoWorks products. It
will not collide with non-CiscoWorks products.

Table 21-4 Solaris Package Name Requirements

Requirements Description

Naming Conventions CSCO prefix is required, with no more than nine
characters total. For example, CSCOjrm.

Package name must
match pkgpr files

Not required.

Names must be unique Required. Must be unique across all products on
this platform.
21-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
For example, any Solaris-specific name value pairs in the package property file must have the line:

SOL:

Several of them can be combined as follows:

SOL:NT:

Understanding the Package Properties File

The package properties file (<tag>.pkgpr) include several groups of properties. The following topics
describe these property groups:

 • Developer-Specified Properties

 • Appended and Generated Properties

 • Solaris-Specific Properties

Developer-Specified Properties

Table 21-5 show the package properties that developers must specify for both Windows and Solaris
platforms. The image build tools will transfer these name-value pairs into the <tag>.info files. Finally,
the installation process copies them into the target system.

Table 21-5 <tag>.pkgpr Files Name-Value Pairs

Name Format Description Required

PKG Solaris:
CSCOxxxxx
Windows: up to
eight characters

Package tag. A short internal name, used programmatically.
Normally invisible to the end user. For Solaris, it must begin
with CSCO followed by a maximum of five characters. For
Windows, it must match the name of the .pkgpr file. For
example, ut.pkgpr must have PKG=ut.

Yes

NAME String, up to 40
characters

One-line name to be presented to the end user whenever
components are listed.

Yes

DESC String Short description (up to 1000 characters). Yes

VERSION X.Y, where X and
Y are numbers

Version, major and minor Yes

PATCHVER Number Patch level 0 by default

DEPENDS String Comma-separated list of components this one depends on,
each in the form of pkgTag major.minor.patchlevel, where
pkgTag is the package tag; major, minor, and patchlevel
specify the version of dependency target. If a specific version
of dependency target is not required, then you can omit
major.minor.patchver.

Correct: DEPENDS=cmf, xrts 1.2.1, ani

Not correct: DEPENDS=xrts 1.2

(It should be DEPENDS=xrts 1.2.0.)

No

ROOTDIR String Alias for root directory. Default value NMSROOT. 1 No
21-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Appended and Generated Properties

Other properties are also present in the package properties file. These are appended to the file during the
build process or generated by the installer:

Note The properties in Table 21-6 and Table 21-7 appear in the <tag>.info files, but not in the
<tag>.pkgpr files.

 • Table 21-6 describes the properties appended to the properties package file by the build process.

 • Table 21-7 describes the properties generated by the installer. Platform-specific requirements are
noted where applicable.

PACKAGES String Space-separated list of packages that belong to this installable
unit. This property must be specified for installable units only.

Yes, f or
installable
units only.

BACKVER X.Y.Z (where X,
Y, Z are numbers)

The major.minor.patchlevel, where major, minor, patchlevel
specify the version. If you do not use all three version
numbers, use no version numbering. This version is backward
compatible with all versions starting from the one specified by
this parameter.

Example:

VERSION=3.2, PATCHLEVEL=3, BACKVER=2.4.0.

If any other package depends on version 2.6 of this package,
it can be installed.

No

OPTIONAL Y Specifies that a package is optional. An optional package can
be dropped if dependencies for it cannot be resolved. It is
assumed that installable unit is operational with or without
optional packages.

No

SIZE Number Space, in megabytes, required for this package. The installer
calculates a package’s footprint automatically. This property
provides for override. Windows calculates this automatically.

Yes, for
Solaris only.

REC_RAM

REC_SWAP

REC_DISK

REC_CPU

These properties can be set for packages or installable units
but are normally set for Suites only.

No

CMFSERVICES String Comma-separated list used to register for specific
CiscoWorks service bundle use. Possible values: System,
Network, Core.

No

UNINSTALL_REBOOT Windows only:
Y or y

Indicates that the system needs to be rebooted at the end of
uninstallation (if this package is uninstalled).

No

1. The installer maintains the list of root directories for all components. The value of ROOTDIR property is an alias, which can be used in installation hooks.
See the “Locating the Root Directory Path Name” section on page 21-54 for more information.

Table 21-5 <tag>.pkgpr Files Name-Value Pairs (continued)

Name Format Description Required
21-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Solaris-Specific Properties

Table 21-8 describes Solaris properties that are not generated automatically, but that are required. Add
these lines to your pkgpr file.

The information about prototype.header properties listed in Table 21-9 is provided for developers who
are not familiar with Solaris packaging tools. The prototype.header file required for Solaris packaging
is generated automatically and is not to be maintained by developers. If you create your own
prototype.header file, we will overwrite it.

Note The properties in Table 21-9 should not be specified manually by developers.

Table 21-6 Properties Appended During the Build Process

Name Format Description

BUILD_ID String Build ID in the form platform_project_date_type.

For example: NT_CMF_RIGEL_19990408_0126_daily.

This ID id is generated by make protopackage1 by combining the values of PROP_ID and
PROP_WHEN from the .bprops file.

1. make protopackage is specific to the NMTG build environment.

BUILD_TSTAMP Number Timestamp, generated from PROP_TIMESTAMP in the .bprops file.

ALIAS String Contains the names following the PKG/SUITE property for each platform. Contents written
to the .info file. For example, dmgt.info/CSCOmd.info both contain the new property
ALIAS=dmgt CSCOmd. Using a space field separator, you can determine if a .info file
matches the package by examining the ALIAS property.

Table 21-7 Properties Generated by the Installer

Name Format Description

Date String Date and time of installation.

PREV_VERSION See VERSION Version that has been installed before this one.

PREV_PATCHVER See PATCHVER Patch level that has been installed before this one.

I_MODE (UNIX only) String NEW, REINSTALL, DOWNGRADE, PATCH, or UPGRADE.

OS (UNIX only) String SOL, HPUX, or AIX.

Table 21-8 Solaris-Specific Properties

Property Name Definition Example

CATEGORY Type of package CATEGORY=application

ARCH Architecture package supports ARCH=sparc

VENDOR Who created the package VENDOR=Cisco Systems, Inc.

CLASSES For character abbreviation CLASSES=TBD

BASEDIR Top-level install directory. BASEDIR=/opt
21-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Note Developers can define their own properties in the tag.pkgpr file for their own use.

Understanding Suite Properties

Suite properties describe different bundles of installable units and/or packages. Table 21-10 describes
the suite properties for both Windows and Solaris.

Table 21-9 Properties for prototype.header

Name Format Description Required

IU_NAME String, up to 256
characters

One-line name presented to the end user. Used whenever
components are listed.

Yes

IU_VERSION X.Y, where X and Y
are numbers

Version, major and minor. Yes

IU_DESC String Short description—up to 1000 characters. No

IU_PATCHVER Number Patch level. No

DEPENDS String Comma-separated list of components this one depends on, each
in the form of pkgTag major.minor.patchlevel, where pkgTag is
the package tag; major, minor, patchlevel specify the version of
the dependency target.

No

Name Format Description

I_MODE String NEW, REINSTALL, DOWNGRADE, PATCH, or UPGRADE

NMSROOT String Path name of target directory

SETUPDIR String Path name from which the CD installation is running

Table 21-10 Suite Properties

Name Format Description

SUITE Up to eight
characters

Suite tag. Tag is short internal name, which is used programmatically. Normally it is not
presented to the end user.

NAME String, up to 40
characters

One-line name to be presented to the end user.

DESC String Short description, up to 1000 characters.

VERSTR String Version string to be presented to end user. For example, “Service Pack 3.”

DEPENDS String Comma-separated list of components this one depends on, each in the form of pkgTag
major.minor.patchlevel, where pkgTag is the package tag; major, minor, and patchlevel
specify the version of dependency target. If a specific version of dependency target is not
required, then major.minor.patchver can be omitted.

Correct: DEPENDS=cmf, xrts 1.2.1, ani

Incorrect: DEPENDS=xrts 1.2 (It should be DEPENDS=xrts 1.2.0.)

TAGS String Space separated list of packages or installable units, which belong to this suite.
21-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Creating the Table of Contents

The table of contents is specified by disk.toc, an ASCII file that contains:

 • The contents of the CD

 • Components available on this CD

 • Defaults for installation

 • Release-specific information (release name, etc.)

The following is an example of a table of contents file:

[RELEASE]
NAME=Test Application with CiscoWorks Common Services 3.0
PRODUCT_NAME=CiscoWorks

REC_RAM
REC_SWAP

Number Specifies the recommended size of RAM (in MB) and swap/paging file size (in MB) for this
suite.

The install process collects these requirements from all components, finds the maximum
and verifies if the server has enough RAM and swap. This process displays a warning if
these requirements are not satisfied. It is warning only. Installation will not abort.1

REC_CPU Number (Windows only.) Specifies the recommended CPU speed in MHz. The install process
collects these requirements from all components, finds the maximum and verifies if the
server has enough RAM and swap.

The install process displays a warning if these requirements are not satisfied. It is only a
warning. Installation will not abort.1

SSL_COMPL
IANT

String.

Possible
values: Yes or
No

Specifies whether the suite is SSL compliant. The installation process detects whether the
suites are SSL compliant. The installation program does not allow the installation of the
suite if the underlying Ciscoworks installation is SSL enabled.

This field is also used by other components, such as Daemon (Process) Manager, and
Enable/Disable SSL.

The installation framework, daemon manager and other modules of CWCS check the
SSL_COMPLIANT field in *.info files under NMSROOT/setup, only if the info files have a
SUITE field. In other words, CWCS detects SSL compliance only in SUITE level
information files.

If an application cannot add the SUITE tag in info files, you can use the others directory
under NMSROOT/setup.

CWCS checks for SSL-compliance in all information files in NMSROOT/setup/others
directory, irrespective of whether it contains the SUITE tag or not. The application should
store such info files under NMSROOT/setup/others directory.

Note Other CWCS modules uses the info files under NMSROOT/setup. So the
applications can store the info files in both directories, to make use of the
appropriate CWCS function. The applications and versions page will use the
SSL_COMPLIANT value from info files from both directories - NMSROOT/setup
NMSROOT/setup/others.

1. On PCs, the CPU speed and RAM size are often reported incorrectly by MS Windows. For example, HP Vectra reports 1 MB RAM less than it actually
has. For this reason, installation will consider RAM and CPU speed sufficient if the server has 5 MB less than required.

Table 21-10 Suite Properties (continued)

Name Format Description
21-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
SHORT_PRODUCT_NAME=CiscoWorks
VERSTR=1.0

[COMPONENTS]
TAGS=cdone, CSCOmyApp
UNINSTALLABLE=cdone, CSCOmyApp
VISIBLE=cdone, CSCOmyApp
DEFAULT=cdone, CSCOmyApp

[ADVANCED_CHOICE_1]
ADVANCED_CHOICE_1_CONDITION=TRUE
ADVANCED_CHOICE_1_TYPE=NONE
ADVANCED_CHOICE_1_DEFAULT=1
ADVANCED_CHOICE_1_1_TEXT=Everything
ADVANCED_CHOICE_1_1_TAGS=cdone, CSCOmyApp

The table of contents consists of the following sections. Each section defines one or more parameters in
the form of name=value pairs.

 • RELEASE—Contains the name, description, and version string for the release (see the “Creating the
RELEASE Section” section on page 21-12).

 • COMPONENTS—Specifies additional properties for components (suites, installable units, and
packages) available on the CD (see the “Creating the COMPONENTS Section” section on
page 21-13). This section is mandatory.

 • Optional override sections—Each section has a name, which is a valid component tag. Parameters
in this section override those specified as component properties or provide additional properties (see
the “Creating Overrides Sections” section on page 21-14).

 • ADVANCED_CHOICE—Each section defines a component choice scenario. There can be more
than one scenario; each section describes one scenario (see the “Creating Advanced Component
Sections” section on page 21-14).

 • PROMPT_INSTALL_TYPE—Solaris only: Specifies the installation mode (Typical or Custom)
(see the “Creating the PROMPT_INSTALL_TYPE Section” section on page 21-16).

 • INSTALL_TYPE_SELECTION—Windows only: Specifies the installation mode (Typical or
Custom) (see the “Creating the INSTALL_TYPE_SELECTION Section” section on page 21-16).

 • BUILD—Automatically generated at packaging time (see the “Understanding the BUILD Section”
section on page 21-17).

 • REQUIRED—Specifies the products that are required for this installation (see the “Creating the
REQUIRED section” section on page 21-18).

Related Topics

See the:

 • “Preparing Installation Protopackages” section on page 21-19.

 • “Step 3: Prepare the Make Image on Solaris” section on page 21-103.

 • “Customizing the Installation Workflow for Windows” section on page 21-76.

 • “Solaris Getting Started Example” section on page 21-106.

Creating the RELEASE Section

The RELEASE section of the table of contents file, disk.toc, contains the properties of this release. This
data is displayed to the end user during installation and is included in history and installation log files.
It is not included in the component database.
21-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Creating the COMPONENTS Section

The COMPONENTS section in the table of contents file (disk.toc) lists the major components available
on this CD and the user information about these components. This section is mandatory.

Table 21-11 Table of Contents File—Release Section

Name Format Description

NAME String, less than 20
characters

Name of this release. Included in the welcome dialog.

DESC String, less than
100 characters

Description. Can provide additional information about the CD.

VERSTR String Version string. This can be something like “2.5 Eval” or
“Maintenance release.” This is displayed next to the NAME and
can provide additional information about CD.

README String. Optional for Windows only. Path name for this file is displayed
at the end of the installation if the end user elects to display the
readme file.

For example,
README=NMSROOT:\htdocs\help\netc\ref_config.html

Table 21-12 Table of Contents File — COMPONENTS Section

Name Format Description

TAGS Comma-separated
list

Comma-separated list of components. Each value is a tag of component.
Components are defined by corresponding property set (see the “Specifying
Package Properties” section on page 21-6” and the “Creating the Table of
Contents” section on page 21-11).

The installer starts processing the CD from this list. For each component listed,
it looks for the subcomponents defined by the PACKAGES property.

It is not necessary to include all packages/installable units in this list. It requires
only the roots of component hierarchy.

Mutually exclusive with PATCH_TAGS.

PATCH_TAGS Comma-separated
list

Comma-separated list of components. Each value is a tag of component.
Components are defined by a corresponding property set (see the “Specifying
Package Properties” section on page 21-6” and the “Creating the Table of
Contents” section on page 21-11).

This list defines the top level components available on CD and also turns on the
patch mode of installation. This information is used instead of the TAGS for
patching as described in “Handling Patches” section on page 21-27.

VISIBLE Comma-separated
list

Comma-separated list of components, that are exposed to the end user during
installation. This is the short form to specify VISIBLE=Y for several
components.

The names of these components will show up in the Component Selection dialog
(for custom installation) and in the Confirm dialog. If the component has both
CHOICE and VISIBLE properties set to Y, the end user will be allowed to select
or deselect this component during installation.
21-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Creating Overrides Sections

Each override section has a name that is a valid component tag. Parameters in this section either override
those specified as component properties or provide additional properties.

The name of each section is the same as the component tag. It can be the name of the suite, installable
unit, or package for which additional properties or override properties are specified in the tag.info or
pkginfo file. The section name, tag, must be included in the OVERRIDES property in the
COMPONENTS section.

Creating Advanced Component Sections

The Installation Framework supports complex component choice scenarios by specifying one or more
ADVANCED_CHOICE_x sections. Each section defines a component choice scenario. There can be
more than one scenario; each section describes one scenario. The section name must use this naming
convention:

ADVANCED_CHOICE_x
where x =1, 2, ...

Specify these sections sequentially starting from 1. Install attempts to load these sections beginning with
ADVANCED_CHOICE_1, ADVANCED_CHOICE_2, and so on, and stops when the next section is not
available.

For each section, the installer checks the condition parameter (see Table 21-13). If the condition fails,
the installer looks for the next section. If the condition is satisfied, the installer starts using that section
and ignores the remaining sections.

DEFAULT Comma-separated
list

Comma-separated list of component tags, which are selected for installation by
default. The value can be ALL. Short form to specify DEFAULT=Y for several
components.

CHOICE Comma-separated
list

Comma-separated list of components for user to select. These components can be
turned on or off in the Component Selection dialog.

A component can be omitted during installation in one of the following cases:

 • Component has both VISIBLE and CHOICE set to Y and turned off by end
user during installation.

 • Dependencies for component cannot be satisfied and the OPTIONAL
property for that component is set to Y. (For more details, see Table 21-5 on
page 21-7.)

Note This property provides for trivial component selection. For advance
component selection, see the “Creating Advanced Component Sections”
section on page 21-14. The CHOICE property is ignored if disk.toc
contains one or more ADVANCED_CHOICE sections.

UNINSTALLABLE Comma-separated
list

List of component tags, which can be uninstalled later.

Windows only: The Uninstall componentName option will be created in the
dialog displayed by the uninstallation process.

OVERRIDES Comma-separated
list

List of component tags, for which the tag sections are available in this table of
contents.

Table 21-12 Table of Contents File — COMPONENTS Section (continued)
21-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Table 21-13 Table of Contents File — ADVANCED COMPONENT Sections

Name Format Description

ADVANCED_
CHOICE_x_CONDITION

TRUE or a comma- or
space-separated list of constructs tag
[.version[-version]]. Version must be
in a form minor.major.patchver, and
all three of them are required or can
be dropped at once with the
separator.

Examples:

 • cm 3.0.0 is correct

 • rme is correct

 • rme.3.1 is incorrect

Specifies that scenario x will be used if all
components specified by this parameter have been
installed before. If no version is specified, then no
specific version is required. If one version is
specified, then the installer verifies that the version
has been installed.

Two version numbers specify the range of versions
required. The value TRUE can be specified for the
last scenario and indicates that the installer should
use this scenario if conditions failed for previous
scenarios.

ADVANCED_
CHOICE_x_TYPE

NONE
NONEXCLUSIVE
EXCLUSIVE

Specifies the type of component choice.

 • NONE means there is no component choice
allowed.

 • NONEXCLUSIVE allows the selection of one
or more optional components.

 • EXCLUSIVE allows the selection of only one
option from the list.

For example:

ADVANCED_CHOICE_2_TYPE=NONEXCLUSIVE

Solaris only: If the type is NONEXCLUSIVE, the
message displayed at the end of the component
selection is:

Select one or more items using its number
separated by a comma or enter q to quit.

ADVANCED_
CHOICE_x_DEFAULT

Comma- or space-separated list If typical or custom mode is selected, this property
defines the initial selection.

Each choice matches the number in y in the
following properties. For the EXCLUSIVE scenario,
this parameter should have only one choice.

ADVANCED_
CHOICE_x_y_TEXT

String, where x=1, 2, ... and
y=1, 2, ...

Text shows a choice option y in scenario x.

ADVANCED_
CHOICE_x_y_TAGS

Comma- or space-separated list,
where x=1, 2, ... and
y=1, 2, ...

Comma- or space-separated list of component tags
that are selected for installation when option y of
scenario x is chosen.

ADVANCED_
CHOICE_x_y_DESCRIPTION

String (optional), where x=1, 2, ...
and y=1, 2, ...

Description of components to be installed when the
option y of scenario x is chosen.
21-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Creating the PROMPT_INSTALL_TYPE Section

The PROMPT_INSTALL_TYPE section in the table of contents file (disk.toc) specifies the installation
types.

Note This section is used on Solaris only. See the “Creating the INSTALL_TYPE_SELECTION
Section” section on page 21-16 for similar functionality on Windows.

Example
[PROMPT_INSTALL_TYPE] PROMPT_INSTALL_TYPE_SELECTION=Typical,Custom
PROMPT_INSTALL_TYPE_SELECTION_Typical=”Typical installation is

recommended for all computers.” PROMPT_INSTALL_TYPE_SELECTION_Custom=”Custom
installation can be

selected if you want to customize the setup options.”
PROMPT_INSTALL_TYPE_SELECTION_Default=Typical

Creating the INSTALL_TYPE_SELECTION Section

The INSTALL_TYPE_SELECTION section specifies which installation modes (Typical or Custom) are
provided.

ADVANCED_CHOICE_x_ME
SG= “some message”

String Solaris only: Displays the specified message if the
ADVANCED_CHOICE_x_CONDITION is met.
The message is displayed after the component
selection menu.

ADVANCED_CHOICE_x_DES
CRIPTION= “some message”

String Windows only: Displays the string above the
component selection. Use the “\n” (two characters)
to control line breaks.

Table 21-13 Table of Contents File — ADVANCED COMPONENT Sections (continued)

Table 21-14 Table of Contents File—PROMPT_INSTALL_TYPE Section

Name Format Description

PROMPT_
INSTALL_TYPE_
SELECTION

Comma- or space-separated
list

The available installation types:

 • Typical—Installs the product using the
recommended settings.

 • Custom—Allows the user to customize the
setup options.

PROMPT_
INSTALL_TYPE_
SELECTION_x

String

Where x is the value of the
tag PROMPT_
INSTALL_TYPE_
SELECTION

Text that describes the installation type.

PROMPT_
INSTALL_TYPE_
SELECTION_
Default

Typical
Custom

The default installation type.
21-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Note This section is used on Windows only. See the “Creating the PROMPT_INSTALL_TYPE
Section” section on page 21-16 for similar functionality on Solaris.

Example
[INSTALL_TYPE_SELECTION]
OPTIONS=Typical, Custom
Typical=Typical installation. Allows you to select components. Recommended for most users.
Custom=Custom installation. Allows you to select components and customize settings. Recommended only for
advanced users.
DEFAULT=Typical
DESCRIPTION=Choose the type of Setup you prefer, then click Next.\nThis CD includes the following
components:\nCommon Services 2.2, CiscoView 5.5, Integration Utility 1.5.

Note Line breaks are not allowed. For example, the entire text “Typical=Typical installation.
Allows you to select components. Recommended for most users.” must be specified on a
single line.

Understanding the BUILD Section

The BUILD section in the table of contents file (disk.toc) contains two tags, and is generated at
packaging time.

Note This section is automatically generated. The developer is not required to add anything to the
disk.toc file. Do not specify this section manually.

Table 21-15 Table of Contents File —INSTALL_TYPE_SELECTION Section

Name Format Description

OPTIONS Comma-separated list
of type names.

The list of installation modes that should be provided by
this installation. For example:
OPTIONS=Typical,Custom

Recommended: Use Typical or Custom following the
guidelines in the EDCS-207385.

DEFAULT String. Contains one of
the names listed in the
OPTIONS list.

The mode that should be preselected by default.
Recommended default: Typical.

DESCRIPTION String. The description displayed above the radio boxes in the
type selection dialog. Use “\n” (two characters) to control
line breaks.

<type> String. Name should
match the names in the
OPTIONS list.

The text to be used as a description of the setup types.

For example:

Typical=Use this option in most cases

Custom=Installation for advanced users
21-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
Example
[BUILD]
BUILD_ID=SOL_CDONE2_2_20030115_0756
ITOOLS_BUILD_ID=SOL_ITOOLS2_2_20030115_0017

Creating the REQUIRED section

The REQUIRED section in the table of contents file (disk.toc) contains the list of components that must
be installed before running this installation. The installer checks for these components before asking the
user to answer other installation-specific questions. Package dependencies specified in the package
properties file, on the other hand, are verified much later, after the user has finished all installation user
inputs, and after running all preinstall logic.

How the Installer Processes Properties

Build image tools convert pkgpr files into newly-named platform-specific files (*.info on Windows and
*.pkginfo on Solaris). The following steps describe how the installer processes package properties:

1. Initially properties are specified in *.info or pkginfo files (see the “Specifying Properties” section
on page 21-19).

2. The installer overrides component properties by those specified in the tag section of the Table of
Contents.

3. The installer verifies the presence of the ADVANCED_CHOICE_1 section. The installer verifies all
conditions in ADVANCED_CHOICE_1_CONDITION. If all conditions are matched, then scenario
1 determines options in the custom installation and default components. If
ADVANCED_CHOICE_1_CONDITION is not valid, then the installer tries scenarios 2, 3, and so
on until the condition is valid.

Table 21-16 Table of Contents File—BUILD Section

Name Description

BUILD_ID The build ID of the CWCS build.

ITOOLS_BUILD_ID The build ID of the itools build.

Table 21-17 Table of Contents File—REQUIRED Section

Name Format Description

REQ_xxx, where xxx
must match the tag
and version of the
component.

String The installer expects the name to contain the tag and version (or version range)
separated by the colon sign (:). For example:

 • REQ_cdone:2.2 verifies the presence of the cdone component, version 2.2.

 • REQ_dmgt:2.0.0-2.99.0 verifies that component dmgtd is installed, and its version
is in the range between 2.0 and 2.99.

The value should contain the message to be displayed to the user if the required
component is not installed. For example, for the installer to verify if CWCS 2.2 is
already installed, specify the following in disk.toc:

[REQUIRED]
REQ_cdone:2.2=Please install CiscoWorks Common Services 3.0 before running
this installation

The value must be specified on a single line.
21-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
4. If none of the ADVANCED_CHOICE_x_CONDITION conditions were met or there were no
ADVANCED_CHOICE_x sections in the table of contents, then the component choice and default
components are controlled by the sets properties VISIBLE, DEFAULT, and CHOICE properties in
the COMPONENTS section of the table of contents.

5. The VISIBLE property lists the components which are displayed in the confirmation dialog if
selected by you or by default.

6. The UNINSTALLABLE property in the COMPONENTS section specifies the list of components
that will be listed for uninstallation.

Specifying Properties

Properties for packages and installable units are specified by developers and included in the
protopackages. NMTG does not recommended specifying VISIBLE, DEFAULT, CHOICE, or
UNINSTALLABLE properties for packages or installable units. For suites, these properties can be
specified in tag.info files if the suite is planned for more than one release.

For each CD, the developer must create a table of contents. This file should be included in a
protopackage, just like all other files. To be able to reuse protopackages in multiple images, you should
include disk.toc in a separate protopackage, such as <tag>.cd.tar, where <tag> matches one of the
packages included in the image.

This CD protopackage shall be specified as an input to the buildImage command, along with the
protopackage containing the installation files and application protopackages.

Preparing Installation Protopackages
A protopackage contains one directory named after the tag. This directory contains the following
subdirectories:

 • runtime

This directory contains the directories and files to be installed on the destination server. All these
files will be moved during the installation to directory specified by the user.

 – On Solaris, the link /opt/CSCOpx will be set to the directory specified by the user and all files
and directories under tag/runtime will be copied into /opt/CSCOpx.

The runtime tree on the destination server will be a result of merging of runtime subtrees of all
protopackages.

 – On Windows, if the user chooses the directory C:\Program Files\My Directory, then file
tag\runtime\objects\myAppObjects\foo will be copied to C:\Program Files\My
Directory\objects\myAppObjects\foo.

All files from all runtime directories will be included into data1.cab. Each protopackage makes
a file set. The runtime directory can be empty.

 • install

This directory contains the following files:

 – tag.pkgpr. This mandatory file contains package properties. On Windows, the value of the PKG
property must be equal to tag.

 – tag.rul. This Windows-only optional file is the source code of installation hooks on Windows.
21-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Getting Started with the Installation Framework
 – tag.bprops (optional). This file contains build properties each line being in the form
name=value. Three values from this file are used to identify the build: PROP_ID,
PROP_WHEN, and PROP_TIMESTAMP. These properties allow you to identify the build from
the installed product.

 – preinstall, postinstall, preremove, and postremove. These Solaris only, optional files are
installation scripts.

 • disk1. All files from this directory will be copied over to the root of the CD image. The disk.toc file,
or table of contents, is delivered this way. Refer to the “Creating the Table of Contents” section on
page 21-11 for more details.

 • cd. All files and subdirectories from this directory will be copied to the root of the CD image. Can
be used for additional files required by components that do not necessarily relate to the installation
framework.

 • isupport. The Windows-only files from this directory will be compressed into the file group
Language Independent OS Independent Files of the _user1.cab file. During installation, all these
files are decompressed into the SUPPORTDIR and can be used by installation scripts.

Related Topics

See the “Including Files in the Protopackage” section on page 21-20.

Including Files in the Protopackage

Include this file in each protopackage:

 • Package properties file (pkgpr)—contains name value pairs for the platforms your package supports.
Specifies properties for each platform. See the “Specifying Package Properties” section on
page 21-6 for more information about this file.

The following files are optional:

 • Build process file (bprops)—normally generated by the build process. Specifies when and how this
particular package was built. It contains build properties lines in the form of name=value. Three
values from this file are used to identify the build: PROP_ID, PROP_WHEN, and
PROP_TIMESTAMP. The values of the PROP_ID and PROP_WHEN are concatenated to create the
value of BUILD_ID package property. The value of the PROP_TIMESTAMP is assigned to the
BUILD_TIMESTAMP package property. These properties allow you to identify the build from the
installed product.

 • On Windows platforms, pkg.rul, is an optional file, which contain Windows scripts for installation.
See the “Using the pkg.rul Installation File” section on page 21-34 for more information.

 • On Solaris platforms, preinstall, postinstall, prerequisite, preremove, and postremove files are
installation scripts for UNIX and are described later in this chapter.

All files mentioned above should be included in protopackages located in the install subdirectory and
cannot be changed.

Related Topics

See the “Preparing Installation Protopackages” section on page 21-19.
21-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Using the Installation Framework
The following topics describe the general tasks involved when using the installation framework:

 • Understanding the Common Services Upgrade

 • Understanding and Implementing the casuser

 • Providing Licensing Information During Installation

 • Installing Database Upgrades

 • Handling Patches

 • Application Registration with ACS during Install

Understanding the Common Services Upgrade
The CWCS team has updated the CD One 4th Edition installation and subsequent releases to disable all
applications (with the exception of CiscoView) and change the ownership of the application files to the
new user, casuser.

CWCS installation disables applications by unregistering daemons that do not belong to CWCS.
Corresponding Windows Services will be removed. After disabling and changing file ownership, the
newer version of Common Services is installed, using the installation framework upgrade procedure. As
newer versions of the applications are installed, they will be able to access their data from previous
versions and upgrade using the current installation framework procedure.

An additional step is required for developers updating existing code dependent on CMF 1.2 or CMF 2.2.
For details on build and packaging tasks under these conditions, review the application-specific build
requirements in the section “Implementing the Bin Replacment User”, which appears on page 8-36 of
ENG-71441, Bin:Bin Security Implementation Design Specification.

Understanding and Implementing the casuser
If you have existing applications that are dependent on CMF 1.2 or earlier and must upgrade, read this
topic to understand how the CWCS team has implemented security changes for owner and group.

The CWCS team has updated the CD One installation to disable all applications (with the exception of
CiscoView) and change the ownership of the application files to the new user, casuser. Application
developers must modify the post-install hooks andscripts to add chown and chgrp commands for each
file that existed in previous CWCS or CMF releases and were not initially a part of the installation
packages. This includes dynamically created files, such as data files and properties files.

To assist this process, the resetcasuser script in NMSROOT/setup/support was enhanced to allow you to
randomly generate the casuser password, or enter it manually.

Related Topics

See the:

 • “Understanding the Common Services Upgrade” section on page 21-21.

 • “Setting Ownership for Package Files on Solaris” section on page 21-86.
21-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Providing Licensing Information During Installation
CWCS 3.0 introduced Flex LM-based licensing as describ ed in Chapter 34, “Using the Licensing APIs.”

To provide Flex LM-based licensing information during installation:

Step 1 On Windows and Solaris, add the following entry to disk.toc:

PRODUCT_INFO=Product Version

Where:

 • Product is the short name of the product (e.g., cm for Campus Manager)

 • Version is the product version number (e.g., 4.0).

Step 2 On Windows only, add the same entry under the RELEASE section in disk.toc.

Installing Database Upgrades
This topic provides information about the structure and APIs needed to upgrade the database. This
feature relies on the implementation of the dbupdate.pl script script provided by CWCS. This feature is
not required. Use this database upgrade information only if your team is using or integrating with the
CWCS Server database.

NMTG developers should refer to ENG-29984 for requirements if you are bundling with RME CD
(copackaging).

The following topics are covered:

 • Upgrade Installation Paths and Strategies

 • About the CWCS Upgrade Mechanism

 • Adding Unauthenticated URLs

 • Overriding the Dependency Handler

Upgrade Installation Paths and Strategies

There are two main approaches to upgrading the database.

 • An incremental approach implements a set of steps, each of them making adjustments to bring the
database to the next version. These steps are executed as needed, depending on the version of a
product already installed. You can implement each step as a separate script. This enables the
required additional steps for each new version and only takes care of changing the database from the
latest previous version to the current version.

 • A one-step approach that brings the database to the current version from any previous state.You can
convert all previous versions of the database to the current one.

Figure 21-1 depicts both approaches for RME. Each arrow represents an upgrade script. The solid arrows
represent scripts that have been implemented to upgrade Rigel releases. The dashed arrows represent
scripts that will handle an upgrade to RME3.1. The dotted arrows represent scripts to handle upgrade to
RME 3.2 sometime in the future.
21-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Figure 21-1 RME Upgrade Approaches

The incremental approach assumes that the script upgrading RME3.0 to RME 3.1 handles only the
upgrade from 3.0.

With the one-step approach, the script that you used to upgrade 3.0 to 3.1 needs to be replaced by the
new script that is capable of upgrading from both 3.1 and 3.2. The complexity of such a script increases
for each release, because the script must handle upgrades from all previous versions.

About the CWCS Upgrade Mechanism

CWCS has one mechanism to modify the database. The dbupdate script is integrated into the installation
and enables you to register your database upgrade scripts in preinstall (Windows) or prerequisite (UNIX)
hooks. Registered scripts are executed at the end of installation after all runtime files have been
delivered. The database is upgraded in place.

The upgrade mechanisms described in this topic include:

 • Registration API for Upgrades

 • API for Package Upgrade—CopyOut API

 • Uninstall Before Upgrade

 • Function Prototypes

Registration API for Upgrades

The functions described here can be used in preinstall (Windows) or prerequisite (UNIX) to register the
database upgrade scripts for dbupdate. The following table describes the functions and recommended
usage.

RME 3.0 RME 3.1 RME 3.2

RME 3.0 RME 3.1 RME 3.2

38
66

5

Function Recommended usage

RegisterDBScript Use for drop-ins

RegisterDBScriptByVersion Applications that use incremental
approach

RegisterDBScriptByVersionEx Applications that use a one-step
approach
21-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
API for Package Upgrade—CopyOut API

To provide a useful package-based CopyOut feature, a CopyOut API has been implemented. This saves
the package developers time because they do not have to use just the hook to launch the copyout script.
The reason is that the “just the hook” approach in the installation framework cannot verify the total disk
space required for all copyouts, because copyouts are package-independent.

You may also have to do some housekeeping work. With CopyOut API solution, multiple manifest files,
different storage destinations for each package, attributes for query such as DATE_COPYOUT,
PREVIOUS_VERSION, and so on can be supported. Most importantly, disk space verification is
possible.

You can call this API inside the prerequisite (preinstall on Windows in pkg.rul) script. The actual
copyout does not happen until all prerequisites are satisfied. The CopyOut API stores all parameters into
a temporary file.

At the end of all prerequisite verification, the API verifies copyout storage requirements, plus disk space
required for the installation if copyout destination happens to be in the same partition of NMSROOT.
After the copy is done, the manifest file is copied to the storage destination location. Pkgname.properties
are also created and copied to the storage destination location containing name-value pairs:

COPYOUT_DATE=YYYYMMDDHHMM
SOURCE_PATH=Path to copy data from specified in IF_CopyOut call
OVERWRITE_MODE=Y|N specified in IF_CopyOut call
PREV_VERSION=prevmajor.prevminor
PREV_PATCHVER=prevpatch
NEW_VERSION=newmajor.newminor
NEW_PATCHVER=newpatch

Pkgname.info contains an entry pointing to this pkgname.properties. Therefore multiple entries of
pkgname.properties may exist if CopyOut is executed more than once for each package using different
storage locations. The property is named COPYOUT_XYZ starting with XYZ=001 and up.

For example:

COPYOUT_001=/opt/CiscoWorksOldData/conf/CSCOani.properties
COPYOUT_002=/opt/CiscoWorksOldData/etc/CSCOani.properties

Syntax prototype IF_CopyOut(SourceDataPath, ManifestFileName, DestPath,
OverwriteFileMode);

Description Instructs the installation framework to collect all parameters for future verification and
actual copyout.

Parameters Field Type Description

SourceDataPath

ManifestFileName

DestPath

OverwriteFileMode

String (input)

String (input)

String (input)

String (input)

Source path to get root data specified in
manifest file. For example,
$NMSROOT/conf

File that contains the list of files to be
copied out relative to SourceDataPath
(ani.mfst). Files are in the same directory
of the setup script (for example, disk1
location)

Where to copy out. For example,
/opt/CW2000/
CiscoWorksOldData

Designates whether to overwrite existing
file during the copy using “Y”/“N”.
21-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Examples

Solaris prerequisite script:

#!/bin/sh

. $SETUPDIR/commonscript.sh

. $SETUPDIR/setup-lib.sh
checking for copyout condition
if this is an upgrade, call IF_CopyOut

if [$NEED_COPY_OUT eq 1]; then
IF_CopyOut “$NMSROOT/conf” “ani.mfst”

“/opt/CW2000/CiscoWorksOldData” “Y”

The same script on Windows:

 Function ani_preinstall()
NUMBER nvType, nvSize, nRc, nNeedCopyout;
STRING bInstallingFirstTime;

Begin
// checking for requirements
nNeedCopyOut = 0;
// check for upgrade case to call IF_CopyOut
if (nNeedCopyOut = 1) then

IF_CopyOut((NMSROOT^”conf”, “ani.mfst”,
NMSROOT^”OldData”, “Y”);

endif;
end;

Uninstall Before Upgrade

The installation framework provides a hook to trigger package removal before the package is installed.
For the package which prefers a clean installation, you can specify a combination of
UNINSTALL=UPGRADE|PATCH|REINSTALL in the pkg.info(pkg.pkgpr) to make this work.

Caution Data files belonging to the existing package will be deleted during the package removal. Performance is
also affected. Remove the package only if there are major changes for the package.

Uninstallation for package downgrade is not supported. The action taken depends on the combination of
the flags given in the UNINSTALL:

 • UPGRADE—only uninstall the package if this is a package upgrade (CD image major.minor or is
newer than the existing one. The patch version is ignored).

For example, UNINSTALL=UPGRADE uninstalls package if package is upgraded, but not during
reinstall or patching.

 • PATCH—only uninstall package if CD image major.minor version of the package is the same as
existing one, and the CD image patch version is newer than the existing patch version.

For example, UNINSTALL=UPGRADE PATCH uninstalls package if it is upgraded or patched, but
not during reinstall.

 • REINSTALL—only uninstall if the CD image major.minor and patch version are the same as the
existing one. Note that this only makes some difference if the package provides additional cleanup
in postremove (SOL) or uninstall (Windows).

For example, UNINSTALL=UPGRADE REINSTALL uninstalls the package if the package is
upgraded or reinstalled, but not during patch case.
21-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Function Prototypes

RegisterDBScript(<dsn>, <script>, <args>);
RegisterDBScriptByVersion(<fromVersion>,<dsn>, <script>, <args>, <reserved>);
RegisterDBScriptByVersionEx(<fromVersion>,<dsn>, <script>, <args>, <reserved>);

Where:

 • dsn is the DSN of the database;

 • script is full installer of the script;

 • args is the string of arguments to be passed to the script;

 • reserved This parameter should always be empty.

Windows Example

On Windows the infsm.rul file contains:

function infsm_preinstall()
STRING argString, scriptName;
begin

argString = “dsn=rme,” + NMSROOT ^
“IDS\\inventory\\desfiles\\fastswitch_wmod,CSCOinfsm”;

WriteLogFile(“preinstall for infsm package”);
scriptName = NMSROOT ^ “IDS\\inventory\\scripts\\main.pl”;
RegisterDBScriptEx(“rme”, scriptName, argString, ““);

end;

Solaris Example

On Solaris, the infsm.rul file contains:

. /opt/CSCOpx/etc/commonscript.sh
RunRequestScript CSCOinfsm
#main
echo “preinstall for CSCOinfsm”;
argString=”dsn=rme,/opt/CSCOpx/IDS/inventory/desfiles/fastswitch_wmod,CSCOinfsm”;
scrName=”/opt/CSCOpx/IDS/inventory/scripts/main.pl”;
RegisterDBScriptEx “rme” $scrName $argString “ ";

Adding Unauthenticated URLs

This API allows applications to use URLs without authentication.

Applications need some of their URL calls to be allowed without any authentication. If the system
checks for authentication for every URL, some functions of the application may fail.

This API is part of the CWCS installation framework, and provides an option to use application URLs
without authentication. It uses a file, allow_files.conf, that contains a list of URLs that should be allowed
without authentication.

To make use of this API, applications should:

 • Identify the list of relative URL calls to be allowed without authentication. You can find this by
checking error_log for any HTTP forbidden errors.

 • Create a file, addURLs.txt, in disk1, and include all such URL calls (that is, the URL calls to be
allowed without authentication).

Example of addURLs.txt:

/CSCOnm/servlet/com.cisco.nm.cmf.servlet.webreg.csNavServlet
/help/cmf/jplug_enable.html
21-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
/JSP/cmf/security/AutoLogin.jsp

You can specify relative directory paths (with respect to web server) also in addURLs.txt. For
directories, the format is as follows:

DIR=relative dir

For example, to allow the /opt/CSCOpx/htdocs/swintemp directory without the authentication
check, you must add the following in addURLs.txt:

DIR=/swimtemp
During the installation of applications, the installation framework appends the contents
of addURLs.txt to allow_files.conf.

Overriding the Dependency Handler

This feature allows you to bypass the dependency handler during installation. Use it when normal
policies are believed to be inappropriate (for example, to rollback a patch).

Caution This tool is meant to help developers get out of trouble, and is only recommended for specific situations.

Refer to the engineering spec, ENG-29971, for details about using the override.

Handling Patches
This topic provides details about how to implement patching support and supplies a checklist for
developers. For examples on how to patch a CD, refer to the “Example: Making a Patch CD” section on
page 21-28.

This topic covers:

 • Patch Policy

 • Creating a Patch

Patch Policy

Installation provides a way to prepare point patches as well as patch releases. Rollback is not supported.
A typical patch contains new files that can be added to a previously installed product. Patches must be
cumulative.

Creating a Patch

When creating a patch keep in mind that the version of a package is defined by the VERSION and
PATCHVER package properties (see the “Specifying Package Properties” section on page 21-6).
Developers must change the pkg.pkgpr file. Normally, the PATCHVER value should be increased for
each patch.

The installer must know whether the package is a full or a sparse package:

 • A full package contains all the runtime files that belong to the package.

 • A sparse package contains only the files that are modified by the patch. A sparse package is
indicated by adding the following property to the <tag>.pkgpr file:

SPARSE=YES
21-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Patch Mode Installation

Patch mode enables patch delivery of one or more packages provided that a full release had been
installed before. Patch mode turns off the standard dependency verification. Each package available on
CD will be installed only if the same or older version of that package had previously been installed.

Packages available on the CD are skipped if the newer version of the same package has been installed or
this package has not been installed. There will be no error message in this case.

The patch mode installation is enabled by using the PATCH_TAGS property in the table of content. See
the “Example: Making a Patch CD” section on page 21-28 for sample code to create a CWCS patch CD.

To create a patch:

Step 1 Create the table of contents for patch or patch release.

a. Take the disk.toc of the previous release and make a copy of it.

b. Modify the NAME and VERSTR to show the name and version of a patch release.

c. Adjust the CHOICE, VISIBLE and DEFAULT properties to control the user interface.

The TAGS and UNINSTALLABLE properties remain unchanged if the patch release has installable units
with all packages.

If release delivers only selected packages and does not have any new package, the patch mode should be
used. In this case the UNINSTALLABLE property is removed and the TAG property is replaced by the
PATCH_TAGS property. The PATCH_TAGS property contains the list of packages included into release.

Step 2 Fix the project file.

Note This step is required only when the NMTG build environment is used.

NMTG recommends that you create a full version on a regular basis. You can add only one CD image in
the project file at this stage. Later, you can add more than one image created by one project, as needed.

Step 3 Modify sources.

Step 4 Roll up the appropriate VERSION and PATCHVER.

Note The same uninstallation hook is responsible for removing the package both before and after applying a
patch. Uninstallation of a patch is not supported. Therefore you can uninstall a package before or after
a patch, but the patch cannot be reverted.

Step 5 If the package is sparse (contains only the files that are modified by the patch), add the following line to
the <tag>.pkgpr file:

SPARSE=YES

Example: Making a Patch CD

The installation framework allows you to create a CD with patches. A patch CD has selected packages
that can only be installed on top of the entire product. In the Patch mode, installation does not check
dependencies, instead it verifies that an older version of the same package had been installed before. If
21-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
an older version of a package has not been installed or the newer version of a package has been installed,
that package is skipped without error messages. For instructions about making patches, see the
“Handling Patches” section on page 21-27.

This section provides an example of making a patch for CWCS. The first step describes creating a CD
with the patch for a package. Next step describes how to make a CD containing patches for two related
packages. This section uses my_app, my_appdev, and similar text to illustrate any network management
package.

The following topics are covered:

 • Patching my_appdev

 • Patching my_appdev and my_app

Patching my_appdev

Perform the following steps to create your my_appdev patch.

1. Updating the *.pkgpr

2. Building the New Protopackage

3. Making the Table of Contents File

4. Creating the CD

Updating the *.pkgpr

Update your package by adding the patch version name value pair to your pkgpr file.

For example, if your CMF 1.0 package had version 1.0 and the my_app.pkgpr had the following
properties:

NT:AIX:HPUX:SOL:
DESC=My Network Management Application
NAME=My Application
VERSION=3.0
…

Update your pkgpr file to include the PATCHVER:

NT:AIX:HPUX:SOL:
DESC=My Network Management Application
NAME=My Application
VERSION=3.0
PATCHVER=1
…

Building the New Protopackage

For information on protopackages, see the “Step 3: Prepare the Make Image on Solaris” section on
page 21-103.

Making the Table of Contents File

The following is an example of the table of contents file (see the “Creating the Table of Contents” section
on page 21-11).

[RELEASE]
NAME=CWCS3.0 Patch CD Version 1
VERSTR=automatic build
REGISTRY_ROOT=SOFTWARE\Cisco\Resource Manager\CurrentVersion

[COMPONENTS]
PATCH_TAGS=my_appdev
21-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
UNINSTALLABLE=
VISIBLE=
CHOICE=
DEFAULT=ALL

[REQUIRED]
REQ_cdone=Install Common Services 3.0 first

A similar file has to be created for UNIX platforms if packages listed in the PATCH_TAGS property have
different tags; otherwise, the same file can be used for all platforms. The table of contents file has to be
built into a protopackage and must have the name disk.toc. Solaris also requires the configureMe file:

nm-build3-sol251% tar -tvf cmf.patchcd.tar
tar:blocksize = 11
drwxrwxr-x 8186/25 0 Dec 1 14:55 1999 cmf/
drwxrwxr-x 8186/25 0 Dec 1 14:55 1999 cmf/runtime/
drwxrwxr-x 8186/25 0 Dec 1 14:55 1999 cmf/disk1/
-rw-r--r-- 8186/25 199 Dec 1 14:35 1999 cmf/disk1/disk.toc
-rwxr-xr-x 8186/25 1177 Nov 24 14:27 1999 cmf/disk1/configureMe

Note On Windows, only the disk.toc file is required.

The following text is an example of part of the configureMe file.

AIX_MIN_RAM=`echo “128 * 1024" | bc`; export AIX_MIN_RAM
AIX_MIN_SWAP=`echo “$AIX_MIN_RAM * 2" | bc`; export AIX_MIN_SWAP
AIX_OS_VERSION=”5.5”; export AIX_OS_VERSION
DEF_IU_ROOT=”/opt/CSCOpx”; export DEF_IU_ROOT
DISKSPACE=0; export DISKSPACE
HP_MIN_RAM=`echo “256 * 1024" | bc`; export HP_MIN_RAM
HP_MIN_SWAP=`echo “1024 * 1024" | bc`; export HP_MIN_SWAP
HPX_OS_VERSION=”5.5”; export HPX_OS_VERSION
INSTALL_MODE=”NEW”; export INSTALL_MODE
IU_DBDIR=”${IU_ROOT}/db/data”;export IU_DBDIR
IU_NAME=”CSCOpx”; export IU_NAME
IU_ROOT=”/opt/CSCOpx”; export IU_ROOT
LOG_NAME=”ciscoinstall.log”; export LOG_NAME
PRODUCT=”CSCO NM”; export PRODUCT
SERVER_EXP=”[C]SCOpx”; export SERVER_EXP
SOL_MIN_RAM=`echo “128 * 1024" | bc`; export SOL_MIN_RAM
SOL_MIN_SWAP=`echo “$SOL_MIN_RAM * 1" | bc`; export SOL_MIN_SWAP
SOL_OS_VERSION=”5.7 5.8"; export SOL_OS_VERSION
SWMODOPTS=”-xloglevel=0”; export SWMODOPTS
SWOPTIONS=”-x reinstall=true -x reinstall_files=true -x allow_multiple_versions=true -x
write_remote_files=true -x autoselect_dependencies=false -x match_target=false”; export
SWOPTIONS
UPGRADE_VERSIONS=”2.* 3.0"; export UPGRADE_VERSIONS
YES_PUMP=${SETUPDIR}/install/yes.sol; export YES_PUMP
REQ_OS=”SunOS”; export REQ_OS

Creating the CD

Use the following command to create the CD:

perl buildImage -r -d d:/cmfPatchImage path/is5.runtime.tar path/cmf.patchcd.tar
path/my_pkg.runtime.tar

For Solaris, use the pkgtools.runtime.tar file instead of is5.runtime.tar.

A patch is installed the same as a normal installation, by running the setup.sh script on Solaris.
21-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Using the Installation Framework
Patching my_appdev and my_app

You can create a patch CD containing patches for both my_appdev and my_app using the very same
processes presented in the “Patching my_appdev” section on page 21-29. The only difference is that
my_app must be added to the PATCH_TAGS property in the table of contents.

The command to create the CD is (all on one line):

perl buildImage -r -d d:/cmfPatchImage path/is5.runtime.tar
path/cmf.patchcd.tar path/my_appdev.runtime.tar
path/my_app.runtime.tar

Application Registration with ACS during Installation
When the CiscoWorks server is configured for ACS Login mode and an application
/Service-PackP/IDU/drop-in is installed, install framework attempts to register all the tasks of all
applications currently installed on the server with ACS. In this process, any customization of roles done
in ACS is overwritten for all applications.

Starting from Common Services 3.0 Service Pack 2 (CS3.0 SP2), Common Services install framework
minimizes the risk of applications getting re-registered with ACS during install/re-install/upgrade.

For Applications based on CS 3.0 SP2/Corresponding ITOOLS or higher:

If server is in ACS mode and the particular IDU/Application/SP requires new tasks to be added,
appropriate warning will be provided and that Application's tasks alone will be registered.

New tasks in addition to old tasks for that applications will be registered with ACS.

Applications need to pass the following information to the intall framework, so that registration with
ACS is done accordingly:

 • MDC Name

 • Version

 • New tasks

Note Enhancement requests have been opened against ACS. When those are addressed in ACS, the above
approach will be revised.

Applications need to add a file acsmap.txt under their disk1 directory. This file will be used for
populating the ACS registration mapping file that CS maintains for selective registration of tasks with
ACS. Install framework will also use this file to decide whether a Warning has to be displayed.

Contents of acsmap.txt should be of the format:

MDC_name;app_name;app_version (with patchver)=<New tasks to be registered -Y/N>

Example: If RME 4.0.2 has new tasks to be registered with ACS, the contents will be:

rme;rme;4.0.2=Y

If an application has more than one MDC (to be registered with ACS), all of them should be mentioned
in a separate line.

Example:

Rme1;rme;4.0.2=Y
Rme2;rme;4.0.2=N
Rme3;rme;4.0.2=Y
21-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
The application name mentioned here should preferably map to a corresponding <appname>.info file
under NMSROOT/setup

Example:

cmf, rme, cvw1

where there are corresponding info files. If needed, a displayable "Application name" can be picked from
the INFO file. [PRODNAME attribute in the <app>.info file will be used for this purpose].

If the file acsmap.txt is not available under disk1, the MDC name of the product will be assumed as the
"application name" as well.

Applications not based on CS -ITOOLs can choose to use the CLI script AcsRegCli.pl. The relevant
documentation of such applications should be updated to recommend registering from CLI, as
applicable.

AcsRegCli.pl command line script can be used to register an application without affecting the
registration status of other applications. The script is located at NMSROOT/bin. AcsRegCli can be run
only when the CiscoWorks server is in ACS mode.

AcsRegCli.pl has the following options:

 • listRegApp—list the applications registered with ACS in the current CiscoWorks server.

 • listNotRegApp—list the installed applications that are not registered with ACS in the server.

 • register <MDCName>—register an application with ACS. <MDCName> is the name by which an
application will be registered with ACS. To know this value, run AcsRegCli.pl with the option
-listRegApp or -listNotRegApp.

 • register all— register all the installed applications with ACS.

Refer Appendix of CS 3.0 SP2 SFS - EDCS-447583, for more details

Windows Installation Reference
This topic covers the following reference information for Windows:

 • Setting File Permissions During Installation on Windows

 • Writing Windows Scripts

 • Using the Windows Installation APIs

 • Using Windows Build Tools

 • Customizing the Installation Workflow for Windows

Setting File Permissions During Installation on Windows
With the release of CWCS 3.0, the Windows “Everyone” group does not have read permissions for files
under NMSROOT. It is not possible to set permissions to individual directories and files; only
administrators and casuser have permissions to NMSROOT and directories or files under it.
21-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Writing Windows Scripts
Using the installation framework APIs provided with CWCS (see the “Using the Windows Installation
APIs” section on page 21-37), you can write scripts that will allow you to specify any requirements and
enforce constraints on a package on a Windows platform.

In addition to the basic scripts described in the following sections, you can write additional scripts to
customize the logic flow of the installation (see the “Customizing the Installation Workflow for
Windows” section on page 21-76).

The following topics describe how to write Windows scripts for your package:

 • Using the Windows Installation Hooks

 • Using the pkg.rul Installation File

 • Using Installer Global Variables

 • Preloading the Global List, lAnswerFile

 • Reducing Windows Installation Time

Using the Windows Installation Hooks

You can use the following hooks to perform the required functions for Windows package installation:

Hooks are executed in the following sequence:

1. Preinstall for all components.

2. File transfer for all components.

3. Postinstall for all components.

At uninstallation time, hooks are executed in the following sequence:

1. Hooks for all components are uninstalled.

2. Files for all components removed.

It is important to understand the order in which the hooks are executed. The installer follows these rules:

 • If component A depends on component B, hooks for A are executed after corresponding hooks for B.

Table 21-18 Windows Installation Hooks

Hook Type Description

Preinstall The installer executes this hook before file transfer. The code in this hook should not make any changes on the
target system because the user can abort installation later. Ensure that you stop execution and get the data for
the components that have been installed.

This data specifies the disk space required and questions to be asked of the installer. If the information obtained
by this script is required by another script, such as preinstall, then use SetPackageProperty and
GetPackageProperty APIs. If preinstall wants the installation to fail, it should call the function SetAbortFlag
(see the “Using the Windows Installation APIs” section on page 21-37 for details).

Postinstall This hook is executed after file transfer. Actual configuration of component. This is the correct place to register
daemons.

Uninstall This hook is executed when the component is uninstalled right before removing files. This is a good place to
unregister daemons. You can use this to clean up files and directories that were created when the product is
running. For example, use this script to remove log directories and files.
21-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • The installer leaves out hooks if it decides that a particular component should not be processed. It
always leaves out a component if its pending version is lower than the installed version. It can leave
out a component if it is optional and not required by any other component.

 • The installer executes preinstall hooks if their pending version or patchver is the same as the
installed version.

 • For installable units, the preinstall hook is executed before hooks of packages that belong to this
component; postinstall is executed after the hooks of packages.

At uninstallation, the installer follows these rules:

 • If component A depends on component B, hooks for A are executed before corresponding hooks for
B.

 • For installable units, the uninstall hook is executed after the uninstall hooks of components that
belong to this installable unit.

 • Shared packages are not removed and their uninstall hooks are not executed unless all installable
units they belong to are uninstalled.

Note In general, hooks should not rely on any order of execution. It is especially important to provide the same
hooks for both major releases and for upgrades.

Using the pkg.rul Installation File

InstallShield has its own scripting language. If you use the *.rul file, the hooks are named specifically
for the InstallShield. If all you plan to do with your package is to drop it in the runtime tree, you do not
need to reconfigure the installation, and the *.rul file is not required. The pkg.rul file contains Windows
scripts for installation. This is an optional file that contains InstallShield5 code for a hooks for a package
or installable unit. The pkg must match the name of the pkgpr file described above as well as the value
of PKG property.

The pkg.rul file begins with the line:

declare

followed by #define statements and function prototypes. Prototypes are needed only for additional
function, not for hooks themselves. For example:

declare
#define MY_CONSTANT5
#define ANOTHER_CONSTANT “name of file”
prototype MyFunction(STRING, BOOL, STRING);

After that bodies for hook functions and additional functions are included. Hook functions are
InstallShield5 functions with special names.

pkg_<hook_type>,

where pkg is package tag and hook_type is one of preinstall, postinstall, or uninstall hooks. Prototypes
for hook functions are generated automatically and cannot be included into the pkg.rul file.

For example:

function mypkg_preinstall()
begin

StopService(“srv”);
end;

function mypkg_postinstall()
NUMBER nRc;
21-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
begin
DmgrRegister(“mydaemon”, ….);
nRc = MyFunction(“mydaemon”, TRUE, “parameter”);

end;

function mypkg_uninstall()
begin

DmgrUnregister(“mydaemon”, …);
end;

function MyFunction(dmName, flag, msg)
begin

…
end;

Functions can take advantage of APIs and global variables. See the “Using Installer Global Variables”
section on page 21-35 for more details.

You can call the Core Client Registry from an installation .rul file using ccraccess.dll. See the “Using
the CCRAccess DLL” section on page 13-50.

Using Installer Global Variables

Caution If you want to create packages to be used with CWCS, do not change these global variable values.

The following global variables are provided by the installer and can be used directly in installation
hooks. Future marketing requirements may change these values.

To override these values, add a line to the RELEASE section of the table of contents without the TOC_
prefix. For example, the following overrides the TOC_REGISTRY_ROOT:

[RELEASE]
REGISTRY_ROOT=HKEY_LOCAL_MACHINE\....

Preloading the Global List, lAnswerFile

The installation framework automatically preloads the answer file into the global list lAnswerFile. The
answer file is an ASCII file that provides the required inputs for quiet installations.

Variable Name Description

TOC_PRODUCT_NAME The full product name (CWCS). Use this name in user messages.

TOC_SHORT_PRODUCT_
NAME

The short product name (also CWCS). Use this name internally to prefix
other names (for example, CWCS Daemon Manager).

TOC_REGISTRY_ROOT The main registry key for the product is
(HKEY_LOCAL_MACHINE\SOFTWARE\Cisco\Resource
Manager\CurrentVersion).

TOC_VENDOR The vendor name (Cisco Systems).
21-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Note Quiet mode is usually used internally; customers should run the installation without specifying
an answer file. However, quiet mode is important for test automation and should be fully
supported.

The answer file is a plain ASCII file consisting of a name=value pair on each line:

#--- begin answer file
#--- hash sign (#) is allowed to mark comments
adminPassword=admin
destination=d:\cscopx
systemIdentityAccountPassword=admin
#--- end of answer file

The CWCS installation processes the properties described in Table 21-19. If your application image
includes CWCS, make sure that the mandatory properties are included in the answer file. If your
application image does not include CWCS, you can ignore these properties.

Assuming the above file was named c:\answerfile, you could call it as part of a silent installation as
follows:

setup.exe QUIET answerfile=c:\answerfile.

Related Topics

For the similar procedure on Solaris, see the “Creating the Answer File” section on page 21-89.

Reducing Windows Installation Time

Developers trying to reduce total Windows installation time will want to avoid rewriting preinstall and
postinstall scripts. Apart from requiring much additional developer time, this is error prone.

However, you can save substantial installation time by:

1. Editing your scripts to eliminate any global function- and variable-name conflicts.

Table 21-19 Answer File Properties

Property Description

casuserPassword If casuser does not exist by the time of installation, the framework generates random password for
casuser.

 • If the random password is successful, then no input is required.

 • If the random password fails, installation opens a dialog requesting new password.

In quiet mode, installation attempts to load the casuserPassword from the answer file. If no
casuserpassword is specified in the answer file, installation attempts random password, and might fail if
the random password does not pass the company policy.

destination Allows quiet installation to install into directory other than c:\Program Files\CSCOpx. It is optional; if
not specified, the installation is installed in c:\Program Files\CSCOpx.

adminPassword Specifies the login password for the admin user, and is MANDATORY. It is only used during an original
installation; reinstallation in quiet mode does not change the password.

systemIdentityAcc
ountPassword

Password for the System Identity Account. This is mandatory.
21-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
2. Once your scripts are free of these naming conflicts: Combine the existing pre- and post-installs into
a single script, which can be processed automatically.

The existing build tools will attempt to do this by default (and will fail to do so if there are name
conflicts), but developers have full control over whether scripts are combined or not, and which scripts
are combined. To combine scripts under your control, add to disk.toc a SCRIPTS entry of the following
form:

[SCRIPTS] combinedScript=[all_]sourceScript,…

Where:

 • combinedScript is the name of the resulting

 • all_ designates that all children of the component whose script is specified in sourceScript need
to be put into single scripts.

 • sourceScript is the script whose children you want to combine. To specify multiple scripts,
separate them with commas.

For example, to combine all CWCS scripts:

[SCRIPTS] cdone_a=all_cdone,all_cmfj2

On Windows platforms, you can also save installation time by replacing any calls to CCRAccess.exe
with calls to CCRAccess.dll. See the “Using the CCRAccess DLL” section on page 13-50.

Using the Windows Installation APIs
This topic covers the APIs you can use in package-specific hooks (install shell scripts for Windows). The
functions you can perform using these APIs include:

 • Accessing and Setting Package Properties to Perform Version Comparisons

 • Controlling Responses to Terminated Installations

 • Processing Name=Value Pairs

 • Sending Informational Messages to a Log File

 • Informing the Installer That a Component Requires More Space

 • Registering and Unregistering CWCS Daemons

 • Running Commands in a Shell

 • Locating the Root Directory Path Name

 • Registering and Controlling Windows Services

 • Using Generic Utilities

 • Managing Passwords

 • Configuring Tomcat

 • Controlling Reboots

Accessing and Setting Package Properties to Perform Version Comparisons

Use these APIs to access and set package properties and to perform different version comparisons:

 • CompareVersion

 • CompareVersionTo
21-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • GetInstalledPackageVersion

 • GetPackageProperty

 • IsInstalled

 • LoadPackageProperties

 • PROP_DIR

 • RecordKeyValue

 • SavePackageProperties

 • SetPackageProperty

 • VersionToMajorMinor

 • VersionToMajorMinorPatch

 • IsVersionInRange

 • isPackagePending

CompareVersion

prototype CompareVersion(STRING);
prototype CompareVersionEx(STRING, BYREF NUMBER, BYREF NUMBER,

BYREF NUMBER);

Compares the version of the component being installed with the one installed before. CompareVersionEx
also returns the version and patch level of the latest.

Arguments

Return Values

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 NUMBER (output) Major package version number.

3 NUMBER (output) Minor package version number.

4 NUMBER (output) Patch level version number.

Value Description

0 Versions are the same

<0 Pending is lower, downgrade.

>0 Upgrade.

1 Version is the same, patch level of pending component is higher.

2 Major version is the same, minor version of pending component is higher.

3 Major version of pending component is higher or it is being installed for the first time.

-1 Version is the same, patch level of pending component is lower.

-2 Major version is the same, minor version of pending component is lower.
21-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
CompareVersionTo

prototype CompareVersionTo (STRING, NUMBER, NUMBER, NUMBER, NUMBER);

Compares pending or installed version of component to given values.

Arguments

Return Values

GetInstalledPackageVersion

prototype GetInstalledPackageVersion (STRING, BYREF STRING, BYREF NUMBER);
prototype GetPendingPackageVersion (STRING, BYREF STRING, BYREF NUMBER);

-3 Major version of pending component is lower.

-99 Pending version not found.

Value Description

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 NUMBER (input) Installed/pending flag:

 • RM_PKGPROP_PENDING—Package installed or package on
CD.

 • RM_PKGPROP_INSTALLED—Previous package installed.

 • RM_PKGPROP_ANY—Package with latest installation version.

 • RM_PKGPROP_CD—Package on CD.

3 NUMBER (input) Major package version number.

4 NUMBER (input) Minor package version number.

5 NUMBER (input) Patch level version number.

Value Description

0 The same.

<0 Installed/pending/latest is lower.

>0 Installed/pending/latest is higher.

1 Version is the same, patch level of installed/pending/latest component is higher.

2 Major version is the same, minor version of installed/pending/latest component is higher.

3 Major version of installed/pending/latest component is higher.

-1 Version is the same, patch level of installed/pending/latest component is lower.

-2 Major version is the same, minor version of installed/pending/latest component is lower.

-3 Major version of installed/pending/latest component is lower.

-99 Pending version not found.
21-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Determines the version and patch version of component that had been installed before this installation
(GetInstalledPackageVersion) or is being installed (GetPendingPackageVersion).

Arguments

Return Values

GetPackageProperty

prototype GetPackageProperty(STRING, STRING, BYREF STRING, NUMBER);

Get the value of package property.

Arguments

Return Values

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 STRING (output) Major version and minor package version number.

3 NUMBER (output) Patch level version number.

Value Description

1 Component is found.

0 Component is not found.

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 STRING (input) Name of the property to be retrieved.

3 STRING (output) Property value.

4 NUMBER (output) Installed/pending flag:

 • RM_PKGPROP_PENDING—Package installed or package on CD.

 • RM_PKGPROP_INSTALLED—Previous package installed.

 • RM_PKGPROP_ANY—Package with latest installation version.

 • RM_PKGPROP_CD—Package on CD.

Value Description

0 Property extracted successfully.

-1 Property not extracted.
21-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
IsInstalled

prototype IsInstalled(STRING);
prototype IsInstalledEx(STRING, BYREF STRING, BYREF STRING);

Verifies if package, installable unit, or suite has been installed before this installation started. The
IsInstalledEx function also returns version and information string if the component is found.

Arguments

Return Values

LoadPackageProperties

prototype LoadPackageProperties(STRING, LIST, NUMBER);

Loads property file into string list.

Arguments

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 STRING (output) Major and minor version number. Uses the format major.minor.

3 STRING (output) Component information as version major.minor installed date

Value Description

0 Component is found.

-1 Component is not found.

Field Type Description

1 STRING (input) Package/installable unit/suite tag. Contains information about package
version.

2 LIST (output) Valid string list. Functions described in Properties API can be used to
obtain or modify individual properties from this list.

3 NUMBER (input) Installed/pending flag. Start looking from pending. If not found, try the one
that is already installed.

 • RM_PKGPROP_PENDING—Package installed or package on CD.

 • RM_PKGPROP_INSTALLED—Previous package installed.

 • RM_PKGPROP_ANY—Package with latest installation version.

 • RM_PKGPROP_CD—Package on CD.
21-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Return Values

PROP_DIR

STRING PROP_DIR;(Global variable)

Use this global directory name for temporary files. This directory is automatically removed after
installation is completed. To avoid file name collisions do not use extension .info or .temp.

RecordKeyValue

prototype RecordKeyValue(STRING, STRING, STRING, STRING, BOOL);
prototype RestoreKeyValue(STRING, STRING, STRING, STRING, BOOL);

Save and restores Windows registry key values. Keys are saved permanently, and could be saved at
installation time and restored at uninstallation. Each package has its own namespace to save or restore
registry key values.

Arguments

Return Values

None

SavePackageProperties

prototype SaMvePackageProperties(LIST);

Saves preloaded properties of current component from string list.

Value Description

0 Loaded successfully.

Field Type Description

1 STRING (input) Package tag.

2 STRING (input) Key name.

3 STRING (input) Key value name.

4 STRING (input) New key value name.

5 BOOLEAN (input) Save mode:

 • For RecordKeyValue, set to TRUE to override the saved value. If
last parameter is FALSE and saved value is found, value is
preserved.

 • For RestoreKey Value, controls situation when saved value is not
available. If TRUE, the value specified by key name and key value
name is removed.
21-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Return Values

None

Notes

 • This function allows saving properties only for the current package or installable unit. It does not
take the package name as a parameter and does not allow modifying properties of other packages.

SetPackageProperty

prototype SetPackageProperty(STRING, STRING);

Sets the property of package or installable unit.

Arguments

Return Values

None

VersionToMajorMinor

prototype VersionToMajorMinor(STRING, BYREF NUMBER, BYREF NUMBER);

Converts version string to numeric values.

Arguments

Field Type Description

1 LIST (input) Valid string list initialized by the LoadPackage
Properties function.

Field Type Description

1 STRING
(input)

Property name.

2 STRING
(input)

Property value.

Field Type Description

1 STRING (input) Version number in string format (major.minor).

2 NUMBER (output) Major version as a number.

3 NUMBER (output) Minor version as a number.
21-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Return Values

VersionToMajorMinorPatch

prototype VersionToMajorMinorPatch (STRING, BYREF NUMBER, BYREF NUMBER, BYREF NUMBER);

Converts patch version string to numeric values.

Arguments

Return Values

IsVersionInRange

prototype IsVersionInRange(STRING, STRING, NUMBER);

This function checks if the specified package version is within the specified range.

Arguments

Value Description

0 If the string does not contain a valid version, the returned major and minor versions are both
set to 0.

-1 Component is not found.

Field Type Description

1 STRING (input) Version number in string format (major.minor.patch).

2 NUMBER (output) Major version as a number.

3 NUMBER (output) Minor version as a number

4 NUMBER (output) Patch version as a number

Value Description

0 If the string does not contain a valid version, the returned major and minor versions are both
set to 0.

-1 Component is not found.

Field Type Description

1 STRING (input) Component tag
21-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Return Values

isPackagePending

prototype isPackagePending (STRING);

This function checks if the specified package is selected for installation.

Arguments

Return Values

Controlling Responses to Terminated Installations

Use the SetAbortFlag API to control a response to a terminated installation.

SetAbortFlag

prototype SetAbortFlag(STRING);

2 STRING (input) The range, specified as M.m.p-M.m.p. Any lower part of a version can be
omitted.

3 NUMBER (input) Installed/pending flag:

 • RM_PKGPROP_PENDING—Package installed or package on CD.

 • RM_PKGPROP_INSTALLED—Previous package installed.

 • RM_PKGPROP_ANY—Package with latest installation version.

 • RM_PKGPROP_CD—Package on CD.

Field Type Description

Value Description

0 The version is within limits.

-1 The version is lower than the lower limit.

1 The version is higher than the higher limit.

-99 The specified version was not found.

Field Type Description

1 STRING (input) package tag

Value Description

TRUE The specified package is selected for installation.

FALSE (0) The specified package is not selected for installation.
21-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
SetAbortFlag allows your hook to terminate installation with an error message. Use in preinstalls only.
Do not abort after user completes installation because that would leave the product in an unknown state.
If you believe that some serious problem has occurred during postinstall, send a message
(MessageBoxLog function) and proceed.

Arguments

Processing Name=Value Pairs

Use this set of APIs to process files containing name=value pairs , similar to Java property files:

 • addProperty

 • addNumProperty

 • loadPropertyFile

 • addStringPropertyToList

addProperty

prototype addProperty(STRING, STRING, STRING, STRING);
prototype getProperty(STRING, STRING, STRING, BYREF STRING);

Adds or retrieves property to and from file.

Arguments

Return Values

 • addProperty—Searches for a specified property in the file. If found, it replaces the line; otherwise
a new line is appended. If this file does not exist, it is created.

 • getProperty—Returns 0 if property is found successfully.

addNumProperty

prototype addNumProperty(STRING, STRING, STRING, NUMBER);
prototype getNumProperty(STRING, STRING, STRING, BYREF NUMBER);

Field Type Description

1 STRING (input) Log file entry

Field Type Description

1 STRING (input) Directory

2 STRING (input) File name

3 STRING (input) Property name

4 STRING (input or output) Property value:

 • Input for addProperty

 • Output for getProperty
21-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Adds or retrieves property to and from file.

Arguments

Return Values

 • addNumProperty—Searches for a specified property in the file. If found, it replaces the line;
otherwise a new line is appended. If this file does not exist, it is created.

 • GetNumProperty—Returns 0 if property is found successfully.

loadPropertyFile

prototype loadPropertyFile(STRING, STRING, LIST);
prototype savePropertyFile(STRING, STRING, LIST);

These functions allow you to preload properties from a file into a string list to speed up processing.

Arguments

addStringPropertyToList

prototype addStringPropertyToList (LIST, STRING, STRING);
prototype addNumPropertyToList (LIST, STRING, NUMBER);
prototype getStringPropertyFromList (LIST, STRING, BYREF STRING);
prototype getNumPropertyFromList (LIST, STRING, BYREF NUMBER);

These functions are similar to add…/get… functions described previously.

Field Type Description

1 STRING (input) Directory

2 STRING (input) File name

3 STRING (input) Property name

4 NUMBER (input or output) Property value:

 • Input for addNumProperty

 • Output for getNumProperty

Field Type Description

1 STRING (input) Directory.

Do not use the string list directly. Instead, use addProperty,
addNumProperty, or addStringPropertyToList to set or retrieve
properties.

2 STRING (input) File name

3 LIST (input or output) String list:

 • Input list for saveProperty

 • Output list for loadProperty
21-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Sending Informational Messages to a Log File

The following APIs enable you to send messages to a log file:

 • WriteLogFile

 • AskYesNoLog

 • AskYesNoLogTitle

 • MessageBoxLog

 • MessageBoxLogTitle

 • StringListLog

 • AddFileToLog

The log file is for information purposes only; it is not used for uninstallation.

WriteLogFile

prototype WriteLogFile(STRING);

Writes the string into the log file. Names and locations for these log files use the convention
%SystemDrive%\CW2000_inXXX.log, where XXX is equal to the log sequence (001, 002, and so on).

Arguments

AskYesNoLog

prototype AskYesNoLog(STRING,NUMBER);

Displays the AskYesNo dialog and puts both the dialog message and user's reply into the log file.

Field Type Description

1 LIST (input) String list

2 STRING (input) Property name

3 STRING or
NUMBER (input or
output)

Property value:

 • Input for addStringPropertyToList and addNumPropertyToList.

 • Output for getStringPropertyFromList and
getNumPropertyFromList.

Field Type Description

1 STRING (input) Message to write to log file.
21-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

AskYesNoLogTitle

prototype AskYesNoLogTitle (STRING,STRING,NUMBER);

Specifies the AskYesNo dialog title. This is the same as InstallShield’s AskYesNo function (info,
warning, error).)

Arguments

MessageBoxLog

prototype MessageBoxLog(STRING,NUMBER);

Displays the MessageBox dialog and writes a message into the log file. (The same as the InstallShield’s
MessageBox function.)

Arguments

MessageBoxLogTitle

prototype MessageBoxLogTitle (STRING,STRING,NUMBER);

Specifies the MessageBox dialog title.

Arguments

Field Type Description

1 STRING (input) Message. The same as InstallShield’s AskYesNo function.

2 NUMBER (input) Default answer.

Field Type Description

1 STRING (input) Dialog box title.

2 STRING (input) Message. The same as InstallShield’s AskYesNo function.

3 NUMBER (input) Default answer

Field Type Description

1 STRING (input) Message. The same as InstallShield’s AskYesNo function.

2 NUMBER (input) Severity level. Predefined values: INFORMATION, WARNING,
SEVERE

Field Type Description

1 STRING (input) Dialog box title.
21-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
StringListLog

prototype StringListLog(LIST, STRING);

Writes all elements of string list into log file.

Arguments

AddFileToLog

prototype AddFileToLog(STRING, STRING);

Copies a file into log file.

Use this function to analyze results of processes executed using the Shell Task functions (see the
“Running Commands in a Shell” section on page 21-52).

Arguments

Informing the Installer That a Component Requires More Space

The following APIs extract the disk cluster size and inform the installer that your component requires
more space than its runtime footprint:

 • GetClusterSizeEx

 • needMoreSpace

GetClusterSizeEx

prototype GetClusterSizeEx(STRING, BYREF NUMBER);

Determines the size of cluster for specified path name.

2 STRING (input) Message

3 NUMBER (input) Severity level. Predefined values: INFORMATION, WARNING,
SEVERE.

Field Type Description

Field Type Description

1 LIST (input) Prefix to be added to the beginning of each element.

Field Type Description

1 STRING (input) Path name

2 STRING (input) Title
21-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

needMoreSpace

prototype needMoreSpace (STRING, NUMBER, NUMBER);

Informs installer that the component requires more space than its runtime footprint. Used only in
preinstall hooks.

Arguments

Registering and Unregistering CWCS Daemons

The following APIs enable you to register and unregister processes with the CWCS Daemon Manager:

 • DmgrRegister

 • DmgrUnregister

DmgrRegister

prototype DmgrRegister (STRING,INT,STRING,STRING,STRING);
prototype DmgrRegisterEx (STRING,INT,STRING,STRING,STRING,STRING);
prototype DmgrRegisterWR (STRING,INT,STRING,STRING,STRING,STRING,INT);

Registers a process with the CWCS Daemon Manager.

Arguments

Field Type Description

1 STRING (input) Valid path name

2 NUMBER (output) Number to return cluster size

Field Type Description

 1 STRING (input) Path name

 2 NUMBER (input) Required size in bytes

3 NUMBER (input) Number of files

Field Type Description

1 STRING (input) Name

 2 NUMBER (input) Flag to run automatically or not. TRUE if daemon should be started
automatically.

3 STRING (input) Executable path name. All processes need to be registered with the default
path (/opt/CSCOpx on Solaris) explicitly instead of $NMSROOT.

4 STRING (input) Arguments (separated by a caret).

5 STRING (input) Daemon Manager's dependencies. A comma-separated list of other
daemons on which this daemon depends.
21-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
For cwjava daemons, use the Java versions of these APIs: DmgrRegisterJava, DmgrRegisterJavaEx, and
DmgrRegisterJavaWR. These Java calls share the C syntax and arguments.

DmgrUnregister

DmgrUnregister (STRING);

Unregisters a daemon from the CWCS Daemon Manager. Use this function with the uninstall hook to
undo registration.

Arguments

Running Commands in a Shell

The following APIs enable you to run specified commands in a shell. The shell window is minimized.
Control returns after command line task finishes.

 • LaunchShellAndWait

 • InitBatchFile

LaunchShellAndWait

prototype LaunchShellAndWait(STRING, STRING, BYREF STRING, BYREF STRING);

Runs the specified command and minimizes the shell window. It waits until the specified task is
completed.

Arguments

6 STRING (input) A flag to run in local system account.

 • 1 = Daemon should run in LocalSystem account.

 • 0 = Run as casuser.

 7 NUMBER (input) Maximum amount of time (in milliseconds) that Daemon Manager should
wait for the process to initialize.

Field Type Description

Field Type Description

1 String Name of the daemon to unregister. This should match the Name parameter of the
DmgrRegister, DmgrRegisterEx, or DmgrRegisterWR command used to register it.

Field Type Description

1 STRING (input) Job Title. This title must be unique. It will be displayed in the task bar.

2 STRING (input) Command line.

3 STRING (output) File to redirect standard output. Specify as variables, not as constants.

4 STRING (output) File to redirect standard error. Specify as variables, not as constants.
21-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Notes

 • Output files can be specified as empty, in which case standard output and standard error are not
redirected. To run a batch file, use InitBatchFile (see the “InitBatchFile” section on page 21-53) and
RunBatchAndWait (see the “RunBatchAndWait” section on page 21-53) .

 • Either both or one of the output files can be an empty string. In this case, standard output or standard
error will not be captured; it will be ignored.

 • If the file name is specified, it must be a filename without a path. After this function completes, the
variable of the corresponding file will contain the full path name for an output directory.

InitBatchFile

prototype InitBatchFile(STRING, STRING, STRING, BYREF NUMBER);

Initializes a batch file to execute by RunBatchAndWait command.

Arguments

Notes

For RunBatchAndWait (see the “RunBatchAndWait” section on page 21-53) to work properly, the batch
file must be initialized by InitBatchFile. Several lines can be added by InstallShield’s WriteLine function
and closed by the CloseFile function.Then run the RunBatchAndWait command using the same first and
second parameters as specified for InitBatchFile.

RunBatchAndWait

prototype RunBatchAndWait(STRING, STRING, BYREF STRING, BYREF STRING);

Runs the batch file created by InitBatchFile.

Arguments

Field Type Description

1 STRING (input) Job title. This title must be unique. It will be displayed in the task bar.

2 STRING (input) Command line.

3 STRING (input) Temporary file name.

4 NUMBER (output) Number to return open file handle. Used to insert more lines into batch
file.

Field Type Description

1 STRING (input) Job title. Must be the same title as specified for the InitBatchFile function.

2 STRING (input) Temporary file name. Must be the same name as specified for the
InitBatchFile function.

3 STRING (output) Name of file to redirect standard output. Specify as variables, not as
constants.

4 STRING (output) Name of file to redirect standard error. Specify as variables, not as
constants.
21-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Notes

 • For this function to work properly, the batch file must be initialized by InitBatchFile (see the
“InitBatchFile” section on page 21-53). Several lines can be added by InstallShield's WriteLine
function and closed by CloseFile function. Then run the RunBatchAndWait command using the
same first and second parameters as specified for InitBatchFile.

 • Either both or only the last one can be an empty string. In this case, standard output or standard error
will not be captured. It will be ignored. If the filename is specified, it needs to be just a filename
without a path. After this function is finished, the variable of the corresponding file will contain the
full path name for an output directory.

Locating the Root Directory Path Name

The GetRootDir function allows you to find the path name for the root directory.

GetRootDir

prototype GetRootDir(STRING, BYREF STRING);

Find the path name for the root directory.

The installer sets actual directory path names at runtime:

1. The first time, the installer collects values of this property from all packages and installable units
and asks the user to assign each one an actual path name.

2. The installer saves these values in the Windows registry.

The next time the installer runs, it gets the path names from the registry, requiring no input from the
user. This allows multiple root directories, for example, one for CWCS and Essentials (NMSROOT)
and another one for Connectivity suite (for example, CONNROOT).

3. The installer asks the user for path names for both directories and makes them available
programmatically.

In package hooks, the value of ROOTDIR property for this package can be used directly as a global
variable. If a hook needs a value of rootdir for another component, it can be obtained using the
GetRootDir function.

Arguments

Return Values

Field Type Description

1 STRING (input) Root directory name.

2 STRING (output) Path name of root directory.

Value Description

0 If specified root directory found.
21-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Notes

The root directory path name for the current component is set to a global variable and can be used
directly. This function is needed to obtain the path name of the root directory of another component. For
example, package MYPKG has the property ROOTDIR=MYROOTDIR.

Example 21-1 Using GetRootDir

Function mypkg_postinstall()
STRING mdPropertyPath, nmsRoot;
STRING myPkgPropFileName;
begin

// property file for this package is under its root directory and
// MYROOTDIR can be used directly

 myPkgPropFileName = MYROOTDIR^”myPropFile.properties”;
 …
 // md.property file is somewhere under daemon manager’s root – NMSROOT
 if (GetRootDir(“NMSROOT”, nmsRoot) = 0) then
 mdPropertyPath = nmsRoot^”subdir1\\…”;
 …
 endif
…
end;

Registering and Controlling Windows Services

CWCS provides a set of APIs and constants for registering and controlling Windows services. Use the
following service APIs to register and control Windows services:

 • RegisterService

 • UnregisterService

 • StartService

 • ChangeServiceStartType

 • ChangeServiceAccount

 • ChangeService2Casuser

 • StopService

Using Windows Service Constants

Whenever you use the service APIs, use the following constants to specify service types:

 • SERVICE_WIN32_OWN_PROCESS

 • SERVICE_WIN32_SHARE_PROCESS

 • SERVICE_INTERACTIVE_PROCESS

You can also use the following constants to specify service start types:

 • SERVICE_BOOT_START

 • SERVICE_SYSTEM_START
21-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • SERVICE_AUTO_START

 • SERVICE_DEMAND_START

 • SERVICE_DISABLED

RegisterService

prototype RegisterService (STRING,STRING,STRING,LONG,LONG);

Registers new Windows Services.

Arguments

UnregisterService

prototype UnregisterService(STRING);

Unregisters Windows services.

Arguments

StartService

prototype StartService(STRING);

Starts Windows services immediately.

Arguments

ChangeServiceStartType

prototype ChangeServiceStartType(STRING, LONG);

Changes service start type.

Field Type Description

1 STRING (input) Service name

2 STRING (input) Service display name

3 STRING (input) Path name of executable

4 LONG (input) Service type. Specify a service type constant (see the “Using Windows
Service Constants” section on page 21-55).

5 LONG (input) Service start type. Specify a service start type constant (see the “Using
Windows Service Constants” section on page 21-55).

Field Type Description

1 STRING (input) Service name

Field Type Description

1 STRING (input) Service name
21-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

ChangeServiceAccount

prototype ChangeServiceAccount (szServiceName, accountName,
accountPassword);

Changes the service account. Use this function after the service is created (see the “RegisterService”
section on page 21-56).

Arguments

Related Topics

See the “ChangeService2Casuser” section on page 21-57.

ChangeService2Casuser

prototype ChangeService2Casuser(STRING, POINTER);

This function reconfigures a service to run as casuser. This relieves the developer from the need to fetch
the value of the casuser password, which is maintained by the Daemon Manager. This function can only
be used after the Daemon Manager has been installed.

Arguments

Return Values

0 if successful.

Field Type Description

1 STRING (input) Service name

2 LONG (input) Service start type. Specify a service start type constant (see the “Using
Windows Service Constants” section on page 21-55).

Field Description

szServiceName The name of the service.

accountName The account for the service to run as. To modify the service to run as LocalSystem
account, the value should be “.\LocalSystem” (without quotes, and remember to
escape the backslash).

accountPassword The password for the account. Leave this empty if the account is LocalSystem.

Field Type Description

1 String The name of the service.

2 Pointer The pointer to the string that contains the password. Specify NULL to use the
password stored by the Daemon Manager.
21-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Example

This function is implemented in secure.dll, which is a part of the installation framework. Therefore, a
call to this function must be framed with the UseDll/UnUseDll calls. For example:

if (UseDLL(SUPPORTDIR ^ “secure.dll”) != 0) then
MessageBoxLog(“Cannot load secure.dll”, SEVERE);

endif;
ChangeService2Casuser(“myService”, NULL);
UnUseDll(SUPPORTDIR ^ “secure.dll”);

StopService

prototype StopService(STRING, NUMBER);

Stops service.

Arguments

Notes

 • In preinstalls, use RM_STOPSERV_DELAYED. The installer does not stop services immediately;
instead, it collects the list of services to stop.

 • After all preinstalls are executed, the installer asks the user for confirmation and stops all requested
services at once. In addition, the installer stops all services that were requested to be stopped.

 • In all hooks other than preinstall, use the RM_STOPSERV_IMMEDIATELY mode.

Using Generic Utilities

The generic installation framework utilities contain functions for string list processing, path processing,
deleting files, displaying system error messages, and obtaining DNS names:

 • EmptyList

 • InvertList

 • GetStringFromList

 • ListFindSubstring

 • AddDirToPath

 • DeleteFromPath

 • pathToFS

 • ShowLastSysError

 • SureDeleteFile

 • GetHostName

Field Type Description

1 STRING (input) Service name

2 NUMBER (input) Stop mode. Options:

 • RM_STOPSERV_IMMEDIATELY

 • RM_STOPSERV_DELAYED
21-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • ModifySubParameter

EmptyList

prototype EmptyList(LIST);

Removes all elements from the list.

Arguments

InvertList

prototype InvertList(LIST);

Changes the order of elements in a string list.

Arguments

GetStringFromList

prototype GetStringFromList(LIST, NUMBER, BYREF STRING);

Retrieves an element from a string list by number. For example, it will return the third string in a list.

Arguments

ListFindSubstring

prototype ListFindSubstring(LIST, STRING, NUMBER, BYREF STRING);

Finds an element in a string list, which contains given string starting from the current element.

Field Type Description

1 LIST (input and output) Name of valid string list. Input list will be modified.

Field Type Description

1 LIST (input and output) Name of valid string list. Input list will be modified.

Field Type Description

1 LIST (input) Name of valid string list

2 NUMBER (input) Index

3 STRING (output) String returned by the function. It is “ ” if the requested string is not
available.
21-59
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Notes

 • InstallShield’s ListFindString searches for an element that is exactly similar—it does not allow
searching for a substring.

 • The third parameter allows you to specify an offset. For example, to find an element that begins with
“ABC”, call ListFindSubstring(listID, “ABC”, 0, svValue).

AddDirToPath

prototype AddDirToPath(STRING);

Adds a specified directory to the path.

Arguments

DeleteFromPath

prototype DeleteFromPath(STRING);

Deletes path name from the path.

Arguments

pathToFS

prototype pathToFS(BYREF STRING);
prototype pathToBackSlash(BYREF STRING);

Converts backslashes in path name into forward slashes and vice versa.

Field Type Description

1 LIST (input) Name of valid string list.

2 STRING (input) String to search for.

3 NUMBER (input) Offset. –1 stands for any offset.

4 STRING (output) String returned by the function. The same as ListGetNextString. It is “ ”
if the requested string is not available.

Field Type Description

1 STRING (input) Path name of directory to be added

Field Type Description

1 STRING (input) Path name to be removed.
21-60
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

ShowLastSysError

prototype ShowLastSysError(STRING, LONG);

Display system error message in dialog box.

Arguments

Example
ShowLastSysError (“OpenSCManager failure”,GetLastError());

SureDeleteFile

prototype SureDeleteFile(STRING);

Removes specified file.

Arguments

GetHostName

prototype GetHostName(BYREF STRING);

Retrieves the DNS host name.

Arguments

ModifySubParameter

prototype ModifySubParameter(BYREF STRING, STRING, STRING, BOOL, STRING, STRING);

Modifies the value of a subparameter in a command line or removes it.

Field Type Description

1 STRING (input) String that contains path name. After execution, the modified path name.

Field Type Description

1 STRING (input) Title of dialog box

2 LONG (input) Error code

Field Type Description

1 STRING (input) Installer of a file to remove. Processes both short and long file names

Field Type Description

1 STRING (output) String variable to receive host name.
21-61
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Notes

For example, you can modify the line:

myExe.exe -d p1,p2,p3 -p jhgjhg -t

to look like

myExe.exe -d p1,p2,p3,newP -p jhgjhg -t

by calling

ModifySubParameter(myStr, “-d”, “newP”, TRUE, “ ”, “ ,”)

where myStr has a string to modify.

Managing Passwords

In this release, there are two sets of functions that manage passwords:

 • The functions AskPass and GetPass provide CMF 2.1-style password management, where the user
can modify the value of the default password.

 • In CWCS 2.2, the functions SetPassEx, GetPassEx, and AskPassEx facilitate adding
password-related dialogs as a part of the installation user interface.

This section contains the password management APIs:

 • AskPass

 • GetPass

 • AskPassEx, AskPassExTitle

 • GetPassEx

 • SetPassEx

 • ChangeDbPasswd.pl

AskPass

AskPass (Prompt_String, Temp_File_Name, DbPass, Password)

The AskPass API:

1. Prompts for confirmation to change the password. Enter Yes or No.

 – If you enter Yes, AskPass prompts for the new password.

Field Type Description

1 STRING (output) String to modify.

2 STRING (input) Parameter whose value you want to modify.

3 STRING (input) New subparameter or subparameter to remove.

4 BOOL (input) TRUE to add or replace subparameter; FALSE to remove subparameter.

5 STRING (input) Delimiters for parameters

6 STRING (input) Delimiters for subparameters
21-62
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 – Enter the new password, confirm it, and click Next.

2. Validates the password and stores it in a temporary file.

3. Encrypts the file using the cipher command.

Arguments

Notes

This API is called in the preinstall function of the Db.rul.

Example
AskPass(“Enter Common Services Database Password”,

“Changing Database Password”,
“enpass_cmf”, 1);

GetPass

GetPass(Temp_File_Name, Password)

Use this function to retrieve the value saved by the AskPass function. The GetPass API:

1. Retrieves the password from the temporary file.

GetPass accepts the file name and a string variable as the parameter.

2. Decrypts the temporary file and returns the password in the variable.

3. Deletes the file once the password is read.

GetPass returns 0 if it succeeds in getting the password, and 1 if it fails.

Arguments

Example
if (GetPass(“casuser_pass”,passwd) = 0) then
...

Field Type Description

Prompt_String String The confirmation prompt.

Temp_File_Name String Name of the temporary file where the password is stored.

DbPass Integer Used to validate the password. Whenthe value of this argument is 1, the
password is validated according to database rules. For example:

 • The password should not start with a number.

 • The password should not contain any special characters and
Password length should not be more than 15 characters.

When set to values other than 1, no validation is done.

Password String Displays the user-entered or randomly-generated password.

Field Type Description

Temp_File_Name String Name of the file where the password is stored.

Password String Variable where the password will be returned
21-63
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
In this example, the API reads the password from the file casuser_pass. The variable passwd contains
the password.

AskPassEx, AskPassExTitle

prototype AskPassEx (szDescription, szComment, dialogId, szDLL,
fileName, mode, lLabels, nIdStartPwd);

prototype AskPassExTitle (szDescription, szComment, dialogId, szDLL,
fileName, mode, lLabels, nIdStartPwd, szTitle);

These functions prompt the user to specify a new password or accept the default or existing password.
The value of the password is stored at a temporary location in encrypted format and can be retrieved by
the GetPassEx API (see the “GetPassEx” section on page 21-65). Use this function in the custom panel.
For details and a sample, see the “Customizing the Installation Workflow for Windows” section on
page 21-76.

Arguments

Argument Description

szDescription The text of description, displayed above the input fields.

szComment The text of the comment, displayed below the input fields.

dialogId ID of the dialog template. Currently, the installation framework contains two
templates:

 • 13039 (with input fields for one password with confirmation)

 • 13034 (with input fields for two passwords with confirmations).

szDLL The name of the DLL that contains the dialog templates. Use an empty string for
templates supported by the installation framework.

fileName The name of temporary file that stores the values for the duration of installation. Do
not use path names.

mode Password verification mask. Can be a combination of the following:

 • PASS_EX_ANY—Any value is allowed (should not be combined with any other
value).

 • PASS_EX_MAX_LENGTH—The maximum length of the password.

 • PASS_EX_NONEMPTY—The password must be not empty (should not be
combined with PASS_EX_EMPTY_ALLOWED).

 • PASS_EX_EMPTY_ALLOWED—The empty password is allowed (should not be
combined with PASS_EX_NONEMPTY).

 • PASS_EX_ALPHANUM—The password can only contain digits and alphabetic
characters.

 • PASS_EX_FIRST_ALPHA—The first character must be alphabetic.

 • PASS_EX_MIN_LENGTH—The minimum length of the password.

The example illustrates some of these options.

lLabels List of the labels of input fields. Should contain labels for fields, followed by the labels
of confirmation fields (optional). By default, the confirmation fields are labelled
“Confirm”/.
21-64
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Return Codes

NEXT or BACK, depending on whether the user clicked the Next or Back buttons.

Example

The following code fragment displays a dialog that lets the user specify values for two passwords (with
confirmation for each of them), and stores the result in the admin_pass file in a temporary location. Both
passwords cannot be empty, must be at least 5 characters long, contain only alphanumeric characters,
and the first character must be alphabetical.

lLabels = ListCreate(STRINGLIST);
ListAddString(lLabels, “User admin Password”, AFTER);
ListAddString(lLabels, “User guest Password”, AFTER);
nRc = AskPassExTitle(“You may change the password of admin and guest users.\n” +

“Leave fields empty to keep existing passwords.”,
“Password must begin with an alphabetic character and should be “+

“at least 5 characters long.”,
13034,”13034,””, “admin_pass”,
PASS_EX_NONEMPTY + PASS_EX_ALPHANUM +

PASS_EX_FIRST_ALPHA + PASS_EX_MIN_LENGTH * 5,
lLabels, 0, “Change Admin and Guest Password”);

ListDestroy(lLabels);

Related Topics

See the:

 • “GetPassEx” section on page 21-65.

 • “Customizing the Installation Workflow for Windows” section on page 21-76.

GetPassEx

prototype GetPassEx (szFileName, svField, nField);

This API retrieves the values stored by AskPassEx or SetPassEx.

Arguments

nIdStartPwd ID of the first input field. For the dialogs supported by the framework, use 0.

szTitle (In AskPassExTitle only)—The title of the dialog. The dialog displayed by AskPassEx
uses the title “Change Password”“

Argument Description

Name Description

fileName File name. Must match the fileName parameter of the AskPassEx or SetPassEx functions.

svField The variable that receives the value.

nField The field number (counting from 0).
21-65
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Return Values

SetPassEx

prototype SetPassEx (lData, fileName);

Stores values in the temporary location in an encrypted format. This is suitable to pass values from early
stages of installation to later stages. Encryption will only work on a Windows operating system that
supports encryption.

Arguments

Return Values

Notes

Subsequent calls with the same fileName parameter will replace the previously stored values.

ChangeDbPasswd.pl

$NMSROOT\bin\perl.exe
$NMSROOT\objects\db\conf\ChangeDbPasswd.pl DSN New_Password

This API changes the password in the database and property files. It accepts the DSN name and password
as the parameters and changes the password.

Note This API is normally called in the postinstall function of the DB package.

The ChangeDbPasswd.pl API:

 • Checks whether the DSN is valid.

 • (If the DSN is valid) checks whether the database is enabled,

 • (If the database is enabled), changes the password in the database, odbc.tmpl, .odbc.ini,
DBServer.properties and the property file specified in .odbc.tmpl.

 • (If the database is not enabled), changes the password in the database and odbc.tmpl.

Value Meaning

0 Successful

1 Not successful

Name Description

lData List of values to be preserved.

fileName The name of temporary file that stores the values for the duration of the installation. Do
not use path names.

Value Meaning

0 Successful

1 Unsuccessful
21-66
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Return Values

Example
$NMSROOT\bin\perl.exe
$NMSROOT\objects\db\conf\ChangeDbPasswd.pl cmf cisco

Configuring Tomcat

The Tomcat configuration APIs include:

 • ModifyFolderXML

 • UpdateTomcat

ModifyFolderXML

ModifyFolderXML(fileName, replacedString, contextPath, finalString)

Configures the application Desktop XML file to integrate it with CWCS.

Arguments

Notes

This method delegates its work to a MICE installation utility class. The actual command line that will
be run looks like this:

<path to java>/java com.cisco.core.mice.util.install.FolderXMLModifier <Absolute Path to
XML> <String to replace> <context url pattern> <String to prepend>

Field Type Description

DSN string Database Name

Password string New Password

Value Description

0 Password was changed successfully.

>0 Password change failed.

Field Description

fileName Required. The folder file you want to integrate.

replacedString Required. The placeholder to be replaced with CWCS URL information.

contextPath Required. The URL pattern that identifies your servlet context.

finalString Optional. The string to use as a replacement within your file. The default string
provided by CWCS is based on data from CCR regarding the server name, protocol,
and port number.
21-67
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Example

In this example,

java com.cisco.core.mice.util.install.FolderXMLModifier
C:/MyApp.xml REPLACE_THIS_STRING /myApp

This command will replace all instances of the string REPLACE_THIS_STRING in the drawer file with
the default prepend value from CCR, which consists of the URL values to talk to Common Services and
initialize the session data between CiscoWorks applications and Common Services.

The ModifyFolderXML utility can transform this line fragment in the myApp.xml file from this:

<item NAME=”Launch myApp”
HREF=”REPLACE_THIS_STRING/myapp?command=firstPage”>

to this (all one line):

<item NAME=”Launch myApp”
HREF=”/CSCOnm/servlet/com.cisco.core.mice.util.cmf.
CMFLIaisonServlet?command=initializeAndValidate&
url=%2Fmyapp%3Fcommand%3DfirstPage&
context=/myapp&port=443”>

This method:

 • Sets the URL up to bounce to the CMFLiaisonServlet on the Tomcat servlet engine.

 • Passes information to that servlet about what port the Common Services Tomcat engine is running
on, and what servlet context the eventual URL target is going for.

 • URLEncodes the original URL to preserve whatever data or parameters an application is attaching
to their requested URL.

UpdateTomcat

UpdateTomcat (aUrlPattern, aRelativePath, aMapping, appid)
UninstallUpdateTomcat (aUrlPattern, aRelativePath, aMapping, appid)

Call the UpdateTomcat method when you are finished populating CCR (the CWCS Client Registrar).
This method:

Handles the configuration of Apache and Tomcat.

 • Populates CCR with the information required by the application servlet context to operate within the
core multi-context environment.

 • Adds the JkMount directive to httpd.conf.

 • Adds the <Context> node into the apps-ordered.xml file of Tomcat.

 • Creates a custom ContextInfo entry in CCR.

The UninstallUpdateTomcat method cleans up data related to the application.

Both methods perform some configuration, but delegate most of the work to the Java utility class
TomcatServiceUpdate. This class is called from the command line within the installation framework.
21-68
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Arguments

Notes

All arguments must be defined for full integration and interaction to occur with CWCS.

Example

This is a custom ContextInfo entry in CCR:

<Custom22>
 <Name>ContextInfo</Name>
 <Location>/testLiaison</Location>
 <Data>/myApp</Data>
 <appid>myApplication</appid>
 <ReferenceCount>1</ReferenceCount>
 <References>
 <Core />
 </References>
</Custom22>

Controlling Reboots

The SetRebootFlag function allows you to request a reboot at the end of an install or uninstall.

SetRebootFlag

SetRebootFlag()

Causes the framework to request a system reboot from the user at the end of an installation or
uninstallation.

Arguments

None.

Notes

This method tells the installation framework that the system should be rebooted once the installation or
uninstallation is finished. The framework will open a dialog requesting the user to confirm the reboot.
The user can choose to either reboot at the time of the prompt or to “reboot later”.

You can use SetRebootFlag in a Preinstall or Postinstall to request reboot at the end of installation, or
in an Uninstall to reboot after uninstallation.

You can also request reboot at the end of uninstallation by adding UNINSTALL_REBOOT=Y to the package
properties file (see Table 21-5 on page 21-7).

Field Description

aUrlPattern The application's context path.

aRelativePath The application's docbase relative to Tomcat.

aMapping The servlet mapping of the application's CWCS liaison servlet.

appid The ID that identifies this application to CAM.
21-69
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Example 21-2 Using GetRootDir

Function mypkg_postinstall()
STRING mdPropertyPath, nmsRoot;
STRING myPkgPropFileName;
begin

// property file for this package is under its root directory and
// MYROOTDIR can be used directly

 myPkgPropFileName = MYROOTDIR^”myPropFile.properties”;
 …
 // md.property file is somewhere under daemon manager’s root – NMSROOT
 if (GetRootDir(“NMSROOT”, nmsRoot) = 0) then
 mdPropertyPath = nmsRoot^”subdir1\\…”;
 …
 endif
…
end;

Using Windows Build Tools
This topic provides instructions for building an image from protopackages using the installation
framework. The main steps are:

 • Step 1: Install Third-Party Tools for Windows

 • Step 2: Install the Framework on Windows Platforms

 • Step 3: Prepare the Make Image on Windows Platforms

The following topics provide additional guidelines and examples:

 • Debugging on Windows Platforms

 • Example: Using Windows Build Tools

For examples showing how to add your application to the CWCS image, see the “Solaris Getting Started
Example” section on page 21-106.

Step 1: Install Third-Party Tools for Windows

Install the Windows third-party tools listed in the “Third-Party Tools for Installation Framework” section
on page 21-4.

Step 2: Install the Framework on Windows Platforms

To install the framework, copy the following files to your Windows hard drive:

 • buildImage: This main script creates the CD image from protopackages.

 • verifyImage: This script verifies the structure of the protopackages.

 • is5.runtime.tar: This protopackage contains the Windows installation framework.
21-70
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Step 3: Prepare the Make Image on Windows Platforms

Follow these steps to prepare the make image on Windows platforms:

Step 1 Verify that MKS is in your path, by entering the following commands:

which sh
which perl
which find

The returned path names for shell, perl, and find should refer to the MKS tools. If this is not true, modify
the path to include MKS binaries.

Step 2 If InstallShield or PackageForTheWeb are installed in non-default directories, set the following
environment variables:

MK_IS55=full path where InstallShield is installed

MK_PFTW=full path where PackgeForTheWeb is installed

For both environment variables use backslashes with short path name. Spaces are not allowed. For
example

set MK_IS55=d:\progra~1\instal~1\instal~1.5pr CORRECT
set MK_PFTW=d:\progra~1\instal~1\packag~1 CORRECT
set MK_IS55= D:\Program Files\InstallShield\InstallShield 5.5 Professional Edtn INCORRECT

Note The short path name can be specific to your system. To determine the short path name, use the
command dir /x.

Step 3 Run the buildImage command:

perl buildimage -r -d image_path rtpath/is5.runtime.tar pkgpath/myPkg.runtime.tar
protopackage…

Where:

 • –r is an option to refresh the image_path area by first removing all directories from
image_path\extract and then extracting all protopackages.

 • image_path is the full path name of a directory where the image will be created. A lot of free space
is required on this drive, at least three times the size of the runtime. You must specify the path
starting from the drive letter, with forward slashes, no spaces allowed.

 • rtpath and pkgpath are the full path names of the directories where the is5.runtime.tar and you
package are stored, respectively

 • protopackage should be specified with full path names with forward slashes, no spaces allowed. For
the complete list of protopackages, see the sample scripts below.

This command will create the following directories under image_path:

 • extract: This contains all files extracted from protopackages.

 • temp: This contains temporary files required to arrange an image.

 • disk1: This contains the installable image.

 • ReleaseName.exe: This is the self-expanding installable image. ReleaseName will be similar to the
name of the release as specified in the table of contents.
21-71
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Debugging on Windows Platforms

After the buildImage script has created the extract directory, you do not have to extract protopackages
again. Instead, you can change into the extract\is5\install directory and run the runme.sh script:

cd myImage_path\extract\is5\install
sh runme.sh > myImage_path\my.log 2>&1

You can apply changes directly to the files under the extract directory. Do not forget to put changes back
into corresponding protopackages.

InstallShield’s debugging information is available under image_path\temp\isproject\Script Files*.dbg.
To run installation hooks in the debugger, copy the corresponding .dbg file to the disk1 directory with
the image and run installation from the command line with the DEBUGHOOKS parameter. For example:

cd myImage_path\disk1
copy ..\temp\isproject\Script files\tag.dbg
setup DEBUGHOOKS

Where tag is the tag of the protopackage you want to debug.

Installation will run preinstall and postinstall scripts in the debugger. It can also open message boxes
complaining about .dbg files not being available for other protopackages. Click OK and proceed with
the installation.

The installation framework contains a batch file, rul.cmd, that simplifies the development process on
Windows. This file:

 • Is located in the is5.runtime.tar in the is5\install directory. The buildImage command creates the
extract directory, as well as the installable image.

 • Lets you modify the hooks directly in the extract area, and then immediately recompile them into
the image.

 • Requires the IMAGE environment variable. It should be set to the pathname of the directory that
contains the extract area. For example, if the extract area was created in the d:\imagePath directory,
specify the IMAGE environment variable like this:

set IMAGE=d:\imagePath

To recompile the code for the hook of myApp package, modify the code in the
d:\imagePath\extract\myApp\install\myApp.rul file, then run the following command:

d:\imagePath\extract\is5\install\rul.cmd myApp

This command recompiles the code directly into d:\imagePath\disk1 and copies the debugging
information (myApp.dbg file).

Example: Using Windows Build Tools

The following topic provides examples on how to create an installable CWCS CD image with a customer
application.In these examples, we assume the following:

 • The myapp name refers to an application called my application. The application name is truncated
to meet the Solaris requirement for five-letter package names (CSCOxxxxx).

 • Our sample application is in two tar-files, myapp.cd.tar and myapp.runtime.tar, both in the current
directory. These files are copied automatically by the installation script to the following target
directories: myapp.cd.tar into myapp\disk1, and myapp.runtime.tar into myapp\install and
myapp\runtime structures.
21-72
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
The directory myapp\disk1 contains the following disk.toc file describing our sample application’s
table of contents.

[RELEASE]
NAME=CWCS with Test Application
VERSTR=2.0
REGISTRY_ROOT=SOFTWARE\Cisco\Resource Manager\CurrentVersion

[COMPONENTS]
TAGS=cwcs cmfwd cmfj2 myapp
UNINSTALLABLE=cmfwd myapp
VISIBLE=cwcs cmfwd myapp
CHOICE=cwcs cmfwd myapp
DEFAULT=ALL

[ADVANCED_CHOICE_1]
ADVANCED_CHOICE_1_CONDITION=cmfwd.1.0.0-1.9.99
ADVANCED_CHOICE_1_TYPE=EXCLUSIVE
ADVANCED_CHOICE_1_DEFAULT=4
ADVANCED_CHOICE_1_1_TEXT=CiscoWorks Common Services (CWCS) Base Desktop
ADVANCED_CHOICE_1_1_TAGS=cmfwd
ADVANCED_CHOICE_1_2_TEXT=CWCS (including Base Desktop)
ADVANCED_CHOICE_1_2_TAGS=cwcs
ADVANCED_CHOICE_1_3_TEXT=myapp Application
ADVANCED_CHOICE_1_3_TAGS=myapp
ADVANCED_CHOICE_1_4_TEXT=myapp Application and CWCS
ADVANCED_CHOICE_1_4_TAGS=cwcs cmfwd myapp

[ADVANCED_CHOICE_2]
ADVANCED_CHOICE_2_CONDITION=TRUE
ADVANCED_CHOICE_2_TYPE=EXCLUSIVE
ADVANCED_CHOICE_2_DEFAULT=3
ADVANCED_CHOICE_2_1_TEXT=CiscoWorks Common Services (CWCS) Base Desktop
ADVANCED_CHOICE_2_1_TAGS=cmfwd
ADVANCED_CHOICE_2_2_TEXT=CWCS (including Base Desktop)
ADVANCED_CHOICE_2_2_TAGS=cwcs
ADVANCED_CHOICE_2_3_TEXT=myapp Application and CWCS
ADVANCED_CHOICE_2_3_TAGS=cwcs cmfwd myapp

For this toc file you need the following:

 – REGISTRY_ROOT provides the key name for component information. The value has been set
for the CWCS release and has to be the same to keep the compatibility with the CWCS.

Note The NAME parameter in the [RELEASE] section is used to make a name of an executable.
All spaces are replaced by underscores, but parenthesis, comma slashes, and other characters
are not allowed in filenames.

The ADVANCED_CHOICE section determines what is the correct scenario depending on what is
already installed on the target machine. In the case where the target machine has a previous version
of CWCS Desktop already installed, the customer has the following options:

 – Upgrade to a new version of CWCS Desktop

 – Install CWCS 3.0

 – Install the application myapp on top of CWCS Base Desktop

 – Install his application bundled with CMF 2.2.

In the case of a fresh installation, you don’t have the option of a separate myapp installation. So in
this case there are only the remaining three options mentioned in ADVANCED_CHOICE_2 section.
21-73
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • The directory myapp\install contains the myapp.bprops and myapp.pkgpr files. The file
myapp.bprops provides build identification. For example:

D:\myapp\install>cat myapp.bprops
PROP_ID = build_test
PROP_TIMESTAMP = 939800833

The myapp.pkgpr file contains package properties that specify the name, version, and dependencies.
For example:

D:\myapp\install>cat myapp.pkgpr

NT:AIX:HPUX:SOL:
NAME=Sample Package
DESC=This is an example of installation framework
VERSION=5.0
PATCHVER=0
DEPENDS=cmfwd

SOL:
PKG=CSCOmyapp

NT:
PKG=myapp

The directory myapp\runtime contains the cgi-bin and htdocs subdirectories, corresponding to the
structure of similar directories of the CiscoWorks-product to be used by the web-server. Two Perl
scripts, cgi-bin\myappmyappcgi.pl and htdocs\myapp\myappframe.html file. Each developer must
replace these files with their application files. Two files, htdocs\Xml\System\maintree\
myapp.xml and htdocs\Xml\System\maintree\myappcgi.xml, are for linking our html-and Perl-files
to the appropriate tree structure of the CiscoWorks Home Page. Each developer must swap their
xml-files in their place. For the details on integrating your application with CiscoWorks, refer to the
“Integrating Your Application with CWHP” section on page 7-6.

 • The protopackages for CMF 2.0 are in the \...\protopackages directory of the main SDK kit.

 • is5.runtime.tar file is in \...\protopackages directory of the main SDK kit.

 • BuildImage file is in the root directory of the main SDK kit.

 • InstallShield 5.53 is installed at C:\Program Files\InstallShield\InstallShield 5.5 Professional
Edition and InstallShield PackageForTheWeb is installed at
C:\ProgramFiles\InstallShield\PackageForTheWeb 2.

 • The environment variables are set as:

 MK_IS55=c:\progra~1\instal~1\instal~1.5pr

 MK_PFTW=c:\progra~1\instal~1\packag~1

 • The MKS tools are in the path (suppose C:drive is used):

C:\>which sh

C:\MKS\MKSNT/sh.exe

C:\>which perl

C:\MKS\MKSNT/perl.exe

C:\>which find

C:\MKS\MKSNT/find.exe

 • InstallShield is installed properly.
21-74
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Note You must make the corresponding changes in these variables, path, and InstallShield installation
parameters.

To create the CWCS image, use the sample2.sh script in current directory.

 • Launch the sample2.sh file using sh and with four arguments (don’t use \ in args, use /):

>sh ./sample2.sh arg1 arg2 arg3 arg4

where:

 – arg1 is the target directory; let it be for example D:/image directory

 – arg2 is the directory with files myapp.cd.tar and myapp.runtime.tar (actually current directory)

 – arg3 is the directory with buildImage file

 – arg4 is the directory with protopackages and is5.runtime.tar files

This is the sample2.sh file:

##
INPUT:
1 - Target_dir
2 - myapp_dir
3 - buildImage_dir
4 - proto_dir protopackages&is5 directory
##

if [$# -ne 4]; then

echo “ERROR:sample2 called with insufficient args.”
else

Target_dir=$1
if [-d $Target_dir]; then

echo “Directory $Target_dir already exists, remove it first.”
else

myapp_dir=$2
buildImage_dir=$3
proto_dir=$4

mkdir $Target_dir

perl $buildImage_dir/buildImage -r -d $Target_dir \
$proto_dir/is5.runtime.tar $myapp_dir/myapp.runtime.tar \
$myapp_dir/myapp.cd.tar $proto_dir/cam.runtime.tar \
$proto_dir/cmf.runtime.tar $proto_dir/cmfj2.runtime.tar \
$proto_dir/cmfwd.runtime.tar $proto_dir/db.runtime.tar \
$proto_dir/dmgt.runtime.tar $proto_dir/eds.runtime.tar \
$proto_dir/ess.runtime.tar $proto_dir/grid.runtime.tar \
$proto_dir/jawt.runtime.tar $proto_dir/jchart.runtime.tar \
$proto_dir/jext.runtime.tar $proto_dir/jgl.runtime.tar \
$proto_dir/jpwr.runtime.tar $proto_dir/jre2.runtime.tar \
$proto_dir/jrm.runtime.tar $proto_dir/lotusxsl.runtime.tar \
$proto_dir/nmcs.runtime.tar $proto_dir/perl.runtime.tar \
$proto_dir/plug.runtime.tar $proto_dir/pxhlp.runtime.tar \
$proto_dir/snmp.runtime.tar $proto_dir/svc.runtime.tar\
$proto_dir/swng.runtime.tar $proto_dir/vorb.runtime.tar \
$proto_dir/web.runtime.tar $proto_dir/xml4j.runtime.tar \
$proto_dir/xrts.runtime.tar $proto_dir/eds.cab.tar \
$proto_dir/jgl.cab.tar $proto_dir/swng2.cab.tar \
$proto_dir/vorb.cab.tar \

fi
fi
21-75
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
The output of buildImage command is very lengthy. The actual set of tar files may be different from
this example. Here is the result:

D:\image>ls
<Name of Self-extracting installation file>.exe disk1 temp
autoinstall.sh extract

 • Now the necessary product (CiscoWorks Home Page, and the customer’s application’ see the options
in ADVANCED_CHOICE section above) can be installed either by running the Name of
Self-extracting installation file.exe or by running the setup.exe from the d:\image\disk1 directory.

Note To display messages during installation and uninstallation, the myapp.rul file may be
prepared and located into myapp\install directory before making the runtime protopackage
tar-file.

D:\myapp\install>cat myapp.rul

declare
function mypp_preinstall()
begin
MessageBoxLog(“Installing MyAP into \n”+NMSROOT,INFORMATION);
end;
function myapp_postinstall()
begin
MessageBoxLog(“Running postinstall script for MyAPP”,
INFORMATION);
end;
function myapp_uninstall()
begin
MessageBoxLog(“Running uninstall script for MyAPP”,
INFORMATION);
end;

Customizing the Installation Workflow for Windows
The workflow implemented by the CWCS installation framework can be customized for a specific
product. You can also modify the workflow to display additional product-specific dialogs at installation
time.

Note If you have questions about installation framework customization, contact the CWCS
installation team (cmf-install@cisco.com) during the early stages of your project.

The following topics describe how to customize the Windows installation workflow:

 • About the Installer Workflow

 • Getting Started with Windows Installer Tools

 • Creating the Installation Project File

 • Creating Install Actions

 • Creating Install Panels

 • Specifying Conditions For Install Actions and Panels

 • Creating the Install Staging Area
21-76
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • Example: Adding Message Boxes to an Installation

 • Example: Creating Custom Password Dialogs

 • Example: Adding User Data to Show Details

For information about limited customizations available on Solaris, see the “Customizing the Installation
Workflow on Solaris” section on page 21-104.

About the Installer Workflow

The installation framework supplies the installer that:

 • Loads the table of contents (disk.toc) and package property files (*.info) from the CD image.

 • Performs all steps necessary to interact with the end user during the installation process

 • Installs all packages, invoking the package-specific xxx_preinstall and xxx_postinstall functions at
the appropriate times.

Some products require that additional dialogs be displayed at installation time. If they are implemented
in the xxx_preinstall functions, then the dialogs are displayed too late, and might be hidden in the
background. This topic describes how dialogs (or non-interactive actions) can be added to the
installation of a specific product.

The installer is implemented as a sequence of steps. Each step is either an action or a panel. The sequence
is controlled by the project file. When creating an image, the installation framework build tools load the
project file and automatically generate the code that invokes actions and panels and controls the
sequence, including the processing of the Next / Back buttons required by the wizard model.

Customizing the installation workflow requires the following steps:

1. Write InstallShield functions implementing the step required for the product installation.

2. Add this step to the project file (see the “Creating the Installation Project File” section on
page 21-77).

Getting Started with Windows Installer Tools

To develop InstallShield code that works with the installation framework, be sure your desktop has all
required tools. You must have:

 • InstallShield Professional 5.5.3 (version 5, maintenance pack 3);

 • MKS. In particular, perl, find, and sh utilities must be MKS. You might want to verify the path
before trying to build the CD image.

Creating the Installation Project File

The project file is an ASCII file that contains definitions of steps, one step per line. Normally one project
file (the template) will contain steps only, with no operations. Other project files will contain additional
steps or changes to the template, and use operations with references instructing the generator how to
modify the template.

Each step definition uses the following format:

[%operation reference][label:]stepName;[sourceFile];condition[;condition[...]]

Where:
21-77
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 • operation is identified by the % sign. The operation can be any one of the following: AFTER, BEFORE,
REPLACE, or DELETE.

 • reference specifies where to add the new step or what step needs to be replaced or deleted. The rest
of the line describes the step to be added, replaced, or deleted included.

 • If label is present, it is separated from other parameters by a colon (:). All other fields are separated
by semicolons (;).

 • Each step must have a stepName. If thestep name begins with panel_, then panel-specific code will
be generated (see the “Creating Install Panels” section on page 21-79). Otherwise, the step is
considered an action (see the “Creating Install Actions” section on page 21-78.

 • Following the step is the sourceFile (or header) name. The sourceFile name must be a file name,
not a path name, and can be either the .h or .rul file.

 • The condition can be either inline or a function call (see the “Specifying Conditions For Install
Actions and Panels” section on page 21-82). You can have any number of conditions, but you must
have at least one.

 • Comment lines are allowed, and must begin with #.

Creating Install Actions

Installer steps are implemented as InstallShield functions. Functions can be either panels or actions. All
panels and actions must have a predefined set of parameters, and return codes for the installer to
determine the next step. Each panel or action can be accompanied by one or more conditions. The
installer evaluates specified conditions and calls the action or panel only if all conditions are positive.

The source code for actions must be included in one of the protopackages in the install/action directory.
In the project file, the name of an action is the same as the function, and must be followed by the source
file name (without a path). The source file name can be either a header (.h), or a source (.rul) file.

 • If a header file is specified, then the installation framework build tools automatically generate the
appropriate include statements for the header file, and a matching include for the source file
(replacing .h suffix by .rul suffix).

 • If a source file is specified, the prototype for the function is generated instead of including a header
file.

This gives you two options, as follows:.

Option 1

Put the source code for the custom action into the .rul file with no prototype, and specify the .rul file
name in the project. For example:

1. Put the source of myAction into the install\action\myActionSrc.rul file:

function myAction()
begin
 ...
end;

2. In the project file, add the following:

... myAction;myActionSrc.rul
21-78
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Option 2

Put the source code of the custom function into the .rul file and create a matching header file with
function prototypes. For example:

1. Put the source of a myAction into install\action\myActionSrc.rul file:

function myAction()
begin
 ...
end;

2. Put the prototype of a myAction into install\action\myActionSrc.h file:

prototype myAction();

3. In the project file, add the following:

... myAction;myActionSrc.h

Normally, Option 1 is more convenient for simple cases, where the action is the only function in the
source file. If you want to include multiple functions in a single source file, then Option 2 is the better
choice.

Non-Interactive Actions

Non-interactive actions are simple steps that are normally non-interactive, or display simple dialog
boxes without Next/Back buttons. Functions implementing such steps must have no parameters, and
return codes as follows:

 • Return 0 or a positive number to indicate that the step executed successfully and that the installer
should proceed to the next step.

 • Return a negative number (in the range between -1 and -1000) to indicate that installation must be
aborted.

To distinguish actions from panels, the name of non-interactive actions must not begin with panel_.

Creating Install Panels

Panels are the steps that implement dialogs displayed to the user running the installation. These dialogs
use the Next and Back buttons following wizard paradigm. Functions implementing a panel must have:

 • A name beginning with panel_.

 • One numeric parameter (NUMBER). When a panel function is invoked the value of this parameter
is the return code of the previously-displayed panel. Usually, it will be either NEXT or BACK
depending on what button the user clicked in the previous dialog.

Note This parameter must be checked if the custom panel displays more than one dialog. If the
value parameter is BACK, the step must open the last dialog rather than the first.

The return code of a panel must be one of the following:

 • NEXT if user clicked on the Next button and installer should proceed to the next dialog.

 • BACK if user clicked on the Back button and installer must return to the step displaying previous
dialog.

 • SM_SKIP if the panel was skipped. This is important to notify the framework that if user decides to
go back from the next dialog this dialog need not to be displayed.

 • A negative number in the range between -1 and -1000 to indicate that installation must be aborted.
21-79
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Note The constants NEXT and BACK are defined by InstallShield. The SM_SKIP constant is defined
by installation framework.

The implementation of a panel must be able to handle several special cases:

 • In silent mode, the installation must proceed without user interaction. If there is a clear default value
for the data requested from the user, that value must be set as if the user entered it. In some cases
there are no defaults, and information must be loaded from the answer file (see the “Creating the
Answer File” section on page 21-89). The installation framework preloads the name=value pairs
from the answer file into the global list lAnswerFile and can be fetched using the getStringFromList
function, as shown in Example 21-3.

Example 21-3 Fetching Answers Using getStringFromList

if (bQuiet = TRUE) then
 // this is silent mode
 if (getStringPropertyFromList(lAnswerFile,
 “myParameter”, svMyParameter) = 0) then
 // myParameter was specified in answerFile, proceed with this value
 ... // some code that puts svMyParameter into temp location for
 // postinstall, see more on that later
 else
 // value is not specified in the answer file. Your postinstall must
 // be able to handle that situation, if it cannot than the default
 // value must be stored here
 // ...
 // In the case when there can be no default, it is time to abort:
 WriteLogFile(“ERROR: the value myParameter is not specified in” +
 “ the answer file, and silent installation can not proceed”);
 return -1; // this instructs installer to abort
 endif;

 • All dialogs are displayed to the user at the beginning of the installation, and there is always a
possibility that the user will decide to move back to an earlier panel or even cancel the installation.
Therefore, panel functions must not change anything on the target system. Instead, the data entered
by the user should be stored temporarily such that postinstall code can pick up that data and apply
it as appropriate. For example:

 – Data can be saved in a temporary file under PROP_DIR. This global variable is populated by
installation framework with the pathname of a directory under InstallShield's temporary
directory. InstallShield will clean up these files once installation finishes. With the
addProperty/getProperty functions, you can use:

addProperty(PROP_DIR, “myTempFileName”, “myParameter”, szValue)

in the code of the panel, followed by:

getProperty(PROP_DIR, “myTempFileName”, “myParameter”, svValue)

in postinstall.

 – There are two functions that allow you to pass data from panels to postinstall. You can save data
using:

ListAddString(lTemp, svData1);
ListAddString(lTemp, svData2);
21-80
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
SetPassEx(lTemp, “myPanelData”);

In postinstall, you can retrieve data with:

if (GetPassEx(“myPanelData”, svData1, 0) = 0) then
// use svData1

else
// that piece of data was not entered by user either because of silent mode
// or the dialog was skipped

endif;
if (GetPassEx(“myPanelData”, svData2, 1) = 0) then

// the same for the second field
// ...

In addition to passing data, these two functions ensure that temporary files are stored in a
directory ciphered for the current user, so no other user can view the information. These
functions are therefore safe for passwords and other security sensitive data.

 • We recommended that dialogs requesting information from the user be displayed with a Custom
installation only. In the Typical installation, dialogs should not be displayed. Therefore, panels
would normally be used with conditions. The postinstall code trying to apply the data should provide
for cases where data was not saved from the dialog, thus allowing you to preserve existing
configurations from previous installations or apply the defaults.

 • It is important that conditions excluding panels are specified in the project rather than processed
internally by the panel function itself. Consider the following implementation of a panel:

function panel_myPanel()
begin
 if (...) then
 // this will cause problem, don't do it!!!
 return NEXT;
 endif;
 // displaying actual panel
 return NEXT;
end;

In this case, the framework is unaware that the panel was not actually displayed. After calling the
panel_myPanel function, the framework would proceed to the next dialog. If the user then clicks on
the Back button, the framework will invoke panel_myPanel again, which is wrong. In order to avoid
this situation, a condition must be specified as a function or inline condition in the project. The
previous code can be corrected as follows:

function panel_myPanel()
begin
 if (...) then
 // this return code notifies the framework that myPanel
 // was not displayed. When user goes back from the next
 // dialog, the framework would jump to the panel that
 // had been displayed before myPanel
 return SM_SKIP;
 endif;
 // displaying actual panel
 return NEXT;
end;
21-81
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Specifying Conditions For Install Actions and Panels

Often, installer steps must be skipped, but the decision to execute or skip a step will be made only at
installation time. You can allow for this by specifying conditions for actions or panels. The framework
evaluates all conditions before executing an action or panel, and the action or panel function is invoked
only if all conditions pass. Two types of conditions are supported:

 • Condition functions: You can add these just like custom panels or actions. The function does not
have any parameters, and must return a positive number if satisfied, or a negative number to skip the
action or panel. For the framework to check a condition, the name of the condition function must be
specified in the project file. For example:

myAction;myAction.rul;needAction;additionalCondition

In this example, the action myAction will only be invoked if both the needAction() and
additionalCondition() functions return a positive number.

 • Inline conditions: These allow simple checks without creating a function. Build tools simply embed
such conditions inside an if statement. For example, to run a panel in custom mode, only the panel
can be registered in the project file:

myAction;myAction.rul;svSetupType=”custom”

Creating the Install Staging Area

Note The installation staging area should be available on a local drive. The following examples
assume that the staging area is created in the d:\image directory. If you want the staging area to
be in another directory, adjust the commands accordingly.

There are two ways to create the staging area:

 • Copy it from the result area of the NMTG automated builds. You will see the image\extract directory
under every build. Just copy this directory into d:\image.

 • Run the buildImage command. Copy the command from the log file of an automated build and run
it locally, changing the destination directory (the value of the -d parameter) to d:\image. This
command both creates the staging area and builds the installable image in d:\image\disk1.

After creating the staging area, you can change the install code and rebuild the image as needed using
one of the following options:

 • Option1:

cd d:\image\extract\is5\install
set debug=1
sh runme.sh 2>&1 | tee d:\image\log.txt

These commands rebuild the CD image from the content of d:/image/extract area. The process takes
about 10 to 20 minutes. Because the output of these commands is very lengthy, it is redirected into
the file log.txt so it can be analyzed after runme.sh finishes. Setting the debug variable causes
runme.sh to skip creating the self-extracting executable (this will save you 5 to 10 minutes), and
adds debug information to the image.

 • Option 2:

set IMAGE=d:\image
d:/image/extract/is5/install/rul.cmd main projectFiles
21-82
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
These commands simply rebuild the source code of the installer from the specified project files. The
rul.cmd file can be copied into the directory in the path to avoid typing the path each and every time.

The projectFiles variable requires that the path names of one or more project files be relative to
the d:\image\extract directory. For example, to build the installer based on the CWCS project with
additional steps in the file d:\image\extract\kilner\install\action\kilner.project, use the following
command:

rul main cmf\install\action\core.project
kilner\install\action\kilner.project

This method is available only after buildImage or runme.sh builds a complete image .

Example: Adding Message Boxes to an Installation

To add a simple message box to a CWCS installation:

Step 1 Copy the extract area from the CWCS daily build into the d:\image directory.

Step 2 Build an image in your staging area. To do that, run the following commands:

cd d:\image\extract\is5\install
set debug=1
sh runme.sh 2>&1 | tee d:\image\log.txt

When runme.sh finishes, the installable image is created at d:\image\disk1. You can run the beginning
of installation and cancel it when the Installation Type dialog is displayed. Please note the sequence of
dialog boxes before it.

Step 3 Create the function displaying the custom message box. For example, using any text editor, create the
file d:\image\extract\cmf\install\action\helloWorld.rul, as follows:

// helloWorld.rul - my first custom action
 function helloWorld()
 begin
 MessageBoxLog(“Hello World”, INFORMATION);
 return 0;
 end;

Note In this example, additional files are created in the CWCS package area. For actual projects,
additional files with custom actions and projects should be added to the packages of the product
using CWCS rather than CWCS itself.

Note You must create actions and projects under the extract\<pkg>\install\action directories. This
way, buildImage or runme.sh can locate such files when the image is built.

Step 4 Add the action to the project. For example, using any text editor, create the file
d:\image\extract\cmf\install\action\my.project and add the Hello World rul file to it, as follows:

project adding HelloWorld to CWCS installation
 %AFTER panel_welcome helloWorld;helloWorld.rul

Step 5 Rebuild the installer. Run the following commands:

set IMAGE=d:\image
rul main cmf\install\action\core.project cmf\install\action\my.project
21-83
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
Step 6 Now run the installation again. You should see the dialog box with the Hello World message immediately
following the Welcome dialog.

Example: Creating Custom Password Dialogs

This example describes how to add a dialog that prompts the user to type a password. It is assumed that
CWCS is included in the CD with the product image, and therefore all CiscoWorks dialogs need to be
displayed. The dialog described here will be added in such a way that it is displayed by a custom
installation only. If the product is installed for the first time, a random password must be generated.

The panel will be implemented by the panel_myPwd function. The file with this function will be added
to the install\action\mypassword.rul, and the prototype will be added to the install\action\mypassword.h.

Note This example assumes that the installable image of the product is already being built and
includes the product protopackages as well as the CWCS protopackages. The image/extract
directory must be copied to d:\image directory.

Step 1 Create the installable CD:

cd d:\image\extract\is5\install
set debug=1
sh runme.sh 2>&1 | tee d:\image\log.txt

Step 2 Add the files mypassword.h and mypassword.rul to one of protopackages (for example, myPkg). There
is no need to create new protopackages; just use one of existing product protopackages.

The file extract\myPkg\install\action\mypassword.h contains one line:

prototype panel_myPwd(NUMBER);

To add the panel to the installer, a new project file is needed (for example,
extract\myPkg\install\action\my.project). This project file needs the following line (do not put extra
spaces at the start):

%BEFORE addUserInputToInfoList
panel_myPwd;mypassword.h;svSetupType=”custom”

This condition ensures that the panel is displayed in custom mode only.

The rest of the code goes into the extract\myPkg\install\action\mypassword.rul file. It contains the code
for the panel_myPkg function:

function panel_myPwd(lastStepRc)
 NUMBER nRc;
 STRING szPwd;
 LIST lLabels, lTemp;

 begin
 if (bQuiet) then
 // this is quiet mode.
 if (IsInstalled(“myPkg”) = 0) then
 // this is reinstallation case, leave it to postinstall to handle
 WriteLogFile(“INFO: Reinstallation of myPkg, skipping password”);
 return NEXT;
 else
 // original installation, let's try answer file
21-84
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Windows Installation Reference
 if (getStringPropertyFromList(lAnswerFile,
 “myPassword”, szPwd) != 0) then
 // generate random password
 randomWord(szPwd, 15, -2, RW_ALL);
 endif;
 // save the password for postinstall to pick up
 lTemp = ListCreate(STRINGLIST);
 ListAddString(lTemp, szPwd, AFTER);
 SetPassEx(lTemp, “myPwd”);
 ListDestroy(lTemp);
 return NEXT;
 endif;
 endif;

 // let's do the dialog
 // here you might want to reinitialize the szPwd with the value of
 // existing password in the case of reinstallation / upgrade

 lLabels = ListCreate(STRINGLIST);
 ListAddString(lLabels, “My Password”, AFTER);
 nRc = skPassExTitle(
 “Description”,
 “text of comment”, PASS_DIALOG_ID,”PASS_DIALOG_ID,””, “myPwd”,
 PASS_EX_DB_VALIDATION + PASS_EX_EMPTY_ALLOWED + 15,
 lLabels, 0, “Change My Password”);
 ListDestroy(lLabels);
 return nRc;
 end;

Example: Adding User Data to Show Details

In the CWCS installation, information collected from the user or generated automatically is displayed
in the Confirmation Dialog, which allows the user to review the options. This dialog is implemented by
panel_installConfirmation. This step generates the standard portion (the one displayed while the details
are hidden) and appends the details from the global list lUserOptions. This list is managed by the
installation framework; the action addUserInputToInfoList populates CWCS-specific options.

To insert application-specific options into the details, you can either replace addUserInputToInfoList or
add another step that appends the application-specific options to the list.

For example, to add the password created by panel_myPwd, create this action:

/*---
 * adds the password to details
 ---/
function addMyPwdToInfoList()
STRING svTemp[1024];
begin

if (GetPassEx(“myPwd”, svTemp, 0) = 0 && svTemp != "") then
ListSetIndex(lUserOptions, LISTLAST);
ListAddString(lUserOptions,” My password: “ + svTemp, AFTER);

endif;
end;

Note This function must not create the lUserInfoList, but should clean it up.

To add this step to the installation, put the following line into your project file (where the function is in
mypassword.rul, and prototype is in mypassword.h):
21-85
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
%AFTER addUserInputToInfoList addMyPwdToInfoList;mypassword.h

To use application-specific information instead of that created by CWCS, or when your installation does
not include CWCS, the code must be modified slightly. For example, to add the password created by
panel_myPwd to a non-CWCS installation, or when replacing the details provided by CWCS, create an
action that looks like this:

/*---
 * adds the password to details
 ---/
function addMyPwdToInfoList()
STRING svTemp[1024];
begin

EmptyList(lUserOptions);
if (GetPassEx(“myPwd”, svTemp, 0) = 0 && svTemp != “”) then

ListSetIndex(lUserOptions, LISTLAST);
ListAddString(lUserOptions,” My password: “ + svTemp, AFTER);

endif;
end;

Note This function must not create the lUserInfoList or clean up the list. These tasks are performed
by other steps in the installation.

To add this step to a non-CWCS installation, add the following line to your project file (where the
function is in mypassword.rul, and prototype is in mypassword.h):

%BEFORE panel_installConfirmation addMyPwdToInfoList;mypassword.h

To add this step to CWCS installation in which the CWCS details are overridden, add the following line
to your project file (where the function is in mypassword.rul, and prototype is in mypassword.h):

%REPLACE addUserInputToInfoList addMyPwdToInfoList;mypassword.h

Solaris Installation Reference
This topic covers the following reference information for Solaris:

 • Setting Ownership for Package Files on Solaris

 • Creating the Answer File

 • Writing Solaris Scripts

 • Using the Solaris Installation APIs

 • Using Solaris Build Tools

 • Solaris Getting Started Example

Setting Ownership for Package Files on Solaris
The CWCS team has updated installation on Solaris to set the ownership of application files properly
during CWCS installation. If you have application files that existed in a previous release and were not
part of the installation package, then you must modify the post-install hooks/scripts to add chown/chgrp
commands for each file. This includes dynamically created files such as data files and properties files.

The options for setting ownership include:
21-86
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
 • Fixed user ownership for all packages in the build

 • Fixed user ownership for one package

This section provides information about setting ownership data during the image build process using the
buildImage script. The buildImage script expands the protopackages and searches for the runme.sh file
and runs it. On Solaris, the .../install/runme.sh comes from the pkgtools protopackage and performs the
following tasks:

 • It assembles the installable image from expanded protopackages.

 • It calls the makesolpkg script to build Solaris packages. During makesolpkg execution for each
package, the package content description file called “prototype” is created with file ownership
setting as the result of the following procedure.

At the beginning of its execution, the script makesolpkg has the bin:bin ownership hard coded for
$OWNER and $GROUP variables.

Additional facilities have been developed to supply you with the ability to have files owned, as they must
be set in the image. These are getting ownership from package_name.owner file (for every package). The
ownership setting sequence for particular package:

 • If the package_name.owner file exists, then the ownership is assigned in accordance with the data
from this file.

 • If there is no package_name.owner file, then ownership is assigned as bin:bin from $OWNER and
$GROUP variables.

The prototype file is used by pkgmk utility for package creation.

Related Topics

See the:

 • “Setting Ownership from package_name.owner File” section on page 21-87.

 • “Setting Ownership During Build/Installation” section on page 21-88.

 • “Setting Ownership Assignment Details” section on page 21-88.

 • “Understanding and Implementing the casuser” section on page 21-21.

Setting Ownership from package_name.owner File

The package_name.owner file (see the “Understanding the package_name.owner File” section on
page 21-88) is a manifest-like file where you can specify the ownership for files/directories with wild
cards. It is necessary to have a separate ownership description file for each package. The rules for this
file are:

1. The first string of this file is the header: # This file was automatically created with tocToOwner.pl.

2. The second string contains: DEFAULT_OWNER=name
DEFAULT_GROUP=default_owner’s_group

These two items specify the default owner/group for all the files in the package. This data may be
set for any file/directory in the package by explicitly mentioning it in BOM file or by using
PROP_IMAGE_OWNER and PROP_IMAGE_GROUP build environment variables.

3. The remaining strings have the structure: directory/file_name owner_login owner_group

These items should be separated by spaces. You can use wild cards for directories (* -s at the end of
directory_name string; no any space symbols are allowed between the end of directory name and
‘*’-symbol). One symbol (*) refers to the current directory only; the ownership described by
21-87
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
owner_login/owner_group is to be assigned for every file/directory in current directory only. Two
symbol ** string means recursion; the ownership provided by owner_login/owner_group is to be
assigned for every descendant file/directory starting from those in the current directory.

Understanding the package_name.owner File

The protopackages are built as specified by the BOM files. Each package’s BOM file provides the
ownership data. The most convenient way to set up your .owner file is to use the appropriate .toc file.
The .toc file is automatically produced from .bom file during the build procedure and contains more
detailed data about your directories/files ownership.

An appropriate script (tocToOwner.pl) was written and the .owner file is now automatically put into
protopackage tar-file (along with .bom file and others). So the packge_name.owner file is automatically
located into right /../install directory.

Setting Ownership During Build/Installation

This topic provides information on typical scenarios for you to set desired ownership during image
creating process or during installation. The typical scenarios are:

 • Fixed user ownership for all the packages in the build

To implement this scenario, supply the input parameters OWNER/GROUP in the pkg_name.owner
file. The makesolpkg file can then get them from DEFAULT_OWNER/DEFAULT_GROUP tags in
pkg_name.owner file.

This scenario may be used to set casuser:casuser ownership for all the packages.

 • Fixed user ownership for one package

There are two possibilities for this scenario. First, specify fixed ownership in the .bom file for
particular package. Second, prepare the .owner file manually and deliver it to appropriate /install
directory during image build.

Setting Ownership Assignment Details

This procedure is implemented by the makesolpkg script. The ownership assignment rule works in the
following manner.

 • If any particular substring directory/file name of string A in package_name.owner file matches after
applying wildcard rules described above to some directory/file mentioned in the “prototype” file for
some package, then the ownership from this string A is assigned to the directory/file in prototype
file.

 • When there are few possible matches, only the last one from package_name.owner file is assigned.

 • When no matches are valid for some directory/file in the package, the data from
DEFAULT_OWNER/DEFAULT_GROUP items of package_name.owner file is used for this
directory/file.

 • When an absent DEFAULT_OWNER/DEFAULT_GROUP string in package_name.owner file (or
the absence of this file), the hard coded data is used for ownership assignment (currently it is
bin:bin).

The makesolpkg script is located in pkgtools.runtime.tar file. It is untared into the ../pkgtools/install
directory. The package is created in two steps:

1. First, the ownership description file prototype is created with pkgproto utility
21-88
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
2. The ownership description file is used as input for pkgmk utility for package build.

After the execution of pkgproto, the prototype file is modified so that the ownership is changed in
accordance with ownership assignment rule. Then it creates the package file with the new ownership.

Creating the Answer File
The answer file is an ASCII file that provides the required inputs for quiet installations. It contains the
name=value pairs shown in Table 21-20.

Caution For CWCS, the answer file is required because it contains the mandatory adminPassword field. If this
file is not present for CWCS, setup will exit.

The answer file contains the following name=value pairs:

Notes

 • To install a product in quiet mode when an answer file is not required, use this command:

./setup.sh -q ""

In this example, the blank quotes are required.

Example

Answer file:

#cat /tmp/answer_file
##Sample Answer file
destination=/opt/cisco
adminPassword=adminpass

Setup command:

#setup.sh -q /tmp/cscotmp/enpass_cmf

Related Topics

For the same procedure on Windows platforms, see the “Preloading the Global List, lAnswerFile”
section on page 21-35.

Table 21-20 Answer File Properties

Property Description

destination Optional. Allows quiet installation to install into a directory other than
/opt/CSCOpx. If not specified, installation goes into /opt/CSCOpx.

adminPassword Required for CWCS. For other products, if there are no mandatory fields, the answer
file is not required.

Specifies the login password for the admin user. It is only used for original
installations; reinstallation in quiet mode leaves the password alone.

secretPassword Specifies the login password for the secret user. It is only used for original
installations; reinstallation in quiet mode leaves the password alone.
21-89
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Writing Solaris Scripts
Using the CWCS installation APIs, you can write Bourne shell scripts that will allow you to specify any
requirements and enforce any constraints on a package on a Solaris platform.

The following topics describe how to write scripts for your package:

 • Using the Solaris Installation Hooks

 • Where to Find Solaris Installation Examples

Using the Solaris Installation Hooks

Solaris developers can use the following Bourne shell scripts to perform the required functions for their
package installation:

Note Do not ask the user any questions in these files: preinstall; postinstall; preremove and
postremove. Instead, define shell variables with reasonable defaults. The installation script will
call the package’s prerequisite script to ask the questions and set the variables for the other
scripts.

If the information obtained by this script is required by another script, such as preinstall, then the script
may set an environment variable or write a temporary file. The preferred method is to call AddProperty
(see the “AddProperty” section on page 21-98) to save the value and GetProperty (see the “GetProperty”
section on page 21-98) in a later script to retrieve the property. These functions are found in
commonscript.sh.

Hooks are run in the following sequence:

1. Each prerequisite for all packages.

Table 21-21 Solaris Hooks

Hook Type Description

preinstall This hook is run by installer before file transfer. Most packages do not need this script.
If you need your software to do something (for example, verify prerequisite software)
before installing your files, then you need this script.

postinstall This hook is run after file transfer. It contains the actual configuration of the
component. This is the correct place to register daemons.

preremove This hook is run when the component is uninstalled immediately before removing files.
This hook is a good place to unregister daemons or verify that the package is installed.

postremove This hook is run when the component is uninstalled immediately after removing files.
Use this hook to clean up files and directories that are not registered with the packaging
system. For example, use this script to remove log directories and files.

prerequisite This hook is run before any preinstall is performed. It specifies dependencies on other
packages, disk space required, and questions to be asked of the installer. If the
information obtained by this script is required by another script, such as preinstall, then
use AddProperty and GetProperty APIs. If the prerequisite hook is set for the
installation to fail, it should return a non-zero return code.
21-90
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
2. pkgadd for all components. Each pkgadd executes preinstall, file transfer, and postinstall for this
package.

At uninstallation time, hooks execute pkgrm for each component. Each pkgrm executes preremove,
removes files, postremove.

It is important to understand in which order hooks are executed. The installer observes the following
rules at installation:

 • The installer skips installation of a component if it decides that a particular component should not
be processed. It leaves out a component if its pending version is lower than the installed version. It
can leave out the component if it is optional and not required by any other component.

 • The installer does not execute a skipped component’s prerequisite hook. All other prerequisite hooks
are executed before any preinstall is executed.

At uninstallation the installer observes the following rules:

 • Shared packages are not removed and their uninstall hooks are not executed unless all installable
units they belong to are uninstalled.

Note In general, hooks should not rely on any order of execution. This is especially important in order to
provide the same hooks for both major releases as well as for upgrades.

Additional hooks are provided to permit custom operations at the completion of various install
operations. For details, see the “Customizing the Installation Workflow on Solaris” section on
page 21-104.

Where to Find Solaris Installation Examples

The following installation examples are documented:

 • Prerequisite

 • Preinstall

 • Postinstall

A basic example is provided in the “Solaris Getting Started Example” section on page 21-106.

Using the Solaris Installation APIs
This topic covers the Solaris installation APIs, which you can use in in any hook:

 • Using the Solaris Input/Output APIs

 • Using the Solaris Package APIs

 • Using the Solaris System APIs

 • Using the Solaris Installable Unit APIs

Note To use Solaris APIs, add the following line at the beginning of hooks. Remember to use the period at the
beginning of the line: . $ {SETUPDIR}/commonscript.sh

The following is a sample function header:

##
21-91
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
FUNCTION FunctionName <input> [<input>]
brief description of function.
##

The FUNCTION line shows the function name and all arguments with which it is called.

Note Unless otherwise noted, all functions return 0 for success and 1 for failure.

Using the Solaris Input/Output APIs

The Input/Output APIs handle password management and input/output functions:

 • AskPass: Prompts for your password

 • AskPassEx: Prompts for your password

 • GetPass: Retrieves the password from a temporary file

 • ChangeDbPasswd.pl: Changes the Database password in the database and properties file after the
installation is completed

 • AddPassword: Used at the end of the installation to display the passwords that were either entered
or randomly generated.

 • PasswordRandomSelection: Returns a randomly-generated password.

 • PortRandomSelection: Returns a randomly-generated port number.

 • Profile: Returns a randomly-generated port number.

 • Debug: Returns a randomly-generated port number.

 • PromptResponse: Returns a randomly-generated port number.

 • PromptYN: Returns a randomly-generated port number.

AskPass

AskPass PromptString Temp_File_Name DbPass PassName

Normally, this API is called in the prerequisite to the installation process. The AskPass API:

1. Prompts you for admin and guest passwords during installation.

This API asks the password twice to confirm the password.

2. Validates the password, encrypts it and stores the password in a temporary file in the temp directory.

Note This is a shell script function that is available in commonscript.sh.

Arguments

Field Description

PromptString Prompt which asks the user for password.

Temp_File_Name Name of the file where the encrypted password will be stored. This file will be
created in the temp directory (/tmp/cscotmp/<temp_filename> directory).
21-92
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Return Values

None

Example
AskPass “Enter the CWCS Database Password” “enpass_cmf” 1

“VALUE_CCSDB_PASSWORD”

In this example, the API:

1. Displays the string “Enter the Password” and reads the password. The typed characters will not be
displayed on the screen.

2. Prompts the user to retype the password to confirm.

3. If both the password matches and passes the validation, the password will be encrypted and stored
in /var/tmp/enpass_cmf file. If the passwords do not match the user will be prompted again for the
password. If the password does not pass the validation, an appropriate message is displayed and the
user will be prompted again for the password.

AskPassEx

AskPassEx prompt_string temp_filename pass_Name flag

This API will be normally called in the prerequisite to the installation process. The AskPassEx API:

1. Prompts users for passwords .

2. Prompts for the password twice, to confirm it.

3. Accepts special characters, such as punctuation marks, ampersands, and so on.

4. Validates the password, encrypts it, and stores it in a temporary file in the temp directory.

Note This is a shell script function that is available in commonscript.sh.

DbPass Indicates whether to validate the password.

When set to 1: The password is validated according to database rules such as, The
password should not start with a number, It should not contain any special
characters and password length should not be more than 15 characters. These
constraints are imposed by the Sybase DBD.

Note If the password is for a database, set to 1.

When set to values other than 1: The password is not validated.

PassName The name of the password. This name is displayed at the end of the installation
process using the AddPassword API (see the “AddPassword” section on
page 21-96).

Field Description
21-93
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Arguments

Return Values

None.

Example

AskPassEx "Enter the CiscoWorks admin password: " "enpass_admin" "Admin Password" 0

In this example, the API:

1. Displays the user prompt string Enter the CiscoWorks admin password:.

2. Reads the password the user enters, and stores it in the file enpass_admin. The typed characters are
not displayed on the screen.

3. Prompts the user to retype the password to confirm.

4. Assigns “Admin Password” as the name of the password. This name is displayed at the end of the
installation process using the GetPass API (see the “GetPass” section on page 21-94).

GetPass

retVal=GetPass Temp_File_Name

This API is used to retrieve the password from the temporary file. This API also deletes the password
file.

Note This is a shell script function that is available in commonscript.sh.

Arguments

Return Values

Argument Description

prompt_string Prompt which asks the user for a password.

temp_filename Name of the file where the encrypted password will be stored. This file will be
created in the temp directory (/tmp/cscotmp/).

pass_Name Name of the password.

flag Indicates whether to bypass password validation if the user responds with no entry
(1) or reprompt for the password to confirm (0; this is the default).

Field Description

Temp_File_Name Name of the temp file where the encrypted password is kept. The file should be
present in /tmp/cscotmp directory.

Field Description

retVal 0 = success. If successful, the global variable $PASS contains the clear text password.

1 = failure
21-94
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Example
retVal=`GetPass enpass_cmf`

In this example, the API reads the encrypted password from /tmp/cscotmp/enpass_cmf file, decrypts it
and returns to the variable Pass.

ChangeDbPasswd.pl

$DBSWDIR/conf /ChangeDbPasswd.pl DSN Password
This API changes the password in the database and in property files. It accepts the DSN name and
password as the parameters and changes the password. This function returns 0 if it is successful, and
returns a value greater than 0 (> 0) if it has failed.

The API does the following:

 • Checks whether the DSN is valid.

 • If the DSN is valid, checks whether the database is enabled.

 • If the database is enabled, changes the password in the database, odbc.tmpl, .odbc.ini,
DBServer.properties and the property file specified in odbc.tmpl.

 • If the database is not enabled, changes the password in the database and odbc.tmpl.

This API is normally called in postinstall.

Note This is a Perl function that is available in $NMSROOT/objects/db/conf/ directory.

Arguments

Return Values

None

Examples

This example changes the password of the CWCS database to “cisco”.

$DBSWDIR/conf /ChangeDbPasswd.pl cwcs cisco

The following example shows how to change the database password for the CWCS database in the
CSCOdb package.

1. PromptYN “Do you want to Change the CiscoWorks Database Password?” 'n' . This API asks
the user whether the password need to be changed.

2. If the user responds with “yes”, continue as follows:

if [${YN} = 'y']; then

 AskPass “Enter the CWCS Database Password” “enpass_cmf” 1

fi

3. In the CSCOdb package postinstall:

Field Description

DSN Database name

Password New password
21-95
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
retVal=`GetPass enpass_cmf`

$DBSWDIR/conf /ChangeDbPasswd.pl cmf $PASS

AddPassword

AddPassword “password_name” “password_value”

This API is used at the end of the installation to display the passwords that were either entered or
randomly generated.

Note This utility was introduced in CWCS 2.2 It is a shell script function that is available in
commonscript.sh.

Arguments

Return Values

None

Example

AddPassword “VALUE_CCSDB_PASSWORD” “$PASSWORD”

PasswordRandomSelection

new_password = “PasswordRandomSelection”

This API returns a randomly-generated password. It is used when user interaction is not required to enter
the password.

Note This utility was introduced in CWCS 2.2. It is a shell script function that is available in
commonscript.sh.

Valid Installation Modes

Typical

Arguments

None

Return Values

A randomly-generated string

Example
PASSWORD=”PasswordRandomSelection”

Field Description

password_name Name of the password

password_value Value assigned to password name (either entered or randomly-generated)
21-96
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
PortRandomSelection

port_number =”PortRandomSelection”

This API returns a randomly-generated port number. It is used when the designated port is already in use
by another process.

Note This utility was introduced in CWCS 2.2 It is a shell script function that is available in
commonscript.sh.

Valid Installation Modes

Typical

Arguments

None

Return Values

A randomly-generated port

Example
port_no=”PortRandomSelection”

Profile

Profile label [output file]

If in debug mode, write the time stamp for profiling. Concatenate to a file if one is specified.

Debug

Debug output string [output file]

If in debug mode, write the string. Concatenate to a file if one is specified.

PromptResponse

PromptResponse prompt string default string

Prompts user for input and store response in variable RESPONSE.

PromptYN

PromptYN prompt string default string

Prompts user for a yes or no respones and stores the response in lower case in the variable YN.

Using the Solaris Package APIs

This group of APIs contains package functions:

 • AddProperty

 • GetProperty
21-97
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
 • UpdateAnsFile

 • RunRequestScript

 • SetInstallMode_SOL

 • UpdateInvFile

 • Installf

 • CheckPkgInstalled

 • GetPkgParam

 • needsMoreDiskSpace

 • SetInstallPkgMode_SOL

 • SetInstPkgMode_frmPrePst

AddProperty

AddProperty package name property name property value

Adds a property to a package.

GetProperty

GetProperty package name property name

Retrieves a package’s property and stores its value in variable PROPVALUE.

UpdateAnsFile

UpdateAnsFile package name

Calls this function at the beginning of postinstall.

RunRequestScript

Obsolete.

SetInstallMode_SOL

Obsolete.

UpdateInvFile

UpdateInvFile fileset path permissions uid gid

Updates the Fileset.inventory file. This function is necessary if you need to modify the attributes of files
or directories that are part of the distribution.

Arguments

Field Description

fileset Fileset being processed

path Installer to be modified. This is used as a key to locate a record.
21-98
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Installf

This is a platform-independent wrapper providing the functionality of the Solaris install function
(installf). For parameters, refer to the Solaris man page on installf.

Use this inside pre- or post- installs if you are modifying or updating data in your package and must
ensure that your changes are valid.

CheckPkgInstalled

CheckPkgInstalled packagename

Verifies the existence of a package.

GetPkgParam

GetPkgParam packagename parametername

Gets the value of the parameter for the package. This is an abstraction of pkgparam -v pkg param_name
for Solaris.

needsMoreDiskSpace

needsMoreDiskSpace packagename

Gets the numeric value of the dynamically determined disk space required for installation and the
estimated size required for use in MB from pkg.nmds.

SetInstallPkgMode_SOL

SetInstallPkgMode_SOL package_name

This API sets the package installation mode after checking if that the package already exists.

Note Use this utility only in the prerequisite to the installation process.

Note This utility was introduced in CWCS 2.2 It is a shell script function that is available in
commonscript.sh.

Arguments

permissions Permissions.

uid Owner.

gid Group.

Field Description

Field Description

package_name The name of the package
21-99
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Return Values

Example
SetInstallPkgMode_SOL CSCOapch

SetInstPkgMode_frmPrePst

SetInstPkgMode_frmPrePst packagename

This API sets the package installation mode after checking if the specified package already exists.

Note Use this utility only in preinstall and postinstall.

Note This utility was introduced in CWCS 2.2 It is a shell script function that is available in
commonscript.sh.

Arguments

Return Values

Example
SetInstPkgMode_frmPrePst CSCOapch

Using the Solaris System APIs

This group of APIs includes system functions:

 • GetBootScript

Field Description

PKG_I_MODE Installation mode options:

 • NEW

 • REINSTALL

 • UPGRADE

Field Description

packagename The name of the package

Field Description

PKG_I_MODE Installation mode options:

 • NEW

 • REINSTALL

 • UPGRADE
21-100
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
 • GetInitDir

 • GetLibPath

 • NetstatForPort

 • PortUsed

 • SaveBackFile

 • RestoreBackFile

 • RemoveBackFile

 • DelServices

 • AddServices

 • GetDF

 • GetFreeDF

 • MakeDir

 • GetOS

GetBootScript

Retrieves a package’s boot script.

GetInitDir

Retrieves a package’s initial directory.

GetLibPath

Retrieves the library path.

NetstatForPort

NetstatForPort portnumber

Verifies that portnumber is used. Returns 1 if port is in use, else 0.

PortUsed

PortUsed portnumber tcp or udp

Verifies that a port is used. Return 1 if port in use, else 0.

SaveBackFile

SaveBackFile file name

Saves a copy of file. Use before editing the file.

RestoreBackFile

RestoreBackFile file name

Restores a copy of file. Use when editing has failed.
21-101
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
RemoveBackFile

RemoveBackFile file name

Removes a copy of this file.

DelServices

DelServices service name

Removes an entry from /etc/services.

AddServices

AddServices service name service port service protocol [comment]

Adds an entry to /etc/services.

GetDF

GetDF file system

Raw output from df or bdf command.

GetFreeDF

GetFreeDF file system

Gets the numeric value of the disk space for this file system.

Note GetFreeDF expects you to specify the name of the file system , but does not check that you have
done so. If you fail to specify a file system, it will get the numeric value of the disk space for the
file system last returned by the df -k command.

MakeDir

MakeDir directory name

Ensures that the proposed directory exists. If not, creates the directory and sets the owner and group to
casuser. If the directory exists, MakeDir assumes that the owner and group are casuser.

GetOS

Sets the environment variables LC_OS and OS to our canonical form of the OS name.

Using the Solaris Installable Unit APIs

These APIs include the installable unit functions:

 • GetNMSRoot

 • SetIMode

 • GetIMode
21-102
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
GetNMSRoot

Retrieves the previously stored value of NMSROOT.

SetIMode

SetIMode install mode

Stores the value of NMSROOT.

GetIMode

Stores the value of I_MODE.

Using Solaris Build Tools
This topic provides instructions to build an image from protopackages using the installation framework
on Solaris. The main steps are:

 • Step 1: Install Third-Party Tools On Solaris

 • Step 2: Install the Framework On Solaris Platforms

 • Step 3: Prepare the Make Image on Solaris

The following topics provide additional guidelines and examples:

 • Customizing the Installation Workflow on Solaris

 • Debugging on Solaris

 • Verifying Packages on Solaris

 • Solaris Getting Started Example

Step 1: Install Third-Party Tools On Solaris

Install the Solaris-specific third-party tools referenced in the “Including Files in the Protopackage”
section on page 21-20.

Step 2: Install the Framework On Solaris Platforms

To install the framework, copy the following files to the Solaris working directory:

 • buildImage: Main script which creates the CD image from protopackages

 • verifyImage: Script that verifies the structure of the protopackages.

 • is5.runtime.tar: Protopackage containing the Windows installation framework.

 • pkgtools.runtime.tar: Protopackage containing the Solaris installation framework.

 • makesolpkg: Solaris -only script

Step 3: Prepare the Make Image on Solaris

Follow these steps to make the image on Solaris:
21-103
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Step 1 Verify that MKS is in your path.

which sh
which perl
perl -v

The output displayed for these commands should show valid paths for each tool. Perl needs to be version
5.5 or higher.

Step 2 Run buildImage command:

perl buildImage -r -d image_path toolpath/pkgtools.runtime.tar rtpath/myPkg.runtime.tar
protopackages

Where:

 • -r is the option needed to refresh the image_path (by first removing all directories from
image_path/extract and then extracting all protopackages).

 • image_path is the full path name of the directory where the image will be created. Normally, free
space of at least three times the size of runtime will be required. You must specify the path starting
from the top level directory, with forward slashes, no spaces allowed.

 • toolpath is the full path to the pkgtools.runtime.tar file.

 • rtpath is the full path to your runtime.tar file.

 • protopackages is a space-delimited list of all protopackages to be installed. Each protopackage
specification mustinclude full path names with forward slashes, no spaces allowed.

This command will create the following directories under image_path:

 • extract subdirectory: Contains all files extracted from protopackages.

 • disk1 directory: Contains the installable image.

Customizing the Installation Workflow on Solaris

The CWCS installation framework workflow on Solaris does not offer the extensive custom action and
panel features available on Windows (for details on these features, see “Customizing the Installation
Workflow for Windows” section on page 21-76) .

However, the Solaris framework does offer two features that allow you to customize most installation
workflows with a great deal of flexibility, as explained in the following topics:

 • Collecting User Interactions at the Start of a Solaris Install

 • Executing Custom Operations During a Solaris Install

Collecting User Interactions at the Start of a Solaris Install

You can streamline the user’s workflow and make possible “unattended” Solaris installs by prompting
the user for all installation inputs at the start of the install, instead of during each install phase when they
are required. To do so, simply add the following tag to the corresponding info file:

USER_INTERACTION=TRUE

You may want to change the wording of the install prompts to ensure that they make sense to users when
presented in a single group.
21-104
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
Executing Custom Operations During a Solaris Install

To execute custom operations at various steps during the install, using the hooks shown in Table 21-22.

You can specify conditions, titles and scripts for these operations much as you do for action
customizations on Windows. For example, you can add the following section to your dsk.toc file to
execute the script rmJrunWeb.sh after performing a prerequisite test to ensure that a version of CWCS
earlier than 3.0 is present:

[AFTER_PREREQS]
AFTER_PREREQS_0=UNINSTALL_JRE2_JRUN_WEB

[UNINSTALL_JRE2_JRUN_WEB]
AFTER_PREREQS_0_CONDITION=cmfwd.2.1.0-2.2.9
AFTER_PREREQS_0_title=Uninstall CSCOjrun CSCOweb CSCOjext CSCOjre2
AFTER_PREREQS_0_script=rmJrunWeb.sh

In this example, the script will execute only after prerequisites are checked, and only if the condition is
met. The title will be displayed before the script is executed.

Debugging on Solaris

To debug on Solaris, use generic shells. No additional coding is needed. Use set -x to add generic
debugging information to your log file.

Verifying Packages on Solaris

The Solaris version of the CWCS installation framework provides the pkgchk command to permit
package integrity verification. You can use pkgchk to perform package verification:

 • Before installation, within the image.

 • After installation.

To verify a package before installation, run pkgchk as follows:

pkgchk -d location name

Where:

 • location is the package location within the image.

 • name is the package name.

For example :

pkgchk -d disk1/packages CSCOapch

Table 21-22 Solaris Workflow Customization Hooks

Hook Executes Your Script

AFTER_LICENSE After license display

AFTER_INSTALL_TYPE After the user selects the install type

AFTER_PREREQS After running prerequisites

AFTER_PKG_ADDS After package additions
21-105
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
If a pre-installation verification fails, it will report the following errors:

ERROR: The following base package image is bad: CSCOname

ERROR: Package verification failed : CSCOname aborting.

If you get this kind of error, you can be sure that there was a problem during package creation in the
build. Once the installation has aborted, you can try the command on the command line, to find out why
it failed

To verify a package after installation, run pkgchk as follows:

pkgchk -n name

Where name is the package name.

Package verification may fail after installation if the files:

a. Were modified during postinstall. In this case, you may have to use the installf command during
postinstall (for details, see the “Installf” section on page 21-99) to fix the problem.

b. The files are volatile (that is, they change in size, as with configuration files). In this case, you may
need to use installif to declare this file as volatile.

Note When using installf, be sure not to use the NMSROOT variable in the file path. For example, if the path
is /opt/CSCOpx/examples/example1, give this path explictly, not as $NMSROOT/examples/example1.
If you use NMSROOT, you will experience problems during custom path installation.

Solaris Getting Started Example
The following is an example of how to create an installable CD image of CWCS for a customer
application. The myapp name refers to the application my application; it is truncated because Solaris
package names must have five letters or less on Solaris (CSCOxxxx).

Before you use this example, verify that the tools are in the path.

which sh

The return value should display

/bin/sh

Perl V5.0 or higher is required.

which perl

The return value should display

/auto/em_tools/sol/bin/perl

perl -v

The return value should display

This is perl, version 5.005_03 built for sun4-solaris

Copyright 1987-1999, Larry Wall

For this example, it is assumed that:
21-106
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
 • The sample application is in two tar-files, myapp.cd.tar and myapp.runtime.tar, both in the current
directory. The installation script untarrs these files automatically and places them in the following
target directories: myapp.cd.tar into myapp\disk1 directory structure and myapp.runtime.tar into
myapp\install and myapp\runtime structures. The directory myapp\disk1 contains the disk.toc file.
The following disk.toc describes our sample application’s table of contents.

[RELEASE]
NAME=CWCS with Test Application
VERSTR=1.0

[COMPONENTS]
TAGS=cwcs cmfwd cmfj2 CSCOmyapp
UNINSTALLABLE=cmfwd CSCOmyapp
VISIBLE=cwcs cmfwd CSCOmyapp
CHOICE=cwcs cmfwd CSCOmyapp
DEFAULT=ALL

[ADVANCED_CHOICE_1]
ADVANCED_CHOICE_1_CONDITION=cmfwd.1.0.0-1.9.99
ADVANCED_CHOICE_1_TYPE=EXCLUSIVE
ADVANCED_CHOICE_1_DEFAULT=4
ADVANCED_CHOICE_1_1_TEXT=CiscoWorks Common Services (CWCS) Base Desktop
ADVANCED_CHOICE_1_1_TAGS=cmfwd
ADVANCED_CHOICE_1_2_TEXT=CWCS (including Base Desktop)
ADVANCED_CHOICE_1_2_TAGS=cwcs
ADVANCED_CHOICE_1_3_TEXT=myapp Application
ADVANCED_CHOICE_1_3_TAGS=CSCOmyapp
ADVANCED_CHOICE_1_4_TEXT=myapp Application and CWCS
ADVANCED_CHOICE_1_4_TAGS=cwcs cmfwd CSCOmyapp

[ADVANCED_CHOICE_2]
ADVANCED_CHOICE_2_CONDITION=TRUE
ADVANCED_CHOICE_2_TYPE=EXCLUSIVE
ADVANCED_CHOICE_2_DEFAULT=3
ADVANCED_CHOICE_2_1_TEXT=CiscoWorks Common Services (CWCS) Base Desktop
ADVANCED_CHOICE_2_1_TAGS=cmfwd
ADVANCED_CHOICE_2_2_TEXT=CWCS (including Base Desktop)
ADVANCED_CHOICE_2_2_TAGS=cwcs
ADVANCED_CHOICE_2_3_TEXT=myapp Application and CWCS
ADVANCED_CHOICE_2_3_TAGS=cwcs cmfwd CSCOmyapp

For this toc file you need the following:

 – REGISTRY_ROOT provides the key name for component information. The value has been set
for the CWCS release and has to be the same to keep compatibility with CWCS.

Note The NAME parameter in the [RELEASE] section is used to make a name of an executable.
All spaces are replaced by underscores, but parenthesis, comma slashes, and other characters
are not allowed in filenames.

The ADVANCED_CHOICE section determines what is the correct scenario depending on what is
already installed on the target machine. In the case where the target machine has a previous version
of CiscoWorks Common Services (CWCS) Base Desktop already installed, the customer has the
following options:

 – Upgrade to a new version of CiscoWorks Base Desktop

 – Install CWCS 3.0

 – Install the myapp application on top of CiscoWorks Desktop, or
21-107
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
 – Install the application bundled with CMF 3.0.

In the case of a fresh installation, you do not have the option of a separate myapp installation. In this
case, there are only the remaining three options mentioned in the ADVANCED_CHOICE_2 section.

 • The directory myapp/install contains the myapp.bprops and mypp.pkgpr files. The directory
myapp/runtime contains the subdirectories “cgi-bin” and “htdocs”, corresponding to the structure of
similar directories of CWCS to be used by the web server. Substitute the two Perl scripts,
cgi-bin/myapp/myappcgi.pl and htdocs/myapp/myappframe.html, with your application files. The
following files are for linking our HTML and Perl files to the appropriate tree structure of the CWCS
main web page:

 – htdocs\Xml\System\maintree\myapp.xml

 – htdocs\Xml\System\maintree\myappcgi.xml

Each developer must swap their XML files in their place. For details on integrating your application
with CiscoWorks, refer to the “Integrating Your Application with CWHP” section on page 7-6.

 • pkgtools.runtime.tar file is in protopackages directory of the SDK kit.

 • BuildImage file is in the root directory of the SDK kit.

 • makesolpkg file is in the root directory of the SDK kit.

To create a CWCS image, use the sample1.sh in the current directory.

 • Launch sample1.sh with four arguments:

./sample1.sh arg1 arg2 arg3 arg4

where:

 – arg1 is the target directory;

 – arg2 is the directory with files myapp.cd.tar and myapp.runtime.tar (actually current directory)

 – arg3 is the directory with buildImage file

 – arg4 is the directory with pkgtools.runtime.tar file, protopackages tar files, cab-files.

The sample1 file is shown below:

#!/bin/sh
##
INPUT:
1 - Target_dir
2 - myapp_dir
3 - buildImage_dir
4 - proto_dir pkgtools.runtime.tar and protopackages dir
you should use to execute this script
##

if [$# -ne 4]; then
 echo “ERROR:sample2.sh called with insufficient args.”
else
 Target_dir=$1
 myapp_dir=$2
 buildImage_dir=$3
 proto_dir=$4

 rm -rf $Target_dir
 mkdir $Target_dir

 /usr/local/bin/perl $buildImage_dir/buildImage -r -d $Target_dir \
 $proto_dir/pkgtools.runtime.tar \

$myapp_dir/myapp.runtime.tar $myapp_dir/myapp.cd.tar \
$proto_dir/cam.runtime.tar $proto_dir/cmf.runtime.tar \
21-108
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
$proto_dir/cmfj2.runtime.tar $proto_dir/cmfwd.runtime.tar\
$proto_dir/db.runtime.tar $proto_dir/dmgt.runtime.tar \
$proto_dir/eds.runtime.tar $proto_dir/ess.runtime.tar \
$proto_dir/grid.runtime.tar $proto_dir/jawt.runtime.tar \
$proto_dir/jchart.runtime.tar $proto_dir/jext.runtime.tar \
$proto_dir/jgl.runtime.tar $proto_dir/jpwr.runtime.tar \
$proto_dir/jre2.runtime.tar $proto_dir/jrm.runtime.tar \
$proto_dir/logmsg.runtime.tar $proto_dir/lotusxsl.runtime.tar \
$proto_dir/nmcs.runtime.tar $proto_dir/perl.runtime.tar \
$proto_dir/plug.runtime.tar $proto_dir/pxhlp.runtime.tar \
$proto_dir/snmp.runtime.tar $proto_dir/swng2.runtime.tar \
$proto_dir/jext.runtime.tar $proto_dir/vorb.runtime.tar \
$proto_dir/web.runtime.tar $proto_dir/xml4j.runtime.tar \
$proto_dir/xrts.runtime.tar $proto_dir/eds.cab.tar
$proto_dir/jgl.cab.tar $proto_dir/swng2.cab.tar
$proto_dir/vorb.cab.tar

fi

The output of this command is very lengthy. The actual set of tar files may be different from this
example. Here is the result:

#cd <Target Directory>
#ls
autoinstall.sh disk1 extract

 • Now the necessary product (CiscoWorks Base Desktop, CiscoWorks, customer’s application see the
options in ADVANCED_CHOICE section above) can be installed by running setup.sh from the
./disk1 directory.
21-109
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 21 Using the Installation Framework
Solaris Installation Reference
21-110
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 22

Using the Java Plug-in

Java Plug-in (JPI) technology is a Sun Microsystems product that allows Java2 applets to run in web
browsers.

All applets have been removed beginning with this version of CWCS. CiscoWorks Common Services
does not require or depend on a browser VM or JPI technology to provide its services. However, the JPI
is included in the shipping version of CWCS so that applications who do depend on the JPI can deploy
their applets. CWCS includes the extractable EXE file for Windows, and a compressed TAR file and
customized installation script (pam.sh) for Solaris. The software packages are CSCOplug on Solaris and
plug on Windows; at runtime, the JPI installables are located in NMSROOT/htdocs/plugin.

Applications can evaluate whether to use the Java Plug-in depending on their needs. The CWCS JPI team
recommends that developers:

1. Determine if your application’s features really require the JPI.

2. If your application does need it, use only the JPI version supplied with CWCS, and ensure your
application works with that version of the JPI.

3. Do not hard-code the Plug-in version in your JSPs. Instead, pick the JPI version dynamically, as
explained in the “Using the Java Plug-in API” section on page 22-2.

The following topics describe the Java Plug-in support in CWCS and how to use it with your application:

 • About the Java Plug-in Requirements

 • Using the Java Plug-in API

 • Accessing the JPI Configuration from CCR

 • Using Tags Java Plug-in

 • Using Client Local Resources

 • JPI Technology References

About the Java Plug-in Requirements
The Java Plug-in requires specific operating systems, browsers, and patches to run successfully. Both
Solaris and Windows client machines need to have approximately 12 MB disk space for downloading
and installing the Plug-in. On Windows, the C: drive needs to have approximately 10 MB.

Caution It is recommended to uninstall any other versions of the Java Plug-in from the client machine before
installing the CWCS- supported version.
22-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 22 Using the Java Plug-in
Using the Java Plug-in API
Using the Java Plug-in API
The Java plug-in API is available to all applications. This API dynamically substitutes the values of the
plug-in versions used by CWCS clients for Windows and Solaris platforms.

You can use the API to retrieve the Plug-in values by sending the operating system name, as follows:

 • Windows: WIN-IE, WIN-NS

 • Solaris: SOL

For Windows alone, WIN-IE returns the class ID for CWCS Internet Explorer clients and WIN-NS
returns the version to be used by CWCS Netscape clients.

For example:

1. In a JSP file, include com.cisco.nm.cmf.ssl.GetPluginVersion.

2. %=GetPluginVersion.getPluginVersion("WIN-IE")% can be used in places where the class ID for
the Java Plug-in is hard-coded.

3. %=GetPluginVersion.getPluginVersion("WIN-NS")% can be used in places where the type of
EMBED tag for Java Plug-in is hard-coded.

4. %=GetPluginVersion.getPluginVersion("SOL")% can be used in places where the type of EMBED
tag for Java Plug-in is hard-coded.

5. %=GetPluginVersion.getPluginVersion("IE_PLUGINSPAGE")% points to the URL from which the
Plug-in can be downloaded.

You can view these values in the file NMSROOT/lib/classpath/javaplugin.properties.

Accessing the JPI Configuration from CCR
You can retrieve the values of the JPI configuration parameters from the Core Client Registry. CCR will
contain a separate entry for each configuration parameter, as follows:

MDC (Application) Name: Core
Resource Type: Custom
Resource Name: WIN_IE_VERSION

MDC (Application) Name: Core
Resource Type: Custom
Resource Name: WIN_NS_VERSION

Table 22-1 Java Plug-in Requirements

Client OS/Browsers JPI Version System Requirements

Solaris 2.8/Netscape 7.0, Mozilla
1.7.13

Solaris 2.9/Netscape 7.0, Mozilla
1.7.13

1.4.2_10 To obtain patches, see the SunSolve
support website. You will find patch
clusters for Solaris operating system
platforms J2SE Solaris 9 and J2SE
Solaris 8.

Windows 2000/Netscape 7.1/7.2,
Microsoft Internet Explorer 6.0 SP2,
Mozilla 1.7.13

1.4.2_10 No special requirements
22-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/J2SE

CISCO CONF IDENT IAL

Chapter 22 Using the Java Plug-in
Using Tags Java Plug-in
MDC (Application) Name: Core
Resource Type: Custom
Resource Name: SOL_VERSION

MDC (Application) Name: Core
Resource Type: Custom
Resource Name: JavaPluginExe

The CCR resources WIN_IE_VERSION, WIN_NS_VERSION, SOL_VERSION, and JavapluginExe
correspond to the WIN_IE, WIN_NS,SOL, and IE_PLUGINSPAGE parameters discussed in the “Using
the Java Plug-in API” section on page 22-2.

To retrieve a JPI configuration parameter from CCR, use code like the following:

CCREntry ccrentry = new CCREntry("Core", "Custom", "Custom", "", "", "WIN_IE_VERSION");
CCRResponse ccrresponse = ccrinterface.retrieveEntry(ccrentry);
ccrentry = (CCREntry)ccrresponse.getReturnedValues().elementAt(0);
String resourceData = ccrentry.getResourceData();

You can query WIN_NS_VERSION, SOL_VERSION, and JavaPluginExe in the same way.

Using Tags Java Plug-in
To use the Java Plug-in, you must change your HTML pages to use Sun's JRE via the Java Plug-in
software. Sun provides an HTML converter tool with the Sun JPI SDK. This tool automatically makes
the necessary changes to the HTML web pages. For more information about the HTML converter tool,
see http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/html_converter_more.html.

The tagging structure that the JPI requires, including the correct OBJECT and EMBED tags, is explained
in the Sun Java Developer Guide chapter “Using OBJECT, EMBED and APPLET Tags in Java Plug-in”
(see http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html).

Developers must ensure that the correct HTML tags have been used for each browser (EMBED for
Netscape and OBJECT tag for Microsoft Internet Explorer). Otherwise, the Java Plug-in is not used and
the applet is started using the browser's default Java Virtual Machine. After downloading and installing
the Java Plug-in software from the CWCS Server, the applets would continue to execute under the Java
Plug-in for any pages that are converted to use the Java Plug-in.

Using Client Local Resources
To allow each client to use its local resources (such as printing and cut/copy/paste), you must use the
clientservices13.jar file, as follows:

 • The clientservices13.jar file is located in NMSROOT/www/classpath. Applications need to
download this version of the clientservices13.jar with the applets that need access to local resources.

 • Applications may need to sign the application JAR file. Contact the Release Engineering team for
details on doing this.
22-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/html_converter_more.html

CISCO CONF IDENT IAL

Chapter 22 Using the Java Plug-in
JPI Technology References
JPI Technology References
The following external references may assist your understanding of Sun’s implementation of the Java
Plug-in.

 • Sun main plug-in page: http://java.sun.com/products/plugin/

 • Technical documentation: http://java.sun.com/j2se/1.4.2/docs/guide/plugin/index.html

 • Applet caching:
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/applet_caching.html

 • Standard extension versioning: http://java.sun.com/products/plugin/versions.html

 • Related jar indexing:
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/jar_indexing.html
22-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://java.sun.com/products/plugin/
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/jar_indexing.html
http://java.sun.com/products/plugin/versions.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/applet_caching.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/index.html

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 23

Using the Diagnostic and Support Utilities

CWCS provides diagnostic and customer-support utilities that:

 • Help customers collect data about their CWCS installations and the applications installed with them.

 • Give Cisco developers and technical support staff the information they need to resolve customer
problems more quickly.

The following topics describe these utilities:

Using Collect Server Info
The Collect Server Info utility allows customers to quickly collect all-in-one information about the state
of their CWCS Servers.This module is implemented as a Perl script. This script uses all OS-specific
commands to get system information, process information and memory information. The following
topics describe how to use this utility:

 • What Data Does Collect Server Info Gather?

 • Customizing Collect Server Info

 • Running CollectServerInfo

What Data Does Collect Server Info Gather?
Collect Server Info collects the following information:

 • System identity, including name, type, network data.

 • System configuration. This includes:

See this Topic For Information on this Utility

Using Collect Server Info Collect Server Info: Gathers all-in-one information about the state
of the CWCS Server.

Using the MDC Support Utility MDCSupport: Collects diagnostic output into a zip file.

Using SNMP Set and Walk SNMP Set and Walk: SNMPwalks a device to troubleshoot or gather
information about that device.

Using Packet Capture Packet Capture: Captures live data from the CiscoWorks Server.

Using Logrot Logrot: Rotates log files.
23-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Collect Server Info
 – Network settings

 – CWCS Server name

 – Shared secret

 – TIBCO RVRD IP address

 – Root account enable/disable

 – Notification settings (where CWCS sends its notifications)

 – Cluster management

 – SMTP server name

 – NTP configuration

 – Security configuration

 – Backup history configuration

 – Application settings

 • Software installed on the system, with detailed information about packages.

 • Web server configuration and status.

 • Servlet engine configuration and status.

 • Database status and configuration with the sizes of database files.

 • Process status and service status log files. If log files are very big, only the last portions could be
collected (for example, the last 300 records).

Customizing Collect Server Info
To add your application’s troubleshooting information to the Collect Server Info utility:

Step 1 Create and add a shell script or perl file to the $NMSROOT/collect directory. This file will collect your
application-specific information. For example, myInfo.exe.

Step 2 Add a text file named myInfo.txt containing the following lines to the $NMSROOT/collect directory:

Name=My
Option=my
Descr=My Status
Order=A3

Running CollectServerInfo
To run CollectServerInfo:

Step 1 From the CWHP, select Server > Diagnostics > Collect Server Info. The Collect Server Information
page displays.

Step 2 Click Create to view a list of options such as web server, operating system, and process status.
23-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using the MDC Support Utility
Step 3 Select the options by clicking in the appropriate boxes, then Finish. To collect your application-specific
information, click on the checkbox for MY Information. If MY Information does not appear, perform
the steps in the “Customizing Collect Server Info” section on page 23-2.

The Collect Server Information page refreshes with a link to the server information report.

Step 4 Click on the hyperlink to view the report.

Using the MDC Support Utility
The MDC support utility is a console application written in C++. It allows users enter an optional
command line argument (the output path/location of where the zip file should be located) to collect
diagnostic output into a zip file.

The resulting zip file consists of SQL DB files, Core Client Registry (CCR) files, configuration and log
files of Apache and Tomcat, Core log file, WinNT event logs and System information like host details,
memory, disk, and network details. The utility can also:

 • Run other support utilities registered by applications with CCR.

 • Register these other utilities with the CCR.

MDCSupport in Core provides the same information as the Collect Server Info utility, and also provides
information by executing the application-specific executables registered with CCR.

The following topics describe how to use this utility:

 • About the MDC Support Utility Requirements

 • What Data Does the MDC Utility Collect?

 • Registering Alternative MDC Support Utilities

 • Running MDC Support

About the MDC Support Utility Requirements
There are no disk space requirements for MDC Support other than the room required for the zip file.

What Data Does the MDC Utility Collect?
The MDC Support utility collects the following information:

 • SQL database files under <CoreRoot>\Sybase\Db*

 • CCR file <CoreRoot>\etc\regdaemon.xml

 • Schema files under <CoreRoot>\etc

 • Apache (web server) configuration and log files located at:

 – <CoreRoot>\apache\conf*

 – <CoreRoot>\apache\log*

 • Tomcat configuration and log files (the servlet container technology standard at Cisco, currently
deployed on the CCI environment), and the XML file located at:
23-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using the MDC Support Utility
 – <CoreRoot>\tomcat\conf*

 – <CoreRoot>\tomcat\log*

 – <CoreRoot>\tomcat\mdc\web-inf\web.xml

 – <CoreRoot>*.log: Log file created when Tomcat crashes, containing a stack trace.

 • Log files registered with CCR for Core under <CoreRoot>\MDC\log, including the audit and
operation logs

 • Installation log files of the form cw*.log found in the System drive

 • Registry subtree: [HKEY_LOCAL_MACHINE][SOFTWARE][Cisco][MDC]

 • Windows NT event logs:

 – System event log file

 – Application event log file

 • Host environment information:

 – OS version/NT service packs

 – Physical RAM

 – Disk Space on all volumes

 – Computer Name

 – Virtual Memory size

Note The MDCSupport utility also queries CCR for any other, alternative support utilities and runs them
automatically if they are registered. For more information, see the “Registering Alternative MDC
Support Utilities” section on page 23-4.

Registering Alternative MDC Support Utilities
You can have the MDC Support utility automatically run other, alternative MDC support utilities and
include their output in the MDCSupportInformation.zip file. To do this, register the alternative support
utility with the Core Client Registry using the following command:

Name ccraccess

Runtime
Location

The location of the support utility.

Syntax

ccraccess -addMDC mdcName mdc_root_dir

ccraccess -addResource mdcName Custom Custom support_utility_path EMPTYSTRING
MDCSupportExecutable

Arguments

The utility registered takes two arguments:

 • The first argument is the core installation directory (usually $NMSROOT/MDC).

 • The second argument is the directory in which the MDC’s support utility needs to add all the data it
wants zipped by the MDCSupport utility.

Tip To make it easier to identify the files coming from each MDC, it is highly recommended that each
MDC create a temporary directory inside this directory and put all the files there.
23-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using the MDC Support Utility
When MDCSupport is run (with no arguments):

1. MDCSupport creates a temporary directory: <CoreRoot>\etc\mdcsupporttemp

2. MDCSupport collects all requested data

3. MDCSupport queries CCR and finds that SampleMDC has a utility registered, and creates a process:
C:\\apps\\MDC\\SampleMDC\\bin\\SampleMDCSupport.exe and passes it the two arguments
<CoreRoot> and <CoreRoot>\etc\mdcsupporttemp. (Note that the two arguments are full paths).

4. SampleMDCSupport creates a SampleMDC directory under mdcsupporttemp dir, and adds all the
files it needs to this directory.

5. MDCSupport zips the contents of mdcsupporttemp and then deletes mdcsupporttemp and all of its
contents.

Running MDC Support
The MDCSupport.exe utility is a console application that takes one optional command-line argument:
the output path and location where the resulting zip file should be created. If you do not specify a value
for this argument, the output is created in <CoreRoot>\etc.

The output consists of an MDCSupportInformation.zip file. An MDCSupport.log text file in the zip
package acts as a log of what has been collected and notes any errors encountered. Other information in
the file includes:

 • The time the support tool was run.

 • The Core version installed.

 • The installation location of Core.

 • The System path.

 • Host environment information.

 • Other MDCs support utilities executed.

To run MDCSupport.exe:

Step 1 If there is enough space on the disk where the MDC suite is installed, enter the following on the
command line (with no arguments):

MDCSupport.exe

The file MDCSupportInformation.zip file is created in the <CoreRoot>\etc directory.

Example

If SampleMDC is installed at C:\apps\MDC\SampleMDC:

1. Register MDC with CCR:

ccraccess -addMDC SampleMDC C:\\apps\\MDC\\SampleMDC

2. Register support utility with CCR:

ccraccess -addResource SampleMDC Custom Custom
C:\\apps\\MDC\\SampleMDC\\bin\\SampleSupport.exe EMPTYSTRING MDCSupportExecutable

Name ccraccess
23-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using SNMP Set and Walk
Step 2 If you use another disk to store the temporary files and the output, enter the output path and location
where the resulting zip file should be created. For example:

MDCSupport D:\temp

The file MDCSupportInformation.zip is created in the D:\temp directory.

Using SNMP Set and Walk
Use SNMP Set and Walk to troubleshoot or gather information about a device. The following topics
describe how to use this utility:

 • About the SNMP Set and Walk Requirements

 • Running SNMP Set and Walk

 • Updating the MIBs for SNMP Walk

Note This tool is intended for customers running CiscoWorks and is designed to integrate with CWCS.

About the SNMP Set and Walk Requirements
 • Supported versions: CiscoWorks CD One, CD One 2nd edition, CD One 2nd Edition Patch 1, CD

One 3rd Edition, CD One 4th Edition, CD One 5th Edition, or CiscoWorks Common Services 2.2
and 3.0.

 • Supported platforms:

 – Windows2000 Server with SP2 (Pentium III & 4)

 – Windows2000 Advanced Server (not configured as either a Domain Controller or a Terminal
Server) (Pentium 4)

 – Sun Solaris 7 and 8 (2.7 and 2.8) (UltraSPARC II, IIi, IIe, III, and IIIc)

 • All prerequisites for CiscoWorks must be met for both client and server.

Running SNMP Set and Walk
SNMP Set and Walk fetches credentials from the CWCS Device Credentials Repository (DCR), if
available. Otherwise, it assumes the default credentials for SNMP v1/v2c.

Step 1 Using your web browser, log in to CiscoWorks as local administrator.

Step 2 You must launch the SNMP Set and Walk tools from the Device Center:

To launch SNMP Set:

a. Select CiscoWorks HomePage > Device Trouble Shooting > Device Center.

b. Enter an IP address or select one from the Device Selector list.

c. Select Go. The Tools column shows the list of available tools.
23-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using SNMP Set and Walk
d. Select SNMP Set.

To launch SNMP Walk:

a. Select CiscoWorks HomePage > Device Trouble Shooting > Device Center.

b. Enter an IP address or select one from the Device Selector list.

c. Select Go. The Tools column shows the list of available tools.

d. Select SNMP Walk.

Step 3 Enter the following information:

.

Step 4 To run SNMP Walk, select Ok. SNMP Walk will start the walk based on the parameters you entered. A
full walk may take a long time, so be patient.

SNMP Set requires two additional fields:

Field Description

Object ID, Instance ID
or number

Either an IP address or a hostname. If it is a hostname, the hostname must
resolve correctly either through DNS, local hosts file, or NIS.

Note WINS has not been tested and is not supported.

Note The device does not need to be in RME’s inventory or discovered on
the Campus Manager topology map.

community string This can be either a read-only community string, a read-write string, or a
read-write-all string. Remember, it is case-sensitive!

Note Do not use this field if you are using SNMPv3.

SNMPv3 user,
password, and
authentication protocol

For SNMPv3 users only. If you are not using SNMPv3, leave these fields
blank.

Note SNMPv3 support is for authNoPriv only at this time.

starting object ID Optional: The point in the MIB tree where you want to start the walk. If this
field is left blank, SNMP Walk will start the walk from:

 • For SNMP Set, you can specify multiple OIDs.

 • For SNMP Walk, you can enter only one OID.

translate results Optional: If you check this box, all OIDs will be shown numerically instead
of translated. This can help troubleshoot issues that require the sysObjectID.

SNMP timeout Optional: The SNMP timeout (default = 10 seconds).

version The version of SNMP to use. Anything that is a 64-bit counter must be
queried with v2c or v3.

Field Description

object type The type of object to be set. You can select the object type from the
drop-down list.

new value The new value to be set for the object.
23-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Packet Capture
To set multiple objects, fill in all the required fields, then click Next. Repeat this until you are ready to
send the SETs to the device. At this point, each SET goes into its own packet.

Updating the MIBs for SNMP Walk
By default, SNMP Walk uses the MIBs found in the installed nmidb.jar. This jar file is found in
$NMSROOT/nmim/nmidb.

If a newer nmidb jar file is downloaded from CCO, you can run the $NMSROOT/bin/upgradeJTMibs.pl
script to add those MIBs to SNMP Walk.

To run the script:

 • On Windows platforms, enter:

C:\> $NMSROOT\bin\perl $NMSROOT\bin\updateJTMibs.pl <path to nmidb.zip>

(where $NMSROOT is the path where CiscoWorks is installed)

For example:

C:\> C:\Progra~1\CSCOpx\bin\perl C:\Progra~1\CSCOpx\bin\updateJTMibs.pl
C:\nmidb.1.0.025.zip

 • On UNIX platforms, enter:

/opt/CSCOpx/bin/updateJTMibs.pl <path to nmidb.zip>

For example:

/opt/CSCOpx/bin/updateJTMibs.pl /tmp/nmidb.1.0.025.zip

Using Packet Capture
Use the Packet Capture utility to capture live data from the CiscoWorks machine. This utility is intended
for customers running CiscoWorks and is designed to integrate with CWCS.

Note Packet Capture is a troubleshooting tool. It should not be used a general-purpose sniffer.

The following topics describe how to use this utility:

 • About the Packet Capture Utility Requirements

 • Running Packet Capture

About the Packet Capture Utility Requirements
 • Supported versions: CiscoWorks CD One, CD One 2nd edition, CD One 2nd Edition Patch 1, CD

One 3rd Edition, CD One 4th Edition, CD One 5th Edition, Common Services 2.2 and 3.0
23-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Packet Capture
 • Supported platforms:

 – Windows2000 Server with SP2 (Pentium III & 4)

 – Windows2000 Advanced Server (not configured as either a Domain Controller or a Terminal
Server) (Pentium 4)

 – Sun Solaris 7 and 8 (2.7 and 2.8) (UltraSPARC II, IIi, IIe, III, and IIIc)

 • All prerequisites for CiscoWorks must be met for both client and server.

Running Packet Capture
To run the Packet Capture utility:

Step 1 If you are using one of the supported Windows platforms: Install winpcap.exe in
NMSROOT/objects/jet/bin directory. The version of winpcap.exe is 3.0 and is intended for use with
Windows only.

Step 2 Using your web browser, log in to CiscoWorks as Admin.

Step 3 To launch Packet Capture:

a. Select CiscoWorks HomePage > Device Trouble Shooting > Device Center.

b. Enter an IP address or select one from the Device Selector list.

c. Select Go. The Tools column shows the list of available tools.

d. Select Packet Capture.

Step 4 The currently-archived capture files are displayed. (If no capture files have been archived, a message will
indicate that there are no capture files.) From this screen, you can:

 • Create a new capture

 • Delete an existing capture file

Step 5 Select Create to configure which packets should be captured.

a. If you have multiple interfaces on the machine, select the interface on which you wish to capture
packets. The Address(es) field accepts one or more addresses (separated by a single space) to match
when capturing.

b. You can configure the protocol and port on which to capture (the default), or you can select from the
pre-configured list of common CiscoWorks applications.

 – Protocols and ports: Select the protocols (TCP, UDP, or ICMP) you would like included in the
capture. Then enter the list of ports to capture on for TCP and UDP. The Port(s) field accepts
one or more TCP or UDP ports (separated by a single space).

 – Pre-configured list of common CiscoWorks applications: Select Application, then select one or
more applications from the list.

c. Specify when to stop the packet capture. You can choose to terminate the capture:

 – After a set amount of time. By default, the capture stops after 60 seconds (1 minute).

 – After the filter has captured a certain amount of data.

 – After a certain number of packets have been captured.

Step 6 While the capture is running, an applet will update the number of packets captured and capture size in
real time. To stop the capture before the auto-stop condition is met, click Stop.
23-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Logrot
Step 7 Each capture is saved on the server in the NMSROOT/htdocs/jet directory. The files are created in binary
libpcap format with a .jet extension. You can use your web browser to download these files, then email
them to the TAC for further analysis.

Remarks

 • On Solaris platforms, Packet Capture installs a setuid root binary in /opt/CSCOpx/objects/jet/bin.
This binary is only executable by users in the casusers group, but if this is still too risky, consider
revoking its setuid privileges until you need to use it.

 • Packet Capture is only accessible to CiscoWorks users that have System Administrator (admin)
privileges. It is not recommended that you change this.

Using Logrot
The logrot utility is a log rotation program designed for use with CiscoWorks. While it depends on
CiscoWorks being installed on the same machine, logrot is not limited to rotating only CiscoWorks log
files. You can use logrot to rotate any file you wish.

The logrot utility has some unique advantages over other log rotation programs:

 • It can rotate logs while CiscoWorks is running or it can shut down CiscoWorks before rotating the
logs.

 • It can optionally archive and compress rotated logs.

 • It can be configured to rotate logs only when they have reached a certain size.

 • It has a built-in configurator that makes adding new files very easy.

The following topics describe how to use Logrot:

 • Configuring Logrot

 • Running Logrot

 • Using Logrot Command Line Switches

 • Troubleshooting Logrot

Configuring Logrot
To configure Logrot:

Step 1 Navigate to the logrot directory:

 • On Windows platforms, enter:

C:\> NMSROOT\bin\perl.exe NMSROOT\bin\logrot.pl -c

 • On UNIX platforms, enter:

/opt/CSCOpx/bin/logrot.pl -c

Step 2 Select Edit Variables and enter the following information:
23-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Logrot
Step 3 Return to the main menu, then select Edit Log Files.

Step 4 Enter the following information:

Running Logrot
Logrot is typically run as a UNIX cron or Windows AT job.

Step 1 Before automating logrot, verify that it runs on-demand:

 • To run logrot on UNIX platforms, enter:

Variable Description

backup directory The backup directory must already exist. If you do not set a backup directory,
then each log will be rotated in its current directory.

restart delay Optional: Daemon Manager restart delay.

Field Description

log file location Enter the full path to the logfile. If the full path is not entered, the default
logfile path for your operating system is prepended (for example,
/var/adm/CSCOpx/log on UNIX).

Tip To add multiple logfiles at once, use ‘*’ in the file name. The ‘*’
character matches zero or more characters in a filename.

Note You must use DOS file names when specifying the logfile path on
Windows.

archives to keep Enter the number of archive revisions to keep. If you don't want to keep any
archives, enter 0 for this option.

file size Enter the maximum file size in kilobytes (KB). The log will not be rotated
until this size is reached.

compression option Allowable options are:

Z—The archived file will be compressed using UNIX compress(1).

bz2—The archived file will be compressed using bzip2 (available by default
on Solaris 8 and above only).

gz—The archived file will be compressed with GNU gzip (available by
default on Windows only).

blank—On Windows platforms, the only valid values are to leave this option
blank or set it to gz.

restart delay How long to wait (in seconds) before proceeding after the Daemon Manager
is shut down. This option is only used if logrot is run from the command line
using the -s switch (see the “Using Logrot Command Line Switches” section
on page 23-12). The default delay is 60 seconds.
23-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Logrot
/opt/CSCOpx/bin/logrot.pl

 • To run logrot on Windows platforms, enter:

NMSROOT\bin\perl.exe NMSROOT\bin\logrot.pl

Step 2 The following commands will run logrot every day at 1:00 AM. The UNIX cron line will also send all
output of the command to root via email.

 • To set up cron on UNIX, enter:

0 1 * * * /opt/CSCOpx/bin/logrot.pl 2>&1 | /usr/lib/sendmail root

 • To set up AT on Windows, enter (all on one line):

at 01:00 /every:M,T,W,Th,F,S,Su C:\progra~1\CSCOpx\bin\perl.exe
C:\progra~1\CSCOpx\bin\logrot.pl

This assumes CiscoWorks is installed in the default location on Windows.

Using Logrot Command Line Switches
The logrot utility accepts the following command-line switches:

Troubleshooting Logrot
The following topics can help you troubleshoot the logrot utility:

 • Verifying Files and Time Cycles

 • Verifying Scheduled Tasks

 • Viewing the Scheduled Jobs Log File

 • Verifying Logrot Status

 • Known Problems with Logrot

Verifying Files and Time Cycles

You can run the at command from the command prompt to see if the files specified and the time cycles
are correct. For example:

C:\Documents and Settings\Administrator>at

Switch Description

-v Output verbose messages.

-s Shut down dmgtd (the Daemon Manager) before rotating the logs. This can be a
safer way of performing log rotations (see the “Known Problems with Logrot”
section on page 23-13).

Note To specify the restart delay, see the “Configuring Logrot” section on
page 23-10.

-c Re-run the configurator. This option can be specified at any time.
23-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Logrot
will produce output similar to this:

Status ID Day Time Command Line

13 Each M T W Th F S Su 8:22 PM C:\progra~1\CSCOpx\bin\perl.exe C:\progra~1\CSCOpx\bin\logrot

Verifying Scheduled Tasks

To verify scheduled tasks on the server, select Start > Settings > Control Panel > Scheduled Tasks.
There should be an AT job present, AT<ID> (for example, AT13), that can be verified for correctness.

Viewing the Scheduled Jobs Log File

To look at the scheduled jobs log file:

1. Select Start > Settings > ControlPanel > Scheduled Tasks.

2. Select the AT job.

3. Select Advanced > View Log.

Verifying Logrot Status

To see if logrot is failing, run it from the command line using the -v (verbose) flag.

Known Problems with Logrot

After shutting down Daemon Manager when rotating daemons.log online, you may find that the
daemons.log fills up with a lot of NUL (^@) characters. This is a side-effect of online log rotation.
Daemon Managert should archive this file for you when it restarts. This does not cause any application
problems, and can be worked around by doing an offline rotation of daemons.log.

When reporting problems, please include the verbose output of logrot (use the -v switch) as well as the
logrot.conf file. The logrot.conf file can be found in /opt/CSCOpx/objects/logrot on UNIX and in
NMSROOT\objects\logrot on Windows.
23-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 23 Using the Diagnostic and Support Utilities
Using Logrot
23-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 24

Using SNMP Services

CWCS provides support for SNMPv1, SNMPv2c, and SNMPv3.

SNMPv3 support is new in this version of CWCS. SNMP v3 support enhances the security of SNMP
operation over the existing support for the SNMPv1/v2c model. It provides the degree of authentication
and privacy required to perform network management operations securely.

CWCS SNMPv3 support allows you to:

 • Address threats like information modification, masquerade, and disclosure and message stream
modification.

 • Do SNMP requests using SNMPv3.

 • Automatically discover SNMP engine parameters.

 • Get and Set SNMPv3 engine parameters.

 • Handle SNMPv3-related error conditions.

 • Set the number of outstanding requests.

 • Automatically re-localize keys.

 • Use existing support for SNMPv1/SNMPv2c.

The following topics describe how to use CWCS SNMP Services with your application:

 • Why SNMPv3?

 • How SNMP Support Works

 • Using CWCS SNMP Services

For basic information on CWCS SNMP Services, see the “About SNMP Service Components” section
on page 6-15.

For more information about CWCS SNMP Services, see:

 • SNMPOnJava: Changes for SNMPv3 (authNoPriv)DS: EDCS-309325

Why SNMPv3?
SNMPv3 is included in this release of CWCS to address threats not addressed in the existing
SNMPv1/v2c model:

 • Information Modification: An entity can alter an in-transit message generated by an authorized
entity in such a way as to effect unauthorized management operations, including the setting of object
values.
24-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 24 Using SNMP Services
How SNMP Support Works
 • Masquerade: Management operations not authorized for some user may be attempted by assuming
the identity of an authorized user.

 • Disclosure: An entity can eavesdrop on the exchanges between managed agents and a management
station and thereby learn the values of managed objects or learn of trap events.

 • Message Stream Modification: The SNMP is designed to operate over a connection- less transport
service, which may operate over any sub-network service.There is a threat that SNMP messages
could be reordered,delayed,or duplicated to effect unauthorized management operations.

The SNMPv3 security model addresses the above threats in the following ways:

 • Verify that each received SNMP message has not been modified during its transmission through the
network.

 • Verify the identity of the user who generates the SNMP requests.

 • Detect received SNMP messages requesting or containing management information, whose time of
generation was not recent.

Note For more information on the User-based Security Model (USM) for SNMPv3, refer to RFC
3414.

How SNMP Support Works
Figure 24-1 shows a high-level system flow for CWCS support of SNMP. The names of classes that were
changed to handle SNMPv3 features are shown in red.
24-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 24 Using SNMP Services
Using CWCS SNMP Services
Figure 24-1 CWCS Support for SNMP

Using CWCS SNMP Services
CWCS SNMPv3 allows the user to work in the authNoPriv mode of the SNMPv3 security model.This
mode provides packet-level security, integrity protection, and replay protection. SNMPv3 support is
enabled automatically by passing an SNMPv3 credential to the SNMPOnJava library. The flow of
SNMPv3 is intermingled with that of SNMP v1/v2c.

CWCS SNMPv1/v2c/v3 support is provided in the SNMPOnJava library.This library provides a series
of APIs for applications to use.The SNMPOnJava library is divided into two main sections:

 • The main library: Contains the bulk of the main classes dealing with SNMP. For a summary of the
classes in this library, see the “About the SNMP Classes in the Main Library” section on page 24-4.

 • The futureapi: Contains credentials-oriented classes and future extensions. For a summary of the
classes in this library, see the “About the SNMP Classes in the Futureapi” section on page 24-5.

SnmpParameters, SnmpParam,
SnmpV3Param SnmpParameters

SnmpSession1 SnmpSession2

Snmp Peer

SNMP Library Layer

SnmpReqEventHandler.java,
SnmpRequest.java,
SnmpParsePdu
SnmpV3ParsePdu
SnmpResponseHandler.java

SnmpRequest,
SnmpConstructPdu,
SnmpV3ConstructPdu

SNMP Internal Layer

SNMP Engine Thread

Socket and Network Layer

 172.20.4.10

Network Layer

R1
R1

R1

13
00

47
24-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 24 Using SNMP Services
Using CWCS SNMP Services
For details on each of the classes available in the SNMPOnJava library, see:
http://mspring-u10.cisco.com/cvw/MOJO/packages.html.

The main features of CWCS support for SNMPv3 include:

 • SNMPv3 is available for all applications.

 • New APIs are available to get user credentials from applications.

 • Applications can directly calculate the localized key from the user password.

 • Applications can compute the local notion of an Agent's engine time.

 • Automatic re-localization of keys.

 • New APIs to expose the SNMPv3-engine-related parameters and localized keys to applications.

 • Applications can pass SNMP-engine parameter information and localized keys to the library.

 • Backward compatibility with the existing SNMP v1/v2c library.

Note SNMP engine parameters are SnmpEngineID, SnmpEngineTime, SnmpEngineBoots, and local
notion of Agent's time.

About the SNMP Classes in the Main Library
The main library contains the classes shown in Table 24-1.

.
Table 24-1 SNMPOnJava Classes: Main Library

Class Description

SnmpRequest Responsible for creating a SNMP request for one or more SNMP operations. In SNMPv3,
these classes do SNMP engine parameter discovery like getting the SnmpEngineID,
SnmpEngineBoots, and SnmpEngineTime values from the device.They also provide
authentication check in addition to error handling.

SnmpPeer Contains information about the peer, such as the IP address, port number,and parameters like
maximum request packet size, maximum number of varbinds, and the permissible
outstanding requests to which the SNMP call is to be sent. In SNMPv3, these classes hold
the SnmpEngineID.

SnmpParameters Contains information about credentials(community strings in case of v1/v2c)and the
protocol version for an SNMP session. In SNMPv3 ,it holds SNMPv3 credential.

SnmpParam The base class for all credential-related classes.

Snmpv3Param Represents the SNMPv3 credential fields. It contains methods and constructors to get
credential information from the user.

SnmpMain Initializes the SNMP environment, which contains default settings for every SNMP call. The
initialization tasks include the number of threads for making SNMP calls, mamimum retry,
maximum timeout, protocol version, request packet size, retry policy, etc. In SNMPv3, this
class holds a new propertyto specify the maximum number of outstanding requests for a peer.

SnmpReqEventhandler Handles the inherent asynchronous nature of SNMPOnJava. This class calls appropriate
methods in other classes to process responses from the Agent. In SNMPv3, this class handles
SNMPv3-specific conditions, such as unknown Engine ID, authencity of the received
message, etc. It checks the response and updates the SNMP Engine parameters.
24-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://mspring-u10.cisco.com/cvw/MOJO/packages.html
http://mspring-u10.cisco.com/cvw/MOJO/packages.html

CISCO CONF IDENT IAL

Chapter 24 Using SNMP Services
Using CWCS SNMP Services
About the SNMP Classes in the Futureapi
The futureapi library contains the classes shown in Table 24-1.

SnmpMultiplexReqDispatcher Multiplexes one or more SNMP v1/v2c requests. It also prevents multiplexing SNMP v1/v2c
and SNMPv3 requests.

Snmpv3ConstructPdu Constructs the raw SNMPv3 message by translating the higher level information in
SnmpRequest and SnmpParameters to the low-level byte stream information required by the
device. It encodes the SNMPv3 message parameters – such as msgVersion, msgID,
msgSecurityModel, SnmpEngineTime,SnmpEngineBoots, SnmpEngineId,
msgAuthentication Parameters(digest), msgUserName, and others – to form a portion of the
SNMPv3 message. Encoding the contextEngineName, contextEngineId, and the SNMPv2c
PDU forms the remaining portion of the SNMPv3 message.

Snmpv3ParsePdu Parses the raw SNMPv3 PDU received from the device for SNMPv3 message parameters,
such as msgVersion, msgID, msgSecurityModel, SnmpEngineTime and SnmpEngineBoots,
SnmpEngineId, msgAuthentication Parameters(digest), msgUserName, etc.

Snmpv3Param Allows you to assign and fetch SNMPv3 credentials from applications. These include
username, mode of SNMPv3 operation, authentication password, the context Engine ID and
the context name.

SnmpResponseHandler Receives the raw datagram object from the Java socket. It forwards the datagram to the
appropriate PDU-handling classes, like SnmpV3ParsePdu and SnmpV2cParsePdu, for
further processing of the received response.

Table 24-1 SNMPOnJava Classes: Main Library (continued)

Class Description

Table 24-2 SNMPOnJava Classes: Futureapi Library

Class Description

SnmpCommunityLoader TheSnmpCommunityLoader class supports the file based SNMPv1/v2c and SNMPv3
credentials.

SnmpCommunity class TheSnmpCommunity class stores v1/v2c and v3 credentials in its data structures.It also
provides methods to assign and fetch the credentials.

SnmpPeerManager class The SnmpPeerManager class allows you to create and fetch session along with the
credential for a device. It also allows you to get the credential directly instead of getting
it from theSnmpCommunity class.

SnmpCommand class The SnmpCommand class allows users to pass their credentials during runtime.It also
provides applications a better control to handle the SNMP call.

SnmpFuture class TheSnmpFuture abstract class is the base class for all future objects handling SNMP
operations. In SNMPv3, this class has been modified to handle SNMPv3-specific
errors. The BouncyCastle library (a third-party library) is used to perform MD5/SHA-1
digest calculation.
24-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 24 Using SNMP Services
Using CWCS SNMP Services
24-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 25

Using NT Services

The CWCS NT Services (CSCOsvc) are part of the CWCS Base Services, which include basic CWCS
components necessary to support a web-based application. These components include the CWCS web
server, CWCS security, the Tomcat servlet engine, and the JRE.

The CWCS NT Services contain NT support for communication services commonly available on UNIX.
The services provided here are TFTP, RCP, TELNETand Syslog.

The following topics describe how to use CWCS NT Services with your application:

 • Understanding CWCS NT Services

 • Using CWCS NT Services

For basic information on CWCS NT Services, see the “About NT Service Components” section on
page 6-15..

For more information about CWCS NT Services, see:

 • Mjollnir - CMF 2.3 System Functional Specification: (EDCS-283137)

 • Mjollnir - CMF 2.3 PRD (EDCS-263430) l

 • Config Transport Subsystem: System Functional Specification (ENG-16050)

 • Rigel CMF:System Functional Specification (ENG-30118)

Understanding CWCS NT Services
This topic covers basic information about the following CWCS NT Services

 • About the NT TFTP Service

 • About the NT Telnet Service

 • About the NT Service APIs

 • About the NT RCP Service

 • About the CRMLogger Service

With this release of CWCS, NT Services has had the following changes:

 • Limited remote access (for example, FTP, RCP, RSH) to the CWCS Server is provided to those users
who are permitted to log in to the CWCS Server.

 • The Syslog NT Service must support a continuous burst of at least 1,000 messages per second for
one hour only. It should support at least 200 messages per second under normal conditions.
25-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Understanding CWCS NT Services
 • For the RSH service, the length of the rhosts and rusers keys should not exceed 2 KB. This is the
recommendation given by Microsoft.

CWCS NT Services are base services, enabled by default; no explicit request for this bundle is required.

Network service bundles include System service bundles. If you enable Network services, all System
service bundles are also enabled.

If your application needs a system or network service, then you must register the required service layer.
For example, if your application needs the Sybase engine, then your application will need to register the
system services layer of CWCS. This layer may contain many other services that you do not need, but
you must register that layer to get any services from that layer (see the “Registering for CWCS Services”
section on page 5-4).

About the NT TFTP Service
The TFTP transport mechanism is based on the SNMP set and get operations, using the SNMP library
available with CWCS. TFTP can be used for catalyst devices and for IOS devices. TFTP cannot be used
to get the startup configuration except under special circumstances (for some high-end devices for a
particular setup). The transport subsystem uses the CWCS Tftpserver application. It obtains required
environment information (including the location of the tftpboot directory and the location of the MIB
data file for the MIB objects used in the SNMP operations) from the CWCS environment variables.
Table 25-1 shows the set of MIB objects used for various transport operations.

About the NT Telnet Service
The telnet transport mechanism creates the telnet session for the device using telnet passwords and
enable passwords from the CWCS database. For the telnet service to work, your application inventory
must have all the relevant access parameters. You can use the TELNET services for both for IOS and
catalyst devices. Table 25-2 shows the commands used to perform each transport operation.

Table 25-1 MIB Objects Used for TFTP

Operation
IOS Devices
v10.3 & earlier

IOS Devices
v11.3

Catalyst Devices
v10.3 & earlier

Catalyst Devices
v11.3

GetRunning
Configuration

WriteNet/OLD-CISC
O-MIB

COPY-COFIG-TABLE TftpGrp/CISCO-STAC
K-MIB

TftpGrp/CISCO-
STACK-MIB

GetStartupConfiguration Same as
RunningConfiguration

COPY-CONFIG-TABLE Invalid Invalid

UpdateRunning
Configuration

NetConfigSet/OLD-C
ISCO-SYSTEM-MIB

COPY-CONFIG-TABLE TftpGrp/CISCO-STAC
K-MIB

TftpGrp/CISCO-
STACK-MIB

RunningToStartup
Configuration

WriteMem/OLD-CIS
CO-SYSTEM-MIB

COPY-CONFIG-TABLE Invalid Invalid

Overwrite Startup
Configuration

WriteMem/OLD-CIS
CO-SYSTEM-MIB

COPY-CONFIG-TABLE Invalid Invalid

Reload Device TsMsgSend/OLD-CIS
CO-SYSTEM-MIB

COPY-CONFIG-TABLE TftpGrp/CISCO-STAC
K-MIB

TftpGrp/CISCO-
STACK-MIB
25-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Understanding CWCS NT Services
About the NT Service APIs
CWCS provides APIs for these operations:

 • GetRunningConfig: This API is used to get the running configuration of the device.

 • GetStartupConfig: This API is used to get the startup configuration. This method might not be valid
for all the devices and for all the transport mechanisms.

 • UpdateRunningConfig: This API is used to update the running configuration on a device.

 • WriteRunningToStartup: This API is used to write the running configuration to the startup
configuration.

 • OverwriteStartupConfig: This API is used to overwrite the startup config of the device. This API is
not valid for catalyst switches and for tftp.

 • ReloadDevice: This API is used to reload the device. This API will be used to reload the device after
changing the startup config.

 • ExecuteCommand: This API use the telnet interface to execute given CLI commands on the remote
device and returns the output received from the device as a String array. The commands are executed
after entering the enable mode on the device.

 • CopyToStartupConfig: This API over writes the startup configuration file of the remote device with
the give configuration file. This API uses both telnet and the TFTP interfaces.

 • openTelnetLogin: This API performs the telnet credentials check for successful entry into device
telnet session at the login mode.

About the NT RCP Service
The RCP transport mechanism is the RCP client implementation for the transport operations to receive
or update a device’s configuration. You can use RCP to get both the startup and running configuration,
but it supports IOS-based devices only.

The remote device needs to be configured with the local user, remote host, and remote user, using the
following set of IOS commands:

configure terminal
ip rcmd rcp-enable
ip rcmd remote-host local-username {ip-address | host} remote-username enable

Table 25-2 Telnet Operations and IOS/Catalyst Commands

Operations IOS Devices Catalyst Devices

GetRunning Configuration write term write term

GetStartupConfiguration show config Invalid

UpdateRunning Configuration config term Set commands

RunningToStartup Configuration write mem Invalid

Overwrite Startup Configuration write erase write mem Invalid

Reload Device reload reset
25-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Understanding CWCS NT Services
RCP allows file copy between machines. RCP achieves this through remote command execution over
RSH. RCP uses the local, remote username along with machine addresses to authenticate access to the
remote machine; it does not need any additional password.

CWCS provides a basic RCP client. Using this service, you can copy files between local and remote
machines. The service assumes that the remote machine is running an RCP server and proper
permissions are set on the remote machine for remote access.

Table 25-3 describes the important RCP objects and methods.

Table 25-3 RCP Objects and Methods

Object Description

Rcp Object Rcp object provides methods to copy a file to and from the remote host. It creates a new RCP
session for each copy operation and terminates the session once the copy operation is complete.

Rcp() This is the Rcp Object constructor. It accepts remote host, rcp port, local username, remote
username and rcp timeout. Throws an RcpException if any of values passed are null or timeout
value is set to zero.

openConnection() This a private method of Rcp Object that creates a RcpSocket connection to the remote host. This
method also sets the timeout value of the connection.

closeConnection() This a private method of Rcp Object that closes the existing Rcp connection to the remote host.

copyFromRemoteHost() This method accepts remote and local filename. It opens a new Rcp connection to the remote
host, copies the specified file from remote to local machine and closes the Rcp connection.
Throws RcpException in case of any error.

copyToRemoteHost() This method accepts remote and local filename. It opens a new Rcp connection to the remote
host, copies the specified file from local to remote machine and closes the Rcp connection.
Throws RcpException in case of any error.

RcpSocket This a wrapper over a normal Socket class that provides buffering for input and output streams
of the socket.

RcpSocket() This constructor accepts a remote machine IP address, port number and timeout value. It opens
a socket connection to remote machine on specified port and initializes the buffered streams of
the connection.

close() Closes the socket connection to the remote machine.

read() Reads a byte or array of bytes from the socket.

readLine() Reads a character line from the socket.

write() Writes a string or array of bytes to the socket.

sendOK() Sends a OK response to remote host.

expectOK() Expects if the response from the remote host is <OK> (i.e. “0”). If it is not <OK> throws an
exception with the message passed by remote host.

RcpException RcpException will be used to signal any error condition occurring during the Rcp protocol
operations.

RcpException() Constructor of RcpException class. It accepts a message describing the details of exception.
25-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Understanding CWCS NT Services
About the CRMLogger Service
CRMLogger is a common syslog collector that performs on Windows much the same services as syslogd
performs on Solaris:

 • It runs independently.

 • It listens for syslogs from devices.

CRMLogger benefits applications by removing the syslog processing load and requiring devices to send
only one copy of a syslog. While CRMLogger runs independently, it can run either remotely or locally
on the machine where an application is running. For more details on the design of CRMLogger, see the
Common Syslog Collector Software Functional Specification, EDCS-272409.

In this version of CWCS, CRMLogger has been writtenin C++/Java. It can be run as a Windows service
or a command line tool. Installation of CRMLogger performs the registry key changes shown in
Table 25-4 automatically.

The default values shown in Table 25-4 are suitable for receiving 200 messages per second. In order to
improve the performance up to 1,000 syslogs per second(at the network level), we need to tune the
assigned values of the keys shown in Table 25-5.

Table 25-4 CRMLogger Registry Keys

Key Description

ClassPath Sets the class path for CRMLogger’s jakartha-oro and Java files.

CrmDnsResolution Sets name resolution on or off. The default value is 0 (disabled). To enable DNS, set it to 1.

CrmLogPort Sets the CRMLogger listening port. The default is 514.

CrmMaxHeapSize Sets the maximun heap size for JVM. The default value is 256 MB.

CrmMinHeapSize Sets the minimum heap size for JVM. The default value is 128 MB.

CrmMsgCount Sets the number of messages to be read in one shot. The default is 256 messages.

DebugFile Sets the name and path of the CRMLogger debug file. The default is
NMSROOT\log\syslog_debug.log.

DebugLevel Sets the CRMLogger debug message level. Settings of 2 and 4 are the only ones permitted; the
default is 4. A setting of 2 means aggressive debugging, which will output all CRMLogger activities
to the file specified in DebugFile. A setting of 4 means only warning messages are output.

FlushIntervalInMills Sets the message flush interval (default value is 1 minute).

LogFile Sets the name and path of the file that contains the processed syslog. The default value is
NMSROOT\log\syslog.log.

MaxFlushCount Sets the maximum processed messages allowed in the low-level buffer. The default is 100.

ProcessorThreadCount Number of threads required for parsing messgaes according to RFC 3164. The default value is 5.

QueueCapacity Sets the maximum size of the internal queue. This queue contain the unprocessed syslog messages
from UDP socket. The default value is 100000. If the CrmMsgCount is 256, then the queue can
contain upto 256 * 100000 messages.

SystemPath Sets the path of the JRE.

UDPBufferSize Sets the size of the UDP socket queue. The default is 15360 bytes.

UdpProcessorCount Sets the number of threads required for reading messages from the UDP socket. The default value
is 5.
25-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Using CWCS NT Services
To further optimize the I/O performance on the CRMLogger side, we have to consider tuning the values
of FlushIntervalInMills and MaxFlushCount. The MaxFlushCount or FlushIntervalInMills decides when
to write the processed syslog messages into the syslog.log file. Messages are written into the file when
either of the parameters reached the limits specified in the registry.

If you need to troubleshoot CRMLogger, try the following:

1. Go to the NMSROOT\bin folder and, using the console, stop the CRMLogger service. Then enter
crmlog at the command prompt to launch CRMLogger from the command line. This is espeically
helpful if you suspect the trouble is due to problems with the Java environment.

2. Reset the DebugLevel registry key value to 2 and restart CRMLogger. This will allow you to see
every CRMLogger operation.

Using CWCS NT Services
At installation, use the packaging information (.info) file to register for CWCS service bundles. CWCS
services should be requested only by a suite, not a package.

Certain APIs are implemented by the installation team and can be used in package-specific hooks (install
shell scripts for Windows).

Registering and Controlling NT Services

This is a set of functions and constants that allows to you to register and control NT Services.

Service Types

Use the following constants to specify Service Types:

 • SERVICE_WIN32_OWN_PROCESS

 • SERVICE_WIN32_SHARE_PROCESS

 • SERVICE_WIN32

 • SERVICE_INTERACTIVE_PROCESS

Service Start Types

Use the following constants to specify Service Start Type:

 • SERVICE_BOOT_START

 • SERVICE_SYSTEM_START

Table 25-5 Tuning CRMLogger for 1,000 Syslogs/Second

Set this parameter To this value

UDPProcessorThreads 7

RFCProcessorThreads 5

MaxFlushCount 2048

UDP Buffer Size 20 MB

CrmMsgCount 512
25-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Using CWCS NT Services
 • SERVICE_AUTO_START

 • SERVICE_DEMAND_START

 • SERVICE_DISABLED

Windows Services Functions

Use the following functions to register and control NT Services:

 • RegisterService, page 25-7

 • UnregisterService, page 25-7

 • StartService, page 25-8

 • ChangeServiceStartType, page 25-8

 • ChangeServiceAccount, page 25-8

 • ChangeService2Casuser, page 25-9

 • StopService, page 25-9

RegisterService

prototype RegisterService (STRING,STRING,STRING,LONG,LONG);

Registers new NT Services.

Arguments

UnregisterService

prototype UnregisterService(STRING);

Unregisters NT Services.

Arguments

Field Type Description

1 STRING
(input)

Service name

2 STRING
(input)

Service display name

3 STRING
(input)

Path name of executable

4 LONG
(input)

Service type. Choose from service type constants
list (see Service Types, page 25-6).

5 LONG
(input)

Service start type. Choose from service start type
constants list (see Service Start Types, page 25-6).

Field Type Description

1 STRING
(input)

Service name
25-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Using CWCS NT Services
StartService

prototype StartService(STRING);

Starts NT Services immediately.

Arguments

ChangeServiceStartType

prototype ChangeServiceStartType(STRING, LONG);

Changes service start type.

Arguments

ChangeServiceAccount

prototype ChangeServiceAccount (szServiceName, accountName,
accountPassword);

Changes the service account. Use this function after the services is created (see RegisterService,
page 25-7).

Arguments

Related Topics

 • ChangeService2Casuser, page 25-9

Field Type Description

1 STRING
(input)

Service name

Field Type Description

1 STRING
(input)

Service name

2 LONG
(input)

Service start type. Choose from service start
type constants list (see Service Start Types,
page 25-6).

Field Description

szServiceName The name of the service.

accountName The account for the service to run as. To modify the service
to run as LocalSystem account, the value should be
“.\LocalSystem” (without quotes, and remember to escape
the backslash).

accountPassword The password for the account. Leave this empty if the
account is LocalSystem.
25-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Using CWCS NT Services
ChangeService2Casuser

prototype ChangeService2Casuser(STRING, POINTER);

This function reconfigures a service to run as casuser. This relieves the developer from the need to fetch
the value of the casuser password, which is maintained by the Daemon Manager. This function can only
be used after the Daemon Manager has been installed.

Arguments

Return Values

0 if successful.

Example

This function is implemented in secure.dll, which is a part of the installation framework. Therefore, a
call to this function must be framed with the UseDll/UnUseDll calls. For example:

if (UseDLL(SUPPORTDIR ^ “secure.dll”) != 0) then
MessageBoxLog(“Cannot load secure.dll”, SEVERE);

endif;
ChangeService2Casuser(“myService”, NULL);
UnUseDll(SUPPORTDIR ^ “secure.dll”);

StopService

prototype StopService(STRING, NUMBER);

Stops service.

Arguments

Notes

 • In preinstalls, use RM_STOPSERV_DELAYED. The installer does not stop services immediately;
instead, it collects the list of services to stop.

 • After all preinstalls are executed, the installer asks the user for confirmation and stops all requested
services at once. In addition, the installer stops all services that were requested to be stopped.

 • In all hooks other than preinstall, use the RM_STOPSERV_IMMEDIATELY mode.

Field Type Description

1 String The name of the service.

2 Pointer The pointer to the string that contains the
password. Specify NULL to use the password
stored by the Daemon Manager.

Field Type Description

1 STRING
(input)

Service name

2 NUMBER
(input)

Stop mode. Options:

 • RM_STOPSERV_IMMEDIATELY

 • RM_STOPSERV_DELAYED
25-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 25 Using NT Services
Using CWCS NT Services
Writing Messages to Log Files

There are two types of log files:

 • The Process Manager log contains information regarding process start, termination, and Process
Manager warning and error messages.

 • The Application log stores information logged by an application. To write a message to the
application log, direct the output to stderr/stdout.

The location of the log files is determined by the operating system:

 • On Windows platforms:

 – The Process Manager log is located under NMSROOT/log/syslog.log.

 – Each application has its own application log under NMSROOT/log.

 – The application log has same name as the application with the extension.log.

 • On Solaris platforms:

 – The Process Manager log is located at /var/adm/CSCOpx/log/dmgtd.log.

 – All applications share the same application log:

/var/adm/CSCOpx/log/daemons.log.
25-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 26

Using Device Center

CWCS Device Center provides an interface to invoke tools on a selected device from a single page. All
information, tasks and reports for the device are made available at a single location. From the Device
Center page, you can perform a variety of activities on a selected device, including:

 • Change the device attributes

 • Update device inventory

 • Telnet to the device

 • Launch Element Management tools, reports, and other management tasks.

The following topics explain Device Center and how to use it with your application:

 • Understanding Device Center

 • Using Device Center With Your Application

For basic information on Device Center, see the “About Device Center Components” section on
page 6-15.

For more information about Device Center, see:

 • CMF 2.3 PRD, EDCS 263430

 • CMF 2.3 System Functional Specification, EDCS-283137

 • CMIC Software Functional Specification, EDCS 123728

 • Device Center Functional specification, EDCS-285151

 • Device Center Usage Guidelines, EDCS-323423

 • CMIC System Function Specifications, EDCS-123728

 • CMIC API Definitions document, EDCS-133481

Understanding Device Center
The information displayed on the Device Center comes from the CMIC registry. Applications register
their management services with CMIC registry by defining a Management Service Template (MST),
which has all the service URLs in a predefined XML format. The URLs, that need to be displayed on the
Device Center, are tagged by keywords defined by the Device Center. The Device Center queries CMIC
registry for these defined tags and the matched URLs will be shown in the Device Center.
26-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Understanding Device Center
The information shown in Device Center is controlled by registrations with CMIC. This provides
scalability in terms of features as and when installed (registered) with CMIC without any changes to the
Device Center.

The following topics provide additional detail on:

 • What You Can Do With Device Center

 • About Device Center Launch Points

 • What’s Inside Device Center

 • About Device Center Dependencies

 • About the Device Center Runtime Structure

 • About the Device Center User Experience

What You Can Do With Device Center
The Device Center allows you to:

 • Provide and carry forward the features and functions that are generic troubleshooting tools based on
what CWCS provides (for example, Ping and Traceroute)

 • Operate on the devices managed by applications local to the server.

 • Provide a device selector that allows the users to select a device from a list-tree as well as to select
a device by entering its address or name.

 • Provide a summary report on the selected device in addition to displaying available features and
functions that can be launched against that device for troubleshooting or per-single device
management purposes.

 • Provide appropriate external APIs (through CMIC) for other products and applications to register
and include additional Device Center features.

About Device Center Launch Points
You can launch Device Center using any of the following:

 • User launches the Device Center main page from the CWHP and selects a device.

 • Bookmark Device Center URL and launch directly from browser window.

 • Device Center for a device from one of the application’s functions (such as reports). For example,
user launches Device Center by clicking the Device name from RME Inventory Reports.

 • Third party applications by passing the device context as a parameter. Currently this is done from
HPOV and Netview.

CiscoWorks users can launch the Device Center page either from the overview screen or from
applications, directly calling the Device Center URL.

What’s Inside Device Center
Device center contains the following modules:

 • Device Selector—The Device Selector module populates the devices for selecting them in Device
Center.
26-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Understanding Device Center
 • CMIC Interface—The CMIC Interface module is used to query the CMIC registry to get the list of
local URLs or links for those applications that has to appear in the main Device Center screen.

 • Summary Handler—The Summary Handler module provides the device summary content in the
Device Center. The device summary provides a basic snapshot summary about the device. For
example, Last Reload Date, Last configuration change etc.

 • Reports Handler—The Reports Handler module provides the list of the reports that can be launched
for a selected device.

 • Tools Handler—The Tools Handler module provides the list of debugging tools that can be used with
the device. This module helps to debug device related problems.

 • Tasks Handler—The Tasks Handler module provides the list of management tasks that can be
performed on the Device.

 • Security Module—The Security module helps to find whether the logged in user is authorized to
perform the selected task.

 • UII Rendering Module—The UII module gets the inputs from the Security module and displays the
output using the browser in the Desired Format.

Figure 26-1 shows how Device Center concentrates application features on a single page.

Figure 26-1 Device Center Architecture

About Device Center Dependencies
Device Center depends on the following modules.

Device Center Page

Device Summary

Tools Reports Management
Tasks

DCR OGS PIDM CMIC Registry

Device Filtering

Application 1

Application 1Device
Selector

Device Information Application-Device Mapping
Application
Information

12
01

78
26-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Understanding Device Center
About the Device Center Runtime Structure
Device Center files are placed under:
$NMSROOT/MDC/tomcat/webapps/cwhp/WEB-INF/classes/com/cisco/nm/cmf/devicecenter

JSP files related to Device Center are placed under the following directory:

$NMSROOT/MDC/tomcat/webapps/cwhp/screens/devicecenter

All Action classes are placed under the following directory:

$NMSROOT/MDC/tomcat/webapps/cwhp/WEB-INF/classes/com/cisco/nm/cmf/devicecenter/action

All Form Bean classes are placed under the following directory:

$NMSROOT/MDC/tomcat/webapps/cwhp/WEB-INF/classes/com/cisco/nm/cmf/devicecenter/actionfor
m

All Utility classes are placed under the following directory:

$NMSROOT/MDC/tomcat/webapps/cwhp/WEB-INF/classes/com/cisco/nm/cmf/devicecenter/util

About the Device Center User Experience
User experience of Device Center varies depending on the following factors:

 • User launches Device Center link from CWHP

A device selector and message that guides the user to the Device Center is shown in the content area.
Device selector displays a list of devices managed by various applications that have registered links
that can be shown in the Device Center on that server.

 • Only CWCS is installed on the local Server

The Device Center will not display the device selector as there are no applications managing any
device. The user can type IP address or host name in the field provided. It will display default tools
that are provided with the Common Services.

 • Applications (RME, CM, and VHM) are installed on the local server and the user selects a
device that is not managed by VHM

Device Center shows links pertaining to RME and CM only. There will be no VHM links for the
device.

Table 26-1 Device Center Dependencies

Module Dependency

CMIC To get the registered URL and APIs.

UII User interface components.

Security Services Authentication and authorization. Uses CAM.

Apache and Tomcat Web server and servlet container.

Logging Service Logging and debugging.

Device Credential Repository (DCR) Fetching the list of devices and credentials.

PIDM Information on Device-Application mapping.

OGS Information on device grouping.
26-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
User selects a particular device that is managed by RME. A sub-task Config-Archive is shown
which does not handle or support the device. In such cases, the respective task should display an
appropriate error message.

 • Two applications have redundant information to show in summary page

All the content that goes in to the Device Center will be finalized and approved by the Device Center
team in consultation with the application teams. The summary information should not be duplicated.

 • For a selected device if there are no tools/tasks to show, but if there are summary information
and reports

The relevant sections are displayed. In this case the summary information is displayed with the
Reports.

 • More than one application has summary information to show

The summary information is grouped by applications. The user can click on an application to see
the summary. When the user clicks on the summary, only the summary part of the page is refreshed.

Using Device Center With Your Application
The following topics describe how to integrate Device Center into your application:

 • Launching Device Center

 • Registering Your Application With Device Center

 • About Device Center Integration Tags

 • Understanding PIDM

Launching Device Center
The Device Center appends two parameters to the link that the application has specified for the task in
the CMIC MST file. The parameters are:

deviceID = <String value of DCR Device ID [DeviceId.getValue()] >
deviceIP = <IP address or identity attribute of the Device [such as hostname]>
device = <Display name of the Device>

The applications should take these parameters and perform the required operations. For example, if the
MST entry is

<TASKINFO TaskName="Chassis View" TaskIdentity="t002" TaskDescription="Device Management
" TaskCategory="O" TaskSubCategory="O/admin" SecurityTag="read" TaskURL="/CVng/chassis.do"
SubmitMet
hod="GET" IsAPI="true">
 <INTEGRATIONTAG TagName="DC_MANAGEMENT_TASKS">
 </INTEGRATIONTAG>
</TASKINFO>

The Device Center Link for this task is,
“/CVng/chassis.do?deviceID=12&deviceIP=10.77.210.22&device=test-pc”. This information is
displayed in Device Center as a link with the name Chassis View under the sub-group Management
Tasks.
26-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
By default, all windows launched from the links in Device Center will not have Tool Bars and Menu
Bars. If you want to display the pages of the application with Toolbars or Menu bars, the applications
need to specify this in their application MST file as attributes for the each task:

<ATTRIBUTES Name="DC_TOOLBARS" Value="yes"/>
<ATTRIBUTES Name="DC_MENUBARS" Value="yes"/>
<ATTRIBUTES Name=" DC_LOCATIONBARS" Value="yes"/>

For each link with these attributes, the Device Center window will be launched with a Tool bar and Menu
bar.

Your application can launch Device Center by passing the URL in one of the following formats:

http://host:port/cwhp/device.center.do?DeviceID = <Device ID in String format
{DeviceId.getValue()}>

or

http://host:port/cwhp/device.center.do?device = <IP Address or display name of the System>

The Tools, Tasks, Reports & Summary for a particular Device can be launched in three ways:

 • Select a device from the Device Selector.

 • Enter a device IP address or device name in the text box provided, then click the Go button.

 • Pass the device context as parameters for applications.

Registering Your Application With Device Center
Device Center does not have separate registration. It uses the CMIC registry to get the information on
the applications.

To register an application with the Device Center:

Step 1 Create a valid MST Template.
26-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
The MST Template is an XML file that lists all the tasks and URLs that the application intends to expose
for integration with other components and applications. For more information on MST Template see the
“About the Device Center MST” section on page 26-7.

To use the MST Template for the Device Center, the template must contain Device Center Tags. For more
information on Device Center Tags see the “About Device Center Integration Tags” section on
page 26-14.

The application should be a Cisco application in order to register with the Device Center. This can be set
in the MST file with an IsCisco=”true” tag.

Step 2 Register the MST Template with CMIC. For details on this, see Chapter 9, “Integrating Applications
with CMIC”

Step 3 Provide mapping information about the devices managed by your application to the PIDM. Fore more
information on PIDM, see the “Understanding PIDM” section on page 26-17.

Step 4 Provide necessary privileges to the links.

To provide privileges to the links, do a Task-Role mapping using SecurityTag attribute in the MST
Template.

About the Device Center MST

The Management Service Template (MST) is organised under the tags, APPLICATIONRECORD,
VENDORINFO, TASKGROUP, TASKINFO, and WSDL.

All attributes common to the applications are grouped under APPLICATIONRECORD.

Table 26-2 Attributes Under APPLICATIONRECORD

Attribute Description

AppName Application Name of the management service.
For example, Campus Manager, Resource Manger
Essentials.

AppVersion Application Version of the management service.
For example, 4.0, 3.5.

AppDescription Brief description about the application

IsCiscoCertified Specifies whether the application is Cisco
certified. This field is reserved for future use.
Leave it blank.

IsCisco Specifies whether the application vendor is Cisco.

SecurityServiceIdentifier The value of this field corresponds to how this
application is identified when authorizing tasks of
this application in Security context. Also known
as “service Name” in the security tasks
registration file. This is needed if some
integration application wants to authorize URLs.

AppURL The application level URL relative to the home
page.

Leave the field blank if the application does not
have an AppURL.
26-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
The vendor details of the applications are captured under the VENDORINFO tag. The table provides
description of the attributes under VENDORINFO. The only mandatory attribute is VendorName.

The following table describes the attributes under VENDORINFO.

All task attributes under an application are described in TASKINFO tag. An application can have
multiple tasks associated with it. Each task is associated with one or more TASKGROUP in a nested
manner. The task group indicates the functional hierarchy of the task starting from the first
TASKGROUP tag. This allows multiple tasks to be grouped in a functional hierarchy.

Note It is not necessary for a task to have a group hierarchy.

The following table describes the attributes under TASKINFO and TASKGROUP.

Host, Port, And Protocol These fields are left empty when the template is
created; the API takes these as parameters while
registering a service and fills them during the
registration.

Modified Time, Modified User These fields are left empty during template
creation and are filled by CMIC during
registration.

Table 26-2 Attributes Under APPLICATIONRECORD

Attribute Description

Table 26-3 Attributes Under VENDOR INFO

Attribute Description

VendorName Name of the application vendor.

Address Contact address

Phone Phone number

Fax Fax number

E-mail E-mail address

ContactURL Contact URL of the vendor

SupportURL Support URL of the vendor

Table 26-4 Attributes under TASKINFO and TASKGROUP

Attribute Description

TaskName Name of the task

TaskCategory This a broad category under which the task falls.
The categories are Fault, Configuration,
Accounting, Security, Performance, and Other.

A task can be associated with one or more broad
categories.
26-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
Applications that need a closer integration with other applications should tag their tasks using the
INTEGRATIONTAG.

For example, Device Center generates various reports on a device and finds out all such applications that
can generate reports. It then defines an integration tag (say DC_REPORT). All the applications that
generate reports will specify an element INTEGRATIONTAG with following attributes of their tasks.

A task can be associated with one or more integration tags. INTEGRATIONTAG element has the
following attributes and sub-elements:

ATTRIBUTES is a sub-element of the integration tag. The attribute element has two attributes (Name
and Value). This element is used to specify custom attributes for the integrating component (Device
Center and Cisco Works Home Page). The tag notifies some specific parameters to the integrating
component.

Each task has a Web Services Description Language (WSDL) tag. WSDL is an XML format for
describing network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format to define an endpoint.

TaskSubCategory The attribute sub category under which the task
falls. A task can be associated with one or more
sub categories.

SubmitMethod The submit method for the task.

The method can be of type Get or Post.

IsAPI Indicates whether the task is a URL based API

TaskURL URL of the task relative to web root.

SecurityTag This tag is applicable to those services
(CiscoWorks applications) that register their tasks
with CiscoWorks security services.

Security service allocates a unique identifier to
recognize each individual tasks. The identifier
allocated by security services should be a value of
this attribute when the individual services create
their MST. This attribute acts as a key between the
CMIC registry and the security. This can be used
to validate a set of tasks with security by passing
security Tags.

Table 26-4 Attributes under TASKINFO and TASKGROUP

Attribute Description

Table 26-5 Attributes under INTEGRATION TAG

Attributes Description

Tag Name The value of this field depends on the component
you want this task to get integrated with. E.g.
DC_REPORT, CWHP_TASK etc.
26-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow
description of endpoints and their messages regardless of what message formats or network protocols
are used to communicate.

The information captured using WSDL will decide the input for the services, the output, and the format
of the input and output. WSDL has a comprehensive way of defining a web service.

Sample Device Center MST

Example 26-1 shows a sample MST suitable for use with Device Center.

Example 26-1 Device Center MST

<?xml version="1.0" encoding="UTF-8"?>
<!-- All information common to all tasks put here -->
<APPLICATIONRECORD AppName="Resource Manager Essentials" AppVersion="4.0"
AppDescription="An application remotely managing the devices in network "
IsCiscoCertified="true" IsCisco="true" Protocol="" Host="" Port="1" ModifiedTime=""
ModifiedUser="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="D:\Saras\CMIC\Docs\cmic_template.xsd">
<!-- Vendor related information -->
<VENDORINFO VendorName="Cisco Systems" Address="300 East Tasman Drive, San Jose
California" Phone="408 526-822" Fax="526 8222" Email="tac@cisco.com"
ContactURL="http://www.cisco.com" SupportURL="http://www-tac.cisco.com"/>
<!-- Task level information starts -->

<TASKGROUP GroupName="RME">
<TASKGROUP GroupName="SWIM">
<TASKINFO TaskName="Add Image" TaskCategory="C" TaskSubCategory="C/image"

SecurityTag="rme.swim.addimage" IntegrationTag="CWHP_FUNC_TASK" TaskURL="/rme/addImage.do"
SubmitMethod="GET" IsAPI="false">
<!-- Type definitions -->
<types>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="deviceContext">
<xsd:sequence>

<xsd:element name="deviceIP" type="xsd:string"/>
<xsd:element name="WriteCommunity" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

</types>
<!-- Message definitions -->
<message name="AddImageRequest">

<part name="DeviceContext" type="deviceContext"/>
</message>

<!-- Port type definitions -->
<portType name="AddImagePortType">

<operation name="AddImage">
<input message="AddImageRequest"/>

</operation>
</portType>
<!-- Binding definitions -->

<binding name="AddImageHTTPGetBinding" type="AddImagePortType">
<http:binding verb="GET"/>
<operation name="AddImage">

<http:operation location="AddImage"/>
<input>

<http:urlEncoded/>
</input>
26-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
<output>
<mime:content type="text"/>

</output>
</operation>

</binding>
</definitions>

<xsd:element name="deviceIP" type="xsd:string"/>
<xsd:element name="WriteCommunity" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

</types>
<!-- Message definitions -->
<message name="AddImageRequest">

<part name="DeviceContext" type="deviceContext"/>
</message>
<!-- Port type definitions -->
<portType name="AddImagePortType">

<operation name="AddImage">
<input message="AddImageRequest"/>

</operation>
</portType>
<!-- Binding definitions -->

<binding name="AddImageHTTPGetBinding" type="AddImagePortType">
<http:binding verb="GET"/>
<operation name="AddImage">

<http:operation location="AddImage"/>
<input>

<http:urlEncoded/>
</input>
<output>

<mime:content type="text"/>
</output>

</operation>
</binding>
</definitions>
</WSDL>

</TASKINFO>
</TASKGROUP>
</TASKGROUP>

</APPLICATIONRECORD>

MST XML-Schema

Example 26-2 shows a sample XML-Schema for a Device Center MST.

Example 26-2 Device Center MST XML Schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="APPLICATIONRECORD">
 <xs:complexType >
 <xs:sequence>
 <xs:element ref="VENDORINFO"></xs:element>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="TASKGROUP" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="TASKINFO" minOccurs="1" maxOccurs="unbounded"/>
 </xs:choice>
26-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
 </xs:sequence>
<xs:attributeGroup ref="ApplicationRecordAttributes"> </xs:attributeGroup>
 </xs:complexType>
 </xs:element>
<xs:element name="VENDORINFO">
 <xs:complexType>
 <xs:attributeGroup ref="VendorInfoAttributes"></xs:attributeGroup>
 </xs:complexType>
 </xs:element>
<xs:element name="TASKGROUP">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="TASKGROUP" minOccurs="0" maxOccurs="unbounded"></xs:element>
 <xs:element ref="TASKINFO" minOccurs="0" maxOccurs="unbounded"></xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="TaskGroupAttributes"></xs:attributeGroup>
 </xs:complexType>
 </xs:element>
<xs:element name="TASKINFO">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="INTEGRATIONTAG" minOccurs="0" maxOccurs="unbounded"></xs:element>
 <xs:element ref="WSDL" minOccurs="0" maxOccurs="1"></xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="TaskInfoAttributes"></xs:attributeGroup>
 </xs:complexType>
 </xs:element>
<xs:element name="INTEGRATIONTAG">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ATTRIBUTES" minOccurs="0" maxOccurs="unbounded"></xs:element>
 </xs:sequence>
 <xs:attribute name="TagName" type="xs:string" default="required"></xs:attribute>
 </xs:complexType>
 </xs:element>
<xs:element name="WSDL">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace=http://schemas.xmlsoap.org/wsdl/ minOccurs="0"
maxOccurs="unbounded" processContents="lax"></xs:any>
 </xs:sequence>
 <xs:attribute name="Version" type="xs:string"></xs:attribute>
 </xs:complexType>
</xs:element>
<xs:element name="ATTRIBUTES">
 <xs:complexType>

<xs:attribute name="Name" type="xs:string" use="required"></xs:attribute>
 <xs:attribute name="Value" type="xs:string" use="required"></xs:attribute>
 </xs:complexType>
</xs:element>
<xs:attributeGroup name="ApplicationRecordAttributes">
 <xs:attribute name="AppName" type="xs:string" use="required"/>
 <xs:attribute name="AppVersion" type="xs:string" use="required"/>
 <xs:attribute name="TemplateVersion" type="xs:string" use="required"/>
 <xs:attribute name="AppDescription" type="xs:string"/>
 <xs:attribute name="DisplayName" type="xs:string"/>
 <xs:attribute name="AppURL" type="xs:string"/>
 <xs:attribute name="AppURLWindowName" type="xs:string"/>
 <xs:attribute name="Host" type="xs:string"/>
 <xs:attribute name="Port" type="xs:integer"/>
 <xs:attribute name="Protocol" type="xs:string"/>
 <xs:attribute name="ModifiedUser" type="xs:string"/>
 <xs:attribute name="ModifiedTime" type="xs:string"/>
 <xs:attribute name="IsCisco" type="xs:boolean" default="true"/>
26-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
 <xs:attribute name="IsCiscoCertified" type="xs:string"/>
 <xs:attribute name="SecurityServiceIdentifier" type="xs:string"/>
 </xs:attributeGroup>
<xs:attributeGroup name="VendorInfoAttributes">
 <xs:attribute name="VendorName" type="xs:string" use="required"/>
 <xs:attribute name="Address" type="xs:string"/>
 <xs:attribute name="Phone" type="xs:string"/>
 <xs:attribute name="Fax" type="xs:string"/>
 <xs:attribute name="Email" type="xs:string"/>
 <xs:attribute name="ContactURL" type="xs:string"/>
 <xs:attribute name="SupportURL" type="xs:string"/>
 </xs:attributeGroup>
<xs:attributeGroup name="TaskInfoAttributes">
 <xs:attribute name="TaskName" type="xs:string" use="required"/>
 <xs:attribute name="TaskIdentity" type="xs:string" use="required"/>
 <xs:attribute name="TaskCategory" type="xs:string"/>
 <xs:attribute name="TaskDescription" type="xs:string"/>
 <xs:attribute name="TaskSubCategory" type="xs:string"/>
 <xs:attribute name="SecurityTag" type="xs:string"/>
 <xs:attribute name="TaskURL" type="xs:string" use="required"/>
 <xs:attribute name="TaskURLWindowName" type="xs:string" />
 <xs:attribute name="SubmitMethod">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="GET"/>
 <xs:enumeration value="POST"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="IsAPI" type="xs:boolean" default="false"/>
</xs:attributeGroup>
<xs:attributeGroup name="TaskGroupAttributes">
 <xs:attribute name="GroupURL" type="xs:string"/>
 <xs:attribute name="GroupURLWindowName" type="xs:string"/>
 <xs:attribute name="GroupName" type="xs:string" use="required"/>
 <xs:attribute name="DisplayName" type="xs:string"/>
 <xs:attribute name="SecurityTag" type="xs:string"/>
</xs:attributeGroup>
</xs:schema>

Creating and Registering the MST With CMIC

To create and register an MST:

Step 1 Create an MST.

The MST is an XML file which follows a specific MST XML-Schema.

Step 2 Copy the MST to the <directory where you have installed CWCS>
/objects/data/cmf/cmic/mst-templates.

Step 3 Enter relevant information for the CMIC registration in Application registration page. You can access
Application Registration from CWHP.
26-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
About Device Center Integration Tags
For an application to show its links in Device Center, the application tasks must be tagged with Device
Center integration tags. Table shows the integration tags for Summary, Tools, Reports and Management
Tasks.

The application tagging shown in Example 26-3 will cause a “Monitoring Console” link to appear under
the Tasks group in Device Center.

Example 26-3 Integration Link

 <TASKINFO TaskName="Monitoring Console" TaskIdentity="t001"
TaskDescription="Console monitoring traps in network" TaskCategory="F"
TaskSubCategory="F/admin" SecurityTag="nm.dfm.monitor" TaskURL="/dfm/monitor.do"
SubmitMethod="GET" IsAPI="false">
 <INTEGRATIONTAG TagName=" DC_MANAGEMENT_TASKS ">
 </INTEGRATIONTAG>
 </TASKINFO>

Application teams must create the template with appropriate values. The template must be sent to
mst-police@cisco.com. This alias comprises all the component integration owners. They will assist the
application team in crreating a valid template and checking for syntactical errors and they would provide
suggestions to improve the template. The review-team will not validate the content. They will only
validate syntax and check if appropriate tags are provided for integration with their respective
components.

Currently the identified integration component owners are Cisco Works Home page team (cwhp-dev),
and the Device center team (devcenter-dev).

About UII Rendering Module

Note The UII module uses UII version 6.0 for the final output.

The following table summarizes the various Device Center Integration tags:

Table 26-6 Device Center Integration Tags

Integration Tag Purpose

DC_DEVICE_SUMMARY Links to the Device Summary section

DC_TOOLS Links to the Tools section

DC_REPORTS Links to the the Reports section

DC_MANAGEMENT_TASKS Links to the Tasks section
26-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
Providing Summary Information

For Tools, Reports and Management Tasks, Device Center will display the links for the corresponding
tasks. The case is different with Summary. Device Center will read data from the backend using the
Summary URLs and display the information in the html format. It is the application’s responsibility to
provide the respective summary information.

Device Center will send the following three parameters appended with the link the application has
specified for the Summary link in the MST file:

deviceID = < String value of DCR Device ID [DeviceId.getValue()] >
deviceIP = < IP address or identity attribute of the Device >
device= < Display name of the device >

The application must take these parameters and provide the Summary information in the block format
shown in Example 26-4.

Example 26-4 The Summary Data Format Block

<!--Block-->
<tr>
 <TD align="right" bgColor="#cecfce" >

Name

 </TD>
 <TD align="left" bgColor="#e1e1e1">

Value

 </TD>
</tr>
<!--EndBlock-->

Normally, the application will need to use multiple copies of the block shown in Example 26-4 to specify
the summary information. The base blocks should not contain any <html> , <body> or <table> tags. The
Name and Value can contain tables but they should be completely confined within themselves.
Applications can construct an HTML page with multiple blocks containing all the summary information,
and then remove all <html> , <body> or <table> tags to create a final Summary Data document like the
one shown in Example 26-5.

Table 26-7 Device Center Integration Tags

Integration Tag Purpose

DC_DEVICE_SUMMARY To provide Device Summary Report.

DC_REPORTS To display URLs in the Device Center Report.

DC_TOOLS To display URLsin Device Center Tools.

DC_MANAGEMENT_TASKS To display URLs in Device Center Management
Tasks.
26-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
Example 26-5 Sample Multi-Block Summary Data

<!--Block-->
<tr>
 <TD align="right" bgColor="#cecfce" >

 Device Type

 </TD>
 <TD align="left" bgColor="#e1e1e1">

 Layer 2 Device

 </TD>
</tr>
<!--EndBlock-->
<!--Block-->
<tr>
 <TD align="right" bgColor="#cecfce" >

Layer 2 Protocol

 </TD>
 <TD align="left" bgColor="#e1e1e1">

 1 <10 ms <10 ms <10 ms 10.77.202.1

 2 <10 ms <10 ms <10 ms codc2-lab-2.cisco.com[10.77.201.5]

 3 <10 ms <10 ms <10 ms codc2-tbd.cisco.com [10.77.194.2]

 4 <10 ms <10 ms <10 ms 10.77.209.244
 </TD>
 </tr>
<!--EndBlock-->
<!--Block-->
<tr>
 <TD align="right" bgColor="#cecfce" >

 Physical Discrepancies

 </TD>
 <TD align="left" bgColor="#e1e1e1">

 None

 </TD>
</tr>
<!--EndBlock-->
<!--Block-->
<tr>
 <TD align="right" bgColor="#cecfce" >

 Logical Discrepancies

 </TD>
 <TD align="left" bgColor="#e1e1e1">

 None

</TD>
</tr>
<!--EndBlock-->
<!--Block-->
<tr>
26-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
 <TD align="right" bgColor="#cecfce" >

 No. Of VLans

 </TD>
 <TD align="left" bgColor="#e1e1e1">

 200

 </TD>
</tr>
<!--EndBlock-->

The multi-block Summary Data in Example 26-5 would be displayed in Device Center as shown in
Figure 26-2.

Figure 26-2 The Summary Data as Shown in Device Center

Understanding PIDM
Product Instance Device Mapping (PIDM) is a registry that stores mapping information between Devices
and Applications.

Applications need to register with PIDM with the information about the Devices managed by the
application. Applications can do this using PIDM APIs (which are also available via CSTM from
Common Services 3.0 Service Pack 2).

Device Center depends on this information for showing the Devices in Device Selector and also for
showing the information under Tools , Management Tasks , Reports and Summary sections.

Device Center usually shows only the devices managed by the applications in the Device Selector. On
selecting a device, the links corresponding to the applications that manage the device are shown in
Device Center.

Bypassing PIDM Checks

There are applications that do not manage any device on their own but use the devices managed by other
applications. These application do not need to perform PIDM registrations.

If an application is not doing a PIDM registration, the application can bypass PIDM checks for its links
in Device Center. In this case, Device Center shows the devices managed by other applications. On
selecting a device, Device Center will show the links of the application which is bypassing PIDM along
with other links.
26-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 26 Using Device Center
Using Device Center With Your Application
To bypass the PIDM checks, the application must import the class
com.cisco.nm.pidm.DeviceCenterPIDMRegister, located under the /lib/classpath directory of the CWCS
installation. Table 26-8 shows the APIs. In all these APIs, “Appname” is the name of the application as
given in the MST file.

Table 26-8 APIs Used for PIDM Bypassing

API Description

int removePIDMCheckForDC(String Appname) Bypasses PIDM checking in DC for application
Appname. Returns 0 if the operation is successful,
-1 if it fails.

int addPIDMCheckForDC(String Appname) Specifies that Appname is doing PIDM
registration. Required only for application that
have previously removed the PIDM check and
now want to restore it. Returns 0 if the operation
is successful, -1 if it fails.

boolean isAppDoingPIDMRegistration(String
Appname)

Checks if an application is registering with
PIDM. Returns true if the application is doing
PIDM Registration, false if application is
bypassing PIDM registration.
26-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 27

Using Product Instance Device Mapping

Product Instance Device Mapping (PIDM) is a registry that stores mapping information between devices
and applications.

Applications need to register with PIDM the information about the devices managed by the applications.
Applications can do this using PIDM APIs (which are also available via CSTM from Common Services
3.0 Service Pack 2).

Device Center depends on this information for showing the devices in Device Selector and also for
showing the information under Tools , Management Tasks , Reports and Summary sections.

Device Center usually shows only the devices managed by the applications in the Device Selector. On
selecting a device, the links corresponding to the applications that manage the device are shown in
Device Center.

The following topics describe how to integrate DCR with your application:

 • Using the PIDM APIs

 • Using the PIDM North-bound APIs

Using the PIDM APIs
The PIDM APIs are as follows:

Table 27-1 PIDM APIs

APIs Attributes

com.cisco.nm.dcr.AppId[]
getMappedAppIDs(com.cisco.nm.dcr.DeviceId
deviceID)

Returns the managing application’s IDs for
the given device.

com.cisco.nm.dcr.AppId[]
getMappedAppIDs(com.cisco.nm.dcr.DeviceId
deviceID)

Returns the deviceIDs for the devices
managed by the given application.

void mapDevicesToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId[] deviceIDs)

Marks given devices as 'managed by' given
application.

void mapDeviceToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId deviceID)

 Marks given device as 'managed by' given
application.
27-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 27 Using Product Instance Device Mapping
Using the PIDM APIs
Creating the ProductToDeviceMapProxy Object
ProductToDeviceMapProxy pidm = new ProductToDeviceMapProxy();

Mapping a Device or Marking a Device(s) as Managed
DeviceId devId = new DeviceId("101");
AppId Myapp = new AppId("Campus Manager","4.0","bundle-pc10");
try {

pidm.mapDeviceToProduct(Myapp, devId);
catch (PDMException pdmExp) {
System.out.println("Error in mapping a Device " + pdmExp.getMessage());

Unmapping a Device or Marking a Device(s) as Not Managed
DeviceId devId = new DeviceId("101");

AppId Myapp = new AppId("Campus Manager","4.0","bundle-pc10");
try {

pidm.unmapDeviceToProduct(Myapp, devId);
catch (PDMException pdmExp) {
 System.out.println("Error in un-mapping a Device " + pdmExp.getMessage());
}

Retrieving PIDM Information
To get the applications managing a particular device:

DeviceId devId = new DeviceId("101");
AppId appIds[] = pdm.getMappedAppIDs(devId);
To get devices managed by a particular application.

DeviceId devIds[] = pdm.getMappedDeviceIDs(Myapp);

void
unmapDevicesToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId[] deviceIDs)

Removes the mapping between given
application and devices.

void
unmapDeviceToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId deviceID)

Removes the mapping between given
application and device.

void close() Closes the pidm proxy.

Table 27-1 PIDM APIs

APIs Attributes
27-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 27 Using Product Instance Device Mapping
Using the PIDM North-bound APIs
Using the PIDM North-bound APIs
PIDM APIs are also available via CSTM from Common Services 3.0 Service Pack 2.

PIDM North-bound APIs
The PIDM North-bound APIs are as follows:

PIDM NBAPIs and Associated Tasks
The PIDM NBAPIs and associated tasks are as follows:

Table 27-2 PIDM North-bound APIs

APIs Attributes

com.cisco.nm.dcr.AppId[]
getMappedAppIDs(com.cisco.nm.dcr.DeviceId
deviceID, com.cisco.nm.dcr.APIExtraInfo
apiExtraInfo)

Returns the managing application IDs for the
given device.

com.cisco.nm.dcr.DeviceId[]
getMappedDeviceIDs(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.APIExtraInfo apiExtraInfo)

Returns the device IDs for the devices
managed by the given application.

void mapDevicesToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId[] deviceIDs,
com.cisco.nm.dcr.APIExtraInfo apiExtraInfo)

Marks given devices as managed by given
application.

void mapDeviceToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId deviceID,
com.cisco.nm.dcr.APIExtraInfo apiExtraInfo)

 Marks given device as managed by given
application.

void
unmapDevicesToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId[] deviceIDs,
com.cisco.nm.dcr.APIExtraInfo apiExtraInfo)

 Removes the mapping between given
application and devices.

void
unmapDeviceToProduct(com.cisco.nm.dcr.AppId
appID, com.cisco.nm.dcr.DeviceId deviceID,
com.cisco.nm.dcr.APIExtraInfo apiExtraInfo)

Removes the mapping between given
application and device.

void close() Closes the PIDM proxy.

Table 27-3 PIDM NBAPIs and Associated Tasks

API DCR Task ACS Task

getMappedDeviceIDs VIEW_DEVICE_TASK View

getMappedAppIDs VIEW_DEVICE_TASK View

mapDeviceToProduct ADD_DEVICE_TASK Add

mapDevicesToProduct ADD_DEVICE_TASK Add
27-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 27 Using Product Instance Device Mapping
Using the PIDM North-bound APIs
Creating the APIExtraInfo Object
ProductToDeviceMapNBProxy API accepts objects of class APIExtraInfo in addition to their regular
arguments. APIExtraInfo encapsulates:

 • The AppID - This object is the unique ID of your application, and establishes your application name,
version number, and host information for use in the SourceContext object.

 • The SourceContext - This object establishes your application and its context as the source of the
ProductToDeviceMapNBProxy API call.

 • The SecurityContext - This object contains the information needed to authenticate or authorize the
ProductToDeviceMapNBProxy API request.

AppId Myapp = new AppId("Device Manager", //unique AppID and application name
 "1.3.2", //application version number

"192.168.1.15"); // host on which the application is running

SourceContext source = new SourceContext(Myapp) ;
// For Local API calls
SecurityContext security = new SecurityContext("username");

// For North-Bound API calls
SecurityContext security = new SecurityContext("username",
"password",
"secretKey")
//Wrapper for Source and Security information:
APIExtraInfo extraInfo = new APIExtraInfo(security, source);

Creating the ProductToDeviceMapNBProxy Object
ProductToDeviceMapNBProxy pidmNB = new ProductToDeviceMapNBProxy();

Mapping a Device or Marking a Device(s) as Managed
DeviceId devId = new DeviceId("101");
AppId Myapp = new AppId("Campus Manager","4.0","bundle-pc10");

try {
pidmNB.mapDeviceToProduct(Myapp, devId, extraInfo);

}
catch (PDMException pdmExp) {
 System.out.println("Error in mapping a Device " + pdmExp.getMessage());

}

unmapDeviceToProduct DELETE_DEVICE_TASK Delete

unmapDevicesToProduct DELETE_DEVICE_TASK Delete

Table 27-3 PIDM NBAPIs and Associated Tasks

API DCR Task ACS Task
27-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 27 Using Product Instance Device Mapping
Using the PIDM North-bound APIs
Unmapping a Device or Marking a Device(s) as Not Managed
DeviceId devId = new DeviceId("101");

AppId Myapp = new AppId("Campus Manager","4.0","bundle-pc10");

try {
pidmNB.unmapDeviceToProduct(Myapp, devId, extraInfo);

}
catch (PDMException pdmExp) {
 System.out.println("Error in un-mapping a Device " + pdmExp.getMessage());
}

Retrieving PIDM Information
To get the applications managing a particular device:

DeviceId devId = new DeviceId("101");
AppId appIds[] = pidmNB.getMappedAppIDs(devId, extraInfo);

To get devices managed by a particular application.
DeviceId devIds[] = pidmNB.getMappedDeviceIDs(Myapp, extraInfo);
27-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 27 Using Product Instance Device Mapping
Using the PIDM North-bound APIs
27-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 28

Integrating Applications With Device Selector

The Device Selector is used to select devices to perform various device management tasks. This lists all
devices in a group. The Display Name of the devices entered when you have added the devices in DCR
is dispayed as the device name in the Device Selector.

The Device Selector is enhanced in Common Services 3.0.5 to address the uasbility issues. The
enhancements to Device Selector include the following:

 • Search and Advanced Search funtionality

 • Group Customization and Group Ordering Feature

 • Tooltips for device names

 • Hyperlink to the message “x devices selected”

Refer to the User Guide for CiscoWorks Common Services 3.0.5 for more information on new features
and enhancements.

DCR and Device Center is integrated with the enhanced Device Selector for performing the device
management functions in Common Services 3.0.5.

Individual applications should integrate with the enhanced Device Selector delivered as part of Common
Services 3.0.5 and User Interface Infrastructure kit 6.3 for their device management tasks.

This chapter explains you the following details of integration with New Device Selector:

 • UII Integration

 • Integration with Search feature

 • Integration with Advanced Search Feature

 • Integration with Tree Generator

Note Javadocs provides the details of all APIs and the complete set of customizations that can made to Serach
and Advanced Search implementation. Applications can override few of the APIs to suit to their
requirements.
28-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 28 Integrating Applications With Device Selector
UII Integration
UII Integration
UII tag libraries are enhanced and new tags are added to the the existing HTML Object Selector (HOS)
to add the support for Search and Advanced search.

The following new properties are introduced in the uii:hosContentAreaSelector component.

 • showSearch - The value must be set to true to enable the search feature.

 • showAdvancedSearch -The value must be set to false to enable the advanced search feature

 • searchHandler -This property refers to the implementation class that provides the implementation
of search. In other words, this refers to the implementation class of
com.cisco.nm.uii.hos.SearchHandler interface

UII provides the enhanced APIs for applications to set the Search results as a result of search or advanced
search operation.

Applications must add the following code in their classes apart from the set of UII calls to enable the
search behaviour:

else if(HOSRequestHelper.isRequestForSearch(request))
{
 return HOSRequestHelper.doSearch(request,mapping);
}
else if (HOSRequestHelper.isRequestForSaveSelections(request)) {
 return HOSRequestHelper.saveSelectedEntriesAndForward(request ,null ,mapping);
}

Refer to UII 6.3 SDK documentation for more information on UII Integration with Search and Advanced
Search feature.

Integration with Search feature
You can enter your search criteria in the Search Input field of Device Selector and search for the devices
using the Search icon. The search results are based on the display name of the devices added in DCR.

Common Services provides the default implementation for the SearchHandler interface of UII.
Applications should extend this implementation class com.cisco.nm.cmf.devsel.SearchHandlerImpl
to validate the search criteria specified, search the CMF database based on search criteria, get the list of
devices managed by the local application and to filter the results based on the application contexts.

Applications should extend the implementation class to provide the following features:

 • Perform device based authorization - You should set the OGSSecurityContect in order to mention
the TaskId and ApplicationId values for performing device based authorization.

 • Provide any custom search - If an application wants to search on another database in addition to
DCR, it should extend the implentation class provided by CMF or implement the UII SearchHandler
interface directly.

Refer to the Javadocs for the API specifications for all the classes provided by Common Services.
Application can extend the Common Services classes and customize their implementation as required.
28-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 28 Integrating Applications With Device Selector
Integration with Advanced Search Feature
Configuring Property files
In addition to extending the Common Services classes, Applications need to configure few properties in
the following properties files:

1. DeviceSelector.properties - You should specify a set of properties in this file for the search feature
to function.

a. OgsUrn - This property defines the URN of the OGS Server. Enter the value only when your
application have a URN different from Common Services.

b. OgsServerName - This property defines the name of the local OGS Server used for searching
devices. The OGS Server Name used for Common Services is CMFOGSServer.

c. OgsRelativeURL - Defines the relative URL of the CTMServlet for the local OGS Server. For
example, you can enter the property value as /cwhp/CTMServlet.

d. AllDevicesGroup - Defines the name of the All Devices group that is used for filtering based on
aplplications or tasks after a device search.

e. SetMDFIcon - Defines whether the icons needs to set for the Search results. Set the value as
Yes, if you want to display the search results (device names) with their icons. Default value is
No.

2. log4j-devsel.properties - Properties must be specified to define the log levels of the Common
Services search or advanced search implementations.

a. -log4j-devsel.properties: For defining the log levels of the CS search / advanced search
implementations.

b. log4j.category.com.cisco.nm.cmf.devsel=DEBUG, DevSel

c. log4j.category.com.cisco.nm.cmf.devsel.util=DEBUG, DevSel

d. log4j.additivity.com.cisco.nm.cmf.devsel=false

e. log4j.appender.DevSel=org.apache.log4j.RollingFileAppender

f. log4j.appender.DevSel.File=CSDeviceSelector.log

g. log4j.appender.DevSel.layout=org.apache.log4j.PatternLayout

h. log4j.appender.DevSel.layout.ConversionPattern=%d{dd/MMM/yyyy HH:mm:ss:SSS} %-4r
[%t] %-5p %c %x %L - %m%n

Integration with Advanced Search Feature
You can use the Advanced Search icon to open the Advanced Search popup window and specify a set of
rules for performing an Advanced search. The advanced search is based on the grouping attributes of the
application's grouping server. For example, when you launch an Advanced Search from Campus
Manager Device Selector, the attributes of the Campus Manager Grouping server appears.

Common Services provides the default implementation of View, Form and Action classes that connects
to the respective local OGS Servers and provide the default rule based search.

Applications need to configure the following to integrate the Advanced Search feature:

1. Applications need to configure few property files to let the Common Services Implementation know
about the details of the OGS Server. Refer to Configuring Property files for the list of property files
and properties to be configured.

2. Applications should deliver the JSP files DeviceFilter.jsp and closeDeviceFilter.jsp.
28-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 28 Integrating Applications With Device Selector
Integration with Advanced Search Feature
3. Application should define the struts-config and sitemap XML files to configure the mapping
between the form bean and action classes, and to set other parameters.

a. Changes to struts-config.xml

Form bean entries:

<!-- ####### DeviceSelector Specific ####### -->
<form-bean name="DeviceFilterForm" type="com.cisco.nm.cmf.devsel.DeviceFilterForm"
/>
<!-- ####### DeviceSelector Specific END ####### -->

Global forward entries:

<!-- ######### DeviceSelector Specific ######## -->
<forward name="DeviceFilter" path="/WEB-INF/screens/popup.jsp?sid=DeviceFilter" />
<forward name="closeDeviceFilter"
path="/WEB-INF/screens/deviceselector/closeDeviceFilter.jsp" />
<!-- ######### DeviceSelector Specific END ######## -->

Action mapping entries:

<!-- ########## DeviceSelector Specific ########### -->
<action path="/DeviceFilter" scope="request" name="DeviceFilterForm"
validate="false" type="com.cisco.nm.cmf.devsel.DeviceFilterAction">
</action>
<!-- ########## DeviceSelector Specific END ########### -->
<action path="/hosTreeContent" name="nullFB"
type="com.cisco.nm.uii.hos.action.HOSContentAreaAction"/>

b. Changes to sitemap.xml

Add the following entries in the application pages containing the HOS component with the
advanced search:

<appContentArea screenID="DeviceFilter" contentAreaTitle="Advanced Search"
helpTag="" fileRef="/WEB-INF/screens/deviceselector/DeviceFilter.jsp" />

4. Applications should define the Javascript function in their JSP files to launch the advanced search
popup screen when you click the advanced search icon.

The Javascript function is as follows:

function advancedSearchBtnOnClickHandler(osName) {
window.open("/cwhp/DeviceFilter.do?treeID="+osName, "newer", width=580,

height=350, scrollbars=no,resizable=yes",true); }
function submitForm() {

window.frames['contentFrame'].document.forms[0].submit(); }

Application can go for any custom implementation and create new action classes. To accomplish that
applications should call an API in HOS to provide the search results. This API in HOS needs to be called
only if the search operation is successful. Refer to UII 6.3 SDK documentation for more information.
28-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 28 Integrating Applications With Device Selector
Integration with Tree Generator
Integration with Tree Generator
The Tree Generator is enhanced to provide a new default tree view to end users with new device groups
such as Application Specific Groups and User Defined Groups in the tree. The Tree Generator also
provides a customized tree view as per the configurations saved by end users while using the Group
Customization and Group Ordering feature.

Common Services provides the Tree Generator implementation for the other applications to integrate.

This section explains the following:

 • Tree Generator Changes for Device Selector Nodes

 • Tree Generator Changes for Search Implementations

 • Tree Generator Changes for Group Customization and Group Ordering

Tree Generator Changes for Device Selector Nodes
Since Common Services does not have the “All Devices” Node or Group, the existing Tree Generator is
extended to add an “All Devices” group.

Tree Generator now extends com.cisco.nm.xms.ogs.client.ostaglib.util.AbstractTreeStateManager class,
which adds a new API to return the id of a group containing the devices of all application. Applications
that have the device group “All Devices” can return the same group for this new API or can extend the
existing Tree Generator classes.

Apart from this, Applications should extend the Tree Generator classes to add the application specific
groups to the Device Selector or when they need a tree view specific to the application.

Tree Generator Changes for Search Implementations
Tree Generator sets the OGSSecurityContext object in the HttpSession as required by the Search and
Advanced Search implementations and is used in all API calls to Object Grouping Services Server.

Tree Generator Changes for Group Customization and Group Ordering
Based on the Group Customization and Group Ordering settings entered by an end user, the Device
Selector should load a customized tree view to the logged in user.

Common Services provides a base implementation for the new tree generator which uses the Group
Customization and Group Ordering feature. Applications should use the Tree Generator class
com.cisco.nm.cmf.devsel.DeviceSelectorTreeGenerator provided by Common Services.

Few classes are added to the Device Selector util and preference packages for the new Tree Generator.
the Table below lists the classes added to Device Selector packages and their description.
28-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 28 Integrating Applications With Device Selector
Integration with Tree Generator
Application needs to integrate this implementation to communicate with the respective local OGS
Server, get the user preferences from the database, return the top-level groups and return the devices for
the top-level groups.

Table 28-1 New Classes added to Device Selector packages for Tree Generator

Package Class Description

com.cisco.nm.cmf.devsel.util Group Stores the mapping between group id and group name

GroupCollection Collection class for the group object

GroupMembership Stores the membership of group and this is an
extension class of Group

GroupMembershipCollection Collection class for the Group Membership object

com.cisco.nm.cmf.devsel.preference DeviceSelectorPreferences Stores the device selector settings entered by an end
user.

DeviceSelector Stores and retrieves the device selector preferences
entered. This is a Main class exposing the APIs.

DeviceSelectorConstants Defines the constants to be used in DeviceSelector
class. For example, ALL_DEVICES.
28-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL
P A R T 1

About CWCS Per-Product Services

CISCO CONF IDENT IAL

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 29

Using Per-Product Services

Per-Product Services are additional, value-added services that individual products can choose to include
based on their particular requirements. Installations of Per-Product Services are normally not shared
among the applications installed on a single server.

The following topics discuss the CWCS Per-Product Services and and the components you need to
include to use them as part of your applications:

 • Understanding Per-Product Services

 • About the Per-Product Services Components

Understanding Per-Product Services
The Per-Product Services discussed in this section are always installed and run by individual
applications. They form a set of advanced services that add value to applications by either meeting
requirements for advanced functions in CiscoWorks applications, or allowing for variation in how these
features are implemented. Table 29-1 summarizes these feature requirements and the corresponding
Per-Product Services designed to meet them.

Note that some Per-Product components (such as UII) are also used in the CWCS-R distribution. This is
done to support certain Shared Services. Note that these CWCS-R-distributed Per-Product components
are for CWCS use only. Applications may not share Per-Product components installed with CWCS-R.
Application teams must install their own copies of Per-Product components with their applications, and
they may not modify the source of or substitute products intended to perform the same functions as any
Per-Product component distributed with CWCS-R.

As noted in the table, many Per-Product components are provided as part of the CWCS-SRC distribution.
Application teams may modify CWCS-SRC-distributed Per-Product components for their own
requirements, and install them with their applications. Note that it is a requirement of CWCS-SRC
distribution that application teams who modify a CWCS-SRC component’s source are responsible for
providing their own support on these components. Application teams must also provide fully commented
copies of their modified source to the CWCS Team.

Per-Product Services often represent the future direction of Common Services. Where possible, you
should plan your application to adopt them as standard. For example: the CiscoWorks Home Page, which
provides GUI access to applications, has been adopted as the standard GUI, entirely replacing the old
CMF Desktop.
29-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
Understanding Per-Product Services
Table 29-1 Per-Product Services: Feature Requirements and Services Map

Category Requirement Description Type Per-Product Service

Graphic
User
Interface

User Interface
Support

Support a web-based
launch point that
aggregates all
applications.

CWCS-SRC The launch point is provided by the CiscoWorks
Home Page (see the “About the CiscoWorks Home
Page Component” section on page 6-5), which in
turn requires the User Interface Infrastructure (UII).
See the “About the User Interface Infrastructure”
section on page 29-7.

Device
Selector

Let users see and select
devices and groups of
objects

CWCS-SRC Part of the UII; comes in several different forms. See
the “About the User Interface Infrastructure” section
on page 29-7.

Graphing
Service

Allow GUI display of
graphs from user data.

CWCS-SRC A Graphing Framework is provided as part of the
UII. See the “About the User Interface
Infrastructure” section on page 29-7.

Group
Management

Let users or
administrators create
and maintain groups of
objects (e.g., devices or
user IDs).

CWCS-SRC See the “About the Object Grouping Service (OGS)
Components” section on page 29-4.

Operations Device
Package
Update

Support delivery of
incremental device
packages.

CWCS-R Provided by PSU with VDS. See the “About the
Package Support Updater (PSU) Components”
section on page 29-5

Incremental
Device
Support

Permit incremental
device support.

CWCS-SRC Provided by the CIDS package. See the “About the
Common Incremental Device Support (CIDS)
Component” section on page 29-5

IPC/RPC
Support

Provide support for
Inter-Process
Communications (IPC),
In-Process Calls, and
Remote Procedure Calls
(RPC)

CWCS-SRC CSTM provides full IPC/RPC support. See the
“About the Common Services Transport Mechanism
(CSTM) Components” section on page 29-4.

Licensing Provide flexible
management of licenses,
including multiple keys.

CWCS-R See the “About CWCS Licensing” section on
page 29-6.

SOAP
Support

Support SOAP
encoding.

CWCS-SRC CSTM uses SOAP internally and exposes
northbound APIs in a SOAP-based format. See
“About the Common Services Transport Mechanism
(CSTM) Components” section on page 29-4

Virtual
Download
Service

Download and install
incremental device
packages.

CWCS-R Provided by PSU with VDS. See the “About the
Package Support Updater (PSU) Components”
section on page 29-5
29-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
About the Per-Product Services Components
The following topics provide basic information for each of the Per-Product Service components:

 • About the Object Grouping Service (OGS) Components

 • About the Common Services Transport Mechanism (CSTM) Components

 • About the Package Support Updater (PSU) Components

 • About the Common Incremental Device Support (CIDS) Component

 • About CWCS Licensing

 • About the User Interface Infrastructure

Each topic includes:

 • Basic information about the component’s purpose and features.

 • Usage guidelines. Where these guidelines require a separate chapter in this Guide, a pointer to that
chapter is supplied.

 • Pointers to Java, C++, Perl or other references and code samples supplied as part of the SDK.

 • The names of the packages on which the component depends.

 • Where they exist: The names of utilities that help you troubleshoot or use the component.

For the same information for Shared Services, see Chapter 6, “Using Shared Services”.

Utilities DOM Parser Provide Document
Object Model parser
support for Core, MC
and Kilner applications

CWCS-R JDOM 1.0 Beta 8 is supported. See the “” section on
page 29-8.

Email Support Provide utilities that
support email generation

CWCS-R Utilities provided include JavaMail 1.2 and Blat for
Windows NT. Solaris email is used on Solaris
platforms. See the “” section on page 29-8.

JRE Support Support multiple
versions of the Java
Runtime Environment.

CWCS-R JRE versions 1.2.2, 1.3.1, and 1.4 are supported. See
the “” section on page 29-8.

Logging
Service

Provide utilities that
support creation and
management of
application logs.

CWCS-R Utilities provided include Log4J 1.1.3, coreLog4c,
CoreLogger, CMF logging, and JGL 3.1. See the “”
section on page 29-8.

SNMP
Library

Support SNMP calls
from Java applications.

CWCS-SRC The latest version of the SNMPOnJava library
supports SNMPv3. See the “” section on page 29-8.

XML Parser Support a variety of
XML parsers.

CWCS-R Libraries provided include standard Xerces Java
1.4.3 and 1.4.4 library, JAXP, Crimson, Xerces C++
1.5.1, and IBM4J. See the “” section on page 29-8.

XSLT Support Support a variety of
XML Stylesheet
processors.

CWCS-R Libraries provided include LotusXSL 0.16.3, Xalan
Java 2.2.d9, Xalan C++ 1.5.1, and Xalan 2.4.1. See
the “” section on page 29-8.

Table 29-1 Per-Product Services: Feature Requirements and Services Map (continued)

Category Requirement Description Type Per-Product Service
29-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
About the Object Grouping Service (OGS) Components
The Object Grouping Service provides a generic framework for creating, managing, and sharing
hierarchical groups of objects. These objects can be any type of data object, from network devices to
user IDs, capable of being grouped based on shared attributes . The OGS framework provides tools to
define groups useful to your application, and to supply them in predefined form with your application.

For guidelines to follow when including OGS with your application, see Chapter 30, “Using Object
Grouping Services”. OGS is functionally dependent on the packages shown in Table 29-2.

About the Common Services Transport Mechanism (CSTM) Components
CSTM (formerly Common Transport Mechanism, or CTM) is a a simple, platform-agnostic method for
performing all types of inter-program communications. It does not require that sender or receiver
applications implement proprietary standards like CORBA or DCOM, use the same object model, have
full knowledge of message contexts, or avoid encoding metadata. Instead, it abstracts these

Table 29-2 OGS Package Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOdb/db Common Services Database (includes diskwatcher, DB wrappers)

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOgrid/grid Grid

CSCOjawt/jawt JSCAPE JavaAWT for widgetd

CSCOjcht/jchart Jchart Java Class

CSCOjpwr/jpwr JSCAPE Power Search Classes

CSCOjre2/jre2 CMF JRE 1.2.2

CSCOlg4j/log4j Log4j Logging Framework

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOswng2/swng2 Java Swing2 Package

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOxsl/lotusxsl Lotus XSL Engine Classes

CTM Common Services Transport Mechanism

GS Graphing Service

OGS Object Grouping Service

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail for NT)

UII User Interface Infrastructure
29-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
communications, provides a single API for dealing with all of them, and bases the API on well-known
non-proprietary communications and data standards, including XML, Serialized Java Objects, HTTP,
sockets, and standard binary and SOAP encoding.

For guidelines to follow when including CSTM with your application, see Chapter 31, “Using the
Common Services Transport Mechanism”. CSTM is functionally dependent on the packages shown in
Table 29-3,

About the Package Support Updater (PSU) Components
The PSU (and associated Virtual Download Service, or VDS) allows your application to:

 • Check for software and device support updates.

 • Download these updates and related dependent packages to the application’s server file system.

 • Install them.

For guidelines to follow when including PSU/VDS with your application, see Chapter 32, “Using
Package Support Updater”. PSU is functionally dependent on the packages shown in Table 29-4.

About the Common Incremental Device Support (CIDS) Component
Common Incremental Device Support (CIDS) provides a method of adding device information to any
network management application without requiring re-installation of the entire product. CIDS provides
an application layer that encapsulates all device information and update mechanisms, permitting
applications that include a CIDS layer to be incrementally updatable for new instances of existing
devices, as well as new types of devices.

For guidelines to follow when including CIDS with your application, see Chapter 33, “Using Common
Incremental Device Support”. CIDS is functionally dependent on the packages shown in Table 29-5.

Table 29-3 CSTM Package Dependencies

Package Name Description

CSCOjre2/jre2 CMF JRE 1.2.2

CSCOjrun/jrun JRun Servlet Engine

CSCOlg4j/log4j Log4j Logging Framework

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

CTM Common Services Transport Mechanism

Table 29-4 PSU Package Dependencies

Package Name Description

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

PSU/VDS Package Support Updater/Virtual Download Service
29-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
About CWCS Licensing
The CWCS Licensing API allows your application to:

 • Install and update licenses

 • Create, manage, retrieve and restore license information

 • Access FLEXlm license utilities.

The API supports:

 • Evaluation-onlylicensing

 • Full-purchase licenses.

 • Resource-limited licenses, which specify (for example) the number of devices an application can
manage.

 • Feature licenses, which grant the right to use features within an application.

 • Temporary use of a PIN to validate use of a feature.

The API does not explicity support other kinds of license models, such as node-locked licenses, floating
licenses, and counted licenses. However, the API provides access to the FLEXlm toolkit for applications
that must implement a licensing model with these kinds of special requirements.

The API provides:

 • A repository to store PINs and PAKs.

 • An API to install licenses and to retrieve license information, including PIN/PAK.

 • A license administration GUI.

 • The FLEXlm license toolkit.

 • A license backup and restore function.

For guidelines to follow when including the Licensing API with your application, see Chapter 34,
“Using the Licensing APIs”. The Licensing API is functionally dependent on the packages shown in
Table 29-6.

Table 29-5 CIDS Package Dependencies

Package Name Description

CIDS Common Incremental Device Support

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjgl/jgl ObjectSpace JGL Classes

CSCOlg4j/log4j Log4j Logging Framework

CSCOsnmp/snmp Java SNMP APIs

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

Table 29-6 Licensing API Dependencies

Package Name Description

CSCOapch/apache Core Apache Web Server with SSL

CSCOchlp/chlp Core Help Files
29-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
About the User Interface Infrastructure
The User Interface Infrastructure (UII) is a web-application framework for creating application GUIs
that conform to Cisco’s User Experience Initiative (UE) guidelines (available at http://picasso). Based
on the Apache/Jakarta STRUTS framework, the UII provides:

 • A complete set of tools for creating displays, dialogs, tables, lists, wizards, buttons and icons.

 • A Reporting Framework that allows you to create and display all types of reports as web pages.

 • A Graph Framework that allows you to create and display line, pie, bar, stacked bar, and area graphs.

The UII is not documented in this Guide. Guidelines for using these tools and implementing a
UII-compliant GUI are provided in the SDK Developer’s Guide for UI Infrastructure (release 6.1 or
later). This document is available

 – As a PDF file within the SDK WAR file, or within EDCS (Release 6.1 of the Guide is available
as EDCS-275335). You can use the PDF to print a hardcopy version.

 – As HTML-based online help. The HTML version is available from the User Experience web site
at http://picasso. Select Technology > UII Releases.

The UII is functionally dependent on the packages shown in Table 29-7. For a working model of the UII,
see http://uii.cisco.com.

CSCOcore/core Core Modules

CSCOcsdb/ccsdb Core Database

CSCOess/ess Event Services Software (includes Tibco event bus)

CSCOjava/java Core JRE 1.3.1 JARs

CSCOjre2/jre2 CMF JRE 1.2.2

CSCOjrun/jrun JRun Servlet Engine

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOsjre/sunjre Core JRE 1.3.1 libraries (.so, .font, etc.)

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxrcs/xerces Apache Xerces XML Parser

SNMPv3 support SNMPv3 Support for AuthNoPriv Mode

SVC NT Services (includes TFTP, RSH/RCP, CRM Logger, Blat mail for NT)

Table 29-6 Licensing API Dependencies (continued)

Package Name Description

Table 29-7 UII Package Dependencies

Package Name Description

CSCOgrid/grid Grid

CSCOhlpDM/cdone CMF Help Files
29-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 29 Using Per-Product Services
About the Per-Product Services Components
CSCOjawt/jawt JSCAPE JavaAWT for widgetd

CSCOjcht/jchart Jchart Java Class

CSCOjpwr/jpwr JSCAPE Power Search Classes

CSCOjrun/jrun JRun Servlet Engine

CSCOmd/dmgt Daemon Manager (Process Manager)

CSCOperl/perl Perl Support

CSCOswng2/swng2 Java Swing2 Package

CSCOtmct/tomcat Tomcat Servlet Engine

CSCOweb/web Web Services: Apache, OpenSSL, ModSSL

CSCOxln/xalan Apache Xalan XSLT Processor

CSCOxml4j/xml4j IBM XML4J Parser

CSCOxrcs/xerces Apache Xerces XML Parser

CSCOxsl/lotusxsl Lotus XSL Engine Classes

GS Graphing Service

UII User Interface Infrastructure

Table 29-7 UII Package Dependencies (continued)

Package Name Description
29-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 30

Using Object Grouping Services

The CWCS Object Grouping Service (OGS) provides a generic means for creating, managing and
sharing groups of objects, regardless of type.

The following topics describe the OGS and how to use it in your applications:

 • Understanding OGS

 • Implementing OGS Servers

 • Creating OGS ASAs

 • Creating an OGS GUI

 • Using OGS Secure Views

 • Using OGS Common and Shared Groups

 • Using OGS 1.3 Client Side Enhancements

 • Using OGS 1.4 Enhancements

For more information about OGS, refer to the following resources:

 • OGS System Functional Specification, ENG-101932

 • OGS GUI Client Functional Specification, EDCS-120040

 • OGS GUI Client Software Unit Design Specification, EDCS-152942

 • Triveni OGS ASA Specification, EDCS-161116

 • Secure Views and Common Groups In Object Grouping Service Functional Specification,
EDCS-298617

 • Shared Groups in OGS, EDCS-341632

 • Functional Specifications related to Client side changes in OGS 1.3, EDCS-347045

 • OGS 1.3 Client related Software Design Specification, EDCS-358505

 • Kilner Virtual ASA Functional Specification, ENG-203936

 • Object Selector User Guide, EDCS-158538

 • SDK Developer’s Guide for UII, Release 6.1, EDCS-275335
30-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Understanding OGS
Understanding OGS
OGS allows applications to create, manage, and share persistent groups of objects.

OGS is a generic grouping service. It does not supply you with predefined groups. Instead, it provides
tools that allow you to define groups useful to your application. Once you have defined the groups you
want, you can supply them in predefined form with your application.

OGS places no limits on the types of objects you can group. Most developers use OGS to group network
devices. However, you can also use it to manage groups of scheduled jobs, policies, users, tasks, VLANs,
subnets, IP phones, user interface views, fault conditions, or any other kind of object that can be grouped
based on shared attributes.

The following topics explain the basics of OGS:

 • About the OGS Components

 • Basic OGS Concepts

 • About OGS Groups

 • About OGS Group Types

 • About OGS Container Groups

 • About OGS Group Hierarchy

 • How Rules Are Constructed

 • Choosing to Implement OGS

About the OGS Components
A complete OGS system includes the following components

 • OGS Server: Manages groups of objects to be shared by applications. For details about
implementing this component, see the “Implementing OGS Servers” section on page 30-7.

 • Application Service Adapters (ASAs): Application-specific processes that serve as sources of the
Objects that are grouped by the OGS Server. For details on creating ASAs for your applications, see
the“Creating OGS ASAs” section on page 30-17.

 • OGS Clients: Applications that use the OGS Server to create and manipulate groups in order to
perform an application function. You can display OGS data and coordinate OGS interactions using
the Object Selector in the GUI for your client application. For details, see the “Creating an OGS
GUI” section on page 30-40.

Basic OGS Concepts
OGS makes use of several concepts whose definitions differ from the commonly used definitions:

 • OGS Class:

An OGS class describes the representation of a set of application abstractions. This differs from
traditional object-oriented systems, where a class defines a set of attributes and the operations that
can be performed on instances of that class.
30-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Understanding OGS
An OGS class is concerned only with the representation and retrieval of attributes. Class hierarchies
are supported and are interpreted in the conventional sense; that is, a subclass inherits all the
attributes of its superclasses. An instance of an OGS class can be used in any context where an
instance of one of its superclasses is expected.

 • OGS Object:

An OGS object is a collection of attribute values. The OGS class of an object determines the set of
attributes associated with that object. Associated with every object is a unique and immutable object
ID (OID). When an ASA evaluates a rule, the data returned to the OGS Server is a collection of
proxy objects that contains:

 – The OIDs of the grouped objects.

 – Any attributes of those objects that were requested.

These proxy objects are referred to as OGS objects in the rest of this document.

 • OGS Group:

An OGS group is a named aggregate entity comprising a set of objects belonging to a single class
or a set of classes with a common superclass. Groups can be shared between users or applications,
subject to access-control restrictions. The membership of a group is determined by a rule.

 • OGS Rule:

An OGS rule consists of one or more rule expressions combined by operators, which can be AND,
OR or EXCLUDE. A rule always evaluates to objects of a particular class defined in an application
schema.

About OGS Groups
A group in OGS is a named aggregate entity comprised of a set of objects. Each group has:

 • A set of properties, such as group ID, name, description, permission, etc.

 • An associated rule. The rule determines the members of a group, which may change whenever the
rule is evaluated.

OGS Servers represent the group membership as a list of object IDs. Besides the OID list, attributes
associated with the objects in a group may also be queried. The attributes of a class and the hierarchical
relationship of classes are defined in the Application Service Adaptor schema, which must be registered
with the OGS.

Each OGS group has a set of properties, including a unique name. Table 30-1 describes these properties.

Table 30-1 OGS Group Properties

Property Description

GroupID A unique identifier for the group.

GroupName Fully qualified name of the group. This name must include the parent's path,
with each element of the path being separated by the / character.

Description User-specified text description of the group.

Created By ID of the user who created the group.

Created Time Date and time the group was created.

Last Modified By ID of the user who last made changes to the group.

Last Modified Time Date and time of last modification.
30-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Understanding OGS
About OGS Group Types
OGS groups can be either dynamic or static (see also the “About OGS Container Groups” section on
page 30-5).

A dynamic group is one whose membership list is effectively computed every time a user views its
members. For each request to view the group, the OGS Server may automatically request the relevant
Application Service Adapter to recompute the group's rule. The Server is not required to store a dynamic
group’s membership list (although it may cache the results of the last re-evaluation), and viewing a
dynamic group will always give the latest group membership.

Example

A user creates the dynamic group “MyDevices”, which has the rule "IPAddress in Subnet
172.20.32.0/24". At creation time, the rule evaluates to devices D1, D2, and D3. If a user attempts to
view the group membership at any later time, the OGS Server will return the current membership.

If new devices D4 and D5 joined subnetwork 172.20.32.0/24 in between the time the group was created
and the time its membership was queried, OGS will return devices D1, D2, D3, D4 and D5 as the current
members of the group.

A static group is one whose membership is refreshed only when a user explicitly requests it. Between
re-evaluations, the OGS Server stores the static group's membership list and group definition. Whenever
a user views a static group, OGS returns the membership list the ASA created the last time the group
rule was evaluated.

Note that the OGS may cache the membership and maintain the cache by other means. Group definitions
are always stored, regardless of whether the group is static or dynamic.

Example

A user creates the static group “MyDevices”, which has the rule "IPAddress in Subnet 172.20.32.0/24".
The rule evaluates to devices D1, D2, and D3, and the OIDs for these devices is stored along with the
group definition.

If a user attempts to view the group, he will see only devices D1, D2 and D3, as these were the devices
that satisfied the group rule when the group was created.

If the user wants to refresh the membership of the group, then he must explicitly request it. The OGS
Server will then ask the ASA to reevaluate the rule.

If new devices D4 and D5 joined subnetwork 172.20.32.0/24 in between the time the group was created
and the time the user requested the refresh, OGS will return devices D1, D2, D3, D4 and D5 as the
current members of the group. This device list will also be stored as the membership of “MyDevices”
until the next refresh.

Last Evaluated By ID of the user who last evaluated the group.

Last Evaluated Time Date and time of last group evaluation.

Type Static or Dynamic.

Access Control Permission list to read/write this group.

Rule Rule to determine memberships of the group.

Tags Variable list of name-value pairs defined by the user.

Table 30-1 OGS Group Properties

Property Description
30-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Understanding OGS
Most OGS groups are dynamic. Static groups are useful when you want users to be able to “snapshot” a
group’s membership and maintain it until a later time, when the user can quickly update it without having
to change the group definition.

Example

A network administrator in a large enterprise is responsible for the management of all operational
Catalyst 6K series switches. Switches in this enterprise must go through several configuration stages
before they are considered operational. Configuration is done by a department to which the Network
Administrator does not belong. Before becoming operational, the switches may also be available on the
network.

To cope with this, the Network Administrator could create a static group called "My Cat6K Devices"
with the rule "DeviceType == Catalyst 6K". This would allow him to accomplish the following:

 • The group "My Cat6k Devices" would be populated with the operational Catalyst 6K devices in the
network at the time.

 • The enterprise acquires new Catalyst 6K devices, deploys them in the network, and begins
configuring them. The administrator continues to use the group "My Cat6k Devices" with the
assurance that the new Catalyst 6K devices will be excluded from the group.

 • When the new switches are operational, the administrator requests a refresh of the group without
making changes to the group rule. “MyCat6K Devices” now includes the new switches.

About OGS Container Groups
Container groups are a separate type of group, on par with normal groups. This is because they are
groups who have no membership of their own. A container group is an “empty” container, whose
membership is simply the union of the membership of all its subgroups.

This is different from normal groups that must have a rule to determine its membership. Instead, a
container group’s effective rule consists of:

 • If it has no subgroups: No rule.

 • If it has only one subgroup: The same effective rule as its subgroup.

 • If it has more than one subgroup: A rule composed of the effective rules of all its subgroups,
combined with the operator OR.

Container groups are can be static or dynamic depending on the behavior of their subgroups:

 • Dynamic Container: Its membership is the aggregate membership of its subgroups at any given time.

 • Static Container: Its membership (as the aggregate of its subgroup memberships) is recomputed only
when new subgroups are added, existing subgroups are deleted, when the subgroups’ rules are
modified, or upon request.

About OGS Group Hierarchy
OGS manages groups in a hierarchical fashion and supports subgrouping. Each child group is a subgroup
of a parent group and its group membership will be a subset of its parent group. OGS also supports
container groups. Container groups are groups with no rule, whose membership is simply the union of
the membership of its children.

Regardless of whether a group's parent is static or dynamic, the result of evaluating a group is the
intersection of the objects that satisfy its rule and the objects that satisfy its parent's effective rule.
30-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Understanding OGS
The effective rule for a static group is a rule that enumerates its members. When a static group is
reevaluated, all its descendant static groups will also be reevaluated.

The effective rule for a dynamic group is an expression that is formed by applying the operator AND to
the operands that are the group's rule and its parent's effective rule.

How Rules Are Constructed
A group rule consists of one or more expressions, which can be combined using the operators AND, OR
or NOT. Each expression has the following components, concatenated with a “:”separator

 • Domain: The cluster of applications sharing the group (e.g., “Triveni” or “ALL”).

 • Application: The specific application within the domain that shares the group (e.g., “RME” or
“Campus”)

 • Class: The class of object (e.g., “Device”).

 • Attribute: The specific object attribute whose value the rule will test (e.g., “DeviceType” or
“IPAddress”),

 • Operator: The evaluation operation defined in the Application Schema (e.g., “IsEqualTo” or
“Contains”).

 • Value: The value to be tested for (e.g., “Router”).

Example

The following rule will select Devices which are either Routers or have an IOS Version greater than 11.3
and that are assigned IP Addresses beginning with the octets “172.20”:

MYAPP:RME:Device.DeviceTypeEquals "Router" or MYAPP:RME:Device.IOSVersion > "11.3" AND
MYAPP:RME:Device.IPAddressContains "172.20"

Choosing to Implement OGS
If you want to implement OGS in your application without extensive customization, you must also:

 • Install the Common Services Transport Mechanism (CSTM). The OGS Server uses CSTM to
communicate with its clients. For more information on CSTM, see Chapter 31, “Using the Common
Services Transport Mechanism.”

 • Implement a local database. The OGS Server persists group information to a local data store to
ensure that group information is not lost between activations. Your choice of DBMS to accomplish
this should adhere to any guideline or prescription established for your application. For information
on implementing a database in Common Services, see Chapter 11, “Using the Database APIs.”

 • Implement Event Services Software (ESS), including the Java Messaging Service (JMS). For more
information on these topics, see Chapter 19, “Using Event Services Software.”

 • Implement the OGS Server. For more information on this task, see the “Implementing OGS Servers”
section on page 30-7.

 • Create an OGS Application Service Adapter and Application Schema File for your application. For
more information on this task, see the “Creating OGS ASAs” section on page 30-17.

In addition to these requirements, your application must support JDK 1.3.1.
30-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Implementing OGS Servers
The OGS Server performs the following tasks:

 • Creating and maintaining group information.

 • Interacting with Application Service Adapters (ASAs) to:

 – Evaluate group membership.

 – Retrieve the requested attributes of the member objects of a group.

 – A later release will allow ASAs to register their schema. Currently, you must register ASA
schema statically, via configuration files.

The OGS Server provides its clients with a unified and consistent view of group definitions and results
of rule evaluation. It does this by recording any change to the group information (through creation,
modification, deletion or evaluation of a group).

The OGS Server relies on:

 • A means of persisting the group definition and membership data. This can be a relational database,
object-oriented database, or file system.

 • The Common Services Transport Mechanism (CSTM) to interact with clients.

 • ASAs to perform rule evaluation.

The following topics discuss OGS Server and its implementation in detail:

 • Getting Started with OGS Server

 • How OGS Server Works

 • Using the OGS Server APIs

 • Customizing OGS Server Interfaces

 • Creating a Custom OGS Event Processor

 • Handling OGS Exceptions

Getting Started with OGS Server
Setting up a running OGS Server instance normally requires you to create an Application Service
Adaptor (ASA) for your application and then set the OGS Server to use it.

You can also create a very simple OGS Server implementation using the test ASA supplied on the SDK.
The following steps explain how to install OGS Server and configure it to use TestASA through a script
file.

For details on writing an ASA that performs work useful to your application, see “Creating OGS ASAs”
section on page 30-17.

Step 1 Retrieve the packaged version of the OGS WAR file from the OGS Portal.

Step 2 Extract the WAR file’s contents to the default application directories under Tomcat. For example:

 • Extract all OGS jar files to /tomcat/webapps/appname/WEB_INF/lib (where appname is the name
of your application).

 • Extract all other files (in including property and configuration files) to
/tomcat/webapps/appname/WEB_INF/classes.
30-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Step 3 Retrieve TestASA.tar (or TestASA.zip) from the SDK portal.

Step 4 Extract TestASA.tar (or TestASA.zip) to the default application directories under Tomcat.

Step 5 Run the OGS Server test setup script ServerSetup.sh (ServerSetup.cmd). The script will update
OGSServer.properties and ASARegistry files to point to TestASA, exactly as you would do when
implementing your own custom ASA (see “Running a Customized ASA” section on page 30-36).

Step 6 Start CWCS and OGS Server. Use the Administrative GUI to add some groups.

How OGS Server Works
OGS Server makes use of five classes to instantiate its most important behaviors:

 • OGSClassDefinition:

This class models the OGS notion of classes (see the “Basic OGS Concepts” section on page 30-2).
The OGS Server creates instances of OGSClassDefinition using the definitions of OGS classes in
an application schema. An OGSClass instance holds information about an application class. such as
its name, its domain and the application to which it belongs, the attributes associated with it,
attributes that can be used in composing rules, the operations that are permitted on those attributes,
and the allowable target values.

 • OGSObject:

This class models the OGS notion of objects (see the “Basic OGS Concepts” section on page 30-2).
ASAs create instances of OGSObject and return lists of them to the OGS Server whenever the ASAs
evaluate rules. Each OGSObject instance contains the OID of the application class object it
represents, and the values of the other attributes that were requested by a client.

 • OGSRule, OGSRuleExpression:

These two classes model the expressions used in rules and the rules themselves.

 • OGSGroupDefinition:

This class models OGS groups in a straightforward manner. It has instance variables that store group
information, such as group ID, name, ownership, creation and modification times, and so on.

An active OGS Server instance is an executing operating system process that runs as a daemon.
Developers should use the CWCS Daemon Manager (see Chapter 17, “Using the Daemon Manager”) to
manage OGS Server states.

Upon activation, an OGS Server process performs initialization tasks, such as reading static ASA
registration and group definitions from its persistent store.

If initialization is completed successfully, OGS Server publishes its URN to CSTM and waits for
requests. When it receives requests, it passes them to the appropriate registered ASA, and returns the
result.

Using the OGS Server APIs
The OGS Server API allows you to:

 • Create, delete, copy, modify and rename groups

 • Copy group hierarchies

 • Evaluate the members of a group
30-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
 • Retrieve application schema and class information

 • Retrieve group definitions

 • Retrieve lists of all group names

 • Verify service

Usage, input arguments and other details for each OGSServer API call are fully documented in the OGS
Javadoc available on the OGS Portal at https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625.

The following example demonstrates how to implement the API as part of a client application.

Example 30-1 A Sample OGS Client

package com.cisco.nm.xms.ogs.client;

import java.util.ArrayList;
import com.cisco.nm.xms.ogs.server.OGSInterface;
import com.cisco.nm.xms.ogs.util.OGSOid;
import com.cisco.nm.xms.ogs.util.OGSSecurityContext;
import com.cisco.nm.xms.ogs.util.OGSObjectList;
import com.cisco.nm.xms.ogs.util.OGSObject;
import com.cisco.nm.xms.ogs.util.ClassPath;
import com.cisco.nm.xms.ogs.client.OGSServerProxy;

public class GetDeviceGroups {

 // This program retrieves all groups managed by an OGS Server
 // that have at least one device object as a member. The program
 // is invoked with a single argument that names the class that
 // represents device objects.

 public static void main(String[] args)
 {
 if (args.length != 1) {
 System.out.println("usage: GetDeviceGroups device-class-name");
 System.exit(-1);
 }
 _devClassName = args[0];
 _devClassLength = _devClassName.length();
 try {
 _devClassElements = new ClassPath(args[0]).elements();
 } catch (Exception ex0) {
 System.err.println("Error getting elements of class: " + args[0]
 + ": " + ex0.getMessage());
 }
 TaskID task=new TaskID (“OGS”, “OGSOPERATION”, null); OGSSecurityContext ctxt=new
OGSSecurityContext(_adminName,task);
 try {
 // Get the hierarchical membership of the root of all
 // groups. Having retrieved the membership in this
 // fashion, we can now examine the membership of
 // all the descendant groups and determine the ones
 // whose membership contains at least one device object.

 OGSServerProxy pxy = new OGSServerProxy();
 Integer mtype = new Integer(OGSInterface.HIERARCHICAL_MEMBERSHIP);
 OGSObjectList list
 = pxy.evaluateGroup(ctxt,
 null,
 null,
30-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
 _root,
 null,
 mtype,
 Boolean.FALSE);

 String[] devices = getDeviceGroups(list);
 for (int i = 0; i < devices.length; ++i) {
 System.out.println(devices[i]);
 }
 } catch (Exception ex) {
 System.err.println("Error getting device groups: " +
 ex.getMessage());
 }
 }

 private static String[] getDeviceGroups(OGSObjectList list)
 {
 ArrayList result = new ArrayList();
 OGSObjectList[] children = list.children();
 for (int i = 0; i < children.length; ++i) {
 getDeviceGroups(list, result);
 }
 return (String[])result.toArray(new String[0]);
 }

 // This method gathers the names of all the groups
 // (in the hierarchy rooted at the group represented by 'list')
 // have at least one device object as a member.

 private static boolean getDeviceGroups(OGSObjectList list, ArrayList result)
 {
 boolean hasDevice = false;
 OGSObjectList[] children = list.children();
 for (int j = 0; j < children.length; ++j) {
 if (getDeviceGroups(children[j], result)) {
 hasDevice = true;
 }
 }
 // If any descendant has a device member, this group
 // has it too.

 if (hasDevice) {
 result.add(list.name());
 return true;
 }

 // This group has no descendants that have a device
 // member, so check the membership of the group for
 // devices.

 OGSObject[] objects = list.objects();
 for (int i = 0; i < objects.length; ++i) {
 String oid = objects[i].objectId();
 try {
 String objClass = OGSOid.getClassFromOid(oid);
 if (isDeviceClass(objClass)) {
 result.add(list.name());
 return true;
 }
 } catch (Exception ex) {
 System.err.println("Error processing object: " + oid);
 }
 }
 return false;
30-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
 }

 // Returns true if the class named by 'cname' is the same
 // as the device class or is a subclass.

 private static boolean isDeviceClass(String cname)
 {
 if (cname.length() < _devClassLength) {
 return false;
 } else if (cname.equals(_devClassName)) {
 return true;
 }

 // The following can also be achieved by verifying that
 // _devClassName is a prefix of cname and that the character
 // following the matching prefix is ':'.

 try {
 ArrayList classElements = new ClassPath(cname).elements();
 if (classElements.size() < _devClassElements.size()) {
 return false;
 }
 for (int i = 0; i < _devClassElements.size(); ++i) {
 String s1 = (String)classElements.get(i);
 String s2 = (String)_devClassElements.get(i);
 if (!s1.equals(s2)) {
 return false;
 }
 }
 return true;
 } catch (Exception ex) {
 System.err.println("Error getting elements of: " + cname);
 return false;
 }
 }

 private static int _devClassLength;
 private static String _devClassName;
 private static ArrayList _devClassElements;
 private static String _root = "/";
 private static String _adminName = "admin";
}

Note This code is in the OGS VOB and can be found at:
/vob/enm_ogs/share/classes/client/com/cisco/nm/xms/ogs/client/OGSClient.java

Customizing OGS Server Interfaces
All OGS Server interfaces that you can customize are listed as settable parameters in the
OGSServer.properties file. These customizable interfaces include:

 • CacheImplClass

This is an implementation of the interface OGSGroupCacheIf (see Figure 30-1). OGS uses an
instance of this class as a source of grouping data. Though an ASA ultimately evaluates the rule, this
abstraction is defied so that group membership can be cached. The OGS Server uses an instance of
30-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
the class specified for this property for every ASA that is registered. A limitation in this release of
OGS is that instances of only a single class can be used for caching, even when multiple ASAs are
used (that is, the caching strategy cannot be customized for the individual ASAs). The default value
is com.cisco.nm.xms.ogs.server.GroupCacheImpl. Use the default implementation if possible, or
subclass GroupCacheImpl (as Kilner does).

 • GroupPersistorImplClass

An implementation of the interface OGSGroupPersistorIf (see Figure 30-1). The OGS Server uses
this class to persist and retrieve group definitions. The default value for this property is
com.cisco.nm.xms.ogs.server.GroupPersistorImpl. This implementation uses the CWCS database to
persist group definitions. Use the default implementation unless your product has special
requirements.

 • GroupCachePersistorImplClass

This is an implementation of the interface GroupCachePersistorIf (seeFigure 30-2 and the caching
information in this topic). Instances of GroupCacheImpl use an instance of this class to persist
cached membership data, so this property is relevant if the OGS is configured to use class
GroupCacheImpl (or its subclass) only.

The default value for this property is com.cisco.nm.xms.ogs.server.GroupCachePersistorImpl. Use
the default implementation unless your product has special requirements.

 • SecurityImplClass

This is an implementation of OGSSecurityHandlerIf (see Figure 30-1). OGS uses an instance of this
class to enforce access control on groups, but not on the group membership.

The default value for this property is com.cisco.nm.xms.ogs.server.DummySecurityHandler, which
allows unrestricted access by all users. You can find examples of implementations that follow
different security requirements (those for Campus Manager and Kilner) in the OGS VOB.

 • ASARegistrationFile

This specifies the XML file used to register ASAs with the OGS Server and identifies the ASA
implementation to be used. See the “Registering the ASA with OGS” section on page 30-36 for an
example ASA Registration File and its DTD.

 • SystemGroupsFile

The file that contains the definitions of any predefined groups you have customized for your product
and that you will ship with OGS. For a sample version of this, see Kilner’s System Groups file,
vasa-system-groups.xml.

 • SystemGroupCreator

This specifies the name of the creator of the system predefined groups given in the
SystemGroupsFile. This can be any string, but your security module may place some restrictions on
what this should be. The default value is “ogs”.

 • OGSEnvironmentAdapterImpl

This class can be used to do any postprocessing operation after the OGSServer starts in the
environment.

For example, the published URNs need to be unpublished URNs need to be unpublished when the
daemon manager stops the OGS server. This is done by the implementation of
OGSEnvironmentAdapterIf interface. Another related property is OGSEnvRegistrationName which
specifies the process or daemon name of the OGS server.

Figure 30-1 shows the relationships among these OGS Server properties.
30-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Figure 30-1 OGS Server Interfaces

In addition to these interfaces, the default OGS Cache Manager (class GroupCacheImpl) has three cache
update mechanisms that it activates periodically. All three update mechanisms use implementations of
the interface CacheUpdaterIf shown in Figure 30-2:

1. BasicCacheUpdater—Updates the cached membership by evaluating all the groups.

2. ReactiveCacheUpdater—Collects change information (such as objects added or deleted, attribute
value changes, etc.) and updates the cached membership f the groups affected by those changes.

3. InvalidCacheUpdater—Updates cached membership by evaluating groups for which the previous
evaluation had failed.

96
58

9

BasicCacheUpdater

CacheUpdaterIf

GroupCache GroupCacheImpl
n

updates
ASA

contains

Compare group
members for equality

Persist group
membership

l

OGSGroupHierarchyIf OGSGroupCachePersistorIf

OGSObjectComparatorIf

ReactiveCacheUpdater
extends

implements

ASAChangeAlertIf

ASAInterface
30-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Figure 30-2 OGS Cache Manager Interfaces

Of these three updater mechanisms, the first two (BasicCacheUpdater and ReactiveCacheUpdater) can
be customized. To customize the two updaters, you can set the following OGSServer.properties
parameters:

 • GroupUpdateFrequency

Sets the interval in seconds between activations of the BasicCacheUpdater. A value of -1 disables
this updater. The default value is 60.

 • GroupUpdaterClass

TBD

 • ReactiveUpdaterClass

Specifies the name of the class that implements CacheUpdaterIf (see Figure 30-2). This is normally
the default class or one of its subclasses: ReactiveCacheUpdater in com.cisco.nm.xms.ogs.server.
For an example of a custom reactive updater, see KilnerReactiveUpdater in
com.cisco.nm.xms.ogs.Kilner10.

 • ReactiveUpdateFrequency

Sets the interval in seconds between activations of the reactive updater. A value of -1 disables this
updater. The default value is -1 (that is, the reactive updater is disabled in the default configuration.

OGSServer.properties also allows you to customize the following properties:

 • ProductId

Sets the string representing the ID of the product in which this OGS implementation is used. This is
used to create strings for names of events published by this instance of OGS.

 • InstanceId

Sets the string representing this instance of OGS. This is reserved for future use.

 • IgnoreCacheInitErrors

9
6
5
9
0

Persist group
definitions

Events for group
creation, deletion,
modification, etc.

Membership
change events

Access control
of groups

OGSSecurityHandlerIf

OGSGroupCacheIf GroupCacheImpl

OGS Server

Retrieve group
members

implements

OGSGroupPersistorIf

Group ManagementRequests
(API invocation)

OGSEventProcessorIf
30-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Specifies whether you want cache initialization errors to be ignored when creating dynamic groups,
so that dynamic group creation will not fail. This property does not affect static groups, since these
groups, by definition, require that their membership be completely determined at creation time. We
recommend that you set this property value to True; the default value is False.

 • EventProcessorImplClass

Specifies the name of the class that implements OGSEventProcessorIf (see Figure 30-2). This
interface allows a product to customize how OGS events are dispatched. Normally, this is the default
class DefaultEventProcessor, which dispatches OGS events with no modifications.

For an example of a custom Event Processor, see KilnerEventConsolidator in
com.cisco.nm.xms.ogs.Kilner10 and the “Creating a Custom OGS Event Processor” section on
page 30-15, which examines KilnerEventConsolidator in detail.

Creating a Custom OGS Event Processor
The DefaultEventProcessor in OGS dispatches OGS events without modifications. Each such event is
dispatched as a message, with a subject name that looks like this:

cisco.mgmt.cw.product_id.ip_address.ogs.alert

Where:

 • product_id is the name of the product publishing the event.

 • ip_address is the IP of the server where OGS is executing.

The subject of the message describes an atomic change to the data OGS manages, including group
creation, deletion, modification, renaming, or membership change. This can often result in hundreds of
messages.

For example, consider a group high in a group hierarchy that is deleted. In this case, atomic “deletion”
messages will be generated for every subgroup. If there are 50 such subgroups, the default Event
Processor will forward 51 “group deletion” messages. Similarly, a single modification in a group
containing 1000 objects would result in 1000 group-membership change events.

You can create your own Event Processor, and use the OGSServer.properties parameter
“EventProcessorImplClass” to implement it (see the “Customizing OGS Server Interfaces” section on
page 30-11). The custom Event Processor can handle events in any way you wish, up to and including
suppressing all events.

Kilner offers an example of a custom Event Processor: KilnerEventConsolidator in
com.cisco.nm.xms.ogs.Kilner10. This processor dispatches customized “consolidated events”, which
logically group or aggregate atomic OGS event information based on the operation that triggered those
events.

The subject name for a consolidated event in Kilner looks like this:

cisco.mgmt.cw.kilner.ip_address.ogs.alert.consolidatedevent

Where consolidatedevent is a single message that consolidates the individual events that are the results
of a single “groupcreation”, “groupdeletion”, “groupmodification”, “grouprename”,
“membershipchange”, or “serverstart” operation. The body of the message will contain the atomic event
data consolidated under that “heading”.

For every consolidated event, an instance of class ConsolidatedOGSEvent in
com.cisco.nm.xms.ogs.kilner10 is sent in an object message.
30-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Implementing OGS Servers
Processing requires:

1. Using the method ogsOperation() to retrieve the OGS operation that resulted in the event. The
relevant OGS operations (defined in class ConsolidatedOGSEvent) are:

 – Group Creation: GROUP_CREATION, GROUP_COPY, GROUP_HIERARCHY_COPY,
CREATE_PARTITION

 – Group Deletion: GROUP_DELETION

 – Group Rename: GROUP_RENAME

2. If the event is of interest, retrieving and processing the collection of associated AtomicEventData.

For more on creating a consolidated Event Processor, see:

 • The Kilner VOB.

 • The ConsolidatedOGSEvent and AtomicEventData Javadoc at the OGS Portal,
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625.

Handling OGS Exceptions
The OGS API defines the exception classes shown in Table 30-2. The list includes a description of the
kinds of operations that typically result in these exceptions. All of these exception classes are subclasses
of OGSException. In addition to these exceptions, you should be sure that your application is prepared
to handle instances of OGSException that represent internal errors.

Table 30-2 OGSException Classes

Exception Description Operations

OGSException.AccessDenied The user does not have the access
required to perform the requested
operation.

All operations except
retrieveApplicationSchema,
validateRule and verifyService.

OGSException.GroupExists The named group already exists. createGroup, copyGroup,
copyGroupHierarchy, renameGroup

OGSException.GroupDoesNotExist The named group does not exist. All operations except
retrieveApplicationSchema,
validateRule, createGroup,
retrieveGroupList, verifyService.

OGSException.InvalidParent The parent group, as specified in the
name of a group, is invalid (does not
exist).

createGroup, copyGroup,
copyGroupHierarchy

OGSException.IllegalRename The new name provided while renaming a
group is not legal. OGS does not allow
renaming a group such that its parent
group is changed. For example: This
exception will be thrown if you attempt to
rename group /A/B/C to /A/D/C1.

renameGroup

OGSException.IllegalContainer A process attempted to create a container
group (a group with no rule) under the
root.

createGroup, copyGroup,
copyGroupHierarchy
30-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625
https://mco.cisco.com/ubiapps/portal/go.jsp?portal_id=6625

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
Creating OGS ASAs
In order to use OGS, you must create and associate with your application an Application Service Adapter
(ASA). The OGS Server depends on ASAs to:

 • Respond to queries that seek to verify the presence of an ASA.

 • Register an application schema that the OGS Server supports. OGS Servers process schema
registration files at startup.

 • Evaluate a rule and return to the OGS Server the OGS objects that satisfy it.

 • Given a list of object IDs and a set of attributes, return the corresponding OGS objects.

The remainder of this topic explains what is needed to create an OGS ASA, including:

 • Understanding ASA Infrastructure Modules

 • Customizing ASA Infrastructure Modules

 • Running a Customized ASA

OGSException.IllegalName The group or class name is malformed. All operations except
retrieveApplicationSchema,
retrieveGroupList, verifyService.

OGSException.IllegalGroupDefinition Thrown whenever the definition of a
group is malformed. Currently, the only
condition that will provoke this exception
is when the evaluation type is not
specified as either static or dynamic.

All constructors of
OGSGroupDefinition

OGSException.InvalidRule The rule is invalid. createGroup, copyGroup,
copyGroupHierarchy, modifyGroup,
evaluateRule, validateRule.

OGSException.IllegalNullParameter One of the parameters being passed has a
illegal null value.

All operations except verifyService,
retrieveApplicationSchema.

OGSException.IllegalParameter One of the parameters has an illegal (but
not null) value.

evaluateGroup (when the
membership format is not one of the
specified formats).

OGSException.ASANotFound The operation could not find an ASA that
could evaluate the rule.

createGroup, modifyGroup,
validateRule, evaluateRule.

OGSException.GroupInitializationFailed The initialization of the group’s
membership failed.

evaluateGroup

OGSException.ASAError The process received an error from the
ASA while evaluating a rule.

createGroup, copyGroup,
copyGroupHierarchy, modifyGroup,
evaluateRule, evaluateGroup.

Table 30-2 OGSException Classes (continued)

Exception Description Operations
30-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
About ASA Implementations

There is no default ASA supplied with OGS. However, the OGS team provides a set of libraries and tools
to assist in ASA development, and default or example implementations for most modules.

Application developers and the OGS Team have also collaborated in creating OGS ASAs for several
applications. These serve as ready-made examples of how to create customized ASAs, and their code is
available on a read-only basis to Cisco developers with access to ClearCase:

 • For code related to the ASA infrastructure classes (and example implementations, such as the
Generic SQL ASA), see the OGS vob, /vob/enm_ogs/share/classes/server. All packages are defined
within this vob.

 • For the latest code related to the generic OGS, use the views created in project ogs.

 • To access code related to Kilner and its ASAs (such as the VMSAQueryGenerator in the class
com.cisco.nm.xms.ogs.kilner.), use the views created in project ogs_kilner.

Managing ASA Processes

OGS Server will load an ASA into its JVM if the ASA Registration File (see the “Running a Customized
ASA” section on page 30-36) specifies a Location type of “local”. OGS Server will manage startup and
shutdown, and registration with CSTM, of any local ASA.

Developers should use the CWCS Daemon Manager (also known as Process Manager; see Chapter 17,
“Using the Daemon Manager”) to manage startup and shutdown of the OGS Server.

A “local” ASA is the only ASA type allowed in this release of OGS. Future OGS versions will allow
ASAs to run remotely, either alone or within the JVM of a non-OGSServer application.

When planning your application’s use of OGS in future releases, please note that remote ASAs will need
to register themselves with OGSServer and with CSTM, and must be controlled by the CWCS Daemon
Manager, to ensure they are available to requests from OGS Servers.

Using ASAs to Aggregate Data

Under normal circumstances, OGSServer is responsible for aggregating data resulting from the
evaluation of a query on multiple instances of an ASA. However, it is possible to customize ASAs to
perform this function if requirements make this necessary.

For example, an ASA may require tight cooperation between its instances to evaluate rules. In this case,
the ASA can register a single instance that will then be responsible for communicating client requests to
the other instances and aggregating the results before returning them to the OGS Server.

About the OGSServer-ASA Interface

Provided as ASAInterface in com.cisco.nm.xms.ogs.asa, this component allows the ASA and
OGSServer to exchange commands, queries and result data via the Common Services Transport
Mechanism.

All current ASA structures implement this interface. However, the interface is pluggable, which means
that you can substitute your own ASA structure for the one described here.

You may want to do this if you have a very simple object grouping requirement.

For example, you may require OGS to parse a flat file containing nothing but a list of user names. In this
case, you can write your own simple ASA class and implement it. However, your ASA class must:

 • Be capable of responding on its own to requests from the OGSServer as normal ASAs do (that is, it
must be able to parse rules, access the flat file, etc.).
30-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 • Implement ASAInterface.

 • Be registered with OGSServer. You do this by entering the name of this class as the classname value
in the ASA Registration file (for more on this, see the “Registering the ASA with OGS” section on
page 30-36).

Understanding ASA Infrastructure Modules
The basic function of your application’s ASA is to validate and evaluate rules passed to it by the OGS
Server. To perform these functions, your ASA needs the following modules:

1. Rule Validator: Ensures that a rule passed to it by the OGS Server is valid. For details, see the “About
the Rule Validator” section on page 30-20.

2. Generic Schema: Provides for the Rule Validator a parsed object tree containing all the combinations
of groupable classes, attributes, operators and values allowable in rules. For details, see the “About
the Generic Schema” section on page 30-20.

3. Rule Evaluator: Converts a validated rule into a query appropriate to the application’s data-storage
structure, and returns to the OGS Server the objects that match the rule. For details, see the “About
the Rule Evaluator” section on page 30-21.

4. Mapping Schema: Maps groupable classes against the data-storage elements in an application
domain and supplies the mapping to the Rule Evaluator for query formation. For details, see the
“Customizing the Mapping Schema” section on page 30-27.

5. Rule Converter: Translates the notation for a rule used by the OGS Server into the notation used
internally by the ASA infrastructure. For details, see the “About the Rule Converter” section on
page 30-21.

6. Node Rule Expression: Models the basic type of Rule Expression that the ASA will validate and
evaluate. For details, see the “About Node Rule Expressions” section on page 30-21.

7. Composite Node Rule Expression: Models complex Rule Expressions involving two or more Node
Rule Expressions. For details, see the “About Composite Rule Expressions” section on page 30-22.

8. ASA Change Alerter: Alerts the OGS Server when an object changes. For details, see the “About
the ASA Change Alerter” section on page 30-22.

Figure 30-3 shows the relationships among these modules.

For guidelines and examples on how to customize these infrastructure modules for your application, see
the “Customizing ASA Infrastructure Modules” section on page 30-22.

For other examples of custom ASAs, see the ClearCase VOBs listed in the “Creating OGS ASAs”
section on page 30-17.
30-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
Figure 30-3 ASA Infrastructure Modules

About the Rule Validator

The Rule Validator ensures that:

1. Each groupable class in the rule is valid.

2. Each groupable attribute in the rule is valid.

3. Each groupable operator in the rule is valid.

4. The rule as a whole evaluates to a valid class. This includes all of the Rule Expressions, combined
by AND, OR, or EXCLUDE operators.

5. The object ID values specified in the rule refer to actual objects. The OIDs can contain the value
“ANY” or a “$”- separated value produced by the ASA.

In addition to these tasks, the Rule Validator can also check the validity of any:

 • Value range specified in the rule.

 • Value enumeration specified in the rule.

The Rule Validator depends on the Generic Schema to perform these tasks.

About the Generic Schema

The Generic Schema consists of a Parser and XML Schema file describing the groupable classes,
attributes, operators and values (including any value ranges and enumerations) valid for all objects. The
Parser supplies this structure to the Rule Validator.

96
59

1

ASA Change Alerter

Rule Converter

Rule Validator Rule Evaluator

Generic Schema Parser Mapping Schema Parser

Node Rule Expression Composite Rule Expression
30-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
About the Rule Evaluator

The Rule Evaluator:

1. Evaluates the rule for a particular OGS class.

2. Combines individual Rule Expressions within the rule so that the object data can be retrieved.
“Combining” the Rule Expressions can mean turning all of them into one query (as in the
SQLQueryGenerator), or evaluating each Rule Expression separately and then combining the results
based on the operator (as with the VMSAQueryGenerator).

3. Returns to the OGS Server the objects that match the rule.

4. Defines a unique object ID to represent the OGS object in the domain. For example, in ANI, the
database identifier (DBID) can be used as the OID to define a unique piece of data. In the SMARTS
repository, it can be the instance name for a class (which is assumed to be unique).

5. For each object, retrieves other attributes as required. The attribute data can map to other columns
in the tables for a relational database, or it can map to class attributes in the SMARTS repository.

When combining Rule Expressions, the Rule Evaluator must group them into queries specific to the
needs of the data-storage resource. These queries can be:

 • SQL queries, as in the case where the storage domain is a relational database management system.

 • A custom query mechanism, as in the case where the storage domain is a SMARTS repository.

The Rule Evaluator depends on the Mapping Schema to format the query appropriately.

About the Mapping Schema

The Mapping Schema consists of a Parser and XML Schema file that specifies the mapping between
groupable OGS classes and the elements in the application’s data-storage resource where the data for
these objects is actually stored. The Rule Evaluator uses this information to convert rules into
data-store-specific queries.

About the Rule Converter

The ASA infrastructure notation for a Rule Expression is different from the notation used by the OGS
Server. This is necessary because the ASA can store extra information in the rule to help the Rule
Evaluator generate queries.

Example

A Rule Expression for use with a SQL ASA can contain the entire query formed by the Query generator.
The Rule Expression to be used with the Kilner VMSA can contain other types of information specific
to a SMARTS Repository.

The Rule Converter converts any rule passed by the OGS Server into a rule format used by the Rule
Validator and Rule Evaluator.

About Node Rule Expressions

A Node Rule Expression contains four elements:

1. The groupable class.

2. The groupable attribute.
30-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
3. The groupable operator.

4. The value.

For example: In the Node Rule Expression Device IpAddress contains "172.20", the class is Device,
the attribute is IpAddress, the operator is contains, and the value is "172.20".

Similar examples of Node Rule Expressions would include: Device SystemLocation contains "US",
or Device SystemLocation contains"San Jose".

About Composite Rule Expressions

A Composite Rule Expression contains two or more Rule Expressions combined by the operators AND,
OR or EXCLUDE.

The Rule Expressions combined in this way can be either Node Rule Expressions or other Composite
Rule Expressions.

For example, we can create a Composite Rule Expression using just two Node Rule Expressions: Device
IpAddress contains"172.20"AND Device SystemLocation contains "US"

We can also create a Composite Rule Expression that combines the foregoing Composite Rule
Expression with another Node Rule Expression: (Device IpAddress contains"172.20" AND Device
SystemLocation contains "US") OR Device SystemLocation contains"San Jose".

About the ASA Change Alerter

The ASA Change Alerter informs the OGS Server whenever a change to an object takes place in the
data-storage resource containing the object data. The ASA Change Alerter must inform OGS Server
whenever:

 • An object is added.

 • An object is deleted.

 • An object is modified.

 • An individual object's attribute values changes.

 • A groupable class’s attribute values change..

 • The domain data provider is available (that is, when the relational or object-oriented database comes
up).

Customizing ASA Infrastructure Modules
The ASA infrastructure modules must be customized depending upon your application’s requirements
for:

 • The types of objects your application will group.

 • The way you want to group them.

 • The way your application stores the object data.

The following topics provide guidelines and examples for customizing each of the ASA Infrastructure
Modules:

 • Customizing the Rule Validator

 • Customizing the Generic Schema
30-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 • Customizing the Rule Evaluator

 • Customizing the Mapping Schema

 • Customizing the Rule Convertor and Rule Expressions

 • Customizing the ASA Change Alerter

Customizing the Rule Validator

The Rule Validator function is provided by the default validator class GenericValidatorImpl in
com.cisco.nm.xms.ogs.asa. You will rarely need to extend this class to customize it.

Customizing the Generic Schema

The Generic Schema parser has been designed for reuse with very little change. The Generic Schema
parser function is provided by a default schema parser class, OGSSchemaParser in
com.cisco.nm.xms.ogs.server.parser. You should reuse this class as needed.

It is not possible to create a default Generic Schema file that will work with any application. However,
you can create a Generic Schema file for practically any combination of classes, attributes, operators and
values using the following XML DTD:

<?xml version="1.0"?>
<!DOCTYPE domain [

<!ELEMENT domain (application)>
<!ATTLIST domain
 name CDATA #REQUIRED>

<!ELEMENT application (class+,complexType+,group+)>
<!ATTLIST application
 name CDATA #REQUIRED>

<!ELEMENT class EMPTY>
<!ATTLIST class
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 groupable (yes|no) #REQUIRED >

<!ELEMENT complexType (extension? , attribute*) >
<!ATTLIST complexType
 name CDATA #REQUIRED>

<!ELEMENT extension EMPTY>
<!ATTLIST extension
 base CDATA #REQUIRED>

<!ELEMENT attribute (operatorGroup?,restriction?) >
<!ATTLIST attribute
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 groupable (yes|no) #REQUIRED
 displayable (yes|no) #IMPLIED
 returnable (yes|no) #IMPLIED>

<!ELEMENT operatorGroup EMPTY>
<!ATTLIST operatorGroup
 ref CDATA #REQUIRED>
30-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
<!ELEMENT restriction (enumeration*,minInclusive?,maxInclusive?) >

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration
 value CDATA #REQUIRED
 alias CDATA #IMPLIED>

<!ELEMENT minInclusive EMPTY>
<!ATTLIST minInclusive
 value CDATA #REQUIRED>

<!ELEMENT maxInclusive EMPTY>
<!ATTLIST maxInclusive
 value CDATA #REQUIRED>

<!ELEMENT group (extension? , operator*) >
<!ATTLIST group
 name CDATA #REQUIRED>

<!ELEMENT operator EMPTY>
<!ATTLIST operator
 name CDATA #REQUIRED>

]>

<domain name="CMF">
 <application name="DCR">
 <class name = "Device" type="DeviceType" groupable="yes"/>

 <complexType name="DeviceType">
 <attribute name="DisplayName" type="string" groupable="yes"
displayable="yes" returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="ManagementIpAddress" type="string" groupable="yes"
displayable="no" returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="HostName" type="string" groupable="yes" displayable="no"
returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="DomainName" type="string" groupable="yes" displayable="no"
returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="DeviceIdentity" type="numeric" groupable="yes"
displayable="no" returnable="yes">
 <operatorGroup ref="EqualityOperatorsGroup"/>
 </attribute>

 <attribute name="SystemObjectID" type="string" groupable="yes"
displayable="no" returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

30-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 <attribute name="Category" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="Series" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="Model" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="MDFId" type="string" groupable="yes" displayable="no"
returnable="yes">
 <operatorGroup ref="EqualityOperatorsGroup"/>
 </attribute>

 <attribute name="UDF0" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF1" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF2" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF3" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF4" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF5" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF6" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF7" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF8" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>
30-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs

 <attribute name="UDF9" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF10" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF11" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF12" type="string" groupable="yes" displayable="no"
returnable="yes">

 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF13" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF14" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 <attribute name="UDF15" type="string" groupable="yes" displayable="no"

returnable="yes">
 <operatorGroup ref="StringOperatorsGroup"/>
 </attribute>

 </complexType>

 <group name="StringOperatorsGroup">
 <operator name="equals" />
 <operator name="contains" />
 <operator name="startswith" />
 <operator name="endswith" />
 </group>

 <group name="EqualityOperatorsGroup">
 <operator name="equals" />
 </group>

 </application>
</domain>

Customizing the Rule Evaluator

The Rule Evaluator must implement the interface QueryGeneratorIf in class com.cisco.nm.xms.ogs.asa.

As the Rule Evaluator must query the application’s data resource, no generic implementation of the Rule
Evaluator exists. You must create a custom Rule Evaluator for your application and the data-storage
resource with which your application works.
30-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
However, implementations of the Rule Evaluator can be found at:

 • com.cisco.nm.xms.ogs.asa.genericsqlasa.SQLQueryGenerator. This SQLQueryGenerator Rule
Evaluator is designed to work with a SQL-compatible relational database management system, and
with the custom Mapping Schema parser and file described in the “Customizing the Mapping
Schema” section on page 30-27.

 • com.cisco.nm.xms.ogs.kilner10.vmsa.VMSAQueryGenerator. This VMSAQueryGenerator Rule
Evaluator is designed to work with the SMARTS Repository. It is a good example of how to work
with object-oriented data sources.

SQLQueryGenerator uses the Generic SQL ASA module SQLEvaluatorIf to evaluate SQL queries in the
database. The default version of the SQLEvaluatorIf interface is CMFEvaluator in
com.cisco.nm.xms.ogs.asa.genericsqlasa. CMFEvaluator uses the CWCS database utility DBService2 to
evaluate SQL queries.

You must configure CMFEvaluator for your application by changing the “Database_Name” value in the
DBServer.properties file to give the database name (e.g., “RME”) followed by
“_Implementation_Details.properties”.

You need not provide the user name, password, data source URL, or other database properties. They will
be picked up from DBServer.properties automatically.

Customizing the Mapping Schema

The Mapping Schema’s task of modeling the data source for the Rule Evaluator means that no default
Mapping Schema implementation can exist, as the data-storage resource for each application can vary
widely.

For example, the elements in the data resource can be:

 • Tables, if the data source is a relational database.

 • Classes, if the data source is an object-oriented data store.

 • Files, if the data source relies on flat files.

Accordingly, you must write a Mapping Schema appropriate for the way your application sources and
organizes its data. Since the Mapping Schema parser requires an XML file to parse, you must also create
a Mapping Schema XML file customized for your application’s data structure.

The Generic SQL ASA is a customization of the ASA infrastructure for querying a SQL-compliant
RDBMS. It uses a custom Mapping Schema parser (RDBMSSchemaValidator in class
com.cisco.nm.xms, ogs.asa.genericsqlasa) which is in turn used by the SQLQueryGenerator Rule
Evaluator.

RDBMSSchemaValidator was written to parse a Mapping Schema XML file conforming to the following
DTD:

<?xml version="1.0"?>
<!DOCTYPE Domain [
<!ELEMENT Domain (Application)>
<!ATTLIST Domain
 Name CDATA #REQUIRED>

<!ELEMENT Application (Mappings)>
<!ATTLIST Application
 Name CDATA #REQUIRED>

<!ELEMENT Mappings (ClassMap+,group*)>
<!ATTLIST Application
30-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 Name CDATA #REQUIRED>

<!ELEMENT ClassMap (OGSClass,ToTable,HierarchyInfo,PropertyMap+) >

<!ELEMENT OGSClass EMPTY>
<!ATTLIST OGSClass
 Name CDATA #REQUIRED>

<!ELEMENT ToTable (PrimaryKey) >
<!ATTLIST ToTable
 Name CDATA #REQUIRED>

<!ELEMENT PrimaryKey (Column+)>

<!ELEMENT Column (ColumnName,JDBC_Type,Operator)>
<!ELEMENT ColumnName (#PCDATA) >
<!ELEMENT JDBC_Type (#PCDATA) >
<!ELEMENT Operator (#PCDATA) >
<!ELEMENT HierarchyInfo (HierarchyType,ConditionalColumnInfo?) >
<!ELEMENT HierarchyType (#PCDATA) >
<!ELEMENT ConditionalColumnInfo (ColumnName,JDBC_Type,Operator,ColumnCondition) >
<!ELEMENT ColumnCondition (#PCDATA) >

<!ELEMENT PropertyMap (OGSAttribute,(AttributeToColumnMapping |
AttributeToTableDireCSTMapping | AttributeToTableIndireCSTMapping |
AttributeToTableConditionalDireCSTMapping),operatorMapGroup?)>

<!ELEMENT OGSAttribute EMPTY>
<!ATTLIST OGSAttribute
 Name CDATA #REQUIRED>

<!ELEMENT AttributeToColumnMapping (ColumnName,JDBC_Type)>

<!ELEMENT AttributeToTableDireCSTMapping (MappedTable,PrimaryToMappedAssociation)>
<!ELEMENT MappedTable EMPTY >
<!ATTLIST MappedTable
 Name CDATA #REQUIRED>

<!ELEMENT PrimaryToMappedAssociation (PrimaryTableColumnNames+,MappedTableColumnNames+)>

<!ELEMENT PrimaryTableColumnNames (PrimaryTableColumn+)>

<!ELEMENT PrimaryTableColumn (ColumnName) >

<!ELEMENT MappedTableColumnNames (MappedTableColumn+) >

<!ELEMENT MappedTableColumn (ColumnName) >

<!ELEMENT AttributeToTableConditionalDireCSTMapping
(MappedTable,PrimaryToMappedAssociation,MappedConditionalColumnName,MappedConditionalColum
nValue,MappedValueColumnName)>

<!ELEMENT MappedConditionalColumnName (#PCDATA) >
<!ELEMENT MappedConditionalColumnValue (#PCDATA) >
<!ELEMENT MappedValueColumnName (#PCDATA) >

<!ELEMENT AttributeToTableIndireCSTMapping
(MappedTable,IndirectTable,IndirectToMappedAssociation,IndirectToPrimaryAssociation) >
<!ELEMENT IndirectTable EMPTY >
<!ATTLIST IndirectTable
 Name CDATA #REQUIRED>
30-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
<!ELEMENT IndirectToMappedAssociation (IndirectTableColumnNames+,MappedTableColumnNames+)
>
<!ELEMENT IndirectTableColumnNames (IndirectTableColumn+) >

<!ELEMENT IndirectTableColumn (ColumnName) >

<!ELEMENT IndirectToPrimaryAssociation
(IndirectTableColumnNames+,PrimaryTableColumnNames+) >

<!ELEMENT operatorMapGroup EMPTY>
<!ATTLIST operatorMapGroup
 ref CDATA #REQUIRED>

<!ELEMENT group (OperatorMap+) >
<!ATTLIST group
 Name CDATA #REQUIRED>

<!ELEMENT OperatorMap (OGSOperator,ToOperator) >

<!ELEMENT OGSOperator EMPTY>
<!ATTLIST OGSOperator
 Name CDATA #REQUIRED>

<!ELEMENT ToOperator (SQLOperator) >

<!ELEMENT SQLOperator EMPTY>
<!ATTLIST SQLOperator
 Name CDATA #REQUIRED>

]>

The RDBMSSchemaValidator DTD was written to allow you to map data from any SQL-compliant
relational DBMS. It lets you specify exactly how individual OGS classes map to RDBMS tables and how
to map OGS attributes, operators and values to table columns.

With it, you can create Mapping Schema XML files that will handle all aspects of the task of mapping
OGS classes to RDBMS tables.

The following examples demonstrate how to do this for many of the most typical cases.

Example: One Table Maps to One Concrete Class

In this case, the RDBMS contains a table called “DeviceTable”. It has many columns, including
“SysName” and “SysLocation”. Using the RDBMSSchemaValidator DTD, we can specify that the OGS
class “Device” maps directly to “DeviceTable”.

Similarly, the OGS class “Device” can have the attributes “SysName” and “SysLocation”. These OGS
attributes map directly to the corresponding columns in “DeviceTable”.

In the Mapping Schema XML file, you can make this type of mapping explicit by supplying the value
ONE_TABLE_PER_CONCRETE_CLASS for the element HierarchyType inside the element
HierachyInfo.

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) currently supports conversion of rules
into SQL queries for Hierarchy classes of the type given in this example. You need not modify
SQLQueryGenerator for this purpose.
30-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
Example: One Table Maps to a Hierarchy of Classes

In this example, the RDBMS table called “Device Table” covers all device types. Each row in the table
can contain data for a different type of device, such as “Router”, “Switch”, or “PhoneAccessSwitch”.
Every row has the column "DeviceType", which has a different value depending on the type of device
described in that row.

Using the RDBMSSchemaValidator DTD, we can design many OGS classes for this mapping. One of
the simplest would be to define a base OGS class called “Device”, with many subclasses for “Router”,
“Switch”, etc.

All of these subclasses can also map to “DeviceTable”, but with a condition on the “DeviceType”
column. In the XML file, the <HierarchyType> for these classes will be
ONE_TABLE_PER_HIERARCHY.

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) can not convert rules into SQL
queries for this Hierarchy class. If you want to create table mappings for this format, you should
implement your own SQLQueryGenerator in the lines of the default implementation.

Example: Multiple Tables Map to One Abstract Class

In this case, the RDBMS has no single “Device” table. Instead, it has a table for each kind of device:
“Router”, “Switch”, “PhoneAccessSwitch”, and so on.

To handle this, we create an abstract base OGS class called “Device” which does not map to any DB
table, and concrete subclasses of “Device”, like “Router” and “Switch”, each of which maps to the
corresponding RDBMS table.

The objects in the “Device” class are just a summation of the objects in the concrete subclasses. The set
of OGS attributes common to each of the concrete subclasses belongs to the parent “Device” OGS class,
so the similarly named columns in the tables for individual devices are integrated into the class hierarchy.
In the Mapping Schema XML file, the HierarchyType for these classes is ONE_TABLE_PER_CLASS.

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) can not convert rules into SQL
queries for this Hierarchy class. If you want to create table mappings for this format, you should
implement your own SQLQueryGenerator in the lines of the default implementation.

Example: Mapping Class Attributes to Table Columns

We have the OGS class “Device” mapped to the RDBMS table “Device”, and the OGS “Device” attribute
“SystemLocation” mapped to the column “SystemLocation” in the “Device” table. We could write this
in the Mapping Schema XML file as:

<Domain Name="SomeDomainName">
<Application Name="OGS">
<Mappings>
<ClassMap>
 <OGSClass Name="Device"/>
 <ToTable Name="Device">
 <PrimaryKey>
 <Column>
 <ColumnName>DeviceID</ColumnName>
 <JDBC_Type>INTEGER</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 </PrimaryKey>
 </ToTable>
<HierarchyInfo>
30-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 <HierarchyType>ONE_TABLE_PER_CONCRETE_CLASS</HierarchyType>
 </HierarchyInfo>

 <PropertyMap>
 <OGSAttribute Name="SystemLocation"/>
 <AttributeToColumnMapping>
 <ColumnName>SystemLocation</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 </AttributeToColumnMapping>
 <operatorMapGroup ref="StringOperatorMap"/>
 </PropertyMap>
</ClassMap>

<group Name="StringOperatorMap">

 <OperatorMap>
 <OGSOperator Name="equals"/>
 <ToOperator>
 <SQLOperator Name="="/>
 </ToOperator>
 </OperatorMap>

 <OperatorMap>
 <OGSOperator Name="contains"/>
 <ToOperator>
 <SQLOperator Name="LIKE"/>
 </ToOperator>
 </OperatorMap>
</group>

</Mappings>
</Application>
</Domain>

In this example, the column “SystemLocation” is of type “VARCHAR”. The mappings for the OGS
operators for this OGS attribute type, “equals” and “contains”, are defined in the operators group,
“StringOperatorMap”.

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) currently supports the kind of attribute
mapping shown in this example

Examples: Mapping Attributes Across Tables Using Foreign Keys

If you want to have an OGS class called “Device” with the attributes “IPAddress” and “IPSubnetMask”.
But the RDBMS tables have:

 • Table “Device”, with columns “SystemLocation”, “SysObjectID”, “SystemContact” and
“DeviceID”.

 • Table “IPTable”, with columns “DevID”, “IPAddress” and “IPSubnetMask”. “DevID” is a foreign
key pointing to the primary key “DeviceID” on table “Device”.

You could design the classes and mapping as follows:

 • OGS class “Device” maps to table “Device”.

 • Class “Device” has the attributes “SystemLocation”, “SystemContact” and “SysObjectID”, which
map to columns with the same names in table “Device”.

 • Class “Device” contains a “composite” attribute of type "Class IP".
30-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 • Class “IP” maps to table “IPTable”.

 • Class “IP” has the attributes “IPAddress” and “IPSubnetMask” mapped to the columns with the
same names in table “IPTable”.

The Mapping Schema XML file for this design would contain:

<Domain Name="SomeDomainName">
<Application Name="OGS">
<Mappings>
<ClassMap>
 <OGSClass Name="Device"/>
 <ToTable Name="Device">
 <PrimaryKey>
 <Column>
 <ColumnName>DeviceID</ColumnName>
 <JDBC_Type>INTEGER</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 </PrimaryKey>
 </ToTable>

 <HierarchyInfo>
 <HierarchyType>ONE_TABLE_PER_CONCRETE_CLASS</HierarchyType>
 </HierarchyInfo>

 <PropertyMap>
 <OGSAttribute Name="IP"/>
 <AttributeToTableDireCSTMapping>
 <MappedTable Name="IPTable" />
 <PrimaryToMappedAssociation>
 <PrimaryTableColumnNames>
 <PrimaryTableColumn>
 <ColumnName>DeviceID</ColumnName>
 </PrimaryTableColumn>
 </PrimaryTableColumnNames>
 <MappedTableColumnNames>
 <MappedTableColumn>
 <ColumnName>DevID</ColumnName>
 </MappedTableColumn>
 </MappedTableColumnNames>
 </PrimaryToMappedAssociation>
 </AttributeToTableDireCSTMapping>
 </PropertyMap>
</ClassMap>

<ClassMap>
 <OGSClass Name="IP"/>
 <ToTable Name="IPTable">
 <PrimaryKey>
 <Column>
 <ColumnName>DevID</ColumnName>
 <JDBC_Type>INTEGER</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 <Column>
 <ColumnName>IPAddress</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 </PrimaryKey>
 </ToTable>

 <HierarchyInfo>
30-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 <HierarchyType>ONE_TABLE_PER_CONCRETE_CLASS</HierarchyType>
 </HierarchyInfo>

 <PropertyMap>
 <OGSAttribute Name="IPAddress"/>
 <AttributeToColumnMapping>
 <ColumnName>IPAddress</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 </AttributeToColumnMapping>
 <operatorMapGroup ref="StringOperatorMap"/>
 </PropertyMap>

 <PropertyMap>
 <OGSAttribute Name="IPSubnetMask"/>
 <AttributeToColumnMapping>
 <ColumnName>IPSubnetMask</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 </AttributeToColumnMapping>
 <operatorMapGroup ref="StringOperatorMap"/>
 </PropertyMap>

</ClassMap>

<group Name="StringOperatorMap">

 <OperatorMap>
 <OGSOperator Name="equals"/>
 <ToOperator>
 <SQLOperator Name="="/>
 </ToOperator>
 </OperatorMap>

 <OperatorMap>
 <OGSOperator Name="contains"/>
 <ToOperator>
 <SQLOperator Name="LIKE"/>
 </ToOperator>
 </OperatorMap>
</group>

</Mappings>
</Application>
</Domain>

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) currently supports the kind of attribute
mapping shown in this example

Example: Mapping Attributes Across Multiple Tables

You want to have an OGS class “ICS” to represent a chassis containing multiple devices. “ICS” must
have an attribute “IPAddress” for each one of its contained SPE devices, so that we can sort on it.

The RDBMS tables are as follows:

 • Table “ICS” contains columns with all relevant ICS chassis data.

 • Column “ICSID” is the primary key of table “ICS”.

 • Table “Device” has columns for all relevant device information, including:

 – An “ICSID” column, which is a foreign key pointing to the primary key of table “ICS”.

 – A “DeviceID” column, which uniquely identifies each SPE device in the chassis.
30-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 • Table “IP” contains:

 – “IPAddress” and “Subnet” columns for the various interfaces for each device within a chassis.

 – A “DevID” column, which is a foreign key pointing to the primary key “DeviceID” of table
“Device”.

You can design a solution as follows:

 • Class “ICS” maps to table “ICS”.

 • Class “ICS” has one attribute, “IPAddress”, which is of type "IP Class".

 • Attribute “IPAddress” maps to table “IP”. The attribute “IP” contains information on the PK,FK
relationship between the tables “ICS”, “Device” and “IP”.

The Mapping Schema XML file for this design is as follows:

<Domain Name="SomeDomainName">
<Application Name="OGS">
<Mappings>
<ClassMap>
 <OGSClass Name="Device"/>
 <ToTable Name="Device">
 <PrimaryKey>
 <Column>
 <ColumnName>DeviceID</ColumnName>
 <JDBC_Type>INTEGER</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 </PrimaryKey>
 </ToTable>

 <HierarchyInfo>
 <HierarchyType>ONE_TABLE_PER_CONCRETE_CLASS</HierarchyType>
 </HierarchyInfo>

 <PropertyMap>
 <OGSAttribute Name="IP"/>
 <AttributeToTableIndireCSTMapping>
 <MappedTable Name="IP" />
 <IndirectTable Name="Device" />

 <IndirectToMappedAssociation>
 <IndirectTableColumnNames>
 <IndirectTableColumn>
 <ColumnName>DeviceID</ColumnName>
 </IndirectTableColumn>
 </IndirectTableColumnNames>
 <MappedTableColumnNames>
 <MappedTableColumn>
 <ColumnName>DevID</ColumnName>
 </MappedTableColumn>
 </MappedTableColumnNames>
 </IndirectToMappedAssociation>

 <IndirectToPrimaryAssociation>

 <IndirectTableColumnNames>
 <IndirectTableColumn>
 <ColumnName>ICSID</ColumnName>
 </IndirectTableColumn>
 </IndirectTableColumnNames>
 <PrimaryTableColumnNames>
 <PrimaryTableColumn>
 <ColumnName>ICSID</ColumnName>
30-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 </PrimaryTableColumn>
 </PrimaryTableColumnNames>

 </IndirectToPrimaryAssociation>
 </AttributeToTableIndireCSTMapping>
 </PropertyMap>

</ClassMap>

<ClassMap>
 <OGSClass Name="IP"/>
 <ToTable Name="IPTable">
 <PrimaryKey>
 <Column>
 <ColumnName>DevID</ColumnName>
 <JDBC_Type>INTEGER</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 <Column>
 <ColumnName>IPAddress</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 <Operator>=</Operator>
 </Column>
 </PrimaryKey>
 </ToTable>

 <HierarchyInfo>
 <HierarchyType>ONE_TABLE_PER_CONCRETE_CLASS</HierarchyType>
 </HierarchyInfo>

 <PropertyMap>
 <OGSAttribute Name="IPAddress"/>
 <AttributeToColumnMapping>
 <ColumnName>IPAddress</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 </AttributeToColumnMapping>
 <operatorMapGroup ref="StringOperatorMap"/>
 </PropertyMap>

 <PropertyMap>
 <OGSAttribute Name="IPSubnetMask"/>
 <AttributeToColumnMapping>
 <ColumnName>IPSubnetMask</ColumnName>
 <JDBC_Type>VARCHAR</JDBC_Type>
 </AttributeToColumnMapping>
 <operatorMapGroup ref="StringOperatorMap"/>
 </PropertyMap>

</ClassMap>

<group Name="StringOperatorMap">

 <OperatorMap>
 <OGSOperator Name="equals"/>
 <ToOperator>
 <SQLOperator Name="="/>
 </ToOperator>
 </OperatorMap>

 <OperatorMap>
 <OGSOperator Name="contains"/>
 <ToOperator>
 <SQLOperator Name="LIKE"/>
 </ToOperator>
30-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
 </OperatorMap>
</group>

</Mappings>
</Application>
</Domain>

Note The Generic SQL ASA Rule Evaluator (SQLQueryGenerator) currently supports the kind of attribute
mapping shown in this example

Customizing the Rule Convertor and Rule Expressions

The default implementation of the Rule Converter is RuleConverterImpl in com.cisco.nm.xms.ogs.asa.
This Rule Converter is re-used by most applications.

The Node Rule Expression is modeled by class NodeRuleExpression in com.cisco.nm.xms.ogs.asa. The
class CompositeRuleExpression in com.cisco.nm.xms.ogs.asa models the Composite Rule Expression.
Extensions of NodeRuleExpression and CompositeRuleExpression created to hold ASA-specific
information must be maintained in product-specific directories.

For examples of custom Rule Expressions, see the following Generic SQL ASA implementations:

 • SQLNodeRuleExpression in com.cisco.nm.xms.ogs.asa.genericsqlasa.

 • SQLCompositeRuleExpression in com.cisco.nm.xms.ogs.asa.genericsqlasa.

Customizing the ASA Change Alerter

ASA Change Alerters are rarely customized. The interface that defines the ASA Change Alerter
functions is ASAChangeAlertIf in the class com.cisco.nm.xms.ogs.asa. The default implementation is
ASAChangeAlerterBase, also in com.cisco.nm.xms.ogs.asa.

Running a Customized ASA
After you have created your application ASA, you must implement it, to ensure that the OGS Server will
instantiate it at runtime.

The following topics explain the tasks necessary to run your customized ASA:

 • Registering the ASA with OGS

 • Creating the ASA Configuration File

 • Example: Using the Generic SQL ASA

Registering the ASA with OGS

To register an ASA with the OGS Server, you must create a registration file for the ASA and specify it
in the OGSServer.properties file.

The OGS Server uses the ASA registration file to:

 • Instantiate an ASA at startup.

 • Assign to this ASA instance the name specified in the registration file.
30-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
The ASA registration file’s name must appear in the OGSServer.properties file as the value of the
ASARegistrationFile parameter. You are free to assign this file any unique name, although it is
customary to name it as follows:

ASARegistrationFile=XXXX-mapping.xml

where XXX is the application name.

The only real restrictions on the ASA registration file are that its filename must end in the extension
“xml” and that it must conform to the following DTD:

<?xml version="1.0"?>
<!DOCTYPE ASA_Mappings [
<!ELEMENT ASA_Mappings (Mapping+) >

<!ELEMENT Mapping (OGSSchemaFile+,Location+,ClassName+,Specialization+)>

<!ELEMENT OGSSchemaFile EMPTY>
<!ATTLIST OGSSchemaFile
 name CDATA #REQUIRED >

<!ELEMENT Location EMPTY>
<!ATTLIST Location
 type (Remote|Local) #REQUIRED >

<!ELEMENT ClassName EMPTY>
<!ATTLIST ClassName
 name CDATA #REQUIRED >

<!ELEMENT Specialization EMPTY>
<!ATTLIST Specialization
 name CDATA #REQUIRED >

]>

Example

You have created an ASA for one of the applications in Kilner, called “VMSA”. You have created an
ASA Registration File, called vmsa-mapping.xml, for the VMSA ASA. It has the following content:

<?xml version="1.0"?>
<!DOCTYPE ASA_Mappings [
<!ELEMENT ASA_Mappings (Mapping+) >

<!ELEMENT Mapping (OGSSchemaFile+,Location+,ClassName+,Specialization+)>

<!ELEMENT OGSSchemaFile EMPTY>
<!ATTLIST OGSSchemaFile
 name CDATA #REQUIRED >

<!ELEMENT Location EMPTY>
<!ATTLIST Location
 type (Remote|Local) #REQUIRED >

<!ELEMENT ClassName EMPTY>
<!ATTLIST ClassName
 name CDATA #REQUIRED >

<!ELEMENT Specialization EMPTY>
<!ATTLIST Specialization
 name CDATA #REQUIRED >

]>
30-37
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
<ASA_Mappings>
 <Mapping>
 <OGSSchemaFile name="vms-ogs-schema.xml"/>
 <Location type="Local"/>
 <ClassName name="com.cisco.nm.xms.ogs.asa.ASABaseImpl"/>
 <Specialization name="VMSA"/>
 </Mapping>
</ASA_Mappings>

When creating an ASA Registration file, note that:

 • You must either include the DTD in the file or reference an external location for the DTD.

 • Although you can enter either “local” or “remote” as the “Location type” value, this version of OGS
will process only “local”.

 • You must specify a Specialization name if you are using ASABaseImpl. OGS will use the
Specialization name as a tag to locate the property files and modules used by this instance.

Creating the ASA Configuration File

The ASA configuration file tells a newly instantiated ASA which infrastructure modules to use when
validating and evaluating rules. It acts, essentially, as a list of all the customizations performed on the
generic ASA implementation modules.

The ASA configuration filename must always:

 • Start with the name of your application as you registered it with the OGS Server in the
OGSServer.properties file.

 • End with the string “_Implementation_Details.properties”.

Example

You have created an ASA for one of the applications in Kilner, called “VMSA”. The ASA configuration
file for this application will be named "VMSA_Implementation_Details.properties".

The ASA configuration file content must list:

 • All of the ASA infrastructure modules the ASA uses, whether generic or customized. In the VMSA
ASA example, we have created custom versions or re-used generic versions of the components
shown in Table 30-3.

 • The Generic Schema filename. In the VMSA ASA, this file is named “vms-ogs-schema.xml”.

 • The Mapping Schema filename. In the VMSA ASA, this file is “vmsa-mapping-schema.xml”.

Table 30-3 VMSA ASA Infrastructure Modules

Component Class In Type

Rule Validator GenericValidatorImpl com.cisco.nm.xms.ogs.asa. Generic

Generic Schema Parser OGSSchemaParser com.cisco.nm.xms.ogs.server.parser Generic

Rule Evaluator VMSAQueryGenerator com.cisco.nm.xms.ogs.kilner10.vmsa Custom

Mapping Schema Parser VMSAValidator com.cisco.nm.xms.ogs.kilner10.vmsa Custom

Rule Converter RuleConverterImpl com.cisco.nm.xms.ogs.asa Generic

Node Rule Expression VMSANodeRuleExpression com.cisco.nm.xms.ogs.kilner10.vmsa Custom
30-38
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating OGS ASAs
The ASA Configuration File lists this information using the parameters shown in Table 30-4. The
Configuration File is a simple ASCII text file containing name=value pairs. The order in which the
parameters appear in the file is not important.

However, you must:

 • Use all of the parameter names shown in Table 30-4, exactly as they appear in the table.

 • Supply complete values for each parameter.

The VMSA ASA Configuration File might look like this:

Rule_Validator = com.cisco.nm.xms.ogs.asa.GenericValidatorImpl
Schema_Validator_Class = com.cisco.nm.xms.ogs.server.parser.OGSSchemaParser
Generic_Schema_File = /vms-ogs-schema.xml
Rule_Evaluator = com.cisco.nm.xms.ogs.kilner10.vmsa.VMSAQueryGenerator
Class_Mapping_Parser = com.cisco.nm.xms.ogs.kilner10.vmsa.VMSAValidator
Mapping_File = /vms-mapping-schema.xml
Rule_Converter = com.cisco.nm.xms.ogs.asa.RuleConverterImpl
Node_Expression_Class = com.cisco.nm.xms.ogs.kilner10.vmsa.VMSANodeRuleExpression
Composite_Expression_Class =
com.cisco.nm.xms.ogs.kilner10.vmsa.VMSACompositeRuleExpression
Asa_Change_Alerter = com.cisco.nm.xms.ogs.kilner10.vmsa.VmsaChangeAlerter

Composite Rule Expression VMSACompositeRuleExpression com.cisco.nm.xms.ogs.kilner10.vmsa Custom

ASA Change Alerter VmsaChangeAlerter com.cisco.nm.xms.ogs.kilner10.vmsa Custom

Table 30-3 VMSA ASA Infrastructure Modules (continued)

Component Class In Type

Table 30-4 ASA Configuration File Parameters

For this component Use this parameter And assign to it the

Rule Validator Rule_Validator= Classname of your Rule Validator

Generic Schema Parser Schema_Validator_Class= Classname of your Generic Schema Parser

Generic Schema File Generic_Schema_File= Path and name of the XML schema file used by the
Generic Schema Parser.

Rule Evaluator Rule_Evaluator= Classname of your Rule Evaluator

Mapping Schema Parser Class_Mapping_Parser= Classname of your Mapping Schema Parser.

Mapping Schema File Mapping_File= The path and name of the XML schema file used by the
Mapping Schema Parser.

Rule Converter Rule_Converter= Classname of your Rule Convertor

Node Rule Expression Node_Expression_Class= Classname of your Node Rule Expression model.

Composite Rule Expression Composite_Expression_Class= Classname of your Composite Rule Expression model.

ASA Change Alerter Asa_Change_Alerter= Classname of your ASA Change Alerter.
30-39
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating an OGS GUI
Example: Using the Generic SQL ASA

The Generic SQL ASA is a customization of the ASA infrastructure for querying a relational database
using OGS. It uses the generic or customized components shown in Table 30-5.

.

Creating an OGS GUI
The UII (User Interface Initiative) Object Selector provides a convenient and versatile tree-display
component that gives users GUI access to OGS group data. When implemented, it provides users with:

 • A group hierarchy display.

 • A means of selecting objects within groups, including both single and multiple selection.

Object Selector is part of the UII release package available at the User Experience web site, which is
available to Cisco employees at http://picasso (be sure to use version 6.1 or later of the UII release
package).

Object Selector comes in standard “Content Area” and space-conserving “Sliding” versions, and has a
complete set of API functions. If you plan on using Object Selector in your application, please
remember:

 • Integration between Object Selector and OGS is application-specific. You should refer to the SDK
Developer’s Guide for UII (the SDK for UII Release 6.1 is available as EDCS-348564) or the online
help version of the same document at http://picasso, for details on programming Object Selector to
work with your application.

 • As part of your integration effort, you will need to develop an Object Selector Tree Generator which
retrieves data from OGSServerProxy and converts it for display in Object Selector. This Tree
Generator is part of the application deliverable, and must be maintained by you.

 • OGS supplies a default Object Selector Tree Generator for use by the OGS Administration GUI.
This default Tree Generator can serve as a model for a custom Tree Generator for your application:

 – The default Tree generator is ObjectSelectorTreeGenerator in
com.cisco.nm.xms.ogs.client.ostaglib.util.

Table 30-5 Generic SQL ASA Components

Component Class Status

Rule Validator GenericValidatorImp in com.cisco.nm.xms.ogs.asa Generic

Generic Schema Parser OGSSchemaParser in com.cisco.nm.xms.ogs.server.parser. Generic

Rule Evaluator SQLQueryGenerator in
com.cisco.nm.xms.ogs.asa.genericsqlasa.

Custom

Rule Converter RuleConverterImpl in com.cisco.nm.xms.ogs.asa. Generic

Mapping Parser RDBMSSchemaValidator in
com.cisco.nm.xms.ogs.asa.genericsqlasa.

Custom

Node Expression SQLNodeRuleExpression in
com.cisco.nm.xms.ogs.asa.genericsqlasa.

Custom

Composite Expression SQLCompositeRuleExpression in
com.cisco.nm.xms.ogs.asa.genericsqlasa.

Custom
30-40
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating an OGS GUI
 – For source code, set up an ogs1_1 view in ClearCase, then view:
/vob/enm_ogs/share/classes/client/com/cisco/nm/xms/ogs/client/ostaglib/util/ObjectSelectorTr
eeGenerator.java.

 • If you plan on using Object Selector with an OGS implementation that includes Secure Views, see
the “Using Secure Views with Object Selector” section on page 30-46

To use the Object Selector in your application:

Step 1 Install the latest UII package following the instructions in the UII SDK.

Step 2 Copy the following directories and files from the UII package to the corresponding directories of your
project, under the Tomcat webapps/YOUR_APPLICATION directory.

 • /objectselector

 • /WEB-INF/lib/ogs-objselector.jar

 • /WEB-INF/tlds/ogs-objectselector-taglib.tld

Step 3 Insert the following lines into the action-mappings section of your project's
/WEB-INF/struts-config.xml file.

<action path="/objselcaching"
type="com.cisco.nm.xms.ogs.client.uii.ObjectSelectorCachingAction"/>
<action path="/objselsliding"
type="com.cisco.nm.xms.ogs.client.uii.ObjectSelectorSlidingPanelAction"/>

Step 4 Using the Dreamweaver Extension manager, install the included Dreamweaver Extension file,
OGS-OS-DWX.mxp.

Step 5 Drag and drop into your JSP file the icon corresponding to the type of Object Selector you want to create.
In order to preserve the selection, put it into the current forms[0] (within the first <uii:form> tag of the
page).

If you are not using Dreamweaver, insert directly into the corresponding JSP file the code appropriate
for the type of Object Selector you want to create:

 • For a Sliding Object Selector, insert this code:

<%@ taglib uri="/WEB-INF/tlds/ogs-objectselector-taglib.tld" prefix="ogs" %>
<ogs:slidingSelector
osName="YOUR_OBJECT_SELECTOR_NAME"
selectionMode="multiple"
preserveSelection="false"
isGroupSelector="false"
mixSelection="false"
showFilter="true"
showQuickFilter="true"
showSaveBtn="true"
treeGenerator="com.cisco.nm.xms.ogs.test.TestTreeGenerator"/>

 • For a Content Area Object Selector, insert this code:

<%@ taglib uri="/WEB-INF/tlds/ogs-objectselector-taglib.tld" prefix="ogs" %>
<ogs:contentAreaSelector
osName="YOUR_OBJECT_SELECTOR_NAME"
selectionMode="multiple"
preserveSelection="false"
isGroupSelector="false"
mixSelection="false"
width="200"
height="300"
treeGenerator="com.cisco.nm.xms.ogs.test.TestTreeGenerator"/>
30-41
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://picasso

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Creating an OGS GUI
 • Once you have inserted the code, set the attributes in the JSP tags to match your requirements.

Step 6 Implement the JavaScript functions as needed. For details on the available functions, see the UII SDK.

Step 7 In the corresponding Action class, which handles the form containing the object selector, instantiate as
the first object in the “perform” method an instance of the class OGSObjectSelectorAdapter (in
com.cisco.nm.xms.ogs.client.uii).

Step 8 Implement a custom Tree Generator class, as follows:

a. Create a class extended from BasicObjectSelectorTreeGenerator in
com.cisco.nm.xms.ogs.client.ostaglib.util.

b. Set this class name in the JSP tag attribute treeGenerator.

If you do not do this, the Object Selector will call the default tree generator class,
ObjectSelectorTreeGenerator in com.cisco.nm.xms.ogs.client.ostaglib.util. This class also extends
from BasicObjectSelectorTreeGenerator and is provided by the application.

For reference information on the Tree Generator, see the UII SDK.

c. In this tree generator class, implement the following methods:

getTreeEntries REQUIRED
getUserFilterEntries OPTIONAL (For sliding object selector only).
getAppletParameterImages OPTIONAL
getAppletParameterImageFile OPTIONAL
getAppletParameterToolTipFile OPTIONAL
getAppletParameterToolTipLineContinue OPTIONAL
getAppletParameterToolTipWidth OPTIONAL
getAppletParameterBkgColor OPTIONAL
getAppletParameterBkgColorSelect OPTIONAL
getAppletParameterBkgColorHover OPTIONAL
getAppletParameterTabOpenColor OPTIONAL
getAppletParameterTabCloseColor OPTIONAL
getAppletParameterFontName OPTIONAL
getAppletParameterFontSize OPTIONAL
getAppletParameterPadding OPTIONAL
getAppletParameterOnSelect OPTIONAL
getAppletParameterOnUnSelect OPTIONAL
getAppletParameterOnCachingExpand OPTIONAL
getAppletParameterSelectAllChild OPTIONAL
getAppletParameterUnSelectAllChild OPTIONAL
getAppletParameterSelectAncestors OPTIONAL
getAppletParameterUnSelectAncestors OPTIONAL
getAppletParameterTabs OPTIONAL
getAppletParameterCheckWhenLabelClick OPTIONAL
getAppletParameterOnHighLight OPTIONAL
getAppletParameterDisable OPTIONAL
getAppletParameterSort OPTIONAL
getAppletParameterXml OPTIONAL
getAppletParameterXmlSource OPTIONAL
getAppletParameterDeDuplicate OPTIONAL
getAppletParameterNumberOfSelectedLeaves OPTIONAL

For more information about these methods, see the UII SDK.
30-42
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://picasso
http://picasso
http://picasso

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
Using OGS Secure Views
Starting with CWCS 3.0, OGS supports Secure Views. OGS Secure Views allow your application to
control user access to individual members of a group, instead of just to groups as a whole.

Using the user ID, application ID, and task ID (and optionally, the session ID) of the requesting client,
and an interface to the CAM-maintained ACS Server security system, Secure Views can return a subset
of the total membership of a group. This subset will contain only those devices to which the user has
access.

OGS Secure Views are explained in the following topics:

 • How Secure Views Work

 • Implementing Secure Views

 • Customizing Your Secure Views Implementation

How Secure Views Work
OGS Secure Views filter the memberships of a group based on the IDs of:

 • The user requesting access to a group’s members.

 • The application the user is using to access the group’s members.

 • The task the user intends to perform on the group’s members.

The basic process flow proceeds as follows:

1. The OGSClient gets a complete list of objects for the requested group from the OGS Server.

2. The OGSClient gets from CAM the list of devices that the user is authorized to use for the given
task, application and (optionally) session ID.

3. The OGSClient performs an intersection of the two lists:

a. It ignores non-device objects, passing them through to the OGSObjectList.

b. It filters out of the OGSObjectList all device objects that do not also exist in the CAM list.

c. The OGSClient returns to the application GUI an OGSObjectList containing all non-device
objects and only filtered device objects.

OGS Secure Views accomplishes this using the following classes and methods new in CWCS 3.0:

 • The basic interface class OGSFilterIf, in com.cisco.nm.xms.ogs.client.

The default implementation is OGSFilterImpl in the same package. OGSFilterImpl looks up the
value of the “DeviceClasses” property in OGSClient.properties, uses it to identify all of the device
classes that need to be filtered, and checks in the CAM-returned list for objects of those classes.

Only when the class of object in the CAM list matches the “DeviceClasses” value will the object be
filtered. Applications using SQLASA need to use the OGSSQLFilterImpl implementation.

 • OGSManagementFormAction class in com.cisco.nm.xms.ogs.client.mgmt

 • OGSServerProxy in com.cisco.nm.xms.ogs.client. OGSServerProxy detects if the client requesting
group or rule evaluation is an OGSAdminClient. It does this by looking for the Application ID
“OGS” and Task ID “OGSOPERATION” in OGSSecurityContext.

For details, see the “Using Secure Views With the OGS Administrative GUI” section on
page 30-47).
30-43
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
 • Class OGSSecurityContext, which defines a constructor that accepts the user ID, application ID,
task ID and session ID (which can be null), that CAM requires to perform device filtering.

For details, see the “Using OGS SecurityContext” section on page 30-45

The design of OGS Secure Views imposes several requirements on applications using it:

 • While all the filtering of the membership list is actually performed on the client, Secure Views
depends entirely on the CWCS CAM security interface to get the list of group members for which
the user is authorized.

It therefore requires that your application operate in ACS (TACACS+) mode, not in CMF security
mode. If your application operates in CMF mode, the default implementation of Secure Views will
not perform any filtering at all. In this case, evaluating a group or rule will result in all members of
that group being returned.

 • You must always specify the OGS classes your application uses to represent devices. You do this
using the "DeviceClasses" property in the OGS client’s OGSClient.properties file.

For example: An OGSClient.properties entry of DeviceClasses=”CMF:DCR:Device” specifies that
objects of the class “CMF:DCR:Device”, and only this class, represent devices. Similarly, the entry
DeviceClasses=”CMF:DCR:Device”,”CMF:DCR:Interface” specifies that both these classes
represent devices.

If you do not do this, your Secure Views implementation will pass all device objects through to the
client, regardless of the user’s authorizations (just as it does with non-device objects).

 • You should use the unique DCR device IDs supplied by the Device Credentials Repository Server
available starting with CWCS 3.0.

For more information about DCR, see Chapter 14, “Using the Device Credentials Repository”). The
simplest way to do this is to ensure that:

 – A DCR Server is running.

 – The application data source has been populated with DCR IDs.

 – The application OGS ASA you use to evaluate rules relating to device classes uses the DCR ID
in the “value” parameter of the Object ID of every object that represents a device.

For example: If you are using the class CMF:DCR:Device to represent devices, and one of these
devices has the DCR ID 123456, your ASA must return the Object ID for this device as
CMF:DCR:Device$123456.

If you do not do this, your Secure Views implementation will be unable to match any of entries
in the CAM-returned list of authorized objects (which is a list of DCR IDs) against the
OGSObjectList, and will not return any of them to the client (even though the user may be
authorized to see them).

Note that you can work around the requirement of an ASA that preserves DCR IDs, as long as
you can supply these IDs in another way (see the “Using Secure Views Without DCR IDs”
section on page 30-48).

 • You must ensure that the running instance of OGSServerProxy performing the filtering is running
in the same Java VM as the CAM instance with which it communicates.

This restriction is imposed by the current implementation of CAM, which by default expects all of
its clients to be servlets executing in the same servlet engine. CAM can be packaged with the process
using OGSServerProxy.
30-44
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
 • The default implementation of the filtering interface allows unrestricted access to members that do
not represent devices. If your application needs additional filtering on non-device group members,
you can either extend the default implementation or create a new implementation of the interface to
meet your requirements. Be sure to indicate that you are using a new implementation, as explained
in the “Specifying a Non-Default Implementation” section on page 30-48.

Implementing Secure Views
Secure Views is intended for use in applications where:

 • ACS mode is enabled.

 • You intend to filter access to devices only.

 • Devices are identified using device IDs supplied by the Device Credentials Repository (DCR IDs).

As long as your implementation observes the requirements explained in the “How Secure Views Work”
section on page 30-43, using Secure Views is relatively simple, as explained in the following topics:

 • Installing Secure Views

 • Using OGS SecurityContext

 • Using Secure Views With DCR IDs

 • Using Secure Views with Object Selector

 • Using Secure Views With the OGS Administrative GUI

The requirement for ACS mode is an absolute requirement. If your application cannot observe the
requirements for device-only filtering and use of DCR IDs for devices, see the “Customizing Your
Secure Views Implementation” section on page 30-47

Installing Secure Views

To implement Secure Views, OGS 1.1 must be packaged with your application. You will need to extract
the file ogs1.1.war from the OGS SDK, and to include the following packages in your build:

 • com.cisco.nm.xms.ogs.client

 • com.cisco.nm.xms.ogs.util

 • com.cisco.nm.xms.ogs.server

Using OGS SecurityContext

The OGS interface specifies filtering of a group's membership based on the user/application/task context
in which a request is made. Additionally, class OGSSecurityContext defines a constructor that accepts
the user ID, application ID, and task ID (and, optionally, the session ID) that CAM requires to identify
the devices for which the user has access.

If your application requires Secure Views, be sure that you are passing the proper information to this
constructor before you make the request for group evaluation. If you do not do this, CAM will not have
a chance to return the list of authorized devices before group evaluation is conducted.

The normal process for creating and using instances of OGSSecurityContext is:

Step 1 Create an instance of the class TaskID (in package com.cisco.nm.xms.ogs.util) and assign the proper
values to its attributes TaskID, ApplicationID, and SessionID (the SessionID can be null).
30-45
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
Step 2 Create an instance of OGSSecurityContext (in package com.cisco.nm.xms.ogs.util).

Step 3 Pass the instance of the TaskID class to the OGSSecurityContext constructor.

Step 4 Issue your group- or rule-evaluation request.

Using Secure Views With DCR IDs

If you are using standard Object IDs that include the standard DCR ID for all group members that are
devices, the reference OGSFilterImpl class and its DoFiltering method perform all of the following tasks
automatically:

DoFiltering()
{
 Check if CiscoWorks is in ACS Mode;
 If CiscoWorks is not in ACS Mode, return OGSObjectList without filtering;
 If CiscoWorks is in ACS Mode;
 Get Admin Groups from CAM.
 Get Admin Device Groups that User is authorized to use for the given TaskID and
 ApplicationID
 Get the DCR ID of the devices in these Admin Device Groups;
 Avoid Filtering all non-device objects, using the property "DeviceClasses" in
 OGSClient.properties
 Get the Device Objects in the OGSObjectList passed to the function as a parameter;
 Get the Value portion of the Device Object. This is assumed to be the DCR ID;
 Intersect the list and return an OGSObjectList containing all non-device objects
 and only filtered device objects

Using Secure Views with Object Selector

As explained in the “Creating an OGS GUI” section on page 30-40, integrating OGS with an Object
Selector GUI is fairly simple. If your OGS implementation also includes Secure Views, however, you
have a few extra tasks to perform:

 • In the Action Class, which handles the form containing the Object Selector, your application must
pass in the appropriate Application ID, Task ID, and Object Selector Name.

 • Your application Tree Generator must retrieve the Task ID attribute and use it to create the
OGSSecurityContext instance for the request.

As a reference, the default Tree Generator uses method getOGSUserContext to perform all the steps
mentioned in the “Using OGS SecurityContext” section on page 30-45. This includes:

 – Creating an instance of the class TaskID with all the proper attribute values

 – Creating an instance of OGSSecurityContext

 – Passing the TaskID instance to the OGSSecurityContext constructor

To adapt your application Object Selector for use with Secure Views:

Step 1 Set the Application ID into the HTTP Session.

Step 2 Get an instance of OGSObjectSelectorAdapter.

Step 3 Use the setObjectTaskIdList method to set the Task ID to the Task ID on which you want to filter.

For example: Let us assume that your:
30-46
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
 • Object Selector Name is FH.OGScontent (this is the same as the osname specified in the
objectselector JSP tag)

 • Application ID is iptm.

 • Task ID is write_priv.

Using these names, you would modify your Object Selector Action Class as follows:

public ActionForward perform (ActionMapping mapping)
 ActionForm form
 HttpServletRequest request
 HttpServletResponse response)
 throws IOException ServletException
{
 String YOUR-OBJECT-SELECTOR-NAME=”FH.OGScontent”
 String YOUR-APPLICATION-ID=”iptm”
 String YOUR-TASK-ID=”write-priv”
 HttpSession session=request.getSession();
 session.setAttribute("AppID"+YOUR-OBJECT-SELECTOR-NAME, YOUR-APPLICATION-ID);
 OGSObjectSelectorAdapter osAdapter=new
 OGSObjectSelectorAdapter(request,"FH.OGScontent");
 osAdapter.setObjectTaskIdList("write_priv");
 ...

Using Secure Views With the OGS Administrative GUI

As long as you have observed the limits described in the “How Secure Views Work” section on
page 30-43, your Secure Views implementation class will filter all device requests from all clients by
default.

This can be a problem if your application uses the OGS Administrative GUI to allow users with sufficient
authority to define groups. The OGS Client performing the filtering must be able to distinguish between
normal client requests and those from an Administrative GUI, so that the Administrative GUI user has
access to all devices when defining groups and their rules.

To distinguish them, make sure that the OGS Administrative GUI you have implemented in your
application identifies itself to CAM with an Application ID of “OGS” and a TaskID of
“OGSOPERATION” when issuing requests (these two IDs are case-sensitive and must be entered
exactly as shown here).

These two values, when passed with OGSSecurityContext, turn off filtering functions in Secure Views
implementations automatically.

If your application is used in a CiscoWorks suite, you may want to consider whether you want to
implement the OGS Administrative GUI in your application at all.

CWCS 3.0 supplies the OGS Administrative GUI at the CiscoWorks level, with filtering turned off by
default (that is, the CiscoWorks implementation of the OGS Administrative GUI already identifies itself
with the Application ID “OGS” and the Task ID “OGSOPERATION”).

If you must implement a separate OGS Administrative GUI for your application, you will probably want
to keep filtering turned on.

Customizing Your Secure Views Implementation
It is possible to adapt Secure Views to some special requirements, including:

 • Specifying a Non-Default Implementation

 • Using Secure Views Without DCR IDs
30-47
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Secure Views
Specifying a Non-Default Implementation

In the default OGS packaging, the OGSClientProperties parameter SecurityFilterImpl= is explicitly set
to OGSFilterImpl. This is the default or reference implementation of OGSFilterIf in
com.cisco.nm.xms.ogs.client.

If you must handle special filtering requirements, you must either override the OGSFilterImpl
implementation’s DoFilter () function or create a new class which implements OGSFilterIf (you are
likely to do the latter if you are using Secure Views without DCR IDs, as explained in the “Using Secure
Views Without DCR IDs” section on page 30-48.)

If you have created a new implementation of OGSFilterIf, you must set SecurityFilterImpl to the name
of your new class. For example: SecurityFilterImpl=MyOGSFilterImpl.

Using Secure Views Without DCR IDs

If your application does not use the DCR ID as the value of the Object ID for devices, you will need to
create a new implementation of OGSFilterIf or extension of OGSFilterImpl that maps between whatever
you are using in the Value portion of a Device Object and the actual DCR IDs.

Example

If you are using a Device Name for the Value portions of the Object ID for devices, you will need to
create a new class with a DoFiltering() method that implements OGSFilterIf. You can do this mapping
in any way that is convenient to you, but it must be performed before OGSServerProxy attempts to
compare the CAM and OGS object lists:

DoFiltering()

{

 Check if CiscoWorks is in ACS Mode;

 If CiscoWorks is not in ACS Mode, return OGSObjectList without filtering;

 If CiscoWorks is in ACS Mode;

 Get Admin Device Groups from CAM.

 Get Admin Device Groups that User is authorized to use for the given TaskID and

 ApplicationID

 Get the DCR ID of the devices in these Admin Device Groups;

 Avoid filtering all non-device objects in the OGSObjectList returned by OGS Server

 Get the Device Objects in the OGSObjectList passed to the function as a parameter;

 Get the Value portion of the Device Object. This will be something other than DCRID;

 Map the OGS Value to DCRID and return the ObjectList with DCR IDs in Value position

 Intersect the list and return an OGSObjectList containing all non-device objects

 and only filtered device objects
30-48
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Common and Shared Groups
Using OGS Common and Shared Groups
OGS Common Groups are groups created based on DCR attributes. They are propagated to other OGS
Servers running on the same server and to peer servers in the same DCR cluster.

For example, the CWCS Common Groups will be propagated to the RME OGS Server, if RME is
installed, so users of RME OGS Server will also be able the view these Common Groups.

OGS Shared Groups are application groups propagated to CWCS and other applications on the same
server and to peer servers in the same DCR cluster.

For example, all Campus Manager groups are propagated to the RME OGS Server on the same server.

Common Groups have enumerated rules. Their membership is cached in a way similar to caching of a
local group. Shared Groups are remote links to the respective OGSServer and are evaluated at runtime.
Membership is not cached locally for Shared Groups, so group-membership change events are not sent
for them.

A Provider Group refers to the root group name under each hierarchy.

For example, the Provider Group for a Common Services group hierarchy is CS@hostname, and for the
RME hierarchy, it is RME@hostname. The hostname is appended to make the Provider Group unique,
as Shared Groups are propagated across servers .

By default, the Provider Group name is of the format application@hostname. If the hostname changes,
or the admin user configures the CWHP server name as the Provider Group suffix, the Provider Group
name will be changed after a daemon restart.

For examples and User Interface of Common Groups and Shared Groups, see Chapter 5, Administering
Groups, in User Guide for CiscoWorks Common Services.

Using Common and Shared Groups requires you to perform the tasks covered in the following topics:

 • Configuring OGSServer.properties

 • Configuring SharedGroups.properties

 • Implementing the SharedGroupObjectMapperIf Interface

Configuring OGSServer.properties
To enable Common and Shared Groups, applications should configure the following in
OGSServer.properties:

Application OGS instances that do not wish to participate
in group sharing should remove the following property.
SharedGroupImplClass = com.cisco.nm.xms.ogs.sharedgroups.SharedGroupManager

Configuring SharedGroups.properties
The following shows a generic SharedGroups.properties file, with explanation of the fields and how to
set them.

Uncomment this line and specify a different value if your OGS
publishes its own URN
#LocalOgsURN = ogs_server_urn^M
#
Application OGS instances should uncomment the following line
#LocalSgURN = remote_ogs_urn
#

30-49
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS Common and Shared Groups
Uncomment the following line and modify to match the URL of the CTMServlet
deployed by your application
#LocalURL = :443/<application webapp>/CTMServlet
#
SrcDeviceClass = :CMF:DCR:Device
#
Application OGS instances should specify their device class here
#
DestDeviceClass = <Application Device class>
#
The following should match the value of the property ProductId
of CMF-OGS
#
RemoteOgsProductId = CS
#
Uncomment the following property and specify the desired
depth of the MDF hierarchy if you wish to limit the depth
of the MDF hierarchy in common groups
#
#MDFHierarchyDepth = -1
ClientRegistryFile = clients.reg
#Application can uncomment the following to override the default rule for provider group
from CS hierarchy
#UseContainerForCommonGroups=true

Implementing the SharedGroupObjectMapperIf Interface
To map application-specific object IDs to a common representation, applications should implement
SharedGroupObjectMapperIf.

If your application uses the DCR device ID as the application object ID for OGS objects, you need only
configure the SrcDeviceClass and DestDeviceClass in the SharedGroups.properties file. The default
implementation (com.cisco.nm.xms.ogs.sharedgroups.DefaultObjectMapper) will handle the object
mapping.

If you do not use DCR device IDs as application object IDs, you must implement
SharedGroupObjectMapperIf and provide the implementation in the SharedGroups.properties, as
follows:

#Object ID mapper class
ObjectIdMapClass = Customized object mapper class

The customized object mapper class should be in the classpath for the OGSServer.

OGS Utility Class for Common and Shared Groups

The class com.cisco.nm.ogs.util.OGSUtil provides two APIs to get the common and local provider group
name.

public static String getCommonRoot(); //for getting the CS root group

public static String getLocalRoot(); //for getting the local root group
30-50
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
Using OGS 1.3 Client Side Enhancements
Applications using OGS 1.3 have enhanced control over the display of GUI components. These
client-side enhancements, which are not available with OGS 1.2, enable applications to determine:

 • The display of some GUI components based on group types.

 • The flow sequence of UII wizards based on group types.

Changes needed to support these client-side enhancements are available in the
com.cisco.nm.xms.ogs.client package of the OGS module.

The following topics explain how to use these enhancements:

 • About the Enhanced OGS 1.3 Classes and Data Structures

 • Controlling the Display of Wizard Steps

 • Integrating OGS 1.3 With Your Application

About the Enhanced OGS 1.3 Classes and Data Structures
Table 30-6 shows the OGS 1.3 classes enhanced to allow for GUI controls. Figure 30-4 shows how these
classes interact with each other and with the GUI components.

.
Table 30-6 Classes for Client Side Enhancements

Class Description

OGSClientUIDisplayProperties Reads the tag-value pairs from OGSClientUIDisplay.properties,
and stores the values in the hash map.

OGSFormBean Updated to store the Array List of GUI components which need to
be disabled. Corresponding getter and setter methods are provided.

OGSManagementFormAction Updated with logic permitting the setting of the Array List of GUI
components which have to be disabled. Based on the membership
type of the group entries, the Form Bean is updated with the Array
List of GUI objects.

Control of the display of the GUI components can be made specific
to operational modes like Create, Edit and Browse.

You can use the new screen IDs to skip the membership page.
30-51
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
Figure 30-4 OGS 1.3 Class and GUI Component Interactions

The following JSP files were also modified to check for the availability of the GUI components in the
disabled Array List:

 • ogsBrowseProperties.jsp

 • ogsCreateProperties.jsp

 • ogsCreateRules.jsp

 • ogsEditProperties.jsp

 • ogsEditRules.jsp

Based on the presence of the components in the disabled Array List, the display of the view components
can be controlled.

Browser
Client

Servlet
Controller

HTTP

HTTP

JSP view pages

These do have the logic to
access the OGSForm Bean's
disabledArrayList variable to
check for the presence of
components which need to
be disabled.

OGSFormBean class

1.) Does have the array list of GUI
 object set by the action class.
2.) This array list is set for the various
 modes like Create/Edit/Browse etc...

1.) Set the array list of GUI
 objects read from the property
 file to this OGSFormBean.
2.) This array list needs to be
 set for the various modes like
 Create/Edit/Browse etc...

OGSManagementFormAction class

1.) Read the OGSClientDisplay
 properties file for the list of tag-value
 pairs which provide the list of GUI
 components to be disabled.
2.) Read the tag-value paris and
 populate them in a map with key
 membership type of the groups and
 value is an array list of GUI
 component objects which need to be
 disabled.

OGSGUIClientDisplayProperties class

13
01

17
30-52
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
Controlling the Display of Wizard Steps
You need to create new screen IDs for controlling the display of wizard steps while in Create or Edit
mode. The new screen IDs need to be defined in the site-map XML files of the respective web
application. The screen IDs are:

 • ogsSkipMemberCreateProperties

 • ogsSkipMemberCreateRules

 • ogsSkipMemberCreateSummary

 • ogsSkipMemberEditProperties

 • ogsSkipMemberEditRules

 • ogsSkipMemberEditSummary

Configure the screen IDs to skip the Membership page during the Create and Edit wizard tasks of the
group entries. However, support is not provided for skipping Rules, Properties and Summary pages, as
these are required for group handling.

Note Source code is available in /vob/enm_ogs/share/classes/client/com/cisco/nm/ms/ogs/client,
under the ogs1_3 view.

Integrating OGS 1.3 With Your Application
To integrate OGS 1.3’s enhanced client-side features with your application:

Step 1 Include all OGS 1.3-related jar files with the application.

Although all the changes were made in the ogs-client1.3.jar, we suggest that you refresh all jar files, to
ensure that you have uniform versions throughout.

Step 2 Update the OGSClientUIDisplay.properties file with the requisite entries.

For a complete set of entries related to UI components, which you can configure, see Example 30-2 on
page 30-55. This file can be placed under the WEB-INF/classes directory of the respective web
application, under Tomcat.

Step 3 Define the TAGSTABLE definition in the XML file representing the Group Entries. Similarly, define the
PROPERTYTABLE with the PROPERTY KEY as MEMBERSHIP_TYPE and the desired value.

For an example system-groups.xml file, see Example 30-3 on page 30-56. The file is currently available
under the WEB-INF/classes directory of the respective web-app under Tomcat servlet.

Step 4 Make sure the string value provided for the MEMBERSHIP_TYPE key matches the value provided in
the tag of the OGSClientUIDisplay.properties.

If the XML file has entries like these for representing Cisco Access Servers:

<GROUP>
<NAME>/System Defined Groups/Cisco Access Servers</NAME>
<DESCRIPTION>Group for Cisco Access Servers</DESCRIPTION>
<TYPE value="DYNAMIC" />
<OGS_RULE_CONTAINER>

<OGSRULE> </OGSRULE>
</OGS_RULE_CONTAINER>
<TAGSTABLE ref="devicegrouptags" />
<READ_PERMISSION_LIST ref="read_user_list" />
30-53
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
<WRITE_PERMISSION_LIST ref="write_user_list" />
 <EVALUATE_PERMISSION_LIST ref="evaluate_user_list" />
</GROUP>
<PROPERTYTABLE name="devicegrouptags">

<PROPERTY>
<KEY>MEMBERSHIP_TYPE</KEY>
<VALUE>DEVICE</VALUE>

</PROPERTY>
</PROPERTYTABLE>

Then the OGSClientUIDisplay.properties file can have entries like:

DEVICE.privateVisibility=disabled

The string “DEVICE” in the properties file needs to match the string defined in the XML file. However
applications can use any convenient string that is relevant in their application space.

Step 5 Define the entries releated to the new screen in the struts-config.xml and site-map XMLfiles for the
respective webapp.

The entries in struts-config.xml are:

forward name="ogsSkipMemberCreateProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateProperties" />
 <forward name="ogsSkipMemberCreateRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateRules" />
 <forward name="ogsSkipMemberCreateSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateSummary" />
<forward name="ogsSkipMemberEditProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditProperties" />
 <forward name="ogsSkipMemberEditRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditRules" />
 <forward name="ogsSkipMemberEditSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditSummary" />

The entries in site-map.xml are:

<appWizard>
 <appWizardItem>
 <label>Properties</label>
 <appContentArea screenID="ogsSkipMemberCreateProperties"

 contentAreaTitle="Properties"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsCreateProperties.jsp" />

 </appWizardItem>
 <appWizardItem>
 <label>Rules</label>
 <appContentArea screenID="ogsSkipMemberCreateRules"

 contentAreaTitle="Rules"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsCreateRules.jsp" />

 </appWizardItem>
 <appWizardItem>
 <label>Summary</label>
 <appContentArea screenID="ogsSkipMemberCreateSummary"

 contentAreaTitle="Summary"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsCreateSummary.jsp" />

 </appWizardItem>
 </appWizard>

<appWizard>
 <appWizardItem>
 <label>Properties</label>
30-54
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
 <appContentArea screenID="ogsSkipMemberEditProperties"
 contentAreaTitle="Properties"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsEditProperties.jsp" />

 </appWizardItem>
 <appWizardItem>
 <label>Rules</label>
 <appContentArea screenID="ogsSkipMemberEditRules"

 contentAreaTitle="Rules"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsEditRules.jsp" />

 </appWizardItem>
 <appWizardItem>
 <label>Summary</label>
 <appContentArea screenID="ogsSkipMemberEditSummary"

 contentAreaTitle="Summary"
helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsEditSummary.jsp" />

 </appWizardItem>
 </appWizard>

Example 30-2 OGSClientUIDisplay.properties

Properties file for the OGS Client UI display
This file is mainly used to control the display of UI components based on group types
and is valid only for OGS Admin GUI.
It is assumed that all the OGS GUI components are enabled by default.
The respective components along with the group types for which they need to be disabled
can be mentioned here.

Copyright (c) 2004 Cisco Systems, Inc.
All rights reserved
#
THIS SOFTWARE IS THE PROPERTY OF CISCO SYSTEMS INC.
2004
THE RECIPIENT BY ACCEPTING THIS MATERIAL AGREES THAT THE
MATERIAL WILL NOT BE USED, COPIED OR REPRODUCED IN WHOLE OR
IN PART NOR ITS CONTENTS REVEALED IN ANY MANNER WITHOUT THE
EXPRESS WRITTEN PERMISSION OF CISCO SYSTEMS, INC.

The names which refer to the various components are mentioned below.
creategroupSelect -> Group Select button in Properties:Create page
createparentChange -> Change Parent button in Properties:Create page
DynamicEvaluation -> Radio button for Automatic
StaticEvaluation -> Radio button for Based Upon User Request
publicVisibility ->Visibility scope radio button "Available to all users"
privateVisibility -> Visibility scope radio button "Available to created user only"
createORoperator -> OR operator in the Rules:Create page
createANDoperator -> AND operator in the Rules:Create page
createEXCLUDEoperator -> EXCLUDE operator in the Rules:Create page
createMembershipWizard ->Disabling the Membership page step in the Creation Wizard
editORoperator -> OR operator in the Rules:Edit page
editANDoperator -> AND operator in the Rules:Edit page
editEXCLUDEoperator -> EXCLUDE operator in the Rules:Edit page
editMembershipWizard ->Refers to the Membership page step in the Edition Wizard
browseViewParentRule -> View Parent Rule button related to Properties:Details page
browseMembershipDetails - > Membership Details button related to Properties:Details page
30-55
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
EditGroupName -> Text field related to the Group Name in the Edit:Properties page
The KEY value contains a string separated by "."
The first token of the key should match the value given for the MEMBERSHIP_TYPE in the
PROPERTY_TABLE pertaining to XML file containing the group definition.
Sample examples are given below:
#
#DEVICE.createGroupSelect=disabled
#DEVICE.createParentChange=disabled
DEVICE.DynamicEvaluation=disabled
#DEVICE.StaticEvaluation=disabled
DEVICE.privateVisibility=disabled
DEVICE.publicVisibility=disabled
DEVICE.createAddRuleExpression=disabled
DEVICE.createSyntaxCheck=disabled
DEVICE.createViewParentRule=disabled
DEVICE.createORoperator=disabled
DEVICE.createANDoperator=disabled
DEVICE.createEXCLUDEoperator=disabled
DEVICE.editORoperator=disabled
DEVICE.editANDoperator=disabled
DEVICE.editEXCLUDEoperator=disabled
DEVICE.editAddRuleExpression=disabled
DEVICE.editSyntaxCheck=disabled
DEVICE.editViewParentRule=disabled
DEVICE.createMembershipWizard=disabled
DEVICE.editMembershipWizard=disabled
INTERFACE.createGroupSelect=disabled
INTERFACE.createParentChange=disabled

Example 30-3 System-Groups.xml

<?xml version="1.0"?>
<!DOCTYPE SYSTEMGROUPS [
<!ELEMENT SYSTEMGROUPS (GROUP+,PROPERTYTABLE+,USERLIST+) >
<!ELEMENT GROUP
(NAME,DESCRIPTION?,TYPE,OGS_RULE_CONTAINER,TAGSTABLE?,READ_PERMISSION_LIST,WRITE_PERMISSIO
N_LIST,EVALUATE_PERMISSION_LIST)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT TYPE EMPTY>
<!ATTLIST TYPE value (DYNAMIC|STATIC) #REQUIRED >
<!ELEMENT OGS_RULE_CONTAINER (OGSRULE?)>
<!ELEMENT OGSRULE (#PCDATA) >
<!ELEMENT TAGSTABLE EMPTY>
<!ATTLIST TAGSTABLE ref CDATA #REQUIRED >
<!ELEMENT READ_PERMISSION_LIST EMPTY>
<!ATTLIST READ_PERMISSION_LIST ref CDATA #REQUIRED >
<!ELEMENT WRITE_PERMISSION_LIST EMPTY>
<!ATTLIST WRITE_PERMISSION_LIST ref CDATA #REQUIRED >
<!ELEMENT EVALUATE_PERMISSION_LIST EMPTY>
<!ATTLIST EVALUATE_PERMISSION_LIST ref CDATA #REQUIRED >
<!ELEMENT PROPERTYTABLE (PROPERTY+)>
<!ATTLIST PROPERTYTABLE
name CDATA #REQUIRED >
<!ELEMENT PROPERTY (KEY,VALUE)>
<!ELEMENT KEY (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT USERLIST (USER*)>
<!ATTLIST USERLIST
name CDATA #REQUIRED >
30-56
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.3 Client Side Enhancements
<!ELEMENT USER (#PCDATA)>
]>
<SYSTEMGROUPS>
<GROUP>

<NAME>/System Defined Groups/Unknown Devices</NAME>
<DESCRIPTION>Group for devices whose MDFId is unknown</DESCRIPTION>
<TYPE value="DYNAMIC" />
<OGS_RULE_CONTAINER>

<OGSRULE>:CMF:DCR:Device.MDFId equals "UNKNOWN" </OGSRULE>
</OGS_RULE_CONTAINER>

 <TAGSTABLE ref="devicegrouptags" />
<READ_PERMISSION_LIST ref="read_user_list" />
<WRITE_PERMISSION_LIST ref="write_user_list" />

 <EVALUATE_PERMISSION_LIST ref="evaluate_user_list" />
</GROUP>
<GROUP>

<NAME>/System Defined Groups/Cisco Access Servers</NAME>
<DESCRIPTION>Group for Cisco Access Servers</DESCRIPTION>
<TYPE value="DYNAMIC" />
<OGS_RULE_CONTAINER>

<OGSRULE> </OGSRULE>
</OGS_RULE_CONTAINER>
<TAGSTABLE ref="devicegrouptags" />
<READ_PERMISSION_LIST ref="read_user_list" />
<WRITE_PERMISSION_LIST ref="write_user_list" />

 <EVALUATE_PERMISSION_LIST ref="evaluate_user_list" />
</GROUP>
<GROUP>

<NAME>/System Defined Groups/Cisco Cable Devices</NAME>
<DESCRIPTION>Group for Cisco Cable Devices</DESCRIPTION>
<TYPE value="DYNAMIC" />
<OGS_RULE_CONTAINER>

<OGSRULE> </OGSRULE>
</OGS_RULE_CONTAINER>

 <TAGSTABLE ref="interfacegrouptags" />
<READ_PERMISSION_LIST ref="read_user_list" />
<WRITE_PERMISSION_LIST ref="write_user_list" />

 <EVALUATE_PERMISSION_LIST ref="evaluate_user_list" />
</GROUP>
<GROUP>

<NAME>/System Defined Groups/Cisco Cable Devices/Cisco 6900 Series Multiplexers</NAME>
<DESCRIPTION>Group for Cisco 6900 Series Multiplexers</DESCRIPTION>
<TYPE value="DYNAMIC" />
<OGS_RULE_CONTAINER>

<OGSRULE> </OGSRULE>
</OGS_RULE_CONTAINER>

 <TAGSTABLE ref="interfacegrouptags" />
<READ_PERMISSION_LIST ref="read_user_list" />
<WRITE_PERMISSION_LIST ref="write_user_list" />

 <EVALUATE_PERMISSION_LIST ref="evaluate_user_list" />
</GROUP>
<PROPERTYTABLE name="systemdefinedgrouptags">

<PROPERTY>
<KEY>SYSTEM_PREDEFINED</KEY>
<VALUE>TRUE</VALUE>

</PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="customizablegrouptags">

<PROPERTY>
<KEY>CUSTOMIZABLE_GROUP</KEY>
<VALUE>TRUE</VALUE>

</PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="hiddengrouptags">
30-57
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
<PROPERTY>
<KEY>HIDDEN</KEY>
<VALUE>TRUE</VALUE>

 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="devicegrouptags">

<PROPERTY>
<KEY>MEMBERSHIP_TYPE</KEY>
<VALUE>DEVICE</VALUE>

</PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="interfacegrouptags">

<PROPERTY>
<KEY>MEMBERSHIP_TYPE</KEY>
<VALUE>INTERFACE</VALUE>

</PROPERTY>
</PROPERTYTABLE>

Using OGS 1.4 Enhancements
The following enhancements are part of OGS 1.4 release:

Template Based Groups

Template based groups simplify group creation. You can create frequently used groups easily. If you
want to create a group based on a device attribute (such as Location) you must select the Location based
groups template, and enter the location values for the rule.

However, for group creation with more than one attribute (such as Location and IP Address) you must
use the regular Rule based group creation.

Group ID

Group ID is introduced to the OGSGroupDefinition (com.cisco.nm.xms.ogs.util) class. Group ID is
unique for a particular group. However, when a group is deleted, and then recreated, the group will not
have the same group ID. A Getter method (groupId()) is added to the OGSGroupDefinition class for the
applications to use the group ID.

Only the evaluateGroup method in the OGSInterface is overloaded to use the group ID, instead of the
group name. The others such as deleteGroup and copyGroup continue to use group name.

The evaluateGroup() API is used from the application backend, and require the group ID.

A new class – com.cisco.nm.xms.ogs.util.OGSGroupId is added.This will encapsulate the group ID of a
particular group as a string.

Configurable Display Name for Class Names

In group administration UIs, the internal class names (:CMF:DCR:Device or
Kilner:VASA:KilnerObject:Device:Host) are displayed. This is not very useful for the end users.

With configurable display name for class names, you can have more user-friendly UI display names
(such as Device or Host).

OGSClient.properties contains the mapping definitions. Applications can enable this feature using a
specified property (EnableClassNameMapping=true in OGSClient.properties), and provide the mapping
from the internal class name to the external class name.
30-58
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
Configurable Root (Provider) Group

In a single-server setup (DCR in standalone mode), the root group name is of the format Application. In
a multi-server setup (DCR in Master / Slave mode), the root group name is of the format
Application-CWHP Display Name.

Both the formats are available as templates in a configuration file,
NMSROOT/objects/groups/RootGroupTemplate.properties. The default content of the file is:

This property file is for configuring the template to be used for
root (provider) group of all group hierarchies in this server
ProviderTemplateForSingleServer = $ProductId$
ProviderTemplateForMultiServer = “$ProductId$-$CWHPServerName$”

When the CiscoWorks administrator changes the DCR mode from standalone to master/slave, the root
(provider) group name of all group hierarchies will be changed according to the template.

This change will be done automatically, and does not need the daemons to be restarted. Similarly, the
root group name will be changed when the DCR mode is changed from Master/Slave to Standalone.

In a multi-server setup, the template can be changed to $CWHPServerName$ - $ProductId$. This change
is global, applies to all OGS servers in the CiscoWorks machine, and takes effect only after the daemons
are restarted. Hence, the properties file is shipped by Common Services and there will be only one
properties file in a CiscoWorks installation.

The Common Services root group hierarchy will always be CS, irrespective of whether the server is in
single-server mode or multi-server mode. Since there will be only one CS group hierarchy in a
multi-server setup, there is no need to uniquely identify the CS group hierarchy by adding the CWHP
display name.

com.cisco.nm.xms.ogs.util.OGSUtil will be augmented with the following APIs:

 • Public string getCommonRoot()—Returns the common group root (root of the CS group hierarchy).
The value, as explained, will be CS.

 • Public string getLocalRoot()—Returns the current root group name of the local hierarchy. For
example, this API will return the RME root group name when called with the classpath of the
RMEOGSServer.

 • Public string getOldLocalRoot()—Returns the old root group name of the local hierarchy.

Integrating OGS 1.4 With Your Application
To integrate the client-side features of OGS 1.4 with your application:

Step 1 Include all OGS 1.4 related jar files in the applications and ensure that they are shipped with the
respective webapp.

Step 2 Update the OGSClient.properties file with the following entries in the respective webapp environment:

TemplateSupportEnabled = true
TemplateFile=\\cwhp\\WEB-INF\\classes\\Templates.ser
DefaultTemplateToBeSelected=<Template String which needs to be selected default>

(\\Indicates the relative location of the path from webapps directory).

The default location of OGSClient.properties file is the WEB-INF\classes directory, relative to
MDC\tomcat\webapps\app-name.

By default, the template support is disabled because it is not consumed by all applications.

Step 3 Configure an XML file that describes the templates.
30-59
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
The DTD for the XML file is provided here, along with sample entries. Applications should specify the
entries accordingly so that they would be made available out of the box.

Note Skipping the Membership page and enabling template support cannot be done together for the same
group type. However, backward compatibility will be maintained for the other group types for which
template support is not enabled.

Sample entries for creating templates in a XML file. Here the ITM application has been taken as an
example for integration.

DTD for the XML File
<?xml version="1.0"?>

<!--**-->
<!-- Copyright (c) 2005 Cisco Systems, Inc. -->
<!-- All rights reserved. -->
<!--**-->

<!DOCTYPE TEMPLATES [
<!ELEMENT TEMPLATES (TEMPLATE+,PROPERTYTABLE+) >
<!ELEMENT TEMPLATE (NAME,DESCRIPTION?,TEMPLATE_RULE_CONTAINER,DISPLAY_LABEL?,TAGSTABLE?)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT TEMPLATE_RULE_CONTAINER (TEMPLATERULE?)>
<!ELEMENT TEMPLATERULE (#PCDATA) >
<!ELEMENT DISPLAY_LABEL (#PCDATA)>
<!ELEMENT TAGSTABLE EMPTY>
<!ATTLIST TAGSTABLE ref CDATA #REQUIRED >
<!ELEMENT PROPERTYTABLE (PROPERTY+)>
<!ATTLIST PROPERTYTABLE name CDATA #REQUIRED >
<!ELEMENT PROPERTY (KEY,VALUE)>
<!ELEMENT KEY (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
]>
<TEMPLATES>
<TEMPLATE>

<NAME>Location Based template</NAME>
<DESCRIPTION>This template is used for creating groups based upon

location</DESCRIPTION>
<TEMPLATE_RULE_CONTAINER>

<TEMPLATERULE>:ITM:VASA:ITMObject:Device.Location contains</TEMPLATERULE>
</TEMPLATE_RULE_CONTAINER>

 <DISPLAY_LABEL>List of Locations</DISPLAY_LABEL>
 <TAGSTABLE ref="Locationtemplates"/>
</TEMPLATE>
<TEMPLATE>

<NAME>Name Based template</NAME>
<DESCRIPTION>This template is used for creating groups based upon Name</DESCRIPTION>
<TEMPLATE_RULE_CONTAINER>

<TEMPLATERULE>:ITM:VASA:ITMObject:Device.Name contains</TEMPLATERULE>
</TEMPLATE_RULE_CONTAINER>

 <DISPLAY_LABEL>List of MDFIds</DISPLAY_LABEL>
 <TAGSTABLE ref="Nametemplates"/>
</TEMPLATE>
<TEMPLATE>

<NAME>Subnet Based template</NAME>
<DESCRIPTION>This template is used for creating groups based upon Subnet</DESCRIPTION>
<TEMPLATE_RULE_CONTAINER>

<TEMPLATERULE>:ITM:VASA:ITMObject:Device.IP.Netmask contains</TEMPLATERULE>
</TEMPLATE_RULE_CONTAINER>
30-60
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
 <DISPLAY_LABEL>List of Subnets</DISPLAY_LABEL>
 <TAGSTABLE ref="Subnettemplates"/>
</TEMPLATE>
<TEMPLATE>

<NAME>Service Based template</NAME>
<DESCRIPTION>This template is used for creating groups based upon

Service</DESCRIPTION>
<TEMPLATE_RULE_CONTAINER>

<TEMPLATERULE>:ITM:VASA:ITMObject:Device.Type contains</TEMPLATERULE>
</TEMPLATE_RULE_CONTAINER>

 <DISPLAY_LABEL>List of Series</DISPLAY_LABEL>
 <TAGSTABLE ref="Servicetemplates"/>
</TEMPLATE>
<TEMPLATE>

<NAME>Model Based template</NAME>
<DESCRIPTION>This template is used for creating groups based upon Model</DESCRIPTION>
<TEMPLATE_RULE_CONTAINER>

<TEMPLATERULE>:ITM:VASA:ITMObject:Device.Model contains</TEMPLATERULE>
</TEMPLATE_RULE_CONTAINER>

 <DISPLAY_LABEL>List of Models</DISPLAY_LABEL>
 <TAGSTABLE ref="Modeltemplates"/>
</TEMPLATE>

<PROPERTYTABLE name="Locationtemplates">
 <PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE>Location</VALUE>
 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="Nametemplates">

<PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE>Name</VALUE>
 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="Servicetemplates">

<PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE>Type</VALUE>
 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="Modeltemplates">

<PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE>Model</VALUE>
 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="Subnettemplates">

<PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE>IP.NetMask</VALUE>
 </PROPERTY>
</PROPERTYTABLE>
<PROPERTYTABLE name="">

<PROPERTY>
 <KEY>ATTRIBUTE</KEY>
 <VALUE></VALUE>
 </PROPERTY>
</PROPERTYTABLE>

</TEMPLATES>
30-61
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
Note The element TAGSTABLE is optional. TAGSTABLE is to add tags if the application needs to
find the groups created based on a specific template.

Step 4 Define entries related to the new screen IDs in struts-config.xml file and site-map XML file of the
respective webapp.

Entries for struts-config.xml

The following entries must be added in the OGS related sections of struts-config.xml.

<forward name="ogsBrowseProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsBrowseProperties" />
 <forward name="ogsBrowseRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsBrowseRules" />
 <forward name="ogsBrowseMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsBrowseMembership" />
 <forward name="ogsBrowseSubgroups"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsBrowseSubgroups" />
 <forward name="ogsCreateProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsCreateProperties" />
 <forward name="ogsTemplateCreateProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateCreateProperties" />
 <forward name="ogsCreateRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsCreateRules" />
 <forward name="ogsDefaultCreateRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsDefaultCreateRules" />

<forward name="ogsTemplateCreateRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateCreateRules" />
 <forward name="ogsCreateMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsCreateMembership" />
 <forward name="ogsDefaultCreateMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsDefaultCreateMembership" />

<forward name="ogsTemplateCreateMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateCreateMembership" />
 <forward name="ogsCreateAccessControl"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsCreateAccessControl" />
 <forward name="ogsCreateSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsCreateSummary" />
 <forward name="ogsDefaultCreateSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsDefaultCreateSummary" />

<forward name="ogsTemplateCreateSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateCreateSummary" />
 <forward name="ogsEditProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsEditProperties" />

<forward name="ogsTemplateEditProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateEditProperties" />
 <forward name="ogsEditRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsEditRules" />
 <forward name="ogsTemplateEditRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateEditRules" />
 <forward name="ogsEditMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsEditMembership" />
 <forward name="ogsTemplateEditMembership"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateEditMembership" />
 <forward name="ogsEditAccessControl"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsEditAccessControl" />
30-62
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
 <forward name="ogsEditSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsEditSummary" />
 <forward name="ogsTemplateEditSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsTemplateEditSummary" />
 <forward name="ogsMainSetup"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsMainSetup" />
 <forward name="ogsRoleAccessControl"
path="/WEB-INF/screens/popup.jsp?sid=ogsRoleAccessControl" />

<forward name="ogsServerError" path="/WEB-INF/screens/uii/index.jsp?sid=ogsServerError" />

<forward name="ogsSkipMemberCreateProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateProperties" />

<forward name="ogsSkipMemberCreateRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateRules" />

<forward name="ogsSkipMemberCreateSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberCreateSummary" />

<forward name="ogsSkipMemberEditProperties"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditProperties" />

<forward name="ogsSkipMemberEditRules"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditRules" />

<forward name="ogsSkipMemberEditSummary"
path="/WEB-INF/screens/uii/index.jsp?sid=ogsSkipMemberEditSummary" />

Entries for Sitemap XML File
The following entries must be added in the OGS-related section in the sitemap XML file of
the respective webapp:
<?xml version="1.0"?>
<contentAreaSet>

 <navContentArea screenID="ogsMainSetup"
 contentAreaTitle="Group Administration"
 helpTag="group_administration"
 fileRef="/WEB-INF/screens/OGS/ogsMainSetup.jsp">
</navContentArea>
<appContentArea screenID="ogsBrowseProperties"

contentAreaTitle="Property Details"
helpTag="cs_groups_admin_view"
fileRef="/WEB-INF/screens/OGS/ogsBrowseProperties.jsp" />

<appContentArea screenID="ogsBrowseMembership"
contentAreaTitle="Membership Details"
helpTag="cs_groups_admin_view"
fileRef="/WEB-INF/screens/OGS/ogsBrowseMembership.jsp" />

<appContentArea screenID="ogsServerError"
contentAreaTitle="Group Administration Server Error"
helpTag="ogs_server_error"
fileRef="/WEB-INF/screens/OGS/serverError.jsp" />

<appContentArea screenID="ogsDCRSecondary"
contentAreaTitle=""

 helpTag="ogs_dcr_secondary"
 fileRef="/WEB-INF/screens/OGS/ogsDCRSecondary.jsp" />

<appContentArea screenID="ogsNewPage"
 contentAreaTitle=""
 helpTag="ogs_dcr_secondary"
 fileRef="/WEB-INF/screens/OGS/ogsNewPage.jsp" />

<appWizard>
<appWizardItem>
30-63
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
<label>Properties</label>
<appContentArea screenID="ogsTemplateCreateProperties"

contentAreaTitle="Properties"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsTemplateCreateProperties.jsp" />

</appWizardItem >
<appWizard>

<appWizardItem>
<label>Rules</label>
<appContentArea screenID="ogsDefaultCreateRules"

contentAreaTitle="Rules"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsCreateRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Membership</label>
<appContentArea screenID="ogsDefaultCreateMembership"

contentAreaTitle="Membership"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsCreateMembership.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsDefaultCreateSummary"

contentAreaTitle="Summary"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsCreateSummary.jsp" />

</appWizardItem>
</appWizard>

 <appWizard>
<appWizardItem>

<label>Templates</label>
<appContentArea screenID="ogsTemplateCreateRules"

contentAreaTitle="Templates"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsTemplateCreateRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Membership</label>
<appContentArea screenID="ogsTemplateCreateMembership"

contentAreaTitle="Membership"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsCreateMembership.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsTemplateCreateSummary"

contentAreaTitle="Summary"
helpTag="cs_groups_admin_create"
fileRef="/WEB-INF/screens/OGS/ogsCreateSummary.jsp" />

</appWizardItem>
</appWizard>
</appWizard>
<appWizard>

<appWizardItem>
<label>Properties</label>
<appContentArea screenID="ogsEditProperties"

contentAreaTitle="Properties"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditProperties.jsp" />

</appWizardItem>
<appWizardItem>

<label>Rules</label>
<appContentArea screenID="ogsEditRules"
30-64
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
contentAreaTitle="Rules"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Membership</label>
<appContentArea screenID="ogsEditMembership"

contentAreaTitle="Membership"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditMembership.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsEditSummary"

contentAreaTitle="Summary"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditSummary.jsp" />

</appWizardItem>
</appWizard>

<appWizard>
<appWizardItem>

<label>Properties</label>
<appContentArea screenID="ogsCreateProperties"

contentAreaTitle="Properties"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsCreateProperties.jsp" />

</appWizardItem>
<appWizardItem>

<label>Rules</label>
<appContentArea screenID="ogsCreateRules"

contentAreaTitle="Rules"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsCreateRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Membership</label>
<appContentArea screenID="ogsCreateMembership"

contentAreaTitle="Membership"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsCreateMembership.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsCreateSummary"

contentAreaTitle="Summary"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsCreateSummary.jsp" />

</appWizardItem>
</appWizard>

<appWizard>
<appWizardItem>

<label>Properties</label>
<appContentArea screenID="ogsTemplateEditProperties"

contentAreaTitle="Properties"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditProperties.jsp" />

</appWizardItem>
<appWizardItem>

<label>Templates</label>
<appContentArea screenID="ogsTemplateEditRules"

contentAreaTitle="Templates"
helpTag="cs_groups_admin_modify"
30-65
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
fileRef="/WEB-INF/screens/OGS/ogsTemplateEditRules.jsp" />
</appWizardItem>
<appWizardItem>

<label>Membership</label>
<appContentArea screenID="ogsTemplateEditMembership"

contentAreaTitle="Membership"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditMembership.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsTemplateEditSummary"

contentAreaTitle="Summary"
helpTag="cs_groups_admin_modify"
fileRef="/WEB-INF/screens/OGS/ogsEditSummary.jsp" />

</appWizardItem>
</appWizard>

<appWizard>
<appWizardItem>

<label>Properties</label>
<appContentArea screenID="ogsSkipMemberCreateProperties"

contentAreaTitle="Properties"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsCreateProperties.jsp" />

</appWizardItem>
<appWizardItem>

<label>Rules</label>
<appContentArea screenID="ogsSkipMemberCreateRules"

contentAreaTitle="Rules"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsCreateRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
<appContentArea screenID="ogsSkipMemberCreateSummary"

contentAreaTitle="Summary"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsCreateSummary.jsp" />

</appWizardItem>
</appWizard>

 <appWizard>

<appWizardItem>
<label>Properties</label>
<appContentArea screenID="ogsSkipMemberEditProperties"

contentAreaTitle="Properties"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsEditProperties.jsp" />

</appWizardItem>
<appWizardItem>

<label>Rules</label>
 <appContentArea screenID="ogsSkipMemberEditRules"

contentAreaTitle="Rules"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsEditRules.jsp" />

</appWizardItem>
<appWizardItem>

<label>Summary</label>
 <appContentArea screenID="ogsSkipMemberEditSummary"

contentAreaTitle="Summary"
helpTag=""
fileRef="/WEB-INF/screens/OGS/ogsEditSummary.jsp" />

</appWizardItem>
30-66
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
</appWizard>
</contentAreaSet>

Note You need to make these changes to the struts-config.xml and respective sitemap XML files only if
template support is required. If template support is not required, you do not need to make any changes
to the existing files.

Entry for Displaying Error Messages

Add the following entry in the appropriate property file for the webapp to display error messages:

ogs.noTemplateAttrValues=<Attribute value>

You must enter at least one value for this entry.

Generating Serialized File from the XML File

To generate a serialized file from the XML file, enter the following (where? CLI?):

com.cisco.nm.xms.ogs.client.templates.OGSTemplateGenerator XML_file_name
serialized_file_name

To run this command (?), the following files should be available in the classpath:

NMSROOT\MDC\tomcat\shared\lib\mice.jar;

NMSROOT\www\classpath;

NMSROOT\lib\classpath;

NMSROOT\MDC\tomcat\shared\lib\MICE.jar;

NMSROOT\lib\classpath\jconn2.jar;

NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\log4j.jar;

NMSROOT\MDC\tomcat\shared\lib\xerces.jar;

NMSROOT\MDC\tomcat\shared\lib\xalan.jar;

NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\ogs-client1.2.jar;

NMSROOT\MDC\tomcat\webapps\cwhp\WEB-INF\lib\cogs1.2.jar;

Integrating Configurable Display Name for Class Names Feature with
Applications

In OGSClient.properties, the following properties are added to enable this feature.

 • EnableClassNameMapping = true

 • ClassNameMappingFile = DCR-Class-Name-Mapping.xml

Setting EnableClassNameMapping property to true enables this feature. ClassNameMappingFile
property specifies the XML file where the mapping between internal classnames and external
(displayable) class names are specified.

This XML file should be present in the “WEB-INF/classes” directory. The applications need to make
sure that all classnames are entered properly in the XML mapping file.

The following is the DTD for the classname mapping file:

<?xml version="1.0"?>
30-67
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 30 Using Object Grouping Services
 Using OGS 1.4 Enhancements
<!DOCTYPE Mappings [
<!ELEMENT Mappings (ClassNameMap+)>
<!ELEMENT ClassNameMap (InternalClass, ExternalClass)>
<!ELEMENT InternalClass (#PCDATA) >
<!ELEMENT ExternalClass (#PCDATA) >
]>

The following is the sample classname mapping file:

<?xml version="1.0"?>

<!DOCTYPE Mappings [
<!ELEMENT Mappings (ClassNameMap+)>
<!ELEMENT ClassNameMap (InternalClass, ExternalClass)>
<!ELEMENT InternalClass (#PCDATA) >
<!ELEMENT ExternalClass (#PCDATA) >
]>

<Mappings>
<ClassNameMap>

<InternalClass>:DFM:VASA:DFMObject</InternalClass>
<ExternalClass>DFMObject</ExternalClass>

</ClassNameMap>
<ClassNameMap>

<InternalClass>:DFM:VASA:DFMObject:AccessPort</InternalClass>
<ExternalClass>AccessPort</ExternalClass>

</ClassNameMap>
<ClassNameMap>

<InternalClass>:DFM:VASA:DFMObject:Device</InternalClass>
<ExternalClass>Device</ExternalClass>

</ClassNameMap>
<ClassNameMap>

<InternalClass>:DFM:VASA:DFMObject:Device:Cable</InternalClass>
<ExternalClass>Cable</ExternalClass>

</ClassNameMap>
<ClassNameMap>

<InternalClass>:DFM:VASA:DFMObject:Device:ContentNetworking</InternalClass>
<ExternalClass>ContentNetworking</ExternalClass>

</ClassNameMap>
</Mappings>

The following is the enhancement to Object Grouping Server (OGS)1.4.2 release:

Enhancements to evaluateGroup API

The evaluateGroup method is an overloaded API in the OGSInterface. The evaluateGroup() API now
takes an additional argument, taglist, which is a String array. This String array returns the values of the
tag lists passed, for each of the group.

This enhanced evaluateGroup() method can be used when the caller wants to evaluate the group to
display the devices and subgroups, and to retreive the group properties as tag-value pairs.

The API signature is as follows:

public OGSObjectList evaluateGroup(OGSSecurityContext context,
 String task,
 OGSRuleContainer filter,
 String groupName,
 String[] attributeList,
 Integer membershipFormat,
 Boolean recomputeMembers,
 String[] tagList) throws OGSException;
30-68
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-4688-01
C H A P T E R 31

Using the Common Services Transport
Mechanism

The Common Services Transport Mechanism (CSTM) provides a single, consistent, simple and
platform-agnostic method for handling all types of programmatic communications, including:

 • Inter-Process Communication (IPC): Multiple processes on the same machine.

 • Remote Procedure Calls (RPC): Multiple processes on different machines.

 • In-Process Calls: Processes executing under the same virtual machine.

The following topics describe CSTM and how to use it in your applications:

 – Understanding CSTM

 – Installing CSTM

 – Controlling CSTM Logging

 – Publishing Objects

 – Accessing Published Objects

 – Handling Special Requirements

 – Using the CTMTest Tools and Samples

 – Guidelines for Using CSTM

For more information about CSTM, see

 • The CSTM Functional Specification, ENG-124878.

 • CSTM: Software Unit Design Specification: ENG-155861.

 • CSTM User guide: ENG 161448.

Understanding CSTM
In the past, the way to create rich application-to-application communication has been to employ DCOM,
CORBA, or RMI. These rich environments typically require that applications use the same object model
at both ends of a connection. which is often impractical. They also assume that both sender and the
receiver have full knowledge of the message context and do not encode meta-information. This gives
good performance, but makes it hard for intermediaries to process messages. Finally, each system uses
a different binary encoding, making it hard to build systems that interoperate.
31-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Installing CSTM
CSTM provides a way to handle communications by abstracting them, providing the same API for all of
them, and founding the API on well-know non-proprietary standards.

In CSTM, communications across machines are handled using XML and Serialized Java Objects over
HTTP transport. Communications on the same machine are handled with Sockets. During inter-thread
communication, CSTM plays a part during initial reference resolutions only.

Even though CSTM encapsulates the use of XML for message transfer, it also offers compatibility with
a well-defined XML message protocol (SOAP). Use of XML RPC facilitates means there is no need to
care about what operating system, programming language or object model is being used on either the
client or server side.

Installing CSTM
CSTM supports a wide variety of communications involving one or more machines. Depending on how
you plan to implement it, you will want to install it using the procedures in one of the following sections:

 • Installing Basic CSTM, page 31-2

 • Installing CSTM with the Tomcat Servlet Engine, page 31-3

Installing Basic CSTM
This is the basic installation for a single machine without a Java servlet engine. To install CSTM on a
single machine:

Step 1 Before installing CSTM:

 • If you have a previous version of CSTM installed, delete any old ctmregistry and ctmregistry.backup
files. These are normally found in the same directory as the CTM.jar file.

 • Ensure that you have JDK 1.3.1 or later installed.

 • CSTM is supplied on the CWCS SDK disk as a WAR file. If needed, you can download CTM 1.0
and 1.1. CTM 1.0 is available at the following URL:
http://wwwin-nmbu/auto/cw/cdimages/ctm1_0/daily/NT_CTM1_0_INTEGRATION_READY/kits
/. CTM 1.1 is available at
http://wwwin-nmbu/auto/cw/cdimages/ctm1_1/daily/NT_CTM1_1_INTEGRATION_READY/kits
/. The same CSTM WAR file can be used for both Solaris and Windows. Extract the WAR file into
a suitable location.

Step 2 Add CTM.jar and log4j.jar to the classpath.

Step 3 Save the ctm_static_registry.txt and ctm_config.txt files in the same directory as the CTM.jar file.

Note As soon as CSTM begins running, it will create ctmregistry and ctmregistry.backup files in the
same directory as the CTM.jar file. Do not tamper with these files while running CSTM.

Step 4 To run the CSTM samples, add samples.jar to the classpath. The source code for all samples is in
samples_source.jar, which is available from the CSTM portal at
http://embu-web.cisco.com/eng/teams/Mjollnir/ (follow the CTM or CSTM link under “Subprojects”).
31-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Controlling CSTM Logging
Installing CSTM with the Tomcat Servlet Engine
For full functionality, you will want to install CSTM on one or more machines with a servlet engine.
CWCS supports the Tomcat servlet engine by default. No other servlet engine is supplied with CWCS,
and the CWCS team recommends that you use Tomcat exclusively.

To install CSTM with a servlet engine, perform the basic CSTM install on each machine (using the
instructions in the “Installing Basic CSTM” section on page 31-2), then ensure that:

 • The servlet engine is installed and running on each machine. This is necessary to handle remote
calls.

 • You have updated the CTMServlet parameter in the CSTM configuration file (ctm_config.txt) with
the URL for the servlet engine you have installed on that machine.

Note To make CSTM work with any servlet engine, you must modify the CTM_URL parameter in the
ctm_config.txt file to point to the appropriate CTMServlet URL.

To install CSTM using the Tomcat servlet engine, follow the steps below.

Step 1 Make sure you have Tomcat 3.2.1 or higher installed.

Step 2 In the Tomcat installation’s conf directory, in the server.xml file, under the heading “Special webapps”
and after the Context path for examples, add the following lines: f

<Context path="/ctm"
docBase="drive:/ctm"
debug="1"
reloadable="true">
</Context>

(Where drive:/ctm is the directory where CSTM is currently installed).

Step 3 In your CSTM directory, create a WEB-INF directory.

Step 4 Copy the web.xml file in the CSTM distribution into the WEB-INF directory.

Note The web.xml file has entries to start off TestServlet, which exposes the class TestClass using the
Unique Resource Name CheckServlet. This TestServlet class file is included in samples.jar.

Step 5 In the WEB-INF directory, create a lib directory and place CTM.jar in it. If your application needs any
other jars, place them in this directory.

Controlling CSTM Logging
CSTM uses log4j to handle log messages. You can adjust CSTM log4j logging as explained in the
following topics:

 • Setting Up CSTM Logging

 • Viewing the CSTM Log File
31-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Controlling CSTM Logging
Note CSTM uses log4j for logging, but does not set up or initialize the log4j framework during runtime. If
your product already ships with a log4j configuration file, you must either add CSTM-related log4j
categories to it or add them to log4j.properties and add the location of log4j.properties to your
application’s classpath. All entries in the log4j.properties file that ships with CSTM are commented out
by default.

Setting Up CSTM Logging
By default, a running instance of CSTM on a single machine logs all messages of FATAL severity to the
console. If you have a running log4j server, it will log these messages to the ctm.log in the log4j server
directory.

To set up log4j logging and ensure that it works as desired, you must:

 • In log4j.properties: Set the logging levels as needed.

 • In log4j.properties: Set the log destination you want.

 • Include the log4j.jar and log4j.properties file directory in the classpath, and start a log4j server.

The following topics explain how to perform these tasks:

 • Setting the CSTM Logging Levels

 • Changing the CSTM Logging Destination

 • Starting a Log4j Server

Note CSTM does not explicitly load the log4j.properties file. If your product is already using log4j, you may
not need to have a separate log4j.properties file for CSTM. Instead, you can add the CSTM logging levels
and appenders to your existing log4j properties file.

Setting the CSTM Logging Levels

Log4j message logging levels are set using log4j.category entries in the log4j.propeties file.

The default logging level is FATAL, and is set by the lo4jrootCategory=FATAL entry. The other logging
levels are DEBUG, INFO, WARN and ERROR.

You can change the level of logging for CSTM or any of the CSTM modules using log4j.category
entries in the log4j.properties file. For example: You could set explicit category entries for individual
CSTM modules as follows:

log4j.category.CTM.server=DEBUG
log4j.category.CTM.client=INFO
log4j.category.CTM.registry=WARN

All CSTM modules inherit and use the log4j.rootCategory setting unless there is a log4j.category
set for them.

Changing the CSTM Logging Destination

In log4j, server message destinations are called appenders. Appenders are created using log4j.appender
entries in the log4j.properties file. Any appender can be assigned to a logging levels using the logging
level’s log4j.category entries in the same file.
31-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Controlling CSTM Logging
In the default log4j.properties file, only the console appender is defined, and the log4j.rootCategory that
sets the default logging level is set to the console appender. If you are running a log4j server, all messages
will be sent first to the server, then to the ctm.log file (if this log4j server is not running, the messages
will only be logged to the console).

It is possible to define appenders for your own purposes. For example: On a single machine, you may
have multiple virtual machines making CSTM calls. To have all CSTM log messages coming from all
the VMs logged to a single ctm.log file, you would update the log4j.properties file with necessary
appenders to send the messages to the log4j server and then run a log4j server. Every VM will then send
its log messages to the log4j server, which in turn logs it into the ctm file.

To define and use appenders, you must:

 • Update the log4j.properties file with appenders to which you want messages to be sent.

 • Run the log4j server with the new appenders.

For example: To create an appender named “A2”, add the following socket appender configurations to
the log4j.properties file:

log4j.appender.A2=org.apache.log4j.net.SocketAppender
log4j.appender.A2.RemoteHost=localhost
log4j.appender.A2.Port=8888

Then, to have your custom logging levels all send messages to this appender, you would update your
log4j.category entries as follows:

log4j.category.CTM.server=DEBUG, A2
log4j.category.CTM.client=INFO, A2
log4j.category.CTM.registry=WARN, A2

Starting a Log4j Server

Once categories and appenders are defined, you can start the log4j server by adding log4j.jar to the
classpath and then issuing the following command:

>> org.apache.log4.net.SocketServer port proppath propdir

Where:

 • port is the port on which the server is to run.

 • path is the complete path and file name for the log4j.server.properties file.

 • dir is the directory in which log4j.server.properties file is stored.

For example: if log4j.server.properties is stored in D:\ctm, and the log4j.jar and log4j.properties files
are also stored there, you would start the server with the following commands:

>> set classpath = d:\ctm\log4j.jar;d:\ctm
>> org.apache.log4j.net.SocketServer 8888 d:\ctm\log4j.server.properties d:\ctm

Note The ctm.log file will be created in the same directory from which this command was executed.

Viewing the CSTM Log File
You can view the ctm.log file with any ASCII text editor. For each message, the log will include the:

 • Date: The message date in dd/mm/yyyy format
31-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Publishing Objects
 • Time: The message time in hh:mm:ss:msec format.

 • Logging level: INFO, DEBUG, WARN, ERROR, or FATAL

 • Classname: The complete name of the class that output the message.

 • Methodname: The method name of the calling method.

 • Message: The text of the message logged from the calling method.

For example:

31/Jan/2002 17:52:31:984 DEBUG com.cisco.nm.xms.ctm.server.CTMServer <clinit> -
Serverport:40000 MinThreads:3 maxThreads:20

For message sizes larger than 32MB, you must set the startup memory to a higher value. To do this,
compile using the javac option for startup memory. For example, compile using >> Javac -J-Xms48m
to set startup memory to 48MB, or use >> Javac -J-Xms64m to set it to 64MB.

Publishing Objects
When you publish an object, you expose it to other processes. The CSTM files and CSTM Server API
provide several means for publishing and unpublishing objects. The following topics explain these
methods and the guidelines you should follow when:

 • Publishing Objects Statically, page 31-6

 • Publishing Objects Dynamically, page 31-7

 • Handling Remote Objects, page 31-7

 • Publishing Objects Securely, page 31-8

 • Unpublishing Objects, page 31-9

Publishing Objects Statically
CSTM allows you to register classes statically by adding them to the file ctm_static_registry.txt. Entries
in the static registry file take the form:

urn=classname,

where:

 • urn is the Unique Resource Name of the object

 • classname is the object’s classname.

Static registration using ctm_static_registry.txt always takes precedence over dynamic registration done
using a Publish call (see “Publishing Objects Dynamically” section on page 31-7). For example: If
ctm_static_registry.txt contains the entry abc=TestClass, and you later try to publish a resource with the
URN abc and classname TestClass, CSTM will report that this resource is already registered. If a class
is registered statically, then CSTM will read and use the static registry entry whenever your client
invokes that object.

To use static registration successfully, always ensure that:

 • The ctm_static_registry.txt file is stored in the same directory as CTM.jar.

 • All classnames appearing in ctm_static_registry.txt also appear in the Classpath.
31-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Publishing Objects
Publishing Objects Dynamically
CSTM provides methods to publish objects dynamically, at runtime. Objects published dynamically are
available via all the types of communication CSTM supports, including In-Process Calls, IPC, and RPC.

Ideally, the published object should expose its functionality via an interface. If the exposed object
provides an interface, the CSTM client can invoke the exposed object either by binding to this interface
using CTMClientProxy, or as a generic CTMClient. If the exposed object does not provide an interface,
you can use only CTMClient. Note that the CTMClientProxy feature is available only if you are using
JDK 1.3.1 or later.

To publish an object dynamically, use the CTMServer.publish method:

com.cisco.nm.xms.ctm.server.CTMServer.publish(java.lang.String urn, java.lang.Object
object, com.cisco.nm.xms.ctm.common.CTMServerProperties properties) throws CTMException

CTMServer.publish takes the following input arguments:

For example: To publish a single reference of class TestClass, with the URN xyz (in this case the same
object will be used, irrespective of the type of client; this functionality is not available with static
registration):

com.cisco.nm.xms.ctm.server.CTMServer.publish(xyz,new TestClass())

To publish the same class with the same URN, by passing the class definition (in this case the
functionality varies based upon the type of client):

com.cisco.nm.xms.ctm.server.CTMServer.publish(xyz, TestClass.class)

Handling Remote Objects
CTMServer provides methods to register and publish remote objects, as follows:

 • Registering Remote Objects Statically

 • Registering Remote Objects Dynamically

 • Publishing Remote Objects

Registering Remote Objects Statically

Static registration can be done by adding an entry in the static CSTM registry file
(ctm_static_registry.txt).

Urn name = class name

urn A Unique Resource Name for the object you want to publish. URNs need only be unique
for the management application area or server on which they are used.

object The published object’s classname.

properties Additional properties for the published object.
31-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Publishing Objects
Example
abc=com.cisco.cmf.test.TestServer

Since this kind of registration is done at compile time, it does not need any API.

Registering Remote Objects Dynamically

The CTMServer class provides methods to publish the object dynamically at runtime. The published
object is available through all types of communication such as external applications (Non-Appliance),
Inter-Appliance, Intra-Appliance and Intra-JVM. If there are errors, CTMServer throws CTMException.

If the exposed object implements an interface, it can be used by the CSTM Client as a remote interface.
CSTM client can invoke the exposed object by binding to this interface using CTMClientProxy or by
using generic CTMClient, which does not use this remote interface. But generally, it is recommended to
implement the interface since it allows the CSTM clients to use CTMClientProxy.

Usage
com.cisco.nm.xms.ctm.server.CTMServer.publish(
java.lang.String urn,
java.lang.Object object,
com.cisco.nm.xms.ctm.common CTMServerProperties properties)

where urn is any string, including spaces or even an empty string as "".

Publishing Remote Objects

You can publish a remote object in two ways:

 • Passing a single reference

To publish class TestClass, with URN name xyz, using the same object regardless of type of client:

com.cisco.nm.xms.ctm.server.CTMServer.publish(xyz,
new TestClass())

 • Passing the class definition

To publish class TestClass with URN xyz, by passing the class definition.

com.cisco.nm.xms.ctm.server.CTMServer.publish(xyz,
TestClass.class)

In this case, the functionality varies based upon type of client.

Publishing Objects Securely
CSTM allows you to publish objects securely. CSTM uses CWCS security to secure the access to the
published object.

The CTMServerProperties is passed in the Publish call to set the security options. This means that any
remote object published securely with a set of user authorized roles, can only be accessed by an
authorized user, whose role/permissions are then authenticated against the ones set while publishing.

When the CTMServerProperties is not given as a parameter to the publish method, then by default, the
security option is treated as false, that is, no security checks are performed on the clients attempting to
access this resource.
31-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Publishing Objects
The security option makes most sense in the context of calls coming from outside the box. In such cases,
the publisher might intend to secure the access to the published resource. Hence, security checks are
performed only for the calls coming from outside the box. Security checks are not performed for the calls
within the same box.

However, in the CTMServerProperties option, whenever the security option is set to true, it must have a
list of roles that are authorized to access this URN.

The CTMServerProperties for a published URN (Unique Resource Name) can be specified with a
specific security value, that is, security value of True or False depending on whether security needs to
be turned ON or OFF. Also, if security is turned On, the string [] of roles gives the list of roles that are
authorized to securely access this URN. When no arguments are provided to the CTMServerproperties
call, then the default security value is set to "False" and the string [] of roles is set to null.

Usage
public CTMServerProperties()
public CTMServerProperties(boolean security,
String [] roles)

Input Arguments

Example

To publish a class called TestClass, with security options turned on:

1. Set the permissions allowable/authorized roles

String [] roles = {"CsAuthServlet.SA",
"CSAuthServlet.NA"};

2. Set these permissions in the CTMServerProperties

com.cisco.nm.xms.ctm.common.CTMServerProperties props =
new com.cisco.nm.xms.ctm.common.CTMServerProperties(true,
roles);

3. Publish TestClass, with security options

com.cisco.nm.xms.ctm.server.CTMServer.publish(xyz,
TestClass.class,
props);

To publish this URN with security option turned off:

com.cisco.nm.xms.ctm.server.publish("abc",
TestClass.class)

Unpublishing Objects
Unpublishing an object cancels exposure of that object and its functionality via CSTM. Note that, when
you unpublish a remote object, you can re-use its URN.

security A boolean value that indicates if security is true/false

roles A string array that contains the names of roles authorized to access the published
resource/URN
31-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Note If your application publishes a URN through CTM Server, make sure you unpublish the URN when your
application no longer requires it to be maintained or exposed. If your application uses CWCS, this means
you must (at a minimum) unpublish the URN during a Daemon Manager “stop” notification.

To unpublish an object, use the CTMServer.unpublish method:

com.cisco.nm.xms.ctm.server.CTMServer.unpublish(java.lang.String.urn) Throws CTMException

CTMServer.unpublish has only one input argument, urn, which is the Unique Resource Name of the
object to be unpublished.

For example:

To unpublish the URN xyz:

com.cisco.nm.xms.ctm.server.CTMServer.unpublish(xyz)

Accessing Published Objects
CSTM provides three ways to invoke the server side functionality from a client:

 • CTMClient: Uses the URN of the remote object and a static method of a class which takes the
method signature. For details, see the “Using CTMClient” section on page 31-10.

 • CTMClientProxy: Obtains a proxy for the corresponding remote object. For details, see the “Using
CTMClientProxy” section on page 31-11.

 • CTMCall: Instantiates a call that maintains a connection with the remote object. CSTMCall provides
static methods for binding and invoking remote object methods. For details, see the “Using
CTMCall” section on page 31-13.

Developers should choose the method that best suits their application’s needs.

All three of these methods are affected by or make use of:

 • CTMServer.properties, which sets variables that control remote sessions. For details, see the
“Changing CTM Client Properties” section on page 31-14.

 • CTMConstants, which sets the encoding style for client sessions. For details, see the “Using
CTMConstants” section on page 31-15.

 • The ctm_config.txt CSTM configuration files, which provide additional parameters. For details, see
the “Using the CTM Configuration File” section on page 31-15.

 • CTMException, which is the generic exception handler. For details, see the “Handling CTM
Exceptions” section on page 31-17.

Using CTMClient
CTMClient provides static methods for invoking a remote object, and supports user- defined exceptions.
If the server-side application throws an exception in the remote method, CTMClient re-throws the same
exception. CTM will throw CTMException whenever there is an error during publishing or invoking a
remote object.

For IPC and RPC communications, you can provide the remote host IP address as a parameter to the
CTMClient.invoke call. The data is then tunneled over HTTP.
31-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Usage
com.cisco.nm.xms.ctm.client.CTMClient.invoke(
java.lang.String urn,
java.lang.String host,
java.lang.String methodName,
java.lang.Object[] parameters
CTMClientProperties properties,
CTMSerializer returnType,
CTMParameterDesc[] par)
throws Exception

com.cisco.nm.xms.ctm.client.CTMClient.invoke(
java.lang.String urn,
java.lang.String host,
java.lang.String methodName,
java.lang.Object[] parameters
CTMClientProperties properties,
CTMSerializer returnType,
throws Exception

Input Arguments

Example

The remote object TestClass, with method testmethod, is already published with URN xyz. The
method parameters (paralist) can be accessed as an Object [], as follows:

com.cisco.nm.xms.ctm.client.CTMClient.invoke("xyz",
"testmethod",
paralist)

Using CTMClientProxy
A client using CTMClientProxy has to know the interface implemented by the remote object. This means
you can use CTMClientProxy only if the server-side object has implemented a remote interface. CSTM
does not pose any restriction on this interface. By generating dynamic proxies, CTMClientProxy
eliminates the need to generate stubs or a skeleton for each and every server-side remote object.

urn The Unique Resource Name of the published object you want to call.

host The host name or IP address of the remote host.

methodName The name of the remote method that the client call wants to execute.

parameters An object array of the parameters that must be passed to the remote method the client
call wants to execute.

properties The CTMClient properties that control the session. See the “Changing CTM Client
Properties” section on page 31-14.

par Parameter descriptor that has more information about the parameter passed.This is a
wrapper class for type org.apache.axis.description.ParameterDesc.

returnType Argument to register or unregister the serializer or deserializer in the IMarshal interface.
31-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Note The CTMClientProxy feature is available only if you are using JDK 1.3.1 or later.

If you do not have access to a remote interface on the client side, use CTMClient (see the “Using
CTMClient” section on page 31-10) instead of CTMClientProxy.

CTMClientProxy simplifies remote method invocation and hides the mechanism for passing method
names and parameters to the called object. However, this does not mean that the server maintains a
separate instance for every proxy object. The total number of remote objects instantiated in the server
process depends on the server policy. CSTM clients should not rely on the state of a remote object.

Like CTMClient, CTMClientProxy supports user-defined exceptions. If the server-side application
throws an exception in the remote method, CTMClientProxy re-throws the same exception. CSTM will
throw CTMException whenever there is an error during publishing or invoking a remote object.

As with CTMClient IPC and RPC communications, you can provide the remote host IP address as a
parameter to the CTMClient.invoke call. The data is then tunneled over HTTP.

Usage
com.cisco.nm.xms.ctm.client.CTMClientProxy.getProxy(
java.lang.Class[] interfaceClasses,
java.lang.String urn,
java.lang.String host,
CTMClientProperties properties)
throws CTMException

Input Arguments

Using the remote interface creates a local instance. You can then access any method of the remote
interface; just use this local instance (you can also do this with an array of interfaces).

Example

To invoke a method called testmethod, using knowledge of the remote interface TestInterface:

TestInterface iTest=(TestInterface)CTMClientProxy.getProxy(TestInterface.class,
URN);
int result1 = iTest.testmethod(new byte[messageSize],
"2",
"0");

interfaceClasses An array containing the name of the remote- object interface(s) (a class or classes).

urn The Unique Resource Name of the published object you want to call.

host The host name or IP address of the remote host.

properties The CTMClient properties that control the session. See the “Changing CTM Client
Properties” section on page 31-14.
31-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Using CTMCall
CTMCall provides static methods for binding and invoking remote-object methods.

A client using CTMCall need not know the interface implemented by the remote object, eliminating the
need to implement interfaces like this. Like CTMClient, the only contract required between the client
and the server is the remote object’s URN.

Unlike CTMClient, CTMCall maintains a socket connection with the remote object, so the same
connection can be used for multiple requests. The CTMCall object will keep the remote connection alive
until the object either explicitly closes the connection or the object itself is garbage-collected. Despite
this, you should not rely on the state of the remote object. CTMCall will try to reconnect to the server
once before throwing an exception.

Like CTMClientProxy, CTMCall is performance efficient. Note that CTMClientProxy internally
constructs an instance of a CTMCall object to perform the remote invocation.

Like CTMClient and CTMClientProxy, CTMCall supports user-defined exceptions. If the server-side
application throws an exception in the remote method, CTMCall re-throws the same exception. A
CTMException is thrown by CTM incase of error during publishing and invoking the remote object.

As with CTMClient and CTMClientProxy, you can provide the remote host IP address as a parameter to
the CTMClient.invoke call. The data is then tunneled over HTTP.

Usage

CTMCall ctmCall = new com.cisco.nm.xms.ctm.client.CTMCall(

java.lang.String urn,

java.lang.String host,

CTMClientProperties properties)

ctmCall.setMethodAndInvoke(String methodName, Object parameters[])

ctmCall.setMethodAndInvoke(String methodName, Object parameters[],CTMSerializer

returnType, CTMParameterDesc[] par)throws Exception (where ENCODING_STYLE is set to soap)

Input Arguments

urn The Unique Resource Name of the published object you want to call.

host The host name or IP address of the remote host.

properties The CTMClient properties that control the session. See the “Changing CTM Client
Properties” section on page 31-14.

par Parameter descriptor that has more information about the parameter passed. This is a
wrapper class for type org.apache.axis.description.ParameterDesc.

returnType Argument to register or unregister the serializer or deserializer in the IMarshal interface.
31-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Examples

To invoke testmethod, with parameter object [] paralist, when this method is defined in a class called
TestClass, which has been exposed under the URN of xyz:

CTMCall call = new CTMCall ("xyz");
call.setMethod("testmethod", paraList);
call.invoke();
call.closeConnection();

To invoke an overloaded testmethod, with parameters object [] paralist: ,

CTMSerializer ctmSerializer
= new CTMSerializer(namespace,localPart,beanName),
ParameterDesc paramDesc
= new CTMParameterDesc(xmlQname,mode,xmlTypeQname,javaType)

When this method is defined in a class called TestClass, which has been exposed under the URN of xyz:

CTMCall call = new CTMCall ("xyz");
call.setMethod("testmethod", paraList,ctmSerializer,paramDesc);
call.invoke();
call.closeConnection();

Changing CTM Client Properties
Pass CTMClientProperties to CTMClient, CTMClientProxy or CTMCall in order to alter default values
for the following properties required to access the remote server:

 • Timeout

 • Encoding Style

 • CTMServlet or other remote server URL

 • Access Port

The relevant constants for these properties are defined in the CTMConstants (see the “Using
CTMConstants” section on page 31-15).

Usage
public CTMClientProperties(
int timeout,
int encodingStyle,
String url,
int port)

public CTMClientProperties(int timeout)

public CTMClientProperties(int encodingStyle)

Input Arguments

timeout The time (in milliseconds) that the client call waits for a response from the server
before reporting a timeout exception. The default is 60000 milliseconds (1 minute).
The timeout feature is currently disabled, since a connection pool is used internally.

encodingStyle The encoding for messages to and from the remote object. The default is BINARY.
31-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Example

To set CTMClient Call to use encoding style CTM_SOAP:

CTMClientProperties properties = new CTMClientProperties(CTM_SOAP);

To set the CTMClient call timeout to four minutes

CTMClientProperties properties = new CTMClientProperties(240000);

Note The timeout feature is disabled since a connection pool is used internally.

Using CTMConstants
CTMConstants is a placeholder for all the public constants defined in CSTM. Currently, the only
constants defined are:

 • CTM_BINARY: The default encoding style for all IPC and RPC communications. Request and
response objects are serialized between client and server.

 • CTM_SOAP: The default encoding style for third-party applications. SOAP request and SOAP
response are used for communication between the client and the server

Using the CTM Configuration File
The CSTM configuration file, ctm_config.txt, is stored in the same directory as the CTM.jar file, and
sets parameters for the CSTM sessions. The configuration file entries and their default values are shown
in Table 31-1.

To change any of the default settings in this file, first stop all the VMs using CSTM, and then delete the
ctmregistry and ctmregistry.backup files. These files are located in the same directory as the jar files.

url The URL string needed to access the CTMServlet or other remote server that will
handle the CTM client requests. The default value is blank.

port The default value for the HTTP port is 80.

Table 31-1 Configuration File Parameters

Parameter Default Value Description

SERVER_PORT= 40000 Sets the starting port number. Ports will be used
in ascending order from this port. You can
customize this port.

MAX_VM_PORTS = 20 Sets the maximum number of VMs (each
instance of a CSTM Server runs in a separate
VM). This parameter also sets the number of
ports required for CSTM (MAX_VM_PORTS
+ 1). The registry server will use one port,
while CSTM Servers running in different VMs
will use the other ports.
31-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
SERVER_TIMEOUT= 7200000 Sets the time (in milliseconds; the default is 2
hours) after which the server deletes unused
client entries and connection details. Note:
This feature is currently disabled, per customer
requirements.

MIN_THREADS= 10 Sets the minimum number of threads in the
ThreadPool.

MAX_THREADS= 100 Sets the maximum number of threads in the
ThreadPool.

CTM_URL= :8080/ctm/CTMServlet Stores the remote URL at which the
CTMServlet can be accessed. The URL varies
with the type of servlet engine running on the
remote machine. For Tomcat, the parameter is
usually set as follows:
CTM_URL=:8080/ctm/CTMServlet.

CTM_SSL= 0 When set to 1, turns on SSL for URL
connections. This provides secure
communications between products.

THREAD_SLEEP= 180000 Sets the frequency (in milliseconds; the default
is once every three minutes) at which the client
connection pool-cleanup process occurs (that
is, the cleanup thread will activate at this
frequency).

SOCKET_IDLETIME= 600000 Sets the time (in milliseconds; the default is 10
minutes) limit after which an idle socket
connection in the client connection pool is
removed (that is, the socket is closed).

MAX_ VM_CLIENT_CONNECTION= 10 The maximum number of connections
maintained in the client connection pool per
VM. Above this limit, the client will wait for a
free connection. A client connection that is in
use is made available when the client releases
it. If this parameter is assigned a value of zero,
CSTM will default it to 1 automatically.

CTM_FILE_UPLOAD_URL= :8080/ctm/FileUpload Specifies the remote URL at which the
FileUpload servlet can be accessed. This varies
with the servlet engine being run. For Tomcat it
is usually the default value.

CTM_FILE_DOWNLOAD_URL= :8080/ctm/CTMServlet
FileDownload

Specifies the remote URL at which the
FileDownload servlet can be accessed. This
varies with the servlet engine being run. For
Tomcat it is usually the default value.

Table 31-1 Configuration File Parameters

Parameter Default Value Description
31-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
Handling CTM Exceptions
During publishing and invoking of remote objects, CSTM throws the generic CTMException.
CTMException is thrown only by CSTM. Table 31-2 lists the CTMExceptions and their occurrence
conditions.

CTMException also provides messages indicating when an exception occurred, as shown in Table 31-3.
You can retrieve the invocation status using the following call:

int getInvocationStatus();

To ensure that exceptions received by CSTM from the underlying environment are wrapped in
CTMException, use the following API call:

Throwable getException(); // returns the wrapped exception

With Binary encoding, CSTM also supports user-defined exceptions. Individual applications can throw
their own exceptions on exposed methods of a remote object, and CSTM will re-throw the same
exception on the client side.

In SOAP encoding, CSTM always throws CTMException. SOAP does not support user-defined
exceptions. To make the remote exception information available, use a getMessage() call.

.

REGISTRY_LOCATION= D:/Progra~1/CSCOpx/MDC/tom
cat/webapps/cwhp/WEB-INF/lib

Sets the location of a common registry to be
used under Tomcat. You must specify this value
if you want to use a common registry. By
default, the registry location is set to the
directory where ctm.jar was installed.

REGISTRY_SERVER_TIME_OUT= 20000 Sets the socket timeout (in milliseconds) for
reading from the common registry server. You
should configure this value as appropriate for
the number of concurrent publish actions you
expect for the application.

REGISTRY_SERVER_RETRIES 3 Sets the number of times CSTM should attempt
to connect to the common registry server.

SECURITY_WRAPPER com.cisco.nm.xms.ctm.security.
CMFSecurityWrapper

Identifies the class name of the security
implementation used for authentication and
authorization of remote calls through the
servlet. This class must implement the
com.cisco.nm.xms.ctm.common.ISecurityWra
pper interface.

Table 31-1 Configuration File Parameters

Parameter Default Value Description

Table 31-2 CTMException Messages and Conditions

Message Occurs When

DUPLICATE_URN The URN is already registered.

URN_NOT_FOUND Accessing a URN not present in the registry.
31-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Accessing Published Objects
ERR_IN_OBJECT_CREATION The exposed class definition is in the Classpath during compile time,
allowing the code to compile, but is not visible later. Can also occur
if the exposed class does not have a zero argument constructor.

ERR_IN_INVOCATION An incorrect method signature is provided. Can only occur when
using CTMClient or CTMCall. When using CTMClientProxy, an
incorrect method signature will prevent the code from being
compiled.

ERR_IN_CLIENT_CREATION The client event cannot be created.

ERR_IN_CTM_SERVER_STARTUP The CSTM server cannot start up because the registry is corrupt or
cannot be created (that is, the directory containing the jar files is not
writable). Occurs on server startup only.

ERR_IN_REGISTRY An error is noticed in the registry, either because the registry has been
removed or corrupted. Can also occur when either the server or the
client are attempting to access the absent or corrupt registry.

REQ_ID_INVALID The client request REQ_ID is invalid, corrupt, or has timed out. The
server associates every request with an internal REQ_ID, which it
times out after the interval specified in the SERVER_TIMEOUT
parameter.

UNAUTHORISED_ACCESS The user was trying to access a remote method whose URN was
published with security options on, and the user could not be
authorized.

USER_NOT_AUTHENTICATED The user does not have the required permissions or role to access the
remote object or method. When publishing a remote method, the
publisher can specify if the particular URN needs to be accessed
securely and register a set of roles that are authorized to use it.

ENCODING_STYLE_NOT_SUPPORTED There is an attempt to use an encoding style other than Binary or
SOAP.

ERR_IN_SOAP_MARSHAL_METHOD_ARGS The CSTM client cannot convert the method name and arguments into
a SOAP request message. This error can occur due to the argument
objects not being serialized, failure to register the soap serializer, or
other SOAP errors.

ERR_IN_SOAP_UNMARSHAL_METHOD_ARGS The CSTM server cannot unmarshal the method name and arguments
from the SOAP request message. This error can occur due to the
argument objects not being serialized back to java objects, failure to
register the soap serializer, or other SOAP errors.

ERR_IN_SOAP_MARSHAL_RESULT The CSTM server cannot marshal the result into a SOAP response
message. This error can occur due to failure to register the soap
serializer or other SOAP errors.

ERR_IN_SOAP_UNMARSHAL_RESULT The CSTM client cannot convert the SOAP response back to java
objects. This error can occur due to the serializer for the returned
object not being registered with CSTM or other SOAP errors.

ERR_IN_SOAP_SERIALIZER_REGISTER An attempt to register the SOAP serializer fails.

ERR_IN_SOAP_SERIALIZER_UNREGISTER An attempt to unregister the SOAP serializer fails.

Table 31-2 CTMException Messages and Conditions (continued)

Message Occurs When
31-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Handling Special Requirements
The following topics provide guidelines for using CSTM to handle special requirements, including:

 • Implementing Secure CSTM Clients

 • Running Registry Server as a Separate Process

 • Registering the CSTM Port

 • Using SOAP Encoding With CSTM

 • Using the IMarshal Interface

 • Using IMarshal’s Register Method

 • Performing CSTM File Transfers

 • Retrieving HTTP Errors

Implementing Secure CSTM Clients
CSTM exposes published objects securely with the help of the underlying security service. The CWCS
framework provides interfaces for validation of the request (authentication/authorization). Security is
only applied for RPC communication, that is, if the request originates from a CSTM client on the same
machine, CSTM server will allow access any remote object on that box.

ERR_IN_CONNECTING_TO_SERVER Trying to connect to the server for the first time (that is, opening a
connection).

ERR_IN_WRITING_REQUEST The client’s attempt to write the request fails. This is usually due to
an error in the connection or the object stream.

ERR_IN_READING_REQUEST The server’s attempt to read the client request fails.

ERR_IN_WRITING_RESPONSE The server’s attempt to write the response fails.

ERR_IN_READING_RESPONSE The client’s attempt to read the response from the server fails.

ERR_IN_RELEASING_CONNECTION Attempting to release the connection between a client and the server.

UNKNOWN_EXCEPTION Error conditions or exceptions not covered by the other conditions in
this table. CTMException will catch conditions caused by general
Java exceptions and send the exception stack trace information with
the UNKNOWN_EXCEPTION comment.

Table 31-3 CTMException Invocation Status Messages

Message Indicates

BEFORE_INVOCATION Exception occurred before invoking the method on the server.

AFTER_INVOCATION Exception occurred after invoking the method on the server.

UNKNOWN_INVOCATION_STATUS CSTM cannot determine whether the method was invoked on the published object.

Table 31-2 CTMException Messages and Conditions (continued)

Message Occurs When
31-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Registry handler provides list of user roles that can access a particular URN and the underlying security
service does the actual validation.

Regardless of encoding style, CSTM uses HTTP transport for RPC communication. So CSTM servlet
acts as front-end and receives all incoming requests. The servlet locates the corresponding CSTM server
with registry client interface and delegates the request. Applications can also publish objects in servlet
engine VM. Before forwarding the request, the servlet will validate (authentication/authorization) the
request if URN is exposed securely.

If security on a remote machine is turned on, the CSTM client calls (CTMClient, CTMClientProxy and
CTMCall) must perform authentication before calling a published object on that remote machine.

CSTM uses the CWCS shared-secret mechanism to authenticate client access. In the shared-secret
scheme, each CSTM client is logged on as a user, and thus has a user name and password. The
administrator maps each user name to a particular role, and each user also registers a password, called a
shared secret, with CWCS. In order for the CWCS security server to authenticate this user, the client
must provide the shared secret and his login information in the HTTP stream. This login and shared
secret information is coded in a cookie tag in the HTTP stream.

The CWCS security server, for each securely published URN, first receives the HTTP stream from the
client and checks for the cookie tag in the stream. It then does authentication checks for this user against
the published resource and its allowable roles.

The following is an example of a CTMCall using security options:

import com.cisco.nm.cmf.security.secret.SecretClient;
import com.cisco.nm.xms.ctm.common.CTMClientProperties;
public class TestSecureCall
{
 public static void main(String arg[])
 {
 String username = "admin";
 String secret = "admin";
 //host where the resource is published.

 String host = "sujathab-nt";
 //published URN(unique resource name)

 String urn = "abc";

 SecretClient sc = new SecretClient();
 String httphost = "http://"+host+":1741";
 String cookie = sc.secretLogon(httphost,
 username,
 secret);
 CTMClientProperties Properties =
new CTMClientProperties();
 Properties.setHttpHeaderEntry("Cookie", cookie);
 }
}

The CTMClientProperties is sent out as part of the CTMClient call in CTMClient, CTMCall or
CTMClientProperties. Refer to TestSecureCall.java and TestSecureClientProxy.java, in the samples.jar
file.

Note that, if a call to a published object on the local machine is made that explicitly refers to the host
with the IP address of the local machine or host name of the local machine, the call will be treated as
remote call and security checks will be performed on it. Security checks are not performed for any other
local calls, where the host is not specified or the host value is "localhost".
31-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Running Registry Server as a Separate Process
Registry Server need not share the process space of other processes.We recommend that you start
RegistrySever as a separate process, since this will reduce the overhead required to start Registry Server
on demand (during synchronous call execution).

You can use the isRegistryServerRunning() API to identify whether the Registry Server has started. Your
application must do this for any application processes that depends on Registry Server to start.

Registering the CSTM Port
If your application uses CSTM ports, you need to register the Registry Server port in the /etc/services
file. Your application should do this during the application install, and remove the port during uninstall.

To register the port properly, your application installation should do the following:

1. Know the package in which ctm.jar is shipped

2. Check that the server port is free. This should be done during the installation prerequisites check. If
the port is not free, it should select a random port (and check whether it is already in use as well).

3. Update this port number in the /etc/services file

4. Update the SERVER_PORT value in the ctm_config.txt file. This should be done during the
post-install procedure.

5. Mark this file ctm_config.txt as volatile.

We also recommend that you register the port with CANA.

To ensure uniformity across applications using CWCS, follow the port naming convention cscoxxxcstm,
where xxx is the name of your application. For example: For Common Services, the CSTM Registry
Server port is named cscocscstm.

Using SOAP Encoding With CSTM
You can invoke server side functionality with SOAP encoding using either CTMClient or CTMCall. For
details on the differences between these two types of invocations, see the “Using CTMClient” section
on page 31-10 and the “Using CTMCall” section on page 31-13.

In both cases, you must have the client set the encoding property in CTMClient.properties to
CTM_SOAP (see the “Changing CTM Client Properties” section on page 31-14). Once this property is
set, the invocation process on the client side is basically the same as the process you use when encoding
is set to the default CTM_BINARY.

However, if any of the arguments of the invoked method is a user-defined class, you must call IMarshal’s
register function first, before invocation (see the “Using IMarshal’s Register Method” section on
page 31-24).

IMarshal registration is needed to serialize all the parameters into equivalent SOAP representations.
Generally speaking, you will need to register whenever:

 • You want to send a SOAP request containing instances of one or more user-defined classes to a
CSTM server for processing.

 • The CSTM server will return an instance of a user-defined class as a result of your method
invocation.
31-21
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
 • You have a CSTM client that wants to create a SOAP request. The client will need to register all the
classes which are going to be a part of the request.

For example: You have a client which would like to invoke a method on the server. One of the method’s
arguments is an instance of a user- defined class, or composite object. For this argument to be serialized
into an equivalent SOAP representation, CSTM requires that the client register this composite object
with IMarshal. Once this is done, CSTM can generate an equivalent SOAP query for the input arguments
of the method to be invoked.

The requirement is the same when an attempt is made to deserialize an incoming SOAP request
containing an instance of a composite object. You must pre-register every incoming user-defined class
with IMarshal.

Another example: You have a client which would like to invoke a function of a server application. CSTM
accepts the parameters needed to invoke this function, methodname, parameters for the method, args and
urn that identifies the server/resource whose functionality is to be invoked. CSTM invokes the function
from the IMarshal interface and passes the input from the client.

The call then moves to CTMSoapMarshaller, which uses Apache Axis to create a SOAP-XML query
based on the input from the client. This query (SOAP-XML) is then returned by the interface to CSTM,
which transports it to the server. After the processing in the server, a SOAP-XML response is generated,
which is transported by CSTM to the client. This response is converted to an equivalent Java Object
using IMarshal interface and then passed to the client.

Consider another scenario, in which you have an external application, which would like to invoke a
functionality of a server API. The application supports XML-SOAP compatible interface, that is, the
interface generates SOAP queries and accepts SOAP responses. A typical example would be third parties
or external applications, which may use CSTM to invoke functionality within the network management
solution and pass a SOAP-XML query as input.

The SOAP-XML query message would contain the required data to invoke the method as well as the
URN to identify the service. This query message is fed to CSTM. CSTM passes this query to a function
supported by IMarshal, which uses Apache Axis to extract the data contained in the query (the name of
the method to be invoked, a set of arguments for it, and the URN that identifies the service to be invoked).
CSTM uses this data to invoke the service. CSTM converts the response from the service to an equivalent
SOAP response using Apache-Axis and this is then returned by CSTM to the external application.

Using the IMarshal Interface
The IMarshal interface, which is used to access the functionality of Apache Axis, is as follows:

package com.cisco.nm.xms.ctm.common;
public interface IMarshal
{
public String marshalMethodAndArgs(String urn, String methodName, Object args[])throws
Exception ;

public RPCData unmarshalMethodAndArgs(byte[] message) throws Exception ;

public byte[] marshalReturnValue(String urn, String methodName, Object returnValue) throws
Exception ;

public Object unmarshalReturnValue(byte[] message) throws Exception ;

public Object unmarshalReturnValue(byte[] message, CTMSerializer
returnType,CTMParameterDesc[] paraDesc)

public void register(CTMSerializer serialzer) throws CTMException;
31-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
public void unregister(CTMSerializer serialzer) throws CTMException;
}

Using marshalMethodAndArgs

This function is used to generate an equivalent SOAP-XML query for an input.

The method uses a the following Apache-Axis classes:

Input parameters

Output

Equivalent SOAP-XML query based on the input parameters.

Using unmarshalMethodAndArgs

This method is used to deserialize a SOAP-XML message (the byte array input) to extract the following
information: name of the method to be invoked, the arguments to be supplied to the method and the URN
that identifies the service.

This method returns a user-defined class called RPCData. The attributes of this class are the name of the
method to be invoked, the service urn and the arguments for the method.

Input parameters

A byte array that contains the SOAP_XML message to be deserialized.

Output

An object of type RPCData with the following attributes:

RPCElement Stores data that forms the body of a SOAP envelope. The attributes of the object
of this class are the name of the method which was invoked, the urn of the service
and the arguments/return value of the method.

SOAPEnvelope Defines a SOAP envelope and has methods to extracts the data contained in it.

ServiceDescription Indicates the type of message that is being created (a request or response) and the
type of encoding desired.

Message Defines methods used to convert a SOAP envelope into a string or byte array. Acts
as a placeholder for SOAP-XML messages.

methodName Method name to be invoked

urn Unique identity for a specific service

args' Arguments needed to invoke the method
31-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Using unmarshalReturnValue

This method is used to extract the return value (Java object) of the method that was invoked.

Input parameters

 • A byte array, which contains a SOAP-XML message which needs to be deserialized.

 • A byte array, which contains a SOAP-XML message which needs to be deserialized, the return type
of the CTMSerializer, and the parameter description.

Output

Return value (Java object) of the method that was invoked.

Using marshalReturnValue

This method generates a SOAP-XML message containing the result of the method.

Input parameters

Output

A byte array containing a SOAP-XML message representing the input parameters.

Using IMarshal’s Register Method
This method is intended for use in situations where you want to use SOAP encoding and one or more of
the arguments of the remote method is a user-defined class (see “Using SOAP Encoding With CSTM”
section on page 31-21). The signature of the register method in the IMarshal interface is described
below:

public void register(CTMSerializer serializer) throws CTMException;
public void register(CTMSeralizer serializer, String dataType) throws CTMException;

Input Arguments

The input argument serializer wraps the required registration information shown below.

urn Unique resource name that identifies the service to be invoked

methodName Name of the method to be invoked

arguments Arguments to the method to be invoked

methodName The name of the method that was invoked

urn The urn identifying the service

object The result of the method
31-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Usage
public CTMSerializer(
String namespace,
String localPart,
String beanName)

The implementation of the IMarshal interface is in CTMSoapMarshaller.java.

Example

We want to invoke testMethod, which has testObject as one of its arguments. In the client code where
we invoke CSTM, we would do the following:

1. Set the encoding in CTMClientProperties to “CTM_SOAP”.'

2. Register the composite object which needs to be serialized, as follows:

Class _cls=null;
_cls = Class.forName("com.cisco.nm.xms.ctm.soap.
CTMSoapMarshaller");
Method m = _cls.getMethod("getCTMSoapMarshaller",null);
IMarshal soap = null;
soap =(IMarshal) m.invoke(soap , null);

3. With the instance of IMarshal, call the register method and pass CTMSerializer, which will wrap the
namespace, localname and the name of the class which contains the definition of the object:

soap.register(new CTMSerializer(
namespace,
localPart,
beanName));

4. Invoke testMethod as with any other client.

The namespace in which a user-defined class is registered in CSTM client should be consistent
throughout. For more examples of the use of CSTM and SOAP encoding, refer to the following files in
samples-source.jar: TestSoapCall.java, TestSoapClient.java.

Performing CSTM File Transfers
You can perform file uploads and downloads to and from a remote machine using the CTM File Transfer
utility.

CTMFileTransfer provides separate methods for upload and download. Both methods throw
CTMFileTransferException, which is explained in the “About CTMFileTransferException” section on
page 31-27.

CTMFileTransfer can be used when the application requests a file download or a file upload.

namespace The namespace for the composite object.

localPart The local name for the composite object or the (xsi:type)

BeanName The name of the class which defines the composite object. The path location of the class
must be included in the name.
31-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
Consider the scenario when an application requests a file download from another machine. In this case,
the call from the download method of CTMFileTransfer is directed to the FileDownload servlet. The
servlet is invoked as a web server and downloads the required file.

The case for FileUpload is similar to the one given for file download except that in this case the upload
method of CTMfileTransfer is called which invokes the FileUpload servlet.

CTMFileTransfer Client Side Functionality

The two methods exposed by CTMFileTransfer are upload and download.

public static void download(String destFile , String srcIP , String srcFile)throws
CTMFileTransferException ;
public static void upload(String srcFile , String destIP , String destFile)throws
CTMFileTransferException ;

Using CTMFileTransfer Upload

This method is invoked to upload a file to a remote machine/box. The input arguments to the method are:

The method calls the FileUpload servlet and begins to upload the file in chunks of 1024 bytes at a time.
This is done to reduce the amount of memory consumed by the program for transfer of large files.

A URLConnection is established to the FileUpload servlet using the destination IP address. If the
connection is not established a CTMFileTransferException.Host_Unreachable is thrown. The name of
the destination file and data read from the source file is transmitted to the servlet.

If the source or destination files are not found, the following exceptions are thrown:

 • CTMFileTransferException.Source_File_Not_Found

 • CTMFileTransferException.Destination_File_Not_Found

After the transfer is completed, if the size of the source file and the destination file is found to be unequal
then a CTMFileTransferException.Transfer_Interrupted is thrown.

Using CTMFileTransfer Download

This method is invoked to download a file from a remote machine/box. The input arguments to the
method are:

srcFile Name of source file to be uploaded

destFile Name of destination file

destIP Destination IP address to which the file must be
uploaded

srcFile Name of the source file to be downloaded.

destFile Name of the destination file

destIP Destination IP address from which the file must be downloaded
31-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Handling Special Requirements
The method calls FileDownload servlet and begins to download the file in chunks of 1024 bytes at a time.
This is done to reduce the amount of memory consumed by the program for transfer of large files.

A URLConnection is established to the FileDownload servlet using the destination IP address. If the
connection is not established a CTMFileTransferException.Host_Unreachable is thrown. The name of
the source file is transmitted to the servlet, the servlet then transmit the data read from the source file to
the client.

If the source or destination files are not found, the following exceptions are thrown

 • CTMFileTransferException.Source_File_Not_Found

 • CTMFileTransferException.Destination_File_Not_Found

After the transfer is completed, if the size of the source file and the destination file is found to be unequal
then a CTMFileTransferException.Transfer_Interrupted is thrown

CTMFileTransfer Server Side Functionality

The two servlets in the CSTM server are FileUpload and FileDownload.

FileUpload Servlet

The FileUpload servlet is invoked by the upload method of CTMFileTransfer. It receives the name of the
destination file to which data has to be written. After verifying the existence of the file, the servlet writes
data sent by the client to this file. If the destination file is not present, an exception is thrown and the
client is notified about it.

FileDownload Servlet

The FileDownload servlet is invoked by the download method of CTMFileTransfer. It receives the name
of the source file from which data is to be read. After verifying the existence of the file, the servlet sends
it to the client. If the source file is not present, an exception is thrown and the client is notified about it.

About CTMFileTransferException

The following CTMFileTransferException messages are thrown for various conditions.

Message Cause

SOURCE_FILE_NOT_FOUND Incorrect source file name or the source file is not found.

DESTINATION_FILE_NOT_FOUND Incorrect destination file name or destination file name not
found.

HOST_UNREACHABLE The specified host cannot be reached. This is usually due to
an invalid IP address or the fact that no web server is running
on the specified IP address.

TRANSFER_INTERRUPTED The file transfer was interrupted

DESTINATION_INVALID The destination is invalid.
31-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
Retrieving HTTP Errors
You can get HTTP error codes and response messages using CTMException and one of the following
three calls.

Hashtable h = ctmex.getHttpErrorHash();

getHttpResponseCode()

getHttpResponseMessage()

Note that in the getHttpErrorHash() call, the hashtable contains the error code and error messages, with
the keys ErrorCode and ErrorMessage, respectively.

Which call you use depends on the JRE you are using, and the value you want. If you are using JRE
1.3.1_04, use the getHttpErrorHash() call only. If you are using JRE 1.3.1_06 or later, use any of these
three calls and get the required value (code, message, or both).

Note that only the getHttpErrorHash() call will have both the Error Message and ErrorCode values, and
both will be converted into strings.

Using the CTMTest Tools and Samples
You can use the CTMTest tool to:

 • Get a feel for the operations that CSTM lets you perform.

 • Check the exception cases and error cases and make sure they are relevant.

 • Check the performance using multiple scenarios.

You can execute the CTMTest operations using the test class in the samples.jar file. The test file lets you:

 • Set the message size of an arbitrary byte stream.

 • Invoke a client using short command line calls: CL for CTMClient, CLP for CTMClientProxy, or
CLL for CTMCALL.

 • Set the timeout value as needed.

 • Simulate the processing delay in the server method.

While running CTMTest, you can use the up-arrow and down-arrow to access previous and next
commands you issued. Depending on your platform and command history, the CTMTest command
history is stored across invocations. For example, if you access CTMTest and then exit, the next time you
access CTMTest, you should still be able to access the history from the previous invocations. This is
handy when you are trying to perform CTMClient calls with multiple options.

While calculating the number of messages per second, CTMTest tracks delays in accessing the serialized
parameter file and does not use them in the calculation. Calculated time taken for each of the Client
operations does not include parameter-file access delays.

The following topics describe several useful applications of the CTMTest tool, including:

 • Creating a Custom Test File, page 31-29

 • Publishing a Test Object, page 31-29

 • Unpublishing a Test Object, page 31-29

 • Accessing a Test Method Using CTMClient, page 31-30

 • Accessing a Test Method Using CTMClientProxy, page 31-30
31-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
 • Accessing a Test Method Using CTMCall, page 31-31

 • Testing CSTM Communications, page 31-31

Creating a Custom Test File
In order to test with your own classes rather than the test classes given in the samples.jar, you must:

 • Add your new class to the classpath.

 • Serialize the parameters that need to be passed in to your class.

You can do this by writing your own file, and including the serialization methods given in the Serializer
class. The example file MyTestClass.java shows how to add the parameters to an object array and
serialize them into a file.

If the parameters that need to be passed to the method are composite objects, they will need to implement
Serializable and will need to have a no-argument constructor. The name of this serialized file will then
be given as a command line argument to the CTMTest tool when you run the client CL, CLL or CLP
commands.

Publishing a Test Object
To publish a test object:

Step 1 At the command prompt, enter java CTMTest. The CTMTest tool runs.

Step 2 At the CTMTEST>> prompt, enter the command P URN Classname Option, where:

 • URN is the Universal Resource Name you want to assign to the object.

 • Classname is the name of the class to be exposed.

 • Option is -s or blank if you want to publish by passing a single reference to the class, or -d to
publish by passing the class definition.

Unpublishing a Test Object
To unpublish a test object:

Step 1 At the command prompt, enter java CTMTest. The CTMTest tool runs.

Step 2 At the CTMTEST>> prompt, enter the command U URN where URN is the Universal Resource Name assigned
to the previously published object.
31-29
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
Accessing a Test Method Using CTMClient
To access a method on a test object using CTMClient:

Step 1 At the command prompt, enter java CTMTest. The CTMTest tool runs.

Step 2 At the CTMTEST>> prompt, enter the following command:

CL URN methodname parmlist options

Where:

 • URN is the Universal Resource Name of the object whose method you want to call.

 • methodname is the name of the method you want to call.

 • parmlist is the name of a file containing the serialized parameters for this method. If this file is not
in the current directory, specify the filename with entire path.

 • options is one or more of the following:

 – -c is the number of clients to spawn. The default is 1. If you choose to spawn multiple clients,
the system starts off separate threads for each CTMClient request.

 – -i is the IP_address or server name of the remote host to be accessed. The default is localhost.

 – -t is the CTMClient Timeout value, in milliseconds. The default is 5000. This is useful for
setting the timeout value of the CTMClient call when it has delays accessing the server.

 – -n is the number of messages to be sent. The default is 1000. Changing this value is useful when
you know you will have many messages to be sent.

Accessing a Test Method Using CTMClientProxy
To access a method on a test object using CTMClientProxy:

Step 1 At the command prompt, enter java CTMTest. The CTMTest tool runs.

Step 2 At the CTMTEST>> prompt, enter the following command:

CLP URN methodname parmlist options

Where:

 • URN is the Universal Resource Name of the object whose method you want to call.

 • methodname is the name of the method you want to call.

 • parmlist is the name of a file containing the serialized parameters for this method. If this file is not
in the current directory, specify the filename with entire path.

 • options is one or more of the following:

 – -c is the number of clients to spawn. The default is 1.

 – -i is the IP_address or server name of the remote host to be accessed. The default is localhost.

 – -t is the CTMClient Timeout value, in milliseconds. The default is 5000. This is useful for
setting the timeout value of the CTMClient call when it has delays accessing the server.
31-30
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
 – -m is the message size. The default is 1000 bytes. Changing this value is useful if you know that
the specific test method has a larger message size defined in the TestInterface.

 – -n is the number of messages to be sent. The default is 1000. Changing this value is useful when
you know you will have many messages to be sent.

Accessing a Test Method Using CTMCall
To access a method on a test object using CTMClientProxy:

Step 1 At the command prompt, enter java CTMTest. The CTMTest tool runs.

Step 2 At the CTMTEST>> prompt, enter the following command:

CLL URN methodname parmlist options

Where:

 • URN is the Universal Resource Name of the object whose method you want to call.

 • methodname is the name of the method you want to call.

 • parmlist is the name of a file containing the serialized parameters for this method. If this file is not
in the current directory, specify the filename with entire path.

 • options is one or more of the following:

 – -c is the number of clients to spawn. The default is 1.

 – -i is the IP_address or server name of the remote host to be accessed. The default is localhost.

 – -t is the CTMCall Timeout value, in milliseconds. The default is 5000. This is useful for setting
the timeout value of the CTMCall when it has delays accessing the server.

 – -n is the number of messages to be sent. The default is 1000. Changing this value is useful when
you know you will have many messages to be sent.

Testing CSTM Communications
If you want to test CSTM communication between applications on the same machine:

1. Open two CTMTest windows.

2. Send messages from one window to the other.

3. Try to connect to a published resource in the first command window from the second window.

4. Try to publish and perform client access from the same command window.

To simulate CSTM communications between applications on different machines:

1. Make sure Tomcat 3.2.1 is running on the machine that will act as the server.

2. Make sure that CSTM is registered with Tomcat on the server by following the steps in the
“Installing CSTM with the Tomcat Servlet Engine” section on page 31-3.
31-31
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
3. Publish the class on the server.

4. Access the exposed resource from one or more clients by specifying the IP address of the server
machine.

Using the Sample TestClass
The samples file samples.jar contains a sample class called TestClass, which:

 • Includes TestMethod.

 • Includes the local variable Count.

 • Implements TestInterface.

TestMethod does the following:

 • Maintains the Count variable.

 • Increments Count by 2 every time it is invoked.

 • Makes a byte array of a size you can specify.

 • Allows you to test timeout parameters by setting a sleep time value as a parameter.

 • Contains a demonstration composite class object as a parameter. Please note that for composite
classes, you must implement the interface Serializable and also have a zero-argument constructor.

To set these parameters for TestMethod, you set the values into the parameter array and serialize it into
a file with a specific name. For example, you might enter >>java MyTestClass 60000000 0 bigfile,
where:

 • 60000000 is the size of the byte array (message size). In this case, the message size is 60Mbytes.

 • 0 is the simulated delay (in milliseconds) in the method.

 • bigfile is the name of the serialized file.

This serialized file can then be given as input to the CTMTest command prompt, so that the respective
parameters are set in the particular method. The class MyTestClass is also included in the samples.jar
file.

Using the CSTM Samples
The CSTM samples.jar file contains the CTMTest utility java files and classes, plus several other test
and sample java files and classes. Table 31-4 shows the java and class files included in samples.jar.

You can use these sample files and classes with CTMTest to perform a variety of useful tests, including:

 • Testing Parameter Passing, page 31-33

 • Testing for Timeout Errors, page 31-33

 • Testing Multiple Clients, page 31-34
31-32
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Using the CTMTest Tools and Samples
Testing Parameter Passing

You must first make a serialized file to pass the parameters to the test method:

>> java MyTestClass 1000 0 1kfile

Then start the CTMTest tool:

>> java CTMTEST

Publish the object containing the test method

CTMTEST>> P xyz TestClass

You can then pass the serialized file to the published method, using any of the three CSTM client calls:

CTMTEST>> CL xyz testmethod 1kfile -n 1000
CTMTEST>> CLL xyz testmethod 1kfile -n 1000
CTMTEST>> CLP xyz testmethod -n 1000 -m 1000

In the case of the CTMClientProxy call (CLP), remember that the remote interface is hard coded, so it
always uses TestInterface and TestMethod. However, the message size parameter can be varied, so there
is no need to use the serialized file to pass in parameters in this case, because the other parameters are
hardcoded.

Testing for Timeout Errors

Use the following call to create a serialized file with message size set to 1000bytes and the server side
delay set to 5000 milliseconds:

>> java MyTestClass 1000 5000 1k_5msec_file

Table 31-4 Java and Class Files in Samples.jar

File/Class Name Description

CTMTest The CTMTest utility main class.

TestClass This is accessed from the CTMTest utility. This class includes TestMethod and
implements the TestInterface.

TestInterface This Interface class is implemented by TestClass and is used by
CTMClientProxy.

Serializer Use methods of this class to serialize the method parameters.

MyTestClass An instance of a class using Serializer methods to serialize the parameters to the
TestMethod defined in TestClass.

CompositeObject A file used to demonstrate that the parameters passed to the method of an exposed
class can be a composite object. An instance of a composite object is passed to
the TestMethod defined in TestClass.

TestServer Standalone test programs for testing TestServer alone.

TestClient Standalone test program for testing TestClient alone.

TestClientProxy Standalone test program for testing TestClientProxy alone.

TestCall Stand alone test program for testing TestCall alone.

TestServlet Standalone test program for testing publishing an object from a servlet.
31-33
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Guidelines for Using CSTM
Then publish the TestClass:

CTMTEST>> P xyz TestClass

Then make a client call with the timeout set to 1000 milliseconds:

CTMTEST>>CL xyz testmethod 1k_5msec_file -n 1000 -t 1000

This will cause timeout error conditions, since the server delay is set at 5000 milliseconds, but the client
timeout is set at 1000 milliseconds. The client will wait for 1000 milliseconds to hear from the server,
and once the server calls a sleep method for 5000 milliseconds, the client call will timeout.

Testing Multiple Clients

Use the -c option to test for multiple (three, in this case) CTMClient calls:

CTMTEST>> CL xyz testmethod 1kfile -c 3 -n 1000

Guidelines for Using CSTM
Following are the recommendations or guidelines that applications should follow when using CSTM:

 • Starting Registry Server

It is recommended that you start CSTM Registry Server as a separate process, since it receives most of
the CSTM Calls (both server and client). Starting Registry Server in a heavily loaded environment like
Tomcat is also not advisable.

Sample code is as follows:

import com.cisco.nm.xms.ctm.registry.*;
import org.apache.log4j.Category;
public class StartCTMRegistryServer
import com.cisco.nm.xms.ctm.registry.*;
import org.apache.log4j.Category;
public class StartCTMRegistryServer
{
 static Category cat = Category.getInstance("CTM.Registry");
 public static void main(String arg[])
 {
 if(!CTMRegistryServer.isRegistryServerRunning())
{
CTMRegistryServer.startRegistryServer();
cat.debug("Registry Server started successfully");
}
else
{
 cat.debug(" Registry Server was started successfully in other
JVM");
}
}
}

 • Proper usage of CSTM Client APIs provided by CSTM

 – For applications which have both CSTMServer and CSTMClient on the same machine:
31-34
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Guidelines for Using CSTM
 • If the requirement is to have several calls from the client to the server in a short span of time,
create an instance CTMCall or CTMClientProxy object and use the same object for multiple
calls, finally call CloseConnection. This reduces unnecessary overhead of creating sockets on
the client side.

 • If calls to the server are made infrequently, CTMClient can be considered.

 – For applications which have CSTMServer and CSTMClient on different machines:

Any instance of CTMCall or CTMClient or CTMClientProxy can be used.

Multithreaded-environment related guidelines:

 • On Client side:

If the application wants to share same instance of CSTM client object, from multiple-threads, then
use an instance of CTMClientProxy class, which is thread-safe and synchronized.

 • On Server side:

 – Application can expose CSTM urn for either reference to the object whose functionality needs
to be exposed or its class.

 – Application should supply the reference, if exposed object is thread-safe. In this case CTM will
use the same object over simultaneous or multiple incoming requests and also Client should rely
on the state of the server object.

 – Instead of reference if Class is supplied, CTM creates separate instance of remote object. This
object gets garbage collection, after client looses connection with the server by either explicit
close or when client call object gets garbage collected.

 • CSTM also wraps HTTPReponse error code with CSTM Exception that occurs on the client side.

When CTMException is encountered on CTM client side, application can also check
ctmexception.getHttpResponseMessage to get message / ctmexception.getHttpResponseCode for
Code or ctmexception.getHttpErrorHash to get both error code and message as key value pairs.

 • Application should properly unpublish all the Urns that they publish on processes shutdown. It is
required for CSTM to properly cleanup CTM registry. When the processes start up later, this will
avoid any port-in-use issues.

 • The CSTM configuration file, ctm_config.txt, is stored in the same directory as the CTM.jar file,
and sets parameters for the CSTM sessions. Applications can change these default settings
depending on their needs. See Using the CTM Configuration File for more details.
31-35
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 31 Using the Common Services Transport Mechanism
Guidelines for Using CSTM
31-36
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 32

Using Package Support Updater

The Package Support Updater (PSU) helps your application check for software and device support
updates, download them to the server file system along with the related dependent packages, and install
them. PSU provides the user with a central location from within the CiscoWorks application, to all
software updates and device packages for better management of their network.

PSU makes use of configuration of CCO credentials and Proxy Server settings from a CWCS Web Server
page. Command line tools can perform installation, unistallation and download of device packages. You
can also download software updates using CLI.

Software updater includes applications using the IDUs model for delivery of software updates and device
support, Common Services Service Packs, point patches, etc.

You can navigate to the software update related user interfaces from the Common Services Application.
Select Software Center > Software updates from Common Services to see the software updates.

Software updates allows you to:

 • View a list of solution bundles installed along with a list of products and versions installed.

 • View a list of updates installed (base version, patch versions, service pack versions).

 • Select one or more or all products and request for a 'Check for updates' function, which lists all
available updates, from which you can choose the required updates and download it to a location to
install.

 • Configure to look Cisco.com to check for packages available for updates.

 • Download the selected updates to any location on the CiscoWorks server, from where, you can later
install those packages using existing package install procedures [for example, extracting the
package, and running the setup.sh].

The following topics describe how to use PSU with your application:

 • Understanding PSU

 • Using PSU with Your Application

 • Working with Software Center

For more details on the PSU dialogs, see the Software And Device Updates Software Functional
Specification, EDCS-310850.

http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc
32-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Understanding PSU
Understanding PSU
PSU provides software package updates by downloading them from a designated source to CiscoWorks
Server. PSU is designed to download and install updates for device packages like CiscoView device
packages, Synchronous Device Interface (SDI) and application data packages like CMIC adapters
package, which contain device specific data.

PSU allows you to view a list of solution bundles installed, along with products list and versions. You
can also get a detailed list of all OS level packages with their version numbers.

Using PSU with Your Application
PSU helps you to check for software and device support updates, download them to your server along
with the related dependent packages. You can then install them on your server.

For software updates, PSU help you to look for updates from Cisco.com, and download them to your
server location. You can then install the updates using the procedures recommended in the readme file
of the update package.

Note No web based install tool will be provided for installing software updates due to technical limitations.

For device support updates, PSU helps you to look for updates from Cisco.com and download them to
your server location. You can then install the updates using a web based user interfaces wherever
possible. You can also install directly from Cisco.com

Most of the Common Incremental Device Support (CIDS) based packages can be installed directly from
CiscoWorks Homepage. PSU will not support installation of classic IDU monolithic packages. These
have to be installed manually by the user with the help of the Readme files.

You can also choose to install the selected packages directly from Cisco.com without saving them on
your server.

Following sections describe how to use PSU:

 • Integrating Applications

 • Integrating Applications

 • Backing Up the Server

 • Releasing Package Updates

 • Uninstalling Device Support Packages

Integrating Applications
Applications should follow the guidelines mentioned below to use PSU:

 • Add New tags in the INFO file

 • Register with PSU

 • Implement Package Adapter and Package Descriptor Interfaces
32-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Using PSU with Your Application
Adding New Tags in INFO Files

Applications should use the tags defined by install framework in the info files to specify the applications
and packages.

To identify your product among the list of all installed products, the corresponding INFO file should
have the following tags:

PROD_INFO=<Name of the INFO file>

PRODNAME=<Name of the Product>

For example, to identify the product updates from RME, the INFO file rme.info should be updated with
the following tags:

PROD_INFO=rme

PRODNAME=Resource Manager Essentials

Registering with PSU

You should register your application during install time by invoking PSURegisteration API. This API
registers your application with PSU by creating appropriate directories and updating PSU configuration
files.

Syntax:

On Solaris:

PSURegistration "Product_Name" "Adapter_directory_location" "Shortname:Longname”,

“extraClasspaths”

On Windows:

PSURegistration ("Product_Name" "Adapter_directory_location" "Shortname:Longname”,

“extraClasspaths”)

Table 32-1 Arguments and their Description

Arguments Description

Product_Name Short Name of the application. Examples: rme, cmf

Adapter_directory_location Location where the adapter zip files are stored.

There will not be any adpater implementation for products which does
not support device updates

Shortname Tag used by the CCO script to query the updates.

The tags defined by the product are as follows:

 • cmf (CiscoWorks Common Services)

 • rme (Resource Manager Essentials)

 • cvw (CiscoView)

 • nmim (Integration Utility)

 • dfm (Device Fault Manager)
32-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Using PSU with Your Application
Examples:

On Solaris:

PSURegistration "rme" "/auto/cw/cdimages/rme4_0_blr/image/disk1/rme/adapter"

"rme:Resource Manager Essentials"

On Windows:

PSURegistration("cmf","","cw2000:CiscoWorks Common Services,"")

Implementing Package Adapter and Package Descriptor Interfaces

Applications should implement the following interfaces for installing the device packges and packaging
them along the update image before releasing to CCO.

 • com.cisco.nm.xms.psu.interfaces.adapter.PkgAdapterIf

 • com.cisco.nm.xms.psu.interfaces.pkg.PkgDescrIf

Using the PSU Command Line Tools
You need to login to the CiscoWorks server to execute CLI. PSU provides CLI features to query all
packages from user specified package directory location. Queries will also list details about packages
associated with specified package if any.

You can also install all or specified package from user specified package directory location. CLI will
install all packages from Source Location or install latest versions of installed packages.

In case of installing packages from Cisco.com, you have to first download the packages from CCO, save
them to a directory in your computer and then install them by specifying that directory.

PSU CLI will also uninstall all installed packages or uninstall specified package.

Package Support Updater Usage

psu -help
psu -p <product1,product2...> -query -src dir {-all|PackageNames}
psu -p <product1,product2...> -install -src dir {-all |PackageNames} [-noprompt]
psu -p <product1,product2...> -uninstall {-all|PackageNames} [-noprompt]
psu -p <product1,product2...> -download -dst dir
psu -p <product1,product2...> -software -dst dir

From Common Services 3.0 Service Pack 2, the following are also supported:

psu -p <product1,product2...> -pkgDependents [-src dir] {-all| PackageNames}
psu -p <product1,product2...> -pkgVersion [-src dir] {-all| PackageNames}

Longname Name of the product.

Usually this refers to the Marketing name of the product and should
match the PRODNAME tags defined in the info files.

extraClassPaths Any other classes other than the standard directories.

This is required by the PSU CLI script to add them to the java classpath
before execution

Table 32-1 Arguments and their Description

Arguments Description
32-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Using PSU with Your Application
Commands

-help (-h): Print psu command usage
 -query (-q): Print list of packages (default source location is installed repository of
the product).
 -install (-i): Install packages (from user specified directory).
 -uninstall (-u): Uninstall packages.
 -software (-s): download all software packages
 -product (-p): product for which packages are to be downloaded
-pkgDependents (-pdep) : Print list of base package(s) for the specified package(s)
present in the source location (default source location is installed repository of the
product).
-pkgversion (-pver) : Print the versions of the specified package(s) present
 in the source location (default source location is installed repository of the product).

Options

-src <dir>:install packages from user specified directory for installation.
-all: select all packages available at the source location.
-noprompt: flag which turns off the prompting for restart of daemon services during
install/uninstall.
-dst: destination directory for downloading.

Examples

psu –p rme –q –all [Lists all the packages in the installed repository for RME]
psu –p rme –q –src <dir> [Lists all the packages in the specified directory for RME]
psu –p rme –i –src <dir> -all [installs all packages for RME from user specified
directory]
psu –p rme –u –all [uninstalls all packages of RME from the installed repository]
psu –p rme –d –all -dst<dir> [downloads all device packages for RME to user specified
directory]
psu –p rme –s [downloads all software packages for RME to the specified directory]
psucli -p rme -src /opt/psupkgs -pdep Rtr3600
psucli -p rme,cmf -src /opt/psupkgs -pver Mdf Rtr3600

Note The PSU in Solaris is <NMSROOT>/bin/PSUCli.sh. In NT, it is <NMSROOT> /bin/PSUCli.bat

Backing Up the Server
To backup what is installed on the server, PSU maintains package and device map in the respective
product packages directory. Package map is a list of all packages installed on the server and Device map
is a list of all the supported devices on the server for that product. Any PSU configuration settings will
be backed up for that product as part of CMF backup, and restored during a CMF restore.

Maintaining package map and device map is helpful in two ways.

 • Whenever you want to view installed packages, PSU will not need to iterate through installed
repository to look for package descriptors and associate OIDs to MDF Name.

 • If there is a problem with the server, PSU will restore package map and device map to show what
devices and packages were installed on the server.
32-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Working with Software Center
Releasing Package Updates
Update packages may be a software package, a device package or a IDU package.

A Software package that PSU can identify is a ZIP file comprising software image and PSU descriptor.
Similarly IDU package that PSU can identify is a ZIP file with IDU bundle and PSU Descriptor. And
Device Package is a ZIP file with Device Package related files and PSU descriptor.

It is expected that PSU descriptor will contain all the relevant methods to facilitate PSU in recognizing
package as software, IDU or device. Additional method added to existing PSU descriptor to identify it
for software, device or IDU is getType() method.

Applications should follow the prescribed interface for defining PSU descriptor. For more details, see
Appendix B in the Software And Device Updates Software Functional Specification (EDCS-310850)
available at: http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc

Applications must provide a PSU header, and a PSU Metafile, along with software, device or IDU
package.

The PSU Header is parsed to get the list of dependent packages, which are automatically selected and
installed while installing the updates.

The PSU Meta data file, which is an XML file, is updated in CCO for every version of application,
bundle , or for every device and software update for that version of the application. The PSU Meta data
file contains the information of all updates (device or software) pertaining to the application. The PSU
Meta data file has to be downloaded to check the availability of packages based on the list of applications
or bundle posted in CCO. The PSU Meta data file improves the performance of PSU by avoiding the
download of all PSU headers of all CCO updates.

Uninstalling Device Support Packages
PSU may deny an uninstall operation based on the application’s inability to handle the uninstall. You
have to perform the necessary checks before uninstalling a package, through the adapter.

You can select one or more products and unistall device packages. This displays a list of packages
installed with version numbers. You can then select a subset of the packages and choose to uninstall them
from the server

For basic information on PSU (including autogenerated code documentation, installation procedures,
packages, dependencies, and utilities supplied with it), see the “About the Package Support Updater
(PSU) Components” section on page 29-5.

For more information about PSU, see the Software And Device Updates Software Functional
Specification (EDCS-310850) available at:

http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc

Working with Software Center
Software Center helps you to easily check for software and device support updates, download them to
their server file system along with the related dependent packages, and install them.

Software Center helps you to look for software and device updates from CCO, and download them to a
server location from which you can install the updates. In the case of device updates, Software Center
helps you to install the updates using a web based user interfaces, wherever possible.
32-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc
http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc
http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/PSUSW.doc

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Working with Software Center
Most of the device family based packages can be installed directly from the web interface, while the
device support packages like IDU, have to be installed based on the installation instructions documented
in the respective readme files.

You may also uninstall a device support package. Software Center does not support uninstallation of
software updates. In the case of software updates, only a download is allowed. For device updates of a
particular application, (eg: RME), in addition to downloads, install and uninstall is also supported.

To backup what is installed on the server, Software Center maintains a package and device map in the
respective applications installed packages directory. Package map is a list of all packages installed on
the server and device map is a list of all the supported devices on the server.

Software Center provides a Command Line Interface to download device updates and software updates,
and install or uninstall device packages.

The following sections elaborate the Software Center features:

 • Performing Software Updates

 • Performing Device Updates

 • Scheduling Device Downloads

 • Viewing Activity Logs

Performing Software Updates
The Software Updates tab under Software Center takes you to the Installed Software dialog box. Here,
you can see two tables: One that lists the Bundles installed and another that lists the products installed.
The bundle or product name, the version, and the date on which the software was installed are given in
the tables.

You can click on each product to view a list of updates installed such as base version, patch versions or
service pack versions You can also further drill down each product and get a detailed list of all individual
OS level packages installed on the system, along with the versions.

To download all software updates for selected products:

Step 1 Configure Cisco.com credentials in Server > Security > Cisco.com Connection Management >User
setup.

Step 2 Select CommonServices > Software Center > Software Updates > Download Updates.

A wizard leads you through the process.

Step 3 Click Next.

A Destination Location Screen appears.

Step 4 Specify Destination Location folder.

Step 5 Click Next.

The summary of the products to be downloaded appears.

Step 6 Click Finish to confirm download of the available packages.

If you click Cancel, the default Installation Software dialog box appears.

To select software updates for selected products:
32-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Working with Software Center
Step 1 Configure Cisco.com credentials in Server > Security > Cisco.com Connection Management >User
setup.

Step 2 Select Common Services > Software Center > Software Updates > Select Updates.

A wizard leads you through the process. The Available Image screen is displayed. For each Product
Name you can find the Type (patch, SP4, etc.), Installed Version, Available Version, Readme Details,
Posted Dates, and Size.

Step 3 Select the product you need to update.

Step 4 Click Next.

A Destination Location Screen appears.

Step 5 Specify Destination Location folder.

Step 6 Click Next.

A summary of the products selected is displayed.

Step 7 Click Finish to confirm download of the selected packages.

Step 8 If you do not want to add the selected packages, click Back to reselect packages or click Cancel to exit.

Performing Device Updates
The Software Updates link under Software Center tab takes you to the Device Update window. The
default summary screen displays a count of devices supported for each product installed in the system.
Click on the product name to view a list of all device support packages installed and the version of each
package. You can also view a list of all support device types, by clicking on the respective device type
count, against the product.

To check for updates:

Step 1 Select Common Services > Software Center > Device Updates

The Device Updates page appears.

Step 2 Select the check box corresponding to the product for which you want to check for updates, then click
Check for Updates.

The Source Location page is displayed. You can check for updates at Cisco.com or at a Server.

Step 3 To check for updates at Cisco.com:

a. Select the Cisco.com radio button.

To check for update from a Server:

a. Select the Enter Server Path radio button.

b. Enter the path or browse to the location using the Browse tab.

Note If the source location is Cisco.com, make sure the credentials are configured in the Server > Security >
Cisco.com Connection Management >User setup.

Step 4 Click Next.
32-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Working with Software Center
The Available Packages and Installed Packages page is displayed.

Step 5 Select the package name that you wish to update, then click Next.

The Device Update page appears. You can choose to install device packages or download device
packages. To install device packages, select the Install Device Packages radio button. To download
device packages, select the Download Device Packages radio button.

If you select Install Device Packages:

 • Click Next. A summary of your inputs is displayed.

 • Click OK to confirm. A warning message pop up to tell you that the daemons are restarted.

 • Click OK to continue with installation.

If you select Download Device Packages, Enter the folder in File Selection field or click Browse to select
the folder.

Step 6 In Scheduling pane, choose the Run Type (Immediate or Once), Date, and Time. In the Job Info field,
provide the Job Description and E-mail ID.

Scheduling Device Downloads
You can schedule device package downloads and specify the time, frequency (daily, weekly) of the
downloads. PSU uses Job Resource Manager (JRM) for scheduling download jobs.

PSU supports the following download policies:

 • Download all latest device packages of products installed in the machine.

 • Download newer versions of currently installed packages.

 • Download the specified packages separated by commas.

You have to provide CCO credentials and the path of the server where the packages should be
downloaded.

To schedule downloads:

Step 1 Select Common Services > Software Center > Schedule Device Downloads.

The Schedule Downloads screen appears. Specify the Cisco.com user credentials, destination location,
download policy, schedule, and job info.

Step 2 Click Accept to put your settings into effect. To exit without making changes, click Cancel.

Viewing Activity Logs
Activity Log records the jobs in Scheduled Downloads and Device Updates. It displays the activities that
are carried out using Software Center.

There are two tables in the Activity Log.

 • Scheduled Job Details

 • Event Logs
32-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Chapter 32 Using Package Support Updater
Working with Software Center
Scheduled Job Details

The Scheduled Job Details Log table records and shows the scheduled downloads that occured in the
server. You can view the application products and Job Id (if its scheduled download).

To view Scheduled Job Details log:

Step 1 Select Common Services > Software Center > Activity Log.

The Activity Log dialog box displays the Scheduled Download Log and Event Logs tables.

Step 2 Click on Scheduled Job Details to view Scheduled Download Logs.

Event Logs

The Event Log table shows the list of installation, uninstallation and immediate download activities
carried out. Here the log records the product Name, description of the activity, the date of operation, the
type of events and the status of the activity.

To view Event log:

Step 1 Select Common Services > Software Center > Activity Log.

The Activity Log dialog box displays the Scheduled Download Log and Event Log tables.

Step 2 Click on Event Log to view event logs.
32-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
C H A P T E R 33

Using Common Incremental Device Support

Common Incremental Device Support (CIDS) is a mechanism allowing to add support for new types of
devices to an NMS application without fully installing a newer version of the product. The CIDS layer
encapsulates all mechanisms needed for this support.

EMBU products like CiscoView, DFM, RME, and Campus provide some form of incremental device
support capabilities. Because each product has taken a different approach, there is a duplication of effort.

Instead of making each application IDS-capable individually and having a device package carry multiple
pieces for each application separately, an architecture is proposed which introduces a new runtime
component common for all applications. This architecture is CIDS and the common component is called
Synchronous Device Interface (SDI).

SDI's purpose is to provide access to device-focused data and functionality by always accessing the live
device (without caching). Hence the name, Synchronous Device Interface.

The new approach allows multiple applications to make use of the same device packages encapsulating
device-specific functionality.

The new approach re-uses tools, processes, concepts, and resources developed for CiscoView.
CiscoView incorporates a well-developed and tested model for incremental device support that has
proven itself to be highly reliable and functional over a number of product releases.

CIDS allows you to:

 • Add devices to an NMS application without fully installing a complete new version of the product.

 • Re-architecture each individual application on top of a CIDS base layer.

 • Have Synchronous Device Interface (SDI).

 • Have de-centralized development.

Figure 33-1 gives a high-level overview of CIDS device package development and installation.
33-1
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Chapter 33 Using Common Incremental Device Support
Figure 33-1 High-Level CIDS Package

For basic information on CIDS , see the “About the Common Incremental Device Support (CIDS)
Component” section on page 29-5.

For more information about CIDS, see:

 • The CIDS web site: http://mspring-u10/cids/

 • The Common Incremental Device Support (CIDS) for Appliances Functional Specification,
ENG-100419

 • Packaging CIDS, EDCS-184284

 • SDI/ADI/UDI - Device Interfaces for Applications, ENG-113265

 • SDI/ADI/UDI Design Specification, ENG-118149

 • SDI/ADI/UDI - A Developer's Guide, EDCS-186733

 • The tools Java docs are available at:
http://wwwin-nmbu/auto/cw/cdimages/uid1_0/daily/SOL_UID1_0_INTEGRATION_READY/kits/
javadocs/

 • The engine Java docs are available at:
http://wwwin-nmbu/auto/em_storage/cw/cdimages/cids1_0/daily/SOL_CIDS1_0_LATEST_GOO
D/kits/javadocs/
33-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://mspring-u10/cids/
http://wwwin-nmbu/auto/cw/cdimages/uid1_0/daily/SOL_UID1_0_INTEGRATION_READY/kits/javadocs/
http://wwwin-nmbu/auto/cw/cdimages/uid1_0/daily/SOL_UID1_0_INTEGRATION_READY/kits/javadocs/
http://wwwin-nmbu/auto/em_storage/cw/cdimages/cids1_0/daily/SOL_CIDS1_0_LATEST_GOOD/kits/javadocs/
http://wwwin-nmbu/auto/em_storage/cw/cdimages/cids1_0/daily/SOL_CIDS1_0_LATEST_GOOD/kits/javadocs/
http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/xdi
http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/xDI_design.doc

http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/SDI_fs.doc

http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/PackagingCIDS.html

http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/cids_fs.doc

CISCO CONF IDENT IAL

Chapter 33 Using Common Incremental Device Support
Understanding CIDS
Understanding CIDS
From the customer’s perspective there is just the Incremental Installation; Customer buys new hardware
(entire new types of devices, or just new cards for existing devices). Customer wants to easily update his
already running network management system to manage the new hardware.

From the NMS application development perspective there is the distributed development for device
support: To avoid following every single new release from hardware Business Units within Cisco, the
application development operates on device abstractions and delegates the actual implementation of
these abstractions back to the hardware Business Units.

To understand a high level overview of CIDS architecture, see figure 1 of the CIDS system functional
specification in EDCS (ENG-100419)

SDI Component
SDI is the runtime component of CIDS. It provides the glue between the Network Management
Application and the managed device. All the device specific information is then defined in a set of
Abstraction Groups (AGs). The need is to develop a generic engine to drive the device management
application for each device type based on the corresponding device description.

SDI:

1.Facilitates incremental device support by abstracting the device specifics from the application and the
ability to drop in device packages.

2.Provides a common framework for all applications to provide incremental device support.

3.Provides support to the Application by performing device management operations and thereby
eliminates the need for every application to duplicate this functionality.

4.Performs actual retrieval and modification of configuration information from/to the managed device.

Abstraction Groups
The Abstraction Groups (AGs) consist of a set of base classes. Each AG is represented by one Java
package and consists of one or more Java classes. The AGs provide a generic interface for the
Applications and shield the application developer from dealing with the device specific details.
Application teams, working with the CIDS team, define Abstraction Groups in accordance with their
needs.
33-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://wwwin-eng.cisco.com/Eng/ENM/CIDS/SW_Specs/cids_fs.doc

CISCO CONF IDENT IAL

Chapter 33 Using Common Incremental Device Support
Runtime Architecture
Runtime Architecture
The figure below explains the runtime architecture of CIDS.

For more information on the CIDS architecture and the behavior, go to: http://mspring-u10/cids/
33-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

http://mspring-u10/cids/

CISCO CONF IDENT IAL

SDK Develo
OL-4688-01
C H A P T E R 34

Using the Licensing APIs

The CWCS Licensing API allows you to:

 • Install and update licenses.

 • Retrieve license information.

 • Access FLEXlm utilities that can be used to implement a wide variety of licensing models.

The following topics describe how to use the CWCS Licensing APIs with your application:

 • Understanding CWCS Licensing APIs

 • Integrating CWCS Licensing APIs

For basic information on the CWCS Licensing API, see the “About CWCS Licensing” section on
page 29-6.

For more information on CWCS Licensing APIs, see:

 • Licensing Requirements Document, EDCS-295207

 • MDC CORE License Model, EDCS 153881

 • CMF 2.3 System Function Specifications, EDCS-283137

 • CMF Licensing Framework Functional Specification, EDCS-295256

Understanding CWCS Licensing
Software licenses are used to prevent unauthorized use of software products. Historical use of licensing
technology in CWCS predecessor products included:

 • CMF-style licensing, used in products such as RME and Campus Manager. This form of licensing
uses proprietary technology and supports evaluation and purchased licenses, but did not address
common requirements, such as feature- or size-based licensing.

 • FLEXlm-based licensing, designed for VMS applications. This form of licensing was implemented
in Core 1.0 (and supported in CMF up to version 2.2), but is inappropriate for general use, since it
was designed specifically for VMS bundle use cases.

The current CWCS licensing:

 • Continues support for the licensing components that existed in CMF 2.2. Applications that currently
use that component can continue to do so without any changes.
34-1
per’s Guide for CiscoWorks Common Services 3.0.5

http://wwwin-eng.cisco.com/Eng/ENM/CMF/Licensing/Licensing_Requirements_Document.doc
http://wwwin-eng.cisco.com/Eng/ENM/Core/SW_Specs/MDCLicenseAPI.doc
http://wwwin-eng.cisco.com/Eng/ENM/CMF/CMF2_3/SW_Specs/CMF2.3_system_func_spec.doc
http://wwwin-eng.cisco.com/Eng/EMBU/CMF_License_FunctionalSpec.doc

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Using Licensing UI
 • Provides a facility for upgrade protection. This enables applications that currently employ
CMF-style licensing to support upgrade licenses for customers who have a valid, purchased copy of
the previous version of the application.

 • Provides a framework for FLEXlm-based licensing. The framework supports feature- or size-based
licenses through a simple API. Since some applications will have licensing requirements that are not
addressed by this API, the framework provides FLEXlm tools that can be used to implement custom
licensing schemes.

The CWCS licensing framework supports the following features:

 • Licenses for evaluations, purchases, and non-revenue programs.

 • Licenses that specify a resource limit, such as the number of devices that can be managed by an
application.

 • Licenses that grant the right to use an application or feature within an application.

 • Temporary use of PIN to validate the use of a feature.

 • Repository to store PIN and PAK (Product Authorization Key).

 • API to install licenses and to retrieve license information, including PIN/PAK.

 • License Administration GUI.

 • FLEXlm toolkit.

 • Backup for licenses.

License models other than those noted above such as node-locked licenses, floating licenses, counted
licenses, etc., will not be directly supported in CMF 3.0. Applications that require such features must
use FLEXlm toolkit to implement a licensing model that meets their requirements.

Using Licensing UI
This topic provides information on the end-user interface of the License Information page:

To access the License Information page:

Step 1 In the CiscoWorks Main Page, click Common Services > Server > Admin.

The Admin page appears.

Step 2 Click Licensing link in the TOC.

The License Information page appears.
34-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Using Licensing UI
The License Information page displays the details of the available licenses.

To update a license:

Step 1 In the CiscoWorks Main Page, click Common Services > Server > Admin.

The Admin page appears.

Step 2 Click Licensing link in the TOC.

The License Information page appears with the details of available licenses.

Step 3 Click Update.

The Select License File popup window appears. The CWCS installation directory is displayed in the
License File field.

Step 4 Click Browse to select a license file.

The Server Side File Selector popup window appears.

Step 5 Select a drive from the Drive list.

Step 6 Select the directory from the Directory Content list.

Step 7 Select the file from the list of files in the directory content area.

The file must be a valid license file with read permissions for the user.

Step 8 Click OK.

12
03

70
34-3
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Understanding CWCS Licensing APIs
Understanding CWCS Licensing APIs
The Licensing framework supports Java interface to install and retrieve license information. The
licensing API supports the following operations:

 • Retrieve names of all bundles for which a license key/PIN has been installed.

 • Install PIN/PAK combination.

 • Authorize PIN/PAK associated with an application or a bundled solution.

 • Retrieve PIN/PAK associated with an application or a bundled solution.

 • Retrieve all installed PIN/PAK.

 • Install license keys.

 • Authorize license key(s) for an application or a bundled solution.

 • Retrieve license data for an application.

License data would contain information such as the installation date, expiration date, license type,
number of devices that can be managed, and PAK/PIN or license key(s) associated with the
application.

CWCS Licensing Classes
The CWCS Licensing classes are:

 • LicensedFeature

 • LicenseManager

 • LicensePAK

LicensedFeature

LicensedFeature represents a feature or application that has license (such as RME), in addition to a
name, version, expiry date and the number of licenses.

Instances of this class contains information on whether the feature has an evaluation, upgrade,
purchased, or a special kind of license. Since feature licenses may be delivered via a FLEXlm license
file or a PIN, instances of this class may also be queried for the source of licensing information.

The following table provides information on the methods used by LicensedFeature:

Table 34-1 Methods Used by Licensed Feature

Method Description

installTime Retrieves the time at which the license was
installed.

bundleName Retrieves the name of the bundle that the
PAK/PIN licenses.
34-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Understanding CWCS Licensing APIs
LicenseManager

LicenseManager helps applications to manage licenses. Applications based on CMF that need to enforce
license restrictions must use this class to install and retrieve licenses.

The following table provides information on the methods used by LinceseManager.

LicensePAK

LicensePAK represents a PAK/PIN combination and the time at which the PAK/PIN was installed.

The arguments for this class are PAK and PIN associated with the license. The installation time of the
LicensePAK is set to current time.

The following table provides information on the methods used by LicensePAK.

Error Codes Generated by APIs

The following table describes the error codes enerated by the API:

Table 34-2 Methods Used by LicenseManager

Method Description

addLicense Adds license keys in a FLEXlm license file.

getFeature Gets information on all versions of a licensed
feature or the specified version of a licensed
feature.

Returns null if no license for the feature has been
installed.

getAllFeatures Gets information on all licensed features.

Returns null if no license is installed.

addPAK Adds a PAK/PIN combination.

getPAK Retrieves all installed PIN/PAK combinations or
the registered PIN/PAK for a bundle.

Returns null if no PIN/PAKs are installed.

Table 34-3 Methods used by LicensePAK

Method Description

getPIN Retrieves the PIN associated with the license.

getPAK Retrieves the PAK associated with the license.

installTime Retrieves the time at which the license was
installed.

bundleName Retrieves the name of the bundle that the
PAK/PIN licenses.
34-5
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Integrating CWCS Licensing APIs
This section provides information on integrating the licensing APIs with your application.

JavaDoc
The Javadoc for the License API can be found at following URL.

http://nmtgre.cisco.com/auto/embueng/License/

License Installation
Licenses can be installed during the installation of a bundle, or at a later time.

The license installation UI does not appear during the Common Services 3.0 installation. The UI appears
only for the first application in the bundle that is installed.

The application install code must verify the existence of a valid license for that application. If a valid
license is missing, the application prompts to enter the license at the installation time.

If the first application installation contains a license key that has entries for all the applications in the
bundle, subsequent application installations do not have to prompt for licenses.

 • The license file being installed is processed in addition to the existing license files.

 • If no valid license entry is provided for an application, the application will run in EVAL mode.

 • If a PIN is provided for the application, the application will run in NAG mode until a valid license
is provided. For more information on NAG mode, see CMF Licensing Framework Functional
Specification, EDCS-295256

 • If an upgrade license is provided, You must provide a Proof-of-Purchase for that application by
running the CMF-provided script with appropriate arguments (validate_upgrade.exe).

Version of the FLEXlm libraries : Version 9.2

Table 34-4 Licensing Errors

Error Code Description

LicenseError.CorruptLicenseFile Exception to indicate a corrupt license file.

LicenseError.EvalExtension Exception to indicate an extension of the
evaluation period.

LicenseError.ExpiredLicense Exception to indicate the expiry of a license.

LicenseError.MalformedPIN Exception to indicate an incorrect PIN.
34-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

http://wwwin-eng.cisco.com/Eng/EMBU/CMF_License_FunctionalSpec.doc
http://wwwin-eng.cisco.com/Eng/EMBU/CMF_License_FunctionalSpec.doc
http://nmtgre.cisco.com/auto/embueng/License/

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
PAK and PIN

PAK and PIN are processed in pairs—while the PAK carries no information that is useful to CMF, a PIN
is associated with a product or an application, and encodes the type of license (evaluation, upgrade, or
purchased) the user has for that product.

1. License Key/PIN is invalid—In this case, since there is no meaningful association between the
license key or the PAK/PIN combination and a product, the input is rejected and an error message
is displayed with the cause for the failure.

2. License Key/PIN indicates an evaluation license—Scenarios that could be potentially destructive if
the current installation is run over of an existing installation of the previous version of the product:

 – The user has only an evaluation license of the previous version—The evaluation license
represented by the PIN is invalid and the user will find the product unusable after completing
installation.

 – The user has a valid purchased license of the previous version of the product—The user can use
the latest installed version in evaluation mode. However, the product would become unusable at
the end of the evaluation period, unless a purchased license is installed later.

3. License Key/PIN indicates an upgrade from the previous version—When the user has only an
evaluation version of the previous version, installing an upgrade license is equivalent to installing
an evaluation license, which is not allowed.

4. License Key/PIN indicates a purchased license—Previously installed versions are irrelevant since
the user has a valid, purchased license for the current version.

Since cases 2 and 3 can be potentially destructive, the user is warned, that continuing with the
installation may render the product unusable, and the user should be given the option to cancel the
installation. If the user proceeds with the installation, the License Framework will process all the license
keys, PAKs and PINs that were entered by the user. In the case of fully purchased licenses/PINs, the
license will be installed and no further processing is required during product installation. In all other
cases, the licenses will be maintained in a state where their use is permitted only after authorization by
a product or application.

Note It is the responsibility of the product installation to determine whether a license key/PIN presented by
the user is to be treated as a valid license and invoke an API that will authorize the license.

Handling Multiple Licenses

Applications may be licensed as part of an application bundle or separately. It is important to determine
the effect of installing a license for an application for which a license has already been installed. In the
following section, a PIN that is not superseded by the license key it represents is treated the same as the
license key. We consider the following cases here:
34-7
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Interpreting PIN

PIN allows a customer to continue using the product and provide information to the licensing component
before the actual license key is entered. PIN provides the following information to the licensing
component:

 • Bundle name

 • Applications and their versions in the bundle

 • Allowable device limits per application

 • Type of installation (Such as New, Upgrade, SEVT, Network Academy)

PIN does not contain more information than the license key. The license key contains all information
that the PIN contains, and more.

The PIN alone does not provide any useful information regarding application name, version, and device
limit and installation type. Each application code in the PIN should have a mapping file to get it mapped
with an application. To enable this functionality, the evaluation license of each application is used. The

Scenario Description

Installing an evaluation license over a previously
installed license.

This operation is invalid and the new evaluation
license will be ignored.

Installing an upgrade license over an evaluation
license.

The upgrade license will supersede the evaluation
license.

If a fully purchased license for a previous version
of the application is installed, the installed license
will be upgraded to the newer version of the
application. Otherwise, the upgrade license will
be considered incomplete and the application that
uses this license will function in NAG mode.

For more information on Nag mode, see License
Requirements Document, EDCS-295207.

Installing an upgrade license over a fully
purchased license

If the upgrade license is for the same or an earlier
version of the application, as compared to the
existing one, the upgrade license will be ignored.
If the upgrade license is for a more recent version
of the application, the installed license will be
upgraded to the newer version of the application.

Installing a purchased license over an evaluation
license.

Purchased license is installed.

Installing a purchased license over a previously
installed purchased license.

Increases the device count.

Since purchased licenses do not have an
expiration date, the only effect of this operation is
to increase the device count, if any.

For example, if an application had license for
1000 devices, and a new license with a device
count of 500 is installed for the application, the
number of licenses for that application increases
to 1500 devices.
34-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

http://wwwin-eng.cisco.com/Eng/ENM/CMF/Licensing/Licensing_Requirements_Document.doc
http://wwwin-eng.cisco.com/Eng/ENM/CMF/Licensing/Licensing_Requirements_Document.doc

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
evaluation license of each image has the application name, version and associated application code. The
application code in license file is matched with the application code in the PIN to get the details about
the application.

The PIN is not a substitute for the license key. The main function of the PIN is to allow the customer
to continue using the product in the absence of a license key. This is because very often the user installing
the product is not the one who purchased the product and obtains the license key. However, the customer
has to enter the license key to move the product from the nagging mode to the full function mode.

If the customer does not enter the actual purchased license key within 90 days, and if a PIN is entered at
install time, the product will always function in a NAG mode. In NAG mode, after 90 days, if the PAK
and PIN are present, NAG messages will start appearing. If the PAK and PIN are not entered, i.e. if the
product is in EVAL mode, the product stops functioning after 90 days.

The customer can enter the license key at install time or using the desktop GUI. It is recommended that
the customer enters the actual license key rather than the PIN at install time. The PIN is only a fallback
mechanism.

PIN Format
The format of the PIN has been designed to encode all the information required by Common Services
licensing. A PIN can encode license information for a bundle or an arbitrary collection of applications.

PIN specification:

 • A PIN consists of 32 characters with hyphens separating 8 character sequences. Valid characters in
a PIN are [2-9][A-Z] with the exception of the characters I and O.

 • The first eight characters describe the characteristics of a bundle. Bundles are viewed as collections
of applications. Hence, a PIN representing an arbitrary collection of applications is treated in the
same manner as a bundle.

Description of a bundle can be further broken down as follows:

 • Characters in position 1-4 name the bundle. If the name of a bundle is only 3 characters long,
the unused character position is filled with 9.

 • Characters 5-6 encode the bundle version.

 • Character 7 encodes the license type (Permanent, Upgrade, etc).

 • Character 8 encodes whether the resource counts in the PIN are cumulative or absolute.

 • The last character in the PIN encodes the number of applications in the bundle. Since 0 and 1 are
not valid characters, the value for this character is 2 + the number of applications.

 • Characters starting from position 8, encodes applications in the bundle, with three characters used
for each application. Of the three characters used for an application, the first two encode the name
of the application and its version. DNMBU marketing will maintain a table of application codes and
their mapping to licensed applications. For example, RME 4.0 may be represented by the code 22,
DFM 2.0 by the code 23, etc. The third character used for an application encodes the resource count.
All characters that are valid in PINs are mapped to preset resource counts; the character that is used
to denote the resource count for an application is that whose associated count is closest to (but not
less than) the application resource count.

 • The character at position 31 encodes a checksum for all the characters described above.

 • All unused character positions are filled with valid characters selected at random.
34-9
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
 • Since 10 character positions are used to encode bundle information, the number of applications and
the checksum, only 22 characters are available to encode the applications in a bundle. This implies
that PINs can be used to encode bundles only when they have 7 or less number of licensed
applications.

Understanding License Framework
The Licensing framework provides a way for licensing the evaluation version. The FCS image can be
used as both evaluation version and purchased version.

Applications that need to use the Licensing framework must get the application mapping code from
CWCS marketing team. (The application code is unique for each application and version. For example,
RME 4.0 has an application code 22). Each application must get a static evaluation license file from CMF
team. (The static license file contains application code map for the application, and device limit for the
Evaluation mode).

This static evaluation license file should be part of the applications image. This must be under
<ApplicationImage>/disk1/eval/<AppName.lic> . This license file is used during install, if the user
selects Eval mode or PIN/PAK mode. The purchased license is generated by SWIFT based on the serial
number or PAK.

When an application is installed, the framework will check for available license in the repository based
on the Application name, version, and Application code.

If a matching entry is found either in license file or PIN, the framework does not prompt for license
details. Otherwise, the user is prompted for license details.

The license file or PIN is validated and the installation proceeds.

The license repository is NMSROOT/etc/licenses. When a new license is added, the information is added
to the repository with .lic extension.

The PIN/PAK details are stored in pinpak.data file.

Flowcharts

License Key and PIN entry during installation:
34-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
License Key and PIN entry within a 90 day period after installation:

Start Install

Evaluation
Mode

Enter License

Full Function
Mode

Enter PIN & PAK

Nag Mode

Yes Yes

NoNo
Have License? Have PIN?

12
03

80

Stop Working
No

Start

Enter License

Full Function
Mode

In Nag Mode?

Stay in Nag

Yes Yes

NoNo
Have License? 90 Days

Completed?

12
03

81
34-11
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Using Licensing Framework With Applications
To use the Licensing Framework provided by CWCS, the application must modify the following
sections:

 • Install

 • CW Home Page

 • Runtime Calls

Install

License install framework is part of ITOOLS.

To use the licensing install framework:

Step 1 Create a PRODUCT_INFO TAG in the respective disk.toc with application name and version.

Example: PRODUCT_INFO=rme 4.0

Note Application name must be in lower case.

Step 2 Get application mapping code for the application from CWCS marketing.

Step 3 Create an evaluation license for the application and place it under <ApplicationImage>/disk1/eval/.

The license file name should read: <application name>.lic

CW Home Page

Applications must verify the license type. If the license type indicates that the application is for
non-revenue programs, the application should display the message “The product is not licensed for
commercial use.”

Examples of non-revenue programs: SEVT, NFR, NA

API Call for getting the license type for an application:

Runtime Calls

To query licensing details at runtime:

Step 1 Import the following:

import com.cisco.nm.license.client.*;

import com.cisco.nm.license.util.*;

API Call Description

LicensedFeature.licenseType() The call returns the type of license for that
application.
34-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Step 2 Create instances of:

LicenseManager lm = new LicenseManager();

LicensedFeature licFeature = lm.getAllFeaturs(“Appname”, “Version”);

Step 3 Use APIs to query the license details at runtime.

Note Licensing framework use Log4J for logging. Application using License class should handle logging
properly.

License SDK

The License framework will include an SDK containing FLEXlm tools and documentation, so that the
applications can implement licensing models other than the one supported by CMF. The SDK contains:

 • Programs to implement a license server (lmgrd and vendor daemon)

 • Runtime libraries and relevant C language header files

 • Tools for administering licenses and generating evaluation licenses

Data Architecture

Licenses, PINs and PAKs that are installed using the License GUI or API can be retrieved using the
License API. No other specifications are made regarding the internal representation of the license data
or the mechanisms used to persist such data.

License File Format

The license file format specified in MDC Core License Model Document, EDCS-153881 is used for
licensing other bundle applications.

In addition to the file format supported in Common Services 2.2 (as described in EDCS-153881), a new
license file format will be used to support the features in Common Services 3.0. Applications that intend
to use the features described in this document are required to use the new license file format described
in section License File Format for Common Services 3.0.

The license file has a fixed structure. Words in CAPITAL BOLD are key words, unique to FLEXlm.
Words in Italics should be replaced by the actual data. Other wording should be there in order for
FLEXlm to be able to parse the syntax.

VENDOR cisco
INCREMENT licenseInfo cisco 1.0 expirationDate uncounted \
VENDOR_STRING=DeviceLimit HOSTID=Any \
NOTICE=DemoLength SIGN=0
INCREMENT licenseUser cisco 1.0 expirationDate uncounted \
NOTICE=PAK HOSTID=Any SIGN=0
INCREMENT PIX cisco 1.0 expirationDate uncounted \
NOTICE=PAK VENDOR_STRING=DeviceLimit HOSTID=Any SIGN=0
INCREMENT IOS cisco 1.0 expirationDate uncounted \
NOTICE=PAK VENDOR_STRING=DeviceLimit HOSTID=Any SIGN=0
34-13
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

http://wwwin-eng.cisco.com/Eng/ENM/Core/SW_Specs/MDCLicenseAPI.doc

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
INCREMENT IDS cisco 1.0 expirationDate uncounted \
NOTICE=PAK VENDOR_STRING=DeviceLimit HOSTID=Any SIGN=0
INCREMENT C3K cisco 1.0 expirationDate uncounted \
NOTICE=PAK VENDOR_STRING=DeviceLimit HOSTID=Any SIGN=0

The first INCREMENT is followed by the keyword licenseInfo to identify that this feature line will
describe the general license information.

Field Description

cisco Name of the Vendor.

1.0 Version. FLEXlm supports supplying versions
between 1.0 and 2.0 inclusive. As other versions
of CORE come out, we can increment the 1.0
version.

expirationDate This can either be the keyword “permanent” to
indicate that the license is purchased and never
expires, or can be a date to indicate that this is a
demo license key. The expiration date is the date
on which the license disk becomes invalid and
further installations with this license key are
invalid. The date format is dd-mmm-yyyy, where
dd and yyyy are numeric, and mmm is the three
letter abbreviation for the month. For example,
Jan 5, 2002 would be represented as 05-jan-2002
and not 5-jan-2002.

uncounted Required asthe customer will not be running a
FLEXlm license server.

DeviceLimit The number of devices licensed for an
application. If unlimited, use –1.

DemoLength The number of days a demo license disk is valid
for after installation. In case of a purchased
license this value is –1 to indicate that the license
does not expire.

SIGN=0 After running lmcrypt, this will hold the signature
associated with the INCREMENT line.

INCREMENT line with licenseUser is used to
store information on the user to whom the license
was issued.

PAK Product Authorization Key.

Additional INCREMENT lines are for devices.
Each additional device type has an INCREMENT
line corresponding to it.

ExpirationDate Usually the same as the expiration date for the
whole license disk.

DeviceLimit If unlimited, -1 is used.

Comment lines are started with this symbol.
34-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
License File Format for Common Services 3.0

Common Services 3.0 uses a new license file format.

Sample license file for an evaluation license for CDOne 3.0:

INCREMENT cdone cisco 3.0 31-dec-2004 uncounted \

VENDOR_STRING=<LicType>Evaluation</LicType><Code>ZZ</Code><Count>10</Count><CountType>Abso
lute</CountType><XINFO>LMS30</XINFO> \

HOSTID=ANY \
NOTICE="<LicFileID>lms</LicFileID><LicLineID>0</LicLineID> \
<PAK>dummyPak</PAK>" SIGN=48CCDF82DDF6

Each application in the bundle is represented by an INCREMENT line that specifies the name and
version of the application. The first line in the file describes the bundle itself and does not contain any
information that is useful to the applications. In addition to the feature name and version, Common
Services licensing uses the fields expiry date (set to 31-dec-2003 in this example) and
VENDOR_STRING to store the information it requires.

Field Description

expiry date The specified expiry date for the evaluation
licenses is not currently used but may be used in
future to determine a date beyond which the
evaluation license may not be installed.

Date For Evaluation License File.

permanent For all other files.

VENDOR_STRING This field can be used by a vendor to customize
the license file.

License type(using the tag LicType) The value for this tag can be one of Evaluation,
SEVT, NFR or NA.

Permanent licenses and upgrade licenses need not
encode this information.

Resource count (using the tag Count) The number of devices (or any other resource)
that the application is licensed for.

This value is –1 when no constraints apply.
34-15
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Alternate License File Format

License files issued by Swift will employ an alternate license file format to represent license
information. This format uses other FLEXlm license file fields as follows to represent the information
stored in the VENDOR_STRING field in the format described in the previous section.

Sample license file for the alternate format:

SERVER
VENDOR cisco
UPGRADE CDONE cisco 2.2 3.0 permanent 10 \
 VENDOR_STRING=<XINFO>LMS30</XINFO> \
 NOTICE="<LicFileID>lms</LicFileID><LicLineID>0</LicLineID> \
 <PAK>dummyPak</PAK>" SIGN=535525A647B6
FEATURE RME cisco 4.0 permanent 1500 \
 VENDOR_STRING=<XINFO>LMS30</XINFO> \
 NOTICE="<LicFileID>lms</LicFileID><LicLineID>0</LicLineID> \
 <PAK>dummyPak</PAK>" SIGN=7078C85E40E8
FEATURE DFM cisco 2.0 permanent 1000 \
 VENDOR_STRING=<XINFO>LMS30</XINFO> \
 NOTICE="<LicFileID>lms</LicFileID><LicLineID>2</LicLineID> \
 <PAK>dummyPak</PAK>" SIGN=52A22CF20DF4
FEATURE CampusManager cisco 4.0 permanent 500 \
 VENDOR_STRING=<XINFO>LMS30</XINFO> \
 NOTICE="<LicFileID>lms</LicFileID><LicLineID>3</LicLineID> \
 <PAK>dummyPak</PAK>" SIGN=333AD18EF768

Interpretation of resource count (using the tag
CountType)

Indicates how the value specified for resource
count is to be interpreted.

Values for this tag are:

 • Cumulative— the specified count is to be
treated as an addition to any prior license for
combination of application and version.

 • Absolute— the specified count should
override any prior license.

Application code (using the tag Code) The code assigned to this combination of
application and version by DNMBU marketing.

The licensing component requires this tag for
deciphering PINs. This tag is present only in
evaluation license.

Field Description
34-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
Proof-of-Purchase (POP)

Proof-of-Purchase (POP) will be obtained when you enter an upgrade license key. The customer will not
be able to install a product if they have paid only for an upgrade license, unless the customer has got a
the license for a previous version.

One way of ensuring that a customer has purchased a previous version of the product involves checking
for the previous version installation CD. The customer will only be required to use a CD as a last resort,
even in a case where the upgrade is done on a new machine and the previous version of the product is
one another machine. If a CD check is ultimately needed, the licensing component must not require the
user to remove a CD that is being used to install the upgrade, replace it with a CD for the previous version
to do the POP, then reinsert the product upgrade CD.

The licensing component will perform a POP check by checking the license file of the previously
installed version of a definitive product for which the upgrade license has been purchased.

Versions of applications that are not based on CS 3.0 such as RME 3.4, RME 3.5, DFM 1.1, DFM 1.2,
Campus Manager 3.2, and Campus Manager 3.3 have license files to help implement the CMF-style
licensing. These files are called rme.xml, dfm.xml and cm.xml respectively for RME, DFM and Campus
Manager respectively. These files contain an EXPIRY line with two possible values: NEVER (for
purchased license) and 90 (for an evaluation license).

One application per bundle will be used to identify which bundle the customer had purchased. The
following table shows what needs to be checked per bundle:

Field Description

License type License files issued by Swift represent either
Permanent or Upgrade licenses. UPGRADE lines
represent upgrade licenses while FEATURE and
INCREMENT lines represent permanent licenses.

An upgrade license results in the device/resource
counts from previous versions to be carried over.
When an upgrade license is used to increase the
resource count, an additional INCREMENT or
FEATURE line will be present to indicate the
increased count.

Resource The count will be encoded in the license count
field of FLEXlm license files. The value of this
field is uncounted when no restrictions apply.

Count type Resource counts in INCREMENT lines are
Cumulative while the counts in FEATURE lines
are Absolute.

Application code Permanent and Upgrade licenses will not contain
an application code.
34-17
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
In-Place Upgrade

Install can automatically check for Proof-of-Purchase if the customer enters an upgrade license key or
PIN, the proof of whether the customer has a purchased previous version is available immediately from
the installed version.

Remote Upgrade

Install must prompt for Proof-of-Purchase. If the customer enters an upgrade license key or PIN, the
proof of whether the customer has a purchased previous version must be verified.

 • Upgrade License Key is entered at install time

At the end of installation, a message similar to the one below is displayed:

You have entered an upgrade license key. Please run the program

<NMSROOT>/bin/validate_upgrade.exe to validate that this is an upgrade.

Until the user runs the above program, the product will run in NAG mode.

 • Upgrade PIN entered at install time

At the end of install, a message similar to the one below will be displayed:

“You have entered an PIN and not a license key. The product will continue to work in

nag mode from the date of installation. However, please obtain a valid license key

from CCO in order to make the product fully functional.

After obtaining the license key, load it into CiscoWorks by clicking on: Common

Services > Server > Admin > Licensing.

After entering the license key, please run the program <NMSROOT>/bin/

validate_upgrade.exe to validate the upgrade.”

Until the user runs the above program, the product will run in NAG mode.

 • Upgrade License Key entered through GUI After the install

Table 34-5 Files to be Verified by Applications

Bundle/Licensing
Component
Consumer Definitive Application Files Comments

LMS RME rme.xml

RWAN ACLM N/A Expected to be EOS’d.

ITEM ITM itm.xml

CVM CVM cvm.xml

EMS RME rme.xml

Cable Mgr RME rme.xml

QPM QPM qpm.xml

SNMS RME rme.xml

VMS Core N/A Use license in database.

ACLM/IPM add-on
to LMS

ACLM or IPM respectively aclm.xml or ipm.xml
34-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
After entering the license through the GUI, a message will be printed similar to the following:

You have entered an upgrade license key. Please run the program

 <NMSROOT>/bin/validate_upgrade.exe to validate the upgrade.

Until the user runs the above program, the product will run in NAG mode.

License CLI

Note This section is applicable only to previous VMS based license.

The following programs are provided to support the installation of licenses:

Table 34-6 License Program CLIs

License CLI Description

validatelicense Verifies whether the supplied license is valid and
whether it can be supported by CMF Licensing

Location:

NMSroot/MDC/bin

addlicense Upgrade customers can use this utility if the
upgrade check fails during the install.

Location:

NMSroot/bin
34-19
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

Chapter 34 Using the Licensing APIs
Integrating CWCS Licensing APIs
34-20
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-4688-01

CISCO CONF IDENT IAL

SDK Develo
OL-xxxxx-xx
G L O S S A R Y
A

ACLM Access Control List Manager. ACL Manager dramatically reduces the time needed to develop new
filters and maintain existing traffic filters in large-scale deployments of Cisco devices.

aggregate table See discovery.

ANI Asynchronous Network Interface (ANI) is a mediation layer between the network devices and client
applications that provides for the discovery, inventory, and topological computations of networks and
their devices.

AniAggregateTable A collection of SMFContainers—a global data structure that stores the contents of SMFContainers and
their names. See also discovery.

ANI Server Asynchronous Network Interface Server. A Java application that performs multiple tasks, including
performing network discovery using Cisco Discovery Protocol (CDP) and Integrated Local
Management Interface (ILMI), processing SNMP requests, and serving as a middle-tier server for the
client applications that need to query and set the state of the network or network devices

API Application Programming Interface. A language and message format used by an application to
communicate with the operating system and other services (such as a database management system or
communications protocol).

ASA60 Adaptive Server Anywhere 6.0. The new name for SqlAnywhere.

ATM Asynchronous Transfer Mode. International standard for cell relay in which multiple service types
(such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow
cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take
advantage of high-speed transmission media such as E3, SONET, and T3.

ATM fabric A set of ATM switches interconnected by ATM links such that any switch in the fabric can be reached
from any other switch in the fabric by traversing one or more ATM links and optionally one or more
ATM switches in the fabric. The fabric contains both ATM switches and all ATM links that are
connected to those ATM switches, including links to edge devices, but not the edge devices themselves.

C

CCO Cisco Connection Online Web site. Used to access customer service and support.

CDP Cisco Discovery Protocol. Media- and protocol-independent device-discovery protocol that runs on all
Cisco-manufactured equipment: routers, access servers, bridges, and switches. Using CDP, a device
can advertise its existence to other devices and receive information about other devices on the same
LAN or on the remote side of a WAN. Runs on all media that support SNAP, including LANs, Frame
Relay, and ATM media.
GL-21
per’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Glossary
client Node or software program (front-end device) that requests services from a server.

client/server Term that describes distributed computing (processing) network systems in which transaction
responsibilities are divided into two parts: client (front end) and server (back end). Both terms (client
and server) can be applied to software programs or actual computing devices.

CMF Common Management Foundation. Predecessor system of CWCS.

community strings Text strings that act as a password to authenticate messages sent between the network management
station and devices containing an SNMP agent. Community strings allow you to limit access to network
devices.

CORBA The Common Object Request Broker Architecture (CORBA) is an industry standard middleware
architecture developed and maintained by the Object Management Group (http://www.omg.org).
CORBA services act as communication mechanisms for developing distributed applications. CORBA
is platform and language neutral, which means that a C application running on a PC can communicate
with a Java application running on Solaris.

CSV Comma Separated Values. An interchange file format typically used for exporting and importing
spreadsheets or other tables. Each line in the ASCII file represents a row of data from a table. Each line
contains the data elements from a row of the table, with individual table values separated by comma
characters.

CWCS A collection of subsystems, execution environments, engines, and shared code libraries, representing a
software platform that provides services to web-based network management applications. The end user
documentation refers to CWCS as the CiscoWorks Server.

CWCS Base Services First tier, entry-level CWCS components necessary to support a web-based application. These
components include the web server, CWCS security, the servlet engine, and JRE.

CWCS Network

Services

Third-tier CWCS components that add discovery and other network services.

CWCS System

Services

Second-tier CWCS components that add services such as EDS, JRM, and the database engine.

D

daemon A process that runs unattended to perform a standard service.

Daemon Manager A CWCS component that initiates, monitors, and controls application processes. Also known as
Process Manager.

daemon process A process that is started by the root user or the root shell and can be stopped only by the root user.
Daemon processes generally provide services that must be available at all times, such as sending data
to a printer.

DBD Database Driver. A Perl interface module that implements DBI functions for a vendor-specific
database.
GL-22
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
DBI Database Interface. A public domain Perl module on UNIX platforms that provides a
vendor-independent API for accessing relational databases. A subset of DBI is implemented by Cisco
on NT platforms using WIN32::ODBC for compatibility with UNIX.

device adaptor Subclass that allows network management applications to access new devices and new functionality in
existing devices without a complete code rewrite. The device adaptor model is based on an inheritance
tree that extends base class functionalities.

device class A group of SNMP-based device types that support the same MIB information.

device conflict The relationship between an unmanaged device and a managed device when their definitions share the
same device access information (either the same DNS domain name and network hostname
combination or the same IP address) but differ in one or more of the access information elements.

discovery Process performed by the ANI Server to locate and identify the devices and topology of the network.

DLL Dynamically Linked Library. A library linked to application programs when they are loaded or run
rather than as the final phase of compilation. DLLs allow several tasks to share the same block of
library code.

DNS Domain Name System. System used in the Internet for translating names of network nodes into
addresses.

DSN Data Source Name. A definition file or NT registry key used by the ODBC to obtain database
connection parameters such as port numbers, engine and database name, database file, start line
parameters, and so on.

DTD Document Type Definition. Contains a formal definition of a particular document type. Although it is
not mandatory, specifying a DTD allows parsers to validate an XML file.

E

EDS Event Distribution System. Event management software that provides the means for sending messages
from one process to another in a networked and distributed environment.

ELAN Emulated LAN. ATM network in which an Ethernet or Token Ring LAN is emulated using a
client-server model. ELANs are composed of an LEC, an LES, a BUS, and an LECS. Multiple ELANs
can exist simultaneously on a single ATM network. ELANs are defined by the LANE specification.

Essentials Resource Manager Essentials (Essentials), one of the major components of CiscoWorks, enables the
deployment, monitoring, and configuration of devices across a network. Resource Manager Essentials
includes the following applications: Inventory Manager, Change Audit, Device Configuration
Manager, Software Image Manager, Availability Manager, Syslog Analyzer, and Cisco Management
Connection.

EvalGroup A pool of threads that ANI uses for the parallel evaluation of tasks.

F

GL-23
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
fabric See discovery.

framework A set of tools that provide for installation and uninstallation of Cisco product and allow you to build
installable CD images.

G

GUI Graphical User Interface. User environment that uses pictorial as well as textual representations of the
input and output of applications and the hierarchical or other data structure in which information is
stored. Conventions such as buttons, icons, and windows are typical, and many actions are performed
using a pointing device (such as a mouse).

H

HTTP Hypertext Transfer Protocol. The protocol used by Web browsers and Web servers to transfer files, such
as text and graphic files.

I

IDL Interface Definition Language. An Open Software Foundation standard used to define discovery
interfaces.

ILMI Integrated Local Management Interface. Standard discovery protocol used on ATM networks.

installable unit A package or group of packages which are installed or uninstalled at once.

IP address 32-bit address assigned to hosts using TCP/IP. An IP address consists of a network number, an optional
subnetwork number, and a host number. The network and subnetwork numbers together are used for
routing, while the host number is used to address an individual host within the network or subnetwork.
Also called an Internet address.

Integration Utility See NMIM.

J

Jconnect Sybase implementation of JDBC

JDBC Java Database Connectivity. Java API for accessing relational databases.

JNI Java Native Interface. A native Java API that allows Java code running inside a Java Virtual Machine
to interact with applications written in other programming languages such as C and C++.

JRE Java Runtime Environment.

JRM Job and Resource Manager. A CWCS component that allows applications to schedule jobs and lock
resources.
GL-24
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
L

LANE LAN emulation. Technology that allows an ATM network to function as a LAN backbone. The ATM
network must provide multicast and broadcast support, address mapping (MAC-to-ATM), SVC
management, and a usable packet format. LANE also defines Ethernet and Token Ring ELANs.

LECS LAN Emulation Configuration Server. Entity that assigns individual LANE clients to particular ELANs
by directing them to the LES that corresponds to the ELAN. There is logically one LECS per
administrative domain, and this serves all ELANs within that domain. See also ELAN.

LES LAN Emulation Server. Entity that implements the control function for a particular ELAN. There is
only one logical LES per ELAN, and it is identified by a unique ATM address. See also ELAN.

M

MIB Management Information Base. Database of network management information that is used and
maintained by a network management protocol such as SNMP or CMIP. The value of a MIB object can
be changed or retrieved with SNMP or CMIP commands. MIB objects are organized in a tree structure
that includes public (standard) and private (proprietary) branches.

N

navigation tree Access to all CiscoWorks tasks and operations takes place through the navigation tree. Located in the
left frame of the CiscoWorks window below the button bar, the navigation tree consists of multiple
folders, each of which contains a group of associated or similar tasks, tools, or other options. The
buttons in the button bar determine the contents of this tree.

NMIM Network Management Integration Module. Depending on the specific NMS, this utility can launch
Cisco network management applications, browse Cisco MIBs, integrate traps, and add Cisco device
icons to NMS topology maps. This utility also allows remote integration between CiscoWorks
applications residing on one server and an SNMP management platform residing on another server.
Also known as the Integration Utility.

O

observable

persistent object

Persistent objects that can be observed on an instance-by-instance basis. ObservablePO is a base class
for observable persistent objects. See also discovery.

ODBC Open Database Connectivity. A generic vendor independent API for accessing relational databases.

ORB Object Request Broker. Part of the Object Management Group (OMG) standard.
GL-25
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
P

persistent object PersistentObject is the base class for all objects that should be mirrored to the relational database in
ANI. The value of a persistent object is isolated from other transactions, so results of bind() or
isPersistent() calls do not become visible to queries or other transactions until the modifying
transaction commits. When ANI is restarted, the persistent objects are read from the database. See also
discovery.

polling Access method in which a primary network device inquires, in an orderly fashion, whether secondaries
have data to transmit. The inquiry occurs in the form of a message to each secondary that gives the
secondary the right to transmit.

precondition A function that must complete before another function can start. See also discovery.

Process Manager See Daemon Manager.

protocol Formal description of a set of rules and conventions that govern how devices on a network exchange
information.

protopackage A tar file that contains a component of the product. This component has a name, version, and other
properties.

R

router Network layer device that uses one or more metrics to determine the optimal path along which network
traffic should be forwarded. Occasionally called a gateway (although this definition of gateway is
becoming increasingly outdated).

S

seed device A Cisco network device, such as a switch, that ANI uses to initiate discovery.

service bundle A collection of CWCS services. See also CWCS Base Services, CWCS Network Services, and CWCS
System Services.

service module Backend process components of the ANI Server that perform specific tasks to retrieve detailed
information about network devices and topology.

SMFContainer Service module function container. Stores anything you want to do things to or collect things about.

For example, an SMFContainer stores the instances of functions for each device in memory for the
current run of ANI. One SMFContainer is created for each evaluation thread.

SMFFactory Defines which functions are overridden by subclasses for each device type, overriding the default
SMFunction with the new subclass. An SMFFactory instance is instantiated and configured for each
device family type. See also discovery.

SMFunction Service module functions define the evaluation steps of a task. The sequence in which these functions
are run is determined by the timebase. See also discovery.
GL-26
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
SNMP Simple Network Management Protocol. Network management protocol used almost exclusively in
TCP/IP networks. SNMP provides a means to monitor and control network devices and to manage
configurations, statistics collection, performance, and security.

SNMP community

strings

See community strings.

SQL Structured Query Language. International standard language for defining and accessing relational
databases.

SWIM Software Management, a CiscoWorks application used to automate many steps associated with upgrade
planning, scheduling, downloading, and monitoring software for managed devices on a network.

T

TCP/IP Transmission Control Protocol/Internet Protocol. Common name for the suite of protocols developed
by the U.S. DOD in the 1970s to support the construction of worldwide internetworks. TCP and IP are
the two best-known protocols in the suite.

timebase A named sequence of SMFunctions. See also discovery.

timeline A timeline determines how often and when a timebase will be run. See also discovery.

timestamp A field that records the time an event occurs.

topology Physical arrangement of network nodes and media within an enterprise networking structure.

V

VLAN virtual LAN. Group of devices on one or more LANs that are configured (using management software)
so that they can communicate as if they were attached to the same wire, when in fact they are located
on a number of different LAN segments. Because VLANs are based on logical instead of physical
connections, they are extremely flexible.

VTP Virtual Terminal Protocol. ISO application for establishing a virtual terminal connection across a
network.

W

web server A computer that delivers web pages to your browser.
GL-27
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

Glossary
GL-28
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5

OL-xxxxx-xx

CISCO CONF IDENT IAL

SDK Developer’s Guide for
OL-xxxxx-xx
I N D E X
A

ACLM, definition 1-21

adding

applications

to the desktop 5-8

help engine, calls to 16-14

help page contents

in default order 16-24

in specific order 16-25

online help 16-1

search support 16-27

third-party help systems 16-29

XML files 10-17

Aelfred XML parser, third-party tool available with
CMF 1-11

aggregate table, definition 1-21

ANI (Asynchronous Network Interface)

definition 1-21

AniAggregateTable, definition 1-21

ANI Server

definition 1-21

APIs

changes for this release 11-2

database (see database APIs) 11-1

definition 1-21

Helper (see Helper API methods in JRM) 18-49

Java Plug-in (see Java APIs) 22-2

JMS (see JMS API) 19-18

LWMS (see Lightweight Messaging Service) 19-15

Perl (see Perl APIs) 11-46

Process Manager 17-3

Windows-specific 21-37
Customer Order Number:
application security

APIs, using 10-17

backend Perl script 10-17

HTML pages 10-17

Java applets 10-17

Java Server Pages (JSP) 10-18

Java servlets 10-17

approve, JRM command 18-59

ASA60, definition 1-21

ATM

definition 1-21

fabric, definition 1-21

audience for this document 1-33

authoring tool for online help, selecting 16-19

development environment, setting up 16-19

FrameMaker/WebWorks 16-21

RoboHELP 16-19

auto login pages, creating 10-18

B

backing up

the Sybase database 11-32

BACKUP, common runtime directory, path and
contents 3-2

BIN, common runtime directory, path and contents 3-2

buttons

context-sensitive help, linking 16-4

buttons in

Job Browser, customizing 18-22

behavior 18-22
IN-1
 CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
C

C++

CSCOvorb for Visibroker and, package
description 1-14

interface in Process Manager, using 17-4

Process Manager command summary (table) 17-11

cancel, JRM command 18-60

casuser

understanding and implementing 21-21

non-CMF application, upgrading 21-21

ownership for package files (see package file
ownership) 21-86

cautions

CMF 2.1, ensuring your code works with 1-4

configureDb utility 11-16

data file deletion data files, caution regarding
deleting 21-25

Dependency Handler, using 21-27

EncryptedObject encryption 10-19

kill command, using 11-28

package removal 21-25

significance of 1-34

subdirectory sharing 16-22

system services, starting, in enabling new service
bundles 5-5

system services, starting, in using CMFEnable 5-6

tools marked obsolete and deprecated 1-10

Windows global values, and CMF 21-35

Windows Task Manager, using 11-27

CCO, definition 1-21

CD image structure

Solaris 1-10

Windows 2000/NT 1-10

CDP, definition 1-21

CEB (Client Event Bus), implemented by LWMS 19-13

CGI-BIN, common runtime directory, path and
contents 3-2

changes for this release 11-2

client, definition 1-22
IN-2
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
client/server, definition 1-22

CLIENTINSTALL, common runtime directory, path and
contents 3-2

CLIENT-JAVA, common runtime directory, path and
contents 3-2

CLIENT-JAVA-APPS, common runtime directory, path
and contents 3-2

CMF

(see also CMF database, understanding) 11-2

(see also CMF directory structure,
understanding) 3-1

adding your application to the desktop 5-8

back-end services, using 5-8

support tools, using 5-9

benefits of using 1-3

daemons, registering and unregistering 21-51

definition 1-22

desktop (see desktop) 6-1, 7-1, 8-1, 9-1, 14-1, 24-1, 25-1,
26-1, 29-1, 32-1, 33-1, 34-1

directory structure (see CMF directory structure) 3-1

distribution method 1-9

CD image structure 1-9

CMF base 1-9

installation interface options 1-9

execution environment, understanding 4-1

cwjava command line options (table) 4-3

Java application launch process,
understanding 4-1

Java applications, launching 4-2

JavaBeans, using in CMF 4-5

getting started with 5-1

how it works 5-1

installing CMF (see installing CMF) 5-2

user interface, designing 5-7

installation interface options 1-9

CiscoView 1-9

CMF Base Desktop 1-9

NMS Integration Utility 1-9

typical 1-9

interacting with 5-7
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
introduction to 1-1

licenses (see License APIs) 11-37

new or changed in this release 1-3

Perl APIs, using (see Perl APIs) 11-46

release 2.1, caution regarding your code and 1-4

release model 1-1

services, enabling 5-3

CMFEnable, using 5-5

new 5-5

registering for 5-4

service bundles, understanding 5-3

service subsets, descriptions of 1-7

CORBA infrastructure 1-7

database engine and utilities 1-8

dbreader 1-8

event management 1-8

hidden tools 1-8

install framework and patching process 1-8

Java Plug-in 1-8

Java Runtime Environment (JRE) 1-8

Java SNMP engine 1-8

job and resource management 1-8

log file viewer 1-8

online help system 1-8

Perl interpreter 1-8

process management 1-7

security 1-8

Web server and servlet engine 1-9

SSL, reasons for using in 10-20

SSL support

applications, enabling to work over SSL 10-21

reasons for using SSL 10-20

support types available 10-21

structure 1-5

third-party tools, and 1-10

Aelfred XML parser (CSCOxrts) 1-11

cautions regarding 1-10

CSCOxsl 1-13

Java 2 Runtime Environment (CSCOjre2) 1-12
SD
OL-xxxxx-xx
Java XML parser (CSCOsml4J) 1-15

JChart (Jchart) 1-12

Perl (CSCOperl) 1-14

Visibroker for Java and C++ (CSCOvorb) 1-14

Web Server (CSCOweb) 1-11

tools, understanding

DB Internal 11-2

jConnect 11-2

JDBC 11-2

ODBC 11-2

SQL database engine 11-2

CMF Base Services, definition 1-22

CMF database, understanding 11-2

database access applications 11-3

connection strings 11-5

database server types 11-3

JDBC access methods 11-4

ODBC access methods 11-4

Perl access methods 11-4

CMF directory structure, understanding 3-1

file permissions 3-4

policies 3-1

top-level runtime directories 3-1

common directories (table) 3-2

Solaris-specific directories (table) 3-3

UNIX-specific directories (table) 3-3

Windows and UNIX, differences between 3-2

Windows-specific directories (table) 3-3

CMFEnable, using 5-5

CMF Network Services, definition 1-22

CMF System Services, definition 1-22

CMF upgrade mechanisms

API 21-23

for package upgrade, CopyOut API 21-24

function prototypes 21-26

Solaris example 21-26

Windows 2000 and Windows NT example 21-26

uninstallation before upgrade 21-25
IN-3
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
COLLECT, common runtime directory, path and
contents 3-2

Common APIs

Adding Unauthenticated URLs 21-26

common directories (table) 3-2

BACKUP 3-2

BIN 3-2

CGI-BIN 3-2

CLIENTINSTALL 3-2

CLIENT-JAVA 3-2

CLIENT-JAVA-APPS 3-2

COLLECT 3-2

CONF 3-2

DATABASES 3-2

DBMS 3-2

DBUPGRADE 3-2

ETC 3-2

HELP 3-2

HTDOCS 3-2

HTDOCS-IMAGES 3-2

LIB 3-2

OBJECTS 3-2

OBJECTS-APPS 3-2

SELFTEST 3-2

SERVER-JAVA 3-2

SERVER-JAVA-APPS 3-3

SETUP 3-3

community strings

definition 1-22

SNMP, definition 1-27

CONF, common runtime directory, path and contents 3-2

configureDb utility, caution regarding using 11-16

CORBA

definition 1-22

infrastructure, CWCS services 1-7

create, JRM command 18-60

CreateReadyFile, Process Manager command 17-18

CSV, definition 1-22

customizing
IN-4
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
the message window

message directory files (table) 7-9

cwjava

command

line options (table) 4-3

JRE2 options (table) 4-4

D

Daemon Manager

definition 1-22

daemons

definition 1-22

process, definition 1-22

database API command reference

(see also database APIs) 11-1

CMF Perl APIs, using (see Perl APIs) 11-46

code samples

Java, using to read a database 11-38

ODBC, using to access a table 11-40

Perl, using to access a database 11-40

database utilities, using

backup.pl 12-10

configureDb.pl 11-53

dbinit 11-54

dbmonitor 11-55

dbpasswd.pl 11-57

dbreader.pl 11-59

dbRestoreOrig 11-59

dbvalid 11-60

restorebackup.pl 12-11

runIsql 11-60

JDBC API wrappers, using

Class DBUtil 11-43

DBClient 11-41

DBConnection 11-44

DBResult 11-42

database APIs 11-1

(see also database API command reference) 11-37
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
changes for this release 11-2

CMF database, understanding 11-2

database access applications (figure) 11-3

database access methods 11-3

tools 11-2

command reference (see database API command
reference) 11-37

database processes and settings 11-6

backup manifest files, creating 11-10

database engine, managing 11-13

property files and settings 11-12

template file, creating 11-7

debugging and troubleshooting databases 11-33

abandoning 11-35, 12-21

database log files, managing 11-33

verifying 11-34

EMBU database delivery process,
understanding 11-5

SqlAnywhere 11-30

SQLSecureConnect 11-28

Sybase database 11-18

backing up 11-32

connections, creating and closing 11-28

contents, examining 11-31

creating 11-20

engines, starting and stopping 11-25

environment, setting up 11-19

initializing a new 11-19

password, updating 11-24

preparation for 11-19

database connections

C, using SQLDriverConnect 11-28

C, using SQLSecureConnect 11-28

Java, loading the JDBC driver 11-28

Perl, using SqlAnywhere 11-30

database engine and utilities, CWCS services 1-8

database processes and settings

backup manifest files, creating 11-10

database engine, managing
SD
OL-xxxxx-xx
configureDb utility, caution regarding 11-16

database port ID, changing 11-16

database port ID, creating 11-15

database port ID, dynamically allocating 11-17

database port IDs, understanding 11-14

database property files and settings

database server property file 11-12

private property files 11-13

database template file, creating

database password encryption, enabling 11-9

odbc.ini template, creating 11-7

odbc.tmplorig template, creating 11-7

DATABASES, common runtime directory, path and
contents 3-2

DBClient constructors and public methods 11-41

DBConnection constructors and public methods 11-44

DBD, definition 1-22

DBI, definition 1-23

DB Internal, CMF database tool, description 11-2

DBMS, common runtime directory, path and contents 3-2

dbreader

accessing the data 11-32

API, using 11-59

creating a DSN 11-31

dbreader, CMF service subset 1-8

DBResult constructors and public methods 11-42

DBUPGRADE, common runtime directory, path and
contents 3-2

DBUtil public methods 11-43

delay, JRM command 18-60

delete, JRM command 18-61

dependency handler, caution regarding using 21-27

deprecated and obsolete tools, caution regarding
using 1-10

desktop, integrating an application with 6-1, 7-1, 8-1, 9-1,
14-1, 24-1, 25-1, 26-1, 29-1, 32-1, 33-1, 34-1

desktop, using 7-1, 8-1, 9-1, 14-2, 24-1, 25-1, 32-6, 33-3, 34-4

procedure 7-6

security issues 10-16

APIs, using 10-17
IN-5
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
auto login pages, creating 10-18

device

adaptor, definition 1-23

class, definition 1-23

conflict, definition 1-23

discovery

definition 1-23

DLL, definition 1-23

DMCONFIG runtime directories, paths, and content

Solaris-specific 3-3

dMgtClose, Process Manager command 17-11

dMgtCreateReadyFile, Process Manager command 17-12

dMgtErr, Process Manager command 17-12

dMgtGetMsg, Process Manager command 17-13

dMgtInit, Process Manager command 17-13

dMgtIsShutdown, Process Manager command 17-14

dMgtProcessMsg, Process Manager command 17-14

dMgtSendStatus, Process Manager command 17-14

DMSTARTUP runtime directories, paths, and content

Solaris-specific 3-3

DNS, definition 1-23

documentation

new and updated pages 1-5

organization 1-35

related 1-34 to ??

DSN, definition 1-23

DTD

definition 1-23

E

eavesdropping, using SSL to stop 10-20

EDS

definition 1-23

using to publish events in JRM 20-4, 20-18

EDS, see Event Distribution System 6-13, 19-1

ELAN, definition 1-23

EMBU database delivery process, understanding 11-5

EncryptedObject encryption, caution regarding 10-19
IN-6
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
encryption, using CMF and Java APIs

asymmetrical encryption

code sample 10-20

when to use 10-20

symmetrical encryption

caution regarding 10-19

code sample 10-19

when to use 10-19

ENG_42263 16-1

ENG-104742 16-1

ENG-116280 16-1

ENG-123901 10-21

ENG-21240 17-1, 17-2

ENG-29971

CMF, installing 5-2

override dependency handler 21-27

ENG-29984 21-22

ENG-54964 11-1

ENG-58367 19-8, 19-12

ENG-7045 16-1

ENG-72595 19-8

ENG-80264 11-1

enum_job_locks, JRM lock manager method 18-44

Essentials, definition 1-23

ETC, common runtime directory, path and contents 3-2

EvalGroup, definition 1-23

Event Distribution System 6-13, 19-1

event management, CWCS services 1-8

event services 19-1

F

fabric, definition 1-24

FAQs and programming hints 2-1

ANI 2-4

general topics 2-1

online help 2-5

Process Manager 2-4

FILES runtime directories, paths, and content
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
UNIX-specific 3-3

Windows-specific 3-3

filtering messages for a mailbox

using the JMS API 19-19

using the LWMS API 19-16

find_lock, JRM lock manager method 18-45

FrameMaker

online help authoring 16-21

setting up 16-21

single-source authoring of online help 16-19

framework, definition 1-24

G

gateway, LWMS and Tibco 19-13

get_job_id, Helper API method in JRM 18-51

get_job_info, Helper API method in JRM 18-52

get_lock, JRM lock manager method 18-45

get_lock_info, Helper API method in JRM 18-52

GetCmdType, Process Manager command 17-18

GetConFile, Process Manager command 17-15

GetDescriptor, Process Manager command 17-15, 17-18

GetDmgtHostAndPort, Process Manager command 17-16

GetErr, Process Manager command 17-19

GetMsg, Process Manager command 17-19

getOrbConnectionProperties, Helper API method in
JRM 18-53

getScheduleString, Helper API method in JRM 18-53

GetServerinfo, Process Manager command 17-19

getStateStrings, Helper API method in JRM 18-53

GetStatusMsg, Process Manager command 17-20

GUI

definition 1-24

designing 5-7

H

HELP, common runtime directory, path and contents 3-2

Helper API methods in JRM 18-49
SD
OL-xxxxx-xx
get_job_id 18-51

get_job_info 18-52

get_lock_info 18-52

GetOrbConnectionProperties 18-53

getScheduleString 18-53

getStateStrings 18-53

lock 18-54

lock_n 18-55

set_completion_state 18-55

set_progress 18-55

unlock 18-56

unlock_all 18-56

hidden tools, CMF service subset 1-8

HTDOCS, common runtime directory, path and
contents 3-2

HTDOCS-IMAGES, common runtime directory, path and
contents 3-2

HTML

pages, in application security 10-17

HTTP, definition 1-24

I

IDL (Interface Definition Language)

definition 1-24

JRM server and 18-8

ILMI, definition 1-24

installable unit, definition 1-24

installation framework and patching process 21-1

build tools, getting started with 21-103

debugging, overview of 21-72, 21-105

framework, installing 21-70, 21-103

NT getting started example 21-72

protopackages, preparing 21-103

Solaris getting started examples 21-106

third-party tools, installing 21-70, 21-103

casuser, understanding and implementing 21-21

non-CMF application, upgrading 21-21
IN-7
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
ownership for package files (see package file
ownership) 21-86

database upgrades 21-22

paths and strategies 21-22

RME upgrade approaches (figure) 21-23

dependency handler, overriding 21-27

including files in protopackage 21-20

licensing 21-22

main framework

developer responsibilities 21-3

installation team responsibilities 21-3

patch CD, making 21-28

patching 21-27

patches, creating 21-27

patch mode installation 21-28

policy 21-27

procedure

name value pairs in .pkgpr files (table) 21-7

package name requirements (table) 21-6

package names, selecting 21-6

package properties, specifying 21-6, 21-7, 21-10

properties appended during the build process
(table) 21-9

properties generated by the installer (table) 21-9

protopackage file, required 21-20

scripts, writing for your package 21-33, 21-90

Solaris hook types (see Solaris hook types) 21-90

Windows hook types 21-33

Windows-specific APIs 21-37

tables of contents 21-11

file components of (table) 21-13, 21-16, 21-18

properties, how the installer processes 21-18

properties, specifing 21-19

Solaris-specific properties, specifying 21-9

third-party tools 21-4

install framework and patching process, CMF service
subset 1-8

INSTLOGS, UNIX-specific runtime directory, path and
content 3-3

integrating your application with the desktop 7-6
IN-8
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
Integration Utility, definition 1-24

Interface Definition Language (IDL), and the JRM
server 18-8

IP address, definition 1-24

is_server_running, Helper API method in JRM 18-54

IsShutdownRequest, Process Manager command 17-20

J

Java

(see also Java Plug-in) 22-1

(see also JDBC) 11-2

applets, in application security 10-17

applications

launching 4-2

launch process, understanding 4-1

database, reading with 11-38

Java 2 Runtime Environment

description 1-12

JavaBeans

using in CMF 4-5

Java Runtime Environment, CWCS services 1-8

Java Server Pages (JSP), in application security 10-18

Process Manager

interface to, using 17-4

methods in (see Process Manager command
reference) 17-17

servlets

in application security 10-17

SNMP engine, CWCS services 1-8

XML parser, third-party tool available with CMF,
description 1-15

Java APIs, encryption using

asymmetrical

code sample 10-20

when to use 10-20

symmetrical

code sample 10-19

when to use 10-19
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
Java Plug-in 22-1

API 22-2

CWCS services 1-8

external references 22-4

how it works

known issues 22-2

requirements 22-1

known issues 22-2

JChart, third-party tool available with CMF,
description 1-12

jConnect

definition 1-24

description 11-2

JDBC (Java Database Connectivity) 11-2

API wrappers, using 11-41

DBClient 11-41

DBConnection 11-44

DBResult 11-42

DBUtil 11-43

description 11-2

JMS message selectors, and LWMS 19-19

JNI, definition 1-24

job_cancel, Job Manager method 18-31, 18-32

job_create, Job Manager method 18-33

job_delete, Job Manager method 18-34

job_enum, Job Manager method 18-35

job_get_info, Job Manager method 18-36

job_get_result, Job Manager method 18-37

job_get_schedule, Job Manager method 18-37

job_get_schedule_string, Job Manager method 18-38

job_run, Job Manager method 18-38

job_set_approved, Job Manager method 18-39

job_set_info, Job Manager method 18-39, 18-40

job_set_progress_string, Job Manager method 18-40

job_set_reference, Job Manager method 18-40

job_set_result, Job Manager method 18-41

job_set_resume, Job Manager method 18-41

job_set_schedule, Job Manager method 18-42

job and resource management, CWCS services 1-8
SD
OL-xxxxx-xx
Job Browser

buttons, customizing 18-22

customizing 18-22

button behavior 18-22

understanding 18-10

JRE, definition 1-24

JRM (Job and Resource Manager) 18-1, 20-1

(see also JRM command reference) 18-26

architecture

overview 18-5

understanding 18-5

command reference (see JRM command
reference) 18-26

definition 1-24

EDS, using to publish events 20-4, 20-18

event types 20-19

registering 20-20

severity codes 20-19

enabling 18-12

Java application, using JRM from 18-12

connection, establishing 18-12

crashed jobs, handling 18-18

devices, accessing a locked 18-20

devices, locking and unlocking 18-19

disabled jobs, enabling 18-17

job, creating 18-14

job descriptions, obtaining 18-16

job status, setting 18-15

unapproved jobs, handling 18-16

unavailable resource, handling 18-19

Job Browser (see Job Browser) 18-22

JRM server, understanding 18-7

Helper API 18-9

IDL interface 18-8

jobs and resources 18-7

JRM and other CMF processes,
relationship 18-11

JRM events 18-9

JRM server classes 18-8
IN-9
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
services, understanding 18-2

job scheduling 18-3

locking parts of a device 18-5

locking resources 18-4

locking resources from another application 18-4

managing 18-3

web browser, using JRM from a 18-21

JRM command reference 18-26

command-line usage 18-24

job CLI 18-25

lock command line interface 18-25

displayed jobs status values 18-28

Helper API methods 18-49

get_job_id 18-51

get_job_info 18-52

get_lock_info 18-52

getOrbConnectionProperties 18-53

getScheduleString 18-53

getStateStrings 18-53

is_server_running 18-54

lock 18-54

lock_n 18-55

set_completion_state 18-55

set_progress 18-55

unlock 18-56

unlock_all 18-56

Java constants 18-56

job and resource lock attributes 18-26

job command line commands 18-59

approve 18-59

cancel 18-60

create 18-60

delay 18-60

delete 18-61

jobcli command summary (table) 18-59

reject 18-61

resume 18-61

run 18-62

schedule 18-62
IN-10
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
suspend 18-62

Job Manager methods 18-29

job_cancel 18-31, 18-32

job_create 18-33

job_delete 18-34

job_enum 18-35

job_get_info 18-36

job_get_result 18-37

job_get_schedule 18-37

job_get_schedule_string 18-38

job_run 18-38

job_set_approved 18-39

job_set_info 18-39, 18-40

job_set_progress_string 18-40

job_set_reference 18-40

job_set_result 18-41

job_set_resume 18-41

job_set_schedule 18-42

next 18-42

next_n 18-43

release 18-43

lock manager methods 18-44

enum_job_locks 18-44

find_lock 18-45

get_lock 18-45

lock 18-46

lock_n 18-46

next 18-47

next_n 18-47

release 18-48

unlock 18-48

unlock_job 18-49

unlock_n 18-49

K

kill command, caution regarding 11-28
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
L

LANE, definition 1-25

LECS, definition 1-25

LES, definition 1-25

LIB, common runtime directory, path and contents 3-2

License APIs

database connection, using SQLSecureConnect 11-28

license database, maintaining 11-37

License database, maintaining 11-37

lock

Helper API method in JRM 18-54

JRM lock manager method 18-46

lock_n

Helper API method in JRM 18-55

JRM lock manager method 18-46

log file viewer, CWCS services 1-8

LOG runtime directories, paths, and content

UNIX-specific 3-3

Windows-specific 3-4

LWMS (Lightweight Messaging Service)

(see also LWMS command reference) 19-19

API, using 19-15

mailbox, posting a message to 19-16

mailboxes, creating 19-15

mailboxes, polling for new messages 19-16

message listener, removing 19-16

messages, filtering 19-16

command reference 19-19

LwmsClient public methods (table) 19-19

LwmsMessage message creation methods
(table) 19-20

LwmsMsgEvent methods (table) 19-20

LwmsMsgListener interface methods
(table) 19-20

native API messaging methods 19-19

command reference (see LWMS command
reference) 19-19

configuring 19-13

client properties 19-13
SD
OL-xxxxx-xx
server properties 19-14

ENG-58367 19-8

ENG-72595 19-8

functional overview 19-10

LwmsClient 19-11

LwmsMailbox 19-11

LwmsMessage 19-11

LwmsServer 19-11

JMS API, using 19-18

mailbox, creating 19-18

mailboxes, polling for new messages 19-18

message, posting to a mailbox 19-18

message listener, removing 19-18

message selectors, working with 19-19

JMS API support 19-12

JMS to LWMS mappings 19-21

JMS to LWMS API mappings (table) 19-21

JMS to LWMS message field mappings
(table) 19-21

LWMS message queues 19-12

LWMS server logging 19-12

system usage assumptions 19-12

Tibco-LWMS gateway support 19-13

understanding 19-9

components 19-9

LWMS usage example (figure) 19-10

M

mailboxes

creating

using the JMS API 19-18

using the LWMS API 19-15

polling for new messages

using the JMS API 19-18

using the LWMS API 19-16

posting messages to

using the JMS API 19-18

using the LWMS API 19-16
IN-11
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
MAN, UNIX-specific runtime directory, path and
content 3-3

MDC, common runtime directory, path and contents 3-2

message

directory files (table) 7-9

filtering

using the JMS API 19-19

using the LWMS API 19-16

listener, removing

using the JMS API 19-18

using the LWMS API 19-16

polling for new

using the JMS API 19-18

using the LWMS API 19-16

posting to a mailbox

using the JMS API 19-18

using the LWMS API 19-16

queues, LWMS, understanding 19-12

selectors, working with in LWMS and JMS 19-19

window, customizing

message directory files (table) 7-9

MIB, definition 1-25

my_appdev 21-29

*.pkgpr, updating 21-29

CD, creating 21-30

my_app, patching with 21-31

protopackage, building the new 21-29

table ofcontents file, making 21-29

N

names, creating subject 19-2

navigation tree, definition 1-25

navigation tree control, adding your application to

procedures

XML file, adding 10-17

next

Job Manager method 18-42

JRM lock manager method 18-47
IN-12
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
next_n

Job Manager method 18-43

JRM lock manager method 18-47

NMIM, definition 1-25

NMSROOT

environment variable 3-1

O

OBJECTS, common runtime directory, path and
contents 3-2

OBJECTS-APPS, common runtime directory, path and
contents 3-2

observable persistent object, definition 1-25

obsolete and deprecated tools, caution regarding
using 1-10

ODBC (Open Database Connectivity)

definition 1-25

description 11-2

device group tables, accessing with 11-40

online help 16-1

(see also online help engineering tasks) 16-13

(see also online help mapping files) 16-9, 16-23

(see also online help search engine) 16-6

(see also online help writing tasks) 16-18

appearance 16-2

drop-in help systems, adding 16-29

engine, understanding 16-4

context-sensitive help buttons, linking 16-4

display process, summary 16-5

error conditions, handling 16-5

help API process overview (figures) 16-6

help topics, displaying 16-4

main help contents and index, creating 16-5

how it works 16-2

online help system, CWCS services 1-8

third-party systems, dropping in 16-29

online help engineering tasks 16-13

help engine, call to, adding 16-14
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
help files, packaging 16-16

help SDK files (client/web server), installing 16-13

mapping file, updating 16-15

required run-time help structure (figure) 16-16

online help mapping files 16-23

creating 16-23

main help page, defining contents and index for 16-24

contents, adding in default order 16-24

contents, adding in specific order 16-25

figure 16-24

search support, adding 16-27

understanding 16-9

conventions and requirements 16-10

line type descriptions (table) 16-11

line types 16-10

sample mapping file 16-12

online help search engine, understanding 16-6

Search dialog box

displaying 16-7

figure 16-7

search process, summary 16-8

Search results output page (figure) 16-8

online help writing tasks 16-18

authoring 16-22

authoring tool, selecting 16-19

FrameMaker/WebWorks 16-19

delivering the help system 16-28

development environments

FrameMaker/WebWorks 16-21

RoboHELP 16-19

setting up 16-19

subdirectory sharing, caution regarding 16-22

ENG-104742 16-19

ENG-70452 16-19

mapping file (see online help mapping files) 16-23

search index file, maintaining 16-28

ORB, definition 1-25
SD
OL-xxxxx-xx
P

package

file ownership, setting in Solaris 21-86

during build or installation 21-88

package_name.owner file, from 21-87

package_name.owner file, understanding 21-88

removal, caution regarding 21-25

packages

CSCOjchart (JChart), description 1-12

CSCOjre2 (Java 2 Runtime Environment),
description 1-12

CSCOperl (Perl)

description 1-14

CSCOsml4j (Java XML parser), description 1-15

CSCOvorb (Visibroker for Java and C++),
description 1-14

CSCOweb (Web Server), description 1-11

CSCOxrts (Aelfred XML parser), description 1-11

CSCOxsl (CSCOxls), description 1-13

password encryption, enabling 11-9

password for a new database, warning regarding
changing 11-20

patching process, CWCS services 1-8

pdexec, Process Manager command 17-6

pdrapp, Process Manager command 17-6

pdshow, Process Manager command 17-9

pdterm, Process Manager command 17-10

Perl

access methods 11-4

APIs

addManifestFiles 11-47

check_create 11-48

checkDb 11-48

database process management APIs 11-46

deleteDbVersionData 11-48

deleteManifestFiles 11-49

getDbVersionData 11-49

getManifestFiles 11-50

miscellaneous APIs 11-46
IN-13
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
setDbVersionData 11-51

StartDb 11-51

StopDb 11-51

unloadDbVersionData 11-52

validateDb 11-52

application security, backend script 10-17

CSCOperl 1-14

interpreter, CWCS services 1-8

script, backend, in application security 10-17

third-party tool available with CMF, description 1-14

persistent object, definition 1-26

polling, definition 1-26

precondition, definition 1-26

process management, CWCS services 1-7

Process Manager 17-1

(see also Process Manager command reference) 17-5

API, using 17-3

C++ interface, using 17-4

command reference (see Process Manager command
reference) 17-5

commands (see Process Manager command
reference) 17-5

definition 1-26

Java interface, using 17-4

log files, writing messages to 17-5

understanding 17-1

using 17-2

CLI 17-3

starting and stopping 17-2

Process Manager command reference 17-5

ANSI C and C++ commands 17-11

dMgtClose 17-11

dMgtCreateReadyFile 17-12

dMgtErr 17-12

dMgtGetMsg 17-13

dMgtInit 17-13

dMgtIsShutdown 17-14

dMgtProcessMsg 17-14

dMgtSendStatus 17-14
IN-14
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
GetConFile 17-15

GetDescriptor 17-15

GetDmgtHostAndPort 17-16

ValidatePgmPath 17-16

command line utilities 17-6

pdexec 17-6

pdrapp 17-6

pdregpdreg, Process Manager command 17-7

pdshow 17-9

pdterm 17-10

Java methods 17-17

CreateReadyFile 17-18

GetCmdType 17-18

GetDescriptor 17-18

GetErr 17-19

GetMsg 17-19

GetServerInfo 17-19

GetStatusMsg 17-20

IsShutdownRequest 17-20

ProcessMsg 17-20

ReqStatus 17-21

SendBusyMsg 17-21

SendErrMsg 17-21

SendOkMsg 17-22

StartProcess 17-22

Status 17-23

StopProcess 17-22

ProcessMsg, Process Manager command 17-20

protocol, definition 1-26

protopackage, definition 1-26

PROXY, Windows-specific runtime directory, path and
content 3-4

R

reject, JRM command 18-61

release

Job Manager method 18-43

JRM lock manager method 18-48
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
ReqStatus, Process Manager command 17-21

resume, JRM command 18-61

RoboHELP

writing environment 16-19

router, definition 1-26

run, JRM command 18-62

S

schedule, JRM command 18-62

Security

database password encryption, enabling 11-9

security

certificates in CMF 10-21

CWCS services 1-8

security system, using 10-1

desktop, integrating applications with 10-16

APIs, using 10-17

auto login pages, creating 10-18

eavesdropping, using SSL to stop 10-20

reasons for using SSL in CMF 10-20

SSL support available in CMF 10-21

encryption, using CMF and Java APIs

asymmetrical encryption 10-20

symmetrical encryption 10-19

server security 10-2

general concerns 10-7

seed device, definition 1-26

self-signed certificates 10-21

SELFTEST, common runtime directory, path and
contents 3-2

SendBusyMsg, Process Manager command 17-21

SendErrMsg, Process Manager command 17-21

SendOkMsg, Process Manager command 17-22

server event bus (SEB) 19-2

SERVER-JAVA, common runtime directory, path and
contents 3-2

SERVER-JAVA-APPS, common runtime directory, path
and contents 3-3
SD
OL-xxxxx-xx
server logging, LWMS, understanding 19-12

server security

general concerns 10-7

service

bundles

definition 1-26

understanding 5-3

module, definition 1-26

set_completion_state, Helper API method in JRM 18-55

set_progress, Helper API method in JRM 18-55

SETUP, common runtime directory, path and
contents 3-3

shared secret administration, understanding

shared secret client API

details of 10-11

SecretClient.dumpResponse 10-14

SecretClient.getErrCode 10-12

SecretClient.secretLogon 10-12

SecretClientdoPost 10-13

SecretClientgetErrReason 10-13

SMFContainer, definition 1-26

SMFFactory, definition 1-26

SMFunction, definition 1-26

SNMP

community strings, definition 1-27

definition 1-27

Solaris

(see also Solaris hook types) 21-90

debugging 21-105

distribution CD image structure 1-10

getting started example 21-106

make image, preparing 21-103

package file ownership, setting 21-86

during build or installation 21-88

package_name.owner, from 21-87

package name owner, understanding 21-88

Solaris-specific directories (table) 3-3

DMCONFIG 3-3

DMSTARTUP 3-3
IN-15
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
Solaris hook types 21-90

Solaris-specific information

input/output APIs 21-92

installable unit APIs 21-102

package APIs 21-97

system APIs 21-100

SQL

Database Engine

description 11-2

definition 1-27

SSH (Secure Shell)

API, using

closing connection 10-15

connecting to device 10-14

debugging 10-15

reading from device 10-15

sending commands to a device 10-15

SSL

eavesdropping, using to stop 10-20

reasons for using in CMF 10-20

support in CMF 10-21

applications, enabling to work over SSL 10-21

available 10-21

StartProcess, Process Manager command 17-22

Status, Process Manager command 17-23

StopProcess, Process Manager command 17-22

structural overview of CMF (figure) 1-6

subdirectory sharing, caution regarding 16-22

subject names, creating 19-2

suspend, JRM command 18-62

SWIM, definition 1-27

Sybase database

backing up 11-32

connections

closing 11-30

creating 11-28

contents, examining

database contents, accessing 11-32

DSN, creating 11-31
IN-16
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
creating 11-20

database files, installing 11-23

DbVersion and DbVersionHistory, creating and
populating 11-21

user ID and password, changing 11-21

engines

kill command, caution regarding 11-28

starting 11-25

stopping 11-27

system services, caution regarding starting 5-5

T

TCP/IP, definition 1-27

TEMP runtime directories, paths, and content

UNIX-specific 3-3

Windows-specific 3-4

TFTPBOOT, Windows-specific runtime directory, path
and content 3-4

third-party

help systems, adding 16-29

tools, descriptions 1-10

Aelfred XML parser (CSCOxrts),
description 1-11

caution regarding 1-10

CSCOxsl 1-13

Java 2 Runtime Environment (CSCOjre2) 1-12

Java XML parser (CSCOxml4j) 1-15

JChart (JChart) 1-12

Perl (CSCOperl) 1-14

Visibroker for Java and C++ (CSCOvorb) 1-14

Web Server (CSCOweb) 1-11

Tibco-LWMS gateway support 19-13

Tibco Rendezvous 19-2

tiers, and CMF service bundles 5-3

timebase, definition 1-27

timeline, definition 1-27

timestamp

definition 1-27
OL-xxxxx-xx

CISCO CONF IDENT IAL

Index
tools marked obsolete and deprecated, caution regarding
using 1-10

topology

definition 1-27

troubleshooting the database 11-33

database log files, managing 11-33

restoring a database

abandoning the database 11-35, 12-21

from a previous backup 11-35, 12-19

partial recovery 12-19

verifying a database 11-34

typographical conventions used in this
document 1-33 to 1-34

U

UNIX-specific runtime directories (table) 3-3

FILES 3-3

INSTLOGS 3-3

LOG 3-3

MAN 3-3

TEMP 3-3

unlock

Helper API method in JRM 18-56

JRM lock manager method 18-48

unlock_all, Helper API method in JRM 18-56

unlock_job, JRM lock manager method 18-49

unlock_n, JRM lock manager method 18-49

userid for a new database, warning regarding
changing 11-20

V

ValidatePgmPath, Process Manager command 17-16

Visibroker for Java and C++, third-party tool available
with CMF 1-14

VLAN, definition 1-27

VTP, definition 1-27
SD
OL-xxxxx-xx
W

warning regarding changing database userid and
password 11-20

web server

definition 1-27

servlet engine, and, CWCS services 1-9

Web Server, third-party tool available with CMF,
description 1-11

WebWorks, online help authoring tool 16-21

what’s new for this release 1-3, 11-2

Why SNMPv3? 24-1

Windows 2000 and Windows NT

APIs 21-37

distribution CD image structure 1-10

getting started example 21-72

global values and CMF, caution regarding 21-35

hook types, writing 21-33

installation APIs

CMF daemons, registering and
unregistering 21-51

commands, running in a shell 21-52

generic utilities, using 21-58

global variables, using 21-35

informational messages, sending to a log
file 21-48

informing the installer of space needs 21-50

NT services, registering and controlling 21-55

package properties, and version
comparisons 21-37

processing files containing NAME=VALUE
pairs 21-46

root directory pathname, locating 21-54

terminated installation, controlling a response
to 21-45

Winwows global values and CMF, caution
regarding 21-35

pkg.rul installation file 21-34

runtime directories (table) 3-3

FILES 3-3

LOG 3-4
IN-17
K Developer’s Guide for CiscoWorks Common Services 3.0.5

CISCO CONF IDENT IAL

Index
PROXY 3-4

TEMP 3-4

TFTPBOOT 3-4

Windows Task Manager, caution regarding 11-27

X

XML file

adding a new 10-17
IN-18
SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
OL-xxxxx-xx

	SDK Developer’s Guide for CiscoWorks Common Services 3.0.5
	Contents
	Preface
	About CWCS
	Introducing CWCS
	CWCS Release Model
	Benefits of Using CWCS
	What’s New in CWCS
	What’s New in This Guide
	Understanding the CWCS Structure
	Using CWCS Components
	How CWCS is Distributed
	Installation Interface Options
	CD Image Structure
	CD Image Structure for Windows
	CD Image Structure for Solaris

	Third-Party Tools
	Where to Find the CWCS SDK
	For Further Assistance

	FAQs and Programming Hints
	General Topics
	Daemon Manager
	Online Help

	Understanding the CWCS Directory Structure
	About CWCS Directory Policies
	About the CWCS Top-Level Runtime Directories
	About the CWCS Common Directories
	About the CWCS Solaris-Specific Directories
	About the CWCS UNIX-Specific Directories
	About the CWCS Windows-Specific Directories

	About CWCS File Permissions
	About CWCS Property Files
	About CWCS Log Files

	Understanding the CWCS Execution Environment
	Understanding the Java Application Launch Process
	Launching a Java Application
	Using Servlets and JSPs with Tomcat
	Using JavaBeans

	Getting Started with CWCS
	How CWCS Works
	Installing CWCS
	Enabling CWCS Services
	Understanding CWCS Service Bundles
	Using CWCS Service Bundles
	Registering for CWCS Services
	Enabling New Service Bundles from the Command Line
	Using CMFEnable

	Interacting with CWCS
	Designing the User Interface
	Adding Your Application to the CiscoWorks Home Page
	Using the Backend Services on the CWCS Server
	Using the CWCS Support Tools
	Getting Up to Speed Quickly

	About CWCS Shared Services
	Using Shared Services
	Understanding Shared Services
	About the Shared Services Components
	About the CiscoWorks Home Page Component
	About Web Server and Servlet Engine Components
	About the Cisco Management Integration Center (CMIC) Component
	About the Security System Components
	About the Database Components
	About the Backup and Restore Components
	About the Device List and Credentials Repository (DCR) Components
	About the Core Client Registry (CCR) Component
	About the Core Logging Component
	About the Online Help Component
	About the Daemon Manager Component
	About the Job and Resource Manager (JRM) Component
	About the Event Services Software (ESS) Component
	About the Event Distribution System (EDS) Component
	About the Installation Framework Component
	About the Java Plug-in Component
	About Diagnostic and Support Components
	About SNMP Service Components
	About NT Service Components
	About Device Center Components

	Using the CiscoWorks Home Page
	Understanding CWHP
	About the CWHP Interface
	How CWHP Works
	How CWHP Uses CMIC
	How CWHP Handles Security
	About the CWHP Runtime Structure

	Integrating Your Application with CWHP
	Registering Your UII-based Application with CWHP
	Implementing CWHP Security
	Implementing Special License Checks
	Handling CWHP Messages
	Migrating to CWHP

	Using Web Servers and Servlet Engines
	Understanding the CWCS Web Server and Servlet Engine
	About the CWCS Web Server and SSL
	Using CWCS Web Servers and Servlet Engines
	About the JRE Version
	About Apache Version and Access Control

	Servlet Engines and Runtime Directory
	Runtime Structure for New Components
	Existing Tomcat Based Components/Applications
	New Tomcat Based Components/Applications

	Runtime Structure for CiscoWorks Common Services Webapps
	Runtime Structure for DCR
	Runtime Structure for CMIC
	Runtime Structure for Device Center

	Implications of HTML Based Login

	Integrating Applications with CMIC
	Understanding CMIC
	Using CMIC Services
	Registering Applications
	Unregistering Applications Through Command Line
	Registering Applications Through Command Line

	Querying an Application
	Calling an Application
	Integrating CMIC with CWHP, Device Center, and Setup Center
	Wrapper Java Code
	System Flow for CWHP using CMIC

	About the CMIC APIs
	About the Management Service Template
	Component Interaction
	About CMIC Registry Dependencies
	Sample MST File

	Using the Security System
	Understanding CWCS Security
	About Client-to-Server Security
	About Server Internal Security
	User Name Length Restrictions
	Using CWCS Single Sign-On
	How the Login Protocol Works
	How the Logout Protocol Works
	About Server-Imposed Security
	About Administrator-Imposed Security
	About Server-to-Device Security
	About Secure Shell (SSH)

	Using CWCS Server Security
	About General Security
	Application Integration with CAM
	How CAM Cache works

	API Level Details
	Authorization Checking
	Setting Up Server Internal Security
	Using the Shared Secret Client API
	Client Side API Details
	SecretClient.secretLogon
	SecretClient.getErrCode
	SecretClient.getErrReason
	SecretClient.doPost
	SecretClient.dumpResponse

	Setting Up Server-to-Device Security

	Integrating a New Application
	Securing Applications
	Securing Java Servlets
	Securing Java Applets
	Backend Perl Script
	Java Server Pages (JSP)

	Creating Auto Login Pages

	Performing Encryption
	Handling Symmetrical Encryption
	Handling Asymmetrical (One-Way) Encryption

	Stopping Eavesdropping Using SSL
	Why Use SSL in CWCS?
	SSL Support in CWCS
	What Kind of SSL Support is Available in CWCS?
	SSL-Enabling Your Application

	Configuring System Identity Setups
	Configuring a Cisco.com User and Password

	Using the Database APIs
	Understanding the CWCS Database
	What’s New in This Release
	Understanding the Tools
	Database Access Methods
	Types of Database Servers
	JDBC Access Methods
	ODBC Access Methods
	Perl Access Methods
	Connection Strings

	Understanding the NMTG Database Delivery Process

	Setting Up a New Database
	Creating the ODBC Database Definition File
	Creating the Database Template File
	Creating the odbc.tmplorig Template File
	Customizing the odbc.tmpl File
	Enabling Database Password Encryption

	Creating the Backup Manifest Files
	Creating the Database Backup Manifest File
	Creating the Application Backup Manifest File

	About the Database Property Files and Settings
	About the Database Server Property File
	About Private Property Files

	Managing the Database Engine
	Understanding Port IDs
	Creating a Database Port
	Changing the Database Port
	Dynamically Allocating a Port ID

	Performing a Quick Integration
	Using the Sybase Database
	Before You Begin
	Setting Up Your Environment
	Initializing a New Database
	Creating a New Database
	Step 1: Change the User ID and Password
	Step 2: Create and Populate DbVersion and DbVersionHistory
	Step 3: Install the Database Files

	Updating the Database Password
	Starting and Stopping Database Engines
	Starting a Database Engine
	Stopping a Database Engine

	Creating and Closing Database Connections
	Connecting to a Database
	Closing a Database Connection

	Examining the Contents of a Database
	Creating a DSN
	Accessing Your Data

	Backing Up Your Database

	Debugging and Troubleshooting the Database
	Managing Database Log Files
	Ensuring Sufficient Temporary Space
	Optimizing Query Processing
	Verifying a Database
	Reinitializing a Database
	Cleaning Up Other Application Files

	Database API Command Reference
	Enabling the CWCS Database Engine
	Compiling and Running a Database
	Code Samples
	Using Java to Read a Database
	Using ODBC to Access a Table
	Using Perl to Access a Database

	Using JDBC API Wrappers
	DBClient
	DBResult
	Class DBUtil
	DBConnection

	Using CWCS Perl APIs
	Programming Tips for Perl APIs
	Perl API Summaries
	addManifestFiles
	check_create
	checkDb
	deleteDbVersionData
	deleteManifestFiles
	getDbVersionData
	getManifestFiles
	setDbVersionData
	StartDb
	StopDb
	unloadDbVersionData

	Using the Database Utilities
	configureDb.pl
	dbinit
	dbMonitor
	DBPing
	dbpasswd.pl
	dbreader.pl
	dbRestoreOrig
	dbvalid
	runIsql

	Using Backup and Restore
	Using CWCS Backup
	CWCS Backup
	How CWCS Backups are Stored
	Running CWCS Backups
	Offline Backup

	Using CWCS Restore
	CWCS Restore: Changes for CWCS 3.0
	Understanding the CWCS Restore Framework
	Running CWCS Restores
	Guidelines for Writing CWCS Restore Application Adaptors
	Sample CWCS Restore Application Adaptor

	CWCS Backup and Restore API Command Reference
	backup.pl
	restorebackup.pl
	copyFileToNMSROOT
	copyFolderToNMSROOT
	getCMFVersion
	getCMFPatchVersion
	getNMSROOT
	getArchiveNMSROOT
	getFolderSeperator
	getLogFileName
	getTempFolder
	isWindows
	redirectToScreen
	redirectToLog
	restoreDatabase
	StandardDbRebuild

	Restoring a Corrupt Database
	Restoring a Corrupt Database from a Previous Backup
	Recovering Part of a Corrupt Database
	Recovering Part of a Corrupt Database On Windows Platforms
	Recovering Part of a Corrupt Database On Solaris Platforms

	Abandoning a Corrupt Database

	Using the Core Client Registry
	Understanding CCR
	About the CCR Components
	CCR Local System Data (LSD) Component
	CCRProcess Component
	CCRInterface Component
	CCREntry Component
	CCRResponse Component

	About CCR System Flow
	Adding an LSD Entry (Installation)
	Removing an LSD Entry (Uninstall)
	Modifying an LSD Entry (Patching/Upgrading)
	Retrieving an LSD Entry

	About CCR Data Structures
	Local System Data (LSD) Data Structure
	CCREntry Data Structure
	CCRResponse Data Structure

	Using the CCR C++ API
	CCRInterface Functions
	CCREntry Functions
	CCRResponse Functions

	Using the CCR API: Example
	Using the CCRAccess Client
	Scripting CCRAccess
	Using the CCRAccess DLL
	Using the CCR Java Interface
	Encrypting and Decrypting CCREntry Values
	Encrypting Entry Names
	Decrypting Entry Names
	Encrypting Entry Data
	Decrypting Entry Data
	Encrypting Entry Locations
	Decrypting Entry Locations
	Encrypting Custom Entries
	Decrypting Custom Entries

	Using the Device Credentials Repository
	Understanding DCR
	About DCR Features and Benefits
	How DCR Works
	About the DCR Modes
	About the DCR Components
	How DCR Masters and Slaves Interact
	How DCR Adds Devices
	How DCR Modifies Devices
	How DCR Deletes Devices

	How DCR Secures Device and Credentials Data
	About DCR Data Storage
	About the DCR Device ID
	How DCR Stores Attributes
	How DCR Stores Credentials
	How DCR Stores Proxy Device Data
	How DCR Stores Enable-Mode Passwords
	About User-Defined Fields

	Integrating DCR with OGS
	Integrating DCR with ACS
	About DCR Events
	About the DCR Domain ID and Transaction ID
	About DCR Device Events
	About DCR Process Events
	About DCR Restore Events
	About DCR Events During Backup and Restore

	Using DCR
	Getting Started With DCR
	DCR Tasks to Perform During Application Startup
	Using the DCR APIs
	About the DCR APIs
	Creating the DCRProxy Object
	Creating the APIExtraInfo Object
	Adding Devices to DCR
	Updating a DCR Device
	Adding and Updating Devices in Bulk
	Retrieving DCR Device Objects
	Retrieving DCR Devices in Bulk
	Retrieving Data From a Device Object
	Comparing Two Device Objects
	Registering Third-Party Applications with DCR
	Guidelines for DCR Application Development
	DCR Error Codes and Interpretations

	Responding to DCR Events
	Using DCR Domain and Transaction IDs
	Using the DCR Command-Line Interface
	Enhancing DCR Performance

	Using the Core Logging API
	About the Core Logging API Structure
	Using the Core Logging API
	Initializing the Core Logging API
	Creating Debug Messages
	Creating Information Messages
	Creating Warning Messages
	Creating Error Messages
	Creating Fatal Messages
	Creating Auditing Messages
	Altering Priority for Category
	Adding Logging Location to CCR
	Adding Logging Category and Priority to CCR

	About the Core Logging API Interface Design
	About the Logger Interface
	About the JavaLogger Interface
	About the Auditlog Interface

	Adding Online Help
	Overview of Online Help
	How Help Is Displayed
	Understanding the Help Engine
	Displaying Help Topics
	Linking Context-Sensitive Help Buttons
	Creating the Main Help Contents and Index
	Handling Error Conditions
	Summarizing the Display Process

	Understanding the Search Engine
	Displaying the Search Dialog Box
	Searching the Files and Displaying the Search Results
	Summarizing the Search Process

	Understanding Mapping Files
	Mapping File Conventions and Requirements
	Mapping File Line Types
	Sample Mapping File

	Implementing Help: Engineering Tasks
	Installing the Help Packages
	Adding a Call to the Help Engine
	Calling Help From a Java Application
	Calling Help From an HTML-Based Application

	Updating the Mapping File
	Packaging the Help Files

	Implementing Help: Writing Tasks
	Selecting an Authoring Tool
	Setting Up Your Authoring Environment
	Setting Up the Native HTML Authoring Environment
	Setting Up the XML Authoring Environment
	Setting Up the FrameMaker/WebWorks Authoring Environment

	Creating the Help Topic Files
	Maintaining Your Help System’s Mapping File
	Creating the Mapping File
	Defining the Main Help Page Contents and Index
	Adding Search Support

	Maintaining the Search Index File
	Delivering Your Help System

	Adding Drop-In Help Systems

	Using the Daemon Manager
	Understanding the Daemon Manager
	Using the Daemon Manager
	Starting and Stopping the Daemon Manager
	Using the Daemon Manager Command Line Interface
	Using the Daemon Manager Application Programming Interface
	Using the Daemon Manager C++ Interface
	Using the Daemon Manager Java Interface
	Using a Ready File to Ensure Process Dependencies are Met
	Writing Messages to Log Files

	Daemon Manager Command Reference
	Daemon Manager Command Line Utilities
	pdexec
	pdrapp
	pdreg
	pdshow
	pdterm

	Daemon Manager ANSI C and C++ Commands
	dMgtClose
	dMgtCreateReadyFile
	dMgtErr
	dMgtGetMsg
	dMgtInit
	dMgtIsShutdown
	dMgtProcessMsg
	dMgtSendStatus
	GetConFile
	GetDescriptor
	GetDmgtHostAndPort
	ValidatePgmPath

	Daemon Manager Java Methods
	CreateReadyFile
	GetCmdType
	GetDescriptor
	GetErr
	GetMsg
	GetServerInfo
	GetStatusMsg
	IsShutdownRequest
	ProcessMsg
	ReqStatus
	SendBusyMsg
	SendErrMsg
	SendOkMsg
	StartProcess
	StopProcess
	Status

	Using the Job and Resource Manager
	Understanding JRM Services
	Managing JRM Services
	Scheduling Jobs
	Locking Resources
	Locking Resources from Another Application
	Locking Parts of a Device

	Understanding the JRM Architecture
	An Overview of the JRM Architecture
	Understanding the JRM Server
	About Jobs and Resources
	About JRM Server Classes
	About the IDL Interface
	About the Helper API
	About JRM Events

	Understanding the Job Browser
	How JRM Relates to Other CWCS Components

	Enabling JRM
	Using JRM from a Java Application
	Establishing a Connection
	Creating a Job
	Setting the Job Status
	Getting Job Descriptions
	Handling an Unapproved Job
	Enabling a Disabled Job
	Handling a Crashed Job
	Locking and Unlocking a Device
	Handling an Unavailable Resource
	Accessing a Locked Device

	Using JRM from a Web Browser
	Customizing the Job Browser Button Behaviors
	Using JRM from the Command Line
	Job Command Line Interface
	Lock Command Line Interface

	JRM Command Reference
	About the Job and Resource Lock Attributes
	About Displayed Job Status Values
	About the Job Manager Methods
	job_cancel
	job_cancel_instance
	job_cancel_event
	job_cancel_instance_event
	job_create
	job_create_hist
	job_delete
	job_delete_instance
	job_enum
	job_enum_hist
	job_get_info
	job_get_info_hist
	job_get_result
	job_get_schedule
	job_get_schedule_string
	job_run
	job_set_approved
	job_set_info
	job_set_info_hist
	job_set_progress_string
	job_set_reference
	job_set_result
	job_set_resume
	job_set_schedule
	next
	next_n
	release

	About the Lock Manager Methods
	enum_job_locks
	find_lock
	get_lock
	lock
	lock_n
	next
	next_n
	release
	unlock
	unlock_job
	unlock_n

	About the Helper API Methods
	get_job_id
	get_job_instance_id
	get_job_info
	get_job_info_hist
	get_lock_info
	getOrbConnectionProperties
	getScheduleString
	getStateStrings
	is_server_running
	lock
	lock_n
	set_completion_state
	set_progress
	unlock
	unlock_all

	About the JRM Java Constants
	Parsing ESS Messages

	Using the Job Command-Line Commands
	approve
	cancel
	create
	delay
	delete
	getnextschedule
	reject
	resume
	run
	schedule
	suspend

	Using Event Services Software
	Understanding ESS Subsystems
	How Does ESS Work?
	How Is ESS Organized?
	Using Tibco’s Rendezvous
	About Subject Names and Event Formats
	How Subject Names are Structured
	Choosing Subject Names and Namespaces
	Subscribing with Wildcards
	About ESS Event Formats
	About Reserved Subject Names
	Support for Map Messages

	Using the Lightweight Messaging Service
	Understanding LWMS
	About the LWMS Components
	How LWMS Works
	About LWMS Message Queues
	About JMS API Support
	About LWMS Server Logging
	About LWMS Usage Assumptions
	About Tibco-LWMS Gateway Support

	Configuring LWMS
	Configuring Client Properties
	Configuring Server Properties

	Using the LWMS API
	Creating a Mailbox with LWMS
	Posting a Message to a Mailbox with LWMS
	Polling Mailboxes for New Messages with LWMS
	Removing a Message Listener with LWMS
	Filtering Messages with LWMS

	Using the JMS API
	Creating a Mailbox with JMS APIs
	Posting a Message to a Mailbox with JMS
	Polling Mailboxes for New Messages with JMS
	Removing a Message Listener with JMS
	Using JMS Message Selectors

	LWMS Command Reference
	LWMS Native API Messaging Methods
	JMS to LWMS Mappings

	Using the Event Distribution System
	About the EDS Components
	About the EDS Event Server
	About the EDS Event Message
	About the EDS Atom Service
	About the EDS Manager
	About the EDS Class Loader
	About the EDS New Event Message Fields
	About the EDS Event Logger
	About the EDS Event Logger Display
	About the EDS Named Event Filter Service
	About the EDS Event to Trap Converter
	About the EDS Trap to Event Converter

	Using the EDS Programmatic Interface
	About EDS Events
	Formatting EDS Events
	Defining and Registering EDS Event Atoms
	Using the EDS Atom Definition File
	Using the Atom Service Executables
	Using the EDS Java Interface Classes
	Registering EDS Application Events
	Using the EDS Trap to Event Service
	Using the EDS Trap Receiver Framework
	Using the Trap Receptor
	Using the Trap Receiver Configuration File
	Using TrapInclude/TrapExclude Statements
	Creating Trap Actions
	Matching Trap Records
	Using the TrapToEDS Converter
	How the TrapToEDS Conversion Table is Used
	Using the TrapLaunch Action
	Using the TrapEcho Action
	Setting Trap Receiver Properties

	Using the Generic Consumer Framework
	Using the GCF Configuration File
	Using the GCF Admin Display
	Creating Generic Consumers
	Using the Event to Trap Converter with Generic Consumers

	Using EDS to Publish Events
	About the EDS-Published Event Types
	About the EDS-Published Severity Codes
	Registering Your Application with EDS

	Using the Installation Framework
	About the Installation Framework
	What’s New in This Release
	Understanding the CWCS Installation Framework
	Understanding Installation Team Responsibilities
	Understanding Developer Responsibilities

	Getting Started with the Installation Framework
	Third-Party Tools for Installation Framework
	Understanding Install Component and Image Structures
	Building an Installable Image
	Selecting Package Names
	Specifying Package Properties
	Understanding the Package Properties File
	Understanding Suite Properties
	Creating the Table of Contents
	How the Installer Processes Properties
	Specifying Properties

	Preparing Installation Protopackages
	Including Files in the Protopackage

	Using the Installation Framework
	Understanding the Common Services Upgrade
	Understanding and Implementing the casuser
	Providing Licensing Information During Installation
	Installing Database Upgrades
	Upgrade Installation Paths and Strategies
	About the CWCS Upgrade Mechanism
	Adding Unauthenticated URLs
	Overriding the Dependency Handler

	Handling Patches
	Patch Policy
	Creating a Patch
	Example: Making a Patch CD

	Application Registration with ACS during Installation

	Windows Installation Reference
	Setting File Permissions During Installation on Windows
	Writing Windows Scripts
	Using the Windows Installation Hooks
	Using the pkg.rul Installation File
	Using Installer Global Variables
	Preloading the Global List, lAnswerFile
	Reducing Windows Installation Time

	Using the Windows Installation APIs
	Accessing and Setting Package Properties to Perform Version Comparisons
	Controlling Responses to Terminated Installations
	Processing Name=Value Pairs
	Sending Informational Messages to a Log File
	Informing the Installer That a Component Requires More Space
	Registering and Unregistering CWCS Daemons
	Running Commands in a Shell
	Locating the Root Directory Path Name
	Registering and Controlling Windows Services
	Using Generic Utilities
	Managing Passwords
	Configuring Tomcat
	Controlling Reboots

	Using Windows Build Tools
	Step 1: Install Third-Party Tools for Windows
	Step 2: Install the Framework on Windows Platforms
	Step 3: Prepare the Make Image on Windows Platforms
	Debugging on Windows Platforms
	Example: Using Windows Build Tools

	Customizing the Installation Workflow for Windows
	About the Installer Workflow
	Getting Started with Windows Installer Tools
	Creating the Installation Project File
	Creating Install Actions
	Creating Install Panels
	Specifying Conditions For Install Actions and Panels
	Creating the Install Staging Area
	Example: Adding Message Boxes to an Installation
	Example: Creating Custom Password Dialogs
	Example: Adding User Data to Show Details

	Solaris Installation Reference
	Setting Ownership for Package Files on Solaris
	Setting Ownership from package_name.owner File
	Understanding the package_name.owner File
	Setting Ownership During Build/Installation
	Setting Ownership Assignment Details

	Creating the Answer File
	Writing Solaris Scripts
	Using the Solaris Installation Hooks
	Where to Find Solaris Installation Examples

	Using the Solaris Installation APIs
	Using the Solaris Input/Output APIs
	Using the Solaris Package APIs
	Using the Solaris System APIs
	Using the Solaris Installable Unit APIs

	Using Solaris Build Tools
	Step 1: Install Third-Party Tools On Solaris
	Step 2: Install the Framework On Solaris Platforms
	Step 3: Prepare the Make Image on Solaris
	Customizing the Installation Workflow on Solaris
	Debugging on Solaris
	Verifying Packages on Solaris

	Solaris Getting Started Example

	Using the Java Plug-in
	About the Java Plug-in Requirements
	Using the Java Plug-in API
	Accessing the JPI Configuration from CCR
	Using Tags Java Plug-in
	Using Client Local Resources
	JPI Technology References

	Using the Diagnostic and Support Utilities
	Using Collect Server Info
	What Data Does Collect Server Info Gather?
	Customizing Collect Server Info
	Running CollectServerInfo

	Using the MDC Support Utility
	About the MDC Support Utility Requirements
	What Data Does the MDC Utility Collect?
	Registering Alternative MDC Support Utilities
	Running MDC Support

	Using SNMP Set and Walk
	About the SNMP Set and Walk Requirements
	Running SNMP Set and Walk
	Updating the MIBs for SNMP Walk

	Using Packet Capture
	About the Packet Capture Utility Requirements
	Running Packet Capture

	Using Logrot
	Configuring Logrot
	Running Logrot
	Using Logrot Command Line Switches
	Troubleshooting Logrot
	Verifying Files and Time Cycles
	Verifying Scheduled Tasks
	Viewing the Scheduled Jobs Log File
	Verifying Logrot Status
	Known Problems with Logrot

	Using SNMP Services
	Why SNMPv3?
	How SNMP Support Works
	Using CWCS SNMP Services
	About the SNMP Classes in the Main Library
	About the SNMP Classes in the Futureapi

	Using NT Services
	Understanding CWCS NT Services
	About the NT TFTP Service
	About the NT Telnet Service
	About the NT Service APIs
	About the NT RCP Service
	About the CRMLogger Service

	Using CWCS NT Services
	Registering and Controlling NT Services
	Writing Messages to Log Files

	Using Device Center
	Understanding Device Center
	What You Can Do With Device Center
	About Device Center Launch Points
	What’s Inside Device Center
	About Device Center Dependencies
	About the Device Center Runtime Structure
	About the Device Center User Experience

	Using Device Center With Your Application
	Launching Device Center
	Registering Your Application With Device Center
	About the Device Center MST
	Sample Device Center MST
	MST XML-Schema
	Creating and Registering the MST With CMIC

	About Device Center Integration Tags
	About UII Rendering Module
	Providing Summary Information

	Understanding PIDM
	Bypassing PIDM Checks

	Using Product Instance Device Mapping
	Using the PIDM APIs
	Creating the ProductToDeviceMapProxy Object
	Mapping a Device or Marking a Device(s) as Managed
	Unmapping a Device or Marking a Device(s) as Not Managed
	Retrieving PIDM Information

	Using the PIDM North-bound APIs
	PIDM North-bound APIs
	PIDM NBAPIs and Associated Tasks
	Creating the APIExtraInfo Object
	Creating the ProductToDeviceMapNBProxy Object
	Mapping a Device or Marking a Device(s) as Managed
	Unmapping a Device or Marking a Device(s) as Not Managed
	Retrieving PIDM Information

	Integrating Applications With Device Selector
	UII Integration
	Integration with Search feature
	Configuring Property files

	Integration with Advanced Search Feature
	Integration with Tree Generator
	Tree Generator Changes for Device Selector Nodes
	Tree Generator Changes for Search Implementations
	Tree Generator Changes for Group Customization and Group Ordering

	About CWCS Per-Product Services
	Using Per-Product Services
	Understanding Per-Product Services
	About the Per-Product Services Components
	About the Object Grouping Service (OGS) Components
	About the Common Services Transport Mechanism (CSTM) Components
	About the Package Support Updater (PSU) Components
	About the Common Incremental Device Support (CIDS) Component
	About CWCS Licensing
	About the User Interface Infrastructure

	Using Object Grouping Services
	Understanding OGS
	About the OGS Components
	Basic OGS Concepts
	About OGS Groups
	About OGS Group Types
	About OGS Container Groups
	About OGS Group Hierarchy
	How Rules Are Constructed
	Choosing to Implement OGS

	Implementing OGS Servers
	Getting Started with OGS Server
	How OGS Server Works
	Using the OGS Server APIs
	Customizing OGS Server Interfaces
	Creating a Custom OGS Event Processor
	Handling OGS Exceptions

	Creating OGS ASAs
	Understanding ASA Infrastructure Modules
	About the Rule Validator
	About the Generic Schema
	About the Rule Evaluator
	About the Mapping Schema
	About the Rule Converter
	About Node Rule Expressions
	About Composite Rule Expressions
	About the ASA Change Alerter

	Customizing ASA Infrastructure Modules
	Customizing the Rule Validator
	Customizing the Generic Schema
	Customizing the Rule Evaluator
	Customizing the Mapping Schema
	Customizing the Rule Convertor and Rule Expressions
	Customizing the ASA Change Alerter

	Running a Customized ASA
	Registering the ASA with OGS
	Creating the ASA Configuration File
	Example: Using the Generic SQL ASA

	Creating an OGS GUI
	Using OGS Secure Views
	How Secure Views Work
	Implementing Secure Views
	Installing Secure Views
	Using OGS SecurityContext
	Using Secure Views With DCR IDs
	Using Secure Views with Object Selector
	Using Secure Views With the OGS Administrative GUI

	Customizing Your Secure Views Implementation
	Specifying a Non-Default Implementation
	Using Secure Views Without DCR IDs

	Using OGS Common and Shared Groups
	Configuring OGSServer.properties
	Configuring SharedGroups.properties
	Implementing the SharedGroupObjectMapperIf Interface
	OGS Utility Class for Common and Shared Groups

	Using OGS 1.3 Client Side Enhancements
	About the Enhanced OGS 1.3 Classes and Data Structures
	Controlling the Display of Wizard Steps
	Integrating OGS 1.3 With Your Application

	Using OGS 1.4 Enhancements
	Integrating OGS 1.4 With Your Application
	Integrating Configurable Display Name for Class Names Feature with Applications

	Using the Common Services Transport Mechanism
	Understanding CSTM
	Installing CSTM
	Installing Basic CSTM
	Installing CSTM with the Tomcat Servlet Engine

	Controlling CSTM Logging
	Setting Up CSTM Logging
	Setting the CSTM Logging Levels
	Changing the CSTM Logging Destination
	Starting a Log4j Server

	Viewing the CSTM Log File

	Publishing Objects
	Publishing Objects Statically
	Publishing Objects Dynamically
	Handling Remote Objects
	Registering Remote Objects Statically
	Registering Remote Objects Dynamically
	Publishing Remote Objects

	Publishing Objects Securely
	Unpublishing Objects

	Accessing Published Objects
	Using CTMClient
	Using CTMClientProxy
	Using CTMCall
	Changing CTM Client Properties
	Using CTMConstants
	Using the CTM Configuration File
	Handling CTM Exceptions

	Handling Special Requirements
	Implementing Secure CSTM Clients
	Running Registry Server as a Separate Process
	Registering the CSTM Port
	Using SOAP Encoding With CSTM
	Using the IMarshal Interface
	Using marshalMethodAndArgs
	Using unmarshalMethodAndArgs
	Using unmarshalReturnValue
	Using marshalReturnValue

	Using IMarshal’s Register Method
	Performing CSTM File Transfers
	CTMFileTransfer Client Side Functionality
	CTMFileTransfer Server Side Functionality
	About CTMFileTransferException

	Retrieving HTTP Errors

	Using the CTMTest Tools and Samples
	Creating a Custom Test File
	Publishing a Test Object
	Unpublishing a Test Object
	Accessing a Test Method Using CTMClient
	Accessing a Test Method Using CTMClientProxy
	Accessing a Test Method Using CTMCall
	Testing CSTM Communications
	Using the Sample TestClass
	Using the CSTM Samples
	Testing Parameter Passing
	Testing for Timeout Errors
	Testing Multiple Clients

	Guidelines for Using CSTM

	Using Package Support Updater
	Understanding PSU
	Using PSU with Your Application
	Integrating Applications
	Adding New Tags in INFO Files
	Registering with PSU
	Implementing Package Adapter and Package Descriptor Interfaces

	Using the PSU Command Line Tools
	Backing Up the Server
	Releasing Package Updates
	Uninstalling Device Support Packages

	Working with Software Center
	Performing Software Updates
	Performing Device Updates
	Scheduling Device Downloads
	Viewing Activity Logs
	Scheduled Job Details
	Event Logs

	Using Common Incremental Device Support
	Understanding CIDS
	SDI Component
	Abstraction Groups

	Runtime Architecture

	Using the Licensing APIs
	Understanding CWCS Licensing
	Using Licensing UI
	Understanding CWCS Licensing APIs
	CWCS Licensing Classes
	LicensedFeature
	LicenseManager
	LicensePAK
	Error Codes Generated by APIs

	Integrating CWCS Licensing APIs
	JavaDoc
	License Installation
	PAK and PIN
	Handling Multiple Licenses
	Interpreting PIN

	PIN Format
	Understanding License Framework
	Flowcharts

	Using Licensing Framework With Applications
	Install
	CW Home Page
	Runtime Calls
	License SDK
	Data Architecture
	License File Format
	License File Format for Common Services 3.0
	Alternate License File Format
	Proof-of-Purchase (POP)
	License CLI

	Glossary
	Index

